
Teach Yourself SQL in 21 Days, Second
Edition

Table of Contents:

Introduction

Week 1 at a Glance

Day 1 Introduction to SQL

Day 2 Introduction to the Query: The SELECT Statement

Day 3 Expressions, Conditions, and Operators

Day 4 Functions: Molding the Data You Retrieve

Day 5 Clauses in SQL

Day 6 Joining Tables

Day 7 Subqueries: The Embedded SELECT Statement

Week 1 in Review

Week 2 at a Glance

Day 8 Manipulating Data

Day 9 Creating and Maintaining Tables

Day 10 Creating Views and Indexes

Day 11 Controlling Transactions

Day 12 Database Security

Day 13 Advanced SQL Topics

Day 14 Dynamic Uses of SQL

Week 2 in Review

Week 3 at a Glance

Day 15 Streamlining SQL Statements for Improved Performance

Day 16 Using Views to Retrieve Useful Information from the Data Dictionary

Day 17 Using SQL to Generate SQL Statements

Day 18 PL/SQL: An Introduction

Day 19 Transact-SQL: An Introduction

Day 20 SQL*Plus

Day 21 Common SQL Mistakes/Errors and Resolutions

Week 3 in Review

Appendixes

A Glossary of Common SQL Statements

B Source Code Listings for the C++ Program Used on Day 14

C Source Code Listings for the Delphi Program Used on Day 14

D Resources

E ASCII Table

F Answers to Quizzes and Excercises

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

Acknowledgments
A special thanks to the following individuals: foremost to my loving wife, Tina, for her
tolerance and endless support, to Dan Wilson for his contributions, and to Thomas
McCarthy at IUPUI. Also, thank you Jordan for your encouragement over the past few
years.

-- Ryan K. Stephens

Special thanks to my wife for putting up with me through this busiest of times. I
apologize to my mom for not seeing her as often as I should (I'll make it up to you). Also,
thanks to my loyal dog, Toby. He was with me every night and wouldn't leave my side.

-- Ronald Plew

Special thanks to the following people: Jeff Perkins, David Blankenbeckler, Shannon
Little, Jr., Clint and Linda Morgan, and Shannon and Kaye Little.

This book is dedicated to my beautiful wife, Becky. I am truly appreciative to you for
your support, encouragement, and love. Thanks for staying up with me during all those
late-night sessions. You are absolutely the best.

-- Bryan Morgan

Thanks to my family, Leslie, Laura, Kelly, Valerie, Jeff, Mom, and Dad. Their support
made working on this book possible.

-- Jeff Perkins

About the Authors
Ryan K. Stephens

Ryan K. Stephens started using SQL as a programmer/analyst while serving on active
duty in the Indiana Army National Guard. Hundreds of programs later, Ryan became a
database administrator. He currently works for Unisys Federal Systems, where he is
responsible for government-owned databases throughout the United States. In addition
to his full-time job, Ryan teaches SQL and various database classes at Indiana
University-Purdue University Indianapolis. He also serves part-time as a programmer for
the Indiana Army National Guard. Along with Ron Plew and two others, Ryan owns a
U.S. patent on a modified chess game. Some of his interests include active sports, chess,
nature, and writing. Ryan lives in Indianapolis with his wife, Tina, and their three dogs,
Bailey, Onyx, and Sugar.

Ronald R. Plew

Ronald R. Plew is a database administrator for Unisys Federal Systems. He holds a
bachelor of science degree in business administration/management from the Indiana
Institute of Technology. He is an instructor for Indiana University-Purdue University
Indianapolis where he teaches SQL and various database classes. Ron also serves as a
programmer for the Indiana Army National Guard. His hobbies include collecting Indy
500 racing memorabilia. He also owns and operates Plew's Indy 500 Museum. He lives in
Indianapolis with his wife, Linda. They have four grown children (Leslie, Nancy, Angela,
and Wendy) and eight grandchildren (Andy, Ryan, Holly, Morgan, Schyler, Heather,
Gavin, and Regan).

Bryan Morgan

Bryan Morgan is a software developer with TASC, Inc., in Fort Walton Beach, Florida.
In addition to writing code and chasing the golf balls he hits, Bryan has authored
several books for Sams Publishing including Visual J++ Unleashed, Java Developer's
Reference, and Teach Yourself ODBC Programming in 21 Days. He lives in Navarre, Florida,
with his wife, Becky, and their daughter, Emma.

Jeff Perkins

Jeff Perkins is a senior software engineer with TYBRIN Corporation. He has been a
program manager, team leader, project lead, technical lead, and analyst. A graduate of
the United States Air Force Academy, he is a veteran with more than 2,500 hours of
flying time as a navigator and bombardier in the B-52. He has co-authored three other
books, Teach Yourself NT Workstation in 24 Hours, Teach Yourself ODBC Programming in 21 Days,

and Teach Yourself ActiveX in 21 Days.

Tell Us What You Think!
As a reader, you are the most important critic and commentator of our books. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you're willing to
pass our way. You can help us make strong books that meet your needs and give you the
computer guidance you require.

Do you have access to CompuServe or the World Wide Web? Then check out our
CompuServe forum by typing GO SAMS at any prompt. If you prefer the World Wide Web,
check out our site at http://www.mcp.com.

NOTE: If you have a technical question about this book, call the technical
support line at 317-581-3833 or send e-mail to support@mcp.com.

As the team leader of the group that created this book, I welcome your comments. You
can fax, e-mail, or write me directly to let me know what you did or didn't like about
this book--as well as what we can do to make our books stronger. Here's the information:

FAX: 317-581-4669

E-mail: enterprise_mgr@sams.mcp.com

Mail: Rosemarie Graham
Comments Department
Sams Publishing
201 W. 103rd Street
Indianapolis, IN 46290

Introduction

Who Should Read This Book?
Late one Friday afternoon your boss comes into your undersized cubicle and drops a new
project on your desk. This project looks just like the others you have been working on
except it includes ties to several databases. Recently your company decided to move
away from homegrown, flat-file data and is now using a relational database. You have
seen terms like SQL, tables, records, queries, and RDBMS, but you don't remember

http://www.mcp.com/
mailto:support@mcp.com
mailto:enterprise_mgr@sams.mcp.com

exactly what they all mean. You notice the due date on the program is three, no, make
that two, weeks away. (Apparently it had been on your boss's desk for a week!) As you
begin looking for definitions and sample code to put those definitions into context, you
discover this book.

This book is for people who want to learn the fundamentals of Structured Query
Language (SQL)--quickly. Through the use of countless examples, this book depicts all
the major components of SQL as well as options that are available with various
database implementations. You should be able to apply what you learn here to
relational databases in a business setting.

Overview
The first 14 days of this book show you how to use SQL to incorporate the power of
modern relational databases into your code. By the end of Week 1, you will be able to
use basic SQL commands to retrieve selected data.

NOTE: If you are familiar with the basics and history of SQL, we suggest
you skim the first week's chapters and begin in earnest with Day 8,
"Manipulating Data."

At the end of Week 2, you will be able to use the more advanced features of SQL, such
as stored procedures and triggers, to make your programs more powerful. Week 3 teaches
you how to streamline SQL code; use the data dictionary; use SQL to generate more SQL
code; work with PL/SQL, Transact-SQL, and SQL*Plus; and handle common SQL mistakes
and errors.

The syntax of SQL is explained and then brought to life in examples using Personal
Oracle7, Microsoft Query, and other database tools. You don't need access to any of
these products to use this book--it can stand alone as an SQL syntax reference.
However, using one of these platforms and walking though the examples will help you
understand the nuances.

Conventions Used in This Book
This book uses the following typeface conventions:

● Menu names are separated from menu options by a vertical bar (|). For example,
File | Open means "select the Open option from the File menu."

● New terms appear in italic.

● All code in the listings that you type in (input) appears in boldface monospace.
Output appears in standard monospace.

● The input label and output label also identify the nature of the code.

● Many code-related terms within the text also appear in monospace.

● Paragraphs that begin with the analysis label explain the preceding code sample.

● The syntax label identifies syntax statements.

The following special design features enhance the text:

NOTE: Notes explain interesting or important points that can help you
understand SQL concepts and techniques.

TIP: Tips are little pieces of information to begin to help you in real-world
situations. Tips often offer shortcuts or information to make a task easier
or faster.

WARNING: Warnings provide information about detrimental performance
issues or dangerous errors. Pay careful attention to Warnings.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

Week 1 At A Glance

Let's Get Started
Week 1 introduces SQL from a historical and theoretical perspective. The first
statement you learn about is the SELECT statement, which enables you to retrieve data
from the database based on various user-specified options. Also during Week 1 you study
SQL functions, query joins, and SQL subqueries (a query within a query). Many examples
help you understand these important topics. These examples use Oracle7, Sybase SQL
Server, Microsoft Access, and Microsoft Query and highlight some of the similarities
and differences among the products. The content of the examples should be useful and
interesting to a broad group of readers.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 1 -
Introduction to SQL

A Brief History of SQL
The history of SQL begins in an IBM laboratory in San Jose, California, where SQL was
developed in the late 1970s. The initials stand for Structured Query Language, and the
language itself is often referred to as "sequel." It was originally developed for IBM's
DB2 product (a relational database management system, or RDBMS, that can still be
bought today for various platforms and environments). In fact, SQL makes an RDBMS
possible. SQL is a nonprocedural language, in contrast to the procedural or third-
generation languages (3GLs) such as COBOL and C that had been created up to that
time.

NOTE: Nonprocedural means what rather than how. For example, SQL describes
what data to retrieve, delete, or insert, rather than how to perform the
operation.

The characteristic that differentiates a DBMS from an RDBMS is that the RDBMS
provides a set-oriented database language. For most RDBMSs, this set-oriented database
language is SQL. Set oriented means that SQL processes sets of data in groups.

Two standards organizations, the American National Standards Institute (ANSI) and
the International Standards Organization (ISO), currently promote SQL standards to
industry. The ANSI-92 standard is the standard for the SQL used throughout this book.
Although these standard-making bodies prepare standards for database system designers

to follow, all database products differ from the ANSI standard to some degree. In
addition, most systems provide some proprietary extensions to SQL that extend the
language into a true procedural language. We have used various RDBMSs to prepare
the examples in this book to give you an idea of what to expect from the common
database systems. (We discuss procedural SQL--known as PL/SQL--on Day 18, "PL/SQL: An
Introduction," and Transact-SQL on Day 19, "Transact-SQL: An Introduction.")

A Brief History of Databases
A little background on the evolution of databases and database theory will help you
understand the workings of SQL. Database systems store information in every
conceivable business environment. From large tracking databases such as airline
reservation systems to a child's baseball card collection, database systems store and
distribute the data that we depend on. Until the last few years, large database systems
could be run only on large mainframe computers. These machines have traditionally
been expensive to design, purchase, and maintain. However, today's generation of
powerful, inexpensive workstation computers enables programmers to design software
that maintains and distributes data quickly and inexpensively.

Dr. Codd's 12 Rules for a Relational Database Model

The most popular data storage model is the relational database, which grew from the
seminal paper "A Relational Model of Data for Large Shared Data Banks," written by
Dr. E. F. Codd in 1970. SQL evolved to service the concepts of the relational database
model. Dr. Codd defined 13 rules, oddly enough referred to as Codd's 12 Rules, for the
relational model:

0. A relational DBMS must be able to manage databases entirely through its
relational capabilities.

1. Information rule-- All information in a relational database (including table
and column names) is represented explicitly as values in tables.

2. Guaranteed access--Every value in a relational database is guaranteed to be
accessible by using a combination of the table name, primary key value, and
column name.

3. Systematic null value support--The DBMS provides systematic support for the
treatment of null values (unknown or inapplicable data), distinct from default
values, and independent of any domain.

4. Active, online relational catalog--The description of the database and its
contents is represented at the logical level as tables and can therefore be
queried using the database language.

5. Comprehensive data sublanguage--At least one supported language must have a
well-defined syntax and be comprehensive. It must support data definition,
manipulation, integrity rules, authorization, and transactions.

6. View updating rule--All views that are theoretically updatable can be updated
through the system.

7. Set-level insertion, update, and deletion--The DBMS supports not only set-
level retrievals but also set-level inserts, updates, and deletes.

8. Physical data independence--Application programs and ad hoc programs are
logically unaffected when physical access methods or storage structures are
altered.

9. Logical data independence--Application programs and ad hoc programs are
logically unaffected, to the extent possible, when changes are made to the table
structures.

10. Integrity independence--The database language must be capable of defining
integrity rules. They must be stored in the online catalog, and they cannot be
bypassed.

11. Distribution independence--Application programs and ad hoc requests are
logically unaffected when data is first distributed or when it is redistributed.

12. Nonsubversion--It must not be possible to bypass the integrity rules defined
through the database language by using lower-level languages.

Most databases have had a "parent/child" relationship; that is, a parent node would
contain file pointers to its children. (See Figure 1.1.)

Figure 1.1.
Codd's relational database management system.

This method has several advantages and many disadvantages. In its favor is the fact
that the physical structure of data on a disk becomes unimportant. The programmer
simply stores pointers to the next location, so data can be accessed in this manner. Also,
data can be added and deleted easily. However, different groups of information could
not be easily joined to form new information. The format of the data on the disk could
not be arbitrarily changed after the database was created. Doing so would require the
creation of a new database structure.

Codd's idea for an RDBMS uses the mathematical concepts of relational algebra to
break down data into sets and related common subsets.

Because information can naturally be grouped into distinct sets, Dr. Codd organized his

database system around this concept. Under the relational model, data is separated into
sets that resemble a table structure. This table structure consists of individual data
elements called columns or fields. A single set of a group of fields is known as a record
or row. For instance, to create a relational database consisting of employee data, you
might start with a table called EMPLOYEE that contains the following pieces of
information: Name, Age, and Occupation. These three pieces of data make up the fields
in the EMPLOYEE table, shown in Table 1.1.

Table 1.1. The EMPLOYEE table.

Name Age Occupation

Will Williams 25 Electrical engineer

Dave Davidson 34 Museum curator

Jan Janis 42 Chef

Bill Jackson 19 Student

Don DeMarco 32 Game programmer

Becky Boudreaux 25 Model

The six rows are the records in the EMPLOYEE table. To retrieve a specific record from
this table, for example, Dave Davidson, a user would instruct the database management
system to retrieve the records where the NAME field was equal to Dave Davidson. If the
DBMS had been instructed to retrieve all the fields in the record, the employee's name,
age, and occupation would be returned to the user. SQL is the language that tells the
database to retrieve this data. A sample SQL statement that makes this query is

SELECT *
FROM EMPLOYEE

Remember that the exact syntax is not important at this point. We cover this topic in
much greater detail beginning tomorrow.

Because the various data items can be grouped according to obvious relationships (such
as the relationship of Employee Name to Employee Age), the relational database
model gives the database designer a great deal of flexibility to describe the
relationships between the data elements. Through the mathematical concepts of join
and union, relational databases can quickly retrieve pieces of data from different sets
(tables) and return them to the user or program as one "joined" collection of data. (See
Figure 1.2.) The join feature enables the designer to store sets of information in separate
tables to reduce repetition.

Figure 1.2.
The join feature.

Figure 1.3 shows a union. The union would return only data common to both sources.

Figure 1.3.
The union feature.

Here's a simple example that shows how data can be logically divided between two
tables. Table 1.2 is called RESPONSIBILITIES and contains two fields: NAME and
DUTIES.

Table 1.2. The RESPONSIBILITIES table.

Name Duties

Becky Boudreaux Smile

Becky Boudreaux Walk

Bill Jackson Study

Bill Jackson Interview for jobs

It would be improper to duplicate the employee's AGE and OCCUPATION fields for each
record. Over time, unnecessary duplication of data would waste a great deal of hard
disk space and increase access time for the RDBMS. However, if NAME and DUTIES were
stored in a separate table named RESPONSIBILITIES, the user could join the
RESPONSIBILITIES and EMPLOYEE tables on the NAME field. Instructing the RDBMS to
retrieve all fields from the RESPONSIBILITIES and EMPLOYEE tables where the NAME
field equals Becky Boudreaux would return Table 1.3.

Table 1.3. Return values from retrieval where NAME equals Becky Boudreaux.

Name Age Occupation Duties

Becky Boudreaux 25 Model Smile

Becky Boudreaux 25 Model Walk

More detailed examples of joins begin on Day 6, "Joining Tables."

Designing the Database Structure
The most important decision for a database designer, after the hardware platform and
the RDBMS have been chosen, is the structure of the tables. Decisions made at this stage
of the design can affect performance and programming later during the development
process. The process of separating data into distinct, unique sets is called normalization.

Today's Database Landscape

Computing technology has made a permanent change in the ways businesses work around
the world. Information that was at one time stored in warehouses full of filing
cabinets can now be accessed instantaneously at the click of a mouse button. Orders
placed by customers in foreign countries can now be instantly processed on the floor of
a manufacturing facility. Although 20 years ago much of this information had been
transported onto corporate mainframe databases, offices still operated in a batch-
processing environment. If a query needed to be performed, someone notified the
management information systems (MIS) department; the requested data was delivered as
soon as possible (though often not soon enough).

In addition to the development of the relational database model, two technologies led
to the rapid growth of what are now called client/server database systems. The first
important technology was the personal computer. Inexpensive, easy-to-use applications
such as Lotus 1-2-3 and Word Perfect enabled employees (and home computer users) to
create documents and manage data quickly and accurately. Users became accustomed to
continually upgrading systems because the rate of change was so rapid, even as the price
of the more advanced systems continued to fall.

The second important technology was the local area network (LAN) and its integration
into offices across the world. Although users were accustomed to terminal connections
to a corporate mainframe, now word processing files could be stored locally within an
office and accessed from any computer attached to the network. After the Apple
Macintosh introduced a friendly graphical user interface, computers were not only
inexpensive and powerful but also easy to use. In addition, they could be accessed from
remote sites, and large amounts of data could be off-loaded to departmental data
servers.

During this time of rapid change and advancement, a new type of system appeared.
Called client/server development because processing is split between client computers and a
database server, this new breed of application was a radical change from mainframe-
based application programming. Among the many advantages of this type of architecture
are

● Reduced maintenance costs

● Reduced network load (processing occurs on database server or client computer)

● Multiple operating systems that can interoperate as long as they share a common
network protocol

● Improved data integrity owing to centralized data location

In Implementing Client/Server Computing, Bernard H. Boar defines client/server computing as
follows:

Client/server computing is a processing model in which a single application is
partitioned between multiple processors (front-end and back-end) and the
processors cooperate (transparent to the end user) to complete the processing as a
single unified task. Implementing Client/Server Computing A client/server bond
product ties the processors together to provide a single system image (illusion).
Shareable resources are positioned as requestor clients that access authorized
services. The architecture is endlessly recursive; in turn, servers can become
clients and request services of other servers on the network, and so on and so on.

This type of application development requires an entirely new set of programming skills.
User interface programming is now written for graphical user interfaces, whether it be
MS Windows, IBM OS/2, Apple Macintosh, or the UNIX X-Window system. Using SQL and a
network connection, the application can interface to a database residing on a remote
server. The increased power of personal computer hardware enables critical database
information to be stored on a relatively inexpensive standalone server. In addition, this
server can be replaced later with little or no change to the client applications.

A Cross-Product Language
You can apply the basic concepts introduced in this book in many environments--for
example, Microsoft Access running on a single-user Windows application or SQL Server
running with 100 user connections. One of SQL's greatest benefits is that it is truly a
cross-platform language and a cross-product language. Because it is also what
programmers refer to as a high-level or fourth-generation language (4GL), a large
amount of work can be donehigher-level language 4GL (fourth-generation) language
fourth-generation (4GL) language in fewer lines of code.

Early Implementations

Oracle Corporation released the first commercial RDBMS that used SQL. Although the
original versions were developed for VAX/VMS systems, Oracle was one of the first
vendors to release a DOS version of its RDBMS. (Oracle is now available on more than
70 platforms.) In the mid-1980s Sybase released its RDBMS, SQL Server. With client
libraries for database access, support for stored procedures (discussed on Day 14,
"Dynamic Uses of SQL"), and interoperability with various networks, SQL Server became
a successful product, particularly in client/server environments. One of the strongest
points for both of theseSQL Server powerful database systems is their scalability across
platforms. C language code (combined with SQL) written for Oracle on a PC is virtually
identical to its counterpart written for an Oracle database running on a VAX system.

SQL and Client/Server Application Development

The common thread that runs throughout client/server application development is the

use client/server computing of SQL and relational databases. Also, using this database
technology in a single-user business application positions the application for future
growth.

An Overview of SQL
SQL is the de facto standard language used to manipulate and retrieve data from these
relational databases. SQL enables a programmer or database administrator to do the
following:

● Modify a database's structure

● Change system security settings

● Add user permissions on databases or tables

● Query a database for information

● Update the contents of a database

NOTE: The term SQL can be confusing. The S, for Structured, and the L, for
Language, are straightforward enough, but the Q is a little misleading. Q,
of course, stands for "Query," which--if taken literally--would restrict you
to asking the database questions. But SQL does much more than ask
questions. With SQL you can also create tables, add data, delete data,
splice data together, trigger actions based on changes to the database, and
store your queries within your program or database.

Unfortunately, there is no good substitute for Query. Obviously,
Structured Add Modify Delete Join Store Trigger and Query Language
(SAMDJSTQL) is a bit cumbersome. In the interest of harmony, we will stay
with SQL. However, you now know that its function is bigger than its name.

The most commonly used statement in SQL is the SELECT statement (see Day 2,
"Introduction to the Query: The SELECT Statement"), which retrieves data from the
database and returns the data to the user. The EMPLOYEE table example illustrates a
typical example of a SELECT statement situation. In addition to the SELECT statement,
SQL provides statements for creating new databases, tables, fields, and indexes, as well
as statements for inserting and deleting records. ANSI SQL also recommends a core
group of data manipulation functions. As you will find out, many database systems also
have tools for ensuring data integrity and enforcing security (see Day 11, "Controlling
Transactions") that enable programmers to stop the execution of a group of commands if

a certain condition occurs.

Popular SQL Implementations
This section introduces some of the more popular implementations of SQL, each of which
has its own strengths and weaknesses. Where some implementations of SQL have been
developed for PC use and easy user interactivity, others have been developed to
accommodate very large databases (VLDB). This sections introduces selected key
features of some implementations.

NOTE: In addition to serving as an SQL reference, this book also contains
many practical software development examples. SQL is useful only when it
solves your real-world problems, which occur inside your code.

Microsoft Access

We use Microsoft Access, a PC-based DBMS, to illustrate some of the examples in this
text. Access is very easy to use. You can use GUI tools or manually enter your SQL
statements.

Personal Oracle7

We use Personal Oracle7, which represents the larger corporate database world, to
demonstrate command-line SQL and database management techniques. (These techniques
are important because the days of the standalone machine are drawing to an end, as are
the days when knowing one database or one operating system was enough.) In command-
line RÊl, simple stand+[cedilla]one SQL statements are entered into Oracle's SQL*Plus
tool. This tool then returns data to the screen for the user to see, or it performs the
appropriate action on the database.

Most examples are directed toward the beginning programmer or first-time user of SQL.
We begin with the simplest of SQL statements and advance to the topics of transaction
management and stored procedure programming. The Oracle RDBMS is distributed with a
full complement of development tools. It includes a C++ and Visual Basic language
library (Oracle Objects for OLE) that can link an application to a Personal Oracle
database. It also comes with graphical tools for database, user, and object
administration, as well as the SQL*Loader utility, which is used to import and export
data to and from Oracle.

NOTE: Personal Oracle7 is a scaled-down version of the full-blown
Oracle7 server product. Personal Oracle7 allows only single-user

connections (as the name implies). However, the SQL syntax used on this
product is identical to that used on the larger, more expensive versions of
Oracle. In addition, the tools used in Personal Oracle7 have much in
common with the Oracle7 product.

We chose the Personal Oracle7 RDBMS for several reasons:

● It includes nearly all the tools needed to demonstrate the topics discussed in this
book.

● It is available on virtually every platform in use today and is one of the most
popular RDBMS products worldwide.

● A 90-day trial copy can be downloaded from Oracle Corporation's World Wide
Web server (http://www.oracle.com).

Figure 1.4 shows SQL*Plus from this suite of tools.

Figure 1.4.
Oracle's SQL*Plus.

TIP: Keep in mind that nearly all the SQL code given in this book is
portable to other database management systems. In cases where syntax
differs greatly among different vendors' products, examples are given to
illustrate these differences.

Microsoft Query

Microsoft Query (see Figure 1.5) is a useful query tool that comes packaged with
Microsoft's Windows development tools, Visual C++, and Visual Basic. It uses the ODBC
standard to communicate with underlying databases. Microsoft Query passes SQL
statements to a driver, which processes the statements before passing them to a database
system.

Figure 1.5.
Microsoft Query.

Open Database Connectivity (ODBC)
ODBC is a functional library designed to provide a common Application Programming
Interface (API) to underlying database systems. It communicates with the database

http://www.oracle.com/

through a library driver, just as Windows communicates with a printer via a printer
driver. Depending on the database being used, a networking driver may be required to
connect to a remote database. The architecture of ODBC is illustrated in Figure 1.6.

Figure 1.6.
ODBC structure.

The unique feature of ODBC (as compared to the Oracle or Sybase libraries) is that none
of its functions are database-vendor specific. For instance, you can use the same code to
perform queries against a Microsoft Access table or an Informix database with little or
no modification. Once again, it should be noted that most vendors add some proprietary
extensions to the SQL standard, such as Microsoft's and Sybase's Transact-SQL and
Oracle's PL/SQL.

You should always consult the documentation before beginning to work with a new
data source. ODBC has developed into a standard adopted into many products, including
Visual Basic, Visual C++, FoxPro, Borland Delphi, and PowerBuilder. As always,
application developers need to weigh the benefit of using the emerging ODBC standard,
which enables you to design code without regard for a specific database, versus the
speed gained by using a database specific function library. In other words, using ODBC
will be more portable but slower than using the Oracle7 or Sybase libraries.

SQL in Application Programming
SQL was originally made an ANSI standard in 1986. The ANSI 1989 standard (often
called SQL-89) defines three types of interfacing to SQL within an application program:

● Module Language-- Uses procedures within programs. These procedures can be
called by the application program and can return values to the program via
parameter passing.

● Embedded SQL--Uses SQL statements embedded with actual program code. This
method often requires the use of a precompiler to process the SQL statements. The
standard defines statements for Pascal, FORTRAN, COBOL, and PL/1.

● Direct Invocation--Left up to the implementor.

Before the concept of dynamic SQL evolved, embedded SQL was the most popular way to
use SQL within a program. Embedded SQL, which is still used, uses static SQL--meaning
that the SQL statement is compiled into the application and cannot be changed at
runtime. The principle is much the same as a compiler versus an interpreter. The
performance for this type of SQL is good; however, it is not flexible--and cannot always
meet the needs of today's changing business environments. Dynamic SQL is discussed
shortly.

The ANSI 1992 standard (SQL-92) extended the language and became an international
standard. It defines three levels of SQL compliance: entry, intermediate, and full. The
new features introduced include the following:

● Connections to databases

● Scrollable cursors

● Dynamic SQL

● Outer joins

This book covers not only all these extensions but also some proprietary extensions used
by RDBMS vendors. Dynamic SQL allows you to prepare the SQL statement at runtime.
Although the performance for this type of SQL is not as good as that of embedded SQL,
it provides the application developer (and user) with a great degree of flexibility. A
call-level interface, such as ODBC or Sybase's DB-Library, is an example of dynamic
SQL.

Call-level interfaces should not be a new concept to application programmers. When
using ODBC, for instance, you simply fill a variable with your SQL statement and call
the function to send the SQL statement to the database. Errors or results can be
returned to the program through the use of other function calls designed for those
purposes. Results are returned through a process known as the binding of variables.

Summary
Day 1 covers some of the history and structure behind SQL. Because SQL and relational
databases are so closely linked, Day 1 also covers (albeit briefly) the history and
function of relational databases. Tomorrow is devoted to the most important component
of SQL: the query.

Q&A
Q Why should I be concerned about SQL?

A Until recently, if you weren't working on a large database system, you
probably had only a passing knowledge of SQL. With the advent of client/server
development tools (such as Visual Basic, Visual C++, ODBC, Borland's Delphi, and
Powersoft's PowerBuilder) and the movement of several large databases (Oracle
and Sybase) to the PC platform, most business applications being developed today
require a working knowledge of SQL.

Q Why do I need to know anything about relational database theory to use

SQL?

A SQL was developed to service relational databases. Without a minimal
understanding of relational database theory, you will not be able to use SQL
effectively except in the most trivial cases.

Q All the new GUI tools enable me to click a button to write SQL. Why
should I spend time learning to write SQL manually?

A GUI tools have their place, and manually writing SQL has its place. Manually
written SQL is generally more efficient than GUI-written SQL. Also, a GUI SQL
statement is not as easy to read as a manually written SQL statement. Finally,
knowing what is going on behind the scenes when you use GUI tools will help you
get the most out of them.

Q So, if SQL is standardized, should I be able to program with SQL on any
databases?

A No, you will be able to program with SQL only on RDBMS databases that
support SQL, such as MS-Access, Oracle, Sybase, and Informix. Although each
vendor's implementation will differ slightly from the others, you should be able
to use SQL with very few adjustments.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. What makes SQL a nonprocedural language?

2. How can you tell whether a database is truly relational?

3. What can you do with SQL?

4. Name the process that separates data into distinct, unique sets.

Exercise

Determine whether the database you use at work or at home is truly relational.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 2 -
Introduction to the Query: The SELECT

Statement

Objectives
Welcome to Day 2! By the end of the day you will be able to do the following:

● Write an SQL query

● Select and list all rows and columns from a table

● Select and list selected columns from a table

● Select and list columns from multiple tables

Background
To fully use the power of a relational database as described briefly on Day 1,
"Introduction to SQL," you need to communicate with it. The ultimate communication
would be to turn to your computer and say, in a clear, distinct voice, "Show me all the
left-handed, brown-eyed bean counters who have worked for this company for at least
10 years." A few of you may already be doing so (talking to your computer, not listing
bean counters). Everyone else needs a more conventional way of retrieving information
from the database. You can make this vital link through SQL's middle name, "Query."

As mentioned on Day 1, the name Query is really a misnomer in this context. An SQL
query is not necessarily a question to the database. It can be a command to do one of the
following:

● Build or delete a table

● Insert, modify, or delete rows or fields

● Search several tables for specific information and return the results in a specific
order

● Modify security information

A query can also be a simple question to the database. To use this powerful tool, you
need to learn how to write an SQL query.

General Rules of Syntax
As you will find, syntax in SQL is quite flexible, although there are rules to follow as
in any programming language. A simple query illustrates the basic syntax of an SQL
select statement. Pay close attention to the case, spacing, and logical separation of the
components of each query by SQL keywords.

SELECT NAME, STARTTERM, ENDTERM
FROM PRESIDENTS
WHERE NAME = 'LINCOLN';

In this example everything is capitalized, but it doesn't have to be. The preceding query
would work just as well if it were written like this:

select name, startterm, endterm
from presidents
where name = 'LINCOLN';

Notice that LINCOLN appears in capital letters in both examples. Although actual SQL
statements are not case sensitive, references to data in a database are. For instance,
many companies store their data in uppercase. In the preceding example, assume that the
column name stores its contents in uppercase. Therefore, a query searching for 'Lincoln'
in the name column would not find any data to return. Check your implementation
and/or company policies for any case requirements.

NOTE: Commands in SQL are not case sensitive.

Take another look at the sample query. Is there something magical in the spacing? Again
the answer is no. The following code would work as well:

select name, startterm, endterm from presidents where name =
'LINCOLN';

However, some regard for spacing and capitalization makes your statements much easier
to read. It also makes your statements much easier to maintain when they become a part
of your project.

Another important feature of ; (semicolon)semicolon (;)the sample query is the semicolon
at the end of the expression. This punctuation mark tells the command-line SQL program
that your query is complete.

If the magic isn't in the capitalization or the format, then just which elements are
important? The answer is keywords, or the words in SQL that are reserved as a part of
syntax. (Depending on the SQL statement, a keyword can be either a mandatory element
of the statement or optional.) The keywords in the current example are

● SELECT

● FROM

● WHERE

Check the table of contents to see some of the SQL keywords you will learn and on
what days.

The Building Blocks of Data Retrieval: SELECT and
FROM
As your experience with SQL grows, you will notice that you are typing the words
SELECT and FROM more than any other words in the SQL vocabulary. They aren't as
glamorous as CREATE or as ruthless as DROP, but they are indispensable to any
conversation you hope to have with the computer concerning data retrieval. And isn't
data retrieval the reason that you entered mountains of information into your very
expensive database in the first place?

This discussion starts with SELECT because most of your statements will also start with
SELECT:

SYNTAX:

SELECT <COLUMN NAMES>

The commands, see also statementsbasic SELECT statement couldn't be simpler. However,
SELECT does not work alone. If you typed just SELECT into your system, you might get
the following response:

INPUT:

SQL> SELECT;

OUTPUT:

SELECT
 *
ERROR at line 1:
ORA-00936: missing expression

The asterisk under the offending line indicates where Oracle7 thinks the offense
occurred. The error message tells you that something is missing. That something is the
FROM clause:

SYNTAX:

FROM <TABLE>

Together, the statements SELECT and FROM begin to unlock the power behind your
database.

NOTE: keywordsclausesAt this point you may be wondering what the
difference is between a keyword, a statement, and a clause. SQL keywords
refer to individual SQL elements, such as SELECT and FROM. A clause is a
part of an SQL statement; for example, SELECT column1, column2, ... is a
clause. SQL clauses combine to form a complete SQL statement. For example,
you can combine a SELECT clause and a FROM clause to write an SQL
statement.

NOTE: Each implementation of SQL has a unique way of indicating errors.
Microsoft Query, for example, says it can't show the query, leaving you to
find the problem. Borland's Interbase pops up a dialog box with the error.
Personal Oracle7, the engine used in the preceding example, gives you an
error number (so you can look up the detailed explanation in your manuals)
and a short explanation of the problem.

Examples
Before going any further, look at the sample database that is the basis for the
following examples. This database illustrates the basic functions of SELECT and FROM.
In the real world you would use the techniques described on Day 8, "Manipulating
Data," to build this database, but for the purpose of describing how to use SELECT and
FROM, assume it already exists. This example uses the CHECKS table to retrieve
information about checks that an individual has written.

The CHECKS table:

 CHECK# PAYEE AMOUNT REMARKS
--------- -------------------- ------ ---------------------
 1 Ma Bell 150 Have sons next time
 2 Reading R.R. 245.34 Train to Chicago
 3 Ma Bell 200.32 Cellular Phone
 4 Local Utilities 98 Gas
 5 Joes Stale $ Dent 150 Groceries
 6 Cash 25 Wild Night Out
 7 Joans Gas 25.1 Gas

Your First Query
INPUT:

SQL> select * from checks;

OUTPUT:

queriesCHECK# PAYEE AMOUNT REMARKS
------ -------------------- ------- ---------------------

 1 Ma Bell 150 Have sons next time
 2 Reading R.R. 245.34 Train to Chicago
 3 Ma Bell 200.32 Cellular Phone
 4 Local Utilities 98 Gas
 5 Joes Stale $ Dent 150 Groceries
 6 Cash 25 Wild Night Out
 7 Joans Gas 25.1 Gas

7 rows selected.

ANALYSIS:

This output looks just like the code in the example. Notice that columns 1 and 3 in the
output statement are right-justified and that columns 2 and 4 are left-justified. This

format follows the alignment convention in which numeric data types are right-
justified and character data types are left-justified. Data types are discussed on Day 9,
"Creating and Maintaining Tables."

The asterisk (*) in select * tells the database to return all the columns associated
with the given table described in the FROM clause. The database determines the order in
which to return the columns.

Terminating an SQL Statement

In some implementations of SQL, the semicolon at the end of the statement tells the
interpreter that you are finished writing the query. For example, Oracle's SQL*PLUS
won't execute the query until it finds a semicolon (or a slash). On the other hand, some
implementations of SQL do not use the semicolon as a terminator. For example,
Microsoft Query and Borland's ISQL don't require a terminator, because your query is
typed in an edit box and executed when you push a button.

Changing the Order of the Columns

The preceding example of an SQL statement used the * to select all columns from a
table, the order of their appearance in the output being determined by the database. To
specify the order of the columns, you could type something like:

INPUT:

SQL> SELECT payee, remarks, amount, check# from checks;

Notice that each column name is listed in the SELECT clause. The order in which the
columns are listed is the order in which they will appear in the output. Notice both the
commas that separate the column names and the space between the final column name
and the subsequent clause (in this case FROM). The output would look like this:

OUTPUT:

PAYEE REMARKS AMOUNT CHECK#
-------------------- ------------------ --------- ---------
Ma Bell Have sons next time 150 1
Reading R.R. Train to Chicago 245.34 2
Ma Bell Cellular Phone 200.32 3
Local Utilities Gas 98 4
Joes Stale $ Dent Groceries 150 5
Cash Wild Night Out 25 6
Joans Gas Gas 25.1 7

7 rows selected.

Another way to write the same statement follows.

INPUT:

SELECT payee, remarks, amount, check#
FROM checks;

Notice that the FROM clause has been carried over to the second line. This convention is
a matter of personal taste when writing SQL code. The output would look like this:

OUTPUT:

PAYEE REMARKS AMOUNT CHECK#
-------------------- -------------------- --------- --------
Ma Bell Have sons next time 150 1
Reading R.R. Train to Chicago 245.34 2
Ma Bell Cellular Phone 200.32 3
Local Utilities Gas 98 4
Joes Stale $ Dent Groceries 150 5
Cash Wild Night Out 25 6
Joans Gas Gas 25.1 7

7 rows selected.

ANALYSIS:

The output is identical because only the format of the statement changed. Now that
you have established control over the order of the columns, you will be able to specify
which columns you want to see.

Selecting Individual Columns

Suppose you do not want to see every column in the database. You used SELECT * to
find out what information was available, and now you want to concentrate on the
check number and the amount. You type

INPUT:

SQL> SELECT CHECK#, amount from checks;

which returns

OUTPUT:

 CHECK# AMOUNT
--------- ---------
 1 150

 2 245.34
 3 200.32
 4 98
 5 150
 6 25
 7 25.1

7 rows selected.

ANALYSIS:

Now you have the columns you want to see. Notice the use of upper- and lowercase in
the query. It did not affect the result.

What if you need information from a different table?

Selecting Different Tables

Suppose you had a table called DEPOSITS with this structure:

DEPOSIT# WHOPAID AMOUNT REMARKS
-------- ---------------------- ------ -------------------
 1 Rich Uncle 200 Take off Xmas list
 2 Employer 1000 15 June Payday
 3 Credit Union 500 Loan

You would simply change the FROM clause to the desired table and type the following
statement:

INPUT:

SQL> select * from deposits

The result is

OUTPUT:

 DEPOSIT# WHOPAID AMOUNT REMARKS
-------- ---------------------- ------ -------------------
 1 Rich Uncle 200 Take off Xmas list
 2 Employer 1000 15 June Payday
 3 Credit Union 500 Loan

ANALYSIS:

With a single change you have a new data source.

Queries with Distinction
If you look at the original table, CHECKS, you see that some of the data repeats. For
example, if you looked at the AMOUNT column using

INPUT:

SQL> select amount from checks;

you would see

OUTPUT:

 AMOUNT

 150
 245.34
 200.32
 98
 150
 25
 25.1

Notice that the amount 150 is repeated. What if you wanted to see how may different
amounts were in this column? Try this:

INPUT:

SQL> select DISTINCT amount from checks;

The result would be

OUTPUT:

 AMOUNT

 25
 25.1
 98
 150
 200.32
 245.34

6 rows selected.

ANALYSIS:

Notice that only six rows are selected. Because you specified DISTINCT, only one
instance of the duplicated data is shown, which means that one less row is returned.
ALL is a keyword that is implied in the basic SELECT statement. You almost never see
ALL because SELECT <Table> and SELECT ALL <Table> have the same result.

Try this example--for the first (and only!) time in your SQL career:

INPUT:

SQL> SELECT ALL AMOUNT
 2 FROM CHECKS;

OUTPUT:

 AMOUNT

 150
 245.34
 200.32
 98
 150
 25
 25.1

7 rows selected.

It is the same as a SELECT <Column>. Who needs the extra keystrokes?

Summary
The keywords SELECT and FROM enable the query to retrieve data. You can make a
broad statement and include all tables with a SELECT * statement, or you can
rearrange or retrieve specific tables. The keyword DISTINCT limits the output so that
you do not see duplicate values in a column. Tomorrow you learn how to make your
queries even more selective.

Q&A
Q Where did this data come from and how do I connect to it?

A The data was created using the methods described on Day 8. The database
connection depends on how you are using SQL. The method shown is the
traditional command-line method used on commercial-quality databases. These
databases have traditionally been the domain of the mainframe or the
workstation, but recently they have migrated to the PC.

Q OK, but if I don't use one of these databases, how will I use SQL?

A You can also use SQL from within a programming language. Embedded
SQLEmbedded SQL is normally a language extension, most commonly seen in
COBOL, in which SQL is written inside of and compiled with the program.
Microsoft has created an entire Application Programming Interface (API) that
enables programmers to use SQL from inside Visual Basic, C, or C++. Libraries
available from Sybase and Oracle also enable you to put SQL in your programs.
Borland has encapsulated SQL into database objects in Delphi. The concepts in
this book apply in all these languages.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises," and make sure you
understand the answers before starting tomorrow's work.

Quiz

1. Do the following statements return the same or different output:

SELECT * FROM CHECKS;
select * from checks;?

2. The following queries do not work. Why not?

a. Select *

b. Select * from checks

c. Select amount name payee FROM checks;

3. Which of the following SQL statements will work?

a. select *

from checks;

b. select * from checks;

c. select * from checks

/

Exercises

1. Using the CHECKS table from earlier today, write a query to return just the
check numbers and the remarks.

2. Rewrite the query from exercise 1 so that the remarks will appear as the first
column in your query results.

3. Using the CHECKS table, write a query to return all the unique remarks.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 3 -
Expressions, Conditions, and Operators

Objectives
On Day 2, "Introduction to the Query: The SELECT Statement," you used SELECT and
FROM to manipulate data in interesting (and useful) ways. Today you learn more about
SELECT and FROM and expand the basic query with some new terms to go with query,
table, and row, as well as a new clause and a group of handy items called operators.
When the sun sets on Day 3, you will

● Know what an expression is and how to use it

● Know what a condition is and how to use it

● Be familiar with the basic uses of the WHERE clause

● Be able to use arithmetic, comparison, character, logical, and set operators

● Have a working knowledge of some miscellaneous operators

NOTE: We used Oracle's Personal Oracle7 to generate today's examples.
Other implementations of SQL may differ slightly in the way in which
commands are entered or output is displayed, but the results are basically
the same for all implementations that conform to the ANSI standard.

Expressions
The definition of an expression is simple: An expression returns a value. Expression types
are very broad, covering different data types such as String, Numeric, and Boolean. In
fact, pretty much anything following a clause (SELECT or FROM, for example) is an
expression. In the following example amount is an expression that returns the value
contained in the amount column.

SELECT amount FROM checks;

In the following statement NAME, ADDRESS, PHONE and ADDRESSBOOK are
expressions:

SELECT NAME, ADDRESS, PHONE
FROM ADDRESSBOOK;

Now, examine the following expression:

WHERE NAME = 'BROWN'

It contains a condition, NAME = 'BROWN', which is an example of a Boolean expression.
NAME = 'BROWN' will be either TRUE or FALSE, depending on the condition =.

Conditions
If you ever want to find a particular item or group of items in your database, you need
one or more conditions. Conditions are contained in the WHERE clause. In the preceding
example, the condition is

NAME = 'BROWN'

To find everyone in your organization who worked more than 100 hours last month,
your condition would be

NUMBEROFHOURS > 100

Conditions enable you to make selective queries. In their most common form, conditions
comprise a variable, a constant, and a comparison operator. In the first example the
variable is NAME, the constant is 'BROWN', and the comparison operator is =. In the
second example the variable is NUMBEROFHOURS, the constant is 100, and the comparison
operator is >. You need to know about two more elements before you can write
conditional queries: the WHERE clause and operators.

The WHERE Clause

The syntax of the WHERE clause is

SYNTAX:

WHERE <SEARCH CONDITION>

SELECT, FROM, and WHERE are the three most frequently used clauses in SQL. WHERE
simply causes your queries to be more selective. Without the WHERE clause, the most
useful thing you could do with a query is display all records in the selected table(s).
For example:

INPUT:

SQL> SELECT * FROM BIKES;

lists all rows of data in the table BIKES.

OUTPUT:

NAME FRAMESIZE COMPOSITION MILESRIDDEN TYPE
-------------- --------- ------------ ----------- -------
TREK 2300 22.5 CARBON FIBER 3500 RACING
BURLEY 22 STEEL 2000 TANDEM
GIANT 19 STEEL 1500 COMMUTER
FUJI 20 STEEL 500 TOURING
SPECIALIZED 16 STEEL 100 MOUNTAIN
CANNONDALE 22.5 ALUMINUM 3000 RACING

6 rows selected.

If you wanted a particular bike, you could type

INPUT/OUTPUT:

SQL> SELECT *
 FROM BIKES
 WHERE NAME = 'BURLEY';

which would yield only one record:

NAME FRAMESIZE COMPOSITION MILESRIDDEN TYPE
-------------- --------- -------------- ----------- -------
BURLEY 22 STEEL 2000 TANDEM

ANALYSIS:

This simple example shows how you can place a condition on the data that you want to
retrieve.

Operators
Operators are the elements you use inside an expression to articulate how you want
specified conditions to retrieve data. Operators fall into six groups: arithmetic,
comparison, character, logical, set, and miscellaneous.

Arithmetic Operators

The arithmetic operators are plus (+), minus (-), divide (/), multiply (*), and modulo (%).
The first four are selfexplanatory. Modulo returns the integer remainder of a division.
Here are two examples:

5 % 2 = 1
6 % 2 = 0

The modulo operator does not work with data types that have decimals, such as Real or
Number.

If you place several of these arithmetic operators in an expression without any
parentheses, the operators are resolved in this order: multiplication, division, modulo,
addition, and subtraction. For example, the expression

2*6+9/3

equals

12 + 3 = 15

However, the expression

2 * (6 + 9) / 3

equals

2 * 15 / 3 = 10

Watch where you put those parentheses! Sometimes the expression does exactly what
you tell it to do, rather than what you want it to do.

The following sections examine the arithmetic operators in some detail and give you a

chance to write some queries.

Plus (+)

You can use the plus sign in several ways. Type the following statement to display the
PRICE table:

INPUT:

SQL> SELECT * FROM PRICE;

OUTPUT:

ITEM WHOLESALE
-------------- ----------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23

6 rows selected.

Now type:

INPUT/OUTPUT:

SQL> SELECT ITEM, WHOLESALE, WHOLESALE + 0.15
 FROM PRICE;

Here the + adds 15 cents to each price to produce the following:

ITEM WHOLESALE WHOLESALE+0.15
-------------- --------- --------------
TOMATOES .34 .49
POTATOES .51 .66
BANANAS .67 .82
TURNIPS .45 .60
CHEESE .89 1.04
APPLES .23 .38

6 rows selected.

ANALYSIS:

What is this last column with the unattractive column heading WHOLESALE+0.15? It's
not in the original table. (Remember, you used * in the SELECT clause, which causes all

the columns to be shown.) SQL allows you to create a virtual or derived column by
combining or modifying existing columns.

Retype the original entry:

INPUT/OUTPUT:

SQL> SELECT * FROM PRICE;

The following table results:

ITEM WHOLESALE
-------------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23

6 rows selected.

ANALYSIS:

The output confirms that the original data has not been changed and that the column
heading WHOLESALE+0.15 is not a permanent part of it. In fact, the column heading is so
unattractive that you should do something about it.

Type the following:

INPUT/OUTPUT:

SQL> SELECT ITEM, WHOLESALE, (WHOLESALE + 0.15) RETAIL
 FROM PRICE;

Here's the result:

ITEM WHOLESALE RETAIL
-------------- --------- ------
TOMATOES .34 .49
POTATOES .51 .66
BANANAS .67 .82
TURNIPS .45 .60
CHEESE .89 1.04
APPLES .23 .38

6 rows selected.

ANALYSIS:

This is wonderful! Not only can you create new columns, but you can also rename them
on the fly. You can rename any of the columns using the syntax column_name alias
(note the space between column_name and alias).

For example, the query

INPUT/OUTPUT:

SQL> SELECT ITEM PRODUCE, WHOLESALE, WHOLESALE + 0.25 RETAIL
 FROM PRICE;

renames the columns as follows:

PRODUCE WHOLESALE RETAIL
-------------- --------- ---------
TOMATOES .34 .59
POTATOES .51 .76
BANANAS .67 .92
TURNIPS .45 .70
CHEESE .89 1.14
APPLES .23 .48

NOTE: Some implementations of SQL use the syntax <column name =
alias>. The preceding example would be written as follows:

SQL> SELECT ITEM = PRODUCE,
 WHOLESALE,
 WHOLESALE + 0.25 = RETAIL,
 FROM PRICE;

Check your implementation for the exact syntax.

You might be wondering what use aliasing is if you are not using command-line SQL. Fair
enough. Have you ever wondered how report builders work? Someday, when you are
asked to write a report generator, you'll remember this and not spend weeks reinventing
what Dr. Codd and IBM have wrought.

So far, you have seen two uses of the plus sign. The first instance was the use of the plus
sign in the SELECT clause to perform a calculation on the data and display the
calculation. The second use of the plus sign is in the WHERE clause. Using operators in
the WHERE clause gives you more flexibility when you specify conditions for retrieving

data.

In some implementations of SQL, the plus sign does double duty as a character operator.
You'll see that side of the plus a little later today.

Minus (-)

Minus also has two uses. First, it can change the sign of a number. You can use the table
HILOW to demonstrate this function.

INPUT:

SQL> SELECT * FROM HILOW;

OUTPUT:

STATE HIGHTEMP LOWTEMP
---------- -------- ---------
CA -50 120
FL 20 110
LA 15 99
ND -70 101
NE -60 100

For example, here's a way to manipulate the data:

INPUT/OUTPUT:

SQL> SELECT STATE, -HIGHTEMP LOWS, -LOWTEMP HIGHS
 FROM HILOW;

STATE LOWS HIGHS
---------- -------- ---------
CA 50 -120
FL -20 -110
LA -15 -99
ND 70 -101
NE 60 -100

The second (and obvious) use of the minus sign is to subtract one column from another.
For example:

INPUT/OUTPUT:

SQL> SELECT STATE,
 2 HIGHTEMP LOWS,
 3 LOWTEMP HIGHS,
 4 (LOWTEMP - HIGHTEMP) DIFFERENCE

 5 FROM HILOW;

STATE LOWS HIGHS DIFFERENCE
---------- -------- -------- ----------
CA -50 120 170
FL 20 110 90
LA 15 99 84
ND -70 101 171
NE -60 100 160

Notice the use of aliases to fix the data that was entered incorrectly. This remedy is
merely a temporary patch, though, and not a permanent fix. You should see to it that
the data is corrected and entered correctly in the future. On Day 21, "Common SQL
Mistakes/Errors and Resolutions," you'll learn how to correct bad data.

This query not only fixed (at least visually) the incorrect data but also created a new
column containing the difference between the highs and lows of each state.

If you accidentally use the minus sign on a character field, you get something like this:

INPUT/OUTPUT:

SQL> SELECT -STATE FROM HILOW;

ERROR:
ORA-01722: invalid number
no rows selected

The exact error message varies with implementation, but the result is the same.

Divide (/)

The division operator has only the one obvious meaning. Using the table PRICE, type the
following:

INPUT:

SQL> SELECT * FROM PRICE;

OUTPUT:

ITEM WHOLESALE
-------------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89

APPLES .23

6 rows selected.

You can show the effects of a two-for-one sale by typing the next statement:

INPUT/OUTPUT:

SQL> SELECT ITEM, WHOLESALE, (WHOLESALE/2) SALEPRICE
 2 FROM PRICE;

ITEM WHOLESALE SALEPRICE
-------------- --------- ---------
TOMATOES .34 .17
POTATOES .51 .255
BANANAS .67 .335
TURNIPS .45 .225
CHEESE .89 .445
APPLES .23 .115

6 rows selected.

The use of division in the preceding SELECT statement is straightforward (except that
coming up with half pennies can be tough).

Multiply (*)

The multiplication operator is also straightforward. Again, using the PRICE table, type
the following:

INPUT:

SQL> SELECT * FROM PRICE;

OUTPUT:

ITEM WHOLESALE
-------------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23

6 rows selected.

This query changes the table to reflect an across-the-board 10 percent discount:

INPUT/OUTPUT:

SQL> SELECT ITEM, WHOLESALE, WHOLESALE * 0.9 NEWPRICE
 FROM PRICE;

ITEM WHOLESALE NEWPRICE
-------------- --------- --------
TOMATOES .34 .306
POTATOES .51 .459
BANANAS .67 .603
TURNIPS .45 .405
CHEESE .89 .801
APPLES .23 .207

6 rows selected.

These operators enable you to perform powerful calculations in a SELECT statement.

Modulo (%)

The modulo operator returns the integer remainder of the division operation. Using the
table REMAINS, type the following:

INPUT:

SQL> SELECT * FROM REMAINS;

OUTPUT:

NUMERATOR DENOMINATOR
--------- ------------
 10 5
 8 3
 23 9
 40 17
 1024 16
 85 34

6 rows selected.

You can also create a new column, REMAINDER, to hold the values of NUMERATOR %
DENOMINATOR:

INPUT/OUTPUT:

SQL> SELECT NUMERATOR,
 DENOMINATOR,
 NUMERATOR%DENOMINATOR REMAINDER

 FROM REMAINS;

NUMERATOR DENOMINATOR REMAINDER
--------- ----------- ---------
 10 5 0
 8 3 2
 23 9 5
 40 17 6
 1024 16 0
 85 34 17

6 rows selected.

Some implementations of SQL implement modulo as a function called MOD (see Day 4,
"Functions: Molding the Data You Retrieve"). The following statement produces
results that are identical to the results in the preceding statement:

SQL> SELECT NUMERATOR,
 DENOMINATOR,
 MOD(NUMERATOR,DENOMINATOR) REMAINDER
 FROM REMAINS;

Precedence

This section examines the use of precedence in a SELECT statement. Using the database
PRECEDENCE, type the following:

SQL> SELECT * FROM PRECEDENCE;
 N1 N2 N3 N4
--------- --------- --------- ---------
 1 2 3 4
 13 24 35 46
 9 3 23 5
 63 2 45 3
 7 2 1 4

Use the following code segment to test precedence:

INPUT/OUTPUT:

SQL> SELECT
 2 N1+N2*N3/N4,
 3 (N1+N2)*N3/N4,
 4 N1+(N2*N3)/N4
 5 FROM PRECEDENCE;

N1+N2*N3/N4 (N1+N2)*N3/N4 N1+(N2*N3)/N4
----------- ------------- -------------
 2.5 2.25 2.5
 31.26087 28.152174 31.26087

 22.8 55.2 22.8
 93 975 93
 7.5 2.25 7.5

Notice that the first and last columns are identical. If you added a fourth column
N1+N2* (N3/N4), its values would also be identical to those of the current first and
last columns.

Comparison Operators

True to their name, comparison operators compare expressions and return one of three
values: TRUE, FALSE, or Unknown. Wait a minute! Unknown? TRUE and FALSE are self-
explanatory, but what is Unknown?

To understand how you could get an Unknown, you need to know a little about the
concept of NULL. In database terms NULL is the absence of data in a field. It does not
mean a column has a zero or a blank in it. A zero or a blank is a value. NULL means
nothing is in that field. If you make a comparison like Field = 9 and the only value
for Field is NULL, the comparison will come back Unknown. Because Unknown is an
uncomfortable condition, most flavors of SQL change Unknown to FALSE and provide a
special operator, IS NULL, to test for a NULL condition.

Here's an example of NULL: Suppose an entry in the PRICE table does not contain a
value for WHOLESALE. The results of a query might look like this:

INPUT:

SQL> SELECT * FROM PRICE;

OUTPUT:

ITEM WHOLESALE
-------------- ----------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23
ORANGES

Notice that nothing is printed out in the WHOLESALE field position for oranges. The
value for the field WHOLESALE for oranges is NULL. The NULL is noticeable in this case
because it is in a numeric column. However, if the NULL appeared in the ITEM column, it
would be impossible to tell the difference between NULL and a blank.

Try to find the NULL:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM PRICE
 3 WHERE WHOLESALE IS NULL;

ITEM WHOLESALE
-------------- ----------
ORANGES

ANALYSIS:

As you can see by the output, ORANGES is the only item whose value for WHOLESALE is
NULL or does not contain a value. What if you use the equal sign (=) instead?

INPUT/OUTPUT:

SQL> SELECT *
 FROM PRICE
 WHERE WHOLESALE = NULL;

no rows selected

ANALYSIS:

You didn't find anything because the comparison WHOLESALE = NULL returned a
FALSE - the result was unknown. It would be more appropriate to use an IS NULL
instead of =, changing the WHERE statement to WHERE WHOLESALE IS NULL. In this
case you would get all the rows where a NULL existed.

This example also illustrates both the use of the most common comparison operator, the
equal sign (=), and the playground of all comparison operators, the WHERE clause. You
already know about the WHERE clause, so here's a brief look at the equal sign.

Equal (=)

Earlier today you saw how some implementations of SQL use the equal sign in the
SELECT clause to assign an alias. In the WHERE clause, the equal sign is the most
commonly used comparison operator. Used alone, the equal sign is a very convenient way
of selecting one value out of many. Try this:

INPUT:

SQL> SELECT * FROM FRIENDS;

OUTPUT:

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332

Let's find JD's row. (On a short list this task appears trivial, but you may have more
friends than we do--or you may have a list with thousands of records.)

INPUT/OUTPUT:

SQL> SELECT *
 FROM FRIENDS
 WHERE FIRSTNAME = 'JD';

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
MAST JD 381 555-6767 LA 23456

We got the result that we expected. Try this:

INPUT/OUTPUT:

SQL> SELECT *
 FROM FRIENDS
 WHERE FIRSTNAME = 'AL';

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK

NOTE: Here you see that = can pull in multiple records. Notice that ZIP is
blank on the second record. ZIP is a character field (you learn how to
create and populate tables on Day 8, "Manipulating Data"), and in this
particular record the NULL demonstrates that a NULL in a character field
is impossible to differentiate from a blank field.

Here's another very important lesson concerning case sensitivity:

INPUT/OUTPUT:

SQL> SELECT * FROM FRIENDS
 WHERE FIRSTNAME = 'BUD';

FIRSTNAME

BUD
1 row selected.

Now try this:

INPUT/OUTPUT:

SQL> select * from friends
 where firstname = 'Bud';

no rows selected.

ANALYSIS:

Even though SQL syntax is not case sensitive, data is. Most companies prefer to store
data in uppercase to provide data consistency. You should always store data either in
all uppercase or in all lowercase. Mixing case creates difficulties when you try to
retrieve accurate data.

Greater Than (>) and Greater Than or Equal To (>=)

The greater than operator (>) works like this:

INPUT:

SQL> SELECT *
 FROM FRIENDS
 WHERE AREACODE > 300;

OUTPUT:

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332

ANALYSIS:

This example found all the area codes greater than (but not including) 300. To include
300, type this:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE AREACODE >= 300;

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332

ANALYSIS:

With this change you get area codes starting at 300 and going up. You could achieve
the same results with the statement AREACODE > 299.

NOTE: Notice that no quotes surround 300 in this SQL statement. Number-
defined fieldsnumber-defined fields do not require quotes.

Less Than (<) and Less Than or Equal To (<=)

As you might expect, these comparison operators work the same way as > and >= work,
only in reverse:

INPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE STATE < 'LA';

OUTPUT:

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- ------
BUNDY AL 100 555-1111 IL 22333
MERRICK BUD 300 555-6666 CO 80212
BULHER FERRIS 345 555-3223 IL 23332

NOTE: How did STATE get changed to ST? Because the column has only two
characters, the column name is shortened to two characters in the
returned rows. If the column name had been COWS, it would come out CO.
The widths of AREACODE and PHONE are wider than their column names, so
they are not truncated.

ANALYSIS:

Wait a minute. Did you just use < on a character field? Of course you did. You can use
any of these operators on any data type. The result varies by data type. For example, use
lowercase in the following state search:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE STATE < 'la';

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332

ANALYSIS:

Uppercase is usually sorted before lowercase; therefore, the uppercase codes returned
are less than 'la'. Again, to be safe, check your implementation.

TIP: To be sure of how these operators will behave, check your language
tables. Most PC implementations use the ASCII tables. Some other platforms
use EBCDIC.

To include the state of Louisiana in the original search, type

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE STATE <= 'LA';

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332

Inequalities (< > or !=)

When you need to find everything except for certain data, use the inequality symbol,

which can be either < > or !=, depending on your SQL implementation. For example, to
find everyone who is not AL, type this:

INPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE FIRSTNAME <> 'AL';

OUTPUT:

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332

To find everyone not living in California, type this:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE STATE != 'CA';

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332

NOTE: Notice that both symbols, <> and !=, can express "not equals."

Character Operators

You can use character operators to manipulate the way character strings are
represented, both in the output of data and in the process of placing conditions on data
to be retrieved. This section describes two character operators: the LIKE operator and
the || operator, which conveys the concept of character concatenation.

I Want to Be Like LIKE

What if you wanted to select parts of a database that fit a pattern but weren't quite

exact matches? You could use the equal sign and run through all the possible cases, but
that process would be boring and time-consuming. Instead, you could use LIKE. Consider
the following:

INPUT:

SQL> SELECT * FROM PARTS;

OUTPUT:

NAME LOCATION PARTNUMBER
-------------- -------------- ----------
APPENDIX MID-STOMACH 1
ADAMS APPLE THROAT 2
HEART CHEST 3
SPINE BACK 4
ANVIL EAR 5
KIDNEY MID-BACK 6

How can you find all the parts located in the back? A quick visual inspection of this
simple table shows that it has two parts, but unfortunately the locations have slightly
different names. Try this:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM PARTS
 3 WHERE LOCATION LIKE '%BACK%';

NAME LOCATION PARTNUMBER
-------------- -------------- ----------
SPINE BACK 4
KIDNEY MID-BACK 6

ANALYSIS:

You can see the use of the percent sign (%) in the statement after LIKE. When used
inside a LIKE expression, % is a wildcard. What you asked for was any occurrence of
BACK in the column location. If you queried

INPUT:

SQL> SELECT *
 FROM PARTS
 WHERE LOCATION LIKE 'BACK%';

you would get any occurrence that started with BACK:

OUTPUT:

NAME LOCATION PARTNUMBER
-------------- -------------- ----------
SPINE BACK 4

If you queried

INPUT:

SQL> SELECT *
 FROM PARTS
 WHERE NAME LIKE 'A%';

you would get any name that starts with A:

OUTPUT:

NAME LOCATION PARTNUMBER
-------------- -------------- ----------
APPENDIX MID-STOMACH 1
ADAMS APPLE THROAT 2
ANVIL EAR 5

Is LIKE case sensitive? Try the next query to find out.

INPUT/OUTPUT:

SQL> SELECT *
 FROM PARTS
 WHERE NAME LIKE 'a%';

no rows selected

ANALYSIS:

The answer is yes. References to data are always case sensitive.

What if you want to find data that matches all but one character in a certain pattern?
In this case you could use a different type of wildcard: the underscore.

Underscore (_)

The underscore is the single-character wildcard. Using a modified version of the table
FRIENDS, type this:

INPUT:

SQL> SELECT * FROM FRIENDS;

OUTPUT:

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
MERRICK UD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332
PERKINS ALTON 911 555-3116 CA 95633
BOSS SIR 204 555-2345 CT 95633

To find all the records where STATE starts with C, type the following:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE STATE LIKE 'C_';

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
PERKINS ALTON 911 555-3116 CA 95633
BOSS SIR 204 555-2345 CT 95633

You can use several underscores in a statement:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE PHONE LIKE'555-6_6_';

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456

The previous statement could also be written as follows:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE PHONE LIKE '555-6%';

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456

Notice that the results are identical. These two wildcards can be combined. The next
example finds all records with L as the second character:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE FIRSTNAME LIKE '_L%';

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
PERKINS ALTON 911 555-3116 CA 95633

Concatenation (||)

The || (double pipe) symbol concatenates two strings. Try this:

INPUT:

SQL> SELECT FIRSTNAME || LASTNAME ENTIRENAME
 2 FROM FRIENDS;

OUTPUT:

ENTIRENAME

AL BUNDY
AL MEZA
BUD MERRICK
JD MAST
FERRIS BULHER
ALTON PERKINS
SIR BOSS

7 rows selected.

ANALYSIS:

Notice that || is used instead of +. If you use + to try to concatenate the strings, the
SQL interpreter used for this example (Personal Oracle7) returns the following error:

INPUT/OUTPUT:

SQL> SELECT FIRSTNAME + LASTNAME ENTIRENAME
 FROM FRIENDS;

ERROR:
ORA-01722: invalid number

It is looking for two numbers to add and throws the error invalid number when it
doesn't find any.

NOTE: Some implementations of SQL use the plus sign to concatenate
strings. Check your implementation.

Here's a more practical example using concatenation:

INPUT/OUTPUT:

SQL> SELECT LASTNAME || ',' || FIRSTNAME NAME
 FROM FRIENDS;

NAME
--
BUNDY , AL
MEZA , AL
MERRICK , BUD
MAST , JD
BULHER , FERRIS
PERKINS , ALTON
BOSS , SIR

7 rows selected.

ANALYSIS:

This statement inserted a comma between the last name and the first name.

NOTE: Notice the extra spaces between the first name and the last name in
these examples. These spaces are actually part of the data. With certain
data types, spaces are right-padded to values less than the total length
allocated for a field. See your implementation. Data types will be discussed
on Day 9, "Creating and Maintaining Tables."

So far you have performed the comparisons one at a time. That method is fine for some

problems, but what if you need to find all the people at work with last names starting
with P who have less than three days of vacation time?

Logical Operators

logical operatorsLogical operators separate two or more conditions in the WHERE clause
of an SQL statement.

Vacation time is always a hot topic around the workplace. Say you designed a table
called VACATION for the accounting department:

INPUT:

SQL> SELECT * FROM VACATION;

OUTPUT:

LASTNAME EMPLOYEENUM YEARS LEAVETAKEN
-------------- ----------- --------- ----------
ABLE 101 2 4
BAKER 104 5 23
BLEDSOE 107 8 45
BOLIVAR 233 4 80
BOLD 210 15 100
COSTALES 211 10 78

6 rows selected.

Suppose your company gives each employee 12 days of leave each year. Using what you
have learned and a logical operator, find all the employees whose names start with B
and who have more than 50 days of leave coming.

INPUT/OUTPUT:

SQL> SELECT LASTNAME,
 2 YEARS * 12 - LEAVETAKEN REMAINING
 3 FROM VACATION
 4 WHERE LASTNAME LIKE 'B%'
 5 AND
 6 YEARS * 12 - LEAVETAKEN > 50;

LASTNAME REMAINING
-------------- ---------
BLEDSOE 51
BOLD 80

ANALYSIS:

This query is the most complicated you have done so far. The SELECT clause (lines 1 and
2) uses arithmetic operators to determine how many days of leave each employee has
remaining. The normal precedence computes YEARS * 12 - LEAVETAKEN. (A clearer
approach would be to write (YEARS * 12) - LEAVETAKEN.)

LIKE is used in line 4 with the wildcard % to find all the B names. Line 6 uses the > to
find all occurrences greater than 50.

The new element is on line 5. You used the logical operator AND to ensure that you
found records that met the criteria in lines 4 and 6.

AND

AND means that the expressions on both sides must be true to return TRUE. If either
expression is false, AND returns FALSE. For example, to find out which employees have
been with the company for 5 years or less and have taken more than 20 days leave, try
this:

INPUT:

SQL> SELECT LASTNAME
 2 FROM VACATION
 3 WHERE YEARS <= 5
 4 AND
 5 LEAVETAKEN > 20 ;

OUTPUT:

LASTNAME

BAKER
BOLIVAR

If you want to know which employees have been with the company for 5 years or more
and have taken less than 50 percent of their leave, you could write:

INPUT/OUTPUT:

SQL> SELECT LASTNAME WORKAHOLICS
 2 FROM VACATION
 3 WHERE YEARS >= 5
 4 AND
 5 ((YEARS *12)-LEAVETAKEN)/(YEARS * 12) < 0.50;

WORKAHOLICS

BAKER
BLEDSOE

Check these people for burnout. Also check out how we used the AND to combine these
two conditions.

OR

You can also use OR to sum up a series of conditions. If any of the comparisons is true, OR
returns TRUE. To illustrate the difference, conditionsrun the last query with OR
instead of with AND:

INPUT:

SQL> SELECT LASTNAME WORKAHOLICS
 2 FROM VACATION
 3 WHERE YEARS >= 5
 4 OR
 5 ((YEARS *12)-LEAVETAKEN)/(YEARS * 12) >= 0.50;

OUTPUT:

WORKAHOLICS

ABLE
BAKER
BLEDSOE
BOLD
COSTALES

ANALYSIS:

The original names are still in the list, but you have three new entries (who would
probably resent being called workaholics). These three new names made the list because
they satisfied one of the conditions. OR requires that only one of the conditions be true
in order for data to be returned.

NOT

NOT means just that. If the condition it applies to evaluates to TRUE, NOT make it FALSE.
If the condition after the NOT is FALSE, it becomes TRUE. For example, the following
SELECT returns the only two names not beginning with B in the table:

INPUT:

SQL> SELECT *
 2 FROM VACATION
 3 WHERE LASTNAME NOT LIKE 'B%';

OUTPUT:

LASTNAME EMPLOYEENUM YEARS LEAVETAKEN
-------------- ----------- -------- ----------
ABLE 101 2 4
COSTALES 211 10 78

NOT can also be used with the operator IS when applied to NULL. Recall the PRICES
table where we put a NULL value in the WHOLESALE column opposite the item ORANGES.

INPUT/OUTPUT:

SQL> SELECT * FROM PRICE;

ITEM WHOLESALE
-------------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23
ORANGES

7 rows selected.

To find the non-NULL items, type this:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM PRICE
 3 WHERE WHOLESALE IS NOT NULL;

ITEM WHOLESALE
-------------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45
CHEESE .89
APPLES .23

6 rows selected.

Set Operators

On Day 1, "Introduction to SQL," you learned that SQL is based on the theory of sets.
The following sections examine set operators.

UNION and UNION ALL

UNION returns the results of two queries minus the duplicate rows. The following two
tables represent the rosters of teams:

INPUT:

SQL> SELECT * FROM FOOTBALL;

OUTPUT:

NAME

ABLE
BRAVO
CHARLIE
DECON
EXITOR
FUBAR
GOOBER

7 rows selected.

INPUT:

SQL> SELECT * FROM SOFTBALL;

OUTPUT:

NAME

ABLE
BAKER
CHARLIE
DEAN
EXITOR
FALCONER
GOOBER

7 rows selected.

How many different people play on one team or another?

INPUT/OUTPUT:

SQL> SELECT NAME FROM SOFTBALL
 2 UNION
 3 SELECT NAME FROM FOOTBALL;

NAME

ABLE
BAKER
BRAVO
CHARLIE
DEAN
DECON
EXITOR
FALCONER
FUBAR
GOOBER

10 rows selected.

UNION returns 10 distinct names from the two lists. How many names are on both lists
(including duplicates)?

INPUT/OUTPUT:

SQL> SELECT NAME FROM SOFTBALL
 2 UNION ALL
 3 SELECT NAME FROM FOOTBALL;

NAME

ABLE
BAKER
CHARLIE
DEAN
EXITOR
FALCONER
GOOBER
ABLE
BRAVO
CHARLIE
DECON
EXITOR
FUBAR
GOOBER

14 rows selected.

ANALYSIS:

The combined list--courtesy of the UNION ALL statement--has 14 names. UNION ALL
works just like UNION except it does not eliminate duplicates. Now show me a list of
players who are on both teams. You can't do that with UNION--you need to learn
INTERSECT.

INTERSECT

INTERSECT returns only the rows found by both queries. The next SELECT statement
shows the list of players who play on both teams:

INPUT:

SQL> SELECT * FROM FOOTBALL
 2 INTERSECT
 3 SELECT * FROM SOFTBALL;

OUTPUT:

NAME

ABLE
CHARLIE
EXITOR
GOOBER

ANALYSIS:

In this example INTERSECT finds the short list of players who are on both teams by
combining the results of the two SELECT statements.

MINUS (Difference)

Minus returns the rows from the first query that were not present in the second. For
example:

INPUT:

SQL> SELECT * FROM FOOTBALL
 2 MINUS
 3 SELECT * FROM SOFTBALL;

OUTPUT:

NAME

BRAVO
DECON
FUBAR

ANALYSIS:

The preceding query shows the three football players who are not on the softball

team. If you reverse the order, you get the three softball players who aren't on the
football team:

INPUT:

SQL> SELECT * FROM SOFTBALL
 2 MINUS
 3 SELECT * FROM FOOTBALL;

OUTPUT:

NAME

BAKER
DEAN
FALCONER

Miscellaneous Operators: IN and BETWEEN

The two operators IN and BETWEEN provide a shorthand for functions you already know
how to do. If you wanted to find friends in Colorado, California, and Louisiana, you
could type the following:

INPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE STATE= 'CA'
 4 OR
 5 STATE ='CO'
 6 OR
 7 STATE = 'LA';

OUTPUT:

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
PERKINS ALTON 911 555-3116 CA 95633

Or you could type this:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE STATE IN('CA','CO','LA');

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
PERKINS ALTON 911 555-3116 CA 95633

ANALYSIS:

The second example is shorter and more readable than the first. You never know when
you might have to go back and work on something you wrote months ago. IN also works
with numbers. Consider the following, where the column AREACODE is a number:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM FRIENDS
 3 WHERE AREACODE IN(100,381,204);

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MAST JD 381 555-6767 LA 23456
BOSS SIR 204 555-2345 CT 95633

If you needed a range of things from the PRICE table, you could write the following:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM PRICE
 3 WHERE WHOLESALE > 0.25
 4 AND
 5 WHOLESALE < 0.75;

ITEM WHOLESALE
-------------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45

Or using BETWEEN, you would write this:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM PRICE
 3 WHERE WHOLESALE BETWEEN 0.25 AND 0.75;

ITEM WHOLESALE
-------------- ---------
TOMATOES .34
POTATOES .51
BANANAS .67
TURNIPS .45

Again, the second example is a cleaner, more readable solution than the first.

NOTE: If a WHOLESALE value of 0.25 existed in the PRICE table, that
record would have been retrieved also. Parameters used in the BETWEEN
operator are inclusive parametersinclusive.

Summary
At the beginning of Day 3, you knew how to use the basic SELECT and FROM clauses. Now
you know how to use a host of operators that enable you to fine-tune your requests to
the database. You learned how to use arithmetic, comparison, character, logical, and
set operators. This powerful set of tools provides the cornerstone of your SQL
knowledge.

Q&A
Q How does all of this information apply to me if I am not using SQL from the
command line as depicted in the examples?

A Whether you use SQL in COBOL as Embedded SQL or in Microsoft's Open
Database Connectivity (ODBC), you use the same basic constructions. You will use
what you learned today and yesterday repeatedly as you work with SQL.

Q Why are you constantly telling me to check my implementation? I thought
there was a standard!

A There is an ANSI standard (the most recent version is 1992); however, most
vendors modify it somewhat to suit their databases. The basics are similar if not
identical, and each instance has extensions that other vendors copy and improve.
We have chosen to use ANSI as a starting point but point out the differences as we
go along.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

Use the FRIENDS table to answer the following questions.

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
-------------- -------------- --------- -------- -- -----
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332
PERKINS ALTON 911 555-3116 CA 95633
BOSS SIR 204 555-2345 CT 95633

1. Write a query that returns everyone in the database whose last name begins
with M.

2. Write a query that returns everyone who lives in Illinois with a first name of
AL.

3. Given two tables (PART1 and PART2) containing columns named PARTNO, how
would you find out which part numbers are in both tables? Write the query.

4. What shorthand could you use instead of WHERE a >= 10 AND a <=30?

5. What will this query return?

SELECT FIRSTNAME
FROM FRIENDS
WHERE FIRSTNAME = 'AL'
 AND LASTNAME = 'BULHER';

Exercises

1. Using the FRIENDS table, write a query that returns the following:

NAME ST
------------------- --
AL FROM IL

INPUT:

SQL> SELECT (FIRSTNAME || 'FROM') NAME, STATE
 2 FROM FRIENDS
 3 WHERE STATE = 'IL'
 4 AND
 5 LASTNAME = 'BUNDY';

OUTPUT:

NAME ST
------------------- --
AL FROM IL

2. Using the FRIENDS table, write a query that returns the following:

NAME PHONE
-------------------------- -------------
MERRICK, BUD 300-555-6666
MAST, JD 381-555-6767
BULHER, FERRIS 345-555-3223

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 4 -
Functions: Molding the Data You Retrieve

Objectives
Today we talk about functions. Functions in SQL enable you to perform feats such as
determining the sum of a column or converting all the characters of a string to
uppercase. By the end of the day, you will understand and be able to use all the
following:

● Aggregate functions

● Date and time functions

● Arithmetic functions

● Character functions

● Conversion functions

● Miscellaneous functions

These functions greatly increase your ability to manipulate the information you
retrieved using the basic functions of SQL that were described earlier this week. The
first five aggregate functions, COUNT, SUM, AVG, MAX, and MIN, are defined in the ANSI
standard. Most implementations of SQL have extensions to these aggregate functions,
some of which are covered today. Some implementations may use different names for

these functions.

Aggregate Functions
These functions are also referred to as group functions. They return a value based on
the values in a column. (After all, you wouldn't ask for the average of a single field.)
The examples in this section use the table TEAMSTATS:

INPUT:

SQL> SELECT * FROM TEAMSTATS;

OUTPUT:

NAME POS AB HITS WALKS SINGLES DOUBLES TRIPLES HR SO
--------- --- --- ---- ----- ------- ------- ------- -- --
JONES 1B 145 45 34 31 8 1 5 10
DONKNOW 3B 175 65 23 50 10 1 4 15
WORLEY LF 157 49 15 35 8 3 3 16
DAVID OF 187 70 24 48 4 0 17 42
HAMHOCKER 3B 50 12 10 10 2 0 0 13
CASEY DH 1 0 0 0 0 0 0 1

6 rows selected.

COUNT

The function COUNT returns the number of rows that satisfy the condition in the WHERE
clause. Say you wanted to know how many ball players were hitting under 350. You
would type

INPUT/OUTPUT:

SQL> SELECT COUNT(*)
 2 FROM TEAMSTATS
 3 WHERE HITS/AB < .35;

COUNT(*)

 4

To make the code more readable, try an alias:

INPUT/OUTPUT:

SQL> SELECT COUNT(*) NUM_BELOW_350
 2 FROM TEAMSTATS

 3 WHERE HITS/AB < .35;

NUM_BELOW_350

 4

Would it make any difference if you tried a column name instead of the asterisk? (Notice
the use of parentheses around the column names.) Try this:

INPUT/OUTPUT:

SQL> SELECT COUNT(NAME) NUM_BELOW_350
 2 FROM TEAMSTATS
 3 WHERE HITS/AB < .35;

NUM_BELOW_350

 4

The answer is no. The NAME column that you selected was not involved in the WHERE
statement. If you use COUNT without a WHERE clause, it returns the number of records in
the table.

INPUT/OUTPUT:

SQL> SELECT COUNT(*)
 2 FROM TEAMSTATS;

 COUNT(*)

 6

SUM

SUM does just that. It returns the sum of all values in a column. To find out how many
singles have been hit, type

INPUT:

SQL> SELECT SUM(SINGLES) TOTAL_SINGLES
 2 FROM TEAMSTATS;

OUTPUT:

TOTAL_SINGLES

 174

To get several sums, use

INPUT/OUTPUT:

SQL> SELECT SUM(SINGLES) TOTAL_SINGLES, SUM(DOUBLES) TOTAL_DOUBLES,
SUM(TRIPLES) TOTAL_TRIPLES, SUM(HR) TOTAL_HR
 2 FROM TEAMSTATS;

TOTAL_SINGLES TOTAL_DOUBLES TOTAL_TRIPLES TOTAL_HR
------------- ------------- ------------- --------
 174 32 5 29

To collect similar information on all 300 or better players, type

INPUT/OUTPUT:

SQL> SELECT SUM(SINGLES) TOTAL_SINGLES, SUM(DOUBLES) TOTAL_DOUBLES,
SUM(TRIPLES) TOTAL_TRIPLES, SUM(HR) TOTAL_HR
 2 FROM TEAMSTATS
 3 WHERE HITS/AB >= .300;

TOTAL_SINGLES TOTAL_DOUBLES TOTAL_TRIPLES TOTAL_HR
------------- ------------- ------------- --------
 164 30 5 29

To compute a team batting average, type

INPUT/OUTPUT:

SQL> SELECT SUM(HITS)/SUM(AB) TEAM_AVERAGE
 2 FROM TEAMSTATS;

TEAM_AVERAGE

 .33706294

SUM works only with numbers. If you try it on a nonnumerical field, you get

INPUT/OUTPUT:

SQL> SELECT SUM(NAME)
 2 FROM TEAMSTATS;

ERROR:
ORA-01722: invalid number
no rows selected

This error message is logical because you cannot sum a group of names.

AVG

The AVG function computes the average of a column. To find the average number of
strike outs, use this:

INPUT:

SQL> SELECT AVG(SO) AVE_STRIKE_OUTS
 2 FROM TEAMSTATS;

OUTPUT:

AVE_STRIKE_OUTS

 16.166667

The following example illustrates the difference between SUM and AVG:

INPUT/OUTPUT:

SQL> SELECT AVG(HITS/AB) TEAM_AVERAGE
 2 FROM TEAMSTATS;

TEAM_AVERAGE

 .26803448

ANALYSIS:

The team was batting over 300 in the previous example! What happened? AVG computed
the average of the combined column hits divided by at bats, whereas the example with
SUM divided the total number of hits by the number of at bats. For example, player A
gets 50 hits in 100 at bats for a .500 average. Player B gets 0 hits in 1 at bat for a 0.0
average. The average of 0.0 and 0.5 is .250. If you compute the combined average of 50 hits
in 101 at bats, the answer is a respectable .495. The following statement returns the
correct batting average:

INPUT/OUTPUT:

SQL> SELECT AVG(HITS)/AVG(AB) TEAM_AVERAGE
 2 FROM TEAMSTATS;

TEAM_AVERAGE

 .33706294

Like the SUM function, AVG works only with numbers.

MAX

If you want to find the largest value in a column, use MAX. For example, what is the
highest number of hits?

INPUT:

SQL> SELECT MAX(HITS)
 2 FROM TEAMSTATS;

OUTPUT:

MAX(HITS)

 70

Can you find out who has the most hits?

INPUT/OUTPUT:

SQL> SELECT NAME
 2 FROM TEAMSTATS
 3 WHERE HITS = MAX(HITS);

ERROR at line 3:
ORA-00934: group function is not allowed here

Unfortunately, you can't. The error message is a reminder that this group function
(remember that aggregate functions are also called group functions) does not work in the
WHERE clause. Don't despair, Day 7, "Subqueries: The Embedded SELECT Statement,"
covers the concept of subqueries and explains a way to find who has the MAX hits.

What happens if you try a nonnumerical column?

INPUT/OUTPUT:

SQL> SELECT MAX(NAME)
 2 FROM TEAMSTATS;

MAX(NAME)

WORLEY

Here's something new. MAX returns the highest (closest to Z) string. Finally, a function
that works with both characters and numbers.

MIN

MIN does the expected thing and works like MAX except it returns the lowest member of
a column. To find out the fewest at bats, type

INPUT:

SQL> SELECT MIN(AB)
 2 FROM TEAMSTATS;

OUTPUT:

MIN(AB)

 1

The following statement returns the name closest to the beginning of the alphabet:

INPUT/OUTPUT:

SQL> SELECT MIN(NAME)
 2 FROM TEAMSTATS;

MIN(NAME)

CASEY

You can combine MIN with MAX to give a range of values. For example:

INPUT/OUTPUT:

SQL> SELECT MIN(AB), MAX(AB)
 2 FROM TEAMSTATS;

 MIN(AB) MAX(AB)
-------- --------
 1 187

This sort of information can be useful when using statistical functions.

NOTE: As we mentioned in the introduction, the first five aggregate
functions are described in the ANSI standard. The remaining aggregate
functions have become de facto standards, present in all important
implementations of SQL. We use the Oracle7 names for these functions.
Other implementations may use different names.

VARIANCE

VARIANCE produces the square of the standard deviation, a number vital to many
statistical calculations. It works like this:

INPUT:

SQL> SELECT VARIANCE(HITS)
 2 FROM TEAMSTATS;

OUTPUT:

VARIANCE(HITS)

 802.96667

If you try a string

INPUT/OUTPUT:

SQL> SELECT VARIANCE(NAME)
 2 FROM TEAMSTATS;

ERROR:
ORA-01722: invalid number
no rows selected

you find that VARIANCE is another function that works exclusively with numbers.

STDDEV

The final group function, STDDEV, finds the standard deviation of a column of numbers,
as demonstrated by this example:

INPUT:

SQL> SELECT STDDEV(HITS)
 2 FROM TEAMSTATS;

OUTPUT:

STDDEV(HITS)

 28.336666

It also returns an error when confronted by a string:

INPUT/OUTPUT:

SQL> SELECT STDDEV(NAME)
 2 FROM TEAMSTATS;

ERROR:
ORA-01722: invalid number
no rows selected

These aggregate functions can also be used in various combinations:

INPUT/OUTPUT:

SQL> SELECT COUNT(AB),
 2 AVG(AB),
 3 MIN(AB),
 4 MAX(AB),
 5 STDDEV(AB),
 6 VARIANCE(AB),
 7 SUM(AB)
 8 FROM TEAMSTATS;

COUNT(AB) AVG(AB) MIN(AB) MAX(AB) STDDEV(AB) VARIANCE(AB) SUM(AB)
--------- ------- ------- ------- ---------- ------------ -------
6 119.167 1 187 75.589 5712.97 715

The next time you hear a sportscaster use statistics to fill the time between plays, you
will know that SQL is at work somewhere behind the scenes.

Date and Time Functions
We live in a civilization governed by times and dates, and most major implementations of
SQL have functions to cope with these concepts. This section uses the table PROJECT to
demonstrate the time and date functions.

INPUT:

SQL> SELECT * FROM PROJECT;

OUTPUT:

TASK STARTDATE ENDDATE
-------------- --------- ---------
KICKOFF MTG 01-APR-95 01-APR-95
TECH SURVEY 02-APR-95 01-MAY-95
USER MTGS 15-MAY-95 30-MAY-95
DESIGN WIDGET 01-JUN-95 30-JUN-95
CODE WIDGET 01-JUL-95 02-SEP-95

TESTING 03-SEP-95 17-JAN-96

6 rows selected.

NOTE: This table used the Date data type. Most implementations of SQL
have a Date data type, but the exact syntax may vary.

ADD_MONTHS

This function adds a number of months to a specified date. For example, say something
extraordinary happened, and the preceding project slipped to the right by two months.
You could make a new schedule by typing

INPUT:

SQL> SELECT TASK,
 2 STARTDATE,
 3 ENDDATE ORIGINAL_END,
 4 ADD_MONTHS(ENDDATE,2)
 5 FROM PROJECT;

OUTPUT:

TASK STARTDATE ORIGINAL_ ADD_MONTH
-------------- --------- --------- ---------
KICKOFF MTG 01-APR-95 01-APR-95 01-JUN-95
TECH SURVEY 02-APR-95 01-MAY-95 01-JUL-95
USER MTGS 15-MAY-95 30-MAY-95 30-JUL-95
DESIGN WIDGET 01-JUN-95 30-JUN-95 31-AUG-95
CODE WIDGET 01-JUL-95 02-SEP-95 02-NOV-95
TESTING 03-SEP-95 17-JAN-96 17-MAR-96

6 rows selected.

Not that a slip like this is possible, but it's nice to have a function that makes it so easy.
ADD_MONTHS also works outside the SELECT clause. Typing

INPUT:

SQL> SELECT TASK TASKS_SHORTER_THAN_ONE_MONTH
 2 FROM PROJECT
 3 WHERE ADD_MONTHS(STARTDATE,1) > ENDDATE;

produces the following result:

OUTPUT:

TASKS_SHORTER_THAN_ONE_MONTH

KICKOFF MTG
TECH SURVEY
USER MTGS
DESIGN WIDGET

ANALYSIS:

You will find that all the functions in this section work in more than one place.
However, ADD MONTHS does not work with other data types like character or number
without the help of functions TO_CHAR and TO_DATE, which are discussed later today.

LAST_DAY

LAST_DAY returns the last day of a specified month. It is for those of us who haven't
mastered the "Thirty days has September..." rhyme--or at least those of us who have not
yet taught it to our computers. If, for example, you need to know what the last day of
the month is in the column ENDDATE, you would type

INPUT:

SQL> SELECT ENDDATE, LAST_DAY(ENDDATE)
 2 FROM PROJECT;

Here's the result:

OUTPUT:

ENDDATE LAST_DAY(ENDDATE)
--------- -----------------
01-APR-95 30-APR-95
01-MAY-95 31-MAY-95
30-MAY-95 31-MAY-95
30-JUN-95 30-JUN-95
02-SEP-95 30-SEP-95
17-JAN-96 31-JAN-96

6 rows selected.

How does LAST DAY handle leap years?

INPUT/OUTPUT:

SQL> SELECT LAST_DAY('1-FEB-95') NON_LEAP,
 2 LAST_DAY('1-FEB-96') LEAP

 3 FROM PROJECT;

NON_LEAP LEAP
--------- ---------
28-FEB-95 29-FEB-96
28-FEB-95 29-FEB-96
28-FEB-95 29-FEB-96
28-FEB-95 29-FEB-96
28-FEB-95 29-FEB-96
28-FEB-95 29-FEB-96

6 rows selected.

ANALYSIS:

You got the right result, but why were so many rows returned? Because you didn't
specify an existing column or any conditions, the SQL engine applied the date functions
in the statement to each existing row. Let's get something less redundant by using the
following:

INPUT:

SQL> SELECT DISTINCT LAST_DAY('1-FEB-95') NON_LEAP,
 2 LAST_DAY('1-FEB-96') LEAP
 3 FROM PROJECT;

This statement uses the word DISTINCT (see Day 2, "Introduction to the Query: The
SELECT Statement") to produce the singular result

OUTPUT:

NON_LEAP LEAP
--------- ---------
28-FEB-95 29-FEB-96

Unlike me, this function knows which years are leap years. But before you trust your
own or your company's financial future to this or any other function, check your
implementation!

MONTHS_BETWEEN

If you need to know how many months fall between month x and month y, use
MONTHS_BETWEEN like this:

INPUT:

SQL> SELECT TASK, STARTDATE, ENDDATE,MONTHS_BETWEEN(STARTDATE,ENDDATE)

 DURATION
 2 FROM PROJECT;

OUTPUT:

TASK STARTDATE ENDDATE DURATION
-------------- --------- --------- ---------
KICKOFF MTG 01-APR-95 01-APR-95 0
TECH SURVEY 02-APR-95 01-MAY-95 -.9677419
USER MTGS 15-MAY-95 30-MAY-95 -.483871
DESIGN WIDGET 01-JUN-95 30-JUN-95 -.9354839
CODE WIDGET 01-JUL-95 02-SEP-95 -2.032258
TESTING 03-SEP-95 17-JAN-96 -4.451613

6 rows selected.

Wait a minute--that doesn't look right. Try this:

INPUT/OUTPUT:

SQL> SELECT TASK, STARTDATE, ENDDATE,
 2 MONTHS_BETWEEN(ENDDATE,STARTDATE) DURATION
 3 FROM PROJECT;

TASK STARTDATE ENDDATE DURATION
-------------- --------- --------- ---------
KICKOFF MTG 01-APR-95 01-APR-95 0
TECH SURVEY 02-APR-95 01-MAY-95 .96774194
USER MTGS 15-MAY-95 30-MAY-95 .48387097
DESIGN WIDGET 01-JUN-95 30-JUN-95 .93548387
CODE WIDGET 01-JUL-95 02-SEP-95 2.0322581
TESTING 03-SEP-95 17-JAN-96 4.4516129

6 rows selected.

ANALYSIS:

That's better. You see that MONTHS_BETWEEN is sensitive to the way you order the
months. Negative months might not be bad. For example, you could use a negative result
to determine whether one date happened before another. For example, the following
statement shows all the tasks that started before May 19, 1995:

INPUT:

SQL> SELECT *
 2 FROM PROJECT
 3 WHERE MONTHS_BETWEEN('19 MAY 95', STARTDATE) > 0;

OUTPUT:

TASK STARTDATE ENDDATE
-------------- --------- ---------
KICKOFF MTG 01-APR-95 01-APR-95
TECH SURVEY 02-APR-95 01-MAY-95
USER MTGS 15-MAY-95 30-MAY-95

NEW_TIME

If you need to adjust the time according to the time zone you are in, the New_TIME
function is for you. Here are the time zones you can use with this function:

Abbreviation Time Zone

AST or ADT Atlantic standard or daylight time

BST or BDT Bering standard or daylight time

CST or CDT Central standard or daylight time

EST or EDT Eastern standard or daylight time

GMT Greenwich mean time

HST or HDT Alaska-Hawaii standard or daylight time

MST or MDT Mountain standard or daylight time

NST Newfoundland standard time

PST or PDT Pacific standard or daylight time

YST or YDT Yukon standard or daylight time

You can adjust your time like this:

INPUT:

SQL> SELECT ENDDATE EDT,
 2 NEW_TIME(ENDDATE, 'EDT','PDT')
 3 FROM PROJECT;

OUTPUT:

EDT NEW_TIME(ENDDATE
---------------- ----------------
01-APR-95 1200AM 31-MAR-95 0900PM
01-MAY-95 1200AM 30-APR-95 0900PM
30-MAY-95 1200AM 29-MAY-95 0900PM
30-JUN-95 1200AM 29-JUN-95 0900PM
02-SEP-95 1200AM 01-SEP-95 0900PM
17-JAN-96 1200AM 16-JAN-96 0900PM

6 rows selected.

Like magic, all the times are in the new time zone and the dates are adjusted.

NEXT_DAY

NEXT_DAY finds the name of the first day of the week that is equal to or later than
another specified date. For example, to send a report on the Friday following the first
day of each event, you would type

INPUT:

SQL> SELECT STARTDATE,
 2 NEXT_DAY(STARTDATE, 'FRIDAY')
 3 FROM PROJECT;

which would return

OUTPUT:

STARTDATE NEXT_DAY(
--------- ---------
01-APR-95 07-APR-95
02-APR-95 07-APR-95
15-MAY-95 19-MAY-95
01-JUN-95 02-JUN-95
01-JUL-95 07-JUL-95
03-SEP-95 08-SEP-95

6 rows selected.

ANALYSIS:

The output tells you the date of the first Friday that occurs after your STARTDATE.

SYSDATE

SYSDATE returns the system time and date:

INPUT:

SQL> SELECT DISTINCT SYSDATE
 2 FROM PROJECT;

OUTPUT:

SYSDATE

18-JUN-95 1020PM

If you wanted to see where you stood today in a certain project, you could type

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM PROJECT
 3 WHERE STARTDATE > SYSDATE;

TASK STARTDATE ENDDATE
-------------- --------- ---------
CODE WIDGET 01-JUL-95 02-SEP-95
TESTING 03-SEP-95 17-JAN-96

Now you can see what parts of the project start after today.

Arithmetic Functions
Many of the uses you have for the data you retrieve involve mathematics. Most
implementations of SQL provide arithmetic functions similar to the functions covered
here. The examples in this section use the NUMBERS table:

INPUT:

SQL> SELECT *
 2 FROM NUMBERS;

OUTPUT:

 A B
--------- ---------
 3.1415 4
 -45 .707
 5 9
 -57.667 42
 15 55
 -7.2 5.3
6 rows selected.

ABS

The ABS function returns the absolute value of the number you point to. For example:

INPUT:

SQL> SELECT ABS(A) ABSOLUTE_VALUE
 2 FROM NUMBERS;

OUTPUT:

ABSOLUTE_VALUE

 3.1415
 45
 5
 57.667
 15
 7.2
6 rows selected.

ABS changes all the negative numbers to positive and leaves positive numbers alone.

CEIL and FLOOR

CEIL returns the smallest integer greater than or equal to its argument. FLOOR does
just the reverse, returning the largest integer equal to or less than its argument. For
example:

INPUT:

SQL> SELECT B, CEIL(B) CEILING
 2 FROM NUMBERS;

OUTPUT:

 B CEILING
--------- ---------
 4 4
 .707 1
 9 9
 42 42
 55 55
 5.3 6

6 rows selected.

And

INPUT/OUTPUT:

SQL> SELECT A, FLOOR(A) FLOOR
 2 FROM NUMBERS;

 A FLOOR
--------- ---------
 3.1415 3
 -45 -45
 5 5
 -57.667 -58
 15 15
 -7.2 -8

6 rows selected.

COS, COSH, SIN, SINH, TAN, and TANH

The COS, SIN, and TAN functions provide support for various trigonometric concepts.
They all work on the assumption that n is in radians. The following statement returns
some unexpected values if you don't realize COS expects A to be in radians.

INPUT:

SQL> SELECT A, COS(A)
 2 FROM NUMBERS;

OUTPUT:

 A COS(A)
--------- ---------
 3.1415 -1
 -45 .52532199
 5 .28366219
 -57.667 .437183
 15 -.7596879
 -7.2 .60835131

ANALYSIS:

You would expect the COS of 45 degrees to be in the neighborhood of .707, not .525.
To make this function work the way you would expect it to in a degree-oriented world,
you need to convert degrees to radians. (When was the last time you heard a news
broadcast report that a politician had done a pi-radian turn? You hear about a 180-
degree turn.) Because 360 degrees = 2 pi radians, you can write

INPUT/OUTPUT:

SQL> SELECT A, COS(A* 0.01745329251994)
 2 FROM NUMBERS;

 A COS(A*0.01745329251994)
--------- -----------------------

 3.1415 .99849724
 -45 .70710678
 5 .9961947
 -57.667 .5348391
 15 .96592583
 -7.2 .9921147

ANALYSIS:

Note that the number 0.01745329251994 is radians divided by degrees. The
trigonometric functions work as follows:

INPUT/OUTPUT:

SQL> SELECT A, COS(A*0.017453), COSH(A*0.017453)
 2 FROM NUMBERS;

 A COS(A*0.017453) COSH(A*0.017453)
--------- --------------- ----------------
 3.1415 .99849729 1.0015035
 -45 .70711609 1.3245977
 5 .99619483 1.00381
 -57.667 .53485335 1.5507072
 15 .96592696 1.0344645
 -7.2 .99211497 1.0079058

6 rows selected.

And

INPUT/OUTPUT:

SQL> SELECT A, SIN(A*0.017453), SINH(A*0.017453)
 2 FROM NUMBERS;

 A SIN(A*0.017453) SINH(A*0.017453)
--------- --------------- ----------------
 3.1415 .05480113 .05485607
 -45 -.7070975 -.8686535
 5 .08715429 .0873758
 -57.667 -.8449449 -1.185197
 15 .25881481 .26479569
 -7.2 -.1253311 -.1259926

6 rows selected.

And

INPUT/OUTPUT:

SQL> SELECT A, TAN(A*0.017453), TANH(A*0.017453)
 2 FROM NUMBERS;

 A TAN(A*0.017453) TANH(A*0.017453)
--------- --------------- ----------------
 3.1415 .05488361 .05477372
 -45 -.9999737 -.6557867
 5 .08748719 .08704416
 -57.667 -1.579769 -.7642948
 15 .26794449 .25597369
 -7.2 -.1263272 -.1250043

6 rows selected.

EXP

EXP enables you to raise e (e is a mathematical constant used in various formulas) to a
power. Here's how EXP raises e by the values in column A:

INPUT:

SQL> SELECT A, EXP(A)
 2 FROM NUMBERS;

OUTPUT:

 A EXP(A)
--------- ---------
 3.1415 23.138549
 -45 2.863E-20
 5 148.41316
 -57.667 9.027E-26
 15 3269017.4
 -7.2 .00074659

6 rows selected.

LN and LOG

These two functions center on logarithms. LN returns the natural logarithm of its
argument. For example:

INPUT:

SQL> SELECT A, LN(A)
 2 FROM NUMBERS;

OUTPUT:

ERROR:
ORA-01428: argument '-45' is out of range

Did we neglect to mention that the argument had to be positive? Write

INPUT/OUTPUT:

SQL> SELECT A, LN(ABS(A))
 2 FROM NUMBERS;

 A LN(ABS(A))
--------- ----------
 3.1415 1.1447004
 -45 3.8066625
 5 1.6094379
 -57.667 4.0546851
 15 2.7080502
 -7.2 1.974081

6 rows selected.

ANALYSIS:

Notice how you can embed the function ABS inside the LN call. The other logarith-mic
function, LOG, takes two arguments, returning the logarithm of the first argument in
the base of the second. The following query returns the logarithms of column B in base
10.

INPUT/OUTPUT:

SQL> SELECT B, LOG(B, 10)
 2 FROM NUMBERS;

 B LOG(B,10)
----------- ---------
 4 1.660964
 .707 -6.640962
 9 1.0479516
 42 .61604832
 55 .57459287
 5.3 1.3806894

6 rows selected.

MOD

You have encountered MOD before. On Day 3, "Expressions, Conditions, and Operators,"

you saw that the ANSI standard for the modulo operator % is sometimes implemented as
the function MOD. Here's a query that returns a table showing the remainder of A
divided by B:

INPUT:

SQL> SELECT A, B, MOD(A,B)
 2 FROM NUMBERS;

OUTPUT:

 A B MOD(A,B)
--------- --------- ---------
 3.1415 4 3.1415
 -45 .707 -.459
 5 9 5
 -57.667 42 -15.667
 15 55 15
 -7.2 5.3 -1.9

6 rows selected.

POWER

To raise one number to the power of another, use POWER. In this function the first
argument is raised to the power of the second:

INPUT:

SQL> SELECT A, B, POWER(A,B)
 2 FROM NUMBERS;

OUTPUT:

ERROR:
ORA-01428: argument '-45' is out of range

ANALYSIS:

At first glance you are likely to think that the first argument can't be negative. But
that impression can't be true, because a number like -4 can be raised to a power.
Therefore, if the first number in the POWER function is negative, the second must be an
integer. You can work around this problem by using CEIL (or FLOOR):

INPUT:

SQL> SELECT A, CEIL(B), POWER(A,CEIL(B))

 2 FROM NUMBERS;

OUTPUT:

 A CEIL(B) POWER(A,CEIL(B))
--------- --------- ----------------
 3.1415 4 97.3976
 -45 1 -45
 5 9 1953125
 -57.667 42 9.098E+73
 15 55 4.842E+64
 -7.2 6 139314.07

6 rows selected.

That's better!

SIGN

SIGN returns -1 if its argument is less than 0, 0 if its argument is equal to 0, and 1 if its
argument is greater than 0, as shown in the following example:

INPUT:

SQL> SELECT A, SIGN(A)
 2 FROM NUMBERS;

OUTPUT:

 A SIGN(A)
--------- ---------
 3.1415 1
 -45 -1
 5 1
 -57.667 -1
 15 1
 -7.2 -1
 0 0

7 rows selected.

You could also use SIGN in a SELECT WHERE clause like this:

INPUT:

SQL> SELECT A
 2 FROM NUMBERS
 3 WHERE SIGN(A) = 1;

OUTPUT:

 A

 3.1415
 5
 15

SQRT

The function SQRT returns the square root of an argument. Because the square root of
a negative number is undefined, you cannot use SQRT on negative numbers.

INPUT/OUTPUT:

SQL> SELECT A, SQRT(A)
 2 FROM NUMBERS;

ERROR:
ORA-01428: argument '-45' is out of range

However, you can fix this limitation with ABS:

INPUT/OUTPUT:

SQL> SELECT ABS(A), SQRT(ABS(A))
 2 FROM NUMBERS;

 ABS(A) SQRT(ABS(A))
--------- ------------
 3.1415 1.7724277
 45 6.7082039
 5 2.236068
 57.667 7.5938791
 15 3.8729833
 7.2 2.6832816
 0 0

7 rows selected.

Character Functions
Many implementations of SQL provide functions to manipulate characters and strings of
characters. This section covers the most common character functions. The examples in
this section use the table CHARACTERS.

INPUT/OUTPUT:

SQL> SELECT * FROM CHARACTERS;

LASTNAME FIRSTNAME M CODE
--------------- --------------- - ---------
PURVIS KELLY A 32
TAYLOR CHUCK J 67
CHRISTINE LAURA C 65
ADAMS FESTER M 87
COSTALES ARMANDO A 77
KONG MAJOR G 52

6 rows selected.

CHR

CHR returns the character equivalent of the number it uses as an argument. The
character it returns depends on the character set of the database. For this example the
database is set to ASCII. The column CODE includes numbers.

INPUT:

SQL> SELECT CODE, CHR(CODE)
 2 FROM CHARACTERS;

OUTPUT:

 CODE CH
--------- --
 32
 67 C
 65 A
 87 W
 77 M
 52 4

6 rows selected.

The space opposite the 32 shows that 32 is a space in the ASCII character set.

CONCAT

You used the equivalent of this function on Day 3, when you learned about operators.
The || symbol splices two strings together, as does CONCAT. It works like this:

INPUT:

SQL> SELECT CONCAT(FIRSTNAME, LASTNAME) "FIRST AND LAST NAMES"
 2 FROM CHARACTERS;

OUTPUT:

FIRST AND LAST NAMES

KELLY PURVIS
CHUCK TAYLOR
LAURA CHRISTINE
FESTER ADAMS
ARMANDO COSTALES
MAJOR KONG
6 rows selected.

ANALYSIS:

Quotation marks surround the multiple-word alias FIRST AND LAST NAMES. Again, it
is safest to check your implementation to see if it allows multiple-word aliases.

Also notice that even though the table looks like two separate columns, what you are
seeing is one column. The first value you concatenated, FIRSTNAME, is 15 characters
wide. This operation retained all the characters in the field.

INITCAP

INITCAP capitalizes the first letter of a word and makes all other characters
lowercase.

INPUT:

SQL> SELECT FIRSTNAME BEFORE, INITCAP(FIRSTNAME) AFTER
 2 FROM CHARACTERS;

OUTPUT:

BEFORE AFTER
-------------- ----------
KELLY Kelly
CHUCK Chuck
LAURA Laura
FESTER Fester
ARMANDO Armando
MAJOR Major

6 rows selected.

LOWER and UPPER

As you might expect, LOWER changes all the characters to lowercase; UPPER does just
the reverse.

The following example starts by doing a little magic with the UPDATE function (you
learn more about this next week) to change one of the values to lowercase:

INPUT:

SQL> UPDATE CHARACTERS
 2 SET FIRSTNAME = 'kelly'
 3 WHERE FIRSTNAME = 'KELLY';

OUTPUT:

1 row updated.

INPUT:

SQL> SELECT FIRSTNAME
 2 FROM CHARACTERS;

OUTPUT:

FIRSTNAME

kelly
CHUCK
LAURA
FESTER
ARMANDO
MAJOR

6 rows selected.

Then you write

INPUT:

SQL> SELECT FIRSTNAME, UPPER(FIRSTNAME), LOWER(FIRSTNAME)
 2 FROM CHARACTERS;

OUTPUT:

FIRSTNAME UPPER(FIRSTNAME LOWER(FIRSTNAME
--------------- --------------- ---------------

kelly KELLY kelly
CHUCK CHUCK chuck
LAURA LAURA laura
FESTER FESTER fester
ARMANDO ARMANDO armando
MAJOR MAJOR major

6 rows selected.

Now you see the desired behavior.

LPAD and RPAD

LPAD and RPAD take a minimum of two and a maximum of three arguments. The first
argument is the character string to be operated on. The second is the number of
characters to pad it with, and the optional third argument is the character to pad it
with. The third argument defaults to a blank, or it can be a single character or a
character string. The following statement adds five pad characters, assuming that the
field LASTNAME is defined as a 15-character field:

INPUT:

SQL> SELECT LASTNAME, LPAD(LASTNAME,20,'*')
 2 FROM CHARACTERS;

OUTPUT:

LASTNAME LPAD(LASTNAME,20,'*'
-------------- --------------------
PURVIS *****PURVIS
TAYLOR *****TAYLOR
CHRISTINE *****CHRISTINE
ADAMS *****ADAMS
COSTALES *****COSTALES
KONG *****KONG

6 rows selected.

ANALYSIS:

Why were only five pad characters added? Remember that the LASTNAME column is 15
characters wide and that LASTNAME includes the blanks to the right of the characters
that make up the name. Some column data types eliminate padding characters if the
width of the column value is less than the total width allocated for the column.
Check your implementation. Now try the right side:

INPUT:

SQL> SELECT LASTNAME, RPAD(LASTNAME,20,'*')
 2 FROM CHARACTERS;

OUTPUT:

LASTNAME RPAD(LASTNAME,20,'*'
--------------- --------------------
PURVIS PURVIS *****
TAYLOR TAYLOR *****
CHRISTINE CHRISTINE *****
ADAMS ADAMS *****
COSTALES COSTALES *****
KONG KONG *****

6 rows selected.

ANALYSIS:

Here you see that the blanks are considered part of the field name for these operations.
The next two functions come in handy in this type of situation.

LTRIM and RTRIM

LTRIM and RTRIM take at least one and at most two arguments. The first argument, like
LPAD and RPAD, is a character string. The optional second element is either a character
or character string or defaults to a blank. If you use a second argument that is not a
blank, these trim functions will trim that character the same way they trim the blanks
in the following examples.

INPUT:

SQL> SELECT LASTNAME, RTRIM(LASTNAME)
 2 FROM CHARACTERS;

OUTPUT:

LASTNAME RTRIM(LASTNAME)
--------------- ---------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRISTINE
ADAMS ADAMS
COSTALES COSTALES
KONG KONG

6 rows selected.

You can make sure that the characters have been trimmed with the following
statement:

INPUT:

SQL> SELECT LASTNAME, RPAD(RTRIM(LASTNAME),20,'*')
 2 FROM CHARACTERS;

OUTPUT:

LASTNAME RPAD(RTRIM(LASTNAME)
--------------- --------------------
PURVIS PURVIS**************
TAYLOR TAYLOR**************
CHRISTINE CHRISTINE***********
ADAMS ADAMS***************
COSTALES COSTALES************
KONG KONG****************

6 rows selected.

The output proves that trim is working. Now try LTRIM:

INPUT:

SQL> SELECT LASTNAME, LTRIM(LASTNAME, 'C')
 2 FROM CHARACTERS;

OUTPUT:

LASTNAME LTRIM(LASTNAME,
--------------- ---------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE HRISTINE
ADAMS ADAMS
COSTALES OSTALES
KONG KONG

6 rows selected.

Note the missing Cs in the third and fifth rows.

REPLACE

REPLACE does just that. Of its three arguments, the first is the string to be searched.
The second is the search key. The last is the optional replacement string. If the third

argument is left out or NULL, each occurrence of the search key on the string to be
searched is removed and is not replaced with anything.

INPUT:

SQL> SELECT LASTNAME, REPLACE(LASTNAME, 'ST') REPLACEMENT
 2 FROM CHARACTERS;

OUTPUT:

LASTNAME REPLACEMENT
--------------- ---------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRIINE
ADAMS ADAMS
COSTALES COALES
KONG KONG

6 rows selected.

If you have a third argument, it is substituted for each occurrence of the search key in
the target string. For example:

INPUT:

SQL> SELECT LASTNAME, REPLACE(LASTNAME, 'ST','**') REPLACEMENT
 2 FROM CHARACTERS;

OUTPUT:

LASTNAME REPLACEMENT
--------------- ------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRI**INE
ADAMS ADAMS
COSTALES CO**ALES
KONG KONG

6 rows selected.

If the second argument is NULL, the target string is returned with no changes.

INPUT:

SQL> SELECT LASTNAME, REPLACE(LASTNAME, NULL) REPLACEMENT
 2 FROM CHARACTERS;

OUTPUT:

LASTNAME REPLACEMENT
--------------- ---------------
PURVIS PURVIS
TAYLOR TAYLOR
CHRISTINE CHRISTINE
ADAMS ADAMS
COSTALES COSTALES
KONG KONG

6 rows selected.

SUBSTR

This three-argument function enables you to take a piece out of a target string. The
first argument is the target string. The second argument is the position of the first
character to be output. The third argument is the number of characters to show.

INPUT:

SQL> SELECT FIRSTNAME, SUBSTR(FIRSTNAME,2,3)
 2 FROM CHARACTERS;

OUTPUT:

FIRSTNAME SUB
--------------- ---
kelly ell
CHUCK HUC
LAURA AUR
FESTER EST
ARMANDO RMA
MAJOR AJO

6 rows selected.

If you use a negative number as the second argument, the starting point is determined by
counting backwards from the end, like this:

INPUT:

SQL> SELECT FIRSTNAME, SUBSTR(FIRSTNAME,-13,2)
 2 FROM CHARACTERS;

OUTPUT:

FIRSTNAME SU
--------------- --
kelly ll
CHUCK UC
LAURA UR
FESTER ST
ARMANDO MA
MAJOR JO

6 rows selected.

ANALYSIS:

Remember the character field FIRSTNAME in this example is 15 characters long. That is
why you used a -13 to start at the third character. Counting back from 15 puts you at
the start of the third character, not at the start of the second. If you don't have a
third argument, use the following statement instead:

INPUT:

SQL> SELECT FIRSTNAME, SUBSTR(FIRSTNAME,3)
 2 FROM CHARACTERS;

OUTPUT:

FIRSTNAME SUBSTR(FIRSTN
--------------- -------------
kelly lly
CHUCK UCK
LAURA URA
FESTER STER
ARMANDO MANDO
MAJOR JOR

6 rows selected.

The rest of the target string is returned.

INPUT:

SQL> SELECT * FROM SSN_TABLE;

OUTPUT:

SSN__________
300541117
301457111
459789998

3 rows selected.

ANALYSIS:

Reading the results of the preceding output is difficult--Social Security numbers
usually have dashes. Now try something fancy and see whether you like the results:

INPUT:

SQL> SELECT SUBSTR(SSN,1,3)||'-'||SUBSTR(SSN,4,2)||'-
'||SUBSTR(SSN,6,4) SSN
 2 FROM SSN_TABLE;

OUTPUT:

SSN_________
300-54-1117
301-45-7111
459-78-9998

3 rows selected.

NOTE: This particular use of the substr function could come in very
handy with large numbers using commas such as 1,343,178,128 and in area
codes and phone numbers such as 317-787-2915 using dashes.

Here is another good use of the SUBSTR function. Suppose you are writing a report and a
few columns are more than 50 characters wide. You can use the SUBSTR function to
reduce the width of the columns to a more manageable size if you know the nature of
the actual data. Consider the following two examples:

INPUT:

SQL> SELECT NAME, JOB, DEPARTMENT FROM JOB_TBL;

OUTPUT:

NAME__
JOB_______________________________DEPARTMENT______________________
ALVIN SMITH
VICEPRESIDENT MARKETING

1 ROW SELECTED.

ANALYSIS:

Notice how the columns wrapped around, which makes reading the results a little too
difficult. Now try this select:

INPUT:

SQL> SELECT SUBSTR(NAME, 1,15) NAME, SUBSTR(JOB,1,15) JOB,
 DEPARTMENT
 2 FROM JOB_TBL;

OUTPUT:

NAME________________JOB_______________DEPARTMENT_____

ALVIN SMITH VICEPRESIDENT MARKETING

Much better!

TRANSLATE

The function TRANSLATE takes three arguments: the target string, the FROM string, and
the TO string. Elements of the target string that occur in the FROM string are
translated to the corresponding element in the TO string.

INPUT:

SQL> SELECT FIRSTNAME, TRANSLATE(FIRSTNAME
 2 '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
 3 'NNNNNNNNNNAAAAAAAAAAAAAAAAAAAAAAAAAA)
 4 FROM CHARACTERS;

OUTPUT:

FIRSTNAME TRANSLATE(FIRST
--------------- ---------------
kelly kelly
CHUCK AAAAA
LAURA AAAAA
FESTER AAAAAA
ARMANDO AAAAAAA
MAJOR AAAAA

6 rows selected.

Notice that the function is case sensitive.

INSTR

To find out where in a string a particular pattern occurs, use INSTR. Its first argument
is the target string. The second argument is the pattern to match. The third and forth
are numbers representing where to start looking and which match to report. This
example returns a number representing the first occurrence of O starting with the
second character:

INPUT:

SQL> SELECT LASTNAME, INSTR(LASTNAME, 'O', 2, 1)
 2 FROM CHARACTERS;

OUTPUT:

LASTNAME INSTR(LASTNAME,'O',2,1)
--------------- -----------------------
PURVIS 0
TAYLOR 5
CHRISTINE 0
ADAMS 0
COSTALES 2
KONG 2

6 rows selected.

ANALYSIS:

The default for the third and fourth arguments is 1. If the third argument is negative,
the search starts at a position determined from the end of the string, instead of from the
beginning.

LENGTH

LENGTH returns the length of its lone character argument. For example:

INPUT:

SQL> SELECT FIRSTNAME, LENGTH(RTRIM(FIRSTNAME))
 2 FROM CHARACTERS;

OUTPUT:

FIRSTNAME LENGTH(RTRIM(FIRSTNAME))
--------------- ------------------------
kelly 5
CHUCK 5
LAURA 5
FESTER 6

ARMANDO 7
MAJOR 5

6 rows selected.

ANALYSIS:

Note the use of the RTRIM function. Otherwise, LENGTH would return 15 for every
value.

Conversion Functions
These three conversion functions provide a handy way of converting one type of data to
another. These examples use the table CONVERSIONS.

INPUT:

SQL> SELECT * FROM CONVERSIONS;

OUTPUT:

NAME TESTNUM
--------------- ---------
40 95
13 23
74 68

The NAME column is a character string 15 characters wide, and TESTNUM is a number.

TO_CHAR

The primary use of TO_CHAR is to convert a number into a character. Different
implementations may also use it to convert other data types, like Date, into a character,
or to include different formatting arguments. The next example illustrates the primary
use of TO_CHAR:

INPUT:

SQL> SELECT TESTNUM, TO_CHAR(TESTNUM)
 2 FROM CONVERT;

OUTPUT:

 TESTNUM TO_CHAR(TESTNUM)
--------- ----------------

 95 95
 23 23
 68 68

Not very exciting, or convincing. Here's how to verify that the function returned a
character string:

INPUT:

SQL> SELECT TESTNUM, LENGTH(TO_CHAR(TESTNUM))
 2 FROM CONVERT;

OUTPUT:

 TESTNUM LENGTH(TO_CHAR(TESTNUM))
--------- ------------------------
 95 2
 23 2
 68 2

ANALYSIS:

LENGTH of a number would have returned an error. Notice the difference between TO
CHAR and the CHR function discussed earlier. CHR would have turned this number into a
character or a symbol, depending on the character set.

TO_NUMBER

TO_NUMBER is the companion function to TO_CHAR, and of course, it converts a string
into a number. For example:

INPUT:

SQL> SELECT NAME, TESTNUM, TESTNUM*TO_NUMBER(NAME)
 2 FROM CONVERT;

OUTPUT:

NAME TESTNUM TESTNUM*TO_NUMBER(NAME)
--------------- -------- -----------------------
40 95 3800
13 23 299
74 68 5032

ANALYSIS:

This test would have returned an error if TO_NUMBER had returned a character.

Miscellaneous Functions
Here are three miscellaneous functions you may find useful.

GREATEST and LEAST

These functions find the GREATEST or the LEAST member from a series of expressions. For
example:

INPUT:

SQL> SELECT GREATEST('ALPHA', 'BRAVO','FOXTROT', 'DELTA')
 2 FROM CONVERT;

OUTPUT:

GREATEST

FOXTROT
FOXTROT
FOXTROT

ANALYSIS:

Notice GREATEST found the word closest to the end of the alphabet. Notice also a
seemingly unnecessary FROM and three occurrences of FOXTROT. If FROM is missing, you
will get an error. Every SELECT needs a FROM. The particular table used in the FROM
has three rows, so the function in the SELECT clause is performed for each of them.

INPUT:

SQL> SELECT LEAST(34, 567, 3, 45, 1090)
 2 FROM CONVERT;

OUTPUT:

LEAST(34,567,3,45,1090)

 3
 3
 3

As you can see, GREATEST and LEAST also work with numbers.

USER

USER returns the character name of the current user of the database.

INPUT:

SQL> SELECT USER FROM CONVERT;

OUTPUT:

USER

PERKINS
PERKINS
PERKINS

There really is only one of me. Again, the echo occurs because of the number of rows in
the table. USER is similar to the date functions explained earlier today. Even though
USER is not an actual column in the table, it is selected for each row that is contained
in the table.

Summary
It has been a long day. We covered 47 functions--from aggregates to conversions. You
don't have to remember every function--just knowing the general types (aggregate
functions, date and time functions, arithmetic functions, character functions,
conversion functions, and miscellaneous functions) is enough to point you in the right
direction when you build a query that requires a function.

Q&A
Q Why are so few functions defined in the ANSI standard and so many defined
by the individual implementations?

A ANSI standards are broad strokes and are not meant to drive companies into
bankruptcy by forcing all implementations to have dozens of functions. On the
other hand, when company X adds a statistical package to its SQL and it sells
well, you can bet company Y and Z will follow suit.

Q I thought you said SQL was simple. Will I really use all of these
functions?

A The answer to this question is similar to the way a trigonometry teacher might
respond to the question, Will I ever need to know how to figure the area of an

isosceles triangle in real life? The answer, of course, depends on your profession.
The same concept applies with the functions and all the other options available
with SQL. How you use functions in SQL depends mostly on you company's needs. As
long as you understand how functions work as a whole, you can apply the same
concepts to your own queries.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. Which function capitalizes the first letter of a character string and makes the
rest lowercase?

2. Which functions are also known by the name group functions?

3. Will this query work?

SQL> SELECT COUNT(LASTNAME) FROM CHARACTERS;

4. How about this one?

SQL> SELECT SUM(LASTNAME) FROM CHARACTERS;

5. Assuming that they are separate columns, which function(s) would splice
together FIRSTNAME and LASTNAME?

6. What does the answer 6 mean from the following SELECT?

INPUT:

SQL> SELECT COUNT(*) FROM TEAMSTATS;

OUTPUT:

COUNT(*)

7. Will the following statement work?

SQL> SELECT SUBSTR LASTNAME,1,5 FROM NAME_TBL;

Exercises

1. Using today's TEAMSTATS table, write a query to determine who is batting
under .25. (For the baseball-challenged reader, batting average is hits/ab.)

2. Using today's CHARACTERS table, write a query that will return the following:

INITIALS__________CODE
K.A.P. 32
1 row selected.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 5 -
Clauses in SQL

Objectives
Today's topic is clauses--not the kind that distribute presents during the holidays, but
the ones you use with a SELECT statement. By the end of the day you will understand
and be able to use the following clauses:

● WHERE

● STARTING WITH

● ORDER BY

● GROUP BY

● HAVING

To get a feel for where these functions fit in, examine the general syntax for a SELECT
statement:

SYNTAX:

SELECT [DISTINCT | ALL] { *
 | { [schema.]{table | view | snapshot}.*
 | expr } [[AS] c_alias]
 [, { [schema.]{table | view | snapshot}.*

 | expr } [[AS] c_alias]] ... }
FROM [schema.]{table | view | snapshot}[@dblink] [t_alias]
[, [schema.]{table | view | snapshot}[@dblink] [t_alias]] ...
 [WHERE condition]
 [GROUP BY expr [, expr] ... [HAVING condition]]
 [{UNION | UNION ALL | INTERSECT | MINUS} SELECT command]
 [ORDER BY {expr|position} [ASC | DESC]
 [, {expr|position} [ASC | DESC]] ...]

NOTE: In my experience with SQL, the ANSI standard is really more of an
ANSI "suggestion." The preceding syntax will generally work with any SQL
engine, but you may find some slight variations.

NOTE: You haven't yet had to deal with a complicated syntax diagram.
Because many people find syntax diagrams more puzzling than illuminating
when learning something new, this book has used simple examples to
illustrate particular points. However, we are now at the point where a
syntax diagram can help tie the familiar concepts to today's new material.

Don't worry about the exact syntax--it varies slightly from implementation to
implementation anyway. Instead, focus on the relationships. At the top of this statement
is SELECT, which you have used many times in the last few days. SELECT is followed by
FROM, which should appear with every SELECT statement you typed. (You learn a new
use for FROM tomorrow.) WHERE, GROUP BY, HAVING, and ORDER BY all follow. (The
other clauses in the diagram--UNION, UNION ALL, INTERSECT, and MINUS--were covered
in Day 3, "Expressions, Conditions, and Operators.") Each clause plays an important part
in selecting and manipulating data.

NOTE: We have used two implementations of SQL to prepare today's
examples. One implementation has an SQL> prompt and line numbers
(Personal Oracle7), and the other (Borland's ISQL) does not. You will also
notice that the output displays vary slightly, depending on the
implementation.

The WHERE Clause
Using just SELECT and FROM, you are limited to returning every row in a table. For
example, using these two key words on the CHECKS table, you get all seven rows:

INPUT:

SQL> SELECT *
 2 FROM CHECKS;

OUTPUT:

 CHECK# PAYEE AMOUNT REMARKS
-------- -------------------- -------- ------------------
 1 Ma Bell 150 Have sons next time
 2 Reading R.R. 245.34 Train to Chicago
 3 Ma Bell 200.32 Cellular Phone
 4 Local Utilities 98 Gas
 5 Joes Stale $ Dent 150 Groceries
 16 Cash 25 Wild Night Out
 17 Joans Gas 25.1 Gas

7 rows selected.

With WHERE in your vocabulary, you can be more selective. To find all the checks you
wrote with a value of more than 100 dollars, write this:

INPUT:

SQL> SELECT *
 2 FROM CHECKS
 3 WHERE AMOUNT > 100;

The WHERE clause returns the four instances in the table that meet the required
condition:

OUTPUT:

 CHECK# PAYEE AMOUNT REMARKS
-------- -------------------- -------- ------------------
 1 Ma Bell 150 Have sons next time
 2 Reading R.R. 245.34 Train to Chicago
 3 Ma Bell 200.32 Cellular Phone
 5 Joes Stale $ Dent 150 Groceries

WHERE can also solve other popular puzzles. Given the following table of names and
locations, you can ask that popular question, Where's Waldo?

INPUT:

SQL> SELECT *
 2 FROM PUZZLE;

OUTPUT:

NAME LOCATION
-------------- --------------
TYLER BACKYARD
MAJOR KITCHEN
SPEEDY LIVING ROOM
WALDO GARAGE
LADDIE UTILITY CLOSET
ARNOLD TV ROOM

6 rows selected.

INPUT:

SQL> SELECT LOCATION AS "WHERE'S WALDO?"
 2 FROM PUZZLE
 3 WHERE NAME = 'WALDO';

OUTPUT:

WHERE'S WALDO?

GARAGE

Sorry, we couldn't resist. We promise no more corny queries. (We're saving those for that
SQL bathroom humor book everyone's been wanting.) Nevertheless, this query shows
that the column used in the condition of the WHERE statement does not have to be
mentioned in the SELECT clause. In this example you selected the location column but
used WHERE on the name, which is perfectly legal. Also notice the AS on the SELECT
line. AS is an optional assignment operator, assigning the alias WHERE'S WALDO? to
LOCATION. You might never see the AS again, because it involves extra typing. In most
implementations of SQL you can type

INPUT:

SQL> SELECT LOCATION "WHERE'S WALDO?"
 2 FROM PUZZLE
 3 WHERE NAME ='WALDO';

and get the same result as the previous query without using AS:

OUTPUT:

WHERE'S WALDO?

GARAGE

After SELECT and FROM, WHERE is the third most frequently used SQL term.

The STARTING WITH Clause
STARTING WITH is an addition to the WHERE clause that works exactly like
LIKE(<exp>%). Compare the results of the following query:

INPUT:

SELECT PAYEE, AMOUNT, REMARKS
FROM CHECKS
WHERE PAYEE LIKE('Ca%');

OUTPUT:

PAYEE AMOUNT REMARKS
==================== =============== ==============
Cash 25 Wild Night Out
Cash 60 Trip to Boston
Cash 34 Trip to Dayton

with the results from this query:

INPUT:

SELECT PAYEE, AMOUNT, REMARKS
FROM CHECKS
WHERE PAYEE STARTING WITH('Ca');

OUTPUT:

PAYEE AMOUNT REMARKS
==================== =============== ==============
Cash 25 Wild Night Out
Cash 60 Trip to Boston
Cash 34 Trip to Dayton

The results are identical. You can even use them together, as shown here:

INPUT:

SELECT PAYEE, AMOUNT, REMARKS
FROM CHECKS
WHERE PAYEE STARTING WITH('Ca')
OR
REMARKS LIKE 'G%';

OUTPUT:

PAYEE AMOUNT REMARKS
==================== =============== ===============
Local Utilities 98 Gas
Joes Stale $ Dent 150 Groceries
Cash 25 Wild Night Out
Joans Gas 25.1 Gas
Cash 60 Trip to Boston
Cash 34 Trip to Dayton
Joans Gas 15.75 Gas

WARNING: STARTING WITH is a common feature of many implementations
of SQL. Check your implementation before you grow fond of it.

Order from Chaos: The ORDER BY Clause
From time to time you will want to present the results of your query in some kind of
order. As you know, however, SELECT FROM gives you a listing, and unless you have
defined a primary key (see Day 10, "Creating Views and Indexes"), your query comes out in
the order the rows were entered. Consider a beefed-up CHECKS table:

INPUT:

SQL> SELECT * FROM CHECKS;

OUTPUT:

 CHECK# PAYEE AMOUNT REMARKS
-------- -------------------- -------- ------------------
 1 Ma Bell 150 Have sons next time
 2 Reading R.R. 245.34 Train to Chicago
 3 Ma Bell 200.32 Cellular Phone
 4 Local Utilities 98 Gas
 5 Joes Stale $ Dent 150 Groceries
 16 Cash 25 Wild Night Out
 17 Joans Gas 25.1 Gas
 9 Abes Cleaners 24.35 X-Tra Starch
 20 Abes Cleaners 10.5 All Dry Clean
 8 Cash 60 Trip to Boston
 21 Cash 34 Trip to Dayton
11 rows selected.

ANALYSIS:

You're going to have to trust me on this one, but the order of the output is exactly the
same order as the order in which the data was entered. After you read Day 8,
"Manipulating Data," and know how to use INSERT to create tables, you can test how

data is ordered by default on your own.

The ORDER BY clause gives you a way of ordering your results. For example, to order
the preceding listing by check number, you would use the following ORDER BY clause:

INPUT:

SQL> SELECT *
 2 FROM CHECKS
 3 ORDER BY CHECK#;

OUTPUT:

 CHECK# PAYEE AMOUNT REMARKS
-------- -------------------- -------- ------------------
 1 Ma Bell 150 Have sons next time
 2 Reading R.R. 245.34 Train to Chicago
 3 Ma Bell 200.32 Cellular Phone
 4 Local Utilities 98 Gas
 5 Joes Stale $ Dent 150 Groceries
 8 Cash 60 Trip to Boston
 9 Abes Cleaners 24.35 X-Tra Starch
 16 Cash 25 Wild Night Out
 17 Joans Gas 25.1 Gas
 20 Abes Cleaners 10.5 All Dry Clean
 21 Cash 34 Trip to Dayton

11 rows selected.

Now the data is ordered the way you want it, not the way in which it was entered. As
the following example shows, ORDER requires BY; BY is not optional.

INPUT/OUTPUT:

SQL> SELECT * FROM CHECKS ORDER CHECK#;

SELECT * FROM CHECKS ORDER CHECK#
 *
ERROR at line 1:
ORA-00924: missing BY keyword

What if you want to list the data in reverse order, with the highest number or letter
first? You're in luck! The following query generates a list of PAYEEs that stars at the
end of the alphabet:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM CHECKS

 3 ORDER BY PAYEE DESC;

 CHECK# PAYEE AMOUNT REMARKS
-------- -------------------- -------- ------------------
 2 Reading R.R. 245.34 Train to Chicago
 1 Ma Bell 150 Have sons next time
 3 Ma Bell 200.32 Cellular Phone
 4 Local Utilities 98 Gas
 5 Joes Stale $ Dent 150 Groceries
 17 Joans Gas 25.1 Gas
 16 Cash 25 Wild Night Out
 8 Cash 60 Trip to Boston
 21 Cash 34 Trip to Dayton
 9 Abes Cleaners 24.35 X-Tra Starch
 20 Abes Cleaners 10.5 All Dry Clean

11 rows selected.

ANALYSIS:

The DESC at the end of the ORDER BY clause orders the list in descending order instead
of the default (ascending) order. The rarely used, optional keyword ASC appears in the
following statement:

INPUT:

SQL> SELECT PAYEE, AMOUNT
 2 FROM CHECKS
 3 ORDER BY CHECK# ASC;

OUTPUT:

PAYEE AMOUNT
-------------------- ---------
Ma Bell 150
Reading R.R. 245.34
Ma Bell 200.32
Local Utilities 98
Joes Stale $ Dent 150
Cash 60
Abes Cleaners 24.35
Cash 25
Joans Gas 25.1
Abes Cleaners 10.5
Cash 34

11 rows selected.

ANALYSIS:

The ordering in this list is identical to the ordering of the list at the beginning of the

section (without ASC) because ASC is the default. This query also shows that the
expression used after the ORDER BY clause does not have to be in the SELECT
statement. Although you selected only PAYEE and AMOUNT, you were still able to
order the list by CHECK#.

You can also use ORDER BY on more than one field. To order CHECKS by PAYEE and
REMARKS, you would query as follows:

INPUT:

SQL> SELECT *
 2 FROM CHECKS
 3 ORDER BY PAYEE, REMARKS;

OUTPUT:

 CHECK# PAYEE AMOUNT REMARKS
-------- -------------------- -------- ------------------
 20 Abes Cleaners 10.5 All Dry Clean
 9 Abes Cleaners 24.35 X-Tra Starch
 8 Cash 60 Trip to Boston
 21 Cash 34 Trip to Dayton
 16 Cash 25 Wild Night Out
 17 Joans Gas 25.1 Gas
 5 Joes Stale $ Dent 150 Groceries
 4 Local Utilities 98 Gas
 3 Ma Bell 200.32 Cellular Phone
 1 Ma Bell 150 Have sons next time
 2 Reading R.R. 245.34 Train to Chicago

ANALYSIS:

Notice the entries for Cash in the PAYEE column. In the previous ORDER BY, the
CHECK#s were in the order 16, 21, 8. Adding the field REMARKS to the ORDER BY clause
puts the entries in alphabetical order according to REMARKS. Does the order of multiple
columns in the ORDER BY clause make a difference? Try the same query again but
reverse PAYEE and REMARKS:

INPUT:

SQL> SELECT *
 2 FROM CHECKS
 3 ORDER BY REMARKS, PAYEE;

OUTPUT:

 CHECK# PAYEE AMOUNT REMARKS
-------- -------------------- -------- --------------------

 20 Abes Cleaners 10.5 All Dry Clean
 3 Ma Bell 200.32 Cellular Phone
 17 Joans Gas 25.1 Gas
 4 Local Utilities 98 Gas
 5 Joes Stale $ Dent 150 Groceries
 1 Ma Bell 150 Have sons next time
 2 Reading R.R. 245.34 Train to Chicago
 8 Cash 60 Trip to Boston
 21 Cash 34 Trip to Dayton
 16 Cash 25 Wild Night Out
 9 Abes Cleaners 24.35 X-Tra Starch

11 rows selected.

ANALYSIS:

As you probably guessed, the results are completely different. Here's how to list one
column in alphabetical order and list the second column in reverse alphabetical order:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM CHECKS
 3 ORDER BY PAYEE ASC, REMARKS DESC;

 CHECK# PAYEE AMOUNT REMARKS
-------- -------------------- -------- ------------------
 9 Abes Cleaners 24.35 X-Tra Starch
 20 Abes Cleaners 10.5 All Dry Clean
 16 Cash 25 Wild Night Out
 21 Cash 34 Trip to Dayton
 8 Cash 60 Trip to Boston
 17 Joans Gas 25.1 Gas
 5 Joes Stale $ Dent 150 Groceries
 4 Local Utilities 98 Gas
 1 Ma Bell 150 Have sons next time
 3 Ma Bell 200.32 Cellular Phone
 2 Reading R.R. 245.34 Train to Chicago

11 rows selected.

ANALYSIS:

In this example PAYEE is sorted alphabetically, and REMARKS appears in descending
order. Note how the remarks in the three checks with a PAYEE of Cash are sorted.

TIP: If you know that a column you want to order your results by is the
first column in a table, then you can type ORDER BY 1 in place of spelling
out the column name. See the following example.

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM CHECKS
 3 ORDER BY 1;

 CHECK# PAYEE AMOUNT REMARKS
-------- -------------------- -------- ------------------
 1 Ma Bell 150 Have sons next time
 2 Reading R.R. 245.34 Train to Chicago
 3 Ma Bell 200.32 Cellular Phone
 4 Local Utilities 98 Gas
 5 Joes Stale $ Dent 150 Groceries
 8 Cash 60 Trip to Boston
 9 Abes Cleaners 24.35 X-Tra Starch
 16 Cash 25 Wild Night Out
 17 Joans Gas 25.1 Gas
 20 Abes Cleaners 10.5 All Dry Clean
 21 Cash 34 Trip to Dayton

11 rows selected.

ANALYSIS:

This result is identical to the result produced by the SELECT statement that you used
earlier today:

SELECT * FROM CHECKS ORDER BY CHECK#;

The GROUP BY Clause
On Day 3 you learned how to use aggregate functions (COUNT, SUM, AVG, MIN, and MAX).
If you wanted to find the total amount of money spent from the slightly changed
CHECKS table, you would type:

INPUT:

SELECT *
FROM CHECKS;

Here's the modified table:

OUTPUT:

CHECKNUM PAYEE AMOUNT REMARKS
======== =========== =============== ======================

 1 Ma Bell 150 Have sons next time
 2 Reading R.R. 245.34 Train to Chicago
 3 Ma Bell 200.33 Cellular Phone
 4 Local Utilities 98 Gas
 5 Joes Stale $ Dent 150 Groceries
 16 Cash 25 Wild Night Out
 17 Joans Gas 25.1 Gas
 9 Abes Cleaners 24.35 X-Tra Starch
 20 Abes Cleaners 10.5 All Dry Clean
 8 Cash 60 Trip to Boston
 21 Cash 34 Trip to Dayton
 30 Local Utilities 87.5 Water
 31 Local Utilities 34 Sewer
 25 Joans Gas 15.75 Gas

Then you would type:

INPUT/OUTPUT:

SELECT SUM(AMOUNT)
FROM CHECKS;

 SUM
===============

 1159.87

ANALYSIS:

This statement returns the sum of the column AMOUNT. What if you wanted to find out
how much you have spent on each PAYEE? SQL helps you with the GROUP BY clause. To
find out whom you have paid and how much, you would query like this:

INPUT/OUTPUT:

SELECT PAYEE, SUM(AMOUNT)
FROM CHECKS
GROUP BY PAYEE;

PAYEE SUM
==================== ===============

Abes Cleaners 34.849998
Cash 119
Joans Gas 40.849998
Joes Stale $ Dent 150
Local Utilities 219.5
Ma Bell 350.33002
Reading R.R. 245.34

ANALYSIS:

The SELECT clause has a normal column selection, PAYEE, followed by the aggregate
function SUM(AMOUNT). If you had tried this query with only the FROM CHECKS that
follows, here's what you would see:

INPUT/OUTPUT:

SELECT PAYEE, SUM(AMOUNT)
FROM CHECKS;

Dynamic SQL Error
-SQL error code = -104
-invalid column reference

ANALYSIS:

SQL is complaining about the combination of the normal column and the aggregate
function. This condition requires the GROUP BY clause. GROUP BY runs the aggregate
function described in the SELECT statement for each grouping of the column that
follows the GROUP BY clause. The table CHECKS returned 14 rows when queried with
SELECT * FROM CHECKS. The query on the same table, SELECT PAYEE, SUM(AMOUNT)
FROM CHECKS GROUP BY PAYEE, took the 14 rows in the table and made seven
groupings, returning the SUM of each grouping.

Suppose you wanted to know how much you gave to whom with how many checks. Can
you use more than one aggregate function?

INPUT/OUTPUT:

SELECT PAYEE, SUM(AMOUNT), COUNT(PAYEE)
FROM CHECKS
GROUP BY PAYEE;

PAYEE SUM COUNT
==================== =============== ===========

Abes Cleaners 34.849998 2
Cash 119 3
Joans Gas 40.849998 2
Joes Stale $ Dent 150 1
Local Utilities 219.5 3
Ma Bell 350.33002 2
Reading R.R. 245.34 1

ANALYSIS:

This SQL is becoming increasingly useful! In the preceding example, you were able to
perform group functions on unique groups using the GROUP BY clause. Also notice that
the results were ordered by payee. GROUP BY also acts like the ORDER BY clause. What

would happen if you tried to group by more than one column? Try this:

INPUT/OUTPUT:

SELECT PAYEE, SUM(AMOUNT), COUNT(PAYEE)
FROM CHECKS
GROUP BY PAYEE, REMARKS;

PAYEE SUM COUNT
==================== =============== ===========

Abes Cleaners 10.5 1
Abes Cleaners 24.35 1
Cash 60 1
Cash 34 1
Cash 25 1
Joans Gas 40.849998 2
Joes Stale $ Dent 150 1
Local Utilities 98 1
Local Utilities 34 1
Local Utilities 87.5 1
Ma Bell 200.33 1
Ma Bell 150 1
Reading R.R. 245.34 1

ANALYSIS:

The output has gone from 7 groupings of 14 rows to 13 groupings. What is different
about the one grouping with more than one check associated with it? Look at the
entries for Joans Gas:

INPUT/OUTPUT:

SELECT PAYEE, REMARKS
FROM CHECKS
WHERE PAYEE = 'Joans Gas';

PAYEE REMARKS
==================== ====================

Joans Gas Gas
Joans Gas Gas

ANALYSIS:

You see that the combination of PAYEE and REMARKS creates identical entities, which
SQL groups together into one line with the GROUP BY clause. The other rows produce
unique combinations of PAYEE and REMARKS and are assigned their own unique
groupings.

The next example finds the largest and smallest amounts, grouped by REMARKS:

INPUT/OUTPUT:

SELECT MIN(AMOUNT), MAX(AMOUNT)
FROM CHECKS
GROUP BY REMARKS;

 MIN MAX
=============== ===============

 245.34 245.34
 10.5 10.5
 200.33 200.33
 15.75 98
 150 150
 150 150
 34 34
 60 60
 34 34
 87.5 87.5
 25 25
 24.35 24.35

Here's what will happen if you try to include in the select statement a column that
has several different values within the group formed by GROUP BY:

INPUT/OUTPUT:

SELECT PAYEE, MAX(AMOUNT), MIN(AMOUNT)
FROM CHECKS
GROUP BY REMARKS;

Dynamic SQL Error
-SQL error code = -104
-invalid column reference

ANALYSIS:

This query tries to group CHECKS by REMARK. When the query finds two records with the
same REMARK but different PAYEEs, such as the rows that have GAS as a REMARK but
have PAYEEs of LOCAL UTILITIES and JOANS GAS, it throws an error.

The rule is, Don't use the SELECT statement on columns that have multiple values for
the GROUP BY clause column. The reverse is not true. You can use GROUP BY on
columns not mentioned in the SELECT statement. For example:

INPUT/OUTPUT:

SELECT PAYEE, COUNT(AMOUNT)
FROM CHECKS
GROUP BY PAYEE, AMOUNT;

PAYEE COUNT
==================== ===========

Abes Cleaners 1
Abes Cleaners 1
Cash 1
Cash 1
Cash 1
Joans Gas 1
Joans Gas 1
Joes Stale $ Dent 1
Local Utilities 1
Local Utilities 1
Local Utilities 1
Ma Bell 1
Ma Bell 1
Reading R.R. 1

ANALYSIS:

This silly query shows how many checks you had written for identical amounts to the
same PAYEE. Its real purpose is to show that you can use AMOUNT in the GROUP BY
clause, even though it is not mentioned in the SELECT clause. Try moving AMOUNT out of
the GROUP BY clause and into the SELECT clause, like this:

INPUT/OUTPUT:

SELECT PAYEE, AMOUNT, COUNT(AMOUNT)
FROM CHECKS
GROUP BY PAYEE;

Dynamic SQL Error
-SQL error code = -104
-invalid column reference

ANALYSIS:

SQL cannot run the query, which makes sense if you play the part of SQL for a moment.
Say you had to group the following lines:

INPUT/OUTPUT:

SELECT PAYEE, AMOUNT, REMARKS
FROM CHECKS
WHERE PAYEE ='Cash';

PAYEE AMOUNT REMARKS

==================== =============== ===============

Cash 25 Wild Night Out
Cash 60 Trip to Boston
Cash 34 Trip to Dayton

If the user asked you to output all three columns and group by PAYEE only, where
would you put the unique remarks? Remember you have only one row per group when
you use GROUP BY. SQL can't do two things at once, so it complains: Error #31:
Can't do two things at once.

The HAVING Clause

How can you qualify the data used in your GROUP BY clause? Use the table ORGCHART
and try this:

INPUT:

SELECT * FROM ORGCHART;

OUTPUT:

NAME TEAM SALARY SICKLEAVE ANNUALLEAVE
=============== ======== =========== =========== ===========

ADAMS RESEARCH 34000.00 34 12
WILKES MARKETING 31000.00 40 9
STOKES MARKETING 36000.00 20 19
MEZA COLLECTIONS 40000.00 30 27
MERRICK RESEARCH 45000.00 20 17
RICHARDSON MARKETING 42000.00 25 18
FURY COLLECTIONS 35000.00 22 14
PRECOURT PR 37500.00 24 24

If you wanted to group the output into divisions and show the average salary in each
division, you would type:

INPUT/OUTPUT:

SELECT TEAM, AVG(SALARY)
FROM ORGCHART
GROUP BY TEAM;

TEAM AVG
=============== ===========

COLLECTIONS 37500.00
MARKETING 36333.33

PR 37500.00
RESEARCH 39500.00

The following statement qualifies this query to return only those departments with
average salaries under 38000:

INPUT/OUTPUT:

SELECT TEAM, AVG(SALARY)
FROM ORGCHART
WHERE AVG(SALARY) < 38000
GROUP BY TEAM;

Dynamic SQL Error
-SQL error code = -104

-Invalid aggregate reference

ANALYSIS:

This error occurred because WHERE does not work with aggregate functions. To make
this query work, you need something new: the HAVING clause. If you type the following
query, you get what you ask for:

INPUT/OUTPUT:

SELECT TEAM, AVG(SALARY)
FROM ORGCHART
GROUP BY TEAM
HAVING AVG(SALARY) < 38000;

TEAM AVG
=============== ===========

COLLECTIONS 37500.00
MARKETING 36333.33
PR 37500.00

ANALYSIS:

HAVING enables you to use aggregate functions in a comparison statement, providing for
aggregate functions what WHERE provides for individual rows. Does HAVING work with
nonaggregate expressions? Try this:

INPUT/OUTPUT:

SELECT TEAM, AVG(SALARY)
FROM ORGCHART
GROUP BY TEAM

HAVING SALARY < 38000;

TEAM AVG
=============== ===========

PR 37500.00

ANALYSIS:

Why is this result different from the last query? The HAVING AVG(SALARY) < 38000
clause evaluated each grouping and returned only those with an average salary of
under 38000, just what you expected. HAVING SALARY < 38000, on the other hand,
had a different outcome. Take on the role of the SQL engine again. If the user asks you
to evaluate and return groups of divisions where SALARY < 38000, you would examine
each group and reject those where an individual SALARY is greater than 38000. In each
division except PR, you would find at least one salary greater than 38000:

INPUT/OUTPUT:

SELECT NAME, TEAM, SALARY
FROM ORGCHART
ORDER BY TEAM;

NAME TEAM SALARY
=============== =============== ===========

FURY COLLECTIONS 35000.00
MEZA COLLECTIONS 40000.00
WILKES MARKETING 31000.00
STOKES MARKETING 36000.00
RICHARDSON MARKETING 42000.00
PRECOURT PR 37500.00
ADAMS RESEARCH 34000.00
MERRICK RESEARCH 45000.00

ANALYSIS:

Therefore, you would reject all other groups except PR. What you really asked was
Select all groups where no individual makes more than 38000. Don't you
just hate it when the computer does exactly what you tell it to?

WARNING: Some implementations of SQL return an error if you use
anything other than an aggregate function in a HAVING clause. Don't bet
the farm on using the previous example until you check the implementation
of the particular SQL you use.

Can you use more than one condition in your HAVING clause? Try this:

INPUT:

SELECT TEAM, AVG(SICKLEAVE),AVG(ANNUALLEAVE)
FROM ORGCHART
GROUP BY TEAM
HAVING AVG(SICKLEAVE)>25 AND
AVG(ANNUALLEAVE)<20;

ANALYSIS:

The following table is grouped by TEAM. It shows all the teams with SICKLEAVE
averages above 25 days and ANNUALLEAVE averages below 20 days.

OUTPUT:

TEAM AVG AVG
=============== =========== ===========

MARKETING 28 15
RESEARCH 27 15

You can also use an aggregate function in the HAVING clause that was not in the
SELECT statement. For example:

INPUT/OUTPUT:

SELECT TEAM, AVG(SICKLEAVE),AVG(ANNUALLEAVE)
FROM ORGCHART
GROUP BY TEAM
HAVING COUNT(TEAM) > 1;

TEAM AVG AVG
=============== =========== ===========

COLLECTIONS 26 21
MARKETING 28 15
RESEARCH 27 15

ANALYSIS:

This query returns the number of TEAMs with more than one member. COUNT(TEAM) is not
used in the SELECT statement but still functions as expected in the HAVING clause.

The other logical operators all work well within the HAVING clause. Consider this:

INPUT/OUTPUT:

SELECT TEAM,MIN(SALARY),MAX(SALARY)

FROM ORGCHART
GROUP BY TEAM
HAVING AVG(SALARY) > 37000
OR
MIN(SALARY) > 32000;

TEAM MIN MAX
=============== =========== ===========

COLLECTIONS 35000.00 40000.00
PR 37500.00 37500.00
RESEARCH 34000.00 45000.00

The operator IN also works in a HAVING clause, as demonstrated here:

INPUT/OUTPUT:

SELECT TEAM,AVG(SALARY)
FROM ORGCHART
GROUP BY TEAM
HAVING TEAM IN ('PR','RESEARCH');

TEAM AVG
=============== ===========

PR 37500.00
RESEARCH 39500.00

Combining Clauses
Nothing exists in a vacuum, so this section takes you through some composite examples
that demonstrate how combinations of clauses perform together.

Example 5.1

Find all the checks written for Cash and Gas in the CHECKS table and order them by
REMARKS.

INPUT:

SELECT PAYEE, REMARKS
FROM CHECKS
WHERE PAYEE = 'Cash'
OR REMARKS LIKE'Ga%'
ORDER BY REMARKS;

OUTPUT:

PAYEE REMARKS

==================== ====================

Joans Gas Gas
Joans Gas Gas
Local Utilities Gas
Cash Trip to Boston
Cash Trip to Dayton
Cash Wild Night Out

ANALYSIS:

Note the use of LIKE to find the REMARKS that started with Ga. With the use of OR,
data was returned if the WHERE clause met either one of the two conditions.

What if you asked for the same information and group it by PAYEE? The query would
look something like this:

INPUT:

SELECT PAYEE, REMARKS
FROM CHECKS
WHERE PAYEE = 'Cash'
OR REMARKS LIKE'Ga%'
GROUP BY PAYEE
ORDER BY REMARKS;

ANALYSIS:

This query would not work because the SQL engine would not know what to do with
the remarks. Remember that whatever columns you put in the SELECT clause must also
be in the GROUP BY clause--unless you don't specify any columns in the SELECT clause.

Example 5.2

Using the table ORGCHART, find the salary of everyone with less than 25 days of sick
leave. Order the results by NAME.

INPUT:

SELECT NAME, SALARY
FROM ORGCHART
WHERE SICKLEAVE < 25
ORDER BY NAME;

OUTPUT:

NAME SALARY
=============== ===========

FURY 35000.00
MERRICK 45000.00
PRECOURT 37500.00
STOKES 36000.00

ANALYSIS:

This query is straightforward and enables you to use your new-found skills with WHERE
and ORDER BY.

Example 5.3

Again, using ORGCHART, display TEAM, AVG(SALARY), AVG(SICKLEAVE), and
AVG(ANNUALLEAVE) on each team:

INPUT:

SELECT TEAM,
AVG(SALARY),
AVG(SICKLEAVE),
AVG(ANNUALLEAVE)
FROM ORGCHART
GROUP BY TEAM;

OUTPUT:

TEAM AVG AVG AVG
=============== =========== =========== ===========
COLLECTIONS 37500.00 26 21
MARKETING 36333.33 28 15
PR 37500.00 24 24
RESEARCH 39500.00 26 15

An interesting variation on this query follows. See if you can figure out what
happened:

INPUT/OUTPUT:

SELECT TEAM,
AVG(SALARY),
AVG(SICKLEAVE),
AVG(ANNUALLEAVE)
FROM ORGCHART
GROUP BY TEAM
ORDER BY NAME;

TEAM AVG AVG AVG
=============== =========== =========== ===========
RESEARCH 39500.00 27 15

COLLECTIONS 37500.00 26 21
PR 37500.00 24 24

MARKETING 36333.33 28 15

A simpler query using ORDER BY might offer a clue:

INPUT/OUTPUT:

SELECT NAME, TEAM
FROM ORGCHART
ORDER BY NAME, TEAM;

NAME TEAM
=============== ===========
ADAMS RESEARCH
FURY COLLECTIONS
MERRICK RESEARCH
MEZA COLLECTIONS
PRECOURT PR
RICHARDSON MARKETING
STOKES MARKETING
WILKES MARKETING

ANALYSIS:

When the SQL engine got around to ordering the results of the query, it used the NAME
column (remember, it is perfectly legal to use a column not specified in the SELECT
statement), ignored duplicate TEAM entries, and came up with the order RESEARCH,
COLLECTIONS, PR, and MARKETING. Including TEAM in the ORDER BY clause is
unnecessary, because you have unique values in the NAME column. You can get the same
result by typing this statement:

INPUT/OUTPUT:

SELECT NAME, TEAM
FROM ORGCHART
ORDER BY NAME;

NAME TEAM
=============== ============
ADAMS RESEARCH
FURY COLLECTIONS
MERRICK RESEARCH
MEZA COLLECTIONS
PRECOURT PR
RICHARDSON MARKETING
STOKES MARKETING
WILKES MARKETING

While you are looking at variations, don't forget you can also reverse the order:

INPUT/OUTPUT:

SELECT NAME, TEAM
FROM ORGCHART
ORDER BY NAME DESC;

NAME TEAM
=============== ============
WILKES MARKETING
STOKES MARKETING
RICHARDSON MARKETING
PRECOURT PR
MEZA COLLECTIONS
MERRICK RESEARCH
FURY COLLECTIONS
ADAMS RESEARCH

Example 5.4: The Big Finale

Is it possible to use everything you have learned in one query? It is, but the results will
be convoluted because in many ways you are working with apples and oranges--or
aggregates and nonaggregates. For example, WHERE and ORDER BY are usually found in
queries that act on single rows, such as this:

INPUT/OUTPUT:

SELECT *
FROM ORGCHART
ORDER BY NAME DESC;

NAME TEAM SALARY SICKLEAVE ANNUALLEAVE
=============== ======== =========== =========== ===========
WILKES MARKETING 31000.00 40 9
STOKES MARKETING 36000.00 20 19
RICHARDSON MARKETING 42000.00 25 18
PRECOURT PR 37500.00 24 24
MEZA COLLECTIONS 40000.00 30 27
MERRICK RESEARCH 45000.00 20 17
FURY COLLECTIONS 35000.00 22 14
ADAMS RESEARCH 34000.00 34 12

GROUP BY and HAVING are normally seen in the company of aggregates:

INPUT/OUTPUT:

SELECT PAYEE,
SUM(AMOUNT) TOTAL,
COUNT(PAYEE) NUMBER_WRITTEN

FROM CHECKS
GROUP BY PAYEE
HAVING SUM(AMOUNT) > 50;

PAYEE TOTAL NUMBER_WRITTEN
==================== =============== ==============
Cash 119 3
Joes Stale $ Dent 150 1
Local Utilities 219.5 3
Ma Bell 350.33002 2
Reading R.R. 245.34 1

You have seen that combining these two groups of clauses can have unexpected results,
including the following:

INPUT:

SELECT PAYEE,
SUM(AMOUNT) TOTAL,
COUNT(PAYEE) NUMBER_WRITTEN
FROM CHECKS
WHERE AMOUNT >= 100
GROUP BY PAYEE
HAVING SUM(AMOUNT) > 50;

OUTPUT:

PAYEE TOTAL NUMBER_WRITTEN
==================== =============== ==============
Joes Stale $ Dent 150 1
Ma Bell 350.33002 2
Reading R.R. 245.34 1

Compare these two result sets and examine the raw data:

INPUT/OUTPUT:

SELECT PAYEE, AMOUNT
FROM CHECKS
ORDER BY PAYEE;

PAYEE AMOUNT
==================== ===============
Abes Cleaners 10.5
Abes Cleaners 24.35
Cash 25
Cash 34
Cash 60
Joans Gas 15.75
Joans Gas 25.1
Joes Stale $ Dent 150

Local Utilities 34
Local Utilities 87.5
Local Utilities 98
Ma Bell 150
Ma Bell 200.33
Reading R.R. 245.34

ANALYSIS:

You see how the WHERE clause filtered out all the checks less than 100 dollars before
the GROUP BY was performed on the query. We are not trying to tell you not to mix
these groups--you may have a requirement that this sort of construction will meet.
However, you should not casually mix aggregate and nonaggregate functions. The
previous examples have been tables with only a handful of rows. (Otherwise, you would
need a cart to carry this book.) In the real world you will be working with thousands
and thousands (or billions and billions) of rows, and the subtle changes caused by
mixing these clauses might not be so apparent.

Summary
Today you learned all the clauses you need to exploit the power of a SELECT
statement. Remember to be careful what you ask for because you just might get it. Your
basic SQL education is complete. You already know enough to work effectively with
single tables. Tomorrow (Day 6, "Joining Tables") you will have the opportunity to work
with multiple tables.

Q&A
Q I thought we covered some of these functions earlier this week? If so, why
are we covering them again?

A We did indeed cover WHERE on Day 3. You needed a knowledge of WHERE to
understand how certain operators worked. WHERE appears again today because it
is a clause, and today's topic is clauses.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. Which clause works just like LIKE(<exp>%)?

2. What is the function of the GROUP BY clause, and what other clause does it
act like?

3. Will this SELECT work?

INPUT:

SQL> SELECT NAME, AVG(SALARY), DEPARTMENT
 FROM PAY_TBL
 WHERE DEPARTMENT = 'ACCOUNTING'
 ORDER BY NAME
 GROUP BY DEPARTMENT, SALARY;

4. When using the HAVING clause, do you always have to use a GROUP BY also?

5. Can you use ORDER BY on a column that is not one of the columns in the
SELECT statement?

Exercises

1. Using the ORGCHART table from the preceding examples, find out how many
people on each team have 30 or more days of sick leave.

2. Using the CHECKS table, write a SELECT that will return the following:

OUTPUT:

CHECK#_____PAYEE_______AMOUNT

 1 MA BELL 150

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 6 -
Joining Tables

Objectives
Today you will learn about joins. This information will enable you to gather and
manipulate data across several tables. By the end of the day, you will understand and
be able to do the following:

● Perform an outer join

● Perform a left join

● Perform a right join

● Perform an equi-join

● Perform a non-equi-join

● Join a table to itself

Introduction
One of the most powerful features of SQL is its capability to gather and manipulate
data from across several tables. Without this feature you would have to store all the
data elements necessary for each application in one table. Without common tables you
would need to store the same data in several tables. Imagine having to redesign, rebuild,

and repopulate your tables and databases every time your user needed a query with a
new piece of information. The JOIN statement of SQL enables you to design smaller,
more specific tables that are easier to maintain than larger tables.

Multiple Tables in a Single SELECT Statement
Like Dorothy in The Wizard of Oz, you have had the power to join tables since Day 2,
"Introduction to the Query: The SELECT Statement," when you learned about SELECT
and FROM. Unlike Dorothy, you don't have to click you heels together three times to
perform a join. Use the following two tables, named, cleverly enough, TABLE1 and
TABLE2.

NOTE: The queries in today's examples were produced using Borland's ISQL
tool. You will notice some differences between these queries and the ones
that we used earlier in the book. For example, these queries do not begin
with an SQL prompt. Another difference is that ISQL does not require a
semicolon at the end of the statement. (The semicolon is optional in ISQL.)
But the SQL basics are still the same.

INPUT:

SELECT *
FROM TABLE1

OUTPUT:

ROW REMARKS
========== =======

row 1 Table 1
row 2 Table 1
row 3 Table 1
row 4 Table 1
row 5 Table 1
row 6 Table 1

INPUT:

SELECT *
FROM TABLE2

OUTPUT:

ROW REMARKS
========== ========

row 1 table 2
row 2 table 2
row 3 table 2
row 4 table 2
row 5 table 2
row 6 table 2

To join these two tables, type this:

INPUT:

SELECT *
FROM TABLE1,TABLE2

OUTPUT:

ROW REMARKS ROW REMARKS
========== ========== ========== ========

row 1 Table 1 row 1 table 2
row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2
row 1 Table 1 row 4 table 2
row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2
row 2 Table 1 row 1 table 2
row 2 Table 1 row 2 table 2
row 2 Table 1 row 3 table 2
row 2 Table 1 row 4 table 2
row 2 Table 1 row 5 table 2
row 2 Table 1 row 6 table 2
row 3 Table 1 row 1 table 2
row 3 Table 1 row 2 table 2
row 3 Table 1 row 3 table 2
row 3 Table 1 row 4 table 2
row 3 Table 1 row 5 table 2
row 3 Table 1 row 6 table 2
row 4 Table 1 row 1 table 2
row 4 Table 1 row 2 table 2
row 4 Table 1 row 3 table 2
row 4 Table 1 row 4 table 2
row 4 Table 1 row 5 table 2
row 4 Table 1 row 6 table 2
row 5 Table 1 row 1 table 2
row 5 Table 1 row 2 table 2
row 5 Table 1 row 3 table 2
row 5 Table 1 row 4 table 2
row 5 Table 1 row 5 table 2
row 5 Table 1 row 6 table 2
row 6 Table 1 row 1 table 2
row 6 Table 1 row 2 table 2

row 6 Table 1 row 3 table 2
row 6 Table 1 row 4 table 2
row 6 Table 1 row 5 table 2
row 6 Table 1 row 6 table 2

Thirty-six rows! Where did they come from? And what kind of join is this?

ANALYSIS:

A close examination of the result of your first join shows that each row from TABLE1
was added to each row from TABLE2. An extract from this join shows what happened:

OUTPUT:

ROW REMARKS ROW REMARKS
===== ========== ========= ========

row 1 Table 1 row 1 table 2
row 1 Table 1 row 2 table 2
row 1 Table 1 row 3 table 2
row 1 Table 1 row 4 table 2
row 1 Table 1 row 5 table 2
row 1 Table 1 row 6 table 2

Notice how each row in TABLE2 was combined with row 1 in TABLE1. Congratulations!
You have performed your first join. But what kind of join? An inner join? an outer join?
or what? Well, actually this type of join is called a cross-join. A cross-join is not
normally as useful as the other joins covered today, but this join does illustrate the
basic combining property of all joins: Joins bring tables together.

Suppose you sold parts to bike shops for a living. When you designed your database, you
built one big table with all the pertinent columns. Every time you had a new
requirement, you added a new column or started a new table with all the old data plus
the new data required to create a specific query. Eventually, your database would
collapse from its own weight--not a pretty sight. An alternative design, based on a
relational model, would have you put all related data into one table. Here's how your
customer table would look:

INPUT:

SELECT *
FROM CUSTOMER

OUTPUT:

NAME ADDRESS STATE ZIP PHONE REMARKS
========== ========== ====== ========== ========= ==========

TRUE WHEEL 55O HUSKER NE 58702 555-4545 NONE
BIKE SPEC CPT SHRIVE LA 45678 555-1234 NONE
LE SHOPPE HOMETOWN KS 54678 555-1278 NONE
AAA BIKE 10 OLDTOWN NE 56784 555-3421 JOHN-MGR
JACKS BIKE 24 EGLIN FL 34567 555-2314 NONE

ANALYSIS:

This table contains all the information you need to describe your customers. The items
you sold would go into another table:

INPUT:

SELECT *
FROM PART

OUTPUT:

 PARTNUM DESCRIPTION PRICE
=========== ==================== ===========

 54 PEDALS 54.25
 42 SEATS 24.50
 46 TIRES 15.25
 23 MOUNTAIN BIKE 350.45
 76 ROAD BIKE 530.00
 10 TANDEM 1200.00

And the orders you take would have their own table:

INPUT:

SELECT *
FROM ORDERS

OUTPUT:

 ORDEREDON NAME PARTNUM QUANTITY REMARKS
=========== ========== =========== =========== =======

15-MAY-1996 TRUE WHEEL 23 6 PAID
19-MAY-1996 TRUE WHEEL 76 3 PAID
 2-SEP-1996 TRUE WHEEL 10 1 PAID
30-JUN-1996 TRUE WHEEL 42 8 PAID
30-JUN-1996 BIKE SPEC 54 10 PAID
30-MAY-1996 BIKE SPEC 10 2 PAID
30-MAY-1996 BIKE SPEC 23 8 PAID
17-JAN-1996 BIKE SPEC 76 11 PAID
17-JAN-1996 LE SHOPPE 76 5 PAID
 1-JUN-1996 LE SHOPPE 10 3 PAID

 1-JUN-1996 AAA BIKE 10 1 PAID
 1-JUL-1996 AAA BIKE 76 4 PAID
 1-JUL-1996 AAA BIKE 46 14 PAID
11-JUL-1996 JACKS BIKE 76 14 PAID

One advantage of this approach is that you can have three specialized people or
departments responsible for maintaining their own data. You don't need a database
administrator who is conversant with all aspects of your project to shepherd one
gigantic, multidepartmental database. Another advantage is that in the age of
networks, each table could reside on a different machine. People who understand the
data could maintain it, and it could reside on an appropriate machine (rather than that
nasty corporate mainframe protected by legions of system administrators).

Now join PARTS and ORDERS:

INPUT/OUTPUT:

SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION
FROM ORDERS O, PART P

 ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION
=========== ========== =========== ========= ============

15-MAY-1996 TRUE WHEEL 23 54 PEDALS
19-MAY-1996 TRUE WHEEL 76 54 PEDALS
 2-SEP-1996 TRUE WHEEL 10 54 PEDALS
30-JUN-1996 TRUE WHEEL 42 54 PEDALS
30-JUN-1996 BIKE SPEC 54 54 PEDALS
30-MAY-1996 BIKE SPEC 10 54 PEDALS
30-MAY-1996 BIKE SPEC 23 54 PEDALS
17-JAN-1996 BIKE SPEC 76 54 PEDALS
17-JAN-1996 LE SHOPPE 76 54 PEDALS
 1-JUN-1996 LE SHOPPE 10 54 PEDALS
 1-JUN-1996 AAA BIKE 10 54 PEDALS
 1-JUL-1996 AAA BIKE 76 54 PEDALS
 1-JUL-1996 AAA BIKE 46 54 PEDALS
11-JUL-1996 JACKS BIKE 76 54 PEDALS
...

ANALYSIS:

The preceding code is just a portion of the result set. The actual set is 14 (number of
rows in ORDERS) x 6 (number of rows in PART), or 84 rows. It is similar to the result from
joining TABLE1 and TABLE2 earlier today, and it is still one statement shy of being
useful. Before we reveal that statement, we need to regress a little and talk about
another use for the alias.

Finding the Correct Column

When you joined TABLE1 and TABLE2, you used SELECT *, which returned all the
columns in both tables. In joining ORDERS to PART, the SELECT statement is a bit more
complicated:

SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION

SQL is smart enough to know that ORDEREDON and NAME exist only in ORDERS and that
DESCRIPTION exists only in PART, but what about PARTNUM, which exists in both? If you
have a column that has the same name in two tables, you must use an alias in your
SELECT clause to specify which column you want to display. A common technique is to
assign a single character to each table, as you did in the FROM clause:

FROM ORDERS O, PART P

You use that character with each column name, as you did in the preceding SELECT
clause. The SELECT clause could also be written like this:

SELECT ORDEREDON, NAME, O.PARTNUM, P.PARTNUM, DESCRIPTION

But remember, someday you might have to come back and maintain this query. It doesn't
hurt to make it more readable. Now back to the missing statement.

Equi-Joins
An extract from the PART/ORDERS join provides a clue as to what is missing:

30-JUN-1996 TRUE WHEEL 42 54 PEDALS
30-JUN-1996 BIKE SPEC 54 54 PEDALS
30-MAY-1996 BIKE SPEC 10 54 PEDALS

Notice the PARTNUM fields that are common to both tables. What if you wrote the
following?

INPUT:

SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM

OUTPUT:

 ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION
=========== ========== =========== ========= ==============

 1-JUN-1996 AAA BIKE 10 10 TANDEM
30-MAY-1996 BIKE SPEC 10 10 TANDEM
 2-SEP-1996 TRUE WHEEL 10 10 TANDEM
 1-JUN-1996 LE SHOPPE 10 10 TANDEM
30-MAY-1996 BIKE SPEC 23 23 MOUNTAIN BIKE
15-MAY-1996 TRUE WHEEL 23 23 MOUNTAIN BIKE
30-JUN-1996 TRUE WHEEL 42 42 SEATS
 1-JUL-1996 AAA BIKE 46 46 TIRES
30-JUN-1996 BIKE SPEC 54 54 PEDALS
 1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE
19-MAY-1996 TRUE WHEEL 76 76 ROAD BIKE
11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROAD BIKE

ANALYSIS:

Using the column PARTNUM that exists in both of the preceding tables, you have just
combined the information you had stored in the ORDERS table with information from the
PART table to show a description of the parts the bike shops have ordered from you. The
join that was used is called an equi-join because the goal is to match the values of a
column in one table to the corresponding values in the second table.

You can further qualify this query by adding more conditions in the WHERE clause. For
example:

INPUT/OUTPUT:

SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND O.PARTNUM = 76

 ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION
=========== ========== =========== ========== ============

 1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE
19-MAY-1996 TRUE WHEEL 76 76 ROAD BIKE
11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROAD BIKE

The number 76 is not very descriptive, and you wouldn't want your sales people to have
to memorize a part number. (We have had the misfortune to see many data information
systems in the field that require the end user to know some obscure code for something
that had a perfectly good name. Please don't write one of those!) Here's another way to
write the query:

INPUT/OUTPUT:

SELECT O.ORDEREDON, O.NAME, O.PARTNUM,
P.PARTNUM, P.DESCRIPTION
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND P.DESCRIPTION = 'ROAD BIKE'

 ORDEREDON NAME PARTNUM PARTNUM DESCRIPTION
=========== ========== =========== ========== ============

 1-JUL-1996 AAA BIKE 76 76 ROAD BIKE
17-JAN-1996 BIKE SPEC 76 76 ROAD BIKE
19-MAY-1996 TRUE WHEEL 76 76 ROAD BIKE
11-JUL-1996 JACKS BIKE 76 76 ROAD BIKE
17-JAN-1996 LE SHOPPE 76 76 ROAD BIKE

Along the same line, take a look at two more tables to see how they can be joined. In
this example the employee_id column should obviously be unique. You could have
employees with the same name, they could work in the same department, and earn the
same salary. However, each employee would have his or her own employee_id. To join
these two tables, you would use the employee_id column.

EMPLOYEE_TABLE EMPLOYEE_PAY_TABLE

employee_id employee_id

last_name salary

first_name department

middle_name supervisor

 marital_status

INPUT:

SELECT E.EMPLOYEE_ID, E.LAST_NAME, EP.SALARY
FROM EMPLOYEE_TBL E,
 EMPLOYEE_PAY_TBL EP
WHERE E.EMPLOYEE_ID = EP.EMPLOYEE_ID
 AND E.LAST_NAME = 'SMITH';

OUTPUT:

E.EMPLOYEE_ID E.LAST_NAME EP.SALARY

============= =========== =========
 13245 SMITH 35000.00

TIP: When you join two tables without the use of a WHERE clause, you are

performing a Cartesian join. This join combines all rows from all the tables
in the FROM clause. If each table has 200 rows, then you will end up with
40,000 rows in your results (200 x 200). Always join your tables in the WHERE
clause unless you have a real need to join all the rows of all the selected
tables.

Back to the original tables. Now you are ready to use all this information about joins
to do something really useful: finding out how much money you have made from selling
road bikes:

INPUT/OUTPUT:

SELECT SUM(O.QUANTITY * P.PRICE) TOTAL
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND P.DESCRIPTION = 'ROAD BIKE'

 TOTAL
===========

 19610.00

ANALYSIS:

With this setup, the sales people can keep the ORDERS table updated, the production
department can keep the PART table current, and you can find your bottom line
without redesigning your database.

NOTE: Notice the consistent use of table and column aliases in the SQL
statement examples. You will save many, many keystrokes by using aliases.
They also help to make your statement more readable.

Can you join more than one table? For example, to generate information to send out an
invoice, you could type this statement:

INPUT/OUTPUT:

SELECT C.NAME, C.ADDRESS, (O.QUANTITY * P.PRICE) TOTAL
FROM ORDER O, PART P, CUSTOMER C
WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME

NAME ADDRESS TOTAL
========== ========== ===========

TRUE WHEEL 55O HUSKER 1200.00
BIKE SPEC CPT SHRIVE 2400.00
LE SHOPPE HOMETOWN 3600.00
AAA BIKE 10 OLDTOWN 1200.00
TRUE WHEEL 55O HUSKER 2102.70
BIKE SPEC CPT SHRIVE 2803.60
TRUE WHEEL 55O HUSKER 196.00
AAA BIKE 10 OLDTOWN 213.50
BIKE SPEC CPT SHRIVE 542.50
TRUE WHEEL 55O HUSKER 1590.00
BIKE SPEC CPT SHRIVE 5830.00
JACKS BIKE 24 EGLIN 7420.00
LE SHOPPE HOMETOWN 2650.00
AAA BIKE 10 OLDTOWN 2120.00

You could make the output more readable by writing the statement like this:

INPUT/OUTPUT:

SELECT C.NAME, C.ADDRESS,
O.QUANTITY * P.PRICE TOTAL
FROM ORDERS O, PART P, CUSTOMER C
WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME
ORDER BY C.NAME

NAME ADDRESS TOTAL
========== ========== ===========

AAA BIKE 10 OLDTOWN 213.50
AAA BIKE 10 OLDTOWN 2120.00
AAA BIKE 10 OLDTOWN 1200.00
BIKE SPEC CPT SHRIVE 542.50
BIKE SPEC CPT SHRIVE 2803.60
BIKE SPEC CPT SHRIVE 5830.00
BIKE SPEC CPT SHRIVE 2400.00
JACKS BIKE 24 EGLIN 7420.00
LE SHOPPE HOMETOWN 2650.00
LE SHOPPE HOMETOWN 3600.00
TRUE WHEEL 55O HUSKER 196.00
TRUE WHEEL 55O HUSKER 2102.70
TRUE WHEEL 55O HUSKER 1590.00
TRUE WHEEL 55O HUSKER 1200.00

NOTE: Notice that when joining the three tables (ORDERS, PART, and
CUSTOMER) that the ORDERS table was used in two joins and the other
tables were used only once. Tables that will return the fewest rows with
the given conditions are commonly referred to as driving tables, or base
tables. Tables other than the base table in a query are usually joined to
the base table for more efficient data retrieval. Consequently, the ORDERS

table is the base table in this example. In most databases a few base tables
join (either directly or indirectly) all the other tables. (See Day 15,
"Streamlining SQL Statements for Improved Performance," for more on base
tables.)

You can make the previous query more specific, thus more useful, by adding the
DESCRIPTION column as in the following example:

INPUT/OUTPUT:

SELECT C.NAME, C.ADDRESS,
O.QUANTITY * P.PRICE TOTAL,
P.DESCRIPTION
FROM ORDERS O, PART P, CUSTOMER C
WHERE O.PARTNUM = P.PARTNUM
AND O.NAME = C.NAME
ORDER BY C.NAME

NAME ADDRESS TOTAL DESCRIPTION
========== ========== =========== ==============

AAA BIKE 10 OLDTOWN 213.50 TIRES
AAA BIKE 10 OLDTOWN 2120.00 ROAD BIKE
AAA BIKE 10 OLDTOWN 1200.00 TANDEM
BIKE SPEC CPT SHRIVE 542.50 PEDALS
BIKE SPEC CPT SHRIVE 2803.60 MOUNTAIN BIKE
BIKE SPEC CPT SHRIVE 5830.00 ROAD BIKE
BIKE SPEC CPT SHRIVE 2400.00 TANDEM
JACKS BIKE 24 EGLIN 7420.00 ROAD BIKE
LE SHOPPE HOMETOWN 2650.00 ROAD BIKE
LE SHOPPE HOMETOWN 3600.00 TANDEM
TRUE WHEEL 55O HUSKER 196.00 SEATS
TRUE WHEEL 55O HUSKER 2102.70 MOUNTAIN BIKE
TRUE WHEEL 55O HUSKER 1590.00 ROAD BIKE
TRUE WHEEL 55O HUSKER 1200.00 TANDEM

ANALYSIS:

This information is a result of joining three tables. You can now use this information to
create an invoice.

NOTE: In the example at the beginning of the day, SQL grouped TABLE1 and
TABLE2 to create a new table with X (rows in TABLE1) x Y (rows in TABLE2)
number of rows. A physical table is not created by the join, but rather in a
virtual sense. The join between the two tables produces a new set that
meets all conditions in the WHERE clause, including the join itself. The
SELECT statement has reduced the number of rows displayed, but to

evaluate the WHERE clause SQL still creates all the possible rows. The
sample tables in today's examples have only a handful of rows. Your actual
data may have thousands of rows. If you are working on a platform with
lots of horsepower, using a multiple-table join might not visibly affect
performance. However, if you are working in a slower environment, joins
could cause a significant slowdown.

We aren't telling you not to use joins, because you have seen the
advantages to be gained from a relational design. Just be aware of the
platform you are using and your customer's requirements for speed versus
reliability.

Non-Equi-Joins
Because SQL supports an equi-join, you might assume that SQL also has a non-equi-join.
You would be right! Whereas the equi-join uses an = sign in the WHERE statement, the
non-equi-join uses everything but an = sign. For example:

INPUT:

SELECT O.NAME, O.PARTNUM, P.PARTNUM,
O.QUANTITY * P.PRICE TOTAL
FROM ORDERS O, PART P
WHERE O.PARTNUM > P.PARTNUM

OUTPUT:

NAME PARTNUM PARTNUM TOTAL
========== =========== =========== ===========

TRUE WHEEL 76 54 162.75
BIKE SPEC 76 54 596.75
LE SHOPPE 76 54 271.25
AAA BIKE 76 54 217.00
JACKS BIKE 76 54 759.50
TRUE WHEEL 76 42 73.50
BIKE SPEC 54 42 245.00
BIKE SPEC 76 42 269.50
LE SHOPPE 76 42 122.50
AAA BIKE 76 42 98.00
AAA BIKE 46 42 343.00
JACKS BIKE 76 42 343.00
TRUE WHEEL 76 46 45.75
BIKE SPEC 54 46 152.50
BIKE SPEC 76 46 167.75
LE SHOPPE 76 46 76.25

AAA BIKE 76 46 61.00
JACKS BIKE 76 46 213.50
TRUE WHEEL 76 23 1051.35
TRUE WHEEL 42 23 2803.60
...

ANALYSIS:

This listing goes on to describe all the rows in the join WHERE O.PARTNUM >
P.PARTNUM. In the context of your bicycle shop, this information doesn't have much
meaning, and in the real world the equi-join is far more common than the non-equi-join.
However, you may encounter an application in which a non-equi-join produces the
perfect result.

Outer Joins versus Inner Joins
Just as the non-equi-join balances the equi-join, an outer join complements the inner
join. An inner join is where the rows of the tables are combined with each other,
producing a number of new rows equal to the product of the number of rows in each
table. Also, the inner join uses these rows to determine the result of the WHERE clause.
An outer join groups the two tables in a slightly different way. Using the PART and
ORDERS tables from the previous examples, perform the following inner join:

INPUT:

SELECT P.PARTNUM, P.DESCRIPTION,P.PRICE,
O.NAME, O.PARTNUM
FROM PART P
JOIN ORDERS O ON ORDERS.PARTNUM = 54

OUTPUT:

PARTNUM DESCRIPTION PRICE NAME PARTNUM
======= ==================== =========== ========== ===========

 54 PEDALS 54.25 BIKE SPEC 54
 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54
 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54

NOTE: The syntax you used to get this join--JOIN ON--is not ANSI standard.
The implementation you used for this example has additional syntax. You
are using it here to specify an inner and an outer join. Most implementations
of SQL have similar extensions. Notice the absence of the WHERE clause in

this type of join.

ANALYSIS:

The result is that all the rows in PART are spliced on to specific rows in ORDERS where
the column PARTNUM is 54. Here's a RIGHT OUTER JOIN statement:

INPUT/OUTPUT:

SELECT P.PARTNUM, P.DESCRIPTION,P.PRICE,
O.NAME, O.PARTNUM
FROM PART P
RIGHT OUTER JOIN ORDERS O ON ORDERS.PARTNUM = 54

PARTNUM DESCRIPTION PRICE NAME PARTNUM
======= ==================== ======= ============== =======

 <null> <null> <null> TRUE WHEEL 23
 <null> <null> <null> TRUE WHEEL 76
 <null> <null> <null> TRUE WHEEL 10
 <null> <null> <null> TRUE WHEEL 42
 54 PEDALS 54.25 BIKE SPEC 54
 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54
 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54
 <null> <null> <null> BIKE SPEC 10
 <null> <null> <null> BIKE SPEC 23
 <null> <null> <null> BIKE SPEC 76
 <null> <null> <null> LE SHOPPE 76
 <null> <null> <null> LE SHOPPE 10
 <null> <null> <null> AAA BIKE 10
 <null> <null> <null> AAA BIKE 76
 <null> <null> <null> AAA BIKE 46
 <null> <null> <null> JACKS BIKE 76

ANALYSIS:

This type of query is new. First you specified a RIGHT OUTER JOIN, which caused SQL to
return a full set of the right table, ORDERS, and to place nulls in the fields where
ORDERS.PARTNUM <> 54. Following is a LEFT OUTER JOIN statement:

INPUT/OUTPUT:

SELECT P.PARTNUM, P.DESCRIPTION,P.PRICE,
O.NAME, O.PARTNUM
FROM PART P
LEFT OUTER JOIN ORDERS O ON ORDERS.PARTNUM = 54

PARTNUM DESCRIPTION PRICE NAME PARTNUM
======= ================== =========== ========== ===========

 54 PEDALS 54.25 BIKE SPEC 54
 42 SEATS 24.50 BIKE SPEC 54
 46 TIRES 15.25 BIKE SPEC 54
 23 MOUNTAIN BIKE 350.45 BIKE SPEC 54
 76 ROAD BIKE 530.00 BIKE SPEC 54
 10 TANDEM 1200.00 BIKE SPEC 54

ANALYSIS:

You get the same six rows as the INNER JOIN. Because you specified LEFT (the LEFT
table), PART determined the number of rows you would return. Because PART is smaller
than ORDERS, SQL saw no need to pad those other fields with blanks.

Don't worry too much about inner and outer joins. Most SQL products determine the
optimum JOIN for your query. In fact, if you are placing your query into a stored
procedure (or using it inside a program (both stored procedures and Embedded SQL
covered on Day 13, "Advanced SQL Topics"), you should not specify a join type even if
your SQL implementation provides the proper syntax. If you do specify a join type, the
optimizer chooses your way instead of the optimum way.

Some implementations of SQL use the + sign instead of an OUTER JOIN statement. The +
simply means "Show me everything even if something is missing." Here's the syntax:

SYNTAX:

SQL> select e.name, e.employee_id, ep.salary,
 ep.marital_status
 from e,ployee_tbl e,
 employee_pay_tbl ep
 where e.employee_id = ep.employee_id(+)
 and e.name like '%MITH';

ANALYSIS:

This statement is joining the two tables. The + sign on the ep.employee_id column
will return all rows even if they are empty.

Joining a Table to Itself
Today's final topic is the often-used technique of joining a table to itself. The syntax of
this operation is similar to joining two tables. For example, to join table TABLE1 to
itself, type this:

INPUT:

SELECT *
FROM TABLE1, TABLE1

OUTPUT:

ROW REMARKS ROW REMARKS
========== ========== ========== ========

row 1 Table 1 row 1 Table 1
row 1 Table 1 row 2 Table 1
row 1 Table 1 row 3 Table 1
row 1 Table 1 row 4 Table 1
row 1 Table 1 row 5 Table 1
row 1 Table 1 row 6 Table 1
row 2 Table 1 row 1 Table 1
row 2 Table 1 row 2 Table 1
row 2 Table 1 row 3 Table 1
row 2 Table 1 row 4 Table 1
row 2 Table 1 row 5 Table 1
row 2 Table 1 row 6 Table 1
row 3 Table 1 row 1 Table 1
row 3 Table 1 row 2 Table 1
row 3 Table 1 row 3 Table 1
row 3 Table 1 row 4 Table 1
row 3 Table 1 row 5 Table 1
row 3 Table 1 row 6 Table 1
row 4 Table 1 row 1 Table 1
row 4 Table 1 row 2 Table 1
...

ANALYSIS:

In its complete form, this join produces the same number of combinations as joining two 6-
row tables. This type of join could be useful to check the internal consistency of data.
What would happen if someone fell asleep in the production department and entered a
new part with a PARTNUM that already existed? That would be bad news for everybody:
Invoices would be wrong; your application would probably blow up; and in general you
would be in for a very bad time. And the cause of all your problems would be the
duplicate PARTNUM in the following table:

INPUT/OUTPUT:

SELECT * FROM PART

 PARTNUM DESCRIPTION PRICE
=========== ==================== ===========

 54 PEDALS 54.25
 42 SEATS 24.50

 46 TIRES 15.25
 23 MOUNTAIN BIKE 350.45
 76 ROAD BIKE 530.00
 10 TANDEM 1200.00
 76 CLIPPLESS SHOE 65.00 <-NOTE SAME #

You saved your company from this bad situation by checking PART before anyone used it:

INPUT/OUTPUT:

SELECT F.PARTNUM, F.DESCRIPTION,
S.PARTNUM,S.DESCRIPTION
FROM PART F, PART S
WHERE F.PARTNUM = S.PARTNUM
AND F.DESCRIPTION <> S.DESCRIPTION

 PARTNUM DESCRIPTION PARTNUM DESCRIPTION
========== ======================== ======= ============

 76 ROAD BIKE 76 CLIPPLESS SHOE
 76 CLIPPLESS SHOE 76 ROAD BIKE

ANALYSIS:

Now you are a hero until someone asks why the table has only two entries. You,
remembering what you have learned about JOINs, retain your hero status by explaining
how the join produced two rows that satisfied the condition WHERE F.PARTNUM =
S.PARTNUM AND F.DESCRIPTION <> S.DESCRIPTION. Of course, at some point, the
row of data containing the duplicate PARTNUM would have to be corrected.

Summary
Today you learned that a join combines all possible combinations of rows present in the
selected tables. These new rows are then available for selection based on the
information that you want.

Congratulations--you have learned almost everything there is to know about the
SELECT clause. The one remaining item, subqueries, is covered tomorrow (Day 7,
"Subqueries: The Embedded SELECT Statement").

Q&A
Q Why cover outer, inner, left, and right joins when I probably won't ever
use them?

A A little knowledge is a dangerous thing, and no knowledge can be expensive.

You now know enough to understand the basics of what your SQL engine might
try while optimizing you queries.

Q How many tables can you join on?

A That depends on the implementation. Some implementations have a 25-table
limit, whereas others have no limit. Just remember, the more tables you join on,
the slower the response time will be. To be safe, check your implementation to
find out the maximum number of tables allowed in a query.

Q Would it be fair to say that when tables are joined, they actually become
one table?

A Very simply put, that is just about what happens. When you join the tables, you
can select from any of the columns in either table.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. How many rows would a two-table join produce if one table had 50,000 rows and
the other had 100,000?

2. What type of join appears in the following SELECT statement?

 select e.name, e.employee_id, ep.salary
 from employee_tbl e,
 employee_pay_tbl ep
 where e.employee_id = ep.employee_id;

3. Will the following SELECT statements work?

a. select name, employee_id, salary
from employee_tbl e,
employee_pay_tbl ep
where employee_id = employee_id
and name like '%MITH';

b. select e.name, e.employee_id, ep.salary

from employee_tbl e,
employee_pay_tbl ep
where name like '%MITH';

c. select e.name, e.employee_id, ep.salary
from employee_tbl e,
employee_pay_tbl ep
where e.employee_id = ep.employee_id
and e.name like '%MITH';

4. In the WHERE clause, when joining the tables, should you do the join first or
the conditions?

5. In joining tables are you limited to one-column joins, or can you join on more
than one column?

Exercises

1. In the section on joining tables to themselves, the last example returned two
combinations. Rewrite the query so only one entry comes up for each redundant
part number.

2. Rewrite the following query to make it more readable and shorter.

INPUT:

 select orders.orderedon, orders.name, part.partnum,
 part.price, part.description from orders, part
 where orders.partnum = part.partnum and
orders.orderedon
 between '1-SEP-96' and '30-SEP-96'
 order by part.partnum;

3. From the PART table and the ORDERS table, make up a query that will return
the following:

OUTPUT:

ORDEREDON NAME PARTNUM QUANTITY
================== ================== ======= ========

2-SEP-96 TRUE WHEEL 10 1

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 7 -
Subqueries: The Embedded SELECT

Statement

Objectives
A subquery is a query whose results are passed as the argument for another query.
Subqueries enable you to bind several queries together. By the end of the day, you will
understand and be able to do the following:

● Build a subquery

● Use the keywords EXISTS, ANY, and ALL with your subqueries

● Build and use correlated subqueries

NOTE: The examples for today's lesson were created using Borland's ISQL,
the same implementation used on Day 6, "Joining Tables." Remember, this
implementation does not use the SQL> prompt or line numbers.

Building a Subquery
Simply put, a subquery lets you tie the result set of one query to another. The general
syntax is as follows:

SYNTAX:

SELECT *
FROM TABLE1
WHERE TABLE1.SOMECOLUMN =
(SELECT SOMEOTHERCOLUMN
FROM TABLE2
WHERE SOMEOTHERCOLUMN = SOMEVALUE)

Notice how the second query is nested inside the first. Here's a real-world example that
uses the PART and ORDERS tables:

INPUT:

SELECT *
FROM PART

OUTPUT:

 PARTNUM DESCRIPTION PRICE
=========== ==================== ===========

 54 PEDALS 54.25
 42 SEATS 24.50
 46 TIRES 15.25
 23 MOUNTAIN BIKE 350.45
 76 ROAD BIKE 530.00
 10 TANDEM 1200.00

INPUT/OUTPUT:

SELECT *
FROM ORDERS

 ORDEREDON NAME PARTNUM QUANTITY REMARKS
=========== ========== =========== =========== ========

15-MAY-1996 TRUE WHEEL 23 6 PAID
19-MAY-1996 TRUE WHEEL 76 3 PAID
 2-SEP-1996 TRUE WHEEL 10 1 PAID
30-JUN-1996 TRUE WHEEL 42 8 PAID
30-JUN-1996 BIKE SPEC 54 10 PAID
30-MAY-1996 BIKE SPEC 10 2 PAID
30-MAY-1996 BIKE SPEC 23 8 PAID
17-JAN-1996 BIKE SPEC 76 11 PAID
17-JAN-1996 LE SHOPPE 76 5 PAID
 1-JUN-1996 LE SHOPPE 10 3 PAID
 1-JUN-1996 AAA BIKE 10 1 PAID
 1-JUL-1996 AAA BIKE 76 4 PAID
 1-JUL-1996 AAA BIKE 46 14 PAID

11-JUL-1996 JACKS BIKE 76 14 PAID

ANALYSIS:

The tables share a common field called PARTNUM. Suppose that you didn't know (or
didn't want to know) the PARTNUM, but instead wanted to work with the description of
the part. Using a subquery, you could type this:

INPUT/OUTPUT:

SELECT *
FROM ORDERS
WHERE PARTNUM =
(SELECT PARTNUM
FROM PART
WHERE DESCRIPTION LIKE "ROAD%")

 ORDEREDON NAME PARTNUM QUANTITY REMARKS
=========== ========== =========== =========== ========

19-MAY-1996 TRUE WHEEL 76 3 PAID
17-JAN-1996 BIKE SPEC 76 11 PAID
17-JAN-1996 LE SHOPPE 76 5 PAID
 1-JUL-1996 AAA BIKE 76 4 PAID
11-JUL-1996 JACKS BIKE 76 14 PAID

ANALYSIS:

Even better, if you use the concepts you learned on Day 6, you could enhance the
PARTNUM column in the result by including the DESCRIPTION, making PARTNUM clearer
for anyone who hasn't memorized it. Try this:

INPUT/OUTPUT:

SELECT O.ORDEREDON, O.PARTNUM,
P.DESCRIPTION, O.QUANTITY, O.REMARKS
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND
O.PARTNUM =
(SELECT PARTNUM
FROM PART
WHERE DESCRIPTION LIKE "ROAD%")

 ORDEREDON PARTNUM DESCRIPTION QUANTITY REMARKS
=========== =========== ============ =========== =========

19-MAY-1996 76 ROAD BIKE 3 PAID
 1-JUL-1996 76 ROAD BIKE 4 PAID
17-JAN-1996 76 ROAD BIKE 5 PAID
17-JAN-1996 76 ROAD BIKE 11 PAID

11-JUL-1996 76 ROAD BIKE 14 PAID

ANALYSIS:

The first part of the query is very familiar:

SELECT O.ORDEREDON, O.PARTNUM,
P.DESCRIPTION, O.QUANTITY, O.REMARKS
FROM ORDERS O, PART P

Here you are using the aliases O and P for tables ORDERS and PART to select the five
columns you are interested in. In this case the aliases were not necessary because each
of the columns you asked to return is unique. However, it is easier to make a readable
query now than to have to figure it out later. The first WHERE clause you encounter

WHERE O.PARTNUM = P.PARTNUM

is standard language for the join of tables PART and ORDERS specified in the FROM
clause. If you didn't use this WHERE clause, you would have all the possible row
combinations of the two tables. The next section includes the subquery. The statement

AND
O.PARTNUM =
(SELECT PARTNUM
FROM PART
WHERE DESCRIPTION LIKE "ROAD%")

adds the qualification that O.PARTNUM must be equal to the result of your simple
subquery. The subquery is straightforward, finding all the part numbers that are LIKE
"ROAD%". The use of LIKE was somewhat lazy, saving you the keystrokes required to
type ROAD BIKE. However, it turns out you were lucky this time. What if someone in the
Parts department had added a new part called ROADKILL? The revised PART table
would look like this:

INPUT/OUTPUT:

SELECT *
FROM PART

 PARTNUM DESCRIPTION PRICE
=========== ==================== ===========

 54 PEDALS 54.25
 42 SEATS 24.50
 46 TIRES 15.25
 23 MOUNTAIN BIKE 350.45
 76 ROAD BIKE 530.00
 10 TANDEM 1200.00

 77 ROADKILL 7.99

Suppose you are blissfully unaware of this change and try your query after this new
product was added. If you enter this:

SELECT O.ORDEREDON, O.PARTNUM,
P.DESCRIPTION, O.QUANTITY, O.REMARKS
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND
O.PARTNUM =
(SELECT PARTNUM
FROM PART
WHERE DESCRIPTION LIKE "ROAD%")

the SQL engine complains

multiple rows in singleton select

and you don't get any results. The response from your SQL engine may vary, but it still
complains and returns nothing.

To find out why you get this undesirable result, assume the role of the SQL engine. You
will probably evaluate the subquery first. You would return this:

INPUT/OUTPUT:

SELECT PARTNUM
FROM PART
WHERE DESCRIPTION LIKE "ROAD%"

 PARTNUM
===========

 76
 77

You would take this result and apply it to O.PARTNUM =, which is the step that causes
the problem.

ANALYSIS:

How can PARTNUM be equal to both 76 and 77? This must be what the engine meant when
it accused you of being a simpleton. When you used the LIKE clause, you opened
yourself up for this error. When you combine the results of a relational operator with
another relational operator, such as =, <, or >, you need to make sure the result is
singular. In the case of the example we have been using, the solution would be to
rewrite the query using an = instead of the LIKE, like this:

INPUT/OUTPUT:

SELECT O.ORDEREDON, O.PARTNUM,
P.DESCRIPTION, O.QUANTITY, O.REMARKS
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND
O.PARTNUM =
(SELECT PARTNUM
FROM PART
WHERE DESCRIPTION = "ROAD BIKE")

 ORDEREDON PARTNUM DESCRIPTION QUANTITY REMARKS
=========== =========== =============== =========== ==========

19-MAY-1996 76 ROAD BIKE 3 PAID
 1-JUL-1996 76 ROAD BIKE 4 PAID
17-JAN-1996 76 ROAD BIKE 5 PAID
17-JAN-1996 76 ROAD BIKE 11 PAID
11-JUL-1996 76 ROAD BIKE 14 PAID

ANALYSIS:

This subquery returns only one unique result; therefore narrowing your = condition to
a single value. How can you be sure the subquery won't return multiple values if you
are looking for only one value?

Avoiding the use of LIKE is a start. Another approach is to ensure the uniqueness of the
search field during table design. If you are the untrusting type, you could use the
method (described yesterday) for joining a table to itself to check a given field for
uniqueness. If you design the table yourself (see Day 9, "Creating and Maintaining
Tables") or trust the person who designed the table, you could require the column you
are searching to have a unique value. You could also use a part of SQL that returns
only one answer: the aggregate function.

Using Aggregate Functions with Subqueries
The aggregate functions SUM, COUNT, MIN, MAX, and AVG all return a single value. To
find the average amount of an order, type this:

INPUT:

SELECT AVG(O.QUANTITY * P.PRICE)
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM

OUTPUT:

 AVG
===========

 2419.16

ANALYSIS:

This statement returns only one value. To find out which orders were above average,
use the preceding SELECT statement for your subquery. The complete query and result
are as follows:

INPUT/OUTPUT:

SELECT O.NAME, O.ORDEREDON,
O.QUANTITY * P.PRICE TOTAL
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND
O.QUANTITY * P.PRICE >
(SELECT AVG(O.QUANTITY * P.PRICE)
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM)

NAME ORDEREDON TOTAL
========== =========== ===========

LE SHOPPE 1-JUN-1996 3600.00
BIKE SPEC 30-MAY-1996 2803.60
LE SHOPPE 17-JAN-1996 2650.00
BIKE SPEC 17-JAN-1996 5830.00
JACKS BIKE 11-JUL-1996 7420.00

ANALYSIS:

This example contains a rather unremarkable SELECT/FROM/WHERE clause:

SELECT O.NAME, O.ORDEREDON,
O.QUANTITY * P.PRICE TOTAL
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM

These lines represent the common way of joining these two tables. This join is necessary
because the price is in PART and the quantity is in ORDERS. The WHERE ensures that you
examine only the join-formed rows that are related. You then add the subquery:

AND
O.QUANTITY * P.PRICE >
(SELECT AVG(O.QUANTITY * P.PRICE)
FROM ORDERS O, PART P

WHERE O.PARTNUM = P.PARTNUM)

The preceding condition compares the total of each order with the average you
computed in the subquery. Note that the join in the subquery is required for the same
reasons as in the main SELECT statement. This join is also constructed exactly the same
way. There are no secret handshakes in subqueries; they have exactly the same syntax as
a standalone query. In fact, most subqueries start out as standalone queries and are
incorporated as subqueries after their results are tested.

Nested Subqueries
Nesting is the act of embedding a subquery within another subquery. For example:

Select * FROM SOMETHING WHERE (SUBQUERY(SUBQUERY(SUBQUERY)));

Subqueries can be nested as deeply as your implementation of SQL allows. For example,
to send out special notices to customers who spend more than the average amount of
money, you would combine the information in the table CUSTOMER

INPUT:

SELECT *
FROM CUSTOMER

OUTPUT:

NAME ADDRESS STATE ZIP PHONE REMARKS
========== ========== ====== ========== =========== ==========

TRUE WHEEL 55O HUSKER NE 58702 555-4545 NONE
BIKE SPEC CPT SHRIVE LA 45678 555-1234 NONE
LE SHOPPE HOMETOWN KS 54678 555-1278 NONE
AAA BIKE 10 OLDTOWN NE 56784 555-3421 JOHN-MGR
JACKS BIKE 24 EGLIN FL 34567 555-2314 NONE

with a slightly modified version of the query you used to find the above-average orders:

INPUT/OUTPUT:

SELECT ALL C.NAME, C.ADDRESS, C.STATE,C.ZIP
FROM CUSTOMER C
WHERE C.NAME IN
(SELECT O.NAME
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND
O.QUANTITY * P.PRICE >

(SELECT AVG(O.QUANTITY * P.PRICE)
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM))

NAME ADDRESS STATE ZIP
========== ========== ====== ==========

BIKE SPEC CPT SHRIVE LA 45678
LE SHOPPE HOMETOWN KS 54678
JACKS BIKE 24 EGLIN FL 34567

ANALYSIS:

Here's a look at what you asked for. In the innermost set of parentheses, you find a
familiar statement:

SELECT AVG(O.QUANTITY * P.PRICE)
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM

This result feeds into a slightly modified version of the SELECT clause you used before:

SELECT O.NAME
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND
O.QUANTITY * P.PRICE >

(...)

Note the SELECT clause has been modified to return a single column, NAME, which, not
so coincidentally, is common with the table CUSTOMER. Running this statement by itself
you get:

INPUT/OUTPUT:

SELECT O.NAME
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM
AND
O.QUANTITY * P.PRICE >
(SELECT AVG(O.QUANTITY * P.PRICE)
FROM ORDERS O, PART P
WHERE O.PARTNUM = P.PARTNUM)

NAME
==========

LE SHOPPE
BIKE SPEC
LE SHOPPE

BIKE SPEC
JACKS BIKE

ANALYSIS:

We just spent some time discussing why your subqueries should return just one value.
The reason this query was able to return more than one value becomes apparent in a
moment.

You bring these results to the statement:

SELECT C.NAME, C.ADDRESS, C.STATE,C.ZIP
FROM CUSTOMER C
WHERE C.NAME IN

(...)

ANALYSIS:

The first two lines are unremarkable. The third reintroduces the keyword IN, last seen
on Day 2, "Introduction to the Query: The SELECT Statement." IN is the tool that
enables you to use the multiple-row output of your subquery. IN, as you remember,
looks for matches in the following set of values enclosed by parentheses, which in the
this case produces the following values:

LE SHOPPE
BIKE SPEC
LE SHOPPE
BIKE SPEC
JACKS BIKE

This subquery provides the conditions that give you the mailing list:

NAME ADDRESS STATE ZIP
========== ========== ====== ======

BIKE SPEC CPT SHRIVE LA 45678
LE SHOPPE HOMETOWN KS 54678
JACKS BIKE 24 EGLIN FL 34567

This use of IN is very common in subqueries. Because IN uses a set of values for its
comparison, it does not cause the SQL engine to feel conflicted and inadequate.

Subqueries can also be used with GROUP BY and HAVING clauses. Examine the following
query:

INPUT/OUTPUT:

SELECT NAME, AVG(QUANTITY)
FROM ORDERS
GROUP BY NAME
HAVING AVG(QUANTITY) >
(SELECT AVG(QUANTITY)
FROM ORDERS)

NAME AVG
========== ===========

BIKE SPEC 8
JACKS BIKE 14

ANALYSIS:

Let's examine this query in the order the SQL engine would. First, look at the subquery:

INPUT/OUTPUT:

SELECT AVG(QUANTITY)
FROM ORDERS

 AVG
===========

 6

By itself, the query is as follows:

INPUT/OUTPUT:

SELECT NAME, AVG(QUANTITY)
FROM ORDERS
GROUP BY NAME

NAME AVG
========== ===========

AAA BIKE 6
BIKE SPEC 8
JACKS BIKE 14
LE SHOPPE 4
TRUE WHEEL 5

When combined through the HAVING clause, the subquery produces two rows that have
above-average QUANTITY.

INPUT/OUTPUT:

HAVING AVG(QUANTITY) >

(SELECT AVG(QUANTITY)
FROM ORDERS)

NAME AVG
========== ===========

BIKE SPEC 8
JACKS BIKE 14

Correlated Subqueries
The subqueries you have written so far are self-contained. None of them have used a
reference from outside the subquery. Correlated subqueries enable you to use an outside
reference with some strange and wonderful results. Look at the following query:

INPUT:

SELECT *
FROM ORDERS O
WHERE 'ROAD BIKE' =
(SELECT DESCRIPTION
FROM PART P
WHERE P.PARTNUM = O.PARTNUM)

OUTPUT:

 ORDEREDON NAME PARTNUM QUANTITY REMARKS
=========== ========== =========== =========== ==========

19-MAY-1996 TRUE WHEEL 76 3 PAID
17-JAN-1996 BIKE SPEC 76 11 PAID
17-JAN-1996 LE SHOPPE 76 5 PAID
 1-JUL-1996 AAA BIKE 76 4 PAID

11-JUL-1996 JACKS BIKE 76 14 PAID

This query actually resembles the following JOIN:

INPUT:

SELECT O.ORDEREDON, O.NAME,
O.PARTNUM, O.QUANTITY, O.REMARKS
FROM ORDERS O, PART P
WHERE P.PARTNUM = O.PARTNUM
AND P.DESCRIPTION = 'ROAD BIKE'

OUTPUT:

 ORDEREDON NAME PARTNUM QUANTITY REMARKS

=========== ========== =========== =========== =======

19-MAY-1996 TRUE WHEEL 76 3 PAID
 1-JUL-1996 AAA BIKE 76 4 PAID
17-JAN-1996 LE SHOPPE 76 5 PAID
17-JAN-1996 BIKE SPEC 76 11 PAID
11-JUL-1996 JACKS BIKE 76 14 PAID

ANALYSIS:

In fact, except for the order, the results are identical. The correlated subquery acts
very much like a join. The correlation is established by using an element from the query
in the subquery. In this example the correlation was established by the statement

WHERE P.PARTNUM = O.PARTNUM

in which you compare P.PARTNUM, from the table inside your subquery, to O.PARTNUM,
from the table outside your query. Because O.PARTNUM can have a different value for
every row, the correlated subquery is executed for each row in the query. In the next
example each row in the table ORDERS

INPUT/OUTPUT:

SELECT *
FROM ORDERS

 ORDEREDON NAME PARTNUM QUANTITY REMARKS
=========== ========== =========== =========== =======

15-MAY-1996 TRUE WHEEL 23 6 PAID
19-MAY-1996 TRUE WHEEL 76 3 PAID
 2-SEP-1996 TRUE WHEEL 10 1 PAID
30-JUN-1996 TRUE WHEEL 42 8 PAID
30-JUN-1996 BIKE SPEC 54 10 PAID
30-MAY-1996 BIKE SPEC 10 2 PAID
30-MAY-1996 BIKE SPEC 23 8 PAID
17-JAN-1996 BIKE SPEC 76 11 PAID
17-JAN-1996 LE SHOPPE 76 5 PAID
 1-JUN-1996 LE SHOPPE 10 3 PAID
 1-JUN-1996 AAA BIKE 10 1 PAID
 1-JUL-1996 AAA BIKE 76 4 PAID
 1-JUL-1996 AAA BIKE 46 14 PAID
11-JUL-1996 JACKS BIKE 76 14 PAID

is processed against the subquery criteria:

SELECT DESCRIPTION
FROM PART P
WHERE P.PARTNUM = O.PARTNUM

ANALYSIS:

This operation returns the DESCRIPTION of every row in PART where P.PARTNUM =
O.PARTNUM. These descriptions are then compared in the WHERE clause:

WHERE 'ROAD BIKE' =

Because each row is examined, the subquery in a correlated subquery can have more
than one value. However, don't try to return multiple columns or columns that don't
make sense in the context of the WHERE clause. The values returned still must match up
against the operation specified in the WHERE clause. For example, in the query you just
did, returning the PRICE to compare with ROAD BIKE would have the following result:

INPUT/OUTPUT:

SELECT *
FROM ORDERS O
WHERE 'ROAD BIKE' =
(SELECT PRICE
FROM PART P
WHERE P.PARTNUM = O.PARTNUM)

conversion error from string "ROAD BIKE"

Here's another example of something not to do:

SELECT *
FROM ORDERS O
WHERE 'ROAD BIKE' =
(SELECT *
FROM PART P
WHERE P.PARTNUM = O.PARTNUM)

ANALYSIS:

This SELECT caused a General Protection Fault on my Windows operating system. The
SQL engine simply can't correlate all the columns in PART with the operator =.

Correlated subqueries can also be used with the GROUP BY and HAVING clauses. The
following query uses a correlated subquery to find the average total order for a
particular part and then applies that average value to filter the total order grouped
by PARTNUM:

INPUT/OUTPUT:

SELECT O.PARTNUM, SUM(O.QUANTITY*P.PRICE), COUNT(PARTNUM)
FROM ORDERS O, PART P

WHERE P.PARTNUM = O.PARTNUM
GROUP BY O.PARTNUM
HAVING SUM(O.QUANTITY*P.PRICE) >
(SELECT AVG(O1.QUANTITY*P1.PRICE)
FROM PART P1, ORDERS O1
WHERE P1.PARTNUM = O1.PARTNUM
AND P1.PARTNUM = O.PARTNUM)

 PARTNUM SUM COUNT
=========== =========== ===========

 10 8400.00 4
 23 4906.30 2
 76 19610.00 5

ANALYSIS:

The subquery does not just compute one

AVG(O1.QUANTITY*P1.PRICE)

Because of the correlation between the query and the subquery,

AND P1.PARTNUM = O.PARTNUM

this average is computed for every group of parts and then compared:

HAVING SUM(O.QUANTITY*P.PRICE) >

TIP: When using correlated subqueries with GROUP BY and HAVING, the
columns in the HAVING clause must exist in either the SELECT clause or the
GROUP BY clause. Otherwise, you get an error message along the lines of
invalid column reference because the subquery is evoked for each
group, not each row. You cannot make a valid comparison to something that
is not used in forming the group.

Using EXISTS, ANY, and ALL
The usage of the keywords EXISTS, ANY, and ALL is not intuitively obvious to the
casual observer. EXISTS takes a subquery as an argument and returns TRUE if the
subquery returns anything and FALSE if the result set is empty. For example:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON

FROM ORDERS
WHERE EXISTS
(SELECT *
FROM ORDERS
WHERE NAME ='TRUE WHEEL')

NAME ORDEREDON
========== ===========

TRUE WHEEL 15-MAY-1996
TRUE WHEEL 19-MAY-1996
TRUE WHEEL 2-SEP-1996
TRUE WHEEL 30-JUN-1996
BIKE SPEC 30-JUN-1996
BIKE SPEC 30-MAY-1996
BIKE SPEC 30-MAY-1996
BIKE SPEC 17-JAN-1996
LE SHOPPE 17-JAN-1996
LE SHOPPE 1-JUN-1996
AAA BIKE 1-JUN-1996
AAA BIKE 1-JUL-1996
AAA BIKE 1-JUL-1996
JACKS BIKE 11-JUL-1996

ANALYSIS:

Not what you might expect. The subquery inside EXISTS is evaluated only once in this
uncorrelated example. Because the return from the subquery has at least one row,
EXISTS evaluates to TRUE and all the rows in the query are printed. If you change the
subquery as shown next, you don't get back any results.

SELECT NAME, ORDEREDON
FROM ORDERS
WHERE EXISTS
(SELECT *
FROM ORDERS
WHERE NAME ='MOSTLY HARMLESS')

ANALYSIS:

EXISTS evaluates to FALSE. The subquery does not generate a result set because
MOSTLY HARMLESS is not one of your names.

NOTE: Notice the use of SELECT * in the subquery inside the EXISTS.
EXISTS does not care how many columns are returned.

You could use EXISTS in this way to check on the existence of certain rows and
control the output of your query based on whether they exist.

If you use EXISTS in a correlated subquery, it is evaluated for every case implied by the
correlation you set up. For example:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS O
WHERE EXISTS
(SELECT *
FROM CUSTOMER C
WHERE STATE ='NE'
AND C.NAME = O.NAME)

NAME ORDEREDON
========== ===========

TRUE WHEEL 15-MAY-1996
TRUE WHEEL 19-MAY-1996
TRUE WHEEL 2-SEP-1996
TRUE WHEEL 30-JUN-1996
AAA BIKE 1-JUN-1996
AAA BIKE 1-JUL-1996
AAA BIKE 1-JUL-1996

This slight modification of your first, uncorrelated query returns all the bike shops
from Nebraska that made orders. The following subquery is run for every row in the
query correlated on the CUSTOMER name and ORDERS name:

(SELECT *
FROM CUSTOMER C
WHERE STATE ='NE'
AND C.NAME = O.NAME)

ANALYSIS:

EXISTS is TRUE for those rows that have corresponding names in CUSTOMER located in
NE. Otherwise, it returns FALSE.

Closely related to EXISTS are the keywords ANY, ALL, and SOME. ANY and SOME are
identical in function. An optimist would say this feature provides the user with a choice.
A pessimist would see this condition as one more complication. Look at this query:

INPUT:

SELECT NAME, ORDEREDON
FROM ORDERS
WHERE NAME = ANY
(SELECT NAME

FROM ORDERS
WHERE NAME ='TRUE WHEEL')

OUTPUT:

NAME ORDEREDON
========== ===========

TRUE WHEEL 15-MAY-1996
TRUE WHEEL 19-MAY-1996
TRUE WHEEL 2-SEP-1996
TRUE WHEEL 30-JUN-1996

ANALYSIS:

ANY compared the output of the following subquery to each row in the query,
returning TRUE for each row of the query that has a result from the subquery.

(SELECT NAME
FROM ORDERS
WHERE NAME ='TRUE WHEEL')

Replacing ANY with SOME produces an identical result:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS
WHERE NAME = SOME
(SELECT NAME
FROM ORDERS
WHERE NAME ='TRUE WHEEL')

NAME ORDEREDON
========== ===========

TRUE WHEEL 15-MAY-1996
TRUE WHEEL 19-MAY-1996
TRUE WHEEL 2-SEP-1996
TRUE WHEEL 30-JUN-1996

ANALYSIS:

You may have already noticed the similarity to IN. The same query using IN is as
follows:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS

WHERE NAME IN
(SELECT NAME
FROM ORDERS
WHERE NAME ='TRUE WHEEL')

NAME ORDEREDON
========== ===========

TRUE WHEEL 15-MAY-1996
TRUE WHEEL 19-MAY-1996
TRUE WHEEL 2-SEP-1996
TRUE WHEEL 30-JUN-1996

ANALYSIS:

As you can see, IN returns the same result as ANY and SOME. Has the world gone mad?
Not yet. Can IN do this?

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS
WHERE NAME > ANY
(SELECT NAME
FROM ORDERS
WHERE NAME ='JACKS BIKE')

NAME ORDEREDON
========== ===========

TRUE WHEEL 15-MAY-1996
TRUE WHEEL 19-MAY-1996
TRUE WHEEL 2-SEP-1996
TRUE WHEEL 30-JUN-1996
LE SHOPPE 17-JAN-1996
LE SHOPPE 1-JUN-1996

The answer is no. IN works like multiple equals. ANY and SOME can be used with other
relational operators such as greater than or less than. Add this tool to your kit.

ALL returns TRUE only if all the results of a subquery meet the condition. Oddly
enough, ALL is used most commonly as a double negative, as in this query:

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS
WHERE NAME <> ALL
(SELECT NAME
FROM ORDERS
WHERE NAME ='JACKS BIKE')

NAME ORDEREDON
========== ===========

TRUE WHEEL 15-MAY-1996
TRUE WHEEL 19-MAY-1996
TRUE WHEEL 2-SEP-1996
TRUE WHEEL 30-JUN-1996
BIKE SPEC 30-JUN-1996
BIKE SPEC 30-MAY-1996
BIKE SPEC 30-MAY-1996
BIKE SPEC 17-JAN-1996
LE SHOPPE 17-JAN-1996
LE SHOPPE 1-JUN-1996
AAA BIKE 1-JUN-1996
AAA BIKE 1-JUL-1996
AAA BIKE 1-JUL-1996

ANALYSIS:

This statement returns everybody except JACKS BIKE. <>ALL evaluates to TRUE only if
the result set does not contain what is on the left of the <>.

Summary
Today you performed dozens of exercises involving subqueries. You learned how to use
one of the most important parts of SQL. You also tackled one of the most difficult parts
of SQL: a correlated subquery. The correlated subquery creates a relationship between
the query and the subquery that is evaluated for every instance of that relationship.
Don't be intimidated by the length of the queries. You can easily examine them one
subquery at a time.

Q&A
Q In some cases SQL offers several ways to get the same result. Isn't this
flexibility confusing?

A No, not really. Having so many ways to achieve the same result enables you to
create some really neat statements. Flexibility is the virtue of SQL.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the

answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. In the section on nested subqueries, the sample subquery returned several
values:

LE SHOPPE
BIKE SPEC
LE SHOPPE
BIKE SPEC
JACKS BIKE

Some of these are duplicates. Why aren't these duplicates in the final result set?

2. Are the following statements true or false?
The aggregate functions SUM, COUNT, MIN, MAX, and AVG all return multiple
values.
The maximum number of subqueries that can be nested is two.
Correlated subqueries are completely self-contained.

3. Will the following subqueries work using the ORDERS table and the PART
table?

INPUT/OUTPUT:

 SQL> SELECT *
 FROM PART;

 PARTNUM DESCRIPTION PRICE
 54 PEDALS 54.25
 42 SEATS 24.50
 46 TIRES 15.25
 23 MOUNTAIN BIKE 350.45
 76 ROAD BIKE 530.00
 10 TANDEM 1200.00

 6 rows selected.

INPUT/OUTPUT:

 SQL> SELECT *
 FROM ORDERS;

 ORDEREDON NAME PARTNUM QUANITY REMARKS
 15-MAY-96 TRUE WHEEL 23 6 PAID
 19-MAY-96 TRUE WHEEL 76 3 PAID
 2-SEP-96 TRUE WHEEL 10 1 PAID

 30-JUN-96 BIKE SPEC 54 10 PAID
 30-MAY-96 BIKE SPEC 10 2 PAID
 30-MAY-96 BIKE SPEC 23 8 PAID
 17-JAN-96 BIKE SPEC 76 11 PAID
 17-JAN-96 LE SHOPPE 76 5 PAID
 1-JUN-96 LE SHOPPE 10 3 PAID
 1-JUN-96 AAA BIKE 10 1 PAID
 1-JUN-96 AAA BIKE 76 4 PAID
 1-JUN-96 AAA BIKE 46 14 PAID
 11-JUL-96 JACKS BIKE 76 14 PAID
 13 rows selected.

a. SQL> SELECT * FROM ORDERS
WHERE PARTNUM =
SELECT PARTNUM FROM PART
WHERE DESCRIPTION = 'TRUE WHEEL';

b. SQL> SELECT PARTNUM

FROM ORDERS
WHERE PARTNUM =
(SELECT * FROM PART
WHERE DESCRIPTION = 'LE SHOPPE');

c. SQL> SELECT NAME, PARTNUM

FROM ORDERS
WHERE EXISTS
(SELECT * FROM ORDERS
WHERE NAME = 'TRUE WHEEL');

Exercise

Write a query using the table ORDERS to return all the NAMEs and ORDEREDON
dates for every store that comes after JACKS BIKE in the alphabet.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

Week 1 In Review
After setting the stage with a quick survey of database history and theory, Week 1
moved right into the heart of SQL with the SELECT statement. The following summary
of the SELECT statement syntax includes cross-references to the days on which the
particular aspect was covered:

● SELECT [DISTINCT | ALL] (Day 2)--Columns (Day 1), Functions (Day 4)

● FROM (Day 2)--Tables or Views (Day 1), Aggregate Functions (Day 4)

● WHERE (Day 5)--Condition (Day 3), Join (Day 6), Subquery (Day 7)

● GROUP BY (Day 5)--Columns (Day 3)

● HAVING (Day 5)--Aggregate Function (Day 4)

● UNION | INTERSECT (Day 3)--(Placed between two SELECT statements)

● ORDER BY (Day 5)--Columns (Day 1)

If you build a million queries in your programming career, more than 80 percent of them
will begin with SELECT. The other 20 percent will fall into the categories covered in
Week 2.

Preview
The new skills you learn in Week 2 cover database administration. During Week 2 you

will learn how to

● Create and destroy tables

● Assign permissions to your friends and prevent your enemies from even looking at
your data

● Update and delete data in tables

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

Week 2 At A Glance

What's Covered This Week
Week 1 covered the basic SQL query using the SELECT statement. Beginning with the
simplest SELECT statement, you learned how to retrieve data from the database. Then
you moved on to the SQL functions, which are useful in converting to money or date
formats, for example. You quickly learned that you can retrieve data from a database
in many ways. Clauses such as WHERE, ORDER BY, and GROUP BY enable you to tailor a
query to return a specific set of records. You can use a join to return a set of data from
a group of tables. Subqueries are especially useful when you need to execute several
queries, each of which depends on data returned from an earlier query.

Week 2 moves on to the more advanced uses of SQL:

● Day 8 shows you how to modify data within a database. You may have been
dreading the idea of typing in all your data, but manually entering data is not
always necessary. Modern database systems often supply useful tools for
importing and exporting data from various database formats. In addition, SQL
provides several useful statements for manipulating data within a database.

● Day 9 teaches you how to create and maintain tables within a database. You also
learn how to create a database and manage that database's disk space.

● Day 10 explains how to create, maintain, and use views and indexes within a
database.

● Day 11 covers transaction control. Transactions commit and roll back changes to
a database, and the use of transactions is essential in online transaction

processing (OLTP) applications.

● Day 12 focuses on database security. A knowledge of your database's security
capabilities is essential to manage a database effectively.

● Day 13 describes how to use SQL within larger application programs. Embedded
SQL is often used to execute SQL within a host language such as C or COBOL. In
addition, the open database connectivity (ODBC) standard enables application
programmers to write code that can use database drivers to connect with many
database management systems. Day 13 also covers various advanced SQL topics.

● Day 14 discusses dynamic uses of SQL and provides numerous examples that
illustrate how SQL is used in applications.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 8 -
Manipulating Data

Objectives
Today we discuss data manipulation. By the end of the day, you should understand:

● How to manipulate data using the INSERT, UPDATE, and DELETE commands

● The importance of using the WHERE clause when you are manipulating data

● The basics of importing and exporting data from foreign data sources

Introduction to Data Manipulation Statements
Up to this point you have learned how to retrieve data from a database using every
selection criterion imaginable. After this data is retrieved, you can use it in an
application program or edit it. Week 1 focused on retrieving data. However, you may
have wondered how to enter data into the database in the first place. You may also be
wondering what to do with data that has been edited. Today we discuss three SQL
statements that enable you to manipulate the data within a database's table. The three
statements are as follows:

● The INSERT statement

● The UPDATE statement

● The DELETE statement

You may have used a PC-based product such as Access, dBASE IV, or FoxPro to enter your
data in the past. These products come packaged with excellent tools to enter, edit, and
delete records from databases. One reason that SQL provides data manipulation
statements is that it is primarily used within application programs that enable the user
to edit the data using the application's own tools. The SQL programmer needs to be able
to return the data to the database using SQL. In addition, most large-scale database
systems are not designed with the database designer or programmer in mind. Because
these systems are designed to be used in high-volume, multiuser environments, the
primary design emphasis is placed on the query optimizer and data retrieval engines.

Most commercial relational database systems also provide tools for importing and
exporting data. This data is traditionally stored in a delimited text file format. Often a
format file is stored that contains information about the table being imported. Tools
such as Oracle's SQL*Loader, SQL Server's bcp (bulk copy), and Microsoft Access
Import/Export are covered at the end of the day.

NOTE: Today's examples were generated with Personal Oracle7. Please
note the minor differences in the appearance of commands and the way data
is displayed in the various implementations.

The INSERT Statement
The INSERT statement enables you to enter data into the database. It can be broken
down into two statements:

INSERT...VALUES

and

INSERT...SELECT

The INSERT...VALUES Statement

The INSERT...VALUES statement enters data into a table one record at a time. It is
useful for small operations that deal with just a few records. The syntax of this
statement is as follows:

SYNTAX:

INSERT INTO table_name

(col1, col2...)
VALUES(value1, value2...)

The basic format of the INSERT...VALUES statement adds a record to a table using the
columns you give it and the corresponding values you instruct it to add. You must
follow three rules when inserting data into a table with the INSERT...VALUES
statement:

● The values used must be the same data type as the fields they are being added to.

● The data's size must be within the column's size. For instance, you cannot add an
80-character string to a 40-character column.

● The data's location in the VALUES list must correspond to the location in the
column list of the column it is being added to. (That is, the first value must be
entered into the first column, the second value into the second column, and so
on.)

Example 8.1

Assume you have a COLLECTION table that lists all the important stuff you have
collected. You can display the table's contents by writing

INPUT:

SQL> SELECT * FROM COLLECTION;

which would yield this:

OUTPUT:

ITEM WORTH REMARKS
-------------------- --------- ----------------------------
NBA ALL STAR CARDS 300 SOME STILL IN BIKE SPOKES
MALIBU BARBIE 150 TAN NEEDS WORK
STAR WARS GLASS 5.5 HANDLE CHIPPED
LOCK OF SPOUSES HAIR 1 HASN'T NOTICED BALD SPOT YET

If you wanted to add a new record to this table, you would write

INPUTOUTPUT:

SQL> INSERT INTO COLLECTION
 2 (ITEM, WORTH, REMARKS)
 3 VALUES('SUPERMANS CAPE', 250.00, 'TUGGED ON IT');

1 row created.

You can execute a simple SELECT statement to verify the insertion:

INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTION;

ITEM WORTH REMARKS
-------------------- --------- ----------------------------
NBA ALL STAR CARDS 300 SOME STILL IN BIKE SPOKES
MALIBU BARBIE 150 TAN NEEDS WORK
STAR WARS GLASS 5.5 HANDLE CHIPPED
LOCK OF SPOUSES HAIR 1 HASN'T NOTICED BALD SPOT YET
SUPERMANS CAPE 250 TUGGED ON IT

ANALYSIS:

The INSERT statement does not require column names. If the column names are not
entered, SQL lines up the values with their corresponding column numbers. In other
words, SQL inserts the first value into the first column, the second value into the
second column, and so on.

Example 8.2

The following statement inserts the values from Example 8.1 into the table:

INPUT:

SQL> INSERT INTO COLLECTION VALUES
 2 ('STRING',1000.00,'SOME DAY IT WILL BE VALUABLE');

 1 row created.

ANALYSIS:

By issuing the same SELECT statement as you did in Example 8.1, you can verify that the
insertion worked as expected:

INPUT:

SQL> SELECT * FROM COLLECTION;

OUTPUT:

ITEM WORTH REMARKS
-------------------- --------- ----------------------------
NBA ALL STAR CARDS 300 SOME STILL IN BIKE SPOKES

MALIBU BARBIE 150 TAN NEEDS WORK
STAR WARS GLASS 5.5 HANDLE CHIPPED
LOCK OF SPOUSES HAIR 1 HASN'T NOTICED BALD SPOT YET
SUPERMANS CAPE 250 TUGGED ON IT
STRING 1000 SOME DAY IT WILL BE VALUABLE

6 rows selected.

Inserting NULL Values

On Day 9, "Creating and Maintaining Tables," you learn how to create tables using the
SQL CREATE TABLE statement. For now, all you need to know is that when a column is
created, it can have several different limitations placed upon it. One of these
limitations is that the column should (or should not) be allowed to contain NULL
values. A NULL value means that the value is empty. It is neither a zero, in the case of
an integer, nor a space, in the case of a string. Instead, no data at all exists for that
record's column. If a column is defined as NOT NULL (that column is not allowed to
contain a NULL value), you must insert a value for that column when using the INSERT
statement. The INSERT is canceled if this rule is broken, and you should receive a
descriptive error message concerning your error.

WARNING: You could insert spaces for a null column, but these spaces will
be treated as a value. NULL simply means nothing is there.

INPUT:

SQL> insert into collection values
 2 ('SPORES MILDEW FUNGUS', 50.00, ' ');

OUTPUT:

 1 row inserted.

ANALYSIS:

Using '' instead of NULL inserted a space in the collection table. You then can select
the space.

INPUT/OUTPUT:

SQL> select * from collection
 2 where remarks = ' ';

ITEM WORTH REMARKS
--------------------------- -------- ---------

SPORES MILDEW FUNGUS 50.00

1 row selected.

ANALYSIS:

The resulting answer comes back as if a NULL is there. With the output of character
fields, it is impossible to tell the difference between a null value and a mere space.

Assume the column REMARKS in the preceding table has been defined as NOT NULL.
Typing

INPUT/OUTPUT:

SQL> INSERT INTO COLLECTION
 2 VALUES('SPORES MILDEW FUNGUS',50.00,NULL);

produces the following error:

INSERT INTO COLLECTION
 *
ERROR at line 1:
ORA-01400: mandatory (NOT NULL) column is missing or NULL during
insert

NOTE: Notice the syntax. Number data types do not require quotes; NULL
does not require quotes; character data types do require quotes.

Inserting Unique Values

Many database management systems also allow you to create a UNIQUE column
attribute. This attribute means that within the current table, the values within this
column must be completely unique and cannot appear more than once. This limitation
can cause problems when inserting or updating values into an existing table, as the
following exchange demonstrates:

INPUT:

SQL> INSERT INTO COLLECTION VALUES('STRING', 50, 'MORE STRING');

OUTPUT:

INSERT INTO COLLECTION VALUES('STRING', 50, 'MORE STRING')
 *
ERROR at line 1:

ORA-00001: unique constraint (PERKINS.UNQ_COLLECTION_ITEM) violated

ANALYSIS:

In this example you tried to insert another ITEM called STRING into the COLLECTION
table. Because this table was created with ITEM as a unique value, it returned the
appropriate error. ANSI SQL does not offer a solution to this problem, but several
commercial implementations include extensions that would allow you to use something
like the following:

IF NOT EXISTS (SELECT * FROM COLLECTION WHERE NAME = 'STRING'

INSERT INTO COLLECTION VALUES('STRING', 50, 'MORE STRING')

This particular example is supported in the Sybase system.

A properly normalized table should have a unique, or key, field. This field is useful for
joining data between tables, and it often improves the speed of your queries when using
indexes. (See Day 10, "Creating Views and Indexes.")

NOTE: Here's an INSERT statement that inserts a new employee into a
table:

SQL> insert into employee_tbl values
 ('300500177', 'SMITHH', 'JOHN');

1 row inserted.

After hitting Enter, you noticed that you misspelled SMITH. Not to fret!
All you have to do is issue the ROLLBACK command, and the row will not be
inserted. See Day 11, "Controlling Transactions," for more on the ROLLBACK
command.

The INSERT...SELECT Statement

The INSERT...VALUES statement is useful when adding single records to a database
table, but it obviously has limitations. Would you like to use it to add 25,000 records to
a table? In situations like this, the INSERT...SELECT statement is much more
beneficial. It enables the programmer to copy information from a table or group of
tables into another table. You will want to use this statement in several situations.
Lookup tables are often created for performance gains. Lookup tables can contain data
that is spread out across multiple tables in multiple databases. Because multiple-table
joins are slower to process than simple queries, it is much quicker to execute a SELECT

query against a lookup table than to execute a long, complicated joined query. Lookup
tables are often stored on the client machines in client/server environments to reduce
network traffic.

Many database systems also support temporary tables. (See Day 14, "Dynamic Uses of
SQL.") Temporary tables exist for the life of your database connection and are deleted
when your connection is terminated. The INSERT...SELECT statement can take the
output of a SELECT statement and insert these values into a temporary table.

Here is an example:

INPUT:

SQL> insert into tmp_tbl
 2 select * from table;

OUTPUT:

19,999 rows inserted.

ANALYSIS:

You are selecting all the rows that are in table and inserting them into tmp_tbl.

NOTE: Not all database management systems support temporary tables.
Check the documentation for the specific system you are using to determine
if this feature is supported. Also, see Day 14 for a more detailed treatment
of this topic.

The syntax of the INSERT...SELECT statement is as follows:

SYNTAX:

INSERT INTO table_name
(col1, col2...)
SELECT col1, col2...
FROM tablename
WHERE search_condition

Essentially, the output of a standard SELECT query is then input into a database table.
The same rules that applied to the INSERT...VALUES statement apply to the
INSERT...SELECT statement. To copy the contents of the COLLECTION table into a
new table called INVENTORY, execute the set of statements in Example 8.3.

Example 8.3

This example creates the new table INVENTORY.

INPUT:

SQL> CREATE TABLE INVENTORY
 2 (ITEM CHAR(20),
 3 COST NUMBER,
 4 ROOM CHAR(20),
 5 REMARKS CHAR(40));

OUTPUT:

Table created.

The following INSERT fills the new INVENTORY table with data from COLLECTION.

INPUT/OUTPUT:

SQL> INSERT INTO INVENTORY (ITEM, COST, REMARKS)
 2 SELECT ITEM, WORTH, REMARKS
 3 FROM COLLECTION;

6 rows created.

You can verify that the INSERT works with this SELECT statement:

INPUT/OUTPUT:

SQL> SELECT * FROM INVENTORY;

ITEM COST ROOM REMARKS
-------------------- --------- -------- ----------------------------
NBA ALL STAR CARDS 300 SOME STILL IN BIKE SPOKES
MALIBU BARBIE 150 TAN NEEDS WORK
STAR WARS GLASS 5.5 HANDLE CHIPPED
LOCK OF SPOUSES HAIR 1 HASN'T NOTICED BALD SPOT YET
SUPERMANS CAPE 250 TUGGED ON IT
STRING 1000 SOME DAY IT WILL BE VALUABLE

6 rows selected.

NOTE: The data appears to be in the table; however, the transaction is not
finalized until a COMMIT is issued. The transaction can be committed either
by issuing the COMMIT command or by simply exiting. See Day 11 for more on
the COMMIT command.

ANALYSIS:

You have successfully, and somewhat painlessly, moved the data from the COLLECTION
table to the new INVENTORY table!

The INSERT...SELECT statement requires you to follow several new rules:

● The SELECT statement cannot select rows from the table that is being inserted
into.

● The number of columns in the INSERT INTO statement must equal the number of
columns returned from the SELECT statement.

● The data types of the columns in the INSERT INTO statement must be the same as
the data types of the columns returned from the SELECT statement.

Another use of the INSERT...SELECT statement is to back up a table that you are
going to drop, truncate for repopulation, or rebuild. The process requires you to create
a temporary table and insert data that is contained in your original table into the
temporary table by selecting everything from the original table. For example:

 SQL> insert into copy_table
 2 select * from original_table;

Now you can make changes to the original table with a clear conscience.

NOTE: Later today you learn how to input data into a table using data
from another database format. Nearly all businesses use a variety of
database formats to store data for their organizations. The applications
programmer is often expected to convert these formats, and you will learn
some common methods for doing just that.

The UPDATE Statement
The purpose of the UPDATE statement is to change the values of existing records. The
syntax is

SYNTAX:

UPDATE table_name
SET columnname1 = value1

[, columname2 = value2]...
WHERE search_condition

This statement checks the WHERE clause first. For all records in the given table in
which the WHERE clause evaluates to TRUE, the corresponding value is updated.

Example 8.4

This example illustrates the use of the UPDATE statement:

INPUT:

SQL> UPDATE COLLECTION
 2 SET WORTH = 900
 3 WHERE ITEM = 'STRING';

OUTPUT:

1 row updated.

To confirm the change, the query

INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTION
 2 WHERE ITEM = 'STRING';

yields

ITEM WORTH REMARKS
-------------------- --------- ------------------------------

STRING 900 SOME DAY IT WILL BE VALUABLE

Here is a multiple-column update:

INPUT/OUTPUT:

SQL> update collection
 2 set worth = 900, item = ball
 3 where item = 'STRING';

1 row updated.

NOTE: Your implementation might use a different syntax for multiple-row
updates.

NOTE: Notice in the set that 900 does not have quotes, because it is a
numeric data type. On the other hand, String is a character data type,
which requires the quotes.

Example 8.5

If the WHERE clause is omitted, every record in the COLLECTION table is updated with
the value given.

INPUT/OUTPUT:

SQL> UPDATE COLLECTION
 2 SET WORTH = 555;

6 rows updated.

Performing a SELECT query shows that every record in the database was updated with
that value:

INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTION;

ITEM WORTH REMARKS
-------------------- --------- ------------------------------
NBA ALL STAR CARDS 555 SOME STILL IN BIKE SPOKES
MALIBU BARBIE 555 TAN NEEDS WORK
STAR WARS GLASS 555 HANDLE CHIPPED
LOCK OF SPOUSES HAIR 555 HASN'T NOTICED BALD SPOT YET
SUPERMANS CAPE 555 TUGGED ON IT
STRING 555 SOME DAY IT WILL BE VALUABLE

6 rows selected.

You, of course, should check whether the column you are updating allows unique
values only.

WARNING: If you omit the WHERE clause from the UPDATE statement, all
records in the given table are updated.

Some database systems provide an extension to the standard UPDATE syntax. SQL
Server's Transact-SQL language, for instance, enables programmers to update the

contents of a table based on the contents of several other tables by using a FROM
clause. The extended syntax looks like this:

SYNTAX:

UPDATE table_name
SET columnname1 = value1
[, columname2 = value2]...
FROM table_list
WHERE search_condition

Example 8.6

Here's an example of the extension:

INPUT:

SQL> UPDATE COLLECTION
 2 SET WORTH = WORTH * 0.005;

that changes the table to this:

INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTION;

ITEM WORTH REMARKS
-------------------- -------- ----------------------------
NBA ALL STAR CARDS 2.775 SOME STILL IN BIKE SPOKES
MALIBU BARBIE 2.775 TAN NEEDS WORK
STAR WARS GLASS 2.775 HANDLE CHIPPED
LOCK OF SPOUSES HAIR 2.775 HASN'T NOTICED BALD SPOT YET
SUPERMANS CAPE 2.775 TUGGED ON IT
STRING 2.775 SOME DAY IT WILL BE VALUABLE

6 rows selected.

ANALYSIS:

This syntax is useful when the contents of one table need to be updated following the
manipulation of the contents of several other tables. Keep in mind that this syntax is
nonstandard and that you need to consult the documentation for your particular
database management system before you use it.

The UPDATE statement can also update columns based on the result of an arithmetic
expression. When using this technique, remember the requirement that the data type of
the result of the expression must be the same as the data type of the field that is being
modified. Also, the size of the value must fit within the size of the field that is being

modified.

Two problems can result from the use of calculated values: truncation and overflow.
Truncation results when the database system converts a fractional number to an integer,
for instance. Overflow results when the resulting value is larger than the capacity of
the modified column, which will cause an error to be returned by your database system.

NOTE: Some database systems handle the overflow problem for you.
Oracle7 converts the number to exponential notation and presents the
number that way. You should keep this potential error in mind when using
number data types.

TIP: If you update a column(s) and notice an error after you run the
update, issue the ROLLBACK command (as you would for an incorrect insert)
to void the update. See Day 11 for more on the ROLLBACK command.

The DELETE Statement
In addition to adding data to a database, you will also need to delete data from a
database. The syntax for the DELETE statement is

SYNTAX:

DELETE FROM tablename
WHERE condition

The first thing you will probably notice about the DELETE command is that it doesn't
have a prompt. Users are accustomed to being prompted for assurance when, for instance,
a directory or file is deleted at the operating system level. Are you sure? (Y/N) is a
common question asked before the operation is performed. Using SQL, when you instruct
the DBMS to delete a group of records from a table, it obeys your command without
asking. That is, when you tell SQL to delete a group of records, it will really do it!

On Day 11 you will learn about transaction control. Transactions are database
operations that enable programmers to either COMMIT or ROLLBACK changes to the
database. These operations are very useful in online transaction-processing applications
in which you want to execute a batch of modifications to the database in one logical
execution. Data integrity problems will occur if operations are performed while other
users are modifying the data at the same time. For now, assume that no transactions are
being undertaken.

NOTE: Some implementations, for example, Oracle, automatically issue a
COMMIT command when you exit SQL.

Depending on the use of the DELETE statement's WHERE clause, SQL can do the
following:

● Delete single rows

● Delete multiple rows

● Delete all rows

● Delete no rows

Here are several points to remember when using the DELETE statement:

● The DELETE statement cannot delete an individual field's values (use UPDATE
instead). The DELETE statement deletes entire records from a single table.

● Like INSERT and UPDATE, deleting records from one table can cause referential
integrity problems within other tables. Keep this potential problem area in mind
when modifying data within a database.

● Using the DELETE statement deletes only records, not the table itself. Use the
DROP TABLE statement (see Day 9) to remove an entire table.

Example 8.7

This example shows you how to delete all the records from COLLECTION where WORTH is
less than 275.

INPUT:

SQL> DELETE FROM COLLECTION
 2 WHERE WORTH < 275;

4 rows deleted.

The result is a table that looks like this:

INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTION;

ITEM WORTH REMARKS
-------------------- --------- ------------------------------
NBA ALL STAR CARDS 300 SOME STILL IN BIKE SPOKES

STRING 1000 SOME DAY IT WILL BE VALUABLE

WARNING: Like the UPDATE statement, if you omit a WHERE clause from
the DELETE statement, all rows in that particular table will be deleted.

Example 8.8 uses all three data manipulation statements to perform a set of database
operations.

Example 8.8

This example inserts some new rows into the COLLECTION table you used earlier today.

INPUT:

SQL> INSERT INTO COLLECTION
 2 VALUES('CHIA PET', 5,'WEDDING GIFT');

OUTPUT:

1 row created.

INPUT:

SQL> INSERT INTO COLLECTION
 2 VALUES('TRS MODEL III', 50, 'FIRST COMPUTER');

OUTPUT:

1 row created.

Now create a new table and copy this data to it:

INPUT/OUTPUT:

SQL> CREATE TABLE TEMP
 2 (NAME CHAR(20),
 3 VALUE NUMBER,
 4 REMARKS CHAR(40));

Table created.

INPUT/OUTPUT:

SQL> INSERT INTO TEMP(NAME, VALUE, REMARKS)
 2 SELECT ITEM, WORTH, REMARKS
 3 FROM COLLECTION;

4 rows created.

INPUT/OUTPUT:

SQL> SELECT * FROM TEMP;

NAME VALUE REMARKS
-------------------- --------- ------------------------------
NBA ALL STAR CARDS 300 SOME STILL IN BIKE SPOKES
STRING 1000 SOME DAY IT WILL BE VALUABLE
CHIA PET 5 WEDDING GIFT
TRS MODEL III 50 FIRST COMPUTER

Now change some values:

INPUT/OUTPUT:

SQL> UPDATE TEMP
 2 SET VALUE = 100
 3 WHERE NAME = 'TRS MODEL III';

1 row updated.

INPUT/OUTPUT:

SQL> UPDATE TEMP
 2 SET VALUE = 8
 3 WHERE NAME = 'CHIA PET';

1 row updated.

INPUT/OUTPUT:

SQL> SELECT * FROM TEMP;

NAME VALUE REMARKS
-------------------- --------- ----------------------------
NBA ALL STAR CARDS 300 SOME STILL IN BIKE SPOKES
STRING 1000 SOME DAY IT WILL BE VALUABLE
CHIA PET 8 WEDDING GIFT
TRS MODEL III 100 FIRST COMPUTER

And update these values back to the original table:

INPUT:

INSERT COLLECTION
SELECT * FROM TEMP;
DROP TABLE TEMP;

ANALYSIS:

The DROP TABLE and CREATE TABLE statements are discussed in greater detail on Day
9. For now, these statements basically do what their names suggest. CREATE TABLE
builds a new table with the format you give it, and DROP TABLE deletes the table. Keep
in mind that DROP TABLE permanently removes a table, whereas DELETE FROM
<TableName> removes only the records from a table.

To check what you have done, select out the records from the COLLECTION table. You
will see that the changes you made now exist in the COLLECTION table.

INPUT/OUTPUT:

SQL> SELECT * FROM COLLECTION;

NAME VALUE REMARKS
-------------------- -------- ----------------------------
NBA ALL STAR CARDS 300 SOME STILL IN BIKE SPOKES
STRING 1000 SOME DAY IT WILL BE VALUABLE
CHIA PET 8 WEDDING GIFT
TRS MODEL III 100 FIRST COMPUTER

ANALYSIS:

The previous example used all three data manipulation commands--INSERT, UPDATE, and
DELETE--to perform a set of operations on a table. The DELETE statement is the easiest
of the three to use.

WARNING: Always keep in mind that any modifications can affect the
referential integrity of your database. Think through all your database
editing steps to make sure that you have updated all tables correctly.

Importing and Exporting Data from Foreign Sources
The INSERT, UPDATE, and DELETE statements are extremely useful from within a
database program. They are used with the SELECT statement to provide the foundation
for all other database operations you will perform. However, SQL as a language does
not have a way to import or export of data from foreign data sources. For instance, your

office may have been using a dBASE application for several years now that has
outgrown itself. Now your manager wants to convert this application to a client/server
application using the Oracle RDBMS. Unfortunately for you, these dBASE files contain
thousands of records that must be converted to an Oracle database. Obviously, the
INSERT, UPDATE, and DELETE commands will help you after your Oracle database has
been populated, but you would rather quit than retype 300,000 records. Fortunately,
Oracle and other manufacturers provide tools that will assist you in this task.

Nearly all database systems allow you to import and export data using ASCII text file
formats. Although the SQL language does not include this feature, SQL will not do
you (or your boss) much good when you have an empty database. We will examine the
import/export tools available in the following products: Microsoft Access, Microsoft
and Sybase SQL Server, and Personal Oracle7.

Microsoft Access

Microsoft Access is a PC-only database product that contains many of the features of a
relational database management system. Access also includes powerful reporting tools,
a macro language similar to Visual Basic, and the capability to import and export data
from various database and text file formats. This section examines this last feature,
particularly the capability to export to delimited text files. Delimited means that each
field is separated, or delimited, by some special character. This character is often a
comma, a quotation mark, or a space.

Access allows you to import and export various database formats, including dBASE,
FoxPro, and SQL Database. The SQL Database option is actually an ODBC data source
connection. (Microsoft ODBC is covered on Day 13, "Advanced SQL Topics.") For this
discussion, you want to select the Export option and then choose the Text (Fixed Width)
option.

After opening an Access database (with the File | Open), select Export. A Destination
dialog box (for Exporting) is displayed. Select the Text (Fixed Width) option. This option
allows you to output your Access tables to text files in which each data type is a fixed
width. For example, a character data field of length 30 will be output to the file as a
field 30 characters long. If the field's data takes up less space than 30 characters, it
will be padded with spaces. Eventually, you will be asked to set up the export file
format. Figure 8.1 shows the Import/Export Setup dialog box.

Figure 8.1.
The Import/Export Setup dialog box.

Notice that in this dialog box you can select the Text Delimiter and the Field Separator
for your export file. As a final step, save the specification for use later. This
specification is stored internally within the database.

Microsoft and Sybase SQL Server

Microsoft and Sybase have jointly developed a powerful database system that is very
popular in client/server application development. The name of this system is SQL Server.
Microsoft has agreed to develop versions of the RDBMS for some platforms, and Sybase
has developed its version for all the other platforms (usually the larger ones).
Although the arrangement has changed somewhat in recent years, we mention this
agreement here to help you avoid confusion when you begin examining the various
database systems available on the market today.

SQL Server provides file import/export capabilities with the bcp tool. bcp is short for
"bulk copy." The basic concept behind bcp is the same as that behind Microsoft Access.
Unfortunately, the bcp tool requires you to issue commands from the operating system
command prompt, instead of through dialog boxes or windows.

Bcp imports and exports fixed-width text files. It is possible to export a file using the
Microsoft Access method described earlier and then import that same file directly into
an SQL Server table using bcp. bcp uses format files (usually with an .FMT extension) to
store the import specification. This specification tells bcp the column names, field
widths, and field delimiters. You can run bcp from within an SQL database build script
to completely import data after the database has been built.

Personal Oracle7

Personal Oracle7 allows you to import and export data from ASCII text files containing
delimited or fixed-length records. The tool you use is SQL*Loader. This graphical tool
uses a control file (with the .CTL extension). This file is similar to SQL Server's format
(FMT) file. The information contained in this file tells SQL*Loader what it needs to
know to load the data from the file.

The SQL*Loader dialog box appears in Figure 8.2.

Figure 8.2.
The SQL*Loader dialog box.

Summary
SQL provides three statements that you can use to manipulate data within a database.

The INSERT statement has two variations. The INSERT...VALUES statement inserts a
set of values into one record. The INSERT...SELECT statement is used in combination
with a SELECT statement to insert multiple records into a table based on the contents
of one or more tables. The SELECT statement can join multiple tables, and the results

of this join can be added to another table.

The UPDATE statement changes the values of one or more columns based on some
condition. This updated value can also be the result of an expression or calculation.

The DELETE statement is the simplest of the three statements. It deletes all rows from a
table based on the result of an optional WHERE clause. If the WHERE clause is omitted,
all records from the table are deleted.

Modern database systems supply various tools for data manipulation. Some of these
tools enable developers to import or export data from foreign sources. This feature is
particularly useful when a database is upsized or downsized to a different system.
Microsoft Access, Microsoft and Sybase SQL Server, and Personal Oracle7 include many
options that support the migration of data between systems.

Q&A
Q Does SQL have a statement for file import/export operations?

A No. Import and export are implementation-specific operations. In other words,
the ANSI committee allows individual manufacturers to create whatever
features or enhancements they feel are necessary.

Q Can I copy data from a table into itself using the INSERT command? I would
like to make duplicate copies of all the existing records and change the
value of one field.

A No, you cannot insert data into the same table that you selected from.
However, you can select the original data into a temporary table. (True
temporary tables are discussed on Day 14.) Then modify the data in this temporary
table and select back into the original table. Make sure that you watch out for
unique fields you may have already created. A unique field means that the
particular field must contain a unique value for each row of data that exists in
its table.

Q You have stressed using caution when issuing INSERT, UPDATE, and DELETE
commands, but simple fixes seem to be available to correct whatever I did
wrong. Is that a fair statement?

A Yes. For example, a simple way to fix a misspelled name is to issue a ROLLBACK
command and redo the insert. Another fix would be to do an update to fix the
name. Or you could delete the row and redo the insert with the corrected
spelling of the name.

But suppose you inserted a million rows into a table and didn't notice that you
had misspelled a name when you issued the COMMIT command. A few weeks later,
someone notices some bad data. You have had two weeks' worth of database
activity. You would more than likely have to issue individual updates to make
individual corrections, instead of making any type of global change. In most cases
you probably will not know what to change. You may have to restore the
database.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. What is wrong with the following statement?

DELETE COLLECTION;

2. What is wrong with the following statement?

INSERT INTO COLLECTION
SELECT * FROM TABLE_2

3. What is wrong with the following statement?

UPDATE COLLECTION ("HONUS WAGNER CARD",
25000, "FOUND IT");

4. What would happen if you issued the following statement?

SQL> DELETE * FROM COLLECTION;

5. What would happen if you issued the following statement?

SQL> DELETE FROM COLLECTION;

6. What would happen if you issued the following statement?

SQL> UPDATE COLLECTION
 SET WORTH = 555
 SET REMARKS = 'UP FROM 525';

7. Will the following SQL statement work?

SQL> INSERT INTO COLLECTION
 SET VALUES = 900
 WHERE ITEM = 'STRING';

8. Will the following SQL statement work?

SQL> UPDATE COLLECTION
 SET VALUES = 900
 WHERE ITEM = 'STRING';

Exercises

1. Try inserting values with incorrect data types into a table. Note the errors and
then insert values with correct data types into the same table.

2. Using your database system, try exporting a table (or an entire database) to
some other format. Then import the data back into your database. Familiarize
yourself with this capability. Also, export the tables to another database format
if your DBMS supports this feature. Then use the other system to open these files
and examine them.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 9 -
Creating and Maintaining Tables

Objectives
Today you learn about creating databases. Day 9 covers the CREATE DATABASE,
CREATE TABLE, ALTER TABLE, DROP TABLE, and DROP DATABASE statements, which
are collectively known as data definition statements. (In contrast, the SELECT,
UPDATE, INSERT, and DELETE statements are often described as data manipulation
statements.) By the end of the day, you will understand and be able to do the
following:

● Create key fields

● Create a database with its associated tables

● Create, alter, and drop a table

● Add data to the database

● Modify the data in a database

● Drop databases

You now know much of the SQL vocabulary and have examined the SQL query in some
detail, beginning with its basic syntax. On Day 2, "Introduction to the Query: The
SELECT Statement," you learned how to select data from the database. On Day 8,

"Manipulating Data," you learned how to insert, update, and delete data from the
database. Now, nine days into the learning process, you probably have been wondering
just where these databases come from. For simplicity's sake, we have been ignoring the
process of creating databases and tables. We have assumed that these data objects
existed currently on your system. Today you finally create these objects.

The syntax of the CREATE statements can range from the extremely simple to the
complex, depending on the options your database management system (DBMS) supports
and how detailed you want to be when building a database.

NOTE: The examples used today were generated using Personal Oracle7.
Please see the documentation for your specific SQL implementation for any
minor differences in syntax.

The CREATE DATABASE Statement
The first data management step in any database project is to create the database. This
task can range from the elementary to the complicated, depending on your needs and
the database management system you have chosen. Many modern systems (including
Personal Oracle7) include graphical tools that enable you to completely build the
database with the click of a mouse button. This time-saving feature is certainly helpful,
but you should understand the SQL statements that execute in response to the mouse
clicks.

Through personal experience, we have learned the importance of creating a good SQL
install script. This script file contains the necessary SQL code to completely rebuild a
database or databases; the script often includes database objects such as indexes, stored
procedures, and triggers. You will see the value of this script during development as
you continually make changes to the underlying database and on occasion want to
completely rebuild the database with all the latest changes. Using the graphical tools
each time you need to perform a rebuild can become extremely time-consuming. In
addition, knowing the SQL syntax for this procedure enables you to apply your
knowledge to other database systems.

The syntax for the typical CREATE DATABASE statement looks like this:

SYNTAX:

CREATE DATABASE database_name

Because the syntax varies so widely from system to system, we will not expand on the
CREATE DATABASE statement's syntax. Many systems do not even support an SQL

CREATE DATABASE command. However, all the popular, more powerful, relational
database management systems (RDBMSs) do provide it. Instead of focusing on its syntax,
we will spend some time discussing the options to consider when creating a database.

CREATE DATABASE Options

The syntax for the CREATE DATABASE statement can vary widely. Many SQL texts skip
over the CREATE DATABASE statement and move directly on to the CREATE TABLE
statement. Because you must create a database before you can build a table, this section
focuses on some of the concepts a developer must consider when building a database. The
first consideration is your level of permission. If you are using a relational database
management system (RDBMS) that supports user permissions, you must make sure that
either you have system administrator-level permission settings or the system
administrator has granted you CREATE DATABASE permission. Refer to your RDBMS
documentation for more information.

Most RDBMSs also allow you to specify a default database size, usually in terms of
hard disk space (such as megabytes). You will need to understand how your database
system stores and locates data on the disk to accurately estimate the size you need. The
responsibility for managing this space falls primarily to system administrators, and
possibly at your location a database administrator will build you a test database.

Don't let the CREATE DATABASE statement intimidate you. At its simplest, you can
create a database named PAYMENTS with the following statement:

SYNTAX:

SQL> CREATE DATABASE PAYMENTS;

NOTE: Again, be sure to consult your database management system's
documentation to learn the specifics of building a database, as the CREATE
DATABASE statement can and does vary for the different implementations.
Each implementation also has some unique options.

Database Design

Designing a database properly is extremely important to the success of your application.
The introductory material on Day 1, "Introduction to SQL," touched on the topics of
relational database theory and database normalization.

Normalization is the process of breaking your data into separate components to reduce the
repetition of data. Each level of normalization reduces the repetition of data.

Normalizing your data can be an extremely complex process, and numerous database
design tools enable you to plan this process in a logical fashion.

Many factors can influence the design of your database, including the following:

● Security

● Disk space available

● Speed of database searches and retrievals

● Speed of database updates

● Speed of multiple-table joins to retrieve data

● RDBMS support for temporary tables

Disk space is always an important factor. Although you may not think that disk space is
a major concern in an age of multigigabyte storage, remember that the bigger your
database is, the longer it takes to retrieve records. If you have done a poor job of
designing your table structure, chances are that you have needlessly repeated much of
your data.

Often the opposite problem can occur. You may have sought to completely normalize
your tables' design with the database and in doing so created many tables. Although
you may have approached database-design nirvana, any query operations done against
this database may take a very long time to execute. Databases designed in this manner
are sometimes difficult to maintain because the table structure might obscure the
designer's intent. This problem underlines the importance of always documenting your
code or design so that others can come in after you (or work with you) and have some
idea of what you were thinking at the time you created your database structure. In
database designer's terms, this documentation is known as a data dictionary.

Creating a Data Dictionary

A data dictionary is the database designer's most important form of documentation. It
performs the following functions:

● Describes the purpose of the database and who will be using it.

● Documents the specifics behind the database itself: what device it was created on,
the database's default size, or the size of the log file (used to store database
operations information in some RDBMSs).

● Contains SQL source code for any database install or uninstall scripts, including
documentation on the use of import/export tools, such as those introduced
yesterday (Day 8).

● Provides a detailed description of each table within the database and explains its
purpose in business process terminology.

● Documents the internal structure of each table, including all fields and their
data types with comments, all indexes, and all views. (See Day 10, "Creating Views
and Indexes.")

● Contains SQL source code for all stored procedures and triggers.

● Describes database constraints such as the use of unique values or NOT NULL
values. The documentation should also mention whether these constraints are
enforced at the RDBMS level or whether the database programmer is expected to
check for these constraints within the source code.

Many computer-aided software engineering (CASE) tools aid the database designer in
the creation of this data dictionary. For instance, Microsoft Access comes prepackaged
with a database documenting tool that prints out a detailed description of every object
in the database. See Day 17, "Using SQL to Generate SQL Statements," for more details
on the data dictionary.

NOTE: Most of the major RDBMS packages come with either the data dic-
tionary installed or scripts to install it.

Creating Key Fields

Along with documenting your database design, the most important design goal you
should have is to create your table structure so that each table has a primary key and a
foreign key. The primary key should meet the following goals:

● Each record is unique within a table (no other record within the table has all of
its columns equal to any other).

● For a record to be unique, all the columns are necessary; that is, data in one
column should not be repeated anywhere else in the table.

Regarding the second goal, the column that has completely unique data throughout
the table is known as the primary key field. A foreign key field is a field that links one table
to another table's primary or foreign key. The following example should clarify this

situation.

Assume you have three tables: BILLS, BANK_ACCOUNTS, and COMPANY. Table 9.1 shows
the format of these three tables.

Table 9.1. Table structure for the PAYMENTS database.

Bills Bank_Accounts Company

NAME, CHAR(30) ACCOUNT_ID, NUMBER NAME, CHAR(30)

AMOUNT, NUMBER TYPE, CHAR(30) ADDRESS, CHAR(50)

ACCOUNT_ID, NUMBER BALANCE, NUMBER CITY, CHAR(20)

BANK, CHAR(30) STATE, CHAR(2)

Take a moment to examine these tables. Which fields do you think are the primary keys?
Which are the foreign keys?

The primary key in the BILLS table is the NAME field. This field should not be duplicated
because you have only one bill with this amount. (In reality, you would probably have a
check number or a date to make this record truly unique, but assume for now that the
NAME field works.) The ACCOUNT_ID field in the BANK_ACCOUNTS table is the primary
key for that table. The NAME field is the primary key for the COMPANY table.

The foreign keys in this example are probably easy to spot. The ACCOUNT_ID field in the
BILLS table joins the BILLS table with the BANK_ACCOUNTS table. The NAME field in
the BILLS table joins the BILLS table with the COMPANY table. If this were a full-
fledged database design, you would have many more tables and data breakdowns. For
instance, the BANK field in the BANK_ACCOUNTS table could point to a BANK table
containing bank information such as addresses and phone numbers. The COMPANY table
could be linked with another table (or database for that matter) containing
information about the company and its products.

Exercise 9.1

Let's take a moment to examine an incorrect database design using the same information
contained in the BILLS, BANK_ACCOUNTS, and COMPANY tables. A mistake many
beginning users make is not breaking down their data into as many logical groups as
possible. For instance, one poorly designed BILLS table might look like this:

Column Names Comments

NAME, CHAR(30) Name of company that bill is owed to

AMOUNT, NUMBER Amount of bill in dollars

ACCOUNT_ID, NUMBER
Bank account number of bill (linked to
BANK_ACCOUNTS table)

ADDRESS, CHAR(30) Address of company that bill is owed to

CITY, CHAR(15) City of company that bill is owed to

STATE, CHAR(2) State of company that bill is owed to

The results may look correct, but take a moment to really look at the data here. If
over several months you wrote several bills to the company in the NAME field, each time
a new record was added for a bill, the company's ADDRESS, CITY, and STATE information
would be duplicated. Now multiply that duplication over several hundred or thousand
records and then multiply that figure by 10, 20, or 30 tables. You can begin to see the
importance of a properly normalized database.

Before you actually fill these tables with data, you will need to know how to create a
table.

The CREATE TABLE Statement
The process of creating a table is far more standardized than the CREATE DATABASE
statement. Here's the basic syntax for the CREATE TABLE statement:

SYNTAX:

CREATE TABLE table_name
(field1 datatype [NOT NULL],
 field2 datatype [NOT NULL],
 field3 datatype [NOT NULL]...)

A simple example of a CREATE TABLE statement follows.

INPUT/OUTPUT:

SQL> CREATE TABLE BILLS (
 2 NAME CHAR(30),
 3 AMOUNT NUMBER,
 4 ACCOUNT_ID NUMBER);

Table created.

ANALYSIS:

This statement creates a table named BILLS. Within the BILLS table are three fields:
NAME, AMOUNT, and ACCOUNT_ID. The NAME field has a data type of character and can
store strings up to 30 characters long. The AMOUNT and ACCOUNT_ID fields can contain

number values only.

The following section examines components of the CREATE TABLE command.

The Table Name

When creating a table using Personal Oracle7, several constraints apply when naming
the table. First, the table name can be no more than 30 characters long. Because Oracle
is case insensitive, you can use either uppercase or lowercase for the individual
characters. However, the first character of the name must be a letter between A and Z.
The remaining characters can be letters or the symbols _, #, $, and @. Of course, the
table name must be unique within its schema. The name also cannot be one of the Oracle
or SQL reserved words (such as SELECT).

NOTE: You can have duplicate table names as long as the owner or schema
is different. Table names in the same schema must be unique.

The Field Name

The same constraints that apply to the table name also apply to the field name.
However, a field name can be duplicated within the database. The restriction is that the
field name must be unique within its table. For instance, assume that you have two
tables in your database: TABLE1and TABLE2. Both of these tables could have fields
called ID. You cannot, however, have two fields within TABLE1 called ID, even if they
are of different data types.

The Field's Data Type

If you have ever programmed in any language, you are familiar with the concept of data
types, or the type of data that is to be stored in a specific field. For instance, a
character data type constitutes a field that stores only character string data. Table
9.2 shows the data types supported by Personal Oracle7.

Table 9.2. Data types supported by Personal Oracle7.

Data Type Comments

CHAR Alphanumeric data with a length between 1 and 255 characters.
Spaces are padded to the right of the value to supplement the
total allocated length of the column.

DATE Included as part of the date are century, year, month, day, hour,
minute, and second.

LONG Variable-length alphanumeric strings up to 2 gigabytes. (See the
following note.)

LONG RAW Binary data up to 2 gigabytes. (See the following note.)

NUMBER Numeric 0, positive or negative fixed or floating-point data.

RAW Binary data up to 255 bytes.

ROWID Hexadecimal string representing the unique address of a row in a
table. (See the following note.)

VARCHAR2 Alphanumeric data that is variable length; this field must be
between 1 and 2,000 characters long.

NOTE: The LONG data type is often called a MEMO data type in other
database management systems. It is primarily used to store large amounts of
text for retrieval at some later time.

The LONG RAW data type is often called a binary large object (BLOB) in
other database management systems. It is typically used to store graphics,
sound, or video data. Although relational database management systems
were not originally designed to serve this type of data, many multimedia
systems today store their data in LONG RAW, or BLOB, fields.

The ROWID field type is used to give each record within your table a unique,
nonduplicating value. Many other database systems support this concept
with a COUNTER field (Microsoft Access) or an IDENTITY field (SQL Server).

NOTE: Check your implementation for supported data types as they may
vary.

The NULL Value

SQL also enables you to identify what can be stored within a column. A NULL value is
almost an oxymoron, because having a field with a value of NULL means that the field
actually has no value stored in it.

When building a table, most database systems enable you to denote a column with the
NOT NULL keywords. NOT NULL means the column cannot contain any NULL values for
any records in the table. Conversely, NOT NULL means that every record must have an
actual value in this column. The following example illustrates the use of the NOT
NULL keywords.

INPUT:

SQL> CREATE TABLE BILLS (
 2 NAME CHAR(30) NOT NULL,
 3 AMOUNT NUMBER,
 4 ACCOUNT_ID NOT NULL);

ANALYSIS:

In this table you want to save the name of the company you owe the money to, along
with the bill's amount. If the NAME field and/or the ACCOUNT_ID were not stored, the
record would be meaningless. You would end up with a record with a bill, but you
would have no idea whom you should pay.

The first statement in the next example inserts a valid record containing data for a bill
to be sent to Joe's Computer Service for $25.

INPUT/OUTPUT:

SQL> INSERT INTO BILLS VALUES("Joe's Computer Service", 25, 1);

1 row inserted.

INPUT/OUTPUT:

SQL> INSERT INTO BILLS VALUES("", 25000, 1);

1 row inserted.

ANALYSIS:

Notice that the second record in the preceding example does not contain a NAME value.
(You might think that a missing payee is to your advantage because the bill amount is
$25,000, but we won't consider that.) If the table had been created with a NOT NULL
value for the NAME field, the second insert would have raised an error.

A good rule of thumb is that the primary key field and all foreign key fields should
never contain NULL values.

Unique Fields

One of your design goals should be to have one unique column within each table. This
column or field is a primary key field. Some database management systems allow you to
set a field as unique. Other database management systems, such as Oracle and SQL
Server, allow you to create a unique index on a field. (See Day 10.) This feature keeps
you from inserting duplicate key field values into the database.

You should notice several things when choosing a key field. As we mentioned, Oracle
provides a ROWID field that is incremented for each row that is added, which makes this
field by default always a unique key. ROWID fields make excellent key fields for
several reasons. First, it is much faster to join on an integer value than on an 80-
character string. Such joins result in smaller database sizes over time if you store an
integer value in every primary and foreign key as opposed to a long CHAR value.
Another advantage is that you can use ROWID fields to see how a table is organized.
Also, using CHAR values leaves you open to a number of data entry problems. For
instance, what would happen if one person entered 111 First Street, another
entered 111 1st Street, and yet another entered 111 First St.? With today's
graphical user environments, the correct string could be entered into a list box. When a
user makes a selection from the list box, the code would convert this string to a unique
ID and save this ID to the database.

Now you can create the tables you used earlier today. You will use these tables for the
rest of today, so you will want to fill them with some data. Use the INSERT command
covered yesterday to load the tables with the data in Tables 9.3, 9.4, and 9.5.

INPUT/OUTPUT:

SQL> create database PAYMENTS;

Statement processed.

SQL> create table BILLS (
 2 NAME CHAR(30) NOT NULL,
 3 AMOUNT NUMBER,
 4 ACCOUNT_ID NUMBER NOT NULL);

Table created.

SQL> create table BANK_ACCOUNTS (
 2 ACCOUNT_ID NUMBER NOT NULL,
 3 TYPE CHAR(30),
 4 BALANCE NUMBER,
 5 BANK CHAR(30));

Table created.

SQL> create table COMPANY (
 2 NAME CHAR(30) NOT NULL,
 3 ADDRESS CHAR(50),
 4 CITY CHAR(30),
 5 STATE CHAR(2));

Table created.

Table 9.3. Sample data for the BILLS table.

Name Amount Account_ID

Phone Company 125 1

Power Company 75 1

Record Club 25 2

Software Company 250 1

Cable TV Company 35 3

Table 9.4. Sample data for the BANK_ACCOUNTS table.

Account_ID Type Balance Band

1 Checking 500 First Federal

2 Money Market 1200 First Investor's

3 Checking 90 Credit Union

Table 9.5. Sample data for the COMPANY table.

Name Address City State

Phone Company 111 1st Street Atlanta GA

Power Company 222 2nd Street Jacksonville FL

Record Club 333 3rd Avenue Los Angeles CA

Software Company 444 4th Drive San Francisco CA

Cable TV Company 555 5th Drive Austin TX

Table Storage and Sizing

Most major RDBMSs have default settings for table sizes and table locations. If you do
not specify table size and location, then the table will take the defaults. The defaults
may be very undesirable, especially for large tables. The default sizes and locations
will vary among the implementations. Here is an example of a CREATE TABLE statement
with a storage clause (from Oracle).

INPUT:

SQL> CREATE TABLE TABLENAME
 2 (COLUMN1 CHAR NOT NULL,
 3 COLUMN2 NUMBER,
 4 COLUMN3 DATE)
 5 TABLESPACE TABLESPACE NAME
 6 STORAGE

 7 INITIAL SIZE,
 8 NEXT SIZE,
 9 MINEXTENTS value,
 10 MAXEXTENTS value,
 11 PCTINCREASE value);

OUTPUT:

Table created.

ANALYSIS:

In Oracle you can specify a tablespace in which you want the table to reside. A decision
is usually made according to the space available, often by the database administrator
(DBA). INITIAL SIZE is the size for the initial extent of the table (the initial
allocated space). NEXT SIZE is the value for any additional extents the table may take
through growth. MINEXTENTS and MAXEXTENTS identify the minimum and maximum
extents allowed for the table, and PCTINCREASE identifies the percentage the next
extent will be increased each time the table grows, or takes another extent.

Creating a Table from an Existing Table

The most common way to create a table is with the CREATE TABLE command. However,
some database management systems provide an alternative method of creating tables,
using the format and data of an existing table. This method is useful when you want to
select the data out of a table for temporary modification. It can also be useful when
you have to create a table similar to the existing table and fill it with similar data.
(You won't have to reenter all this information.) The syntax for Oracle follows.

SYNTAX:

CREATE TABLE NEW_TABLE(FIELD1, FIELD2, FIELD3)
AS (SELECT FIELD1, FIELD2, FIELD3
 FROM OLD_TABLE <WHERE...>

This syntax allows you to create a new table with the same data types as those of the
fields that are selected from the old table. It also allows you to rename the fields in
the new table by giving them new names.

INPUT/OUTPUT:

SQL> CREATE TABLE NEW_BILLS(NAME, AMOUNT, ACCOUNT_ID)
 2 AS (SELECT * FROM BILLS WHERE AMOUNT < 50);

Table created.

ANALYSIS:

The preceding statement creates a new table (NEW_BILLS) with all the records from
the BILLS table that have an AMOUNT less than 50.

Some database systems also allow you to use the following syntax:

SYNTAX:

INSERT NEW_TABLE
SELECT <field1, field2... | *> from OLD_TABLE
<WHERE...>

The preceding syntax would create a new table with the exact field structure and data
found in the old table. Using SQL Server's Transact-SQL language in the following
example illustrates this technique.

INPUT:

INSERT NEW_BILLS
1> select * from BILLS where AMOUNT < 50
2> go

(The GO statement in SQL Server processes the SQL statements in the command buffer. It
is equivalent to the semicolon (;) used in Oracle7.)

The ALTER TABLE Statement
Many times your database design does not account for everything it should. Also,
requirements for applications and databases are always subject to change. The ALTER
TABLE statement enables the database administrator or designer to change the
structure of a table after it has been created.

The ALTER TABLE command enables you to do two things:

● Add a column to an existing table

● Modify a column that already exists

The syntax for the ALTER TABLE statement is as follows:

SYNTAX:

ALTER TABLE table_name
 <ADD column_name data_type; |
 MODIFY column_name data_type;>

The following command changes the NAME field of the BILLS table to hold 40
characters:

INPUT/OUTPUT:

SQL> ALTER TABLE BILLS
 2 MODIFY NAME CHAR(40);

Table altered.

NOTE: You can increase or decrease the length of columns; however, you
can not decrease a column's length if the current size of one of its values is
greater than the value you want to assign to the column length.

Here's a statement to add a new column to the NEW_BILLS table:

INPUT/OUTPUT:

SQL> ALTER TABLE NEW_BILLS
 2 ADD COMMENTS CHAR(80);

Table altered.

ANALYSIS:

This statement would add a new column named COMMENTS capable of holding 80
characters. The field would be added to the right of all the existing fields.

Several restrictions apply to using the ALTER TABLE statement. You cannot use it to
add or delete fields from a database. It can change a column from NOT NULL to NULL,
but not necessarily the other way around. A column specification can be changed from
NULL to NOT NULL only if the column does not contain any NULL values. To change a
column from NOT NULL to NULL, use the following syntax:

SYNTAX:

 ALTER TABLE table_name MODIFY (column_name data_type NULL);

To change a column from NULL to NOT NULL, you might have to take several steps:

1. Determine whether the column has any NULL values.

2. Deal with any NULL values that you find. (Delete those records, update the

column's value, and so on.)

3. Issue the ALTER TABLE command.

NOTE: Some database management systems allow the use of the MODIFY
clause; others do not. Still others have added other clauses to the ALTER
TABLE statement. In Oracle, you can even alter the table's storage
parameters. Check the documentation of the system you are using to
determine the implementation of the ALTER TABLE statement.

The DROP TABLE Statement
SQL provides a command to completely remove a table from a database. The DROP TABLE
command deletes a table along with all its associated views and indexes. (See Day 10 for
details.) After this command has been issued, there is no turning back. The most common
use of the DROP TABLE statement is when you have created a table for temporary use.
When you have completed all operations on the table that you planned to do, issue the
DROP TABLE statement with the following syntax:

SYNTAX:

DROP TABLE table_name;

Here's how to drop the NEW_BILLS table:

INPUT/OUTPUT:

SQL> DROP TABLE NEW_BILLS;

Table dropped.

ANALYSIS:

Notice the absence of system prompts. This command did not ask Are you sure? (Y/N).
After the DROP TABLE command is issued, the table is permanently deleted.

WARNING: If you issue

SQL> DROP TABLE NEW_BILLS;

you could be dropping the incorrect table. When dropping tables, you
should always use the owner or schema name. The recommended syntax is

SQL> DROP TABLE OWNER.NEW_BILLS;

We are stressing this syntax because we once had to repair a production
database from which the wrong table had been dropped. The table was not
properly identified with the schema name. Restoring the database was an
eight-hour job, and we had to work until well past midnight.

The DROP DATABASE Statement
Some database management systems also provide the DROP DATABASE statement, which
is identical in usage to the DROP TABLE statement. The syntax for this statement is as
follows:

DROP DATABASE database_name

Don't drop the BILLS database now because you will use it for the rest of today, as
well as on Day 10.

NOTE: The various relational database implementations require you to
take diff-erent steps to drop a database. After the database is dropped, you
will need to clean up the operating system files that compose the database.

Exercise 9.2

Create a database with one table in it. Issue the DROP TABLE command and the issue the
DROP DATABASE command. Does your database system allow you to do this? Single-file-
based systems, such as Microsoft Access, do not support this command. The database is
contained in a single file. To create a database, you must use the menu options provided
in the product itself. To delete a database, simply delete the file from the hard drive.

Summary
Day 9 covers the major features of SQL's Data Manipulation Language (DML). In
particular, you learned five new statements: CREATE DATABASE, CREATE TABLE,
ALTER TABLE, DROP TABLE, and DROP DATABASE. Today's lesson also discusses the
importance of creating a good database design.

A data dictionary is one of the most important pieces of documentation you can create

when designing a database. This dictionary should include a complete description of all
objects in the database: tables, fields, views, indexes, stored procedures, triggers, and so
forth. A complete data dictionary also contains a brief comment explaining the purpose
behind each item in the database. You should update the data dictionary whenever you
make changes to the database.

Before using any of the data manipulation statements, it is also important to create a
good database design. Break down the required information into logical groups and try
to identify a primary key field that other groups (or tables) can use to reference this
logical group. Use foreign key fields to point to the primary or foreign key fields in
other tables.

You learned that the CREATE DATABASE statement is not a standard element within
database systems. This variation is primarily due to the many different ways vendors
store their databases on disk. Each implementation enables a different set of features
and options, which results in a completely different CREATE DATABASE statement.
Simply issuing CREATE DATABASE database_name creates a default database with a
default size on most systems. The DROP DATABASE statement permanently removes that
database.

The CREATE TABLE statement creates a new table. With this command, you can create
the fields you need and identify their data types. Some database management systems
also allow you to specify other attributes for the field, such as whether it can allow
NULL values or whether that field should be unique throughout the table. The ALTER
TABLE statement can alter the structure of an existing table. The DROP TABLE
statement can delete a table from a database.

Q&A
Q Why does the CREATE DATABASE statement vary so much from one system
to another?

A CREATE DATABASE varies because the actual process of creating a database
varies from one database system to another. Small PC-based databases usually
rely on files that are created within some type of application program. To
distribute the database on a large server, related database files are simply
distributed over several disk drives. When your code accesses these databases,
there is no database process running on the computer, just your application
accessing the files directly. More powerful database systems must take into
account disk space management as well as support features such as security,
transaction control, and stored procedures embedded within the database itself.
When your application program accesses a database, a database server manages
your requests (along with many others' requests) and returns data to you
through a sometimes complex layer of middleware. These topics are discussed more

in Week 3. For now, learn all you can about how your particular database
management system creates and manages databases.

Q Can I create a table temporarily and then automatically drop it when I am
done with it?

A Yes. Many database management systems support the concept of a temporary
table. This type of table is created for temporary usage and is automatically
deleted when your user's process ends or when you issue the DROP TABLE
command. The use of temporary tables is discussed on Day 14, "Dynamic Uses of
SQL."

Q Can I remove columns with the ALTER TABLE statement?

A No. The ALTER TABLE command can be used only to add or modify columns
within a table. To remove columns, create a new table with the desired format
and then select the records from the old table into the new table.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. True or False: The ALTER DATABASE statement is often used to modify an
existing table's structure.

2. True or False: The DROP TABLE command is functionally equivalent to the
DELETE FROM <table_name> command.

3. True or False: To add a new table to a database, use the CREATE TABLE
command.

4. What is wrong with the following statement?

INPUT:

CREATE TABLE new_table (
ID NUMBER,
FIELD1 char(40),
FIELD2 char(80),

ID char(40);

5. What is wrong with the following statement?

INPUT:

ALTER DATABASE BILLS (
COMPANY char(80));

6. When a table is created, who is the owner?

7. If data in a character column has varying lengths, what is the best choice for
the data type?

8. Can you have duplicate table names?

Exercises

1. Add two tables to the BILLS database named BANK and ACCOUNT_TYPE using
any format you like. The BANK table should contain information about the BANK
field used in the BANK_ACCOUNTS table in the examples. The ACCOUNT_TYPE table
should contain information about the ACCOUNT_TYPE field in the
BANK_ACCOUNTS table also. Try to reduce the data as much as possible.

2. With the five tables that you have created--BILLS, BANK_ACCOUNTS, COMPANY,
BANK, and ACCOUNT_TYPE--change the table structure so that instead of using
CHAR fields as keys, you use integer ID fields as keys.

3. Using your knowledge of SQL joins (see Day 6, "Joining Tables"), write several
queries to join the tables in the BILLS database.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 10 -
Creating Views and Indexes

Objectives
Today we begin to cover topics that may be new even to programmers or database users
who have already had some exposure to SQL. Days 1 through 8 covered nearly all the
introductory material you need to get started using SQL and relational databases. Day
9, "Creating and Manipulating Tables," was devoted to a discussion of database design,
table creation, and other data manipulation commands. The common feature of the
objects discussed so far--databases, tables, records, and fields--is that they are all
physical objects located on a hard disk. Today the focus shifts to two features of SQL
that enable you to view or present data in a different format than it appears on the
disk. These two features are the view and the index. By the end of today, you will know
the following:

● How to distinguish between indexes and views

● How to create views

● How to create indexes

● How to modify data using views

● What indexes do

A view is often referred to as a virtual table. Views are created by using the CREATE
VIEW statement. After the view has been created, you can use the following SQL

commands to refer to that view:

● SELECT

● INSERT

● INPUT

● UPDATE

● DELETE

An index is another way of presenting data differently than it appears on the disk.
Special types of indexes reorder the record's physical location within a table. Indexes
can be created on a column within a table or on a combination of columns within a
table. When an index is used, the data is presented to the user in a sorted order, which
you can control with the CREATE INDEX statement. You can usually gain substantial
performance improvements by indexing on the correct fields, particularly fields that
are being joined between tables.

NOTE: Views and indexes are two totally different objects, but they have
one thing in common: They are both associated with a table in the database.
Although each object's association with a table is unique, they both
enhance a table, thus unveiling powerful features such as presorted data
and predefined queries.

NOTE: We used Personal Oracle7 to generate today's examples. Please see
the documentation for your specific SQL implementation for any minor
differences in syntax.

Using Views
You can use views, or virtual tables, to encapsulate complex queries. After a view on a
set of data has been created, you can treat that view as another table. However, special
restrictions are placed on modifying the data within views. When data in a table
changes, what you see when you query the view also changes. Views do not take up
physical space in the database as tables do.

The syntax for the CREATE VIEW statement is

SYNTAX:

CREATE VIEW <view_name> [(column1, column2...)] AS
SELECT <table_name column_names>
FROM <table_name>

As usual, this syntax may not be clear at first glance, but today's material contains
many examples that illustrate the uses and advantages of views. This command tells
SQL to create a view (with the name of your choice) that comprises columns (with the
names of your choice if you like). An SQL SELECT statement determines the fields in
these columns and their data types. Yes, this is the same SELECT statement that you
have used repeatedly for the last nine days.

Before you can do anything useful with views, you need to populate the BILLS database
with a little more data. Don't worry if you got excited and took advantage of your
newfound knowledge of the DROP DATABASE command. You can simply re-create it. (See
Tables 10.1, 10.2, and 10.3 for sample data.)

INPUTOUTPUT:

SQL> create database BILLS;

Statement processed.

INPUTOUTPUT:

SQL> create table BILLS (
 2 NAME CHAR(30) NOT NULL,
 3 AMOUNT NUMBER,
 4 ACCOUNT_ID NUMBER NOT NULL);

Table created.

INPUTOUTPUT:

SQL> create table BANK_ACCOUNTS (
 2 ACCOUNT_ID NUMBER NOT NULL,
 3 TYPE CHAR(30),
 4 BALANCE NUMBER,
 5 BANK CHAR(30));

Table created.

INPUTOUTPUT:

SQL> create table COMPANY (
 2 NAME CHAR(30) NOT NULL,
 3 ADDRESS CHAR(50),
 4 CITY CHAR(30),

 5 STATE CHAR(2));

Table created.

Table 10.1. Sample data for the BILLS table.

Name Amount Account_ID

Phone Company 125 1

Power Company 75 1

Record Club 25 2

Software Company 250 1

Cable TV Company 35 3

Joe's Car Palace 350 5

S.C. Student Loan 200 6

Florida Water Company 20 1

U-O-Us Insurance Company 125 5

Debtor's Credit Card 35 4

Table 10.2. Sample data for the BANK_ACCOUNTS table.

Account_ID Type Balance Bank

1 Checking 500 First Federal

2 Money Market 1200 First Investor's

3 Checking 90 Credit Union

4 Savings 400 First Federal

5 Checking 2500 Second Mutual

6 Business 4500 Fidelity

Table 10.3. Sample data for the COMPANY table.

Name Address City State

Phone Company 111 1st Street Atlanta GA

Power Company 222 2nd Street Jacksonville FL

Record Club 333 3rd Avenue Los Angeles CA

Software Company 444 4th Drive San Francisco CA

Cable TV Company 555 5th Drive Austin TX

Joe's Car Palace 1000 Govt. Blvd Miami FL

S.C. Student Loan 25 College Blvd Columbia SC

Florida Water Company 1883 Hwy 87 Navarre FL

U-O-Us Insurance 295 Beltline Hwy Macon GA

Company

Debtor's Credit Card 115 2nd Avenue Newark NJ

Now that you have successfully used the CREATE DATABASE, CREATE TABLE, and
INSERT commands to input all this information, you are ready for an in-depth discussion
of the view.

A Simple View

Let's begin with the simplest of all views. Suppose, for some unknown reason, you want
to make a view on the BILLS table that looks identical to the table but has a different
name. (We call it DEBTS.) Here's the statement:

INPUT:

SQL> CREATE VIEW DEBTS AS
 SELECT * FROM BILLS;

To confirm that this operation did what it should, you can treat the view just like a
table:

INPUT/OUTPUT:

SQL> SELECT * FROM DEBTS;

NAME AMOUNT ACCOUNT_ID
Phone Company 125 1
Power Company 75 1
Record Club 25 2
Software Company 250 1
Cable TV Company 35 3
Joe's Car Palace 350 5
S.C. Student Loan 200 6
Florida Water Company 20 1
U-O-Us Insurance Company 125 5
Debtor's Credit Card 35 4
10 rows selected.

You can even create new views from existing views. Be careful when creating views of
views. Although this practice is acceptable, it complicates maintenance. Suppose you
have a view three levels down from a table, such as a view of a view of a view of a table.

What do you think will happen if the first view on the table is dropped? The other two
views will still exist, but they will be useless because they get part of their
information from the first view. Remember, after the view has been created, it functions
as a virtual table.

INPUT:

SQL> CREATE VIEW CREDITCARD_DEBTS AS
 2 SELECT * FROM DEBTS
 3 WHERE ACCOUNT_ID = 4;
SQL> SELECT * FROM CREDITCARD_DEBTS;

OUTPUT:

NAME AMOUNT ACCOUNT_ID
Debtor's Credit Card 35 4

1 row selected.

The CREATE VIEW also enables you to select individual columns from a table and place
them in a view. The following example selects the NAME and STATE fields from the
COMPANY table.

INPUT:

SQL> CREATE VIEW COMPANY_INFO (NAME, STATE) AS
 2 SELECT * FROM COMPANY;
SQL> SELECT * FROM COMPANY_INFO;

OUTPUT:

NAME STATE
Phone Company GA
Power Company FL
Record Club CA
Software Company CA
Cable TV Company TX
Joe's Car Palace FL
S.C. Student Loan SC
Florida Water Company FL
U-O-Us Insurance Company GA
Debtor's Credit Card NJ

10 rows selected.

NOTE: Users may create views to query specific data. Say you have a table
with 50 columns and hundreds of thousands of rows, but you need to see
data in only 2 columns. You can create a view on these two columns, and

then by querying from the view, you should see a remarkable difference in
the amount of time it takes for your query results to be returned.

Renaming Columns

Views simplify the representation of data. In addition to naming the view, the SQL
syntax for the CREATE VIEW statement enables you to rename selected columns.
Consider the preceding example a little more closely. What if you wanted to combine
the ADDRESS, CITY, and STATE fields from the COMPANY table to print them on an
envelope? The following example illustrates this. This example uses the SQL + operator
to combine the address fields into one long address by combining spaces and commas with
the character data.

INPUT:

SQL> CREATE VIEW ENVELOPE (COMPANY, MAILING_ADDRESS) AS
 2 SELECT NAME, ADDRESS + " " + CITY + ", " + STATE
 3 FROM COMPANY;
SQL> SELECT * FROM ENVELOPE;

OUTPUT:

COMPANY MAILING_ADDRESS
Phone Company 111 1st Street Atlanta, GA
Power Company 222 2nd Street Jacksonville, FL
Record Club 333 3rd Avenue Los Angeles, CA
Software Company 444 4th Drive San Francisco, CA
Cable TV Company 555 5th Drive Austin, TX
Joe's Car Palace 1000 Govt. Blvd Miami, FL
S.C. Student Loan 25 College Blvd. Columbia, SC
Florida Water Company 1883 Hwy. 87 Navarre, FL
U-O-Us Insurance Company 295 Beltline Hwy. Macon, GA
Debtor's Credit Card 115 2nd Avenue Newark, NJ

10 rows selected.

ANALYSIS:

The SQL syntax requires you to supply a virtual field name whenever the view's virtual
field is created using a calculation or SQL function. This pro- cedure makes sense
because you wouldn't want a view's column name to be COUNT(*) or AVG(PAYMENT).

NOTE: Check your implementation for the use of the + operator.

SQL View Processing

Views can represent data within tables in a more convenient fashion than what
actually exists in the database's table structure. Views can also be extremely
convenient when performing several complex queries in a series (such as within a stored
procedure or application program). To solidify your understanding of the view and the
SELECT statement, the next section examines the way in which SQL processes a query
against a view. Suppose you have a query that occurs often, for example, you routinely
join the BILLS table with the BANK_ACCOUNTS table to retrieve information on your
payments.

INPUT:

SQL> SELECT BILLS.NAME, BILLS.AMOUNT, BANK_ACCOUNTS.BALANCE,
 2 BANK_ACCOUNTS.BANK FROM BILLS, BANK_ACCOUNTS
 3 WHERE BILLS.ACCOUNT_ID = BANK_ACCOUNTS.ACCOUNT_ID;

OUTPUT:

BILLS.NAME BILLS.AMOUNT BANK_ACCOUNTS.BALANCE
BANK_ACCOUNTS.BANK
Phone Company 125 500 First
Federal
Power Company 75 500 First
Federal
Record Club 25 1200 First
Investor's
Software Company 250 500 First
Federal
Cable TV Company 35 90 Credit
Union
Joe's Car Palace 350 2500 Second
Mutual
S.C. Student Loan 200 4500
Fidelity
Florida Water Company 20 500 First
Federal
U-O-Us Insurance Company 125 2500
Second Mutual

9 rows selected.

You could convert this process into a view using the following statement:

INPUT/OUTPUT:

SQL> CREATE VIEW BILLS_DUE (NAME, AMOUNT, ACCT_BALANCE, BANK) AS
 2 SELECT BILLS.NAME, BILLS.AMOUNT, BANK_ACCOUNTS.BALANCE,
 3 BANK_ACCOUNTS.BANK FROM BILLS, BANK_ACCOUNTS

 4 WHERE BILLS.ACCOUNT_ID = BANK_ACCOUNTS.ACCOUNT_ID;

View created.

If you queried the BILLS_DUE view using some condition, the statement would look like
this:

INPUT/OUTPUT:

SQL> SELECT * FROM BILLS_DUE
 2 WHERE ACCT_BALANCE > 500;

NAME AMOUNT ACCT_BALANCE BANK
Record Club 25 1200 First
Investor's
Joe's Car Palace 350 2500 Second Mutual
S.C. Student Loan 200 4500 Fidelity
U-O-Us Insurance Company 125 2500 Second Mutual

4 rows selected.

ANALYSIS:

SQL uses several steps to process the preceding statement. Because BILLS_DUE is a view,
not an actual table, SQL first looks for a table named BILLS_DUE and finds nothing.
The SQL processor will probably (depending on what database system you are using) find
out from a system table that BILLS_DUE is a view. It will then use the view's plan to
construct the following query:

SQL> SELECT BILLS.NAME, BILLS.AMOUNT, BANK_ACCOUNTS.BALANCE,
 2 BANK_ACCOUNTS.BANK FROM BILLS, BANK_ACCOUNTS
 3 WHERE BILLS.ACCOUNT_ID = BANK_ACCOUNTS.ACCOUNT_ID
 4 AND BANK_ACCOUNTS.BALANCE > 500;

Example 10.1

Construct a view that shows all states to which the bills are being sent. Also display
the total amount of money and the total number of bills being sent to each state.

First of all, you know that the CREATE VIEW part of the statement will look like this:

CREATE VIEW EXAMPLE (STATE, TOTAL_BILLS, TOTAL_AMOUNT) AS...

Now you must determine what the SELECT query will look like. You know that you
want to select the STATE field first using the SELECT DISTINCT syntax based on the
requirement to show the states to which bills are being sent. For example:

INPUT:

SQL> SELECT DISTINCT STATE FROM COMPANY;

OUTPUT:

STATE
GA
FL
CA
TX
SC
NJ

6 rows selected.

In addition to selecting the STATE field, you need to total the number of payments sent
to that STATE. Therefore, you need to join the BILLS table and the COMPANY table.

INPUT/OUTPUT:

SQL> SELECT DISTINCT COMPANY.STATE, COUNT(BILLS.*) FROM BILLS, COMPANY
 2 GROUP BY COMPANY.STATE
 3 HAVING BILLS.NAME = COMPANY.NAME;

STATE COUNT(BILLS.*)
GA 2
FL 3
CA 2
TX 1
SC 1
NJ 1

6 rows selected.

Now that you have successfully returned two-thirds of the desired result, you can add
the final required return value. Use the SUM function to total the amount of money
sent to each state.

INPUT/OUTPUT:

SQL> SELECT DISTINCT COMPANY.STATE, COUNT(BILLS.NAME),
SUM(BILLS.AMOUNT)
 2 FROM BILLS, COMPANY
 3 GROUP BY COMPANY.STATE
 4 HAVING BILLS.NAME = COMPANY.NAME;

STATE COUNT(BILLS.*) SUM(BILLS.AMOUNT)
GA 2 250
FL 3 445
CA 2 275

TX 1 35
SC 1 200
NJ 1 35

6 rows selected.

As the final step, you can combine this SELECT statement with the CREATE VIEW
statement you created at the beginning of this project:

INPUT/OUTPUT:

SQL> CREATE VIEW EXAMPLE (STATE, TOTAL_BILLS, TOTAL_AMOUNT) AS
 2 SELECT DISTINCT COMPANY.STATE,
COUNT(BILLS.NAME),SUM(BILLS.AMOUNT)
 3 FROM BILLS, COMPANY
 4 GROUP BY COMPANY.STATE
 5 HAVING BILLS.NAME = COMPANY.NAME;

View created.

INPUT/OUTPUT:

SQL> SELECT * FROM EXAMPLE;

STATE TOTAL_BILLS TOTAL_AMOUNT
GA 2 250
FL 3 445
CA 2 275
TX 1 35
SC 1 200
NJ 1 35

6 rows selected.

The preceding example shows you how to plan the CREATE VIEW statement and the
SELECT statements. This code tests the SELECT statements to see whether they will
generate the proper results and then combines the statements to create the view.

Example 10.2

Assume that your creditors charge a 10 percent service charge for all late payments,
and unfortunately you are late on everything this month. You want to see this late
charge along with the type of accounts the payments are coming from.

This join is straightforward. (You don't need to use anything like COUNT or SUM.)
However, you will discover one of the primary benefits of using views. You can add the
10 percent service charge and present it as a field within the view. From that point on,
you can select records from the view and already have the total amount calculated
for you. The statement would look like this:

INPUT:

SQL> CREATE VIEW LATE_PAYMENT (NAME, NEW_TOTAL, ACCOUNT_TYPE) AS
 2 SELECT BILLS.NAME, BILLS.AMOUNT * 1.10, BANK_ACCOUNTS.TYPE
 3 FROM BILLS, BANK_ACCOUNTS
 4 WHERE BILLS.ACCOUNT_ID = BANK_ACCOUNTS.ACCOUNT_ID;

OUTPUT:

View created.

INPUT/OUTPUT:

SQL> SELECT * FROM LATE_PAYMENT;

NAME NEW_TOTAL ACCOUNT_TYPE
Phone Company 137.50 Checking
Power Company 82.50 Checking
Record Club 27.50 Money Market
Software Company 275 Checking
Cable TV Company 38.50 Checking
Joe's Car Palace 385 Checking
S.C. Student Loan 220 Business
Florida Water Company 22 Checking
U-O-Us Insurance Company 137.50 Business
Debtor's Credit Card 38.50 Savings

10 rows selected.

Restrictions on Using SELECT

SQL places certain restrictions on using the SELECT statement to formulate a view. The
following two rules apply when using the SELECT statement:

● You cannot use the UNION operator.

● You cannot use the ORDER BY clause. However, you can use the GROUP BY clause
in a view to perform the same functions as the ORDER BY clause.

Modifying Data in a View

As you have learned, by creating a view on one or more physical tables within a
database, you can create a virtual table for use throughout an SQL script or a database
application. After the view has been created using the CREATE VIEW...SELECT
statement, you can update, insert, or delete view data using the UPDATE, INSERT, and
DELETE commands you learned about on Day 8, "Manipulating Data."

We discuss the limitations on modifying a view's data in greater detail later. The next
group of examples illustrates how to manipulate data that is in a view.

To continue on the work you did in Example 10.2, update the BILLS table to reflect
that unfortunate 10 percent late charge.

INPUT/OUTPUT:

SQL> CREATE VIEW LATE_PAYMENT AS
 2 SELECT * FROM BILLS;

View created.

SQL> UPDATE LATE_PAYMENT
 2 SET AMOUNT = AMOUNT * 1.10;

1 row updated.

SQL> SELECT * FROM LATE_PAYMENT;

NAME NEW_TOTAL ACCOUNT_ID
Phone Company 137.50 1
Power Company 82.50 1
Record Club 27.50 2
Software Company 275 1
Cable TV Company 38.50 3
Joe's Car Palace 385 5
S.C. Student Loan 220 6
Florida Water Company 22 1
U-O-Us Insurance Company 137.50 5
Debtor's Credit Card 38.50 4

10 rows selected.

To verify that the UPDATE actually updated the underlying table, BILLS, query the
BILLS table:

INPUT/OUTPUT:

SQL> SELECT * FROM BILLS;

NAME NEW_TOTAL ACCOUNT_ID
Phone Company 137.50 1
Power Company 82.50 1
Record Club 27.50 2
Software Company 275 1
Cable TV Company 38.50 3
Joe's Car Palace 385 5
S.C. Student Loan 220 6
Florida Water Company 22 1
U-O-Us Insurance Company 137.50 5
Debtor's Credit Card 38.50 4

10 rows selected.

Now delete a row from the view:

INPUT/OUTPUT:

SQL> DELETE FROM LATE_PAYMENT
 2 WHERE ACCOUNT_ID = 4;

1 row deleted.

SQL> SELECT * FROM LATE_PAYMENT;

NAME NEW_TOTAL ACCOUNT_ID
Phone Company 137.50 1
Power Company 82.50 1
Record Club 27.50 2
Software Company 275 1
Cable TV Company 38.50 3
Joe's Car Palace 385 5
S.C. Student Loan 220 6
Florida Water Company 22 1
U-O-Us Insurance Company 137.50 5

9 rows selected.

The final step is to test the UPDATE function. For all bills that have a NEW_TOTAL
greater than 100, add an additional 10.

INPUT/OUTPUT:

SQL> UPDATE LATE_PAYMENT
 2 SET NEW_TOTAL = NEW_TOTAL + 10
 3 WHERE NEW_TOTAL > 100;

9 rows updated.

SQL> SELECT * FROM LATE_PAYMENT;

NAME NEW_TOTAL ACCOUNT_ID
Phone Company 147.50 1
Power Company 82.50 1
Record Club 27.50 2
Software Company 285 1
Cable TV Company 38.50 3
Joe's Car Palace 395 5
S.C. Student Loan 230 6
Florida Water Company 22 1
U-O-Us Insurance Company 147.50 5

9 rows selected.

Problems with Modifying Data Using Views

Because what you see through a view can be some set of a group of tables, modifying the
data in the underlying tables is not always as straightforward as the previous
examples. Following is a list of the most common restrictions you will encounter while
working with views:

● You cannot use DELETE statements on multiple table views.

● You cannot use the INSERT statement unless all NOT NULL columns used in the
underlying table are included in the view. This restriction applies because the
SQL processor does not know which values to insert into the NOT NULL columns.

● If you do insert or update records through a join view, all records that are
updated must belong to the same physical table.

● If you use the DISTINCT clause to create a view, you cannot update or insert
records within that view.

● You cannot update a virtual column (a column that is the result of an expression
or function).

Common Applications of Views

Here are a few of the tasks that views can perform:

● Providing user security functions

● Converting between units

● Creating a new virtual table format

● Simplifying the construction of complex queries

Views and Security

Although a complete discussion of database security appears in Day 12, "Database
Security," we briefly touch on the topic now to explain how you can use views in
performing security functions.

All relational database systems in use today include a full suite of built-in security
features. Users of the database system are generally divided into groups based on their
use of the database. Common group types are database administrators, database

developers, data entry personnel, and public users. These groups of users have varying
degrees of privileges when using the database. The database administrator will probably
have complete control of the system, including UPDATE, INSERT, DELETE, and ALTER
database privileges. The public group may be granted only SELECT privileges--and
perhaps may be allowed to SELECT only from certain tables within certain databases.

Views are commonly used in this situation to control the information that the database
user has access to. For instance, if you wanted users to have access only to the NAME
field of the BILLS table, you could simply create a view called BILLS_NAME:

INPUT/OUTPUT:

SQL> CREATE VIEW BILLS_NAME AS
 2 SELECT NAME FROM BILLS;

View created.

Someone with system administrator-level privileges could grant the public group
SELECT privileges on the BILLS_NAME view. This group would not have any privileges
on the underlying BILLS table. As you might guess, SQL has provided data security
statements for your use also. Keep in mind that views are very useful for implementing
database security.

Using Views to Convert Units

Views are also useful in situations in which you need to present the user with data that
is different from the data that actually exists within the database. For instance, if the
AMOUNT field is actually stored in U.S. dollars and you don't want Canadian users to
have to continually do mental calculations to see the AMOUNT total in Canadian
dollars, you could create a simple view called CANADIAN_BILLS:

INPUT/OUTPUT:

SQL> CREATE VIEW CANADIAN_BILLS (NAME, CAN_AMOUNT) AS
 2 SELECT NAME, AMOUNT / 1.10
 3 FROM BILLS;

View Created.

SQL> SELECT * FROM CANADIAN_BILLS;

NAME CAN_AMOUNT
Phone Company 125
Power Company 75
Record Club 25
Software Company 250
Cable TV Company 35
Joe's Car Palace 350

S.C. Student Loan 200
Florida Water Company 20
U-O-Us Insurance Company 125

9 rows selected.

ANALYSIS:

When converting units like this, keep in mind the possible problems inherent in modifying
the underlying data in a table when a calculation (such as the preceding example) was
used to create one of the columns of the view. As always, you should consult your
database system's documentation to determine exactly how the system implements the
CREATE VIEW command.

Simplifying Complex Queries Using Views

Views are also useful in situations that require you to perform a sequence of queries to
arrive at a result. The following example illustrates the use of a view in this situation.

To give the name of all banks that sent bills to the state of Texas with an amount less
than $50, you would break the problem into two separate problems:

● Retrieve all bills that were sent to Texas

● Retrieve all bills less than $50

Let's solve this problem using two separate views: BILLS_1 and BILLS_2:

INPUT/OUTPUT:

SQL> CREATE TABLE BILLS1 AS
 2 SELECT * FROM BILLS
 3 WHERE AMOUNT < 50;

Table created.

SQL> CREATE TABLE BILLS2 (NAME, AMOUNT, ACCOUNT_ID) AS
 2 SELECT BILLS.* FROM BILLS, COMPANY
 3 WHERE BILLS.NAME = COMPANY.NAME AND COMPANY.STATE = "TX";

Table created.

ANALYSIS:

Because you want to find all bills sent to Texas and all bills that were less than $50,
you can now use the SQL IN clause to find which bills in BILLS1 were sent to Texas.
Use this information to create a new view called BILLS3:

INPUT/OUTPUT:

SQL> CREATE VIEW BILLS3 AS
 2 SELECT * FROM BILLS2 WHERE NAME IN
 3 (SELECT * FROM BILLS1);

View created.

Now combine the preceding query with the BANK_ACCOUNTS table to satisfy the original
requirements of this example:

INPUT/OUTPUT:

SQL> CREATE VIEW BANKS_IN_TEXAS (BANK) AS
 2 SELECT BANK_ACCOUNTS.BANK
 3 FROM BANK_ACCOUNTS, BILLS3
 4 WHERE BILLS3.ACCOUNT_ID = BANK_ACCOUNTS.ACCOUNT_ID;

View created.

SQL> SELECT * FROM BANK_IN_TEXAS;

BANK
Credit Union

1 row selected.

ANALYSIS:

As you can see, after the queries were broken down into separate views, the final query
was rather simple. Also, you can reuse the individual views as often as necessary.

The DROP VIEW Statement

In common with every other SQL CREATE... command, CREATE VIEW has a corresponding
DROP... command. The syntax is as follows:

SYNTAX:

SQL> DROP VIEW view_name;

The only thing to remember when using the DROP VIEW command is that all other views
that reference that view are now invalid. Some database systems even drop all views
that used the view you dropped. Using Personal Oracle7, if you drop the view BILLS1,
the final query would produce the following error:

INPUT/OUTPUT:

SQL> DROP VIEW BILLS1;

View dropped.

SQL> SELECT * FROM BANKS_IN_TEXAS;
*
ERROR at line 1:
ORA-04063: view "PERKINS.BANKS_IN_TEXAS" has errors

NOTE: A view can be dropped without any of the actual tables being
modified, which explains why we often refer to views as virtual tables. (The
same logic can be applied to the technology of virtual reality.)

Using Indexes
Another way to present data in a different format than it physically exists on the disk
is to use an index. In addition, indexes can also reorder the data stored on the disk
(something views cannot do).

Indexes are used in an SQL database for three primary reasons:

● To enforce referential integrity constraints by using the UNIQUE keyword

● To facilitate the ordering of data based on the contents of the index's field or
fields

● To optimize the execution speed of queries

What Are Indexes?

Data can be retrieved from a database using two methods. The first method, often
called the Sequential Access Method, requires SQL to go through each record looking
for a match. This search method is inefficient, but it is the only way for SQL to locate
the correct record. Think back to the days when libraries had massive card catalog
filing systems. Suppose the librarian removed the alphabetical index cards, tossed the
cards into the air, then placed them back into the filing cabinets. When you wanted to
look up this book's shelf location, you would probably start at the very beginning, then
go through one card at a time until you found the information you wanted. (Chances
are, you would stop searching as soon as you found any book on this topic!)

Now suppose the librarian sorted the book titles alphabetically. You could quickly
access this book's information by using your knowledge of the alphabet to move through
the catalog.

Imagine the flexibility if the librarian was diligent enough to not only sort the books
by title but also create another catalog sorted by author's name and another sorted by
topic. This process would provide you, the library user, with a great deal of flexibility
in retrieving information. Also, you would be able to retrieve your information in a
fraction of the time it originally would have taken.

Adding indexes to your database enables SQL to use the Direct Access Method. SQL uses
a treelike structure to store and retrieve the index's data. Pointers to a group of data
are stored at the top of the tree. These groups are called nodes. Each node contains
pointers to other nodes. The nodes pointing to the left contain values that are less
than its parent node. The pointers to the right point to values greater than the parent
node.

The database system starts its search at the top node and simply follows the pointers
until it is successful.

NOTE: The result of a query against the unindexed table is commonly
referred to as a full-table scan. A full-table scan is the process used by the
database server to search every row of a table until all rows are returned
with the given condition(s). This operation is comparable to searching for a
book in the library by starting at the first book on the first shelf and
scanning every book until you find the one you want. On the other hand, to
find the book quickly, you would probably look in the (computerized) card
catalog. Similarly, an index enables the database server to point to specific
rows of data quickly within a table.

Fortunately, you are not required to actually implement the tree structure yourself,
just as you are not required to write the implementation for saving and reading in
tables or databases. The basic SQL syntax to create an index is as follows:

INPUT/OUTPUT:

SQL> CREATE INDEX index_name
 2 ON table_name(column_name1, [column_name2], ...);

Index created.

As you have seen many times before, the syntax for CREATE INDEX can vary widely
among database systems. For instance, the CREATE INDEX statement under Oracle7
looks like this:

SYNTAX:

CREATE INDEX [schema.]index
ON { [schema.]table (column [!!under!!ASC|DESC]
 [, column [!!under!!ASC|DESC]] ...)
 | CLUSTER [schema.]cluster }
[INITRANS integer] [MAXTRANS integer]
[TABLESPACE tablespace]
[STORAGE storage_clause]
[PCTFREE integer]
[NOSORT]

The syntax for CREATE INDEX using Sybase SQL Server is as follows:

SYNTAX:

create [unique] [clustered | nonclustered]
 index index_name
on [[database.]owner.]table_name (column_name
 [, column_name]...)
[with {fillfactor = x, ignore_dup_key, sorted_data,
 [ignore_dup_row | allow_dup_row]}]
[on segment_name]

Informix SQL implements the command like this:

SYNTAX:

CREATE [UNIQUE | DISTINCT] [CLUSTER] INDEX index_name
ON table_name (column_name [ASC | DESC],
 column_name [ASC | DESC]...)

Notice that all of these implementations have several things in common, starting with
the basic statement

CREATE INDEX index_name ON table_name (column_name, ...)

SQL Server and Oracle allow you to create a clustered index, which is discussed later.
Oracle and Informix allow you to designate whether the column name should be sorted
in ascending or descending order. We hate to sound like a broken record, but, once
again, you should definitely consult your database management system's documentation
when using the CREATE INDEX command.

For instance, to create an index on the ACCOUNT_ID field of the BILLS table, the
CREATE INDEX statement would look like this:

INPUT:

SQL> SELECT * FROM BILLS;

OUTPUT:

NAME AMOUNT ACCOUNT_ID
Phone Company 125 1
Power Company 75 1
Record Club 25 2
Software Company 250 1
Cable TV Company 35 3
Joe's Car Palace 350 5
S.C. Student Loan 200 6
Florida Water Company 20 1
U-O-Us Insurance Company 125 5
Debtor's Credit Card 35 4

10 rows selected.

INPUT/OUTPUT:

SQL> CREATE INDEX ID_INDEX ON BILLS(ACCOUNT_ID);

Index created.

SQL> SELECT * FROM BILLS;

NAME AMOUNT ACCOUNT_ID
Phone Company 125 1
Power Company 75 1
Software Company 250 1
Florida Water Company 20 1
Record Club 25 2
Cable TV Company 35 3
Debtor's Credit Card 35 4
Joe's Car Palace 350 5
U-O-Us Insurance Company 125 5
S.C. Student Loan 200 6

10 rows selected.

The BILLS table is sorted by the ACCOUNT_ID field until the index is dropped using the
DROP INDEX statement. As usual, the DROP INDEX statement is very straightforward:

SYNTAX:

SQL> DROP INDEX index_name;

Here's what happens when the index is dropped:

INPUT/OUTPUT:

SQL> DROP INDEX ID_INDEX;

Index dropped.

SQL> SELECT * FROM BILLS;

NAME AMOUNT ACCOUNT_ID
Phone Company 125 1
Power Company 75 1
Record Club 25 2
Software Company 250 1
Cable TV Company 35 3
Joe's Car Palace 350 5
S.C. Student Loan 200 6
Florida Water Company 20 1
U-O-Us Insurance Company 125 5
Debtor's Credit Card 35 4

10 rows selected.

ANALYSIS:

Now the BILLS table is in its original form. Using the simplest form of the CREATE
INDEX statement did not physically change the way the table was stored.

You may be wondering why database systems even provide indexes if they also enable
you to use the ORDER BY clause.

INPUT/OUTPUT:

SQL> SELECT * FROM BILLS ORDER BY ACCOUNT_ID;

NAME AMOUNT ACCOUNT_ID
Phone Company 125 1
Power Company 75 1
Software Company 250 1
Florida Water Company 20 1
Record Club 25 2
Cable TV Company 35 3
Debtor's Credit Card 35 4
Joe's Car Palace 350 5
U-O-Us Insurance Company 125 5
S.C. Student Loan 200 6

10 rows selected.

ANALYSIS:

This SELECT statement and the ID_INDEX on the BILLS table generate the same result.
The difference is that an ORDER BY clause re-sorts and orders the data each time you
execute the corresponding SQL statement. When using an index, the database system
creates a physical index object (using the tree structure explained earlier) and reuses
the same index each time you query the table.

WARNING: When a table is dropped, all indexes associated with the table
are dropped as well.

Indexing Tips

Listed here are several tips to keep in mind when using indexes:

● For small tables, using indexes does not result in any performance improvement.

● Indexes produce the greatest improvement when the columns you have indexed on
contain a wide variety of data or many NULL values.

● Indexes can optimize your queries when those queries are returning a small
amount of data (a good rule of thumb is less than 25 percent of the data). If you
are returning more data most of the time, indexes simply add overhead.

● Indexes can improve the speed of data retrieval. However, they slow data updates.
Keep this in mind when doing many updates in a row with an index. For very large
updates, you might consider dropping the index before you perform the update.
When the update is complete, simply rebuild your index. On one particular update,
we were able to save the programmers 18 hours by dropping the index and re-
creating it after the data load.

● Indexes take up space within your database. If you are using a database
management system that enables you to manage the disk space taken up your
database, factor in the size of indexes when planning your database's size.

● Always index on fields that are used in joins between tables. This technique can
greatly increase the speed of a join.

● Most database systems do not allow you to create an index on a view. If your
database system allows it, use the technique clause with the SELECT statement
that builds the view to order the data within the view. (Unfortunately, many
systems don't enable the ORDER BY clause with the CREATE VIEW statement
either.)

● Do not index on fields that are updated or modified regularly. The overhead
required to constantly update the index will offset any performance gain you
hope to acquire.

● Do not store indexes and tables on the same physical drive. Separating these

objects will eliminate drive contention and result in faster queries.

Indexing on More Than One Field

SQL also enables you to index on more than one field. This type of index is a composite
index. The following code illustrates a simple composite index. Note that even though
two fields are being combined, only one physical index is created (called
ID_CMPD_INDEX).

INPUT/OUTPUT:

SQL> CREATE INDEX ID_CMPD_INDEX ON BILLS(ACCOUNT_ID, AMOUNT);

Index created.

SQL> SELECT * FROM BILLS;

NAME AMOUNT ACCOUNT_ID
Florida Water Company 20 1
Power Company 75 1
Phone Company 125 1
Software Company 250 1
Record Club 25 2
Cable TV Company 35 3
Debtor's Credit Card 35 4
U-O-Us Insurance Company 125 5
Joe's Car Palace 350 5
S.C. Student Loan 200 6

10 rows selected.

SQL> DROP INDEX ID_CMPD_INDEX;

Index dropped.

ANALYSIS:

You can achieve performance gains by selecting the column with the most unique
values. For instance, every value in the NAME field of the BILLS table is unique. When
using a compound index, place the most selective field first in the column list. That is,
place the field that you expect to select most often at the beginning of the list. (The
order in which the column names appear in the CREATE INDEX statement does not have
to be the same as their order within the table.) Assume you are routinely using a
statement such as the following:

SQL> SELECT * FROM BILLS WHERE NAME = "Cable TV Company";

To achieve performance gains, you must create an index using the NAME field as the
leading column. Here are two examples:

SQL> CREATE INDEX NAME_INDEX ON BILLS(NAME, AMOUNT);

or

SQL> CREATE INDEX NAME_INDEX ON BILLS(NAME);

The NAME field is the left-most column for both of these indexes, so the preceding query
would be optimized to search on the NAME field.

Composite indexes are also used to combine two or more columns that by themselves may
have low selectivity. For an example of selectivity, examine the BANK_ACCOUNTS table:

ACCOUNT_ID TYPE BALANCE BANK
1 Checking 500 First Federal
2 Money Market 1200 First Investor's
3 Checking 90 Credit Union
4 Savings 400 First Federal
5 Checking 2500 Second Mutual
6 Business 4500 Fidelity

Notice that out of six records, the value Checking appears in three of them. This
column has a lower selectivity than the ACCOUNT_ID field. Notice that every value of
the ACCOUNT_ID field is unique. To improve the selectivity of your index, you could
combine the TYPE and ACCOUNT_ID fields in a new index. This step would create a
unique index value (which, of course, is the highest selectivity you can get).

NOTE: An index containing multiple columns is often referred to as a
composite index. Performance issues may sway your decision on whether to use
a single-column or composite index. In Oracle, for example, you may decide
to use a single-column index if most of your queries involve one particular
column as part of a condition; on the other hand, you would probably
create a composite index if the columns in that index are often used
together as conditions for a query. Check your specific implementation on
guidance when creating multiple-column indexes.

Using the UNIQUE Keyword with CREATE INDEX

Composite indexes are often used with the UNIQUE keyword to prevent multiple records
from appearing with the same data. Suppose you wanted to force the BILLS table to
have the following built-in "rule": Each bill paid to a company must come from a
different bank account. You would create a UNIQUE index on the NAME and
ACCOUNT_ID fields. Unfortunately, Oracle7 does not support the UNIQUE syntax.
Instead, it implements the UNIQUE feature using the UNIQUE integrity constraint. The

following example demonstrates the UNIQUE keyword with CREATE INDEX using
Sybase's Transact-SQL language.

INPUT:

1> create unique index unique_id_name
2> on BILLS(ACCOUNT_ID, NAME)
3> go
1> select * from BILLS
2> go

OUTPUT:

NAME AMOUNT ACCOUNT_ID
Florida Water Company 20 1
Power Company 75 1
Phone Company 125 1
Software Company 250 1
Record Club 25 2
Cable TV Company 35 3
Debtor's Credit Card 35 4
U-O-Us Insurance Company 125 5
Joe's Car Palace 350 5
S.C. Student Loan 200 6

Now try to insert a record into the BILLS table that duplicates data that already
exists.

INPUT:

1> insert BILLS (NAME, AMOUNT, ACCOUNT_ID)
2> values("Power Company", 125, 1)
3> go

ANALYSIS:

You should have received an error message telling you that the INSERT command was
not allowed. This type of error message can be trapped within an application program,
and a message could tell the user he or she inserted invalid data.

Example 10.3

Create an index on the BILLS table that will sort the AMOUNT field in descending
order.

INPUT/OUTPUT:

SQL> CREATE INDEX DESC_AMOUNT

 ON BILLS(AMOUNT DESC);

Index created.

ANALYSIS:

This is the first time you have used the DESC operator, which tells SQL to sort the index
in descending order. (By default a number field is sorted in ascending order.) Now you
can examine your handiwork:

INPUT/OUTPUT:

SQL> SELECT * FROM BILLS;

NAME AMOUNT ACCOUNT_ID
Joe's Car Palace 350 5
Software Company 250 1
S.C. Student Loan 200 6
Phone Company 125 1
U-O-Us Insurance Company 125 5
Power Company 75 1
Cable TV Company 35 3
Debtor's Credit Card 35 4
Record Club 25 2
Florida Water Company 20 1

10 rows selected.

ANALYSIS:

This example created an index using the DESC operator on the column amount. Notice in
the output that the amount is ordered from largest to smallest.

Indexes and Joins

When using complicated joins in queries, your SELECT statement can take a long time.
With large tables, this amount of time can approach several seconds (as compared to the
milliseconds you are used to waiting). This type of performance in a client/server
environment with many users becomes extremely frustrating to the users of your
application. Creating an index on fields that are frequently used in joins can optimize
the performance of your query considerably. However, if too many indexes are created,
they can slow down the performance of your system, rather than speed it up. We
recommend that you experiment with using indexes on several large tables (on the order
of thousands of records). This type of experimentation leads to a better understanding
of optimizing SQL statements.

NOTE: Most implementations have a mechanism for gathering the elapsed

time of a query; Oracle refers to this feature as timing. Check your
implementation for specific information.

The following example creates an index on the ACCOUNT_ID fields in the BILLS and
BANK_ACCOUNTS tables:

INPUT/OUTPUT:

SQL> CREATE INDEX BILLS_INDEX ON BILLS(ACCOUNT_ID);

Index created.

SQL> CREATE INDEX BILLS_INDEX2 ON BANK_ACCOUNTS(ACCOUNT_ID);

Index created.

SQL> SELECT BILLS.NAME NAME, BILLS.AMOUNT AMOUNT,
BANK_ACCOUNTS.BALANCE
 2 ACCOUNT_BALANCE
 3 FROM BILLS, BANK_ACCOUNTS
 4 WHERE BILLS.ACCOUNT_ID = BANK_ACCOUNTS.ACCOUNT_ID;

NAME AMOUNT ACCOUNT_BALANCE
Phone Company 125 500
Power Company 75 500
Software Company 250 500
Florida Water Company 20 500
Record Club 25 1200
Cable TV Company 35 90
Debtor's Credit Card 35 400
Joe's Car Palace 350 2500
U-O-Us Insurance Company 125 2500
S.C. Student Loan 200 4500

10 rows selected.

ANALYSIS:

This example first created an index for the ACCOUNT_ID on both tables in the associated
query. By creating indexes for ACCOUNT_ID on each table, the join can more quickly
access specific rows of data. As a rule, you should index the column(s) of a table that
are unique or that you plan to join tables with in queries.

Using Clusters

Although we originally said that indexes can be used to present a view of a table that
is different from the existing physical arrangement, this statement is not entirely
accurate. A special type of index supported by many database systems allows the
database manager or developer to cluster data. When a clustered index is used, the

physical arrangement of the data within a table is modified. Using a clustered index
usually results in faster data retrieval than using a traditional, nonclustered index.
However, many database systems (such as Sybase SQL Server) allow only one clustered
index per table. The field used to create the clustered index is usually the primary key
field. Using Sybase Transact-SQL, you could create a clustered, unique index on the
ACCOUNT_ID field of the BANK_ACCOUNTS table using the following syntax:

SYNTAX:

create unique clustered index id_index
on BANK_ACCOUNTS(ACCOUNT_ID)
 go

Oracle treats the concept of clusters differently. When using the Oracle relational
database, a cluster is a database object like a database or table. A cluster is used to
store tables with common fields so that their access speed is improved.

Here is the syntax to create a cluster using Oracle7:

SYNTAX:

CREATE CLUSTER [schema.]cluster
(column datatype [,column datatype] ...)
[PCTUSED integer] [PCTFREE integer]
[SIZE integer [K|M]]
[INITRANS integer] [MAXTRANS integer]
[TABLESPACE tablespace]
[STORAGE storage_clause]
[!!under!!INDEX
| [HASH IS column] HASHKEYS integer]

You should then create an index within the cluster based on the tables that will be
added to it. Then you can add the tables. You should add tables only to clusters that
are frequently joined. Do not add tables to clusters that are accessed individually
through a simple SELECT statement.

Obviously, clusters are a very vendor-specific feature of SQL. We will not go into more
detail here on their use or on the syntax that creates them. However, consult your
database vendor's documentation to determine whether your database management
system supports these useful objects.

Summary
Views are virtual tables. Views are simply a way of presenting data in a format that is
different from the way it actually exists in the database. The syntax of the CREATE
VIEW statement uses a standard SELECT statement to create the view (with some

exceptions). You can treat a view as a regular table and perform inserts, updates,
deletes, and selects on it. We briefly discussed the use of database security and how
views are commonly used to implement this security. Database security is covered in
greater detail on Day 12.

The basic syntax used to create a view is

CREATE VIEW view_name AS
SELECT field_name(s) FROM table_name(s);

Here are the most common uses of views:

● To perform user security functions

● To convert units

● To create a new virtual table format

● To simplify the construction of complex queries

Indexes are also database design and SQL programming tools. Indexes are physical
database objects stored by your database management system that can be used to
retrieve data already sorted from the database. In addition, thanks to the way indexes
are mapped out, using indexes and properly formed queries can yield significant
performance improvements.

The basic syntax used to create an index looks like this:

CREATE INDEX index_name
ON table_name(field_name(s));

Some database systems include very useful additional options such as the UNIQUE and
CLUSTERED keywords.

Q&A
Q If the data within my table is already in sorted order, why should I use an
index on that table?

A An index still gives you a performance benefit by looking quickly through key
values in a tree. The index can locate records faster than a direct access search
through each record within your database. Remember--the SQL query processor
doesn't necessarily know that your data is in sorted order.

Q Can I create an index that contains fields from multiple tables?

A No, you cannot. However, Oracle7, for instance, allows you to create a cluster.
You can place tables within a cluster and create cluster indexes on fields that
are common to the tables. This implementation is the exception, not the rule, so be
sure to study your documentation on this topic in more detail.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. What will happen if a unique index is created on a nonunique field?

2. Are the following statements true or false?

Both views and indexes take up space in the database and therefore must be
factored in the planning of the database size.

If someone updates a table on which a view has been created, the view must

If someone updates a table on which a view has been created, the view must

Teach Yourself SQL in 21 Days, Second
Edition

- Day 11 -
Controlling Transactions

You have spent the last 10 days learning virtually everything that you can do with
data within a relational database. For example, you know how to use the SQL SELECT
statement to retrieve data from one or more tables based on a number of conditions
supplied by the user. You have also had a chance to use data modification statements
such as INSERT, UPDATE, and DELETE. As of today, you have become an intermediate-
level SQL and database user. If required, you could build a database with its associated
tables, each of which would contain several fields of different data types. Using proper
design techniques, you could leverage the information contained within this database
into a powerful application.

Objectives
If you are a casual user of SQL who occasionally needs to retrieve data from a
database, the topics of the first 10 days provide most of the information you will need.
However, if you intend to (or are currently required to) develop a professional
application using any type of relational database, the advanced topics covered over the
next four days--transaction control, security, embedded SQL programming, and database
procedures--will help you a great deal. We begin with transaction control. By the end
of the day, you will know the following:

● The basics of transaction control

● How to finalize and or cancel a transaction

● Some of the differences between Sybase and Oracle transactions

NOTE: We used both Personal Oracle7 and Sybase's SQL Server to generate
today's examples. Please see the documentation for your specific SQL
implementation for any minor differences in syntax.

Transaction Control
Transaction control, or transaction management, refers to the capability of a
relational database management system to perform database transactions. Transactions
are units of work that must be done in a logical order and successfully as a group or
not at all. The term unit of work means that a transaction has a beginning and an end.
If anything goes wrong during the transaction, the entire unit of work can be canceled
if desired. If everything looks good, the entire unit of work can be saved to the
database.

In the coming months or years you will probably be implementing applications for
multiple users to use across a network. Client/server environments are designed
specifically for this purpose. Traditionally, a server (in this case, a database server)
supports multiple network connections to it. As often happens with technology, this
newfound flexibility adds a new degree of complexity to the environment. Consider the
banking application described in the next few paragraphs.

The Banking Application
You are employed by First Federal Financial Bank to set up an application that handles
checking account transactions that consist of debits and credits to customers' checking
accounts. You have set up a nice database, which has been tested and verified to work
correctly. After calling up your application, you verify that when you take $20 out of
the account, $20 actually disappears from the database. When you add $50.25 to the
checking account, this deposit shows up as expected. You proudly announce to your
bosses that the system is ready to go, and several computers are set up in a local branch
to begin work.

Within minutes, you notice a situation that you did not anticipate: As one teller is
depositing a check, another teller is withdrawing money from the same account. Within
minutes, many depositors' balances are incorrect because multiple users are updating
tables simultaneously. Unfortunately, these multiple updates are overwriting each
other. Shortly thereafter, your application is pulled offline for an overhaul. We will
work through this problem with a database called CHECKING. Within this database are
two tables, shown in Tables 11.1 and 11.2.

Table 11.1. The CUSTOMERS table.

Name Address City State Zip Customer_ID

Bill Turner
725 N. Deal
Parkway

Washington DC 20085 1

John Keith
1220 Via De Luna
Dr.

Jacksonville FL 33581 2

Mary
Rosenberg

482 Wannamaker
Avenue

Williamsburg VA 23478 3

David Blanken
405 N. Davis
Highway

Greenville SC 29652 4

Rebecca Little 7753 Woods Lane Houston TX 38764 5

Table 11.2. The BALANCES table.

Average_Bal Curr_Bal Account_ID

1298.53 854.22 1

5427.22 6015.96 2

211.25 190.01 3

73.79 25.87 4

1285.90 1473.75 5

1234.56 1543.67 6

345.25 348.03 7

Assume now that your application program performs a SELECT operation and retrieves
the following data for Bill Turner:

OUTPUT:

NAME: Bill Turner
ADDRESS: 725 N. Deal Parkway
CITY: Washington
STATE: DC
ZIP: 20085
CUSTOMER_ID: 1

While this information is being retrieved, another user with a connection to this
database updates Bill Turner's address information:

INPUT:

SQL> UPDATE CUSTOMERS SET Address = "11741 Kingstowne Road"

 WHERE Name = "Bill Turner";

As you can see, the information you retrieved earlier could be invalid if the update
occurred during the middle of your SELECT. If your application fired off a letter to be
sent to Mr. Bill Turner, the address it used would be wrong. Obviously, if the letter has
already been sent, you won't be able to change the address. However, if you had used a
transaction, this data change could have been detected, and all your other operations
could have been rolled back.

Beginning a Transaction
Transactions are quite simple to implement. You will examine the syntax used to perform
transactions using the Oracle RDBMS SQL syntax as well as the Sybase SQL Server SQL
syntax.

All database systems that support transactions must have a way to explicitly tell the
system that a transaction is beginning. (Remember that a transaction is a logical
grouping of work that has a beginning and an end.) Using Personal Oracle7, the syntax
looks like this:

SYNTAX:

SET TRANSACTION {READ ONLY | USE ROLLBACK SEGMENT segment}

The SQL standard specifies that each database's SQL implementation must support
statement-level read consistency; that is, data must stay consistent while one
statement is executing. However, in many situations data must remain valid across a
single unit of work, not just within a single statement. Oracle enables the user to
specify when the transaction will begin by using the SET TRANSACTION statement. If
you wanted to examine Bill Turner's information and make sure that the data was not
changed, you could do the following:

INPUT:

SQL> SET TRANSACTION READ ONLY;
SQL> SELECT * FROM CUSTOMERS
 WHERE NAME = 'Bill Turner';

---Do Other Operations---

SQL> COMMIT;

We discuss the COMMIT statement later today. The SET TRANSACTION READ ONLY
option enables you to effectively lock a set of records until the transaction ends. You
can use the READ ONLY option with the following commands:

SELECT

LOCK TABLE

SET ROLE

ALTER SESSION

ALTER SYSTEM

The option USE ROLLBACK SEGMENT tells Oracle which database segment to use for
rollback storage space. This option is an Oracle extension to standard SQL syntax.
Consult your Oracle documentation for more information on using segments to maintain
your database.

SQL Server's Transact-SQL language implements the BEGIN TRANSACTION command
with the following syntax:

SYNTAX:

begin {transaction | tran} [transaction_name]

This implementation is a little different from the Oracle implementation. (Sybase does
not allow you to specify the READ ONLY option.) However, Sybase does allow you to
give a transaction a name, as long as that transaction is the outermost of a set of
nested transactions.

The following group of statements illustrates the use of nested transactions using
Sybase's Transact-SQL language:

INPUT:

1> begin transaction new_account
2> insert CUSTOMERS values ("Izetta Parsons", "1285 Pineapple
Highway", "Greenville", "AL" 32854, 6)
3> if exists(select * from CUSTOMERS where Name = "Izetta Parsons")
4> begin
5> begin transaction
6> insert BALANCES values(1250.76, 1431.26, 8)
7> end
8> else
9> rollback transaction
10> if exists(select * from BALANCES where Account_ID = 8)
11> begin
12> begin transaction
13> insert ACCOUNTS values(8, 6)

14> end
15> else
16> rollback transaction
17> if exists (select * from ACCOUNTS where Account_ID = 8 and
Customer_ID = 6)
18> commit transaction
19> else
20> rollback transaction
21> go

For now, don't worry about the ROLLBACK TRANSACTION and COMMIT TRANSACTION
statements. The important aspect of this example is the nested transaction--or a
transaction within a transaction.

Notice that the original transaction (new_account) begins on line 1. After the first
insert, you check to make sure the INSERT was executed properly. Another transaction
begins on line 5. This transaction within a transaction is termed a nested transaction.

Other databases support the AUTOCOMMIT option. This option can be used with the SET
command. For example:

SET AUTOCOMMIT [ON | OFF]

By default, the SET AUTOCOMMIT ON command is executed at startup. It tells SQL to
automatically commit all statements you execute. If you do not want these commands
to be automatically executed, set the AUTOCOMMIT option to off:

SET AUTOCOMMIT OFF

NOTE: Check your database system's documentation to determine how you
would begin a transaction.

Finishing a Transaction
The Oracle syntax to end a transaction is as follows:

SYNTAX:

COMMIT [WORK]
[COMMENT 'text'
| FORCE 'text' [, integer]] ;

Here is the same command using Sybase syntax:

SYNTAX:

COMMIT (TRANSACTION | TRAN | WORK) (TRANSACTION_NAME)

The COMMIT command saves all changes made during a transaction. Executing a COMMIT
statement before beginning a transaction ensures that no errors were made and no
previous transactions are left hanging.

The following example verifies that the COMMIT command can be used by itself without
receiving an error back from the database system.

INPUT:

SQL> COMMIT;
SQL> SET TRANSACTION READ ONLY;
SQL> SELECT * FROM CUSTOMERS
 WHERE NAME = 'Bill Turner';

---Do Other Operations---

SQL> COMMIT;

An Oracle SQL use of the COMMIT statement would look like this:

INPUT:

SQL> SET TRANSACTION;
SQL> INSERT INTO CUSTOMERS VALUES
 ("John MacDowell", "2000 Lake Lunge Road", "Chicago", "IL",
42854, 7);
SQL> COMMIT;
SQL> SELECT * FROM CUSTOMERS;

The CUSTOMERS table.

Name Address City State Zip Customer_ID

Bill Turner
725 N. Deal
Parkway

Washington DC 20085 1

John Keith
1220 Via De Luna
Dr.

Jacksonville FL 33581 2

Mary Rosenberg
482 Wannamaker
Avenue

Williamsburg VA 23478 3

David Blanken
405 N. Davis
Highway

Greenville SC 29652 4

Rebecca Little 7753 Woods Lane Houston TX 38764 5

Izetta Parsons
1285 Pineapple
Highway

Greenville AL 32854 6

John
MacDowell

2000 Lake Lunge
Road

Chicago IL 42854 7

A Sybase SQL use of the COMMIT statement would look like this:

INPUT:

1> begin transaction
2> insert into CUSTOMERS values
 ("John MacDowell", "2000 Lake Lunge Road", "Chicago", "IL", 42854,
7)
3> commit transaction
4> go
1> select * from CUSTOMERS
2> go

The CUSTOMERS table.

Name Address City State Zip Customer_ID

Bill Turner
725 N. Deal
Parkway

Washington DC 20085 1

John Keith
1220 Via De Luna
Dr.

Jacksonville FL 33581 2

Mary Rosenberg
482 Wannamaker
Avenue

Williamsburg VA 23478 3

David Blanken
405 N. Davis
Highway

Greenville SC 29652 4

Rebecca Little 7753 Woods Lane Houston TX 38764 5

Izetta Parsons
1285 Pineapple
Highway

Greenville AL 32854 6

John
MacDowell

2000 Lake Lunge
Road

Chicago IL 42854 7

The preceding statements accomplish the same thing as they do using the Oracle7
syntax. However, by putting the COMMIT command soon after the transaction begins,
you ensure that the new transaction will execute correctly.

NOTE: The COMMIT WORK command performs the same operation as the
COMMIT command (or Sybase's COMMIT TRANSACTION command). It is

provided simply to comply with ANSI SQL syntax.

Remember that every COMMIT command must correspond with a previously executed SET
TRANSACTION or BEGIN TRANSACTION command. Note the errors you receive with the
following statements:

Oracle SQL:

INPUT:

SQL> INSERT INTO BALANCES values (18765.42, 19073.06, 8);
SQL> COMMIT WORK;

Sybase SQL:

INPUT:

1> insert into BALANCES values (18765.42, 19073.06, 8)
2> commit work

Canceling the Transaction
While a transaction is in progress, some type of error checking is usually performed to
determine whether it is executing successfully. You can undo your transaction even
after successful completion by issuing the ROLLBACK statement, but it must be issued
before a COMMIT. The ROLLBACK statement must be executed from within a transaction.
The ROLLBACK statement rolls the transaction back to its beginning; in other words,
the state of the database is returned to what it was at the transaction's beginning. The
syntax for this command using Oracle7 is the following:

SYNTAX:

ROLLBACK [WORK]
[TO [SAVEPOINT] savepoint
| FORCE 'text']

As you can see, this command makes use of a transaction savepoint. We discuss this
technique later today.

Sybase Transact-SQL's ROLLBACK statement looks very similar to the COMMIT command:

SYNTAX:

rollback {transaction | tran | work}

 [transaction_name | savepoint_name]

An Oracle SQL sequence of commands might look like this:

INPUT:

SQL> SET TRANSACTION;
SQL> INSERT INTO CUSTOMERS VALUES
 ("Bubba MacDowell", "2222 Blue Lake Way", "Austin", "TX", 39874,
8);
SQL> ROLLBACK;
SQL> SELECT * FROM CUSTOMERS;

The CUSTOMERS table.

Name Address City State Zip Customer_ID

Bill Turner
725 N. Deal
Parkway

Washington DC 20085 1

John Keith
1220 Via De Luna
Dr.

Jacksonville FL 33581 2

Mary Rosenberg
482 Wannamaker
Avenue

Williamsburg VA 23478 3

David Blanken
405 N. Davis
Highway

Greenville SC 29652 4

Rebecca Little 7753 Woods Lane Houston TX 38764 5

Izetta Parsons
1285 Pineapple
Highway

Greenville AL 32854 6

John
MacDowell

2000 Lake Lunge
Road

Chicago IL 42854 7

A Sybase SQL sequence of commands might look like this:

INPUT:

1> begin transaction
2> insert into CUSTOMERS values
 ("Bubba MacDowell", "2222 Blue Lake Way", "Austin", "TX", 39874, 8)
3> rollback transaction
4> go
1> SELECT * FROM CUSTOMERS
2> go

The CUSTOMERS table.

Name Address City State Zip Customer_ID

Bill Turner
725 N. Deal
Parkway

Washington DC 20085 1

John Keith
1220 Via De Luna
Dr.

Jacksonville FL 33581 2

Mary Rosenberg
482 Wannamaker
Avenue

Williamsburg VA 23478 3

David Blanken
405 N. Davis
Highway

Greenville SC 29652 4

Rebecca Little 7753 Woods Lane Houston TX 38764 5

Izetta Parsons
1285 Pineapple
Highway

Greenville AL 32854 6

John
MacDowell

2000 Lake Lunge
Road

Chicago IL 42854 7

As you can see, the new record was not added because the ROLLBACK statement rolled
the insert back.

Suppose you are writing an application for a graphical user interface, such as Microsoft
Windows. You have a dialog box that queries a database and allows the user to change
values. If the user chooses OK, the database saves the changes. If the user chooses
Cancel, the changes are canceled. Obviously, this situation gives you an opportunity to
use a transaction.

NOTE: The following code listing uses Oracle SQL syntax; notice the SQL>
prompt and line numbers. The subsequent listing uses Sybase SQL syntax,
which lacks the SQL> prompt.

When the dialog box is loaded, these SQL statements are executed:

INPUT:

SQL> SET TRANSACTION;
SQL> SELECT CUSTOMERS.NAME, BALANCES.CURR_BAL, BALANCES.ACCOUNT_ID
 2 FROM CUSTOMERS, BALANCES
 3 WHERE CUSTOMERS.NAME = "Rebecca Little"
 4 AND CUSTOMERS.CUSTOMER_ID = BALANCES.ACCOUNT_ID;

The dialog box allows the user to change the current account balance, so you need to
store this value back to the database.

When the user selects OK, the update will run.

INPUT:

SQL> UPDATE BALANCES SET CURR_BAL = 'new-value' WHERE ACCOUNT_ID = 6;
SQL> COMMIT;

When the user selects Cancel, the ROLLBACK statement is issued.

INPUT:

SQL> ROLLBACK;

When the dialog box is loaded using Sybase SQL, these SQL statements are executed:

INPUT:

1> begin transaction
2> select CUSTOMERS.Name, BALANCES.Curr_Bal, BALANCES.Account_ID
3> from CUSTOMERS, BALANCES
4> where CUSTOMERS.Name = "Rebecca Little"
5> and CUSTOMERS.Customer_ID = BALANCES.Account_ID
6> go

The dialog box allows the user to change the current account balance, so you can
store this value back to the database.

Here again, when the OK button is selected, the update will run.

INPUT:

1> update BALANCES set Curr_BAL = 'new-value' WHERE Account_ID = 6
2> commit transaction
3> go

When the user selects Cancel, the ROLLBACK statement is issued.

INPUT:

1> rollback transaction
2> go

The ROLLBACK statement cancels the entire transaction. When you are nesting
transactions, the ROLLBACK statement completely cancels all the transactions,
rolling them back to the beginning of the outermost transaction.

If no transaction is currently active, issuing the ROLLBACK statement or the COMMIT
command has no effect on the database system. (Think of them as dead commands with no
purpose.)

After the COMMIT statement has been executed, all actions with the transaction are
executed. At this point it is too late to roll back the transaction.

Using Transaction Savepoints
Rolling back a transaction cancels the entire transaction. But suppose you want to
"semicommit" your transaction midway through its statements. Both Sybase and Oracle
SQL allow you to save the transaction with a savepoint. From that point on, if a
ROLLBACK is issued, the transaction is rolled back to the savepoint. All statements that
were executed up to the point of the savepoint are saved. The syntax for creating a
savepoint using Oracle SQL is as follows:

SYNTAX:

SAVEPOINT savepoint_name;

Sybase SQL Server's syntax to create a savepoint is the following:

SYNTAX:

save transaction savepoint_name

This following example uses Oracle SQL syntax.

INPUT:

SQL> SET TRANSACTION;
SQL> UPDATE BALANCES SET CURR_BAL = 25000 WHERE ACCOUNT_ID = 5;
SQL> SAVEPOINT save_it;
SQL> DELETE FROM BALANCES WHERE ACCOUNT_ID = 5;
SQL> ROLLBACK TO SAVEPOINT save_it;
SQL> COMMIT;
SQL> SELECT * FROM BALANCES;

The BALANCES table.

Average_Bal Curr_Bal Account_ID

1298.53 854.22 1

5427.22 6015.96 2

211.25 190.01 3

73.79 25.87 4

1285.90 25000.00 5

1234.56 1543.67 6

345.25 348.03 7

1250.76 1431.26 8

This example uses Sybase SQL syntax:

INPUT:

1> begin transaction
2> update BALANCES set Curr_Bal = 25000 where Account_ID = 5
3> save transaction save_it
4> delete from BALANCES where Account_ID = 5
5> rollback transaction save_it
6> commit transaction
7> go
1> select * from BALANCES
2> go

The BALANCES table.

Average_Bal Curr_Bal Account_ID

1298.53 854.22 1

5427.22 6015.96 2

211.25 190.01 3

73.79 25.87 4

1285.90 25000.00 5

1234.56 1543.67 6

345.25 348.03 7

1250.76 1431.26 8

The previous examples created a savepoint called SAVE_IT. An update was made to the
database that changed the value of the CURR_BAL column of the BALANCES table. You
then saved this change as a savepoint. Following this save, you executed a DELETE
statement, but you rolled the transaction back to the savepoint immediately
thereafter. Then you executed COMMIT TRANSACTION, which committed all commands
up to the savepoint. Had you executed a ROLLBACK TRANSACTION after the ROLLBACK
TRANSACTION savepoint_name command, the entire transaction would have been
rolled back and no changes would have been made.

This example uses Oracle SQL syntax:

INPUT:

SQL> SET TRANSACTION;
SQL> UPDATE BALANCES SET CURR_BAL = 25000 WHERE ACCOUNT_ID = 5;
SQL> SAVEPOINT save_it;
SQL> DELETE FROM BALANCES WHERE ACCOUNT_ID = 5;
SQL> ROLLBACK TO SAVEPOINT save_it;
SQL> ROLLBACK;
SQL> SELECT * FROM BALANCES;

The BALANCES table.

Average_Bal Curr_Bal Account_ID

1298.53 854.22 1

5427.22 6015.96 2

211.25 190.01 3

73.79 25.87 4

1285.90 1473.75 5

1234.56 1543.67 6

345.25 348.03 7

1250.76 1431.26 8

This example uses Sybase SQL syntax:

INPUT:

1> begin transaction
2> update BALANCES set Curr_Bal = 25000 where Account_ID = 5
3> save transaction save_it
4> delete from BALANCES where Account_ID = 5
5> rollback transaction save_it
6> rollback transaction
7> go
1> select * from BALANCES
2> go

The BALANCES table.

Average_Bal Curr_Bal Account_ID

1298.53 854.22 1

5427.22 6015.96 2

211.25 190.01 3

73.79 25.87 4

1285.90 1473.75 5

1234.56 1543.67 6

345.25 348.03 7

1250.76 1431.26 8

Summary
A transaction can be defined as an organized unit of work. A transaction usually
performs a series of operations that depend on previously executed operations. If one of
these operations is not executed properly or if data is changed for some reason, the rest
of the work in a transaction should be canceled. Otherwise, if all statements are
executed correctly, the transaction's work should be saved.

The process of canceling a transaction is called a rollback. The process of saving the
work of a correctly executed transaction is called a commit. SQL syntax supports these
two processes through syntax similar to the following two statements:

SYNTAX:

BEGIN TRANSACTION
 statement 1
 statement 2
 statement 3
ROLLBACK TRANSACTION

or

SYNTAX:

BEGIN TRANSACTION
 statement 1
 statement 2
 statement 3
COMMIT TRANSACTION

Q&A
Q If I have a group of transactions and one transaction is unsuccessful, will
the rest of the transactions process?

A No. The entire group must run successfully.

Q After issuing the COMMIT command, I discovered that I made a mistake. How
can I correct the error?

A Use the DELETE, INSERT, and UPDATE commands.

Q Must I issue the COMMIT command after every transaction?

A No. But it is safer to do so to ensure that no errors were made and no previous
transactions are left hanging.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. When nesting transactions, does issuing a ROLLBACK TRANSACTION command
cancel the current transaction and roll back the batch of statements into the
upper-level transaction? Why or why not?

2. Can savepoints be used to "save off" portions of a transaction? Why or why not?

3. Can a COMMIT command be used by itself or must it be embedded?

4. If you issue the COMMIT command and then discover a mistake, can you still use
the ROLLBACK command?

5. Will using a savepoint in the middle of a transaction save all that happened
before it automatically?

Exercises

1. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> START TRANSACTION
 INSERT INTO CUSTOMERS VALUES
 ('SMITH', 'JOHN')
SQL> COMMIT;

2. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> SET TRANSACTION;
 UPDATE BALANCES SET CURR_BAL = 25000;
SQL> COMMIT;

3. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> SET TRANSACTION;
 INSERT INTO BALANCES VALUES
 ('567.34', '230.00', '8');
SQL> ROLLBACK;

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 12 -
Database Security

Today we discuss database security. We specifically look at various SQL statements and
constructs that enable you to administer and effectively manage a relational database.
Like many other topics you have studied thus far, how a database management system
implements security varies widely among products. We focus on the popular database
product Oracle7 to introduce this topic. By the end of the day, you will understand and
be able to do the following:

● Create users

● Change passwords

● Create roles

● Use views for security purposes

● Use synonyms in place of views

Wanted: Database Administrator
Security is an often-overlooked aspect of database design. Most computer professionals
enter the computer world with some knowledge of computer programming or hardware,
and they tend to concentrate on those areas. For instance, if your boss asked you to
work on a brand-new project that obviously required some type of relational database
design, what would be your first step? After choosing some type of hardware and
software baseline, you would probably begin by designing the basic database for the

project. This phase would gradually be split up among several people--one of them a
graphical user interface designer, another a low-level component builder. Perhaps you,
after reading this book, might be asked to code the SQL queries to provide the guts of
the application. Along with this task comes the responsibility of actually administering
and maintaining the database.

Many times, little thought or planning goes into the actual production phase of the
application. What happens when many users are allowed to use the application across a
wide area network (WAN)? With today's powerful personal computer software and with
technologies such as Microsoft's Open Database Connectivity (ODBC), any user with
access to your network can find a way to get at your database. (We won't even bring up
the complexities involved when your company decides to hook your LAN to the Internet
or some other wide-ranging computer network!) Are you prepared to face this situation?

Fortunately for you, software manufacturers provide most of the tools you need to
handle this security problem. Every new release of a network operating system faces
more stringent security requirements than its predecessors. In addition, most major
database vendors build some degree of security into their products, which exists
independently of your operating system or network security. Implementation of these
security features varies widely from product to product.

Popular Database Products and Security
As you know by now, many relational database systems are vying for your business.
Every vendor wants you for short- and long-term reasons. During the development
phase of a project, you might purchase a small number of product licenses for testing,
development, and so forth. However, the total number of licenses required for your
production database can reach the hundreds or even thousands. In addition, when you
decide to use a particular database product, the chances are good that you will stay
with that product for years to come. Here are some points to keep in mind when you
examine these products:

● Microsoft FoxPro database management system is a powerful database system that
is used primarily in single-user environments. FoxPro uses a limited subset of SQL.
No security measures are provided with the system. It also uses an Xbase file
format, with each file containing one table. Indexes are stored in separate files.

● Microsoft Access relational database management system implements more of SQL.
Access is still intended for use on the PC platform, although it does contain a
rudimentary security system. The product enables you to build queries and store
them within the database. In addition, the entire database and all its objects exist
within one file.

● Oracle7 relational database management system supports nearly the full SQL

standard. In addition, Oracle has added its own extension to SQL, called PL*SQL.
It contains full security features, including the capability to create roles and
assign permissions and privileges on objects in the database.

● Sybase SQL Server is similar in power and features to the Oracle product. SQL
Server also provides a wide range of security features and has its own extensions
to the SQL language, called Transact-SQL.

The purpose behind describing these products is to illustrate that not all software is
suitable for every application. If you are in a business environment, your options may be
limited. Factors such as cost and performance are extremely important. However,
without adequate security measures, any savings your database creates can be easily
offset by security problems.

How Does a Database Become Secure?
Up to this point you haven't worried much about the "security" of the databases you
have created. Has it occurred to you that you might not want other users to come in
and tamper with the database information you have so carefully entered? What would
your reaction be if you logged on to the server one morning and discovered that the
database you had slaved over had been dropped (remember how silent the DROP
DATABASE command is)? We examine in some detail how one popular database
management system (Personal Oracle7) enables you to set up a secure database. You
will be able to apply most of this information to other database management systems, so
make sure you read this information even if Oracle is not your system of choice.

TIP: Keep the following questions in mind as you plan your security system:

● Who gets the DBA role?

● How many users will need access to the database?

● Which users will need which privileges and which roles?

● How will you remove users who no longer need access to the database?

Personal Oracle7 and Security
Oracle7 implements security by using three constructs:

● Users

● Roles

● Privileges

Creating Users

Users are account names that are allowed to log on to the Oracle database. The SQL
syntax used to create a new user follows.

SYNTAX:

CREATE USER user
IDENTIFIED {BY password | EXTERNALLY}
[DEFAULT TABLESPACE tablespace]
[TEMPORARY TABLESPACE tablespace]
[QUOTA {integer [K|M] | UNLIMITED} ON tablespace]
[PROFILE profile]

If the BY password option is chosen, the system prompts the user to enter a password
each time he or she logs on. As an example, create a username for yourself:

INPUT/OUTPUT:

SQL> CREATE USER Bryan IDENTIFIED BY CUTIGER;

User created.

Each time I log on with my username Bryan, I am prompted to enter my password:
CUTIGER.

If the EXTERNALLY option is chosen, Oracle relies on your computer system logon name
and password. When you log on to your system, you have essentially logged on to
Oracle.

NOTE: Some implementations allow you to use the external, or operating
system, password as a default when using SQL (IDENTIFIED externally).
However, we recommend that you force the user to enter a password by
utilizing the IDENTIFIED BY clause (IDENTIFIED BY password).

As you can see from looking at the rest of the CREATE USER syntax, Oracle also allows
you to set up default tablespaces and quotas. You can learn more about these topics by
examining the Oracle documentation.

As with every other CREATE command you have learned about in this book, there is also
an ALTER USER command. It looks like this:

SYNTAX:

ALTER USER user
[IDENTIFIED {BY password | EXTERNALLY}]
[DEFAULT TABLESPACE tablespace]
[TEMPORARY TABLESPACE tablespace]
[QUOTA {integer [K|M] | UNLIMITED} ON tablespace]
[PROFILE profile]
[DEFAULT ROLE { role [, role] ...
 | ALL [EXCEPT role [, role] ...] | NONE}]

You can use this command to change all the user's options, including the password and
profile. For example, to change the user Bryan's password, you type this:

INPUT/OUTPUT:

SQL> ALTER USER Bryan
 2 IDENTIFIED BY ROSEBUD;

User altered.

To change the default tablespace, type this:

INPUT/OUTPUT:

SQL> ALTER USER RON
 2 DEFAULT TABLESPACE USERS;

User altered.

To remove a user, simply issue the DROP USER command, which removes the user's entry
in the system database. Here's the syntax for this command:

SYNTAX:

DROP USER user_name [CASCADE];

If the CASCADE option is used, all objects owned by username are dropped along with the
user's account. If CASCADE is not used and the user denoted by user_name still owns
objects, that user is not dropped. This feature is somewhat confusing, but it is useful if
you ever want to drop users.

Creating Roles

A role is a privilege or set of privileges that allows a user to perform certain functions
in the database. To grant a role to a user, use the following syntax:

SYNTAX:

GRANT role TO user [WITH ADMIN OPTION];

If WITH ADMIN OPTION is used, that user can then grant roles to other users. Isn't
power exhilarating?

To remove a role, use the REVOKE command:

SYNTAX:

REVOKE role FROM user;

When you log on to the system using the account you created earlier, you have
exhausted the limits of your permissions. You can log on, but that is about all you can
do. Oracle lets you register as one of three roles:

● Connect

● Resource

● DBA (or database administrator)

These three roles have varying degrees of privileges.

NOTE: If you have the appropriate privileges, you can create your own role,
grant privileges to your role, and then grant your role to a user for
further security.

The Connect Role

The Connect role can be thought of as the entry-level role. A user who has been
granted Connect role access can be granted various privileges that allow him or her to
do something with a database.

INPUT/OUTPUT:

SQL> GRANT CONNECT TO Bryan;

Grant succeeded.

The Connect role enables the user to select, insert, update, and delete records from
tables belonging to other users (after the appropriate permissions have been granted).
The user can also create tables, views, sequences, clusters, and synonyms.

The Resource Role

The Resource role gives the user more access to Oracle databases. In addition to the
permissions that can be granted to the Connect role, Resource roles can also be granted
permission to create procedures, triggers, and indexes.

INPUT/OUTPUT:

SQL> GRANT RESOURCE TO Bryan;

Grant succeeded.

The DBA Role

The DBA role includes all privileges. Users with this role are able to do essentially
anything they want to the database system. You should keep the number of users with
this role to a minimum to ensure system integrity.

INPUT/OUTPUT:

SQL> GRANT DBA TO Bryan;

Grant succeeded.

After the three preceding steps, user Bryan was granted the Connect, Resource, and
DBA roles. This is somewhat redundant because the DBA role encompasses the other two
roles, so you can drop them now:

INPUT/OUTPUT:

SQL> REVOKE CONNECT FROM Bryan;

Revoke succeeded.

SQL> REVOKE RESOURCE FROM Bryan;

Revoke succeeded.

Bryan can do everything he needs to do with the DBA role.

User Privileges

After you decide which roles to grant your users, your next step is deciding which
permissions these users will have on database objects. (Oracle7 calls these permissions
privileges.) The types of privileges vary, depending on what role you have been granted.
If you actually create an object, you can grant privileges on that object to other users
as long as their role permits access to that privilege. Oracle defines two types of
privileges that can be granted to users: system privileges and object privileges. (See
Tables 12.1 and 12.2.)

System privileges apply systemwide. The syntax used to grant a system privilege is as
follows:

SYNTAX:

GRANT system_privilege TO {user_name | role | PUBLIC}
[WITH ADMIN OPTION];

WITH ADMIN OPTION enables the grantee to grant this privilege to someone else.

User Access to Views

The following command permits all users of the system to have CREATE VIEW access
within their own schema.

INPUT:

SQL> GRANT CREATE VIEW
 2 TO PUBLIC;

OUTPUT:

Grant succeeded.

ANALYSIS:

The public keyword means that everyone has CREATE VIEW privileges. Obviously,
these system privileges enable the grantee to have a lot of access to nearly all the
system settings. System privileges should be granted only to special users or to users
who have a need to use these privileges. Table 12.1 shows the system privileges you will
find in the help files included with Personal Oracle7.

WARNING: Use caution when granting privileges to public. Granting
public gives all users with access to the database privileges you may not
want them to have.

Table 12.1. System privileges in Oracle7.

System Privilege Operations Permitted

ALTER ANY INDEX Allows the grantees to alter any index in any
schema.

ALTER ANY PROCEDURE Allows the grantees to alter any stored
procedure, function, or package in any schema.

ALTER ANY ROLE Allows the grantees to alter any role in the
database.

ALTER ANY TABLE Allows the grantees to alter any table or view
in the schema.

ALTER ANY TRIGGER Allows the grantees to enable, disable, or
compile any database trigger in any schema.

ALTER DATABASE Allows the grantees to alter the database.

ALTER USER Allows the grantees to alter any user. This
privilege authorizes the grantee to change
another user's password or authentication
method, assign quotas on any tablespace, set
default and temporary tablespaces, and assign a
profile and default roles.

CREATE ANY INDEX Allows the grantees to create an index on any
table in any schema.

CREATE ANY PROCEDURE Allows the grantees to create stored procedures,
functions, and packages in any schema.

CREATE ANY TABLE Allows the grantees to create tables in any
schema. The owner of the schema containing the
table must have space quota on the tablespace to
contain the table.

CREATE ANY TRIGGER Allows the grantees to create a database trigger
in any schema associated with a table in any
schema.

CREATE ANY VIEW Allows the grantees to create views in any
schema.

CREATE PROCEDURE Allows the grantees to create stored procedures,
functions, and packages in their own schema.

CREATE PROFILE Allows the grantees to create profiles.

CREATE ROLE Allows the grantees to create roles.

CREATE SYNONYM Allows the grantees to create synonyms in their
own schemas.

CREATE TABLE Allows the grantees to create tables in their
own schemas. To create a table, the grantees must
also have space quota on the tablespace to
contain the table.

CREATE TRIGGER Allows the grantees to create a database trigger
in their own schemas.

CREATE USER Allows the grantees to create users. This
privilege also allows the creator to assign
quotas on any tablespace, set default and
temporary tablespaces, and assign a profile as part
of a CREATE USER statement.

CREATE VIEW Allows the grantees to create views in their own
schemas.

DELETE ANY TABLE Allows the grantees to delete rows from tables
or views in any schema or truncate tables in any
schema.

DROP ANY INDEX Allows the grantees to drop indexes in any
schema.

DROP ANY PROCEDURE Allows the grantees to drop stored procedures,
functions, or packages in any schema.

DROP ANY ROLE Allows the grantees to drop roles.

DROP ANY SYNONYM Allows the grantees to drop private synonyms in
any schema.

DROP ANY TABLE Allows the grantees to drop tables in any schema.

DROP ANY TRIGGER Allows the grantees to drop database triggers in
any schema.

DROP ANY VIEW Allows the grantees to drop views in any schema.

DROP USER Allows the grantees to drop users.

EXECUTE ANY PROCEDURE Allows the grantees to execute procedures or
functions (standalone or packaged) or reference
public package variables in any schema.

GRANT ANY PRIVILEGE Allows the grantees to grant any system
privilege.

GRANT ANY ROLE Allows the grantees to grant any role in the
database.

INSERT ANY TABLE Allows the grantees to insert rows into tables
and views in any schema.

LOCK ANY TABLE Allows the grantees to lock tables and views in
any schema.

SELECT ANY SEQUENCE Allows the grantees to reference sequences in
any schema.

SELECT ANY TABLE Allows the grantees to query tables, views, or
snapshots in any schema.

UPDATE ANY ROWS Allows the grantees to update rows in tables.

Object privileges are privileges that can be used against specific database objects. Table
12.2 lists the object privileges in Oracle7.

Table 12.2. Object privileges enabled under Oracle7.

ALL

ALTER

DELETE

EXECUTE

INDEX

INSERT

REFERENCES

SELECT

UPDATE

You can use the following form of the GRANT statement to give other users access to
your tables:

SYNTAX:

GRANT {object_priv | ALL [PRIVILEGES]} [(column
[, column]...)]
[, {object_priv | ALL [PRIVILEGES]} [(column
[, column] ...)]] ...
ON [schema.]object
TO {user | role | PUBLIC} [, {user | role | PUBLIC}] ...
[WITH GRANT OPTION]

To remove the object privileges you have granted to someone, use the REVOKE command
with the following syntax:

SYNTAX:

REVOKE {object_priv | ALL [PRIVILEGES]}
[, {object_priv | ALL [PRIVILEGES]}]
ON [schema.]object

FROM {user | role | PUBLIC} [, {user | role | PUBLIC}]
[CASCADE CONSTRAINTS]

From Creating a Table to Granting Roles

Create a table named SALARIES with the following structure:

INPUT:

NAME, CHAR(30)
SALARY, NUMBER
AGE, NUMBER

SQL> CREATE TABLE SALARIES (
 2 NAME CHAR(30),
 3 SALARY NUMBER,
 4 AGE NUMBER);

OUTPUT:

Table created.

Now, create two users--Jack and Jill:

INPUT/OUTPUT:

SQL> create user Jack identified by Jack;

User created.

SQL> create user Jill identified by Jill;

User created.

SQL> grant connect to Jack;

Grant succeeded.

SQL> grant resource to Jill;

Grant succeeded.

ANALYSIS:

So far, you have created two users and granted each a different role. Therefore, they
will have different capabilities when working with the database. First create the
SALARIES table with the following information:

INPUT/OUTPUT:

SQL> SELECT * FROM SALARIES;

NAME SALARY AGE
------------------------------ --------- ---------
JACK 35000 29
JILL 48000 42
JOHN 61000 55

You could then grant various privileges to this table based on some arbitrary reasons
for this example. We are assuming that you currently have DBA privileges and can
grant any system privilege. Even if you do not have DBA privileges, you can still grant
object privileges on the SALARIES table because you own it (assuming you just created
it).

Because Jack belongs only to the Connect role, you want him to have only SELECT
privileges.

INPUT/OUTPUT:

SQL> GRANT SELECT ON SALARIES TO JACK;

Grant succeeded.

Because Jill belongs to the Resource role, you allow her to select and insert some data
into the table. To liven things up a bit, allow Jill to update values only in the SALARY
field of the SALARIES table.

INPUT/OUTPUT:

SQL> GRANT SELECT, UPDATE(SALARY) ON SALARIES TO Jill;

Grant succeeded.

Now that this table and these users have been created, you need to look at how a user
accesses a table that was created by another user. Both Jack and Jill have been granted
SELECT access on the SALARIES table. However, if Jack tries to access the SALARIES
table, he will be told that it does not exist because Oracle requires the username or
schema that owns the table to precede the table name.

Qualifying a Table

Make a note of the username you used to create the SALARIES table (mine was Bryan).
For Jack to select data out of the SALARIES table, he must address the SALARIES table
with that username.

INPUT:

SQL> SELECT * FROM SALARIES;
SELECT * FROM SALARIES
 *

OUTPUT:

ERROR at line 1:
ORA-00942: table or view does not exist

Here Jack was warned that the table did not exist. Now use the owner's username to
identify the table:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM Bryan.SALARIES;

NAME SALARY AGE
------------------------------ --------- ---------
JACK 35000 29
JILL 48000 42
JOHN 61000 55

ANALYSIS:

You can see that now the query worked. Now test out Jill's access privileges. First log
out of Jack's logon and log on again as Jill (using the password Jill).

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM Bryan.SALARIES;

NAME SALARY AGE
------------------------------ --------- ---------
JACK 35000 29
JILL 48000 42
JOHN 61000 55

That worked just fine. Now try to insert a new record into the table.

INPUT/OUTPUT:

SQL> INSERT INTO Bryan.SALARIES
 2 VALUES('JOE',85000,38);
INSERT INTO Bryan.SALARIES
 *

ERROR at line 1:

ORA-01031: insufficient privileges

ANALYSIS:

This operation did not work because Jill does not have INSERT privileges on the
SALARIES table.

INPUT/OUTPUT:

SQL> UPDATE Bryan.SALARIES
 2 SET AGE = 42
 3 WHERE NAME = 'JOHN';
UPDATE Bryan.SALARIES
 *

ERROR at line 1:
ORA-01031: insufficient privileges

ANALYSIS:

Once again, Jill tried to go around the privileges that she had been given. Naturally,
Oracle caught this error and corrected her quickly.

INPUT/OUTPUT:

SQL> UPDATE Bryan.SALARIES
 2 SET SALARY = 35000
 3 WHERE NAME = 'JOHN';

1 row updated.

SQL> SELECT *
 2 FROM Bryan.SALARIES;

NAME SALARY AGE
------------------------------ --------- ---------
JACK 35000 29
JILL 48000 42
JOHN 35000 55

ANALYSIS:

You can see now that the update works as long as Jill abides by the privileges she has
been given.

Using Views for Security Purposes

As we mentioned on Day 10, "Creating Views and Indexes," views are virtual tables that

you can use to present a view of data that is different from the way it physically exists
in the database. Today you will learn more about how to use views to implement
security measures. First, however, we explain how views can simplify SQL statements.

Earlier you learned that when a user must access a table or database object that
another user owns, that object must be referenced with a username. As you can imagine,
this procedure can get wordy if you have to write writing several SQL queries in a row.
More important, novice users would be required to determine the owner of a table
before they could select the contents of a table, which is not something you want all
your users to do. One simple solution is shown in the following paragraph.

A Solution to Qualifying a Table or View

Assume that you are logged on as Jack, your friend from earlier examples. You learned
that for Jack to look at the contents of the SALARIES table, he must use the following
statement:

INPUT:

SQL> SELECT *
 2 FROM Bryan.SALARIES;

OUTPUT:

NAME SALARY AGE
------------------------------ --------- ---------
JACK 35000 29
JILL 48000 42
JOHN 35000 55

If you were to create a view named SALARY_VIEW, a user could simply select from that
view.

INPUT/OUTPUT:

SQL> CREATE VIEW SALARY_VIEW
 2 AS SELECT *
 3 FROM Bryan.SALARIES;

View created.

SQL> SELECT * FROM SALARY_VIEW;

NAME SALARY AGE
------------------------------ --------- ---------
JACK 35000 29
JILL 48000 42
JOHN 35000 55

ANALYSIS:

The preceding query returned the same values as the records returned from
Bryan.SALARIES.

Using Synonyms in Place of Views

SQL also provides an object known as a synonym. A synonym provides an alias for a table
to simplify or minimize keystrokes when using a table in an SQL statement. There are
two types of synonyms: private and public. Any user with the resource role can create a
private synonym. On the other hand, only a user with the DBA role can create a public
synonym.

The syntax for a public synonym follows.

SYNTAX:

CREATE [PUBLIC] SYNONYM [schema.]synonym
FOR [schema.]object[@dblink]

In the preceding example, you could have issued the following command to achieve the
same results:

INPUT/OUTPUT:

SQL> CREATE PUBLIC SYNONYM SALARY FOR SALARIES

Synonym created.

Then log back on to Jack and type this:

INPUT/OUTPUT:

SQL> SELECT * FROM SALARY;

NAME SALARY AGE
------------------------------ --------- ---------
JACK 35000 29
JILL 48000 42
JOHN 35000 55

Using Views to Solve Security Problems

Suppose you changed your mind about Jack and Jill and decided that neither of them
should be able to look at the SALARIES table completely. You can use views to change
this situation and allow them to examine only their own information.

INPUT/OUTPUT:

SQL> CREATE VIEW JACK_SALARY AS
 2 SELECT * FROM BRYAN.SALARIES
 3 WHERE NAME = 'JACK';

View created.

INPUT/OUTPUT:

SQL> CREATE VIEW JILL_SALARY AS
 2 SELECT * FROM BRYAN.SALARIES
 3 WHERE NAME = 'JILL';

View created.

INPUT/OUTPUT:

SQL> GRANT SELECT ON JACK_SALARY
 2 TO JACK;

Grant succeeded.

INPUT/OUTPUT:

SQL> GRANT SELECT ON JILL_SALARY
 2 TO JILL;

Grant succeeded.

INPUT/OUTPUT:

SQL> REVOKE SELECT ON SALARIES FROM JACK;

Revoke succeeded.

INPUT/OUTPUT:

SQL> REVOKE SELECT ON SALARIES FROM JILL;

Revoke succeeded.

Now log on as Jack and test out the view you created for him.

INPUT/OUTPUT:

SQL> SELECT * FROM Bryan.JACK_SALARY;

NAME SALARY AGE

---------- ---------- ----

Jack 35000 29

INPUT/OUTPUT:

SQL> SELECT * FROM PERKINS.SALARIES;
SELECT * FROM PERKINS.SALARIES
 *

ERROR at line 1:
ORA-00942: table or view does not exist

Log out of Jack's account and test Jill's:

INPUT/OUTPUT:

SQL> SELECT * FROM Bryan.JILL_SALARY;

NAME SALARY AGE
------------------ ------------- ----

Jill 48000 42

ANALYSIS:

You can see that access to the SALARIES table was completely controlled using views.
SQL enables you to create these views as you like and then assign permissions to other
users. This technique allows a great deal of flexibility.

The syntax to drop a synonym is

SYNTAX:

SQL> drop [public] synonym synonym_name;

NOTE: By now, you should understand the importance of keeping to a
minimum the number of people with DBA roles. A user with this access level
can have complete access to all commands and operations within the
database. Note, however, that with Oracle and Sybase you must have DBA-
level access (or SA-level in Sybase) to import or export data on the
database.

Using the WITH GRANT OPTION Clause

What do you think would happen if Jill attempted to pass her UPDATE privilege on to
Jack? At first glance you might think that Jill, because she was entrusted with the
UPDATE privilege, should be able to pass it on to other users who are allowed that
privilege. However, using the GRANT statement as you did earlier, Jill cannot pass her
privileges on to others:

SQL> GRANT SELECT, UPDATE(SALARY) ON Bryan.SALARIES TO Jill;

Here is the syntax for the GRANT statement that was introduced earlier today:

SYNTAX:

GRANT {object_priv | ALL [PRIVILEGES]} [(column
[, column]...)]
[, {object_priv | ALL [PRIVILEGES]} [(column
[, column] ...)]] ...
ON [schema.]object
TO {user | role | PUBLIC} [, {user | role | PUBLIC}] ...
[WITH GRANT OPTION]

What you are looking for is the WITH GRANT OPTION clause at the end of the GRANT
statement. When object privileges are granted and WITH GRANT OPTION is used, these
privileges can be passed on to others. So if you want to allow Jill to pass on this
privilege to Jack, you would do the following:

INPUT:

SQL> GRANT SELECT, UPDATE(SALARY)
 2 ON Bryan.SALARIES TO JILL
 3 WITH GRANT OPTION;

OUTPUT:

Grant succeeded.

Jill could then log on and issue the following command:

INPUT/OUTPUT:

SQL> GRANT SELECT, UPDATE(SALARY)
 2 ON Bryan.SALARIES TO JACK;

Grant succeeded.

Summary

Security is an often-overlooked topic that can cause many problems if not properly
thought out and administered. Fortunately, SQL provides several useful commands for
implementing security on a database.

Users are originally created using the CREATE USER command, which sets up a username
and password for a user. After the user account has been set up, this user must be
assigned to a role in order to accomplish any work. The three roles available within
Oracle7 are Connect, Resource, and DBA. Each role has different levels of access to
the database, with Connect being the simplest and DBA having access to everything.

The GRANT command gives a permission or privilege to a user. The REVOKE command can
take that permission or privilege away from the user. The two types of privileges are
object privileges and system privileges. The system privileges should be monitored
closely and should not be granted to inexperienced users. Giving inexperienced users
access to commands allows them to (inadvertently perhaps) destroy data or databases
you have painstakingly set up. Object privileges can be granted to give users access to
individual objects existing in the owner's database schema.

All these techniques and SQL statements provide the SQL user with a broad range of
tools to use when setting up system security. Although we focused on the security
features of Oracle7, you can apply much of this information to the database system at
your site. Just remember that no matter what product you are using, it is important to
enforce some level of database security.

Q&A
Q I understand the need for security, but doesn't Oracle carry it a bit too
far?

A No, especially in larger applications where there are multiple users. Because
different users will be doing different types of work in the database, you'll want
to limit what users can and can't do. Users should have only the necessary roles
and privileges they need to do their work.

Q It appears that there is a security problem when the DBA that created my
ID also knows the password. Is this true?

A Yes it is true. The DBA creates the IDs and passwords. Therefore, users should
use the ALTER USER command to change their ID and password immediately after
receiving them.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. What is wrong with the following statement?

SQL> GRANT CONNECTION TO DAVID;

2. True or False (and why): Dropping a user will cause all objects owned by that
user to be dropped as well.

3. What would happen if you created a table and granted select privileges on the
table to public?

4. Is the following SQL statement correct?

SQL> create user RON
 identified by RON;

5. Is the following SQL statement correct?

SQL> alter RON
 identified by RON;

6. Is the following SQL statement correct?

SQL> grant connect, resource to RON;

7. If you own a table, who can select from that table?

Exercise

1. Experiment with your database system's security by creating a table and then by
creating a user. Give this user various privileges and then take them away.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 13 -
Advanced SQL Topics

Objectives
Over the course of the past 12 days, you have examined every major topic used to write
powerful queries to retrieve data from a database. You have also briefly explored
aspects of database design and database security. Today's purpose is to cover advanced
SQL topics, which include the following:

● Temporary tables

● Cursors

● Stored procedures

● Triggers

● Embedded SQL

NOTE: Today's examples use Oracle7's PL/SQL and Microsoft/Sybase SQL
Server's Transact-SQL implementations. We made an effort to give examples
using both flavors of SQL wherever possible. You do not need to own a copy
of either the Oracle7 or the SQL Server database product. Feel free to
choose your database product based on your requirements. (If you are
reading this to gain enough knowledge to begin a project for your job,
chances are you won't have a choice.)

NOTE: Although you can apply most of the examples within this book to
any popular database management system, this statement does not hold for
all the material covered today. Many vendors still do not support
temporary tables, stored procedures, and triggers. Check your
documentation to determine which of these features are included with
your favorite database system.

Temporary Tables
The first advanced topic we discuss is the use of temporary tables, which are simply
tables that exist temporarily within a database and are automatically dropped when
the user logs out or their database connection ends. Transact-SQL creates these
temporary tables in the tempdb database. This database is created when you install SQL
Server. Two types of syntax are used to create a temporary table.

SYNTAX:

SYNTAX 1:
create table #table_name (
field1 datatype,
.
.
.
fieldn datatype)

Syntax 1 creates a table in the tempdb database. This table is created with a unique
name consisting of a combination of the table name used in the CREATE TABLE command
and a date-time stamp. A temporary table is available only to its creator. Fifty users
could simultaneously issue the following commands:

1> create table #albums (
2> artist char(30),
3> album_name char(50),
4> media_type int)
5> go

The pound sign (#) before the table's name is the identifier that SQL Server uses to flag
a temporary table. Each of the 50 users would essentially receive a private table for his
or her own use. Each user could update, insert, and delete records from this table
without worrying about other users invalidating the table's data. This table could be
dropped as usual by issuing the following command:

1> drop table #albums
2> go

The table could also be dropped automatically when the user who created it logs out
of the SQL Server. If you created this statement using some type of dynamic SQL
connection (such as SQL Server's DB-Library), the table will be deleted when that
dynamic SQL connection is closed.

Syntax 2 shows another way to create a temporary table on an SQL Server. This syntax
produces a different result than the syntax used in syntax 1, so pay careful attention
to the syntactical differences.

SYNTAX:

SYNTAX 2:
create table tempdb..tablename (
field1 datatype,
.
.
.
fieldn datatype)

Creating a temporary table using the format of syntax 2 still results in a table being
created in the tempdb database. This table's name has the same format as the name for
the table created using syntax 1. The difference is that this table is not dropped when
the user's connection to the database ends. Instead, the user must actually issue a DROP
TABLE command to remove this table from the tempdb database.

TIP: Another way to get rid of a table that was created using the create
table tempdb..tablename syntax is to shut down and restart the SQL
Server. This method removes all temporary tables from the tempdb
database.

Examples 13.1 and 13.2 illustrate the fact that temporary tables are indeed temporary,
using the two different forms of syntax. Following these two examples, Example 13.3
illustrates a common usage of temporary tables: to temporarily store data returned
from a query. This data can then be used with other queries.

You need to create a database to use these examples. The database MUSIC is created
with the following tables:

● ARTISTS

● MEDIA

● RECORDINGS

Use the following SQL statements to create these tables:

INPUT:

1> create table ARTISTS (
2> name char(30),
3> homebase char(40),
4> style char(20),
5> artist_id int)
6> go
1> create table MEDIA (
2> media_type int,
3> description char(30),
4> price float)
5> go
1> create table RECORDINGS (
2> artist_id int,
3> media_type int,
4> title char(50),
5> year int)
6> go

NOTE: Tables 13.1, 13.2, and 13.3 show some sample data for these tables.

Table 13.1. The ARTISTS table.

Name Homebase Style Artist_ID

Soul Asylum Minneapolis Rock 1

Maurice Ravel France Classical 2

Dave Matthews Band Charlottesville Rock 3

Vince Gill Nashville Country 4

Oingo Boingo Los Angeles Pop 5

Crowded House New Zealand Pop 6

Mary Chapin-Carpenter Nashville Country 7

Edward MacDowell U.S.A. Classical 8

Table 13.2. The MEDIA table.

Media_Type Description Price

1 Record 4.99

2 Tape 9.99

3 CD 13.99

4 CD-ROM 29.99

5 DAT 19.99

Table 13.3. The RECORDINGS table.

Artist_Id Media_Type Title Year

1 2 Hang Time 1988

1 3 Made to Be Broken 1986

2 3 Bolero 1990

3 5 Under the Table and Dreaming 1994

4 3 When Love Finds You 1994

5 2 Boingo 1987

5 1 Dead Man's Party 1984

6 2 Woodface 1990

6 3 Together Alone 1993

7 5 Come On, Come On 1992

7 3 Stones in the Road 1994

8 5 Second Piano Concerto 1985

Example 13.1

You can create a temporary table in the tempdb database. After inserting a dummy
record into this table, log out. After logging back into SQL Server, try to select the
dummy record out of the temporary table. Note the results:

INPUT:

1> create table #albums (
2> artist char(30),
3> album_name char(50),
4> media_type int)
5> go
1> insert #albums values ("The Replacements", "Pleased To Meet Me", 1)
2> go

Now log out of the SQL Server connection using the EXIT (or QUIT) command. After

logging back in and switching to the database you last used, try the following
command:

INPUT:

1> select * from #albums
2> go

ANALYSIS:

This table does not exist in the current database.

Example 13.2

Now create the table with syntax 2:

INPUT:

1> create table tempdb..albums (
2> artist char(30),
3> album_name char(50),
4> media_type int)
5> go
1> insert #albums values ("The Replacements", "Pleased To Meet Me", 1)
2> go

After logging out and logging back in, switch to the database you were using when
create table tempdb..albums() was issued; then issue the following command:

INPUT:

1> select * from #albums
2> go

This time, you get the following results:

OUTPUT:

artist album_name media_type
__
The Replacements Pleased To Meet Me 1

Example 13.3

This example shows a common usage of temporary tables: to store the results of complex
queries for use in later queries.

INPUT:

1> create table #temp_info (
2> name char(30),
3> homebase char(40),
4> style char(20),
5> artist_id int)
6> insert #temp_info
7> select * from ARTISTS where homebase = "Nashville"
8> select RECORDINGS.* from RECORDINGS, ARTISTS
9> where RECORDINGS.artist_id = #temp_info.artist_id
10> go

The preceding batch of commands selects out the recording information for all the
artists whose home base is Nashville.

The following command is another way to write the set of SQL statements used in
Example 13.3:

1> select ARTISTS.* from ARTISTS, RECORDINGS where ARTISTS.homebase =
"Nashville"
2> go

Cursors
A database cursor is similar to the cursor on a word processor screen. As you press the
Down Arrow key, the cursor scrolls down through the text one line at a time. Pressing
the Up Arrow key scrolls your cursor up one line at a time. Hitting other keys such as
Page Up and Page Down results in a leap of several lines in either direction. Database
cursors operate in the same way.

Database cursors enable you to select a group of data, scroll through the group of
records (often called a recordset), and examine each individual line of data as the
cursor points to it. You can use a combination of local variables and a cursor to
individually examine each record and perform any external operation needed before
moving on to the next record.

One other common use of cursors is to save a query's results for later use. A cursor's
result set is created from the result set of a SELECT query. If your application or
procedure requires the repeated use of a set of records, it is faster to create a cursor
once and reuse it several times than to repeatedly query the database. (And you have
the added advantage of being able to scroll through the query's result set with a
cursor.)

Follow these steps to create, use, and close a database cursor:

1. Create the cursor.

2. Open the cursor for use within the procedure or application.

3. Fetch a record's data one row at a time until you have reached the end of the
cursor's records.

4. Close the cursor when you are finished with it.

5. Deallocate the cursor to completely discard it.

Creating a Cursor

To create a cursor using Transact-SQL, issue the following syntax:

SYNTAX:

declare cursor_name cursor
 for select_statement
 [for {read only | update [of column_name_list]}]

The Oracle7 SQL syntax used to create a cursor looks like this:

SYNTAX:

DECLARE cursor_name CURSOR
 FOR {SELECT command | statement_name | block_name}

By executing the DECLARE cursor_name CURSOR statement, you have defined the
cursor result set that will be used for all your cursor operations. A cursor has two
important parts: the cursor result set and the cursor position.

The following statement creates a cursor based on the ARTISTS table:

INPUT:

1> create Artists_Cursor cursor
2> for select * from ARTISTS
3> go

ANALYSIS:

You now have a simple cursor object named Artists_Cursor that contains all the
records in the ARTISTS table. But first you must open the cursor.

Opening a Cursor

The simple command to open a cursor for use is

SYNTAX:

open cursor_name

Executing the following statement opens Artists_Cursor for use:

1> open Artists_Cursor
2> go

Now you can use the cursor to scroll through the result set.

Scrolling a Cursor

To scroll through the cursor's result set, Transact-SQL provides the following FETCH
command.

SYNTAX:

fetch cursor_name [into fetch_target_list]

Oracle SQL provides the following syntax:

FETCH cursor_name {INTO : host_variable
 [[INDICATOR] : indicator_variable]
 [, : host_variable
 [[INDICATOR] : indicator_variable]]...
 | USING DESCRIPTOR descriptor }

Each time the FETCH command is executed, the cursor pointer advances through the
result set one row at a time. If desired, data from each row can be fetched into the
fetch_target_list variables.

NOTE: Transact-SQL enables the programmer to advance more than one
row at a time by using the following command: set cursor rows number
for cursor_name. This command cannot be used with the INTO clause,
however. It is useful only to jump forward a known number of rows instead
of repeatedly executing the FETCH statement.

The following statements fetch the data from the Artists_Cursor result set and

return the data to the program variables:

INPUT:

1> declare @name char(30)
2> declare @homebase char(40)
3> declare @style char(20)
4> declare @artist_id int
5> fetch Artists_Cursor into @name, @homebase, @style, @artist_id
6> print @name
7> print @homebase
8> print @style
9> print char(@artist_id)
10> go

You can use the WHILE loop (see Day 12, "Database Security") to loop through the
entire result set. But how do you know when you have reached the end of the records?

Testing a Cursor's Status

Transact-SQL enables you to check the status of the cursor at any time through the
maintenance of two global variables: @@sqlstatus and @@rowcount.

The @@sqlstatus variable returns status information concerning the last executed
FETCH statement. (The Transact-SQL documentation states that no command other than
the FETCH statement can modify the @@sqlstatus variable.) This variable contains one
of three values. The following table appears in the Transact-SQL reference manuals:

Status Meaning

0 Successful completion of the FETCH statement.

1 The FETCH statement resulted in an error.

2 There is no more data in the result set.

The @@rowcount variable contains the number of rows returned from the cursor's
result set up to the previous fetch. You can use this number to determine the number of
records in a cursor's result set.

The following code extends the statements executed during the discussion of the FETCH
statement. You now use the WHILE loop with the @@sqlstatus variable to scroll the
cursor:

INPUT:

1> declare @name char(30)
2> declare @homebase char(40)
3> declare @style char(20)
4> declare @artist_id int
5> fetch Artists_Cursor into @name, @homebase, @style, @artist_id
6> while (@@sqlstatus = 0)
7> begin
8> print @name
9> print @homebase
10> print @style
11> print char(@artist_id)
12> fetch Artists_Cursor into @name, @homebase, @style, @artist_id
13> end
14> go

ANALYSIS:

Now you have a fully functioning cursor! The only step left is to close the cursor.

Closing a Cursor

Closing a cursor is a very simple matter. The statement to close a cursor is as follows:

SYNTAX:

close cursor_name

This cursor still exists; however, it must be reopened. Closing a cursor essentially closes
out its result set, not its entire existence. When you are completely finished with a
cursor, the DEALLOCATE command frees the memory associated with a cursor and frees
the cursor name for reuse. The DEALLOCATE statement syntax is as follows:

SYNTAX:

deallocate cursor cursor_name

Example 13.4 illustrates the complete process of creating a cursor, using it, and then
closing it, using Transact-SQL.

Example 13.4

INPUT:

1> declare @name char(30)
2> declare @homebase char(40)
3> declare @style char(20)
4> declare @artist_id int
5> create Artists_Cursor cursor

6> for select * from ARTISTS
7> open Artists_Cursor
8> fetch Artists_Cursor into @name, @homebase, @style, @artist_id
9> while (@@sqlstatus = 0)
10> begin
11> print @name
12> print @homebase
13> print @style
14> print char(@artist_id)
15> fetch Artists_Cursor into @name, @homebase, @style,
@artist_id
16> end
17> close Artists_Cursor
18> deallocate cursor Artists_Cursor
19> go

NOTE: The following is sample data only.

OUTPUT:

Soul Asylum Minneapolis Rock 1
Maurice Ravel France Classical 2
Dave Matthews Band Charlottesville Rock 3
Vince Gill Nashville Country 4
Oingo Boingo Los Angeles Pop 5
Crowded House New Zealand Pop 6
Mary Chapin-Carpenter Nashville Country 7
Edward MacDowell U.S.A. Classical 8

The Scope of Cursors

Unlike tables, indexes, and other objects such as triggers and stored procedures, cursors
do not exist as database objects after they are created. Instead, cursors have a limited
scope of use.

WARNING: Remember, however, that memory remains allocated for the
cursor, even though its name may no longer exist. Before going outside the
cursor's scope, the cursor should always be closed and deallocated.

A cursor can be created within three regions:

● In a session--A session begins when a user logs on. If the user logged on to an SQL
Server and then created a cursor, then cursor_name would exist until the user
logged off. The user would not be able to reuse cursor_name during the current

session.

● Stored procedure--A cursor created inside a stored procedure is good only during
the execution of the stored procedure. As soon as the stored procedure exits,
cursor_name is no longer valid.

● Trigger--A cursor created inside a trigger has the same restrictions as one created
inside a stored procedure.

Creating and Using Stored Procedures
The concept of stored procedures is an important one for the professional database
programmer to master. Stored procedures are functions that contain potentially large
groupings of SQL statements. These functions are called and executed just as C,
FORTRAN, or Visual Basic functions would be called. A stored procedure should
encapsulate a logical set of commands that are often executed (such as a complex set of
queries, updates, or inserts). Stored procedures enable the programmer to simply call the
stored procedure as a function instead of repeatedly executing the statements inside
the stored procedure. However, stored procedures have additional advantages.

Sybase, Inc., pioneered stored procedures with its SQL Server product in the late 1980s.
These procedures are created and then stored as part of a database, just as tables and
indexes are stored inside a database. Transact SQL permits both input and output
parameters to stored procedure calls. This mechanism enables you to create the stored
procedures in a generic fashion so that variables can be passed to them.

One of the biggest advantages to stored procedures lies in the design of their execution.
When executing a large batch of SQL statements to a database server over a network,
your application is in constant communication with the server, which can create an
extremely heavy load on the network very quickly. As multiple users become engaged in
this communication, the performance of the network and the database server becomes
increasingly slower. The use of stored procedures enables the programmer to greatly
reduce this communication load.

After the stored procedure is executed, the SQL statements run sequentially on the
database server. Some message or data is returned to the user's computer only when the
procedure is finished. This approach improves performance and offers other benefits as
well. Stored procedures are actually compiled by database engines the first time they
are used. The compiled map is stored on the server with the procedure. Therefore, you do
not have to optimize SQL statements each time you execute them, which also improves
performance.

Use the following syntax to create a stored procedure using Transact-SQL:

SYNTAX:

create procedure procedure_name
 [[(]@parameter_name
 datatype [(length) | (precision [, scale])
 [= default][output]
 [, @parameter_name
 datatype [(length) | (precision [, scale])
 [= default][output]]...[)]]
 [with recompile]
 as SQL_statements

This EXECUTE command executes the procedure:

SYNTAX:

execute [@return_status =]
 procedure_name
 [[@parameter_name =] value |
 [@parameter_name =] @variable [output]...]]
 [with recompile]

Example 13.5

This example creates a simple procedure using the contents of Example 13.4.

INPUT:

1> create procedure Print_Artists_Name
2> as
3> declare @name char(30)
4> declare @homebase char(40)
5> declare @style char(20)
6> declare @artist_id int
7> create Artists_Cursor cursor
8> for select * from ARTISTS
9> open Artists_Cursor
10> fetch Artists_Cursor into @name, @homebase, @style, @artist_id
11> while (@@sqlstatus = 0)
12> begin
13> print @name
14> fetch Artists_Cursor into @name, @homebase, @style,
@artist_id
15> end
16> close Artists_Cursor
17> deallocate cursor Artists_Cursor
18> go

You can now execute the Print_Artists_Name procedure using the EXECUTE
statement:

INPUT:

1> execute Print_Artists_Name
2> go

OUTPUT:

Soul Asylum
Maurice Ravel
Dave Matthews Band
Vince Gill
Oingo Boingo
Crowded House
Mary Chapin-Carpenter
Edward MacDowell

Example 13.5 was a small stored procedure; however, a stored procedure can contain
many statements, which means you do not have to execute each statement individually.

Using Stored Procedure Parameters

Example 13.5 was an important first step because it showed the use of the simplest
CREATE PROCEDURE statement. However, by looking at the syntax given here, you can
see that there is more to the CREATE PROCEDURE statement than was demonstrated in
Example 13.5. Stored procedures also accept parameters as input to their SQL
statements. In addition, data can be returned from a stored procedure through the use
of output parameters.

Input parameter names must begin with the @ symbol, and these parameters must be a
valid Transact-SQL data type. Output parameter names must also begin with the @
symbol. In addition, the OUTPUT keyword must follow the output parameter names. (You
must also give this OUTPUT keyword when executing the stored procedure.)

Example 13.6 demonstrates the use of input parameters to a stored procedure.

Example 13.6

The following stored procedure selects the names of all artists whose media type is a
CD:

1> create procedure Match_Names_To_Media @description char(30)
2> as
3> select ARTISTS.name from ARTISTS, MEDIA, RECORDINGS
4> where MEDIA.description = @description and
5> MEDIA.media_type = RECORDINGS.media_type and
6> RECORDINGS.artist_id = ARTISTS.artist_id

7> go
1> execute Match_Names_To_Media "CD"
2> go

Executing this statement would return the following set of records:

OUTPUT:

NAME
Soul Asylum
Maurice Ravel
Vince Gill
Crowded House
Mary Chapin-Carpenter

Example 13.7

This example demonstrates the use of output parameters. This function takes the artist's
homebase as input and returns the artist's name as output:

INPUT:

1> create procedure Match_Homebase_To_Name @homebase char(40), @name
char(30) output
2> as
3> select @name = name from ARTISTS where homebase = @homebase
4> go
1> declare @return_name char(30)
2> execute Match_Homebase_To_Name "Los Angeles", @return_name = @name
output
3> print @name
4> go

OUTPUT:

Oingo Boingo

Removing a Stored Procedure

By now, you can probably make an educated guess as to how to get rid of a stored
procedure. If you guessed the DROP command, you are absolutely correct. The following
statement removes a stored procedure from a database:

SYNTAX:

drop procedure procedure_name

The DROP command is used frequently: Before a stored procedure can be re-created, the
old procedure with its name must be dropped. From personal experience, there are few
instances in which a procedure is created and then never modified. Many times, in fact,
errors occur somewhere within the statements that make up the procedure. We
recommend that you create your stored procedures using an SQL script file containing
all your statements. You can run this script file through your database server to
execute your desired statements and rebuild your procedures. This technique enables
you to use common text editors such as vi or Windows Notepad to create and save your
SQL scripts. When running these scripts, however, you need to remember to always drop
the procedure, table, and so forth from the database before creating a new one. If you
forget the DROP command, errors will result.

The following syntax is often used in SQL Server script files before creating a database
object:

SYNTAX:

if exists (select * from sysobjects where name = "procedure_name")
begin
 drop procedure procedure_name
end
go
create procedure procedure_name
as
.
.
.

These commands check the SYSOBJECTS table (where database object information is
stored in SQL Server) to see whether the object exists. If it does, it is dropped before the
new one is created. Creating script files and following the preceding steps saves you a
large amount of time (and many potential errors) in the long run.

Nesting Stored Procedures

Stored procedure calls can also be nested for increased programming modularity. A
stored procedure can call another stored procedure, which can then call another
stored procedure, and so on. Nesting stored procedures is an excellent idea for several
reasons:

● Nesting stored procedures reduces your most complex queries to a functional
level. (Instead of executing 12 queries in a row, you could perhaps reduce these 12
queries to three stored procedure calls, depending on the situation.)

● Nesting stored procedures improves performance. The query optimizer optimizes
smaller, more concise groups of queries more effectively than one large group of

statements.

When nesting stored procedures, any variables or database objects created in one stored
procedure are visible to all the stored procedures it calls. Any local variables or
temporary objects (such as temporary tables) are deleted at the end of the stored
procedure that created these elements.

When preparing large SQL script files, you might run into table or database object
referencing problems. You must create the nested stored procedures before you can call
them. However, the calling procedure may create temporary tables or cursors that are
then used in the called stored procedures. These called stored procedures are unaware
of these temporary tables or cursors, which are created later in the script file. The
easiest way around this problem is to create the temporary objects before all the stored
procedures are created; then drop the temporary items (in the script file) before they
are created again in the stored procedure. Are you confused yet? Example 13.8 should
help you understand this process.

Example 13.8

INPUT:

1> create procedure Example13_8b
2> as
3> select * from #temp_table
4> go
1> create procedure Example13_8a
2> as
3> create #temp_table (
4> data char(20),
5> numbers int)
6> execute Example13_8b
7> drop table #temp_table
8> go

ANALYSIS:

As you can see, procedure Example13_8b uses the #temp_table. However, the
#temp_table is not created until later (in procedure Example13_8a). This results in a
procedure creation error. In fact, because Example13_8b was not created (owing to the
missing table #temp_table), procedure Example13_8a is not created either (because
Example13_8b was not created).

The following code fixes this problem by creating the #temp_table before the first
procedure is created. #temp_table is then dropped before the creation of the second
procedure:

INPUT:

1> create #temp_table (
2> data char(20),
3> numbers int)
4> go
1> create procedure Example13_8b
2> as
3> select * from #temp_table
4> go
1> drop table #temp_table
2> go
1> create procedure Example13_8a
2> as
3> create #temp_table (
4> data char(20),
5> numbers int)
6> execute Example13_8b
7> drop table #temp_table
8> go

Designing and Using Triggers
A trigger is essentially a special type of stored procedure that can be executed in
response to one of three conditions:

● An UPDATE

● An INSERT

● A DELETE

The Transact-SQL syntax to create a trigger looks like this:

SYNTAX:

create trigger trigger_name
 on table_name
 for {insert, update, delete}
 as SQL_Statements

The Oracle7 SQL syntax used to create a trigger follows.

SYNTAX:

CREATE [OR REPLACE] TRIGGER [schema.]trigger_name
 {BEFORE | AFTER}
 {DELETE | INSERT | UPDATE [OF column[, column]...]}
[OR {DELETE | INSERT | UPDATE [OF column [, column] ...]}]...

 ON [schema.]table
[[REFERENCING { OLD [AS] old [NEW [AS] new]
 | NEW [AS] new [OLD [AS] old]}]
FOR EACH ROW
[WHEN (condition)]]
pl/sql statements...

Triggers are most useful to enforce referential integrity, as mentioned on Day 9,
"Creating and Maintaining Tables," when you learned how to create tables.
Referential integrity enforces rules used to ensure that data remains valid across
multiple tables. Suppose a user entered the following command:

INPUT:

1> insert RECORDINGS values (12, "The Cross of Changes", 3, 1994)
2> go

ANALYSIS:

This perfectly valid SQL statement inserts a new record in the RECORDINGS table.
However, a quick check of the ARTISTS table shows that there is no Artist_ID = 12.
A user with INSERT privileges in the RECORDINGS table can completely destroy your
referential integrity.

NOTE: Although many database systems can enforce referential integrity
through the use of constraints in the CREATE TABLE statement, triggers
provide a great deal more flexibility. Constraints return system error
messages to the user, and (as you probably know by now) these error
messages are not always helpful. On the other hand, triggers can print
error messages, call other stored procedures, or try to rectify a problem if
necessary.

Triggers and Transactions

The actions executed within a trigger are implicitly executed as part of a transaction.
Here's the broad sequence of events:

1. A BEGIN TRANSACTION statement is implicitly issued (for tables with triggers).

2. The insert, update, or delete operation occurs.

3. The trigger is called and its statements are executed.

4. The trigger either rolls back the transaction or the transaction is implicitly

committed.

Example 13.9

This example illustrates the solution to the RECORDINGS table update problem
mentioned earlier.

INPUT:

1> create trigger check_artists
2> on RECORDINGS
3> for insert, update as
4> if not exists (select * from ARTISTS, RECORDINGS
5> where ARTISTS.artist_id = RECORDINGS.artist_id)
6> begin
7> print "Illegal Artist_ID!"
8> rollback transaction
9> end
10> go

ANALYSIS:

A similar problem could exist for deletes from the RECORDINGS table. Suppose that
when you delete an artist's only record from the RECORDINGS table, you also want to
delete the artist from the ARTISTS table. If the records have already been deleted
when the trigger is fired, how do you know which Artist_ID should be deleted? There
are two methods to solve this problem:

● Delete all the artists from the ARTISTS table who no longer have any
recordings in the RECORDINGS table. (See Example 13.10a.)

● Examine the deleted logical table. Transact-SQL maintains two tables: DELETED
and INSERTED. These tables, which maintain the most recent changes to the
actual table, have the same structure as the table on which the trigger is
created. Therefore, you could retrieve the artist IDs from the DELETED table and
then delete these IDs from the ARTISTS table. (See Example 13.10b.)

Example 13.10a

INPUT:

1> create trigger delete_artists
2> on RECORDINGS
3> for delete as
4> begin
5> delete from ARTISTS where artist_id not in
6> (select artist_id from RECORDINGS)

7> end
8> go

Example 13.10b

1> create trigger delete_artists
2> on RECORDINGS
3> for delete as
4> begin
5> delete ARTISTS from ARTISTS, deleted
6> where ARTIST.artist_id = deleted.artist_id
7> end
8> go

Restrictions on Using Triggers

You must observe the following restrictions when you use triggers:

● Triggers cannot be created on temporary tables.

● Triggers must be created on tables in the current database.

● Triggers cannot be created on views.

● When a table is dropped, all triggers associated with that table are
automatically dropped with it.

Nested Triggers

Triggers can also be nested. Say that you have created a trigger to fire on a delete, for
instance. If this trigger itself then deletes a record, the database server can be set to
fire another trigger. This approach would, of course, result in a loop, ending only when
all the records in the table were deleted (or some internal trigger conditions were
met). Nesting behavior is not the default, however. The environment must be set to
enable this type of functionality. Consult your database server's documentation for
more information on this topic.

Using SELECT Commands with UPDATE and
DELETE
Here are some complex SQL statements using UPDATE and DELETE:

INPUT:

SQL> UPPDATE EMPLOYEE_TBL
 SET LAST_NAME = 'SMITH'
 WHERE EXISTS (SELECT EMPLOYEE_ID
 FROM PAYROLL_TBL
 WHERE EMPLOYEE_ID = 2);

OUTPUT:

1 row updated.

ANALYSIS:

The EMPLOYEE table had an incorrect employee name. We updated the EMPLOYEE table
only if the payroll table had the correct ID.

INPUT/OUTPUT:

SQL> UPDATE EMPLOYEE_TABLE
 SET HOURLY_PAY = 'HOURLY_PAY * 1.1
 WHERE EMPLOYEE_ID = (SELECT EMPLOYEE_ID
 FROM PAYROLL_TBL
 WHERE EMPLOYEE_ID = '222222222');

1 row updated.

ANALYSIS:

We increased the employee's hourly rate by 10 percent.

INPUT/OUTPUT:

SQL> DELETE FROM EMPLOYEE_TBL
 WHERE EMPLOYEE_ID = (SELECT EMPLOYEE_ID
 FROM PAYROLL_TBL
 WHERE EMPLOYEE_ID = '222222222';

1 row deleted.

ANALYSIS:

Here we deleted an employee with the ID of 222222222.

Testing SELECT Statements Before Implementation

If you are creating a report (using SQL*PLUS for an example) and the report is rather
large, you may want to check spacing, columns, and titles before running the program
and wasting a lot of time. A simple way of checking is to add where rownum < 3 to

your SQL statement:

SYNTAX:

SQL> select *
 from employee_tbl
 where rownum < 5;

ANALYSIS:

You get the first four rows in the table from which you can check the spelling and
spacing to see if it suits you. Otherwise, your report may return hundreds or thousands
of rows before you discover a misspelling or incorrect spacing.

TIP: A major part of your job--probably 50 percent--is to figure out what
your customer really wants and needs. Good communication skills and a
knowledge of the particular business that you work for will complement
your programming skills. For example, suppose you are the programmer at a
car dealership. The used car manager wants to know how many vehicles he
has for an upcoming inventory. You think (to yourself): Go count them.
Well, he asked for how many vehicles he has; but you know that for an
inventory the manager really wants to know how many types (cars, trucks),
models, model year, and so on. Should you give him what he asked for and
waste your time, or should you give him what he needs?

Embedded SQL
This book uses the term embedded SQL to refer to the larger topic of writing actual
program code using SQL--that is, writing stored procedures embedded in the database
that can be called by an application program to perform some task. Some database
systems come with complete tool kits that enable you to build simple screens and menu
objects using a combination of a proprietary programming language and SQL. The SQL
code is embedded within this code.

On the other hand, embedded SQL commonly refers to what is technically known as
Static SQL.

Static and Dynamic SQL

Static SQL means embedding SQL statements directly within programming code. This code
cannot be modified at runtime. In fact, most implementations of Static SQL require the
use of a precompiler that fixes your SQL statement at runtime. Both Oracle and
Informix have developed Static SQL packages for their database systems. These products

contain precompilers for use with several languages, including the following:

● C

● Pascal

● Ada

● COBOL

● FORTRAN

Some advantages of Static SQL are

● Improved runtime speed

● Compile-time error checking

The disadvantages of Static SQL are that

● It is inflexible.

● It requires more code (because queries cannot be formulated at runtime).

● Static SQL code is not portable to other database systems (a factor that you
should always consider).

If you print out a copy of this code, the SQL statements appear next to the C language
code (or whatever language you are using). Program variables are bound to database
fields using a precompiler command. See Example 13.11 for a simple example of Static SQL
code.

Dynamic SQL, on the other hand, enables the programmer to build an SQL statement at
runtime and pass this statement off to the database engine. The engine then returns
data into program variables, which are also bound at runtime. This topic is discussed
thoroughly on Day 12.

Example 13.11

This example illustrates the use of Static SQL in a C function. Please note that the
syntax used here does not comply with the ANSI standard. This Static SQL syntax does
not actually comply with any commercial product, although the syntax used is similar
to that of most commercial products.

INPUT:

BOOL Print_Employee_Info (void)
{
int Age = 0;
char Name[41] = "\0";
char Address[81] = "\0";
/* Now Bind Each Field We Will Select To a Program Variable */
#SQL BIND(AGE, Age)
#SQL BIND(NAME, Name);
#SQL BIND(ADDRESS, Address);
/* The above statements "bind" fields from the database to variables
from the program.
 After we query the database, we will scroll the records returned
and then print them to the screen */

#SQL SELECT AGE, NAME, ADDRESS FROM EMPLOYEES;

#SQL FIRST_RECORD
if (Age == NULL)
{
 return FALSE;
}
while (Age != NULL)
{
 printf("AGE = %d\n, Age);
 printf("NAME = %s\n, Name);
 printf("ADDRESS = %s\n", Address);
 #SQL NEXT_RECORD
}
return TRUE;

}

ANALYSIS:

After you type in your code and save the file, the code usually runs through some type
of precompiler. This precompiler converts the lines that begin with the #SQL precompiler
directive to actual C code, which is then compiled with the rest of your program to
accomplish the task at hand.

If you have never seen or written a C program, don't worry about the syntax used in
Example 13.11. (As was stated earlier, the Static SQL syntax is only pseudocode. Consult
the Static SQL documentation for your product's actual syntax.)

Programming with SQL
So far, we have discussed two uses for programming with SQL. The first, which was the
focus of the first 12 days of this book, used SQL to write queries and modify data. The
second is the capability to embed SQL statements within third- or fourth-generation

language code. Obviously, the first use for SQL is essential if you want to understand
the language and database programming in general. We have already discussed the
drawbacks to using embedded or Static SQL as opposed to Dynamic SQL. Day 18, "PL/SQL:
An Introduction," and Day 19 "Transact-SQL: An Introduction," cover two extensions to
SQL that you can use instead of embedded SQL to perform the same types of functions
discussed in this section.

Summary
The popularity of programming environments such as Visual Basic, Delphi, and
PowerBuilder gives database programmers many tools that are great for executing
queries and updating data with a database. However, as you become increasingly
involved with databases, you will discover the advantages of using the tools and topics
discussed today. Unfortunately, concepts such as cursors, triggers, and stored
procedures are recent database innovations and have a low degree of standardization
across products. However, the basic theory of usage behind all these features is the
same in all database management systems.

Temporary tables are tables that exist during a user's session. These tables typically
exist in a special database (named tempdb under SQL Server) and are often identified
with a unique date-time stamp as well as a name. Temporary tables can store a result set
from a query for later usage by other queries. Performance can erode, however, if many
users are creating and using temporary tables all at once, owing to the large amount of
activity occurring in the tempdb database.

Cursors can store a result set in order to scroll through this result set one record at a
time (or several records at a time if desired). The FETCH statement is used with a cursor
to retrieve an individual record's data and also to scroll the cursor to the next record.
Various system variables can be monitored to determine whether the end of the records
has been reached.

Stored procedures are database objects that can combine multiple SQL statements into
one function. Stored procedures can accept and return parameter values as well as call
other stored procedures. These procedures are executed on the database server and are
stored in compiled form in the database. Using stored procedures, rather than executing
standalone queries, improves performance.

Triggers are special stored procedures that are executed when a table undergoes an
INSERT, a DELETE, or an UPDATE operation. Triggers often enforce referential
integrity and can also call other stored procedures.

Embedded SQL is the use of SQL in the code of an actual program. Embedded SQL consists
of both Static and Dynamic SQL statements. Static SQL statements cannot be modified
at runtime; Dynamic SQL statements are subject to change.

Q&A
Q If I create a temporary table, can any other users use my table?

A No, the temporary table is available only to its creator.

Q Why must I close and deallocate a cursor?

A Memory is still allocated for the cursor, even though its name may no longer
exist.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. True or False: Microsoft Visual C++ allows programmers to call the ODBC API
directly.

2. True or False: The ODBC API can be called directly only from a C program.

3. True or False: Dynamic SQL requires the use of a precompiler.

4. What does the # in front of a temporary table signify?

5. What must be done after closing a cursor to return memory?

6. Are triggers used with the SELECT statement?

7. If you have a trigger on a table and the table is dropped, does the trigger still
exist?

Exercises

1. Create a sample database application. (We used a music collection to illustrate
these points today.) Break this application into logical data groupings.

2. List the queries you think will be required to complete this application.

3. List the various rules you want to maintain in the database.

4. Create a database schema for the various groups of data you described in step 1.

5. Convert the queries in step 2 to stored procedures.

6. Convert the rules in step 3 to triggers.

7. Combine steps 4, 5, and 6 into a large script file that can be used to build the
database and all its associated procedures.

8. Insert some sample data. (This step can also be a part of the script file in step 7.)

9. Execute the procedures you have created to test their functionality.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 14 -
Dynamic Uses of SQL

Objectives
The purpose of today's lesson is to show you where to start to apply what you have
learned so far. Today's lesson covers, in very broad strokes, practical applications of
SQL. We focus on applications in the Microsoft Windows environment, but the principles
involved are just as applicable to other software platforms. Today you will learn the
following:

● How various commercial products--Personal Oracle7, open database connectivity
(ODBC), InterBase ISQL, Microsoft's Visual C++, and Borland's Delphi--relate to
SQL

● How to set up your environment for SQL

● How to create a database using Oracle7, Microsoft Query, and InterBase ISQL

● How to use SQL inside applications written in Visual C++ and Delphi

After reading this material, you will know where to start applying your new SQL
skills.

A Quick Trip
This section examines several commercial products in the context of the Microsoft

Windows operating system and briefly describes how they relate to SQL. The principles,
if not the products themselves, apply across various software platforms.

ODBC

One of the underlying technologies in the Windows operating system is ODBC, which
enables Windows-based programs to access a database through a driver. Rather than
having a custom interface to each database, something you might very well have to
write yourself, you can connect to the database of your choice through a driver. The
concept of ODBC is very similar to the concept of Windows printer drivers, which
enables you to write your program without regard for the printer. Individual
differences, which DOS programming forced you to address, are conveniently handled by
the printer driver. The result is that you spend your time working on the tasks peculiar
to your program, not on writing printer drivers.

ODBC applies this idea to databases. The visual part of ODBC resides in the control
panel in Windows 3.1, 3.11, and Windows 95 and in its own program group in Windows NT.

We cover ODBC in more detail when we discuss creating the database later today.

Personal Oracle7

Personal Oracle7 is the popular database's latest incursion into the personal PC market.
Don't be put off by the number of programs that Oracle7 installs--we built all the
examples used in the first several days using only the Oracle Database Manager and
SQL*Plus 3.3. SQL*Plus is shown in Figure 14.1.

Figure 14.1.

Oracle7's SQL*Plus.

INTERBASE SQL (ISQL)

The tool used in the other examples is Borland's ISQL. It is essentially the same as
Oracle7 except that Oracle7 is character oriented and ISQL is more Windows-like.

An ISQL screen is shown in Figure 14.2. You type your query in the top edit box, and the
result appears in the lower box. The Previous and Next buttons scroll you through the
list of all the queries you make during a session.

Figure 14.2.

InterBase's Interactive SQL.

Visual C++

Dozens of books have been written about Visual C++. For the examples in this book, we
used version 1.52. The procedures we used are applicable to the 32-bit version, C++ 2.0. It
is used here because of its simple interface with ODBC. It is not the only compiler with
the capability to connect to ODBC. If you use a different compiler, this section provides
a good point of departure.

Visual C++ installs quite a few tools. We use only two: the compiler and the resource
editor.

Delphi

The last tool we examine is Borland's Delphi, which is the subject of many new books.
Delphi provides a scalable interface to various databases.

Delphi has two programs that we use: the InterBase Server (Ibmgr) and the Windows
ISQL (Wisql).

Setting Up
Enough with the introductions--let's get to work. After you install your SQL engine or
your ODBC-compatible compiler, you must do a certain amount of stage setting before
the stars can do their stuff. With both Oracle7 and InterBase, you need to log on and
create an account for yourself. The procedures are essentially the same. The hardest
part is sorting through the hard copy and online documentation for the default
passwords. Both systems have a default system administrator account. (See Figure 14.3.)

Figure 14.3.

InterBase Security manager screen.

After logging on and creating an account, you are ready to create the database.

Creating the Database
This step is where all your SQL training starts to pay off. First, you have to start up the
database you want to use. Figure 14.4 shows Oracle7's stoplight visual metaphor.

Figure 14.4.

Oracle7 Database Manager.

After you get the green light, you can open up the SQL*Plus 3.3 tool shown in Figure
14.5.

Figure 14.5.

Oracle SQL*Plus.

At this point you can create your tables and enter your data using the CREATE and
INSERT keywords. Another common way of creating tables and entering data is with a
script file. A script file is usually a text file with the SQL commands typed out in the
proper order. Look at this excerpt from a script file delivered with Oracle7:

--
-- Script to build seed database for Personal Oracle
--
-- NTES
 Called from buildall.sql
-- MODIFICATIONS
-- rs 12/04/94 - Comment, clean up, resize, for production

--
startup nomount pfile=%rdbms71%\init.ora
-- Create database for Windows RDBMS
create database oracle
 controlfile reuse
 logfile '%oracle_home%\dbs\wdblog1.ora' size 400K reuse,
 '%oracle_home%\dbs\wdblog2.ora' size 400K reuse
 datafile '%oracle_home%\dbs\wdbsys.ora' size 10M reuse
 character set WE8ISO8859P1;

The syntax varies slightly with the implementation of SQL and the database you are
using, so be sure to check your documentation. Select File | Open to load this script into
your SQL engine.

Borland's InterBase loads data in a similar way. The following excerpt is from one of
the files to insert data:

/*
 * Add countries.
*/
INSERT INTO country (country, currency) VALUES ('USA',
'Dollar');
INSERT INTO country (country, currency) VALUES ('England',
'Pound');
INSERT INTO country (country, currency) VALUES ('Canada',
'CdnDlr');
INSERT INTO country (country, currency) VALUES ('Switzerland',
'SFranc');

INSERT INTO country (country, currency) VALUES ('Japan', 'Yen');
INSERT INTO country (country, currency) VALUES ('Italy',
'Lira');
INSERT INTO country (country, currency) VALUES ('France',
'FFranc');
INSERT INTO country (country, currency) VALUES ('Germany', 'D-
Mark');
INSERT INTO country (country, currency) VALUES ('Australia',
'ADollar');
INSERT INTO country (country, currency) VALUES ('Hong Kong',
'HKDollar');
INSERT INTO country (country, currency) VALUES ('Netherlands',
'Guilder');
INSERT INTO country (country, currency) VALUES ('Belgium',
'BFranc');
INSERT INTO country (country, currency) VALUES ('Austria',
'Schilling');
INSERT INTO country (country, currency) VALUES ('Fiji',
'fdollar');

ANALYSIS:

This example inserts a country name and the type currency used in that country into
the COUNTRY table. (Refer to Day 8, "Manipulating Data," for an introduction to the
INSERT command.)

There is nothing magic here. Programmers always find ways to save keystrokes. If you
are playing along at home, enter the following tables:

INPUT:

/* Table: CUSTOMER, Owner: PERKINS */
CREATE TABLE CUSTOMER (NAME CHAR(10),
 ADDRESS CHAR(10),
 STATE CHAR(2),
 ZIP CHAR(10),
 PHONE CHAR(11),
 REMARKS CHAR(10));

INPUT:

/* Table: ORDERS, Owner: PERKINS */
CREATE TABLE ORDERS (ORDEREDON DATE,
 NAME CHAR(10),
 PARTNUM INTEGER,
 QUANTITY INTEGER,
 REMARKS CHAR(10));

INPUT:

/* Table: PART, Owner: PERKINS */
CREATE TABLE PART (PARTNUM INTEGER,
 DESCRIPTION CHAR(20),
 PRICE NUMERIC(9, 2));

Now fill these tables with the following data:

INPUT/OUTPUT:

SELECT * FROM CUSTOMER

NAME ADDRESS STATE ZIP PHONE REMARKS
========== ========== ====== ====== ======== ==========

TRUE WHEEL 55O HUSKER NE 58702 555-4545 NONE
BIKE SPEC CPT SHRIVE LA 45678 555-1234 NONE
LE SHOPPE HOMETOWN KS 54678 555-1278 NONE
AAA BIKE 10 OLDTOWN NE 56784 555-3421 JOHN-MGR
JACKS BIKE 24 EGLIN FL 34567 555-2314 NONE

INPUT/OUTPUT:

SELECT * FROM ORDERS

 ORDEREDON NAME PARTNUM QUANTITY REMARKS
 =========== ========== =========== =========== =======
15-MAY-1996 TRUE WHEEL 23 6 PAID
19-MAY-1996 TRUE WHEEL 76 3 PAID
 2-SEP-1996 TRUE WHEEL 10 1 PAID
30-JUN-1996 TRUE WHEEL 42 8 PAID
30-JUN-1996 BIKE SPEC 54 10 PAID
30-MAY-1996 BIKE SPEC 10 2 PAID
30-MAY-1996 BIKE SPEC 23 8 PAID
17-JAN-1996 BIKE SPEC 76 11 PAID
17-JAN-1996 LE SHOPPE 76 5 PAID
 1-JUN-1996 LE SHOPPE 10 3 PAID
 1-JUN-1996 AAA BIKE 10 1 PAID
 1-JUL-1996 AAA BIKE 76 4 PAID
 1-JUL-1996 AAA BIKE 46 14 PAID
11-JUL-1996 JACKS BIKE 76 14 PAID

INPUT/OUTPUT:

SELECT * FROM PART

 PARTNUM DESCRIPTION PRICE
=========== ==================== ===========

 54 PEDALS 54.25
 42 SEATS 24.50
 46 TIRES 15.25
 23 MOUNTAIN BIKE 350.45

 76 ROAD BIKE 530.00
 10 TANDEM 1200.00

After you enter this data, the next step is to create an ODBC connection. Open the
Control Panel (if you are in Win 3.1, 3.11, or Windows 95) and double-click the ODBC
icon.

NOTE: Several flavors of SQL engines load ODBC. Visual C++, Delphi, and
Oracle7 load ODBC as part of their setup. Fortunately, ODBC is becoming
as common as printer drivers.

The initial ODBC screen is shown in Figure 14.6.

Figure 14.6.

ODBC's Data Sources selection.

This screen shows the current ODBC connections. You want to create a new connection.
Assuming you used InterBase and called the new database TYSSQL (give yourself 10
bonus points if you know what TYSSQL stands for), press the Add button and select the
InterBase Driver, as shown in Figure 14.7.

Figure 14.7.

Driver selection.

From this selection you move to the setup screen. Fill it in as shown in Figure 14.8.

Figure 14.8.

Driver setup.

You can use your own name or something short and easy to type, depending on the
account you set up for yourself. The only tricky bit here, at least for us, was figuring
out what InterBase wanted as a database name. Those of you coming from a PC or small
database background will have to get used to some odd-looking pathnames. These
pathnames tell the SQL engine where to look for the database in the galaxy of
computers that could be connected via LANs.

Using Microsoft Query to Perform a Join
Now that you have made an ODBC connection, we need to make a slight detour to a

rather useful tool called Microsoft Query. This program is loaded along with Visual
C++. We have used it to solve enough database and coding problems to pay for the cost
of the compiler several times over. Query normally installs itself in its own program
group. Find it and open it. It should look like Figure 14.9.

Figure 14.9.

Microsoft Query.

Select File | New Query. Your TYSSQL ODBC link does not appear, so click the Other
button to bring up the ODBC Data Sources dialog box, shown in Figure 14.10, and select
TYSSQL.

Figure 14.10.

Data Sources dialog box.

Click OK to return to the Select Data Source dialog box. Select TYSSQL and click Use,
as shown in Figure 14.11.

Figure 14.11.

Select Data Source dialog box.

Again, small database users aren't accustomed to logging on. Nevertheless, type your
password to move through the screen.

The Add Tables dialog box, shown in Figure 14.12, presents the tables associated with
the database to which you are connected. Select PART, ORDERS, and CUSTOMER, and
click Close.

Figure 14.12.

Selecting tables in Query.

Your screen should look like Figure 14.13. Double-click ADDRESS and NAME from the
CUSTOMER table. Then double-click ORDEREDON and PARTNUM from ORDERS.

Figure 14.13.

Visual representation of a table in Query.

Now for some magic! Click the button marked SQL in the toolbar. Your screen should

now look like Figure 14.14.

Figure 14.14.

The query that Query built.

This tool has two functions. The first is to check the ODBC connection. If it works here,
it should work in the program. This step can help you determine whether a problem is in
the database or in the program. The second use is to generate and check queries. Add the
following line to the SQL box and click OK:

WHERE CUSTOMER.NAME = ORDERS.NAME AND PART.PARTNUM = ORDERS.PARTNUM

Figure 14.15 shows the remarkable result.

Figure 14.15.

Query's graphic representation of a join.

You have just performed a join! Not only that, but the fields you joined on have been
graphically connected in the table diagrams (note the zigzag lines between NAME and
PARTNUM).

Query is an important tool to have in your SQL arsenal on the Windows software
platform. It enables you examine and manipulate tables and queries. You can also use it
to create tables and manipulate data. If you work in Windows with ODBC and SQL,
either buy this tool yourself or have your company or client buy it for you. It is not as
interesting as a network version of DOOM, but it will save you time and money. Now
that you have established an ODBC link, you can use it in a program.

Using Visual C++ and SQL

NOTE: The source code for this example is located in Appendix B, "Source
Code Listings for the C++ Program Used on Day 14."

Call up Visual C++ and select AppWizard, as shown in Figure 14.16. The name and
subdirectory for your project do not have to be identical.

Figure 14.16.

Initial project setup.

Click the Options button and fill out the screen as shown in Figure 14.17.

Figure 14.17.

The Options dialog box.

Click OK and then choose Database Options. Select Database Support, No File Support as
shown in Figure 14.18.

Figure 14.18.

The Database Options dialog box.

Click the Data Source button and make the choices shown in Figure 14.19.

Figure 14.19.

Selecting a data source.

Then select the CUSTOMER table from the Select a Table dialog box, shown in Figure
14.20.

Figure 14.20.

Selecting a table.

Now you have selected the CUSTOMER table from the TYSSQL database. Go back to the
AppWizard basic screen by clicking OK twice. Then click OK again to display the new
application information (see Figure 14.21), showing the specifications of a new skeleton
application.

Figure 14.21.

AppWizard's new application information.

After the program is generated, you need to use the resource editor to design your main
screen. Select Tools | App Studio to launch App Studio. The form you design will be
simple--just enough to show some of the columns in your table as you scroll through
the rows. Your finished form should look something like Figure 14.22.

Figure 14.22.

Finished form in App Studio.

For simplicity we named the edit boxes IDC_NAME, IDC_ADDRESS, IDC_STATE, and
IDC_ZIP, although you can name them whatever you choose. Press Ctrl+W to send the
Class Wizard page to the Member Variables and set the variables according to Figure
14.23.

Figure 14.23.

Adding member variables in Class Wizard.

NOTE: The program was nice enough to provide links to the table to which
you are connected. Links are one of the benefits of working through
Microsoft's wizards or Borland's experts.

Save your work; then press Alt+Tab to return to the compiler and compile the program.
If all went well, your output should look like Figure 14.24. If it doesn't, retrace your
steps and try again.

Figure 14.24.

A clean compile for the test program.

Now run your program. It should appear, after that pesky logon screen, and look like
Figure 14.25.

Figure 14.25.

The test program.

An impressive program, considering that you have written zero lines of code so far. Use
the arrow keys on the toolbar to move back and forth in the database. Notice that the
order of the data is the same as its input order. It is not alphabetical (unless you typed
it in that way). How can you change the order?

Your connection to the database is encapsulated in a class called Ctyssqlset, which
the AppWizard created for you. Look at the header file (tyssqset.h):

// tyssqset.h : interface of the CTyssqlSet class
//
//
class CTyssqlSet : public CRecordset
{
DECLARE_DYNAMIC(CTyssqlSet)

public:
CTyssqlSet(CDatabase* pDatabase = NULL);
// Field/Param Data
//{{AFX_FIELD(CTyssqlSet, CRecordset)
Cstring m_NAME;
Cstring m_ADDRESS;
Cstring m_STATE;
Cstring m_ZIP;
Cstring m_PHONE;
Cstring m_REMARKS;
//}}AFX_FIELD
// Implementation
protected:
virtual CString GetDefaultConnect();// Default connection string
virtual CString GetDefaultSQL();// default SQL for Recordset
virtual void DoFieldExchange(CFieldExchange* pFX);// RFX support
};

ANALYSIS:

Note that member variables have been constructed for all the columns in the table.
Also notice the functions GetDefaultConnect and GetDefaultSQL; here's their
implementations from tyssqset.cpp:

CString CTyssqlSet::GetDefaultConnect()
{
return ODBC;DSN=TYSSQL;";
}
CString CTyssqlSet::GetDefaultSQL()
{
return "CUSTOMER";
}

GetDefaultConnect makes the ODBC connection. You shouldn't change it. However,
GetDefaultSQL enables you to do some interesting things. Change it to this:

return "SELECT * FROM CUSTOMER ORDER BY NAME";

Recompile, and magically your table is sorted by name, as shown in Figure 14.26.

Figure 14.26.

Database order changed by SQL.

Without going into a tutorial on the Microsoft Foundation Class, let us just say that
you can manipulate CRecordSet and Cdatabase objects, join and drop tables, update
and insert rows, and generally have all the fun possible in SQL. You have looked as far
over the edge as you can, and we have pointed the way to integrate SQL into C++

applications. Topics suggested for further study are CRecordSet and Cdatabase (both
in the C++ books online that should come as part of the C++ software), ODBC API (the
subject of several books), and the APIs provided by Oracle and Sybase (which are both
similar to the ODBC API).

Using Delphi and SQL
Another important database tool on the Windows software platform is Delphi. The
splash that comes up as the program is loading has a picture of the Oracle at Delphi,
surrounded by the letters SQL. In the C++ example you rewrote one line of code. Using
Delphi, you will join two tables without writing a single line of code!

NOTE: The code for this program is located in Appendix C, "Source Code
Listings for the Delphi Program Used on Day 14."

Double-click Delphi's icon to get it started. At rest the program looks like Figure 14.27.

Figure 14.27.

The Delphi programming environment.

Delphi requires you to register any ODBC connections you are going to use in your
programming. Select BDE (Borland Database Environment) from the Tools menu and
then fill out the dialog box shown in Figure 14.28.

Figure 14.28.

Registering your connections.

Click the Aliases tab shown at the bottom of Figure 14.28 and assign the name TYSSQL,
as shown in Figure 14.29.

Figure 14.29.

Adding a new alias.

Select File | New Form to make the following selections. Start by choosing the Database
Form from the Experts tab, as shown in Figure 14.30.

Figure 14.30.

The Experts page in the Browse gallery.

Then choose the master/detail form and TQuery objects, as shown in Figure 14.31.

Figure 14.31.

The Database Form Expert dialog box.

NOTE: Delphi enables you to work with either a query or a table. If you
need flexibility, we recommend the TQuery object. If you need the whole
table without modification, use the TTable object.

Now select the TYSSQL data source you set up earlier, as shown in Figure 14.32.

Figure 14.32.

Choosing a data source.

Choose the PART table as the master, as shown in Figure 14.33.

Figure 14.33.

Choosing a table.

Choose all its fields, as shown in Figure 14.34.

Figure 14.34.

Adding all the fields.

Pick the Horizontal display mode, as shown in Figure 14.35.

Figure 14.35.

Display mode selection.

Then choose ORDERS, select all its fields, and select Grid for its display mode, as shown
in Figures 14.36, 14.37, and 14.38.

Figure 14.36.

Choosing the table for the detail part of the form.

Figure 14.37.

Selecting all the fields.

Figure 14.38.

Selecting the orientation.

Now the software enables you to make a join. Make the join on PARTNUM, as shown in
Figure 14.39.

Figure 14.39.

Making the join.

Now go ahead and generate the form. The result looks like Figure 14.40.

Figure 14.40.

The finished form.

Compile and run the program. As you select different parts, the order for them should
appear in the lower table, as shown in Figure 14.41.

Figure 14.41.

The finished program.

Close the project and click one or both of the query objects on the form. When you
click an object, the Object Inspector to the left of the screen in Figure 14.42 shows the
various properties.

Figure 14.42.

The query in the TQuery object.

Try experimenting with the query to see what happens. Just think what you can do when
you start writing code!

Summary

Today you learned where to start applying SQL using the ordinary, everyday stuff you
find lying on your hard drive. The best way to build on what you have learned is to go
out and query. Query as much as you can.

Q&A
Q What is the difference between the ODBC API and the Oracle and Sybase APIs?

A On a function-by-function level, Oracle and Sybase are remarkably similar, which is
not a coincidence. Multiple corporate teamings and divorces have led to libraries that
were derived from somewhat of a common base. ODBC's API is more generic--it isn't
specific to any database. If you need to do something specific to a database or tune the
performance of a specific database, you might consider using that database's API library
in your code.

Q With all the available products, how do I know what to use?

A In a business environment, product selection is usually a compromise between
management and "techies." Management looks at the cost of a product; techies will look
at the features and how the product can make their lives easier. In the best of all
programming worlds, that compromise will get your job done quickly and efficiently.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. In which object does Microsoft Visual C++ place its SQL?

2. In which object does Delphi place its SQL?

3. What is ODBC?

4. What does Delphi do?

Exercises

1. Change the sort order in the C++ example from ascending to descending on the

State field.

2. Go out, find an application that needs SQL, and use it.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

Week 2 In Review
Week 1 spent a great deal of time introducing a very important topic: the SELECT
statement. Week 2 branched out into various topics that collectively form a thorough
introduction to the Structured Query Language (SQL).

Day 8 introduced data manipulation language (DML) statements, which are SQL
statements that you can use to modify the data within a database. The three commands
most commonly used are INSERT, DELETE, and UPDATE. Day 9 described how to design
and build a database and introduced the commands CREATE DATABASE and CREATE
TABLE. A table can be created with any number of fields, each of which can be a
database-vendor-defined data type. The ALTER DATABASE command can change the
physical size or location of a database. The DROP DATABASE and DROP TABLE
statements, respectively, remove a database or remove a table within a database.

Day 10 explained two ways to display data: the view and the index. A view is a virtual
table created from the output of a SELECT statement. An index orders the records
within a table based on the contents of a field or fields.

Day 11 covered transaction management, which was your first taste of programming
with SQL. Transactions start with the BEGIN TRANSACTION statement. The COMMIT
TRANSACTION saves the work of a transaction. The ROLLBACK TRANSACTION command
cancels the work of a transaction.

Day 12 focused on database security. Although the implementation of database security
varies widely among database products, most implementations use the GRANT and REVOKE
commands. The GRANT command grants permissions to a user. The REVOKE command
removes these permissions.

Day 13 focused on developing application programs using SQL. Static SQL typically
involves the use of a precompiler and is static at runtime. Dynamic SQL is very flexible
and has become very popular in the last few years. Sample programs used Dynamic SQL
with the Visual C++ and Delphi development toolkits.

Day 14 covered advanced aspects of SQL. Cursors can scroll through a set of records.
Stored procedures are database objects that execute several SQL statements in a row.
Stored procedures can accept and return values. Triggers are a special type of stored
procedure that are executed when records are inserted, updated, or deleted within a
table.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

Week 3 At A Glance

Applying Your Knowledge of SQL
Welcome to Week 3. So far you have learned the fundamentals of SQL and already
know enough to apply what you have learned to some real-life situations. This week
builds on the foundation established in Weeks 1 and 2. Day 15 shows you how to
streamline SQL statements for improved performance. Day 16 talks about the data
dictionary, or system catalog, of a relational database and shows you how to retrieve
valuable information. Day 17 extends the concept of using the data dictionary to
generate SQL as output from another SQL statement. You will learn the benefits of
this technique and discover how generating SQL can improve your efficiency on the job.
Day 18 covers Oracle's PL/SQL, or Oracle procedural language. PL/SQL is one of the
many extensions to standard SQL. Another extension is Sybase's and Microsoft Server's
Transact-SQL, which is covered on Day 19. Day 20 returns to Oracle to cover SQL*Plus,
which allows you to use advanced commands to communicate with the database.
SQL*Plus also enables you to format query-generated reports in an attractive manner.
You can use SQL*Plus in collaboration with PL/SQL. Day 21 examines errors and logical
mistakes that relational database users frequently encounter. We provide brief
descriptions of the errors, solutions, and tips on avoiding errors.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- 15 -
Streamlining SQL Statements for Improved

Performance
Streamlining SQL statements is as much a part of application performance as database
designing and tuning. No matter how fine-tuned the database or how sound the
database structure, you will not receive timely query results that are acceptable to
you, or even worse, the customer, if you don't follow some basic guidelines. Trust us, if
the customer is not satisfied, then you can bet your boss won't be satisfied either.

Objectives
You already know about the major components of the relational database language of
SQL and how to communicate with the database; now it's time to apply your knowledge
to real-life performance concerns. The objective of Day 15 is to recommend methods for
improving the performance of, or streamlining, an SQL statement. By the end of today,
you should

● Understand the concept of streamlining your SQL code

● Understand the differences between batch loads and transactional processing
and their effects on database performance

● Be able to manipulate the conditions in your query to expedite data retrieval

● Be familiar with some underlying elements that affect the tuning of the entire
database

Here's an analogy to help you understand the phrase streamline an SQL statement: The
objective of competitive swimmers is to complete an event in as little time as possible
without being disqualified. The swimmers must have an acceptable technique, be able to
torpedo themselves through the water, and use all their physical resources as
effectively as possible. With each stroke and breath they take, competitive swimmers
remain streamlined and move through the water with very little resistance.

Look at your SQL query the same way. You should always know exactly what you want
to accomplish and then strive to follow the path of least resistance. The more time you
spend planning, the less time you'll have to spend revising later. Your goal should
always be to retrieve accurate data and to do so in as little time as possible. An end
user waiting on a slow query is like a hungry diner impatiently awaiting a tardy meal.
Although you can write most queries in several ways, the arrangement of the
components within the query is the factor that makes the difference of seconds, minutes,
and sometimes hours when you execute the query. Streamlining SQL is the process of
finding the optimal arrangement of the elements within your query.

In addition to streamlining your SQL statement, you should also consider several other
factors when trying to improve general database performance, for example, concurrent
user transactions that occur within a database, indexing of tables, and deep-down
database tuning.

NOTE: Today's examples use Personal Oracle7 and tools that are available
with the Oracle7.3 relational database management system. The concepts
discussed today are not restricted to Oracle; they may be applied to other
relational database management systems.

Make Your SQL Statements Readable
Even though readability doesn't affect the actual performance of SQL statements, good
programming practice calls for readable code. Readability is especially important if you
have multiple conditions in the WHERE clause. Anyone reading the clause should be able
to determine whether the tables are being joined properly and should be able to
understand the order of the conditions.

Try to read this statement:

SQL> SELECT EMPLOYEE_TBL.EMPLOYEE_ID,
EMPLOYEE_TBL.NAME,EMPLOYEE_PAY_TBL.SALARY,EMPLOYEE_PAY_TBL.HIRE_DATE
 2 FROM EMPLOYEE_TBL, EMPLOYEE_PAY_TBL
 3 WHERE EMPLOYEE_TBL.EMPLOYEE_ID = EMPLOYEE_PAY_TBL.EMPLOYEE_ID AND
 4 EMPLOYEE_PAY_TBL.SALARY > 30000 OR (EMPLOYEE_PAY_TBL.SALARY
BETWEEN 25000

 5 AND 30000 AND EMPLOYEE_PAY_TBL.HIRE_DATE < SYSDATE - 365);

Here's the same query reformatted to enhance readability:

SQL> SELECT E.EMPLOYEE_ID, E.NAME, P.SALARY, P.HIRE_DATE
 2 FROM EMPLOYEE_TBL E,
 3 EMPLOYEE_PAY_TBL P
 4 WHERE E.EMPLOYEE_ID = P.EMPLOYEE_ID
 5 AND P.SALARY > 30000
 6 OR (P.SALARY BETWEEN 25000 AND 30000
 7 AND P.HIRE_DATE < SYSDATE - 365);

NOTE: Notice the use of table aliases in the preceding query.
EMPLOYEE_TBL in line 2 has been assigned the alias E, and
EMPLOYEE_PAY_TBL in line 3 has been assigned the alias P. You can see that
in lines 4, 5, 6, and 7, the E and P stand for the full table names. Aliases
require much less typing than spelling out the full table name, and even
more important, queries that use aliases are more organized and easier to
read than queries that are cluttered with unnecessarily long full table
names.

The two queries are identical, but the second one is obviously much easier to read. It is
very structured; that is, the logical components of the query have been separated by
carriage returns and consistent spacing. You can quickly see what is being selected (the
SELECT clause), what tables are being accessed (the FROM clause), and what conditions
need to be met (the WHERE clause).

The Full-Table Scan
A full-table scan occurs when the database server reads every record in a table in
order to execute an SQL statement. Full-table scans are normally an issue when
dealing with queries or the SELECT statement. However, a full-table scan can also
come into play when dealing with updates and deletes. A full-table scan occurs when
the columns in the WHERE clause do not have an index associated with them. A full-
table scan is like reading a book from cover to cover, trying to find a keyword. Most
often, you will opt to use the index.

You can avoid a full-table scan by creating an index on columns that are used as
conditions in the WHERE clause of an SQL statement. Indexes provide a direct path to the
data the same way an index in a book refers the reader to a page number. Adding an
index speeds up data access.

Although programmers usually frown upon full-table scans, they are sometimes

appropriate. For example:

● You are selecting most of the rows from a table.

● You are updating every row in a table.

● The tables are small.

In the first two cases an index would be inefficient because the database server would
have to refer to the index, read the table, refer to the index again, read the table
again, and so on. On the other hand, indexes are most efficient when the data you are
accessing is a small percentage, usually no more than 10 to 15 percent, of the total data
contained within the table.

In addition, indexes are best used on large tables. You should always consider table size
when you are designing tables and indexes. Properly indexing tables involves
familiarity with the data, knowing which columns will be referenced most, and may
require experimentation to see which indexes work best.

NOTE: When speaking of a "large table," large is a relative term. A table
that is extremely large to one individual may be minute to another. The
size of a table is relative to the size of other tables in the database, to the
disk space available, to the number of disks available, and simple common
sense. Obviously, a 2GB table is large, whereas a 16KB table is small. In a
database environment where the average table size is 100MB, a 500MB table
may be considered massive.

Adding a New Index
You will often find situations in which an SQL statement is running for an
unreasonable amount of time, although the performance of other statements seems to
be acceptable; for example, when conditions for data retrieval change or when table
structures change.

We have also seen this type of slowdown when a new screen or window has been added
to a front-end application. One of the first things to do when you begin to troubleshoot
is to find out whether the target table has an index. In most of the cases we have seen,
the target table has an index, but one of the new conditions in the WHERE clause may
lack an index. Looking at the WHERE clause of the SQL statement, we have asked,
Should we add another index? The answer may be yes if:

● The most restrictive condition(s) returns less than 10 percent of the rows in a
table.

● The most restrictive condition(s) will be used often in an SQL statement.

● Condition(s) on columns with an index will return unique values.

● Columns are often referenced in the ORDER BY and GROUP BY clauses.

Composite indexes may also be used. A composite index is an index on two or more columns
in a table. These indexes can be more efficient than single-column indexes if the indexed
columns are often used together as conditions in the WHERE clause of an SQL statement.
If the indexed columns are used separately as well as together, especially in other
queries, single-column indexes may be more appropriate. Use your judgment and run tests
on your data to see which type of index best suits your database.

Arrangement of Elements in a Query
The best arrangement of elements within your query, particularly in the WHERE clause,
really depends on the order of the processing steps in a specific implementation. The
arrangement of conditions depends on the columns that are indexed, as well as on which
condition will retrieve the fewest records.

You do not have to use a column that is indexed in the WHERE clause, but it is obviously
more beneficial to do so. Try to narrow down the results of the SQL statement by using
an index that returns the fewest number of rows. The condition that returns the fewest
records in a table is said to be the most restrictive condition. As a general statement, you
should place the most restrictive conditions last in the WHERE clause. (Oracle's query
optimizer reads a WHERE clause from the bottom up, so in a sense, you would be placing
the most restrictive condition first.)

When the optimizer reads the most restrictive condition first, it is able to narrow down
the first set of results before proceeding to the next condition. The next condition,
instead of looking at the whole table, should look at the subset that was selected by
the most selective condition. Ultimately, data is retrieved faster. The most selective
condition may be unclear in complex queries with multiple conditions, subqueries,
calculations, and several combinations of the AND, OR, and LIKE.

TIP: Always check your database documentation to see how SQL statements
are processed in your implementation.

The following test is one of many we have run to measure the difference of elapsed time
between two uniquely arranged queries with the same content. These examples use
Oracle7.3 relational database management system. Remember, the optimizer in this
implementation reads the WHERE clause from the bottom up.

Before creating the SELECT statement, we selected distinct row counts on each
condition that we planned to use. Here are the values selected for each condition:

Condition Distinct Values

calc_ytd = '-2109490.8' 13,000 +

dt_stmp = '01-SEP-96' 15

output_cd = '001' 13

activity_cd = 'IN' 10

status_cd = 'A' 4

function_cd = '060' 6

NOTE: The most restrictive condition is also the condition with the most
distinct values.

The next example places the most restrictive conditions first in the WHERE clause:

INPUT:

SQL> SET TIMING ON
 2 SELECT COUNT(*)
 3 FROM FACT_TABLE
 4 WHERE CALC_YTD = '-2109490.8'
 5 AND DT_STMP = '01-SEP-96'
 6 AND OUTPUT_CD = '001'
 7 AND ACTIVITY_CD = 'IN'
 8 AND STATUS_CD = 'A'
 9 AND FUNCTION_CD = '060';

OUTPUT:

COUNT(*)

 8
1 row selected.
Elapsed: 00:00:15.37

This example places the most restrictive conditions last in the WHERE clause:

INPUT/OUTPUT:

SQL> SET TIMING ON
 2 SELECT COUNT(*)

 3 FROM FACT_TABLE
 4 WHERE FUNCTION_CD = '060'
 5 AND STATUS_CD = 'A'
 6 AND ACTIVITY_CD = 'IN'
 7 AND OUTPUT_CD = '001'
 8 AND DT_STMP = '01-SEP-96'
 9 AND CALC_YTD = '-2109490.8';

COUNT(*)

 8
1 row selected.
Elapsed: 00:00:01.80

ANALYSIS:

Notice the difference in elapsed time. Simply changing the order of conditions according
to the given table statistics, the second query ran almost 14 seconds faster than the
first one. Imagine the difference on a poorly structured query that runs for three
hours!

Procedures

For queries that are executed on a regular basis, try to use procedures. A procedure is a
potentially large group of SQL statements. (Refer to Day 13, "Advanced SQL Topics.")

Procedures are compiled by the database engine and then executed. Unlike an SQL
statement, the database engine need not optimize the procedure before it is executed.
Procedures, as opposed to numerous individual queries, may be easier for the user to
maintain and more efficient for the database.

Avoiding OR

Avoid using the logical operator OR in a query if possible. OR inevitably slows down
nearly any query against a table of substantial size. We find that IN is generally much
quicker than OR. This advice certainly doesn't agree with documentation stating that
optimizers convert IN arguments to OR conditions. Nevertheless, here is an example of a
query using multiple ORs:

INPUT:

SQL> SELECT *
 2 FROM FACT_TABLE
 3 WHERE STATUS_CD = 'A'
 4 OR STATUS_CD = 'B'
 5 OR STATUS_CD = 'C'
 6 OR STATUS_CD = 'D'

 7 OR STATUS_CD = 'E'
 8 OR STATUS_CD = 'F'
 9 ORDER BY STATUS_CD;

Here is the same query using SUBSTR and IN:

INPUT:

SQL> SELECT *
 2 FROM FACT_TABLE
 3 WHERE STATUS_CD IN ('A','B','C','D','E','F')
 4 ORDER BY STATUS_CD;

ANALYSIS:

Try testing something similar for yourself. Although books are excellent sources for
standards and direction, you will find it is often useful to come to your own
conclusions on certain things, such as performance.

Here is another example using SUBSTR and IN. Notice that the first query combines
LIKE with OR.

INPUT:

SQL> SELECT *
 2 FROM FACT_TABLE
 3 WHERE PROD_CD LIKE 'AB%'
 4 OR PROD_CD LIKE 'AC%'
 5 OR PROD_CD LIKE 'BB%'
 6 OR PROD_CD LIKE 'BC%'
 7 OR PROD_CD LIKE 'CC%'
 8 ORDER BY PROD_CD;

SQL> SELECT *
 2 FROM FACT_TABLE
 3 WHERE SUBSTR(PROD_CD,1,2) IN ('AB','AC','BB','BC','CC')
 4 ORDER BY PROD_CD;

ANALYSIS:

The second example not only avoids the OR but also eliminates the combination of the
OR and LIKE operators. You may want to try this example to see what the real-time
performance difference is for your data.

OLAP Versus OLTP
When tuning a database, you must first determine what the database is being used for.

An online analytical processing (OLAP) database is a system whose function is to provide
query capabilities to the end user for statistical and general informational purposes.
The data retrieved in this type of environment is often used for statistical reports that
aid in the corporate decision-making process. These types of systems are also referred to
as decision support systems (DSS). An online transactional processing (OLTP) database is
a system whose main function is to provide an environment for end-user input and may
also involve queries against day-to-day information. OLTP systems are used to
manipulate information within the database on a daily basis. Data warehouses and DSSs
get their data from online transactional databases and sometimes from other OLAP
systems.

OLTP Tuning

A transactional database is a delicate system that is heavily accessed in the form of
transactions and queries against day-to-day information. However, an OLTP does not
usually require a vast sort area, at least not to the extent to which it is required in an
OLAP environment. Most OLTP transactions are quick and do not involve much sorting.

One of the biggest issues in a transactional database is rollback segments. The amount
and size of rollback segments heavily depend on how many users are concurrently
accessing the database, as well as the amount of work in each transaction. The best
approach is to have several rollback segments in a transactional environment.

Another concern in a transactional environment is the integrity of the transaction logs,
which are written to after each transaction. These logs exist for the sole purpose of
recovery. Therefore, each SQL implementation needs a way to back up the logs for use in
a "point in time recovery." SQL Server uses dump devices; Oracle uses a database mode
known as ARCHIVELOG mode. Transaction logs also involve a performance
consideration because backing up logs requires additional overhead.

OLAP Tuning

Tuning OLAP systems, such as a data warehouse or decision support system, is much
different from tuning a transaction database. Normally, more space is needed for
sorting.

Because the purpose of this type of system is to retrieve useful decision-making data, you
can expect many complex queries, which normally involve grouping and sorting of data.
Compared to a transactional database, OLAP systems typically take more space for the
sort area but less space for the rollback area.

Most transactions in an OLAP system take place as part of a batch process. Instead of
having several rollback areas for user input, you may resort to one large rollback area
for the loads, which can be taken offline during daily activity to reduce overhead.

Batch Loads Versus Transactional Processing
A major factor in the performance of a database and SQL statements is the type of
processing that takes place within a database. One type of processing is OLTP, discussed
earlier today. When we talk about transactional processing, we are going to refer to
two types: user input and batch loads.

Regular user input usually consists of SQL statements such as INSERT, UPDATE, and
DELETE. These types of transactions are often performed by the end user, or the
customer. End users are normally using a front-end application such as PowerBuilder to
interface with the database, and therefore they seldom issue visible SQL statements.
Nevertheless, the SQL code has already been generated for the user by the front-end
application.

Your main focus when optimizing the performance of a database should be the end-user
transactions. After all, "no customer" equates to "no database," which in turn means
that you are out of a job. Always try to keep your customers happy, even though their
expectations of system/database performance may sometimes be unreasonable. One
consideration with end-user input is the number of concurrent users. The more
concurrent database users you have, the greater the possibilities of performance
degradation.

What is a batch load? A batch load performs heaps of transactions against the database
at once. For example, suppose you are archiving last year's data into a massive history
table. You may need to insert thousands, or even millions, of rows of data into your
history table. You probably wouldn't want to do this task manually, so you are likely
to create a batch job or script to automate the process. (Numerous techniques are
available for loading data in a batch.) Batch loads are notorious for taxing system and
database resources. These database resources may include table access, system catalog
access, the database rollback segment, and sort area space; system resources may include
available CPU and shared memory. Many other factors are involved, depending on your
operating system and database server.

Both end-user transactions and batch loads are necessary for most databases to be
successful, but your system could experience serious performance problems if these two
types of processing lock horns. Therefore, you should know the difference between them
and keep them segregated as much as possible. For example, you would not want to load
massive amounts of data into the database when user activity is high. The database
response may already be slow because of the number of concurrent users. Always try to
run batch loads when user activity is at a minimum. Many shops reserve times in the
evenings or early morning to load data in batch to avoid interfering with daily
processing.

You should always plan the timing for massive batch loads, being careful to avoid

scheduling them when the database is expected to be available for normal use. Figure
15.1 depicts heavy batch updates running concurrently with several user processes, all
contending for system resources.

Figure 15.1.
System resource contention.

As you can see, many processes are contending for system resources. The heavy batch
updates that are being done throw a monkey wrench into the equation. Instead of the
system resources being dispersed somewhat evenly among the users, the batch updates
appear to be hogging them. This situation is just the beginning of resource contention.
As the batch transactions proceed, the user processes may eventually be forced out of
the picture. This condition is not a good way of doing business. Even if the system has
only one user, significant contention for that user could occur.

Another problem with batch processes is that the process may hold locks on a table that
a user is trying to access. If there is a lock on a table, the user will be refused access
until the lock is freed by the batch process, which could be hours. Batch processes
should take place when system resources are at their best if possible. Don't make the
users' transactions compete with batch. Nobody wins that game.

Optimizing Data Loads by Dropping Indexes
One way to expedite batch updates is by dropping indexes. Imagine the history table with
many thousands of rows. That history table is also likely to have one or more indexes.
When you think of an index, you normally think of faster table access, but in the case
of batch loads, you can benefit by dropping the index(es).

When you load data into a table with an index, you can usually expect a great deal of
index use, especially if you are updating a high percentage of rows in the table. Look at
it this way. If you are studying a book and highlighting key points for future reference,
you may find it quicker to browse through the book from beginning to end rather than
using the index to locate your key points. (Using the index would be efficient if you
were highlighting only a small portion of the book.)

To maximize the efficiency of batch loads/updates that affect a high percentage of rows
in a table, you can take these three basic steps to disable an index:

1. Drop the appropriate index(es).

2. Load/update the table's data.

3. Rebuild the table's index.

A Frequent COMMIT Keeps the DBA Away
When performing batch transactions, you must know how often to perform a "commit."
As you learned on Day 11, "Controlling Transactions," a COMMIT statement finalizes a
transaction. A COMMIT saves a transaction or writes any changes to the applicable
table(s). Behind the scenes, however, much more is going on. Some areas in the database
are reserved to store completed transactions before the changes are actually written
to the target table. Oracle calls these areas rollback segments. When you issue a COMMIT
statement, transactions associated with your SQL session in the rollback segment are
updated in the target table. After the update takes place, the contents of the rollback
segment are removed. A ROLLBACK command, on the other hand, clears the contents of
the rollback segment without updating the target table.

As you can guess, if you never issue a COMMIT or ROLLBACK command, transactions keep
building within the rollback segments. Subsequently, if the data you are loading is
greater in size than the available space in the rollback segments, the database will
essentially come to a halt and ban further transactional activity. Not issuing COMMIT
commands is a common programming pitfall; regular COMMITs help to ensure stable
performance of the entire database system.

The management of rollback segments is a complex and vital database administrator
(DBA) responsibility because transactions dynamically affect the rollback segments,
and in turn, affect the overall performance of the database as well as individual SQL
statements. So when you are loading large amounts of data, be sure to issue the COMMIT
command on a regular basis. Check with your DBA for advice on how often to commit
during batch transactions. (See Figure 15.2.)

Figure 15.2.
The rollback area.

As you can see in Figure 15.2, when a user performs a transaction, the changes are
retained in the rollback area.

Rebuilding Tables and Indexes in a Dynamic
Environment
The term dynamic database environment refers to a large database that is in a constant
state of change. The changes that we are referring to are frequent batch updates and
continual daily transactional processing. Dynamic databases usually entail heavy
OLTP systems, but can also refer to DSSs or data warehouses, depending upon the
volume and frequency of data loads.

The result of constant high-volume changes to a database is growth, which in turn

yields fragmentation. Fragmentation can easily get out of hand if growth is not
managed properly. Oracle allocates an initial extent to tables when they are created.
When data is loaded and fills the table's initial extent, a next extent, which is also
allocated when the table is created, is taken.

Sizing tables and indexes is essentially a DBA function and can drastically affect SQL
statement performance. The first step in growth management is to be proactive. Allow
room for tables to grow from day one, within reason. Also plan to defragment the
database on a regular basis, even if doing so means developing a weekly routine. Here
are the basic conceptual steps involved in defragmenting tables and indexes in a
relational database management system:

1. Get a good backup of the table(s) and/or index(es).

2. Drop the table(s) and/or index(es).

3. Rebuild the table(s) and/or index(es) with new space allocation.

4. Restore the data into the newly built table(s).

5. Re-create the index(es) if necessary.

6. Reestablish user/role permissions on the table if necessary.

7. Save the backup of your table until you are absolutely sure that the new
table was built successfully. If you choose to discard the backup of the original
table, you should first make a backup of the new table after the data has been
fully restored.

WARNING: Never get rid of the backup of your table until you are sure
that the new table was built successfully.

The following example demonstrates a practical use of a mailing list table in an Oracle
database environment.

INPUT:

CREATE TABLE MAILING_TBL_BKUP AS
SELECT * FROM MAILING_TBL;

OUTPUT:

Table Created.

INPUT/OUTPUT:

drop table mailing_tbl;

Table Dropped.

CREATE TABLE MAILING_TBL
 (
 INDIVIDUAL_ID VARCHAR2(12) NOT NULL,
 INDIVIDUAL_NAME VARCHAR2(30) NOT NULL,
 ADDRESS VARCHAR(40) NOT NULL,
 CITY VARCHAR(25) NOT NULL,
 STATE VARCHAR(2) NOT NULL,
 ZIP_CODE VARCHAR(9) NOT NULL,
)
 TABLESPACE TABLESPACE_NAME
 STORAGE (INITIAL NEW_SIZE,
 NEXT NEW_SIZE);

Table created.

INSERT INTO MAILING_TBL
select * from mailing_tbl_bkup;

93,451 rows inserted.

CREATE INDEX MAILING_IDX ON MAILING TABLE
 (
 INDIVIDUAL_ID
)
 TABLESPACE TABLESPACE_NAME
 STORAGE (INITIAL NEW_SIZE,
 NEXT NEW_SIZE);

Index Created.

grant select on mailing_tbl to public;

Grant Succeeded.

drop table mailing_tbl_bkup;

Table Dropped.

ANALYSIS:

Rebuilding tables and indexes that have grown enables you to optimize storage, which
improves overall performance. Remember to drop the backup table only after you have
verified that the new table has been created successfully. Also keep in mind that you
can achieve the same results with other methods. Check the options that are available
to you in your database documentation.

Tuning the Database

Tuning a database is the process of fine-tuning the database server's performance. As a
newcomer to SQL, you probably will not be exposed to database tuning unless you are a
new DBA or a DBA moving into a relational database environment. Whether you will be
managing a database or using SQL in applications or programming, you will benefit by
knowing something about the database-tuning process. The key to the success of any
database is for all parties to work together. Some general tips for tuning a database
follow.

● Minimize the overall size required for the database.

It's good to allow room for growth when designing a database, but don't go
overboard. Don't tie up resources that you may need to accommodate database
growth.

● Experiment with the user process's time-slice variable.

This variable controls the amount of time the database server's scheduler
allocates to each user's process.

● Optimize the network packet size used by applications.

The larger the amount of data sent over the network, the larger the network
packet size should be. Consult your database and network documentation for
more details.

● Store transaction logs on separate hard disks.

For each transaction that takes place, the server must write the changes to the
transaction logs. If you store these log files on the same disk as you store data,
you could create a performance bottleneck. (See Figure 15.3.)

● Stripe extremely large tables across multiple disks.

If concurrent users are accessing a large table that is spread over multiple disks,
there is much less chance of having to wait for system resources. (See Figure 15.3.)

● Store database sort area, system catalog area, and rollback areas on separate
hard disks.

These are all areas in the database that most users access frequently. By
spreading these areas over multiple disk drives, you are maximizing the use of
system resources. (See Figure 15.3.)

● Add CPUs.

This system administrator function can drastically improve database performance.
Adding CPUs can speed up data processing for obvious reasons. If you have multiple
CPUs on a machine, then you may be able to implement parallel processing
strategies. See your database documentation for more information on parallel
processing, if it is available with your implementation.

● Add memory.

Generally, the more the better.

● Store tables and indexes on separate hard disks.

You should store indexes and their related tables on separate disk drives when-
ever possible. This arrangement enables the table to be read at the same time the
index is being referenced on another disk. The capability to store objects on
multiple disks may depend on how many disks are connected to a controller. (See
Figure 15.3.)

Figure 15.3 shows a simple example of how you might segregate the major areas of your
database.

Figure 15.3.
Using available disks to enhance performance.

The scenario in Figure 15.3 uses four devices: disk01 through disk04. The objective when
spreading your heavy database areas and objects is to keep areas of high use away from
each another.

● Disk01-- The system catalog stores information about tables, indexes, users,
statistics, database files, sizing, growth information, and other pertinent data
that is often accessed by a high percentage of transactions.

● Disk02--Transaction logs are updated every time a change is made to a table
(insert, update, or delete). Transaction logs are a grand factor in an online
transactional database. They are not of great concern in a read-only
environment, such as a data warehouse or DSS.

● Disk03--Rollback segments are also significant in a transactional environment.
However, if there is little transactional activity (insert, update, delete),
rollback segments will not be heavily used.

● Disk04-- The database's sort area, on the other hand, is used as a temporary area
for SQL statement processing when sorting data, as in a GROUP BY or ORDER BY
clause. Sort areas are typically an issue in a data warehouse or DSS. However,
the use of sort areas should also be considered in a transactional environment.

TIP: Also note how the application tables and indexes have been placed on
each disk. Tables and indexes should be spread as much as possible.

Notice that in Figure 15.3 the tables and indexes are stored on different devices. You
can also see how a "Big Table" or index may be striped across two or more devices. This
technique splits the table into smaller segments that can be accessed simultaneously.
Striping a table or index across multiple devices is a way to control fragmentation. In
this scenario, tables may be read while their corresponding indexes are being referenced,
which increases the speed of overall data access.

This example is really quite simple. Depending on the function, size, and system-related
issues of your database, you may find a similar method for optimizing system resources
that works better. In a perfect world where money is no obstacle, the best
configuration is to have a separate disk for each major database entity, including large
tables and indexes.

NOTE: The DBA and system administrator should work together to balance
database space allocation and optimize the memory that is available on the
server.

Tuning a database very much depends on the specific database system you are using.
Obviously, tuning a database entails much more than just preparing queries and letting
them fly. On the other hand, you won't get much reward for tuning a database when
the application SQL is not fine-tuned itself. Professionals who tune databases for a
living often specialize on one database product and learn as much as they possibly can
about its features and idiosyncrasies. Although database tuning is often looked upon as
a painful task, it can provide very lucrative employment for the people who truly
understand it.

Performance Obstacles
We have already mentioned some of the countless possible pitfalls that can hinder the
general performance of a database. These are typically general bottlenecks that
involve system-level maintenance, database maintenance, and management of SQL
statement processing.

This section summarizes the most common obstacles in system performance and database
response time.

● Not making use of available devices on the server--A company purchases multiple
disk drives for a reason. If you do not use them accordingly by spreading apart the
vital database components, you are limiting the performance capabilities.
Maximizing the use of system resources is just as important as maximizing the use
of the database server capabilities.

● Not performing frequent COMMITs--Failing to use periodic COMMITs or ROLLBACKs
during heavy batch loads will ultimately result in database bottlenecks.

● Allowing batch loads to interfere with daily processing--Running batch loads
during times when the database is expected to be available will cause problems
for everybody. The batch process will be in a perpetual battle with end users for
system resources.

● Being careless when creating SQL statements--Carelessly creating complex SQL
statements will more than likely contribute to substandard response time.

TIP: You can use various methods to optimize the structure of an SQL
statement, depending upon the steps taken by the database server during
SQL statement processing.

● Running batch loads with table indexes--You could end up with a batch load that
runs all day and all night, as opposed to a batch load that finishes within a few
hours. Indexes slow down batch loads that are accessing a high percentage of the
rows in a table.

● Having too many concurrent users for allocated memory--As the number of
concurrent database and system users grows, you may need to allocate more
memory for the shared process. See your system administrator.

● Creating indexes on columns with few unique values--Indexing on a column such
as GENDER, which has only two unique values, is not very efficient. Instead, try to
index columns that will return a low percentage of rows in a query.

● Creating indexes on small tables--By the time the index is referenced and the
data read, a full-table scan could have been accomplished.

● Not managing system resources efficiently--Poor management of system resources
can result from wasted space during database initialization, table creation,
uncontrolled fragmentation, and irregular system/database maintenance.

● Not sizing tables and indexes properly--Poor estimates for tables and indexes that
grow tremendously in a large database environment can lead to serious
fragmentation problems, which if not tended to, will snowball into more serious
problems.

Built-In Tuning Tools
Check with your DBA or database vendor to determine what tools are available to you
for performance measuring and tuning. You can use performance-tuning tools to
identify deficiencies in the data access path; in addition, these tools can sometimes
suggest changes to improve the performance of a particular SQL statement.

Oracle has two popular tools for managing SQL statement performance. These tools are
explain plan and tkprof. The explain plan tool identifies the access path that will
be taken when the SQL statement is executed. tkprof measures the performance by time
elapsed during each phase of SQL statement processing. Oracle Corporation also
provides other tools that help with SQL statement and database analysis, but the two
mentioned here are the most popular. If you want to simply measure the elapsed time of a
query in Oracle, you can use the SQL*Plus command SET TIMING ON.

SET TIMING ON and other SET commands are covered in more depth on Day 20,
"SQL*Plus."

Sybase's SQL Server has diagnostic tools for SQL statements. These options are in the
form of SET commands that you can add to your SQL statements. (These commands are
similar to Oracle's SET commands). Some common commands are SET SHOWPLAN ON, SET
STATISTIC IO ON, and SET STATISTICS TIME ON. These SET commands display
output concerning the steps performed in a query, the number of reads and writes
required to perform the query, and general statement-parsing information. SQL Server
SET commands are covered on Day 19, "Transact-SQL: An Introduction."

Summary
Two major elements of streamlining, or tuning, directly affect the performance of SQL
statements: application tuning and database tuning. Each has its own role, but one
cannot be optimally tuned without the other. The first step toward success is for the
technical team and system engineers to work together to balance resources and take
full advantage of the database features that aid in improving performance. Many of
these features are built into the database software provided by the vendor.

Application developers must know the data. The key to an optimal database design is
thorough knowledge of the application's data. Developers and production programmers
must know when to use indexes, when to add another index, and when to allow batch
jobs to run. Always plan batch loads and keep batch processing separate from daily
transactional processing.

Databases can be tuned to improve the performance of individual applications that
access them. Database administrators must be concerned with the daily operation and

performance of the database. In addition to the meticulous tuning that occurs behind
the scenes, the DBA can usually offer creative suggestions for accessing data more
efficiently, such as manipulating indexes or reconstructing an SQL statement. The DBA
should also be familiar with the tools that are readily available with the database
software to measure performance and provide suggestions for statement tweaking.

Q&A
Q If I streamline my SQL statement, how much of a gain in performance
should I expect?

A Performance gain depends on the size of your tables, whether or not columns in
the table are indexed, and other relative factors. In a very large database, a
complex query that runs for hours can sometimes be cut to minutes. In the case of
transactional processing, streamlining an SQL statement can save important
seconds for the end user.

Q How do I coordinate my batch loads or updates?

A Check with the database administrator and, of course, with management when
scheduling a batch load or update. If you are a system engineer, you probably will
not know everything that is going on within the database.

Q How often should I commit my batch transactions?

A Check with the DBA for advice. The DBA will need to know approximately how
much data you are inserting, updating, or deleting. The frequency of COMMIT
statements should also take into account other batch loads occurring
simultaneously with other database activities.

Q Should I stripe all of my tables?

A Striping offers performance benefits only for large tables and/or for tables
that are heavily accessed on a regular basis.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. What does streamline an SQL statement mean?

2. Should tables and their corresponding indexes reside on the same disk?

3. Why is the arrangement of conditions in an SQL statement important?

4. What happens during a full-table scan?

5. How can you avoid a full-table scan?

6. What are some common hindrances of general performance?

Exercises

1. Make the following SQL statement more readable.

SELECT EMPLOYEE.LAST_NAME, EMPLOYEE.FIRST_NAME, EMPLOYEE.MIDDLE_NAME,
EMPLOYEE.ADDRESS, EMPLOYEE.PHONE_NUMBER, PAYROLL.SALARY,
PAYROLL.POSITION,
EMPLOYEE.SSN, PAYROLL.START_DATE FROM EMPLOYEE, PAYROLL WHERE
EMPLOYEE.SSN = PAYROLL.SSN AND EMPLOYEE.LAST_NAME LIKE 'S%' AND
PAYROLL.SALARY > 20000;

2. Rearrange the conditions in the following query to optimize data retrieval
time. Use the following statistics (on the tables in their entirety) to determine
the order of the conditions:

593 individuals have the last name SMITH.

712 individuals live in INDIANAPOLIS.

3,492 individuals are MALE.

1,233 individuals earn a salary >= 30,000.

5,009 individuals are single.

Individual_id is the primary key for both tables.

SELECT M.INDIVIDUAL_NAME, M.ADDRESS, M.CITY, M.STATE, M.ZIP_CODE,
 S.SEX, S.MARITAL_STATUS, S.SALARY
FROM MAILING_TBL M,
 INDIVIDUAL_STAT_TBL S
WHERE M.NAME LIKE 'SMITH%'
 AND M.CITY = 'INDIANAPOLIS'
 AND S.SEX = 'MALE'
 AND S.SALARY >= 30000
 AND S.MARITAL_STATUS = 'S'

 AND M.INDIVIDUAL_ID = S.INDIVIDUAL_ID;

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 16 -
Using Views to Retrieve Useful Information

from the Data Dictionary

Objectives
Today we discuss the data dictionary, also known as the system catalog. By the end of
the day, you should have a solid understanding of the following:

● The definition of the data dictionary

● The type of information the data dictionary contains

● Different types of tables within the data dictionary

● Effective ways to retrieve useful information from the data dictionary

Introduction to the Data Dictionary
Every relational database has some form of data dictionary, or system catalog. (We use
both terms in today's presentation.) A data dictionary is a system area within a database
environment that contains information about the ingredients of a database. Data
dictionaries include information such as database design, stored SQL code, user
statistics, database processes, database growth, and database performance statistics.

The data dictionary has tables that contain database design information, which are

populated upon the creation of the database and the execution of Data Definition
Language (DDL) commands such as CREATE TABLE. This part of the system catalog
stores information about a table's columns and attributes, table-sizing information,
table privileges, and table growth. Other objects that are stored within the data
dictionary include indexes, triggers, procedures, packages, and views.

User statistics tables report the status of items such as database connectivity
information and privileges for individual users. These privileges are divided into two
major components: system-level privileges and object-level privileges. The authority to
create another user is a system-level privilege, whereas the capability to access a table
is an object-level privilege. Roles are also used to enforce security within a database.
This information is stored as well.

Day 16 extends what you learned yesterday (Day 15, "Streamlining SQL Statements for
Improved Performance"). Data retrieved from the system catalog can be used to monitor
database performance and to modify database parameters that will improve database
and SQL statement performance.

The data dictionary is one of the most useful tools available with a database. It is a way
of keeping a database organized, much like an inventory file in a retail store. It is a
mechanism that ensures the integrity of the database. For instance, when you create a
table, how does the database server know whether a table with the same name exists?
When you create a query to select data from a table, how can it be verified that you
have been given the proper privileges to access the table? The data dictionary is the
heart of a database, so you need to know how to use it.

Users of the Data Dictionary
End users, system engineers, and database administrators all use the data dictionary,
whether they realize it or not. Their access can be either direct or indirect.

End users, often the customers for whom the database was created, access the system
catalog indirectly. When a user attempts to log on to the database, the data dictionary
is referenced to verify that user's username, password, and privileges to connect to the
database. The database is also referenced to see whether the user has the appropriate
privileges to access certain data. The most common method for an end user to access the
data dictionary is through a front-end application. Many graphical user interface (GUI)
tools, which allow a user to easily construct an SQL statement, have been developed.
When logging on to the database, the front-end application may immediately perform a
select against the data dictionary to define the tables to which the user has access. The
front-end application may then build a "local" system catalog for the individual user
based on the data retrieved from the data dictionary. The customer can use the local
catalog to select the specific tables he or she wishes to query.

System engineers are database users who are responsible for tasks such as database
modeling and design, application development, and application management. (Some
companies use other titles, such as programmers, programmer analysts, and data
modelers, to refer to their system engineers.) System engineers use the data dictionary
directly to manage the development process, as well as to maintain existing projects.
Access may also be achieved through front-end applications, development tools, and
computer assisted software engineering (CASE) tools. Common areas of the system
catalog for these users are queries against objects under groups of schemas, queries
against application roles and privileges, and queries to gather statistics on schema
growth. System engineers may also use the data dictionary to reverse-engineer database
objects in a specified schema.

Database administrators (DBAs) are most definitely the largest percentage of direct
users of the data dictionary. Unlike the other two groups of users, who occasionally
use the system catalog directly, DBAs must explicitly include the use of the data
dictionary as part of their daily routine. Access is usually through an SQL query but
can also be through administration tools such as Oracle's Server Manager. A DBA uses
data dictionary information to manage users and resources and ultimately to achieve a
well-tuned database.

As you can see, all database users need to use the data dictionary. Even more important,
a relational database cannot exist without some form of a data dictionary.

Contents of the Data Dictionary
This section examines the system catalogs of two RDBMS vendors, Oracle and Sybase.
Although both implementations have unique specifications for their data dictionaries,
they serve the same function. Don't concern yourself with the different names for the
system tables; simply understand the concept of a data dictionary and the data it
contains.

Oracle's Data Dictionary

Because every table must have an owner, the owner of the system tables in an Oracle
data dictionary is SYS. Oracle's data dictionary tables are divided into three basic
categories: user accessible views, DBA views, and dynamic performance tables, which
also appear as views. Views that are accessible to a user allow the user to query the
data dictionary for information about the individual database account, such as
privileges, or a catalog of tables created. The DBA views aid in the everyday duties of a
database administrator, allowing the DBA to manage users and objects within the
database. The dynamic performance tables in Oracle are also used by the DBA and
provide a more in-depth look for monitoring performance of a database. These views
provide information such as statistics on processes, the dynamic usage of rollback
segments, memory usage, and so on. The dynamic performance tables are all prefixed V$.

Sybase's Data Dictionary

As in Oracle, the owner of the tables in a Sybase data dictionary is SYS. The tables
within the data dictionary are divided into two categories: system tables and database
tables.

The system tables are contained with the master database only. These tables define
objects (such as tables and indexes) that are common through multiple databases. The
second set of tables in a Sybase SQL Server data dictionary are the database tables.
These tables are related only to objects within each database.

A Look Inside Oracle's Data Dictionary
The examples in this section show you how to retrieve information from the data
dictionary and are applicable to most relational database users, that is, system
engineer, end user, or DBA. Oracle's data dictionary has a vast array of system tables
and views for all types of database users, which is why we have chosen to explore
Oracle's data dictionary in more depth.

User Views

User views are data dictionary views that are common to all database users. The only
privilege a user needs to query against a user view is the CREATE SESSION system
privilege, which should be common to all users.

Who Are You?

Before venturing into the seemingly endless knowledge contained within a database,
you should know exactly who you are (in terms of the database) and what you can do.
The following two examples show SELECT statements from two tables: one to find out
who you are and the other to see who else shares the database.

INPUT:

SQL> SELECT *
 2 FROM USER_USERS;

OUTPUT:

USERNAME USER_ID DEFAULT_TABLESPACE TEMPORARY TABLESPACE
CREATED
---------- ------ -------------------- -------------------- --

JSMITH 29 USERS TEMP

14-MAR-97

1 row selected.

ANALYSIS:

The USER_USERS view allows you to view how your Oracle ID was set up, when it was
set up, and it also shows other user-specific, vital statistics. The default tablespace and
the temporary tablespace are also shown. The default tablespace, USERS, is the
tablespace that objects will be created under as that user. The temporary tablespace is
the designated tablespace to be used during large sorts and group functions for JSMITH.

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM ALL_USERS;

USERNAME USER_ID CREATED
-------------- ------- ------------
SYS 0 01-JAN-97
SYSTEM 5 01-JAN-97
SCOTT 8 01-JAN-97
JSMITH 10 14-MAR-97
TJONES 11 15-MAR-97
VJOHNSON 12 15-MAR-97

As you can see in the results of the preceding query, you can view all users that exist in
the database by using the ALL_USERS view. However, the ALL_USERS view does not
provide the same specific information as the previous view (USER_USERS) provided
because there is no need for this information at the user level. More specific
information may be required at the system level.

What Are Your Privileges?

Now that you know who you are, it would be nice to know what you can do. Several
views are collectively able to give you that information. The USER_SYS_PRIVS view
and the USER_ROLE_PRIVS view will give you (the user) a good idea of what authority
you have.

You can use the USER_SYS_PRIVS view to examine your system privileges. Remember,
system privileges are privileges that allow you to do certain things within the database
as a whole. These privileges are not specific to any one object or set of objects.

INPUT:

SQL> SELECT *
 2 FROM USER_SYS_PRIVS;

OUTPUT:

USERNAME PRIVILEGE ADM
-------- -------------------- ---
JSMITH UNLIMITED TABLESPACE NO
JSMITH CREATE SESSION NO

2 rows selected.

ANALYSIS:

JSMITH has been granted two system-level privileges, outside of any granted roles.
Notice the second, CREATE SESSION. CREATE SESSION is also contained within an
Oracle standard role, CONNECT, which is covered in the next example.

You can use the USER_ROLE_PRIVS view to view information about roles you have been
granted within the database. Database roles are very similar to system-level privileges.
A role is created much like a user and then granted privileges. After the role has been
granted privileges, the role can be granted to a user. Remember that object-level
privileges may also be contained within a role.

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM USER_ROLE_PRIVS;

USERNAME GRANTED_ROLE ADM DEF OS_
------------ ---------------- --- --- --
JSMITH CONNECT NO YES NO
JSMITH RESOURCE NO YES NO

2 rows selected.

ANALYSIS:

The USER_ROLE_PRIVS view enables you to see the roles that have been granted to
you. As mentioned earlier, CONNECT contains the system privilege CREATE SESSION, as
well as other privileges. RESOURCE has a few privileges of its own. You can see that
both roles have been granted as the user's default role; the user cannot grant these
roles to other users, as noted by the Admin option (ADM); and the roles have not been
granted by the operating system. (Refer to Day 12, "Database Security.")

What Do You Have Access To?

Now you might ask, What do I have access to? I know who I am, I know my privileges, but
where can I get my data? You can answer that question by looking at various available
user views in the data dictionary. This section identifies a few helpful views.

Probably the most basic user view is USER_CATALOG, which is simply a catalog of the
tables, views, synonyms, and sequences owned by the current user.

INPUT:

SQL> SELECT *
 2 FROM USER_CATALOG;

OUTPUT:

TABLE_NAME TABLE_TYPE
---------------------------- ----------
MAGAZINE_TBL TABLE
MAG_COUNTER SEQUENCE
MAG_VIEW VIEW
SPORTS TABLE

4 rows selected.

ANALYSIS:

This example provides a quick list of tables and related objects that you own. You can
also use a public synonym for USER_CATALOG for simplicity's sake: CAT. That is, try
select * from cat;.

Another useful view is ALL_CATALOG, which enables you to see tables owned by other
individuals.

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM ALL_CATALOG;

OWNER TABLE_NAME TABLE_TYPE
-------------------- ------------------ ----------
SYS DUAL TABLE
PUBLIC DUAL SYNONYM
JSMITH MAGAZINE_TBL TABLE
JSMITH MAG_COUNTER SEQUENCE
JSMITH MAG_VIEW VIEW
JSMITH SPORTS TABLE
VJOHNSON TEST1 TABLE
VJOHNSON HOBBIES TABLE
VJOHNSON CLASSES TABLE
VJOHNSON STUDENTS VIEW

10 rows selected.

ANALYSIS:

More objects than appear in the preceding list will be accessible to you as a user. (The
SYSTEM tables alone will add many tables.) We have simply shortened the list. The
ALL_CATALOG view is the same as the USER_CATALOG view, but it shows you all
tables, views, sequences, and synonyms to which you have access (not just the ones you
own).

INPUT:

SQL> SELECT SUBSTR(OBJECT_TYPE,1,15) OBJECT_TYPE,
 2 SUBSTR(OBJECT_NAME,1,30) OBJECT_NAME,
 3 CREATED,
 4 STATUS
 5 FROM USER_OBJECTS
 6 ORDER BY 1;

OUTPUT:

OBJECT_TYPE OBJECT_NAME CREATED STATUS
-------------- -------------------- ------------ ------
INDEX MAGAZINE_INX 14-MAR-97 VALID
INDEX SPORTS_INX 14-MAR-97 VALID
INDEX HOBBY_INX 14-MAR-97 VALID
TABLE MAGAZINE_TBL 01-MAR-97 VALID
TABLE SPORTS 14-MAR-97 VALID
TABLE HOBBY_TBL 16-MAR-97 VALID

6 rows selected.

ANALYSIS:

You can use the USER_OBJECTS view to select general information about a user's
owned objects, such as the name, type, date created, date modified, and the status of the
object. In the previous query, we are checking the data created and validation of each
owned object.

INPUT/OUTPUT:

SQL> SELECT TABLE_NAME, INITIAL_EXTENT, NEXT_EXTENT
 2 FROM USER_TABLES;

TABLE_NAME INITIAL_EXTENT NEXT EXTENT
---------------------------- -------------- -----------
MAGAZINE_TBL 1048576 540672
SPORTS 114688 114688

ANALYSIS:

Much more data is available when selecting from the USER_TABLES view, depending
upon what you want to see. Most data consists of storage information.

NOTE: Notice in the output that the values for initial and next extent are
in bytes. In some implementations you can use column formatting to make
your output more readable by adding commas. See Day 19, "Transact-SQL: An
Introduction," and Day 20, "SQL*Plus."

The ALL_TABLES view is to USER_TABLES as the ALL_CATALOG view is to
USER_CATALOG. In other words, ALL_TABLES allows you to see all the tables to
which you have access, instead of just the tables you own. The ALL_TABLES view may
include tables that exist in another user's catalog.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(OWNER,1,15) OWNER,
 2 SUBSTR(TABLE_NAME,1,25) TABLE_NAME,
 3 SUBSTR(TABLESPACE_NAME,1,13) TABLESPACE
 4 FROM ALL_TABLES;

OWNER TABLE_NAME TABLESPACE
-------------------- ---------------------------- ----------
SYS DUAL SYSTEM
JSMITH MAGAZINE_TBL USERS
SMITH SPORTS USERS
VJOHNSON TEST1 USERS
VJOHNSON HOBBIES USERS
VJOHNSON CLASSES USERS

ANALYSIS:

Again, you have selected only the desired information. Many additional columns in
ALL_TABLES may also contain useful information.

As a database user, you can monitor the growth of tables and indexes in your catalog by
querying the USER_SEGMENTS view. As the name suggests, USER_SEGMENTS gives you
information about each segment, such as storage information and extents taken. A
segment may consist of a table, index, cluster rollback, temporary, or cache. The
following example shows how you might retrieve selected information from the
USER_SEGMENTS view.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(SEGMENT_NAME,1,30) SEGMENT_NAME,
 2 SUBSTR(SEGMENT_TYPE,1,8) SEG_TYPE,
 3 SUBSTR(TABLESPACE_NAME,1,25) TABLESPACE_NAME,
 4 BYTES, EXTENTS
 5 FROM USER_SEGMENTS

 6 ORDER BY EXTENTS DESC;

SEGMENT_NAME SEG_TYPE TABLESPACE_NAME BYTES
EXTENTS
-------------------- ------------ -------------------- ---------
--- -------
MAGAZINE_TBL TABLE USERS
4292608 7
SPORTS_INX INDEX USERS
573440 4
SPORTS TABLE USERS
344064 2
MAGAZINE_INX INDEX USERS
1589248 1

4 rows selected.

ANALYSIS:

The output in the preceding query was sorted by extents in descending order; the
segments with the most growth (extents taken) appear first in the results.

Now that you know which tables you have access to, you will want to find out what
you can do to each table. Are you limited to query only, or can you update a table? The
ALL_TAB_PRIVS view lists all privileges that you have as a database user on each table
available to you.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLE_SCHEMA,1,10) OWNER,
 2 SUBSTR(TABLE_NAME,1,25) TABLE_NAME,
 3 PRIVILEGE
 4 FROM ALL_TAB_PRIVS;

OWNER TABLE_NAME PRIVILEGE
------------ -------------------- ---------
SYS DUAL SELECT
JSMITH MAGAZINE_TBL SELECT
JSMITH MAGAZINE_TBL INSERT
JSMITH MAGAZINE_TBL UPDATE
JSMITH MAGAZINE_TBL DELETE
JSMITH SPORTS SELECT
JSMITH SPORTS INSERT
JSMITH SPORTS UPDATE
JSMITH SPORTS DELETE
VJOHNSON TEST1 SELECT
VJOHNSON TEST1 INSERT
VJOHNSON TEST1 UPDATE
VJOHNSON TEST1 DELETE
VJOHNSON HOBBIES SELECT
VJOHNSON CLASSES SELECT

ANALYSIS:

As you can see, you can manipulate the data in some tables, whereas you have read-only
access (SELECT only) to others.

When you create objects, you usually need to know where to place them in the
database unless you allow your target destination to take the default. An Oracle
database is broken up into tablespaces, each of which are capable of storing objects.
Each tablespace is allocated a certain amount of disk space, according to what is
available on the system. Disk space is usually acquired through the system
administrator (SA).

The following query is from a view called USER_TABLESPACES, which will list the
tablespaces that you have access to, the default initial and next sizes of objects
created within them, and their status.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLESPACE_NAME,1,30) TABLESPACE_NAME,
 2 INITIAL_EXTENT,
 3 NEXT_EXTENT,
 4 PCT_INCREASE,
 5 STATUS
 6 FROM USER_TABLESPACES;

TABLESPACE_NAME INITIAL_EXTENT NEXT_EXTENT PCT_INCREASE
STATUS
------------------------------ -------------- ----------- ------------

SYSTEM 32768 16384 1
ONLINE
RBS 2097152 2097152 1
ONLINE
TEMP 114688 114688 1
ONLINE
TOOLS 32768 16384 1
ONLINE
USERS 32768 16384 1
ONLINE

5 rows selected.

ANALYSIS:

This type of query is very useful when you are creating objects, such as tables and
indexes, which will require storage. When a table or index is created, if the initial and
next storage parameters are not specified in the DDL, the table or index will take the
tablespace's default values. The same concept applies to PCT INCREASE, which is an

Oracle parameter specifying the percentage of allocated space an object should take
when it grows. If a value for PCT INCREASE is not specified when the table or index is
created, the database server will allocate the default value that is specified for the
corresponding tablespace. Seeing the default values enables you to determine whether
you need to use a storage clause in the CREATE statement.

Sometimes, however, you need to know more than which tablespaces you may access, that
is, build tables under. For example, you might need to know what your limits are within
the tablespaces so that you can better manage the creation and sizing of your objects.
The USER_TS_QUOTAS view provides the necessary information. The next query displays
a user's space limits for creating objects in the database.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLESPACE_NAME,1,30) TABLESPACE_NAME,
 2 BYTES, MAX_BYTES
 3 FROM USER_TS_QUOTAS;

TABLESPACE_NAME BYTES MAX_BYTES
------------------------------ ---------- ----------
SYSTEM 0 0
TOOLS 5242880 16384
USERS 573440 -1

3 rows selected.

ANALYSIS:

The preceding output is typical of output from an Oracle data dictionary. BYTES
identifies the total number of bytes in that tablespace that are associated with the
user. MAX BYTES identifies the maximum bytes allotted to the user, or the user's quota,
on the tablespace. The first two values in this column are self-explanatory. The -1 in
the third row means quota unlimited--that is, no limits are placed on the user for that
tablespace.

NOTE: The SUBSTR function appears in many of the preceding queries of
data dictionary views. You can use many of the functions that you learned
about earlier to improve the readablility of the data you retrieve. The use
of consistent naming standards in your database may allow you to limit the
size of data in your output, as we have done in these examples.

These examples all show how an ordinary database user can extract information from
the data dictionary. These views are just a few of the many that exist in Oracle's data
dictionary. It is important to check your database implementation to see what is
available to you in your data dictionary. Remember, you should use the data dictionary

to manage your database activities. Though system catalogs differ by implementation,
you need only to understand the concept and know how to retrieve data that is
necessary to supplement your job.

System DBA Views

The DBA views that reside within an Oracle data dictionary are usually the primary, or
most common, views that a DBA would access. These views are invaluable to the
productivity of any DBA. Taking these tables away from a DBA would be like depriving
a carpenter of a hammer.

As you may expect, you must have the SELECT_ANY_TABLE system privilege, which is
contained in the DBA role, to access the DBA tables. For example, suppose you are
JSMITH, who does not have the required privilege to select from the DBA tables.

INPUT:

SQL> SELECT *
 2 FROM USER_ROLE_PRIVS;

OUTPUT:

USERNAME GRANTED_ROLE ADM DEF OS_
------------------ -------------------- --- --- --
JSMITH CONNECT NO YES NO
JSMITH RESOURCE NO YES NO

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM SYS.DBA_ROLES;
FROM SYS.DBA_ROLES;
 *

ERROR at line 2:
ORA-00942: table or view does not exist

ANALYSIS:

When you try to access a table to which you do not have the appropriate privileges, an
error is returned stating that the table does not exist. This message can be a little
misleading. Virtually, the table does not exist because the user cannot "see" the table.
A solution to the problem above would be to grant the role DBA to JSMITH. This role
would have to be granted by a DBA, of course.

Database User Information

The USER_USERS and ALL_USERS views give you minimum information about the users.
The DBA view called DBA_USERS (owned by SYS) gives you the information on all users
if you have the DBA role or SELECT_ANY_TABLE privilege, as shown in the next
example.

INPUT:

SQL> SELECT *
 2 FROM SYS.DBA_USERS;

OUTPUT:

USERNAME USER_ID PASSWORD
-------------------------------- ------ -----------------------------
DEFAULT_TABLESPACE TEMPORARY_TABLESPACE CREATED
------------------------------ ------------------------------ --------
PROFILE

SYS 0 4012DA490794C16B
SYSTEM TEMP 06-JUN-
96
DEFAULT

JSMITH 5 A4A94B17405C10B7
USERS TEMP 06-JUN-
96
DEFAULT

2 rows selected.

ANALYSIS:

When you select all from the DBA_USERS view, you are able to see the vital
information on each user. Notice that the password is encrypted. DBA_USERS is the
primary view used by a DBA to manage users.

Database Security

Three basic data dictionary views deal with security, although these views can be tied
to-gether with other related views for more complete information. These three views
deal with database roles, roles granted to users, and system privileges granted to users.
The three views introduced in this section are DBA_ROLES, DBA_ROLE_PRIVS, and
DBA_SYS_PRIVS. The following sample queries show how to obtain information
pertinent to database security.

INPUT:

SQL> SELECT *
 2 FROM SYS.DBA_ROLES;

OUTPUT:

ROLE PASSWORD
------------------------------ --------
CONNECT NO
RESOURCE NO
DBA NO
EXP_FULL_DATABASE NO
IMP_FULL_DATABASE NO
END_USER_ROLE NO

6 rows selected.

ANALYSIS:

The view DBA_ROLES lists all the roles that have been created within the database. It
gives the role name and whether or not the role has a password.

INPUT:

SQL> SELECT *
 2 FROM SYS.DBA_ROLE_PRIVS
 3 WHERE GRANTEE = 'RJENNINGS';

GRANTEE GRANTED_ROLE ADM DEF
------------------------------ ------------------------------ --- ---
RJENNINGS CONNECT NO YES
RJENNINGS DBA NO YES
RJENNINGS RESOURCE NO YES

3 rows selected.

ANALYSIS:

The DBA_ROLE_PRIVS view provides information about database roles that have been
granted to users. The first column is the grantee, or user. The second column displays
the granted role. Notice that every role granted to the user corresponds to a record in
the table. ADM identifies whether the role was granted with the Admin option, meaning
that the user is able to grant the matching role to other users. The last column is
DEFAULT, stating whether the matching role is a default role for the user.

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM SYS.DBA_SYS_PRIVS
 3 WHERE GRANTEE = 'RJENNINGS';

GRANTEE PRIVILEGE
ADM

------------------------------ --

RJENNINGS CREATE SESSION
NO
RJENNINGS UNLIMITED TABLESPACE
NO

2 rows selected.

ANALYSIS:

The DBA_SYS_PRIVS view lists all system-level privileges that have been granted to
the user. This view is similar to DBA_ROLE_PRIVS. You can include these system
privileges in a role by granting system privileges to a role, as you would to a user.

Database Objects

Database objects are another major focus for a DBA. Several views within the data
dictionary provide information about objects, such as tables and indexes. These views
can contain general information or they can contain detailed information about the
objects that reside within the database.

INPUT:

SQL> SELECT *
 2 FROM SYS.DBA_CATALOG
 3 WHERE ROWNUM < 5;

OUTPUT:

OWNER TABLE_NAME
TABLE_TYPE
------------------------------ ------------------------------ ---------
-
SYS CDEF$ TABLE
SYS TAB$ TABLE
SYS IND$ TABLE
SYS CLU$ TABLE

4 rows selected.

ANALYSIS:

The DBA_CATALOG is the same thing as the USER_CATALOG, only the owner of the
table is included. In contrast, the USER_CATALOG view deals solely with tables that
belonged to the current user. DBA_CATALOG is a view that the DBA can use to take a
quick look at all tables.

The following query shows you what type of objects exist in a particular database.

TIP: You can use ROWNUM to narrow down the results of your query to a
specified number of rows for testing purposes. Oracle calls ROWNUM a
pseudocolumn. ROWNUM, like ROWID, can be used on any database table or
view.

INPUT/OUTPUT:

SQL> SELECT DISTINCT(OBJECT_TYPE)
 2 FROM SYS.DBA_OBJECTS;

OBJECT_TYPE

CLUSTER
DATABASE LINK
FUNCTION
INDEX
PACKAGE
PACKAGE BODY
PROCEDURE
SEQUENCE
SYNONYM
TABLE
TRIGGER
VIEW

12 rows selected.

ANALYSIS:

The DISTINCT function in the preceding query lists all unique object types that exist in
the database. This query is a good way to find out what types of objects the database
designers and developers are using.

The DBA_TABLES view gives specific information about database tables, mostly
concerning storage.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(OWNER,1,8) OWNER,
 2 SUBSTR(TABLE_NAME,1,25) TABLE_NAME,
 3 SUBSTR(TABLESPACE_NAME,1,30) TABLESPACE_NAME
 4 FROM SYS.DBA_TABLES
 5 WHERE OWNER = 'JSMITH';

OWNER TABLE_NAME TABLESPACE_NAME
-------- ------------------------ --------------------
JSMITH MAGAZINE_TBL USERS

JSMITH HOBBY_TBL USERS
JSMITH ADDRESS_TBL SYSTEM
JSMITH CUSTOMER_TBL USERS

4 rows selected.

ANALYSIS:

All tables are in the USERS tablespace except for ADDRESS_TBL, which is in the SYSTEM
tablespace. Because the only table you should ever store in the SYSTEM tablespace is
the SYSTEM table, the DBA needs to be aware of this situation. It's a good thing you ran
this query!

JSMITH should immediately be asked to move his table into another eligible tablespace.

The DBA_SYNONYMS view provides a list of all synonyms that exist in the database.
DBA_SYNONYMS gives a list of synonyms for all database users, unlike
USER_SYNONYMS, which lists only the current user's private synonyms.

INPUT/OUTPUT:

SQL> SELECT SYNONYM_NAME,
 2 SUBSTR(TABLE_OWNER,1,10) TAB_OWNER,
 3 SUBSTR(TABLE_NAME,1,30) TABLE_NAME
 4 FROM SYS.DBA_SYNONYMS
 5 WHERE OWNER = 'JSMITH';

SYNONYM_NAME TAB_OWNER TABLE_NAME
------------------------------ ---------- ----------
TRIVIA_SYN VJOHNSON TRIVIA_TBL

1 row selected.

ANALYSIS:

The preceding output shows that JSMITH has a synonym called TRIVIA_SYN on a table
called TRIVIA_TBL that is owned by VJOHNSON.

Now suppose that you want to get a list of all tables and their indexes that belong to
JSMITH. You would write a query similar to the following, using DBA_INDEXES.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLE_OWNER,1,10) TBL_OWNER,
 2 SUBSTR(TABLE_NAME,1,30) TABLE_NAME,
 3 SUBSTR(INDEX_NAME,1,30) INDEX_NAME
 4 FROM SYS.DBA_INDEXES
 5 WHERE OWNER = 'JSMITH'
 6 AND ROWNUM < 5

 7 ORDER BY TABLE_NAME;

TBL_OWNER TABLE_NAME INDEX_NAME
---------- ------------------------------ ------------
JSMITH ADDRESS_TBL ADDR_INX
JSMITH CUSTOMER_TBL CUST_INX
JSMITH HOBBY_TBL HOBBY_PK
JSMITH MAGAZINE_TBL MAGAZINE_INX

4 rows selected.

ANALYSIS:

A query such as the previous one is an easy method of listing all indexes that belong to
a schema and matching them up with their corresponding table.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLE_NAME,1,15) TABLE_NAME,
 2 SUBSTR(INDEX_NAME,1,30) INDEX_NAME,
 3 SUBSTR(COLUMN_NAME,1,15) COLUMN_NAME,
 4 COLUMN_POSITION
 5 FROM SYS.DBA_IND_COLUMNS
 6 WHERE TABLE_OWNER = 'JSMITH'
 7 AND ROWNUM < 10
 8 ORDER BY 1,2,3;

TABLE_NAME INDEX_NAME COLUMN_NAME
COLUMN_POSITION
-------------- ------------------------------ -------------- --------

ADDRESS_TBL ADDR_INX PERS_ID
1
ADDRESS_TBL ADDR_INX NAME
2
ADDRESS_TBL ADDR_INX CITY
3
CUSTOMER_TBL CUST_INX CUST_ID
1
CUSTOMER_TBL CUST_INX CUST_NAME
2
CUSTOMER_TBL CUST_INX CUST_ZIP
3
HOBBY_TBL HOBBY_PK SAKEY
1
MAGAZINE_TBL MAGAZINE_INX ISSUE_NUM
1
MAGAZINE_TBL MAGAZINE_INX EDITOR
2

9 rows selected.

ANALYSIS:

Now you have selected each column that is indexed in each table and ordered the
results by the order the column appears in the index. You have learned about tables,
but what holds tables? Tablespaces are on a higher level than objects such as tables,
indexes, and so on. Tablespaces are Oracle's mechanism for allocating space to the
database. To allocate space, you must know what tablespaces are currently available.
You can perform a select from DBA_TABLESPACES to see a list of all tablespaces and
their status, as shown in the next example.

INPUT/OUTPUT:

SQL> SELECT TABLESPACE_NAME, STATUS
 2 FROM SYS.DBA_TABLESPACES

TABLESPACE_NAME STATUS
------------------------------ ------
SYSTEM ONLINE
RBS ONLINE
TEMP ONLINE
TOOLS ONLINE
USERS ONLINE
DATA_TS ONLINE
INDEX_TS ONLINE

7 rows selected.

ANALYSIS:

The preceding output tells you that all tablespaces are online, which means that they
are available for use. If a tablespace is offline, then the database objects within it (that
is, the tables) are not accessible.

What is JSMITH's quota on all tablespaces to which he has access? In other words, how
much room is available for JSMITH's database objects?

INPUT/OUTPUT:

SQL> SELECT TABLESPACE_NAME,
 2 BYTES,
 3 MAX_BYTES
 4 FROM SYS.DBA_TS_QUOTAS
 5 WHERE USERNAME = 'JSMITH'

TABLESPACE_NAME BYTES MAX_BYTES
------------------------------ ---------- ----------
DATA_TS 134111232 -1
INDEX_TS 474390528 -1

2 rows selected.

ANALYSIS:

JSMITH has an unlimited quota on both tablespaces to which he has access. In this case
the total number of bytes available in the tablespace is available on a first-come first-
served basis. For instance, if JSMITH uses all the free space in DATA_TS, then no one else
can create objects here.

Database Growth

This section looks at two views that aid in the measurement of database growth:
DBA_SEGMENTS and DBA_EXTENTS. DBA_SEGMENTS provides information about each
segment, or object in the database such as storage allocation, space used, and extents.
Each time a table or index grows and must grab more space as identified by the
NEXT_EXTENT, the table takes another extent. A table usually becomes fragmented
when it grows this way. DBA_EXTENTS provides information about each extent of a
segment.

INPUT:

SQL> SELECT SUBSTR(SEGMENT_NAME,1,30) SEGMENT_NAME,
 2 SUBSTR(SEGMENT_TYPE,1,12) SEGMENT_TYPE,
 3 BYTES,
 4 EXTENTS,
 5 FROM SYS.DBA_SEGMENTS
 6 WHERE OWNER = 'TWILLIAMS'
 7 AND ROWNUM < 5;

OUTPUT:

SEGMENT_NAME SEGMENT_TYPE BYTES EXTENTS
------------------------------ ------------ ---------- ----------
INVOICE_TBL TABLE 163840 10
COMPLAINT_TBL TABLE 4763783 3
HISTORY_TBL TABLE 547474996 27
HISTORY_INX INDEX 787244534 31

4 rows selected.

ANALYSIS:

By looking at the output from DBA_SEGMENTS, you can easily identify which tables
are experiencing the most growth by referring to the number of extents. Both
HISTORY_TBL and HISTORY_INX have grown much more than the other two tables.

Next you can take a look at each extent of one of the tables. You can start with
INVOICE_TBL.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(OWNER,1,10) OWNER,
 2 SUBSTR(SEGMENT_NAME,1,30) SEGMENT_NAME,
 3 EXTENT_ID,
 4 BYTES
 5 FROM SYS.DBA_EXTENTS
 6 WHERE OWNER = 'TWILLIAMS'
 7 AND SEGMENT_NAME = 'INVOICE_TBL'
 8 ORDER BY EXTENT_ID;

OWNER SEGMENT_NAME EXTENT_ID BYTES
---------- ------------------------------ ---------- --------
TWILLIAMS INVOICE_TBL 0 16384
TWILLIAMS INVOICE_TBL 1 16384
TWILLIAMS INVOICE_TBL 2 16384
TWILLIAMS INVOICE_TBL 3 16384
TWILLIAMS INVOICE_TBL 4 16384
TWILLIAMS INVOICE_TBL 5 16384
TWILLIAMS INVOICE_TBL 6 16384
TWILLIAMS INVOICE_TBL 7 16384
TWILLIAMS INVOICE_TBL 8 16384
TWILLIAMS INVOICE_TBL 9 16384

10 rows selected.

ANALYSIS:

This example displays each extent of the table, the extent_id, and the size of the
extent in bytes. Each extent is only 16K, and because there are 10 extents, you might
want to rebuild the table and increase the size of the initial_extent to optimize
space usage. Rebuilding the table will allow all the table's data to fit into a single
extent, and therefore, not be fragmented.

Space Allocated

Oracle allocates space to the database by using "data files." Space logically exists
within a tablespace, but data files are the physical entities of tablespaces. In other
implementations, data is also ultimately contained in data files, though these data files
may be referenced by another name. The view called DBA_DATA_FILES enables you to
see what is actually allocated to a tablespace.

INPUT/OUTPUT:

SQL> SELECT SUBSTR(TABLESPACE_NAME,1,25) TABLESPACE_NAME,
 2 SUBSTR(FILE_NAME,1,40) FILE_NAME,
 3 BYTES
 4 FROM SYS.DBA_DATA_FILES;

TABLESPACE_NAME FILE_NAME

BYTES
------------------------- -- ----

SYSTEM /disk01/system0.dbf
41943040
RBS /disk02/rbs0.dbf
524288000
TEMP /disk03/temp0.dbf
524288000
TOOLS /disk04/tools0.dbf
20971520
USERS /disk05/users0.dbf
20971520
DATA_TS /disk06/data0.dbf
524288000
INDEX_TS /disk07/index0.dbf
524288000

7 rows selected.

ANALYSIS:

You are now able to see how much space has been allocated for each tablespace that
exists in the database. Notice the names of the data files correspond to the tablespace
to which they belong.

Space Available

As the following example shows, the DBA_FREE_SPACE view tells you how much free
space is available in each tablespace.

INPUT:

SQL> SELECT TABLESPACE_NAME, SUM(BYTES)
 2 FROM SYS.DBA_FREE_SPACE
 3 GROUP BY TABLESPACE_NAME;

OUTPUT:

TABLESPACE_NAME SUM(BYTES)
------------------------------ ----------
SYSTEM 23543040
RBS 524288000
TEMP 524288000
TOOLS 12871520
USERS 971520
DATA_TS 568000
INDEX_TS 1288000

7 rows selected.

ANALYSIS:

The preceding example lists the total free space for each tablespace. You can also view
each segment of free space by simply selecting bytes from DBA_FREE_SPACE instead of
SUM(bytes).

Rollback Segments

As areas for rolling back transactions are a crucial part to database performance, you
need to know what rollback segments are available. DBA_ROLLBACK_SEGS provides
this information.

INPUT:

SQL> SELECT OWNER,
 2 SEGMENT_NAME
 3 FROM SYS.DBA_ROLLBACK_SEGS;

OUTPUT:

OWNER SEGMENT_NAME
------ ------------
SYS SYSTEM
SYS R0
SYS R01
SYS R02
SYS R03
SYS R04
SYS R05

7 rows selected.

ANALYSIS:

This example performs a simple select to list all rollback segments by name. Much more
data is available for your evaluation as well.

Dynamic Performance Views

Oracle DBAs frequently access dynamic performance views because they provide greater
detail about the internal performance measures than many of the other data dictionary
views. (The DBA views contain some of the same information.)

These views involve extensive details, which is implementation-specific. This section
simply provides an overview of the type of information a given data dictionary contains.

Session Information

A DESCRIBE command of the V$SESSION views follows. (DESCRIBE is an SQL*Plus
command and will be covered on Day 20.) You can see the detail that is contained in the
view.

INPUT:

SQL> DESCRIBE V$SESSION

OUTPUT:

 Name Null? Type
 ------------------------------ ------- ----
 SADDR RAW(4)
 SID NUMBER
 SERIAL# NUMBER
 AUDSID NUMBER
 PADDR RAW(4)
 USER# NUMBER
 USERNAME VARCHAR2(30)
 COMMAND NUMBER
 TADDR VARCHAR2(8)
 LOCKWAIT VARCHAR2(8)
 STATUS VARCHAR2(8)
 SERVER VARCHAR2(9)
 SCHEMA# NUMBER
 SCHEMANAME VARCHAR2(30)
 OSUSER VARCHAR2(15)
 PROCESS VARCHAR2(9)
 MACHINE VARCHAR2(64)
 TERMINAL VARCHAR2(10)
 PROGRAM VARCHAR2(48)
 TYPE VARCHAR2(10)
 SQL_ADDRESS RAW(4)
 SQL_HASH_VALUE NUMBER
 PREV_SQL_ADDR RAW(4)
 PREV_HASH_VALUE NUMBER
 MODULE VARCHAR2(48)
 MODULE_HASH NUMBER
 ACTION VARCHAR2(32)
 ACTION_HASH NUMBER
 CLIENT_INFO VARCHAR2(64)
 FIXED_TABLE_SEQUENCE NUMBER
 ROW_WAIT_OBJ# NUMBER
 ROW_WAIT_FILE# NUMBER
 ROW_WAIT_BLOCK# NUMBER
 ROW_WAIT_ROW# NUMBER
 LOGON_TIME DATE
 LAST_CALL_ET NUMBER

To get information about current database sessions, you could write a SELECT
statement similar to the one that follows from V$SESSION.

INPUT/OUTPUT:

SQL> SELECT USERNAME, COMMAND, STATUS
 2 FROM V$SESSION
 3 WHERE USERNAME IS NOT NULL;

USERNAME COMMAND STATUS
------------------------------ ---------- --------
TWILLIAMS 3 ACTIVE
JSMITH 0 INACTIVE

2 rows selected.

ANALYSIS:

TWILLIAMS is logged on to the database and performing a select from the database,
which is represented by command 3.

JSMITH is merely logged on to the database. His session is inactive, and he is not
performing any type of commands. Refer to your database documentation to find out
how the commands are identified in the data dictionary. Commands include SELECT,
INSERT, UPDATE, DELETE, CREATE TABLE, and DROP TABLE.

Performance Statistics

Data concerning performance statistics outside the realm of user sessions is also
available in the data dictionary. This type of data is much more implementation specific
than the other views discussed today.

Performance statistics include data such as read/write rates, successful hits on tables,
use of the system global area, use of memory cache, detailed rollback segment
information, detailed transaction log information, and table locks and waits. The well
of knowledge is almost bottomless.

The Plan Table

The Plan table is the default table used with Oracle's SQL statement tool, EXPLAIN
PLAN. (See Day 15.) This table is created by an Oracle script called UTLXPLAN.SQL,
which is copied on to the server when the software is installed. Data is generated by the
EXPLAIN PLAN tool, which populates the PLAN table with information about the object
being accessed and the steps in the execution plan of an SQL statement.

Summary

Although the details of the data dictionary vary from one implementation to another,
the content remains conceptually the same in all relational databases. You must
follow the syntax and rules of your database management system, but today's examples
should give you the confidence to query your data dictionary and to be creative when
doing so.

NOTE: Exploring the data dictionary is an adventure, and you will need to
explore in order to learn to use it effectively.

Q&A
Q Why should I use the views and tables in the data dictionary?

A Using the views in the data dictionary is the most accurate way to discover the
nature of your database. The tables can tell you what you have access to and
what your privileges are. They can also help you monitor various other database
events such as user processes and database performance.

Q How is the data dictionary created?

A The data dictionary is created when the database is initialized. Oracle
Corporation provides several scripts to run when creating each database. These
scripts create all necessary tables and views for that particular database's system
catalog.

Q How is the data dictionary updated?

A The data dictionary is updated internally by the RDBMS during daily
operations. When you change the structure of a table, the appropriate changes
are made to the data dictionary internally. You should never attempt to update
any tables in the data dictionary yourself. Doing so may cause a corrupt database.

Q How can I find out who did what in a database?

A Normally, tables or views in a system catalog allow you to audit user activity.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you

have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. In Oracle, how can you find out what tables and views you own?

2. What types of information are stored in the data dictionary?

3. How can you use performance statistics?

4. What are some database objects?

Exercise

Suppose you are managing a small to medium-size database. Your job responsibilities
include developing and managing the database. Another individual is inserting large
amounts of data into a table and receives an error indicating a lack of space. You must
determine the cause of the problem. Does the user's tablespace quota need to be
increased, or do you need to allocate more space to the tablespace? Prepare a step-by-
step list that explains how you will gather the necessary information from the data
dictionary. You do not need to list specific table or view names.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 17 -
Using SQL to Generate SQL Statements

Objectives
Today you learn the concepts behind generating one or more SQL statements from a
query. By the end of the day you should understand the following:

● The benefits of generating SQL statements from a query

● How to make the output from a query appear in the form of another SQL
statement

● How to use the data dictionary, database tables, or both to form SQL statements

The Purpose of Using SQL to Generate SQL Statements
Generating SQL from another SQL statement simply means writing an SQL statement
whose output forms another SQL statement or command. Until now, all the SQL
statements that you have learned to write either do something, such as manipulate the
data in a table, one row at a time, or produce some kind of report from a query. Today
you learn how to write a query whose output forms another query or SQL statement.

Why you would ever need to produce an SQL statement from a query? Initially, it is a
matter of simplicity and efficiency. You may never need to produce an SQL statement,
but without ever doing so you would be ignoring one of SQL's most powerful features,
one that too many people do not realize exists.

Generating SQL is rarely mandatory because you can manually create and issue all SQL
statements, although the process can be tedious in certain situations. On the same note
generating SQL statements may be necessary when you have a tight deadline. For
example, suppose your boss wants to grant access on a new table to all 90 users in the
marketing department (and you want to get home for dinner). Because some users of this
database do not work in marketing, you cannot simply grant access on the table to
public. When you have multiple groups of users with different types of access, you may
want to enforce role security, which is a built-in method for controlling user access to
data. In this situation you can create an SQL statement that generates GRANT
statements to all individuals in the marketing department; that is, it grants each
individual the appropriate role(s).

You will find many situations in which it is advantageous to produce an SQL statement
as output to another statement. For example, you might need to execute many similar
SQL statements as a group or you might need to regenerate DDL from the data
dictionary. When producing SQL as output from another statement, you will always get
the data for your output from either the data dictionary or the schema tables in the
database. Figure 17.1 illustrates this procedure.

As you can see in Figure 17.1, a SELECT statement can be issued to the database, drawing
its output results either from the data dictionary or from application tables in the
database. Your statement can arrange the retrieved data into one or more SQL
statements. For instance, if one row is returned, you will have generated one SQL
statement. If 100 rows are returned from your statement, then you will have generated
100 SQL statements. When you successfully generate SQL code from the database, you
can run that code against the database, which may perform a series of queries or
database actions.

The remainder of the day is devoted to examples that show you how to produce output
in the form of SQL statements. Most of your information will come from the data
dictionary, so you may want to review yesterday's material. (See Day 16, "Using Views to
Retrieve Useful Information from the Data Dictionary.")

Figure 17.1.

The process of generating SQL from the database.

NOTE: Today's examples use Personal Oracle7. As always, you should apply
the concepts discussed today to the syntax of your specific database
implementation.

Miscellaneous SQL*Plus Commands
Today's examples use a few new commands. These commands, known as SQL*Plus
commands, are specific to Personal Oracle7 and control the format of your output
results. (See Day 20, "SQL*Plus.") SQL*Plus commands are issued at the SQL> prompt, or
they can be used in a file.

NOTE: Although these commands are specific to Oracle, similar commands
are available in other implementations, for example, Transact-SQL. (Also
see Day 19, "Transact-SQL: An Introduction.")

set echo on/off

When you set echo on, you will see your SQL statements as they execute. Set echo
off means that you do not want to see your SQL statements as they execute--you just
want to see the output.

SET ECHO [ON | OFF]

set feedback on/off

Feedback is the row count of your output. For instance, if you executed a SELECT
statement that returned 30 rows of data, your feedback would be

30 rows selected.

SET FEEDBACK ON displays the row count; SET FEEDBACK OFF eliminates the row
count from your output.

SET FEEDBACK [ON | OFF]

set heading on/off

The headings being referred to here are the column headings in the output of a SELECT
statement, such as LAST_NAME or CUSTOMER_ID. SET HEADING ON, which is the
default, displays the column headings of your data as a part of the output. SET
HEADING OFF, of course, eliminates the column headings from your output.

SET HEADING [ON | OFF]

spool filename/off

Spooling is the process of directing the results of your query to a file. In order to open a
spool file, you enter

spool filename

To close your spool file, you would type

spool off

start filename

Most SQL commands that we have covered so far have been issued at the SQL> prompt.
Another method for issuing SQL statements is to create and then execute a file. In
SQL*Plus the command to execute an SQL file is START FILENAME.

START FILENAME

ed filename

ED is a Personal Oracle7 command that opens a file (existing or file). When you open a
file with ed, you are using a full-screen editor, which is often easier than trying to
type a lengthy SQL statement at the SQL> prompt. You will use this command to modify
the contents of your spool file. You will find that you use this command often when
generating SQL script because you may have to modify the contents of the file for
customization. However, you can achieve most customization through SQL*Plus
commands.

ED FILENAME

Counting the Rows in All Tables
The first example shows you how to edit your spool file to remove irrelevant lines in
your generated code, thus allowing your SQL statement to run without being tarnished
with syntax errors.

NOTE: Take note of the editing technique used in this example because we
will not show the step in the rest of today's examples. We assume that you
know the basic syntax of SQL statements by now. In addition, you may
choose to edit your spool file in various ways.

Start by recalling the function to count all rows in a table: COUNT(*). You already

know how to select a count on all rows in a single table. For example:

INPUT:

SELECT COUNT(*)
FROM TBL1;

OUTPUT:

COUNT(*)

 29

That technique is handy, but suppose you want to get a row count on all tables that
you own or that are in your schema. For example, here's a list of the tables you own:

INPUT/OUTPUT:

SELECT * FROM CAT;

TABLE_NAME TABLE_TYPE
------------------------------ -----------
ACCT_PAY TABLE
ACCT_REC TABLE
CUSTOMERS TABLE
EMPLOYEES TABLE
HISTORY TABLE
INVOICES TABLE
ORDERS TABLE
PRODUCTS TABLE
PROJECTS TABLE
VENDORS TABLE

10 rows selected.

ANALYSIS:

If you want to get a row count on all your tables, you could manually issue the
COUNT(*) statement on each table. The feedback would be

10 rows selected.

The following SELECT statement creates more SELECT statements to obtain a row
count on all the preceding tables.

INPUT/OUTPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF

SQL> SET HEADING OFF
SQL> SPOOL CNT.SQL
SQL> SELECT 'SELECT COUNT(*) FROM ' || TABLE_NAME || ';'
 2 FROM CAT
 3 /

SELECT COUNT(*) FROM ACCT_PAY;
SELECT COUNT(*) FROM ACCT_REC;
SELECT COUNT(*) FROM CUSTOMERS;
SELECT COUNT(*) FROM EMPLOYEES;
SELECT COUNT(*) FROM HISTORY;
SELECT COUNT(*) FROM INVOICES;
SELECT COUNT(*) FROM ORDERS;
SELECT COUNT(*) FROM PRODUCTS;
SELECT COUNT(*) FROM PROJECTS;
select count(*) FROM VENDORS;

ANALYSIS:

The first action in the preceding example is to use some SQL*Plus commands. Setting
echo off, feedback off, and heading off condenses the output to what is
actually being selected. Remember, the output is not being used as a report, but rather
as an SQL statement that is ready to be executed. The next step is to use the SPOOL
command to direct the output to a file, which is specified as cnt.sql. The final step is to
issue the SELECT statement, which will produce output in the form of another
statement. Notice the use of single quotation marks to select a literal string. The
combination of single quotation marks and the concatenation (||) allows you to
combine actual data and literal strings to form another SQL statement. This example
selects its data from the data dictionary. The command SPOOL OFF closes the spool file.

TIP: Always edit your output file before running it to eliminate syntax
discrepancies and to further customize the file that you have created.

INPUT:

SQL> SPOOL OFF
SQL> ED CNT.SQL

OUTPUT:

SQL> SELECT 'SELECT COUNT(*) FROM '||TABLE_NAME||';'
 2 FROM CAT;

SELECT COUNT(*) FROM ACCT_PAY;
SELECT COUNT(*) FROM ACCT_REC;
SELECT COUNT(*) FROM CUSTOMERS;
SELECT COUNT(*) FROM EMPLOYEES;

SELECT COUNT(*) FROM HISTORY;
SELECT COUNT(*) FROM INVOICES;
SELECT COUNT(*) FROM ORDERS;
SELECT COUNT(*) FROM PRODUCTS;
SELECT COUNT(*) FROM PROJECTS;
SELECT COUNT(*) FROM VENDORS;
SQL> SPOOL OFF

ANALYSIS:

The command SPOOL OFF closes the spool file. Then the ED command edits the file. At
this point you are inside the file that you created. You should remove unnecessary lines
from the file, such as the SELECT statement, which was used to achieve the results, and
the SPOOL OFF at the end of the file.

Here is how your file should look after the edit. Notice that each line is a valid SQL
statement.

SELECT COUNT(*) FROM ACCT_PAY;
SELECT COUNT(*) FROM ACCT_REC;
SELECT COUNT(*) FROM CUSTOMERS;
SELECT COUNT(*) FROM EMPLOYEES;
SELECT COUNT(*) FROM HISTORY;
SELECT COUNT(*) FROM INVOICES;
SELECT COUNT(*) FROM ORDERS;
SELECT COUNT(*) FROM PRODUCTS;
SELECT COUNT(*) FROM PROJECTS;
SELECT COUNT(*) FROM VENDORS;

Now, execute the file:

INPUT/OUTPUT:

SQL> SET ECHO ON
SQL> SET HEADING ON
SQL> START CNT.SQL

SQL> SELECT COUNT(*) FROM ACCT_PAY;

 COUNT(*)

 7
SQL> SELECT COUNT(*) FROM ACCT_REC;

 COUNT(*)

 9
SQL> SELECT COUNT(*) FROM CUSTOMERS;

 COUNT(*)

 5
SQL> SELECT COUNT(*) FROM EMPLOYEES;

 COUNT(*)

 10

SQL> SELECT COUNT(*) FROM HISTORY;

 COUNT(*)

 26
SQL> SELECT COUNT(*) FROM INVOICES;

 COUNT(*)

 0
SQL> SELECT COUNT(*) FROM ORDERS;

 COUNT(*)

 0
SQL> SELECT COUNT(*) FROM PRODUCTS;

 COUNT(*)

 10
SQL> SELECT COUNT(*) FROM PROJECTS;

 COUNT(*)

 16
SQL> SELECT COUNT(*) FROM VENDORS;

 COUNT(*)

 22
SQL>

ANALYSIS:

Set echo on enables you to see each statement that was executed. Set heading on
displays the column heading COUNT(*) for each SELECT statement. If you had included

set feedback on

then

1 row selected.

would have been displayed after each count. This example executed the SQL script by
using the SQL*Plus START command. However, what if you were dealing with 50 tables

instead of just 10?

NOTE: The proper use of single quotation marks when generating an SQL
script is vital. Use these quotations generously and make sure that you are
including all elements that will make your generated statement complete.
In this example single quotation marks enclose the components of your
generated statement (output) that cannot be selected from a table; for
example, 'SELECT COUNT(*) FROM' and ';'.

Granting System Privileges to Multiple Users
As a database administrator or an individual responsible for maintaining users, you will
often receive requests for user IDs. In addition to having to grant privileges to users
that allow them proper database access, you also have to modify users' privileges to
accommodate their changing needs. You can get the database to generate the GRANT
statements to grant system privileges or roles to many users.

INPUT:

SQL> SET ECHO OFF
SQL> SET HEADING OFF
SQL> SET FEEDBACK OFF
SQL> SPOOL GRANTS.SQL
SQL> SELECT 'GRANT CONNECT, RESOURCE TO ' || USERNAME || ';'
 2 FROM SYS.DBA_USERS
 3 WHERE USERNAME NOT IN
('SYS','SYSTEM','SCOTT','RYAN','PO7','DEMO')
 4 /

OUTPUT:

GRANT CONNECT, RESOURCE TO KEVIN;
GRANT CONNECT, RESOURCE TO JOHN;
GRANT CONNECT, RESOURCE TO JUDITH;
GRANT CONNECT, RESOURCE TO STEVE;
GRANT CONNECT, RESOURCE TO RON;
GRANT CONNECT, RESOURCE TO MARY;
GRANT CONNECT, RESOURCE TO DEBRA;
GRANT CONNECT, RESOURCE TO CHRIS;
GRANT CONNECT, RESOURCE TO CAROL;
GRANT CONNECT, RESOURCE TO EDWARD;
GRANT CONNECT, RESOURCE TO BRANDON;
GRANT CONNECT, RESOURCE TO JACOB;

INPUT/OUTPUT:

SQL> spool off

SQL> start grants.sql

SQL> GRANT CONNECT, RESOURCE TO KEVIN;

Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO JOHN;

Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO JUDITH;

Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO STEVE;

Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO RON;

Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO MARY;

Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO DEBRA;

Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO CHRIS;

Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO CAROL;

Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO EDWARD;

Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO BRANDON;

Grant succeeded.

SQL> GRANT CONNECT, RESOURCE TO JACOB;

Grant succeeded.

ANALYSIS:

In this example you saved many tedious keystrokes by generating GRANT statements
using a simple SQL statement, rather than typing each one manually.

NOTE: The following examples omit the step in which you edit your output
file. You can assume that the files are already edited.

Granting Privileges on Your Tables to Another User
Granting privileges on a table to another user is quite simple, as is selecting a row
count on a table. But if you have multiple tables to which you wish to grant access to a
role or user, you can make SQL generate a script for you--unless you just love to type.

First, review a simple GRANT to one table:

INPUT:

SQL> GRANT SELECT ON HISTORY TO BRANDON;

OUTPUT:

Grant succeeded.

Are you ready for some action? The next statement creates a GRANT statement for each
of the 10 tables in your schema.

INPUT/OUTPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADING OFF
SQL> SPOOL GRANTS.SQL
SQL> SELECT 'GRANT SELECT ON ' || TABLE_NAME || ' TO BRANDON;'
 2 FROM CAT
 3 /

GRANT SELECT ON ACCT_PAY TO BRANDON;
GRANT SELECT ON ACCT_REC TO BRANDON;
GRANT SELECT ON CUSTOMERS TO BRANDON;
GRANT SELECT ON EMPLOYEES TO BRANDON;
GRANT SELECT ON HISTORY TO BRANDON;
GRANT SELECT ON INVOICES TO BRANDON;
GRANT SELECT ON ORDERS TO BRANDON;
GRANT SELECT ON PRODUCTS TO BRANDON;
GRANT SELECT ON PROJECTS TO BRANDON;
GRANT SELECT ON VENDORS TO BRANDON;

ANALYSIS:

A GRANT statement has been automatically prepared for each table. BRANDON is to
have Select access on each table.

Now close the output file with the SPOOL command, and assuming that the file has been
edited, the file is ready to run.

INPUT/OUTPUT:

SQL> SPOOL OFF

SQL> SET ECHO ON
SQL> SET FEEDBACK ON
SQL> START GRANTS.SQL

SQL> GRANT SELECT ON ACCT_PAY TO BRANDON;

Grant succeeded.

SQL> GRANT SELECT ON ACCT_REC TO BRANDON;

Grant succeeded.

SQL> GRANT SELECT ON CUSTOMERS TO BRANDON;

Grant succeeded.

SQL> GRANT SELECT ON EMPLOYEES TO BRANDON;

Grant succeeded.

SQL> GRANT SELECT ON HISTORY TO BRANDON;

Grant succeeded.

SQL> GRANT SELECT ON INVOICES TO BRANDON;

Grant succeeded.

SQL> GRANT SELECT ON ORDERS TO BRANDON;

Grant succeeded.

SQL> GRANT SELECT ON PRODUCTS TO BRANDON;

Grant succeeded.

SQL> GRANT SELECT ON PROJECTS TO BRANDON;

Grant succeeded.

SQL> GRANT SELECT ON VENDORS TO BRANDON;

Grant succeeded.

ANALYSIS:

Echo was set on and feedback was set on as well. Setting feedback on displayed the
statement Grant succeeded. The Select privilege has been granted to BRANDON on
all 10 tables with very little effort. Again, keep in mind that you will often be dealing
with many more than 10 tables.

Disabling Table Constraints to Load Data
When loading data into tables, you will sometimes have to disable the constraints on
your tables. Suppose that you have truncated your tables and you are loading data
into your tables from scratch. More than likely, your tables will have referential
integrity constraints, such as foreign keys. Because the database will not let you insert
a row of data in a table that references another table (if the referenced column does
not exist in the other table), you may have to disable constraints to initially load your
data. Of course, after the load is successful, you would want to enable the constraints.

INPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADING OFF
SQL> SPOOL DISABLE.SQL
SQL> SELECT 'ALTER TABLE ' || TABLE_NAME ||
 2 'DISABLE CONSTRAINT ' || CONSTRAINT_NAME || ';'
 3 FROM SYS.DBA_CONSTRAINTS
 4 WHERE OWNER = 'RYAN'
 5 /

OUTPUT:

ALTER TABLE ACCT_PAY DISABLE CONSTRAINT FK_ACCT_ID;
ALTER TABLE ACCT_REC DISABLE CONSTRAINT FK_ACCT_ID;
ALTER TABLE CUSTOMERS DISABLE CONSTRAINT FK_CUSTOMER_ID;
ALTER TABLE HISTORY DISABLE CONSTRAINT FK_ACCT_ID;
ALTER TABLE INVOICES DISABLE CONSTRAINT FK_ACCT_ID;
ALTER TABLE ORDERS DISABLE CONSTRAINT FK_ACCT_ID;

ANALYSIS:

The objective is to generate a series of ALTER TABLE statements that will disable the
constraints on all tables owned by RYAN. The semicolon concatenated to the end of
what is being selected completes each SQL statement.

INPUT/OUTPUT:

SQL> SPOOL OFF

SQL> SET ECHO OFF

SQL> SET FEEDBACK ON
SQL> START DISABLE.SQL

Constraint Disabled.

Constraint Disabled.

Constraint Disabled.

Constraint Disabled.

Constraint Disabled.

Constraint Disabled.

ANALYSIS:

Notice that echo is set to off, which means that you will not see the individual
statements. Because feedback is set to on, you can see the results.

Constraint Disabled.

If both echo and feedback were set to off, nothing would be displayed. There would
simply be a pause for as long as it takes to execute the ALTER TABLE statements and
then an SQL> prompt would be returned.

Now you can load your data without worrying about receiving errors caused by your
constraints. Constraints are good, but they can be barriers during data loads. You may
use the same idea to enable the table constraints.

Creating Numerous Synonyms in a Single Bound
Another tedious and exhausting task is creating numerous synonyms, whether they be
public or private. Only a DBA can create public synonyms, but any user can create
private synonyms.

The following example creates public synonyms for all tables owned by RYAN.

INPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADING OFF
SQL> SPOOL PUB_SYN.SQL
SQL> SELECT 'CREATE PUBLIC SYNONYM ' || TABLE_NAME || ' FOR ' ||
 2 OWNER || '.' || TABLE_NAME || ';'
 3 FROM SYS.DBA_TABLES
 4 WHERE OWNER = 'RYAN'

 5 /

OUTPUT:

CREATE PUBLIC SYNONYM ACCT_PAY FOR RYAN.ACCT_PAY;
CREATE PUBLIC SYNONYM ACCT_REC FOR RYAN.ACCT_REC;
CREATE PUBLIC SYNONYM CUSTOMERS FOR RYAN.CUSTOMERS;
CREATE PUBLIC SYNONYM EMPLOYEES FOR RYAN.EMPLOYEES;
CREATE PUBLIC SYNONYM HISTORY FOR RYAN.HISTORY;
CREATE PUBLIC SYNONYM INVOICES FOR RYAN.INVOICES;
CREATE PUBLIC SYNONYM ORDERS FOR RYAN.ORDERS;
CREATE PUBLIC SYNONYM PRODUCTS FOR RYAN.PRODUCTS;
CREATE PUBLIC SYNONYM PROJECTS FOR RYAN.PROJECTS;
CREATE PUBLIC SYNONYM VENDORS FOR RYAN.VENDORS;

Now run the file.

INPUT/OUTPUT:

SQL> SPOOL OFF
SQL> ED PUB_SYN.SQL
SQL> SET ECHO ON
SQL> SET FEEDBACK ON
SQL> START PUB_SYN.SQL

SQL> CREATE PUBLIC SYNONYM ACCT_PAY FOR RYAN.ACCT_PAY;

Synonym created.

SQL> CREATE PUBLIC SYNONYM ACCT_REC FOR RYAN.ACCT_REC;

Synonym created.

SQL> CREATE PUBLIC SYNONYM CUSTOMERS FOR RYAN.CUSTOMERS;

Synonym created.

SQL> CREATE PUBLIC SYNONYM EMPLOYEES FOR RYAN.EMPLOYEES;

Synonym created.

SQL> CREATE PUBLIC SYNONYM HISTORY FOR RYAN.HISTORY;

Synonym created.

SQL> CREATE PUBLIC SYNONYM INVOICES FOR RYAN.INVOICES;

Synonym created.

SQL> CREATE PUBLIC SYNONYM ORDERS FOR RYAN.ORDERS;

Synonym created.

SQL> CREATE PUBLIC SYNONYM PRODUCTS FOR RYAN.PRODUCTS;

Synonym created.

SQL> CREATE PUBLIC SYNONYM PROJECTS FOR RYAN.PROJECTS;

Synonym created.

SQL> CREATE PUBLIC SYNONYM VENDORS FOR RYAN.VENDORS;

Synonym created.

ANALYSIS:

Almost instantly, all database users have access to a public synonym for all tables
that RYAN owns. Now a user does not need to qualify the table when performing a
SELECT operation. (Qualifying means identifying the table owner, as in RYAN.VENDORS.)

What if public synonyms do not exist? Suppose that BRANDON has Select access to all
tables owned by RYAN and wants to create private synonyms.

INPUT/OUTPUT:

SQL> CONNECT BRANDON
ENTER PASSWORD: *******
CONNECTED.

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADING OFF
SQL> SPOOL PRIV_SYN.SQL
SQL> SELECT 'CREATE SYNONYM ' || TABLE_NAME || ' FOR ' ||
 2 OWNER || '.' || TABLE_NAME || ';'
 3 FROM ALL_TABLES
 4 /

CREATE SYNONYM DUAL FOR SYS.DUAL;
CREATE SYNONYM AUDIT_ACTIONS FOR SYS.AUDIT_ACTIONS;
CREATE SYNONYM USER_PROFILE FOR SYSTEM.USER_PROFILE;
CREATE SYNONYM CUSTOMERS FOR RYAN.CUSTOMERS;
CREATE SYNONYM ORDERS FOR RYAN.ORDERS;
CREATE SYNONYM PRODUCTS FOR RYAN.PRODUCTS;
CREATE SYNONYM INVOICES FOR RYAN.INVOICES;
CREATE SYNONYM ACCT_REC FOR RYAN.ACCT_REC;
CREATE SYNONYM ACCT_PAY FOR RYAN.ACCT_PAY;
CREATE SYNONYM VENDORS FOR RYAN.VENDORS;
CREATE SYNONYM EMPLOYEES FOR RYAN.EMPLOYEES;
CREATE SYNONYM PROJECTS FOR RYAN.PROJECTS;
CREATE SYNONYM HISTORY FOR RYAN.HISTORY;

INPUT/OUTPUT:

SQL> SPOOL OFF
SQL>

SQL> SET ECHO OFF
SQL> SET FEEDBACK ON
SQL> START PRIV_SYN.SQL

Synonym created.

Synonym created.

Synonym created.

Synonym created.

Synonym created.

Synonym created.

Synonym created.

Synonym created.

Synonym created.

Synonym created.

Synonym created.

Synonym created.

Synonym created.

ANALYSIS:

With hardly any effort, BRANDON has synonyms for all tables owned by RYAN and no
longer needs to qualify the table names.

Creating Views on Your Tables
If you want to create views on a group of tables, you could try something similar to the
following example:

INPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADING OFF
SQL> SPOOL VIEWS.SQL
SQL> SELECT 'CREATE VIEW ' || TABLE_NAME || '_VIEW AS SELECT * FROM '
||
 2 TABLE_NAME || ';'
 3 FROM CAT
 4 /

OUTPUT:

CREATE VIEW ACCT_PAY_VIEW AS SELECT * FROM ACCT_PAY;
CREATE VIEW ACCT_REC_VIEW AS SELECT * FROM ACCT_REC;
CREATE VIEW CUSTOMERS_VIEW AS SELECT * FROM CUSTOMERS;
CREATE VIEW EMPLOYEES_VIEW AS SELECT * FROM EMPLOYEES;
CREATE VIEW HISTORY_VIEW AS SELECT * FROM HISTORY;
CREATE VIEW INVOICES_VIEW AS SELECT * FROM INVOICES;
CREATE VIEW ORDERS_VIEW AS SELECT * FROM ORDERS;
CREATE VIEW PRODUCTS_VIEW AS SELECT * FROM PRODUCTS;
CREATE VIEW PROJECTS_VIEW AS SELECT * FROM PROJECTS;
CREATE VIEW VENDORS_VIEW AS SELECT * FROM VENDORS;

INPUT/OUTPUT:

SQL> SPOOL OFF
SQL> SET ECHO OFF
SQL> SET FEEDBACK ON
SQL> START VIEWS.SQL

View Created.

View Created.

View Created.

View Created.

View Created.

View Created.

View Created.

View Created.

View Created.

View Created.

ANALYSIS:

The file views.sql was generated by the previous SQL statement. This output file has
become another SQL statement file and contains statements to create views on all
specified tables. After running views.sql, you can see that the views have been
created.

Truncating All Tables in a Schema
Truncating tables is an event that occurs in a development environment. To effectively
develop and test data load routines and SQL statement performance, data is reloaded

frequently. This process identifies and exterminates bugs, and the application being
developed or tested is moved into a production environment.

The following example truncates all tables in a specified schema.

INPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADING OFF
SQL> SPOOL TRUNC.SQL
SQL> SELECT 'TRUNCATE TABLE ' || TABLE_NAME || ';'
 2 FROM ALL_TABLES
 3 WHERE OWNER = 'RYAN'
 4 /

OUTPUT:

TRUNCATE TABLE ACCT_PAY;
TRUNCATE TABLE ACCT_REC;
TRUNCATE TABLE CUSTOMERS;
TRUNCATE TABLE EMPLOYEES;
TRUNCATE TABLE HISTORY;
TRUNCATE TABLE INVOICES;
TRUNCATE TABLE ORDERS;
TRUNCATE TABLE PRODUCTS;
TRUNCATE TABLE PROJECTS;
TRUNCATE TABLE VENDORS;

Go ahead and run your script if you dare.

INPUT/OUTPUT:

SQL> SPOOL OFF
SQL> SET FEEDBACK ON
SQL> START TRUNC.SQL

Table Truncated.

Table Truncated.

Table Truncated.

Table Truncated.

Table Truncated.

Table Truncated.

Table Truncated.

Table Truncated.

Table Truncated.

Table Truncated.

ANALYSIS:

Truncating all tables owned by RYAN removes all the data from those tables. Table
truncation is easy. You can use this technique if you plan to repopulate your tables
with new data.

TIP: Before performing an operation such as truncating tables in a schema,
you should always have a good backup of the tables you plan to truncate,
even if you are sure that you will never need the data again. (You will--
somebody is sure to ask you to restore the old data.)

Using SQL to Generate Shell Scripts
You can also use SQL to generate other forms of scripts, such as shell scripts. For
example, an Oracle RDBMS server may be running in a UNIX environment, which is
typically much larger than a PC operating system environment. Therefore, UNIX
requires a more organized approach to file management. You can use SQL to easily
manage the database files by creating shell scripts.

The following scenario drops tablespaces in a database. Although tablespaces can be
dropped using SQL, the actual data files associated with these tablespaces must be
removed from the operating system separately.

The first step is to generate an SQL script to drop the tablespaces.

INPUT:

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SET HEADING OFF
SQL> SPOOL DROP_TS.SQL
SQL> SELECT 'DROP TABLESPACE ' || TABLESPACE_NAME || ' INCLUDING
CONTENTS;'
 2 FROM SYS.DBA_TABLESPACES
 3 /

OUTPUT:

DROP TABLESPACE SYSTEM INCLUDING CONTENTS;
DROP TABLESPACE RBS INCLUDING CONTENTS;

DROP TABLESPACE TEMP INCLUDING CONTENTS;
DROP TABLESPACE TOOLS INCLUDING CONTENTS;
DROP TABLESPACE USERS INCLUDING CONTENTS;

Next you need to generate a shell script to remove the data files from the operating
system after the tablespaces have been dropped.

INPUT/OUTPUT:

SQL> SPOOL OFF
SQL> SPOOL RM_FILES.SH
SQL> SELECT 'RM -F ' || FILE_NAME
 2 FROM SYS.DBA_DATA_FILES
 3 /

rm -f /disk01/orasys/db01/system0.dbf
rm -f /disk02/orasys/db01/rbs0.dbf
rm -f /disk03/orasys/db01/temp0.dbf
rm -f /disk04/orasys/db01/tools0.dbf
rm -f /disk05/orasys/db01/users0.dbf
SQL> spool off
SQL>

ANALYSIS:

Now that you have generated both scripts, you may run the script to drop the
tablespaces and then execute the operating system shell script to remove the
appropriate data files. You will also find many other ways to manage files and generate
non-SQL scripts using SQL.

Reverse Engineering Tables and Indexes
Even though many CASE tools allow you to reverse-engineer tables and indexes, you
can always use straight SQL for this purpose. You can retrieve all the information that
you need from the data dictionary to rebuild tables and indexes, but doing so
effectively is difficult without the use of a procedural language, such as PL/SQL or a
shell script.

We usually use embedded SQL within a shell script. Procedural language functions are
needed to plug in the appropriate ingredients of syntax, such as commas. The script must
be smart enough to know which column is the last one, so as to not place a comma after
the last column. The script must also know where to place parentheses and so on. Seek
the tools that are available to regenerate objects from the data dictionary, whether
you use C, Perl, shell scripts, COBOL, or PL/SQL.

Summary

Generating statements directly from the database spares you the often tedious job of
coding SQL statements. Regardless of your job scope, using SQL statement generation
techniques frees you to work on other phases of your projects.

What you have learned today is basic, and though these examples use the Oracle
database, you can apply the concepts to any relational database. Be sure to check your
specific implementation for variations in syntax and data dictionary structure. If you
keep an open mind, you will continually find ways to generate SQL scripts, from simple
statements to complex high-level system management.

Q&A
Q How do I decide when to issue statements manually and when to write SQL
to generate SQL?

A Ask yourself these questions:

❍ How often will I be issuing the statements in question?

❍ Will it take me longer to write the "mother" statement than it would to
issue each statement manually?

Q From which tables may I select to generate SQL statements?

A You may select from any tables to which you have access, whether they are
tables that you own or tables that reside in the data dictionary. Also keep in
mind that you can select from any valid objects in your database, such as views or
snapshots.

Q Are there any limits to the statements that I can generate with SQL?

A For the most part any statement that you can write manually can be generated
somehow using SQL. Check your implementation for specific options for spooling
output to a file and formatting the output the way you want it. Remember that
you can always modify the generated statements later because the output is
spooled to a file.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. From which two sources can you generate SQL scripts?

2. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SPOOL CNT.SQL
SQL> SELECT 'COUNT(*) FROM ' || TABLE_NAME || ';'
2 FROM CAT
3 /

3. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SPOOL GRANT.SQL
SQL> SELECT 'GRANT CONNECT DBA TO ' || USERNAME || ';'
2 FROM SYS.DBA_USERS
3 WHERE USERNAME NOT IN ('SYS','SYSTEM','SCOTT')
4 /

4. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SELECT 'GRANT CONNECT, DBA TO ' || USERNAME || ';'
2 FROM SYS.DBA_USERS
3 WHERE USERNAME NOT IN ('SYS','SYSTEM','SCOTT)
4 /

5. True or False: It is best to set feedback ON when generating SQL.

6. True or False: When generating SQL from SQL, always spool to a list or log file
for a record of what happened.

7. True or False: Before generating SQL to truncate tables, you should always
make sure you have a good backup of the tables.

8. What is the ED command?

9. What does the SPOOL OFF command do?

Exercises

1. Using the SYS.DBA_USERS view (Personal Oracle7), create an SQL statement
that will generate a series of GRANT statements to five new users: John, Kevin,
Ryan, Ron, and Chris. Use the column called USERNAME. Grant them Select access
to history_tbl.

2. Using the examples in this chapter as guidelines, create some SQL statements
that will generate SQL that you can use.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 18 -
PL/SQL: An Introduction

Objectives
PL/SQL is the Oracle technology that enables SQL to act like a procedural language.
By the end of today, you should

● Have a basic understanding of PL/SQL

● Understand the features that distinguish PL/SQL from standard SQL

● Have an understanding of the basic elements of a PL/SQL program

● Be able to write a simple PL/SQL program

● Understand how errors are handled in PL/SQL programs

● Be aware of how PL/SQL is used in the real world

Introduction
One way to introduce PL/SQL is to begin by describing standard Structured Query
Language, or SQL. SQL is the language that enables relational database users to
communicate with the database in a straightforward manner. You can use SQL commands
to query the database and modify tables within the database. When you write an SQL
statement, you are telling the database what you want to do, not how to do it. The

query optimizer decides the most efficient way to execute your statement. If you send a
series of SQL statements to the server in standard SQL, the server executes them one at
a time in chronological order.

PL/SQL is Oracle's procedural language; it comprises the standard language of SQL and
a wide array of commands that enable you to control the execution of SQL statements
according to different conditions. PL/SQL can also handle runtime errors. Options such
as loops and IF...THEN statements give PL/SQL the power of third-generation
programming languages. PL/SQL allows you to write interactive, user-friendly programs
that can pass values into variables. You can also use several predefined packages, one of
which can display messages to the user.

Day 18 covers these key features of PL/SQL:

● Programmers can declare variables to be used during statement processing.

● Programmers can use error-handling routines to prevent programs from aborting
unexpectedly.

● Programmers can write interactive programs that accept input from the user.

● Programmers can divide functions into logical blocks of code. Modular
programming techniques support flexibility during the application development.

● SQL statements can be processed simultaneously for better overall performance.

Data Types in PL/SQL
Most data types are obviously similar, but each implementation has unique storage and
internal-processing requirements. When writing PL/SQL blocks, you will be declaring
variables, which must be valid data types. The following subsections briefly describe the
data types available in PL/SQL.

In PL/SQL Oracle provides subtypes of data types. For example, the data type NUMBER has
a subtype called INTEGER. You can use subtypes in your PL/SQL program to make the
data types compatible with data types in other programs, such as a COBOL program,
particularly if you are embedding PL/SQL code in another program. Subtypes are simply
alternative names for Oracle data types and therefore must follow the rules of their
associated data type.

NOTE: As in most implementations of SQL, case sensitivity is not a factor in
the syntax of a statement. PL/SQL allows either uppercase or lowercase
with its commands.

Character String Data Types

Character string data types in PL/SQL, as you might expect, are data types generally
defined as having alpha-numeric values. Examples of character strings are names, codes,
descriptions, and serial numbers that include characters.

CHAR stores fixed-length character strings. The maximum length of CHAR is 32,767 bytes,
although it is hard to imagine a set of fixed-length values in a table being so long.

SYNTAX:

CHAR (max_length)

Subtype: CHARACTER

VARCHAR2 stores variable-length character strings. You would normally user
VARCHAR2 instead of CHAR to store variable-length data, such as an individual's name.
The maximum length of VARCHAR2 is also 32,767 bytes.

SYNTAX:

VARCHAR2 (max_length)

Subtypes: VARCHAR, STRING

LONG also stores variable-length character strings, having a maximum length of 32,760
bytes. LONG is typically used to store lengthy text such as remarks, although VARCHAR2
may be used as well.

Numeric Data Types

NUMBER stores any type of number in an Oracle database.

SYNTAX:

NUMBER (max_length)

You may specify a NUMBER's data precision with the following syntax:

NUMBER (precision, scale)

Subtypes: DEC, DECIMAL, DOUBLE PRECISION, INTEGER, INT, NUMERIC, REAL,

SMALLINT, FLOAT

PLS_INTEGER defines columns that may contained integers with a sign, such as negative
numbers.

Binary Data Types

Binary data types store data that is in a binary format, such as graphics or photographs.
These data types include RAW and LONGRAW.

The DATE Data Type

DATE is the valid Oracle data type in which to store dates. When you define a column as
a DATE, you do not specify a length, as the length of a DATE field is implied. The format
of an Oracle date is, for example, 01-OCT-97.

BOOLEAN

BOOLEAN stores the following values: TRUE, FALSE, and NULL. Like DATE, BOOLEAN
requires no parameters when defining it as a column's or variable's data type.

ROWID

ROWID is a pseudocolumn that exists in every table in an Oracle database. The ROWID is
stored in binary format and identifies each row in a table. Indexes use ROWIDs as
pointers to data.

The Structure of a PL/SQL Block
PL/SQL is a block-structured language, meaning that PL/SQL programs are divided and
written in logical blocks of code. Within a PL/SQL block of code, processes such as data
manipulation or queries can occur. The following parts of a PL/SQL block are discussed
in this section:

● The DECLARE section contains the definitions of variables and other objects such
as constants and cursors. This section is an optional part of a PL/SQL block.

● The PROCEDURE section contains conditional commands and SQL statements and is
where the block is controlled. This section is the only mandatory part of a
PL/SQL block.

● The EXCEPTION section tells the PL/SQL block how to handle specified errors and

user-defined exceptions. This section is an optional part of a PL/SQL block.

NOTE: A block is a logical unit of PL/SQL code, containing at the least a
PROCEDURE section and optionally the DECLARE and EXCEPTION sections.

Here is the basic structure of a PL/SQL block:

SYNTAX:

BEGIN -- optional, denotes beginning of block
 DECLARE -- optional, variable definitions
 BEGIN -- mandatory, denotes beginning of procedure section
 EXCEPTION -- optional, denotes beginning of exception section
 END -- mandatory, denotes ending of procedure section
END -- optional, denotes ending of block

Notice that the only mandatory parts of a PL/SQL block are the second BEGIN and the
first END, which make up the PROCEDURE section. Of course, you will have statements in
between. If you use the first BEGIN, then you must use the second END, and vice versa.

Comments

What would a program be without comments? Programming languages provide commands
that allow you to place comments within your code, and PL/SQL is no exception. The
comments after each line in the preceding sample block structure describe each
command. The accepted comments in PL/SQL are as follows:

SYNTAX:

-- This is a one-line comment.

/* This is a
multiple-line comment.*/

NOTE: PL/SQL directly supports Data Manipulation Language (DML)
commands and database queries. However, it does not support Data
Dictionary Language (DDL) commands. You can generally use PL/SQL to
manipulate the data within database structure, but not to manipulate
those structures.

The DECLARE Section

The DECLARE section of a block of PL/SQL code consists of variables, constants, cursor
definitions, and special data types. As a PL/SQL programmer, you can declare all types of
variables within your blocks of code. However, you must assign a data type, which must
conform to Oracle's rules of that particular data type, to every variable that you
define. Variables must also conform to Oracle's object naming standards.

Variable Assignment

Variables are values that are subject to change within a PL/SQL block. PL/SQL
variables must be assigned a valid data type upon declaration and can be initialized if
necessary. The following example defines a set of variables in the DECLARE portion of a
block:

DECLARE
 owner char(10);
 tablename char(30);
 bytes number(10);
 today date;

ANALYSIS:

The DECLARE portion of a block cannot be executed by itself. The DECLARE section
starts with the DECLARE statement. Then individual variables are defined on separate
lines. Notice that each variable declaration ends with a semicolon.

Variables may also be initialized in the DECLARE section. For example:

DECLARE
 customer char(30);
 fiscal_year number(2) := '97';

You can use the symbol := to initialize, or assign an initial value, to variables in the
DECLARE section. You must initialize a variable that is defined as NOT NULL.

DECLARE
 customer char(30);
 fiscal_year number(2) NOT NULL := '97';

ANALYSIS:

The NOT NULL clause in the definition of fiscal_year resembles a column definition
in a CREATE TABLE statement.

Constant Assignment

Constants are defined the same way that variables are, but constant values are static;
they do not change. In the previous example, fiscal_year is probably a constant.

NOTE: You must end each variable declaration with a semicolon.

Cursor Definitions

A cursor is another type of variable in PL/SQL. Usually when you think of a variable, a
single value comes to mind. A cursor is a variable that points to a row of data from the
results of a query. In a multiple-row result set, you need a way to scroll through each
record to analyze the data. A cursor is just that. When the PL/SQL block looks at the
results of a query within the block, it uses a cursor to point to each returned row. Here
is an example of a cursor being defined in a PL/SQL block:

INPUT:

DECLARE
 cursor employee_cursor is
 select * from employees;

A cursor is similar to a view. With the use of a loop in the PROCEDURE section, you can
scroll a cursor. This technique is covered shortly.

The %TYPE Attribute

%TYPE is a variable attribute that returns the value of a given column of a table.
Instead of hard-coding the data type in your PL/SQL block, you can use %TYPE to
maintain data type consistency within your blocks of code.

INPUT:

DECLARE
 cursor employee_cursor is
 select emp_id, emp_name from employees;
 id_num employees.emp_id%TYPE;
 name employees.emp_name%TYPE;

ANALYSIS:

The variable id_num is declared to have the same data type as emp_id in the
EMPLOYEES table. %TYPE declares the variable name to have the same data type as the
column emp_name in the EMPLOYEES table.

The %ROWTYPE Attribute

Variables are not limited to single values. If you declare a variable that is associated
with a defined cursor, you can use the %ROWTYPE attribute to declare the data type of
that variable to be the same as each column in one entire row of data from the cursor.
In Oracle's lexicon the %ROWTYPE attribute creates a record variable.

INPUT:

DECLARE
 cursor employee_cursor is
 select emp_id, emp_name from employees;
 employee_record employee_cursor%ROWTYPE;

ANALYSIS:

This example declares a variable called employee_record. The %ROWTYPE attribute
defines this variable as having the same data type as an entire row of data in the
employee_cursor. Variables declared using the %ROWTYPE attribute are also called
aggregate variables.

The %ROWCOUNT Attribute

The PL/SQL %ROWCOUNT attribute maintains a count of rows that the SQL statements in
the particular block have accessed in a cursor.

INPUT:

DECLARE
 cursor employee_cursor is
 select emp_id, emp_name from employees;
 records_processed := employee_cursor%ROWCOUNT;

ANALYSIS:

In this example the variable records_processed represents the current number of
rows that the PL/SQL block has accessed in the employee_cursor.

WARNING: Beware of naming conflicts with table names when declaring
variables. For instance, if you declare a variable that has the same name as
a table that you are trying to access with the PL/SQL code, the local
variable will take precedence over the table name.

The PROCEDURE Section
The PROCEDURE section is the only mandatory part of a PL/SQL block. This part of the
block calls variables and uses cursors to manipulate data in the database. The
PROCEDURE section is the main part of a block, containing conditional statements and
SQL commands.

BEGIN...END

In a block, the BEGIN statement denotes the beginning of a procedure. Similarly, the
END statement marks the end of a procedure. The following example shows the basic
structure of the PROCEDURE section:

SYNTAX:

BEGIN
 open a cursor;
 condition1;
 statement1;
 condition2;
 statement2;
 condition3;
 statement3;
.
.
.
 close the cursor;
END

Cursor Control Commands

Now that you have learned how to define cursors in a PL/SQL block, you need to know
how to access the defined cursors. This section explains the basic cursor control
commands: DECLARE, OPEN, FETCH, and CLOSE.

DECLARE

Earlier today you learned how to define a cursor in the DECLARE section of a block.
The DECLARE statement belongs in the list of cursor control commands.

OPEN

Now that you have defined your cursor, how do you use it? You cannot use this book
unless you open it. Likewise, you cannot use a cursor until you have opened it with the
OPEN command. For example:

SYNTAX:

BEGIN
 open employee_cursor;
 statement1;
 statement2;
 .
 .
 .

END

FETCH

FETCH populates a variable with values from a cursor. Here are two examples using
FETCH: One populates an aggregate variable, and the other populates individual
variables.

INPUT:

DECLARE
 cursor employee_cursor is
 select emp_id, emp_name from employees;
 employee_record employee_cursor%ROWTYPE;
BEGIN
 open employee_cursor;
 loop
 fetch employee_cursor into employee_record;
 end loop;
 close employee_cursor;
END

ANALYSIS:

The preceding example fetches the current row of the cursor into the aggregate
variable employee_record. It uses a loop to scroll the cursor. Of course, the block is
not actually accomplishing anything.

DECLARE
 cursor employee_cursor is
 select emp_id, emp_name from employees;
 id_num employees.emp_id%TYPE;
 name employees.emp_name%TYPE;
BEGIN
 open employee_cursor;
 loop
 fetch employee_cursor into id_num, name;
 end loop;
 close employee_cursor;

END

ANALYSIS:

This example fetches the current row of the cursor into the variables id_num and
name, which was defined in the DECLARE section.

CLOSE

When you have finished using a cursor in a block, you should close the cursor, as you
normally close a book when you have finished reading it. The command you use is CLOSE.

SYNTAX:

BEGIN
 open employee_cursor;
 statement1;
 statement2;
 .
 .
 .
 close employee_cursor;
END

ANALYSIS:

After a cursor is closed, the result set of the query no longer exists. You must reopen
the cursor to access the associated set of data.

Conditional Statements

Now we are getting to the good stuff--the conditional statements that give you
control over how your SQL statements are processed. The conditional statements in
PL/SQL resemble those in most third-generation languages.

IF...THEN

The IF...THEN statement is probably the most familiar conditional statement to most
programmers. The IF...THEN statement dictates the performance of certain actions if
certain conditions are met. The structure of an IF...THEN statement is as follows:

SYNTAX:

IF condition1 THEN
 statement1;
END IF;

If you are checking for two conditions, you can write your statement as follows:

SYNTAX:

IF condition1 THEN
 statement1;
ELSE
 statement2;
END IF;

If you are checking for more than two conditions, you can write your statement as
follows:

SYNTAX:

IF condition1 THEN
 statement1;
ELSIF condition2 THEN
 statement2;
ELSE
 statement3;
END IF;

ANALYSIS:

The final example states: If condition1 is met, then perform statement1; if
condition2 is met, then perform statement2; otherwise, perform statement3.
IF...THEN statements may also be nested within other statements and/or loops.

LOOPS

Loops in a PL/SQL block allow statements in the block to be processed continuously for
as long as the specified condition exists. There are three types of loops.

LOOP is an infinite loop, most often used to scroll a cursor. To terminate this type of
loop, you must specify when to exit. For example, in scrolling a cursor you would exit
the loop after the last row in a cursor has been processed:

INPUT:

BEGIN
open employee_cursor;
LOOP
 FETCH employee_cursor into employee_record;
 EXIT WHEN employee_cursor%NOTFOUND;
 statement1;
 .

 .
 .
END LOOP;
close employee_cursor;
END;

%NOTFOUND is a cursor attribute that identifies when no more data is found in the
cursor. The preceding example exits the loop when no more data is found. If you omit this
statement from the loop, then the loop will continue forever.

The WHILE-LOOP executes commands while a specified condition is TRUE. When the
condition is no longer true, the loop returns control to the next statement.

INPUT:

DECLARE
 cursor payment_cursor is
 select cust_id, payment, total_due from payment_table;
 cust_id payment_table.cust_id%TYPE;
 payment payment_table.payment%TYPE;
 total_due payment_table.total_due%TYPE;
BEGIN
 open payment_cursor;
 WHILE payment < total_due LOOP
 FETCH payment_cursor into cust_id, payment, total_due;
 EXIT WHEN payment_cursor%NOTFOUND;
 insert into underpay_table
 values (cust_id, 'STILL OWES');
END LOOP;
 close payment_cursor;
END;

ANALYSIS:

The preceding example uses the WHILE-LOOP to scroll the cursor and to execute the
commands within the loop as long as the condition payment < total_due is met.

You can use the FOR-LOOP in the previous block to implicitly fetch the current row of
the cursor into the defined variables.

INPUT:

DECLARE
 cursor payment_cursor is
 select cust_id, payment, total_due from payment_table;
 cust_id payment_table.cust_id%TYPE;
 payment payment_table.payment%TYPE;
 total_due payment_table.total_due%TYPE;
BEGIN

 open payment_cursor;
 FOR pay_rec IN payment_cursor LOOP
 IF pay_rec.payment < pay_rec.total_due THEN
 insert into underpay_table
 values (pay_rec.cust_id, 'STILL OWES');
 END IF;
 END LOOP;
 close payment_cursor;
END;

ANALYSIS:

This example uses the FOR-LOOP to scroll the cursor. The FOR-LOOP is performing an
implicit FETCH, which is omitted this time. Also, notice that the %NOTFOUND attribute
has been omitted. This attribute is implied with the FOR-LOOP; therefore, this and the
previous example yield the same basic results.

The EXCEPTION Section
The EXCEPTION section is an optional part of any PL/SQL block. If this section is omitted
and errors are encountered, the block will be terminated. Some errors that are
encountered may not justify the immediate termination of a block, so the EXCEPTION
section can be used to handle specified errors or user-defined exceptions in an orderly
manner. Exceptions can be user-defined, although many exceptions are predefined by
Oracle.

Raising Exceptions

Exceptions are raised in a block by using the command RAISE. Exceptions can be raised
explicitly by the programmer, whereas internal database errors are automatically, or
implicitly, raised by the database server.

SYNTAX:

BEGIN
 DECLARE
 exception_name EXCEPTION;
 BEGIN
 IF condition THEN
 RAISE exception_name;
 END IF;
 EXCEPTION
 WHEN exception_name THEN
 statement;
 END;
END;

ANALYSIS:

This block shows the fundamentals of explicitly raising an exception. First
exception_name is declared using the EXCEPTION statement. In the PROCEDURE
section, the exception is raised using RAISE if a given condition is met. The RAISE then
references the EXCEPTION section of the block, where the appropriate action is taken.

Handling Exceptions

The preceding example handled an exception in the EXCEPTION section of the block.
Errors are easily handled in PL/SQL, and by using exceptions, the PL/SQL block can
continue to run with errors or terminate gracefully.

SYNTAX:

EXCEPTION
 WHEN exception1 THEN
 statement1;
 WHEN exception2 THEN
 statement2;
 WHEN OTHERS THEN
 statement3;

ANALYSIS:

This example shows how the EXCEPTION section might look if you have more than one
exception. This example expects two exceptions (exception1 and exception2) when
running this block. WHEN OTHERS tells statement3 to execute if any other exceptions
occur while the block is being processed. WHEN OTHERS gives you control over any
errors that may occur within the block.

Executing a PL/SQL Block

PL/SQL statements are normally created using a host editor and are executed like
normal SQL script files. PL/SQL uses semicolons to terminate each statement in a block--
from variable assignments to data manipulation commands. The forward slash (/)is
mainly associated with SQL script files, but PL/SQL also uses the forward slash to
terminate a block in a script file. The easiest way to start a PL/SQL block is by issuing
the START command, abbreviated as STA or @.

Your PL/SQL script file might look like this:

SYNTAX:

/* This file is called proc1.sql */

BEGIN
 DECLARE
 ...
 BEGIN
 ...
 statements;
 ...
 EXCEPTION
 ...
 END;
END;
/

You execute your PL/SQL script file as follows:

SQL> start proc1 or
SQL> sta proc1 or
SQL> @proc1

NOTE: PL/SQL script files can be executed using the START command or the
character @. PL/SQL script files can also be called within other PL/SQL
files, shell scripts, or other programs.

Displaying Output to the User

Particularly when handling exceptions, you may want to display output to keep users
informed about what is taking place. You can display output to convey information, and
you can display your own customized error messages, which will probably make more
sense to the user than an error number. Perhaps you want the user to contact the
database administrator if an error occurs during processing, rather than to see the
exact message.

PL/SQL does not provide a direct method for displaying output as a part of its syntax,
but it does allow you to call a package that serves this function from within the block.
The package is called DBMS_OUTPUT.

EXCEPTION
 WHEN zero_divide THEN
 DBMS_OUTPUT.put_line('ERROR: DIVISOR IS ZERO. SEE YOUR DBA.');

ANALYSIS:

ZERO_DIVIDE is an Oracle predefined exception. Most of the common errors that occur
during program processing will be predefined as exceptions and are raised implicitly
(which means that you don't have to raise the error in the PROCEDURE section of the

block).

If this exception is encountered during block processing, the user will see:

INPUT:

SQL> @block1

ERROR: DIVISOR IS ZERO. SEE YOUR DBA.
PL/SQL procedure successfully completed.

Doesn't that message look friendly than:

INPUT/OUTPUT:

SQL> @block1
begin
*

ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at line 20

Transactional Control in PL/SQL
On Day 11, "Controlling Transactions," we discussed the transactional control
commands COMMIT, ROLLBACK, and SAVEPOINT. These commands allow the programmer
to control when transactions are actually written to the database, how often, and
when they should be undone.

SYNTAX:

BEGIN
 DECLARE
 ...
 BEGIN
 statements...
 IF condition THEN
 COMMIT;
 ELSE
 ROLLBACK;
 END IF;
 ...
 EXCEPTION
 ...
 END;
END;

The good thing about PL/SQL is that you can automate the use of transactional control
commands instead of constantly monitoring large transactions, which can be very
tedious.

Putting Everything Together
So far, you have been introduced to PL/SQL, have become familiar with the supported
data types, and are familiar with the major features of a PL/SQL block. You know how
to declare local variables, constants, and cursors. You have also seen how to embed
SQL in the PROCEDURE section, manipulate cursors, and raise exceptions. When a cursor
has been raised, you should have a basic understanding of how to handle it in the
EXCEPTION section of the block. Now you are ready to work with some practical
examples and create blocks from BEGIN to END. By the end of this section, you should
fully understand how the parts of a PL/SQL block interact with each other.

Sample Tables and Data

We will be using two tables to create PL/SQL blocks. PAYMENT_TABLE identifies a
customer, how much he or she has paid, and the total amount due. PAY_STATUS_TABLE
does not yet contain any data. Data will be inserted into PAY_STATUS_TABLE
according to certain conditions in the PAYMENT_TABLE.

INPUT:

SQL> select *
 2 from payment_table;

OUTPUT:

CUSTOMER PAYMENT TOTAL_DUE
-------- -------- ---------
ABC 90.50 150.99
AAA 79.00 79.00
BBB 950.00 1000.00
CCC 27.50 27.50
DDD 350.00 500.95
EEE 67.89 67.89
FFF 555.55 455.55
GGG 122.36 122.36
HHH 26.75 0.00
9 rows selected.

INPUT:

SQL> describe pay_status_table

OUTPUT:

 Name Null? Type
 ------------------------------ --------- ----
 CUST_ID NOT NULL CHAR(3)
 STATUS NOT NULL VARCHAR2(15)
 AMT_OWED NUMBER(8,2)
 AMT_CREDIT NUMBER(8,2)

ANALYSIS:

DESCRIBE is an Oracle SQL command that displays the structure of a table without
having to query the data dictionary. DESCRIBE and other Oracle SQL*Plus commands
are covered on Day 20, "SQL*Plus."

A Simple PL/SQL Block

This is how the PL/SQL script (block1.sql) file looks:

INPUT:

set serveroutput on
BEGIN
 DECLARE
 AmtZero EXCEPTION;
 cCustId payment_table.cust_id%TYPE;
 fPayment payment_table.payment%TYPE;
 fTotalDue payment_table.total_due%TYPE;
 cursor payment_cursor is
 select cust_id, payment, total_due
 from payment_table;
 fOverPaid number(8,2);
 fUnderPaid number(8,2);
 BEGIN
 open payment_cursor;
 loop
 fetch payment_cursor into
 cCustId, fPayment, fTotalDue;
 exit when payment_cursor%NOTFOUND;
 if (fTotalDue = 0) then
 raise AmtZero;
 end if;
 if (fPayment > fTotalDue) then
 fOverPaid := fPayment - fTotalDue;
 insert into pay_status_table (cust_id, status, amt_credit)
 values (cCustId, 'Over Paid', fOverPaid);
 elsif (fPayment < fTotalDue) then
 fUnderPaid := fTotalDue - fPayment;
 insert into pay_status_table (cust_id, status, amt_owed)
 values (cCustId, 'Still Owes', fUnderPaid);

 else
 insert into pay_status_table
 values (cCustId, 'Paid in Full', null, null);
 end if;
 end loop;
 close payment_cursor;
 EXCEPTION
 when AmtZero then
 DBMS_OUTPUT.put_line('ERROR: amount is Zero. See your
supervisor.');
 when OTHERS then
 DBMS_OUTPUT.put_line('ERROR: unknown error. See the DBA');
 END;
END;
/

ANALYSIS:

The DECLARE section defines six local variables, as well as a cursor called
payment_cursor. The PROCEDURE section starts with the second BEGIN statement in
which the first step is to open the cursor and start a loop. The FETCH command passes
the current values in the cursor into the variables that were defined in the DECLARE
section. As long as the loop finds records in the cursor, the statement compares the
amount paid by a customer to the total amount due. Overpayments and underpayments
are calculated according to the amount paid, and we use those calculated amounts to
insert values into the PAY_STATUS_TABLE. The loop terminates, and the cursor closes.
The EXCEPTION section handles errors that may occur during processing.

Now start the PL/SQL script file and see what happens.

INPUT:

SQL> @block1

OUTPUT:

Input truncated to 1 characters
ERROR: amount is Zero. See your supervisor.
PL/SQL procedure successfully completed.

Now that you know that an incorrect amount appears in the total due column, you can
fix the amount and run the script again.

INPUT/OUTPUT:

SQL> update payment_table
 2 set total_due = 26.75
 3 where cust_id = 'HHH';

1 row updated.

SQL> commit;

Commit complete.

SQL> truncate table pay_status_table;

Table truncated.

NOTE: This example truncates the PAY_STATUS_TABLE to clear the table's
contents; the next run of the statement will repopulate the table. You
may want to add the TRUNCATE TABLE statement to your PL/SQL block.

INPUT/OUTPUT:

SQL> @block1

Input truncated to 1 characters
PL/SQL procedure successfully completed.

Now you can select from the PAY_STATUS_TABLE and see the payment status of each
customer.

INPUT/OUTPUT:

SQL> select *
 2 from pay_status_table
 3 order by status;

CUSTOMER STATUS AMT_OWED AMT_CREDIT
-------- -------------- --------- -----------
FFF Over Paid 100.00
AAA Paid in Full
CCC Paid in Full
EEE Paid in Full
GGG Paid in Full
HHH Paid in Full
ABC Still Owes 60.49
DDD Still Owes 150.95
BBB Still Owes 50.00

9 rows selected.

ANALYSIS:

A row was inserted into PAY_STATUS_TABLE for every row of data that is contained in
the PAYMENT_TABLE. If the customer paid more than the amount due, then the

difference was input into the amt_credit column. If the customer paid less than the
amount owed, then an entry was made in the amt_owed column. If the customer paid in
full, then no dollar amount was inserted in either of the two columns.

Another Program

This example uses a table called PAY_TABLE:

INPUT:

SQL> desc pay_table

OUTPUT:

 Name Null? Type
 ------------------------------ -------- ----
 NAME NOT NULL VARCHAR2(20)
 PAY_TYPE NOT NULL VARCHAR2(8)
 PAY_RATE NOT NULL NUMBER(8,2)
 EFF_DATE NOT NULL DATE
 PREV_PAY NUMBER(8,2)

First take a look at the data:

INPUT:

SQL> select *
 2 from pay_table
 3 order by pay_type, pay_rate desc;

OUTPUT:

NAME PAY_TYPE PAY_RATE EFF_DATE PREV_PAY
-------------------- -------- --------- --------- ---------
SANDRA SAMUELS HOURLY 12.50 01-JAN-97
ROBERT BOBAY HOURLY 11.50 15-MAY-96
KEITH JONES HOURLY 10.00 31-OCT-96
SUSAN WILLIAMS HOURLY 9.75 01-MAY-97
CHRISSY ZOES SALARY 50000.00 01-JAN-97
CLODE EVANS SALARY 42150.00 01-MAR-97
JOHN SMITH SALARY 35000.00 15-JUN-96
KEVIN TROLLBERG SALARY 27500.00 15-JUN-96
8 rows selected.

Situation: Sales are up. Any individual who has not had a pay increase for six months
(180 days) will receive a raise effective today. All eligible hourly employees will
receive a 4 percent increase, and eligible salary employees will receive a 5 percent
increase.

Today is:

INPUT/OUTPUT:

SQL> select sysdate
 2 from dual;

SYSDATE

20-MAY-97

Before examining the next PL/SQL block, we will perform a manual select from the
PAY_TABLE that flags individuals who should receive a raise.

INPUT:

SQL> select name, pay_type, pay_rate, eff_date,
 2 'YES' due
 3 from pay_table
 4 where eff_date < sysdate - 180
 5 UNION ALL
 6 select name, pay_type, pay_rate, eff_date,
 7 'No' due
 8 from pay_table
 9 where eff_date >= sysdate - 180
 10 order by 2, 3 desc;

OUTPUT:

NAME PAY_TYPE PAY_RATE EFF_DATE DUE
-------------------- --------- -------- --------- ---
SANDRA SAMUELS HOURLY 12.50 01-JAN-97 No
ROBERT BOBAY HOURLY 11.50 15-MAY-96 YES
KEITH JONES HOURLY 10.00 31-OCT-96 YES
SUSAN WILLIAMS HOURLY 9.75 01-MAY-97 No
CHRISSY ZOES SALARY 50000.00 01-JAN-97 No
CLODE EVANS SALARY 42150.00 01-MAR-97 No
JOHN SMITH SALARY 35000.00 15-JUN-96 YES
KEVIN TROLLBERG SALARY 27500.00 15-JUN-96 YES
8 rows selected.

The DUE column identifies individuals who should be eligible for a raise. Here's the
PL/SQL script:

INPUT:

set serveroutput on
BEGIN
 DECLARE

 UnknownPayType exception;
 cursor pay_cursor is
 select name, pay_type, pay_rate, eff_date,
 sysdate, rowid
 from pay_table;
 IndRec pay_cursor%ROWTYPE;
 cOldDate date;
 fNewPay number(8,2);
 BEGIN
 open pay_cursor;
 loop
 fetch pay_cursor into IndRec;
 exit when pay_cursor%NOTFOUND;
 cOldDate := sysdate - 180;
 if (IndRec.pay_type = 'SALARY') then
 fNewPay := IndRec.pay_rate * 1.05;
 elsif (IndRec.pay_type = 'HOURLY') then
 fNewPay := IndRec.pay_rate * 1.04;
 else
 raise UnknownPayType;
 end if;
 if (IndRec.eff_date < cOldDate) then
 update pay_table
 set pay_rate = fNewPay,
 prev_pay = IndRec.pay_rate,
 eff_date = IndRec.sysdate
 where rowid = IndRec.rowid;
 commit;
 end if;
 end loop;
 close pay_cursor;
 EXCEPTION
 when UnknownPayType then
 dbms_output.put_line('=======================');
 dbms_output.put_line('ERROR: Aborting program.');
 dbms_output.put_line('Unknown Pay Type for Name');
 when others then
 dbms_output.put_line('ERROR During Processing. See the DBA.');
 END;
END;
/

Are you sure that you want to give four employees a pay raise? (The final SELECT
statement has four Yes values in the DUE column.) Why not...let's give all four
employees a raise. You can apply the appropriate pay increases by executing the PL/SQL
script file, named block2.sql:

INPUT/OUTPUT:

SQL> @block2

Input truncated to 1 characters

PL/SQL procedure successfully completed.

You can do a quick select to verify that the changes have been made to the pay_rate
of the appropriate individuals:

INPUT:

SQL> select *
 2 from pay_table
 3 order by pay_type, pay_rate desc;

OUTPUT:

NAME PAY_TYPE PAY_RATE EFF_DATE PREV_PAY
-------------------- --------- -------- -------- -----------
SANDRA SAMUELS HOURLY 12.50 01-JAN-97
ROBERT BOBAY HOURLY 11.96 20-MAY-97 11.5
KEITH JONES HOURLY 10.40 20-MAY-97 10
SUSAN WILLIAMS HOURLY 9.75 01-MAY-97
CHRISSY ZOES SALARY 50000.00 01-JAN-97
CLODE EVANS SALARY 42150.00 01-MAR-97
JOHN SMITH SALARY 36750.00 20-MAY-97 35000
KEVIN TROLLBERG SALARY 28875.00 20-MAY-97 27500

8 rows selected.

ANALYSIS:

Four employees received a pay increase. If you compare this output to the output of the
original SELECT statement, you can see the changes. The current pay rate was updated
to reflect the pay increase, the original pay rate was inserted into the previous pay
column, and the effective date was updated to today's date. No action was taken on
those individuals who did not qualify for a pay increase.

Wait--you didn't get a chance to see how the defined exception works. You can test the
EXCEPTION section by inserting an invalid PAY_TYPE into PAY_TABLE.

INPUT:

SQL> insert into pay_table values
 2 ('JEFF JENNINGS','WEEKLY',71.50,'01-JAN-97',NULL);

OUTPUT:

1 row created.

The moment of truth:

INPUT/OUTPUT:

SQL> @block2

Input truncated to 1 characters
=======================
ERROR: Aborting program.
Unknown Pay Type for: JEFF JENNINGS
PL/SQL procedure successfully completed.

ANALYSIS:

An error message told you that JEFF JENNINGS had a Pay Type with a value other
than SALARY or HOURLY. That is, the exception was handled with an error message.

Stored Procedures, Packages, and Triggers
Using PL/SQL, you can create stored objects to eliminate having to constantly enter
monotonous code. Procedures are simply blocks of code that perform some sort of specific
function. Related procedures can be combined and stored together in an object called a
package. A trigger is a database object that is used with other transactions. You might
have a trigger on a table called ORDERS that will insert data into a HISTORY table
each time the ORDERS table receives data. The basic syntax of these objects follows.

Sample Procedure

SYNTAX:

PROCEDURE procedure_name IS
 variable1 datatype;
 ...
BEGIN
 statement1;
 ...
EXCEPTION
 when ...
END procedure_name;

Sample Package

SYNTAX:

CREATE PACKAGE package_name AS
 PROCEDURE procedure1 (global_variable1 datatype, ...);
 PROCEDURE procedure2 (global_variable1 datatype, ...);
END package_name;
CREATE PACKAGE BODY package_name AS

 PROCEDURE procedure1 (global_variable1 datatype, ...) IS
 BEGIN
 statement1;
 ...
 END procedure1;
 PROCEDURE procedure2 (global_variable1 datatype, ...) IS
 BEGIN
 statement1;
 ...
 END procedure2;
END package_name;

Sample Trigger

SYNTAX:

 CREATE TRIGGER trigger_name
 AFTER UPDATE OF column ON table_name
 FOR EACH ROW
 BEGIN
 statement1;
 ...
 END;

The following example uses a trigger to insert a row of data into a transaction table
when updating PAY_TABLE. The TRANSACTION table looks like this:

INPUT:

SQL> describe trans_table

OUTPUT:

 Name Null? Type
 ------------------------------ -------- ----
 ACTION VARCHAR2(10)
 NAME VARCHAR2(20)
 PREV_PAY NUMBER(8,2)
 CURR_PAY NUMBER(8,2)
 EFF_DATE DATE

Here's a sample row of data:

INPUT/OUTPUT:

SQL> select *
 2 from pay_table
 3 where name = 'JEFF JENNINGS';

NAME PAY_TYPE PAY_RATE EFF_DATE PREV_PAY
-------------------- -------- --------- -------- ----------
JEFF JENNINGS WEEKLY 71.50 01-JAN-97

Now, create a trigger:

SQL> CREATE TRIGGER pay_trigger
 2 AFTER update on PAY_TABLE
 3 FOR EACH ROW
 4 BEGIN
 5 insert into trans_table values
 6 ('PAY CHANGE', :new.name, :old.pay_rate,
 7 :new.pay_rate, :new.eff_date);
 8 END;
 9 /

Trigger created.

The last step is to perform an update on PAY_TABLE, which should cause the trigger to
be executed.

INPUT/OUTPUT:

SQL> update pay_table
 2 set pay_rate = 15.50,
 3 eff_date = sysdate
 4 where name = 'JEFF JENNINGS';

1 row updated.

SQL> select *
 2 from pay_table
 3 where name = 'JEFF JENNINGS';

NAME PAY_TYPE PAY_RATE EFF_DATE PREV_PAY
-------------------- -------- --------- -------- ----------
JEFF JENNINGS WEEKLY 15.50 20-MAY-97

SQL> select *
 2 from trans_table;

ACTION NAME PREV_PAY CURR_PAY EFF_DATE
---------- -------------------- ---------- ---------- ---------
PAY CHANGE JEFF JENNINGS 71.5 15.5 20-MAY-97

ANALYSIS:

PREV_PAY is null in PAY_TABLE but PREV_PAY appears in TRANS_TABLE. This approach
isn't as confusing as it sounds. PAY_TABLE does not need an entry for PREV_PAY because
the PAY_RATE of 71.50 per hour was obviously an erroneous amount. Rather, we
inserted the value for PREV_PAY in TRANS_TABLE because the update was a

transaction, and the purpose of TRANS_PAY is to keep a record of all transactions
against PAY_TABLE.

NOTE: If you are familiar with network technologies, you might notice
similarities between PL/SQL and Java stored procedures. However, some
differences should be noted. PL/SQL is an enhancement of standard SQL,
implementing the commands of a procedural language. Java, which is much
more advanced than PL/SQL, allows programmers to write more complex
programs than are possible with PL/SQL. PL/SQL is based on the database-
intensive functionality of SQL; Java is more appropriate for CPU-intensive
programs. Most procedural languages, such as PL/SQL, are developed
specifically for the appropriate platform. As procedural language
technology evolves, a higher level of standardization will be enforced
across platforms.

Summary
PL/SQL extends the functionality of standard SQL. The basic components of PL/SQL
perform the same types of functions as a third-generation language. The use of local
variables supports dynamic code; that is, values within a block may change from time to
time according to user input, specified conditions, or the contents of a cursor. PL/SQL
uses standard procedural language program control statements. IF...THEN statements
and loops enable you to search for specific conditions; you can also use loops to scroll
through the contents of a defined cursor.

Errors that occur during the processing of any program are a major concern. PL/SQL
enables you to use exceptions to control the behavior of a program that encounters
either syntax errors or logical errors. Many exceptions are predefined, such as a divide-
by-zero error. Errors can be raised any time during processing according to specified
conditions and may be handled any way the PL/SQL programmer desires.

Day 18 also introduces some practical uses of PL/SQL. Database objects such as triggers,
stored procedures, and packages can automate many job functions. Today's examples
apply some of the concepts that were covered on previous days.

Q&A
Q Does Day 18 cover everything I need to know about PL/SQL?

A Most definitely not. Today's introduction just scratched the surface of one of
the greatest concepts of SQL. We have simply tried to highlight some of the major
features to give you a basic knowledge of PL/SQL.

Q Can I get by without using PL/SQL?

A Yes, you can get by, but to achieve the results that you would get with PL/SQL,
you may have to spend much more time coding in a third-generation language. If
you do not have Oracle, check your implementation documentation for
procedural features like those of PL/SQL.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. How is a database trigger used?

2. Can related procedures be stored together?

3. True or False: Data Manipulation Language can be used in a PL/SQL statement.

4. True or False: Data Definition Language can be used in a PL/SQL statement.

5. Is text output directly a part of the PL/SQL syntax?

6. List the three major parts of a PL/SQL statement.

7. List the commands that are associated with cursor control.

Exercises

1. Declare a variable called HourlyPay in which the maximum accepted value is
99.99/hour.

2. Define a cursor whose content is all the data in the CUSTOMER_TABLE where
the CITY is INDIANAPOLIS.

3. Define an exception called UnknownCode.

4. Write a statement that will set the AMT in the AMOUNT_TABLE to 10 if CODE is

A, set the AMT to 20 if CODE is B, and raise an exception called UnknownCode if
CODE is neither A nor B. The table has one row.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 19 -
Transact-SQL: An Introduction

Objectives
Today's material supplements the previous presentations, as Transact-SQL is a
supplement to the accepted SQL standard. Today's goals are to

● Identify one of the popular extensions to SQL

● Outline the major features of Transact-SQL

● Provide practical examples to give you an understanding of how Transact-SQL is
used

An Overview of Transact-SQL
Day 13, "Advanced SQL Topics," briefly covered static SQL. The examples on Day 13
depicted the use of embedded SQL in third-generation programming languages such as C.
With this method of programming, the embedded SQL code does not change and is,
therefore, limited. On the other hand, you can write dynamic SQL to perform the same
functions as a procedural programming language and allow conditions to be changed
within the SQL code.

As we have mentioned during the discussion of virtually every topic in this book, almost
every database vendor has added many extensions to the language. Transact-SQL is the
Sybase and Microsoft SQL Server database product. Oracle's product is PL/SQL. Each of

these languages contains the complete functionality of everything we have discussed so
far. In addition, each product contains many extensions to the ANSI SQL standard.

Extensions to ANSI SQL
To illustrate the use of these SQL extensions to create actual programming logic, we
are using Sybase and Microsoft SQL Server's Transact-SQL language. It contains most of
the constructs found in third-generation languages, as well as some SQL Server-specific
features that turn out to be very handy tools for the database programmer. (Other
manufacturers' extensions contain many of these features and more.)

Who Uses Transact-SQL?

Everyone reading this book can use Transact-SQL--casual relational database
programmers who occasionally write queries as well as developers who write
applications and create objects such as triggers and stored procedures.

NOTE: Users of Sybase and Microsoft SQL Server who want to explore the
true capabilities of relational database programming must use the Transact-
SQL features.

The Basic Components of Transact-SQL

SQL extensions overcome SQL's limits as a procedural language. For example, Transact-
SQL enables you to maintain tight control over your database transactions and to
write procedural database programs that practically render the programmer exempt
from exhausting programming tasks.

Day 19 covers the following key features of Transact-SQL:

● A wide range of data types to optimize data storage

● Program flow commands such as loops and IF-ELSE statements

● Use of variables in SQL statements

● Summarized reports using computations

● Diagnostic features to analyze SQL statements

● Many other options to enhance the standard language of SQL

Data Types
On Day 9, "Creating and Maintaining Tables," we discussed data types. When creating
tables in SQL, you must specify a specific data type for each column.

NOTE: Data types vary between implementations of SQL because of the way
each database server stores data. For instance, Oracle uses selected data
types, whereas Sybase and Microsoft's SQL Server have their own data
types.

Sybase and Microsoft's SQL Server support the following data types.

Character Strings

● char stores fixed-length character strings, such as STATE abbreviations, when
you know that the column will always be two characters.

● varchar stores variable-length character strings, such as an individual's name,
where the exact length of a name is not specified, for example, AL RAY to
WILLIAM STEPHENSON.

● text stores strings with nearly unlimited size, such as a remarks column or
description of a type of service.

Numeric Data Types

● int stores integers from -2,147,483,647 to +2,147,483,647.

● smallint stores integers from -32,768 to 32,767.

● tinyint stores integers from 0 to 255.

● float expresses numbers as real floating-point numbers with data precisions.
Decimals are allowed with these data types. The values range from +2.23E-308
to +1.79E308.

● real expresses real numbers with data precisions from +1.18E-38 to +3.40E38.

DATE Data Types

● datetime values range from Jan 1, 1753 to Dec 31, 9999.

● smalldatetime values range from Jan 1, 1900 to Jun 6, 2079.

Money Data Types

● money stores values up to +922,337,203,685,477.5808.

● smallmoney stores values up to +214,748.3647.

Money values are inserted into a table using the dollar sign; for example:

insert payment_tbl (customer_id, paydate, pay_amt)
values (012845, "May 1, 1997", $2099.99)

Binary Strings

● binary stores fixed-length binary strings.

● varbinary stores variable-length binary strings.

● image stores very large binary strings, for example, photographs and other
images.

bit: A Logical Data Type

The data type bit is often used to flag certain rows of data within a table. The value
stored within a column whose data type is bit is either a 1 or 0. For example, the value
1 may signify the condition true, whereas 0 denotes a false condition. The following
example uses the bit data type to create a table containing individual test scores:

create table test_flag
(ind_id int not null,
 test_results int not null,
 result_flag bit not null)

ANALYSIS:

The column result_flag is defined as a bit column, where the bit character
represents either a pass or fail, where pass is true and fail is false.

Throughout the rest of the day, pay attention to the data types used when creating
tables and writing Transact-SQL code.

NOTE: The code in today's examples uses both uppercase and lowercase.
Although SQL keywords are not case sensitive in most implementations of
SQL, always check your implementation.

Accessing the Database with Transact-SQL
All right, enough talk. To actually run the examples today, you will need to build the
following database tables in a database named BASEBALL.

The BASEBALL Database

The BASEBALL database consists of three tables used to track typical baseball
information: the BATTERS table, the PITCHERS table, and the TEAMS table. This
database will be used in examples throughout the rest of today.

The BATTERS TABLE

NAME char(30)
TEAM int
AVERAGE float
HOMERUNS int
RBIS int

The table above can be created using the following Transact-SQL statement:

INPUT:

1> create database BASEBALL on default
2> go
1> use BASEBALL
2> go
1> create table BATTERS (
2> NAME char(30),
3> TEAM int,
4> AVERAGE float,
5> HOMERUNS int,
6> RBIS int)
7> go

ANALYSIS:

Line 1 creates the database. You specify the database BASEBALL and then create the
table BATTERS underneath BASEBALL.

Enter the data in Table 19.1 into the BATTERS table.

NOTE: The command go that separates each Transact-SQL statement in the
preceding example is not part of Transact-SQL. go's purpose is to pass each
statement from a front-end application to SQL Server.

Table 19.1. Data for the BATTERS table.

Name Team Average Homeruns RBIs

Billy Brewster 1 .275 14 46

John Jackson 1 .293 2 29

Phil Hartman 1 .221 13 21

Jim Gehardy 2 .316 29 84

Tom Trawick 2 .258 3 51

Eric Redstone 2 .305 0 28

The PITCHERS Table

The PITCHERS table can be created using the following Transact-SQL statement:

INPUT:

1> use BASEBALL
2> go
1> create table PITCHERS (
2> NAME char(30),
3> TEAM int,
4> WON int,
5> LOST int,
6> ERA float)
7> go

Enter the data in Table 19.2 into the PITCHERS table.

Table 19.2. Data for the PITCHERS table.

Name Team Won Lost Era

Tom Madden 1 7 5 3.46

Bill Witter 1 8 2 2.75

Jeff Knox 2 2 8 4.82

Hank Arnold 2 13 1 1.93

Tim Smythe 3 4 2 2.76

The TEAMS Table

The TEAMS table can be created using the following Transact-SQL statement:

INPUT:

1> use BASEBALL
2> go
1> create table TEAMS (
2> TEAM_ID int,
3> CITY char(30),
4> NAME char(30),
5> WON int,
6> LOST int,
7> TOTAL_HOME_ATTENDANCE int,
8> AVG_HOME_ATTENDANCE int)
9> go

Enter the data in Table 19.3 into the TEAMS table.

Table 19.3. Data for the TEAMS table.

Team_ID City Name Won Lost Total_Home
_Attendance

Avg_Home
_Attendance

1 Portland Beavers 72 63 1,226,843 19,473

2 Washington Representatives 50 85 941,228 14,048

3 Tampa Sharks 99 36 2,028,652 30,278

Declaring Local Variables

Every programming language enables some method for declaring local (or global)
variables that can be used to store data. Transact-SQL is no exception. Declaring a
variable using Transact-SQL is an extremely simple procedure. The keyword that must be
used is the DECLARE keyword. The syntax looks like this:

SYNTAX:

declare @variable_name data_type

To declare a character string variable to store players' names, use the following

statement:

1> declare @name char(30)
2> go

Note the @ symbol before the variable's name. This symbol is required and is used by the
query processor to identify variables.

Declaring Global Variables

If you delve further into the Transact-SQL documentation, you will notice that the @@
symbol precedes the names of some system-level variables. This syntax denotes SQL
Server global variables that store information.

Declaring your own global variables is particularly useful when using stored
procedures. SQL Server also maintains several system global variables that contain
information that might be useful to the database system user. Table 19.4 contains the
complete list of these variables. The source for this list is the Sybase SQL Server System
10 documentation.

Table 19.4. SQL Server global variables.

Variable Name Purpose

@@char_convert 0 if character set conversion is in effect.

@@client_csid Client's character set ID.

@@client_csname Client's character set name.

@@connections Number of logons since SQL Server was started.

@@cpu_busy
Amount of time, in ticks, the CPU has been busy since
SQL Server was started.

@@error Contains error status.

@@identity Last value inserted into an identity column.

@@idle
Amount of time, in ticks, that SQL Server has been
idle since started.

@@io_busy
Amount of time, in ticks, that SQL Server has spent
doing I/O.

@@isolation
Current isolation level of the Transact-SQL
program.

@@langid Defines local language ID.

@@language Defines the name of the local language.

@@maxcharlen Maximum length of a character.

@@max_connections
Maximum number of connections that can be made
with SQL Server.

@@ncharsize Average length of a national character.

@@nestlevel Nesting level of current execution.

@@pack_received
Number of input packets read by SQL Server since it
was started.

@@pack_sent
Number of output packets sent by SQL Server since it
was started.

@@packet_errors
Number of errors that have occurred since SQL
Server was started.

@@procid ID of the currently executing stored procedure.

@@rowcount Number of rows affected by the last command.

@@servername Name of the local SQL Server.

@@spid Process ID number of the current process.

@@sqlstatus Contains status information.

@@textsize
Maximum length of text or image data returned
with SELECT statement.

@@thresh_hysteresis
Change in free space required to activate a
threshold.

@@timeticks Number of microseconds per tick.

@@total_errors
Number of errors that have occurred while reading
or writing.

@@total_read Number of disk reads since SQL Server was started.

@@total_write Number of disk writes since SQL Server was started.

@@tranchained
Current transaction mode of the Transact-SQL
program.

@@trancount Nesting level of transactions.

@@transtate
Current state of a transaction after a statement
executes.

@@version Date of the current version of SQL Server.

Using Variables

The DECLARE keyword enables you to declare several variables with a single statement
(although this device can sometimes look confusing when you look at your code later).
An example of this type of statement appears here:

1> declare @batter_name char(30), @team int, @average float

2> go

The next section explains how to use variables it to perform useful programming
operations.

Using Variables to Store Data

Variables are available only within the current statement block. To execute a block of
statements using the Transact-SQL language, the go statement is executed. (Oracle
uses the semicolon for the same purpose.) The scope of a variable refers to the usage of
the variable within the current Transact-SQL statement.

You cannot initialize variables simply by using the = sign. Try the following statement
and note that an error will be returned.

INPUT:

1> declare @name char(30)
2> @name = "Billy Brewster"
3> go

You should have received an error informing you of the improper syntax used in line 2.
The proper way to initialize a variable is to use the SELECT command. (Yes, the same
command you have already mastered.) Repeat the preceding example using the correct
syntax:

INPUT:

1> declare @name char(30)
2> select @name = "Billy Brewster"
3> go

This statement was executed correctly, and if you had inserted additional statements
before executing the go statement, the @name variable could have been used.

Retrieving Data into Local Variables

Variables often store data that has been retrieved from the database. They can be used
with common SQL commands, such as SELECT, INSERT, UPDATE, and DELETE. Example 19.1
illustrates the use of variables in this manner.

Example 19.1

This example retrieves the name of the player in the BASEBALL database who has the
highest batting average and plays for the Portland Beavers.

INPUT:

1> declare @team_id int, @player_name char(30), @max_avg float
2> select @team_id = TEAM_ID from TEAMS where CITY = "Portland"
3> select @max_avg = max(AVERAGE) from BATTERS where TEAM = @team_id
4> select @player_name = NAME from BATTERS where AVERAGE = @max_avg
5> go

ANALYSIS:

This example was broken down into three queries to illustrate the use of variables.

The PRINT Command

One other useful feature of Transact-SQL is the PRINT command that enables you to
print output to the display device. This command has the following syntax:

SYNTAX:

PRINT character_string

Although PRINT displays only character strings, Transact-SQL provides a number of
useful functions that can convert different data types to strings (and vice versa).

Example 19.2

Example 19.2 repeats Example 19.1 but prints the player's name at the end.

INPUT:

1> declare @team_id int, @player_name char(30), @max_avg float
2> select @team_id = TEAM_ID from TEAMS where CITY = "Portland"
3> select @max_avg = max(AVERAGE) from BATTERS where TEAM = @team_id
4> select @player_name = NAME from BATTERS where AVERAGE = @max_avg
5> print @player_name
6> go

Note that a variable can be used within a WHERE clause (or any other clause) just as if
it were a constant value.

Flow Control
Probably the most powerful set of Transact-SQL features involves its capability to
control program flow. If you have programmed with other popular languages such as C,
COBOL, Pascal, and Visual Basic, then you are probably already familiar with control

commands such as IF...THEN statements and loops. This section contains some of the
major commands that allow you to enforce program flow control.

BEGIN and END Statements

Transact-SQL uses the BEGIN and END statements to signify the beginning and ending
points of blocks of code. Other languages use brackets ({}) or some other operator to
signify the beginning and ending points of functional groups of code. These statements
are often combined with IF...ELSE statements and WHILE loops. Here is a sample block
using BEGIN and END:

SYNTAX:

BEGIN
 statement1
 statement2
 statement3...
END

IF...ELSE Statements

One of the most basic programming constructs is the IF...ELSE statement. Nearly
every programming language supports this construct, and it is extremely useful for
checking the value of data retrieved from the database. The Transact-SQL syntax for
the IF...ELSE statement looks like this:

SYNTAX:

if (condition)
begin
 (statement block)
end
else if (condition)
begin
 statement block)
end
.
.
.
else
begin
 (statement block)
end

Note that for each condition that might be true, a new BEGIN/END block of statements
was entered. Also, it is considered good programming practice to indent statement blocks
a set amount of spaces and to keep this number of spaces the same throughout your

application. This visual convention greatly improves the readability of the program and
cuts down on silly errors that are often caused by simply misreading the code.

Example 19.3

Example 19.3 extends Example 19.2 by checking the player's batting average. If the
player's average is over .300, the owner wants to give him a raise. Otherwise, the owner
could really care less about the player!

Example 19.3 uses the IF...ELSE statement to evaluate conditions within the
statement. If the first condition is true, then specified text is printed; alternative text
is printed under any other conditions (ELSE).

INPUT:

1> declare @team_id int, @player_name char(30), @max_avg float
2> select @team_id = TEAM_ID from TEAMS where CITY = "Portland"
3> select @max_avg = max(AVERAGE) from BATTERS where TEAM = @team_id
4> select @player_name = NAME from BATTERS where AVERAGE = @max_avg
5> if (@max_avg > .300)
6> begin
7> print @player_name
8> print "Give this guy a raise!"
9> end
10> else
11> begin
12> print @player_name
13> print "Come back when you're hitting better!"
14> end
15> go

Example 19.4

This new IF statement enables you to add some programming logic to the simple
BASEBALL database queries. Example 19.4 adds an IF...ELSE IF...ELSE branch to the
code in Ex- ample 19.3.

INPUT:

1> declare @team_id int, @player_name char(30), @max_avg float
2> select @team_id = TEAM_ID from TEAMS where CITY = "Portland"
3> select @max_avg = max(AVERAGE) from BATTERS where TEAM = @team_id
4> select @player_name = NAME from BATTERS where AVERAGE = @max_avg
5> if (@max_avg > .300)
6> begin
7> print @player_name
8> print "Give this guy a raise!"
9> end
10> else if (@max_avg > .275)

11> begin
12> print @player_name
13> print "Not bad. Here's a bonus!"
14> end
15> else
16> begin
17> print @player_name
18> print "Come back when you're hitting better!"
19> end
20> go

Transact-SQL also enables you to check for a condition associated with an IF
statement. These functions can test for certain conditions or values. If the function
returns TRUE, the IF branch is executed. Otherwise, if provided, the ELSE branch is
executed, as you saw in the previous example.

The EXISTS Condition

The EXISTS keyword ensures that a value is returned from a SELECT statement. If a
value is returned, the IF statement is executed. Example 19.5 illustrates this logic.

Example 19.5

In this example the EXISTS keyword evaluates a condition in the IF. The condition is
specified by using a SELECT statement.

INPUT:

1> if exists (select * from TEAMS where TEAM_ID > 5)
2> begin
3> print "IT EXISTS!!"
4> end
5> else
6> begin
7> print "NO ESTA AQUI!"
8> end

Testing a Query's Result

The IF statement can also test the result returned from a SELECT query. Example 19.6
implements this feature to check for the maximum batting average among players.

Example 19.6

This example is similar to Example 19.5 in that it uses the SELECT statement to define a
condition. This time, however, we are testing the condition with the greater than sign

(>).

INPUT:

1> if (select max(AVG) from BATTERS) > .400
2> begin
3> print "UNBELIEVABLE!!"
4> end
5> else
6> print "TED WILLIAMS IS GETTING LONELY!"
7> end

We recommend experimenting with your SQL implementation's IF statement. Think of
several conditions you would be interested in checking in the BASEBALL (or any other)
database. Run some queries making use of the IF statement to familiarize yourself with
its use.

The WHILE Loop

Another popular programming construct that Transact-SQL supports is the WHILE loop.
This command has the following syntax:

SYNTAX:

WHILE logical_expression
 statement(s)

Example 19.7

The WHILE loop continues to loop through its statements until the logical expression it
is checking returns a FALSE. This example uses a simple WHILE loop to increment a local
variable (named COUNT).

INPUT:

1> declare @COUNT int
2> select @COUNT = 1
3> while (@COUNT < 10)
4> begin
5> select @COUNT = @COUNT + 1
6> print "LOOP AGAIN!"
7> end
8> print "LOOP FINISHED!"

NOTE: Example 19.7 implements a simple FOR loop. Other implementations of
SQL, such as Oracle's PL/SQL, actually provide a FOR loop statement. Check

your documentation to determine whether the system you are using
supports this useful command.

The BREAK Command

You can issue the BREAK command within a WHILE loop to force an immediate exit from
the loop. The BREAK command is often used along with an IF test to check some
condition. If the condition check succeeds, you can use the BREAK command to exit from
the WHILE loop. Commands immediately following the END command are then executed.
Example 19.8 illustrates a simple use of the BREAK command. It checks for some arbitrary
number (say @COUNT = 8). When this condition is met, it breaks out of the WHILE loop.

Example 19.8

Notice the placement of the BREAK statement after the evaluation of the first
condition in the IF.

INPUT:

1> declare @COUNT int
2> select @COUNT = 1
3> while (@COUNT < 10)
4> begin
5> select @COUNT = @COUNT + 1
6> if (@COUNT = 8)
7> begin
8> break
9> end
10> else
11> begin
12> print "LOOP AGAIN!"
13> end
14> end
15> print "LOOP FINISHED!"

ANALYSIS:

The BREAK command caused the loop to be exited when the @COUNT variable equaled 8.

The CONTINUE Command

The CONTINUE command is also a special command that can be executed from within a
WHILE loop. The CONTINUE command forces the loop to immediately jump back to the
beginning, rather than executing the remainder of the loop and then jumping back to
the beginning. Like the BREAK command, the CONTINUE command is often used with an IF

statement to check for some condition and then force an action, as shown in Example
19.9.

Example 19.9

Notice the placement of the CONTINUE statement after the evaluation of the first
condition in the IF.

INPUT:

1> declare @COUNT int
2> select @COUNT = 1
3> while (@COUNT < 10)
4> begin
5> select @COUNT = @COUNT + 1
6> if (@COUNT = 8)
7> begin
8> continue
9> end
10> else
11> begin
12> print "LOOP AGAIN!"
13> end
14> end
15> print "LOOP FINISHED!"

ANALYSIS:

Example 19.9 is identical to Example 19.8 except that the CONTINUE command replaces
the BREAK command. Now instead of exiting the loop when @COUNT = 8, it simply jumps
back to the top of the WHILE statement and continues.

Using the WHILE Loop to Scroll Through a Table

SQL Server and many other database systems have a special type of object--the cursor--
that enables you to scroll through a table's records one record at a time. (Refer to Day
13.) However, some database systems (including SQL Server pre-System 10) do not support
the use of scrollable cursors. Example 19.10 gives you an idea of how to use a WHILE
loop to implement a rough cursor-type functionality when that functionality is not
automatically supplied.

Example 19.10

You can use the WHILE loop to scroll through tables one record at a time. Transact-
SQL stores the rowcount variable that can be set to tell SQL Server to return only
one row at a time during a query. If you are using another database product, determine
whether your product has a similar setting. By setting rowcount to 1 (its default is 0,

which means unlimited), SQL Server returns only one record at a time from a SELECT
query. You can use this one record to perform whatever operations you need to perform.
By selecting the contents of a table into a temporary table that is deleted at the end
of the operation, you can select out one row at a time, deleting that row when you are
finished. When all the rows have been selected out of the table, you have gone through
every row in the table! (As we said, this is a very rough cursor functionality!) Let's run
the example now.

INPUT:

1> set rowcount 1
2> declare @PLAYER char(30)
3> create table temp_BATTERS (
4> NAME char(30),
5> TEAM int,
6> AVERAGE float,
7> HOMERUNS int,
8> RBIS int)
9> insert temp_BATTERS
10> select * from BATTERS
11> while exists (select * from temp_BATTERS)
12> begin
13> select @PLAYER = NAME from temp_BATTERS
14> print @PLAYER
15> delete from temp_BATTERS where NAME = @PLAYER
16> end
17> print "LOOP IS DONE!"

ANALYSIS:

Note that by setting the rowcount variable, you are simply modifying the number of
rows returned from a SELECT. If the WHERE clause of the DELETE command returned
five rows, five rows would be deleted! Also note that the rowcount variable can be
reset repeatedly. Therefore, from within the loop, you can query the database for some
additional information by simply resetting rowcount to 1 before continuing with the
loop.

Transact-SQL Wildcard Operators
The concept of using wildcard conditions in SQL was introduced on Day 3, "Expressions,
Conditions, and Operators." The LIKE operator enables you to use wildcard conditions
in your SQL statements. Transact-SQL extends the flexibility of wildcard conditions. A
summary of Transact-SQL's wildcard operators follows.

● The underscore character (_)represents any one individual character. For
example, _MITH tells the query to look for a five-character string ending with
MITH.

● The percent sign (%) represents any one or multiple characters. For example,
WILL% returns the value WILLIAMS if it exists. WILL% returns the value WILL.

● Brackets ([]) allow a query to search for characters that are contained within
the brackets. For example, [ABC] tells the query to search for strings containing
the letters A, B, or C.

● The ^ character used within the brackets tells a query to look for any
characters that are not listed within the brackets. For example, [^ABC] tells the
query to search for strings that do not contain the letters A, B, or C.

Creating Summarized Reports Using COMPUTE
Transact-SQL also has a mechanism for creating summarized database reports. The
command, COMPUTE, has very similar syntax to its counterpart in SQL*Plus. (See Day 20,
"SQL*Plus.")

The following query produces a report showing all batters, the number of home runs hit
by each batter, and the total number of home runs hit by all batters:

INPUT:

select name, homeruns
from batters
compute sum(homeruns)

ANALYSIS:

In the previous example, COMPUTE alone performs computations on the report as a whole,
whereas COMPUTE BY performs computations on specified groups and the entire report,
as the following example shows:

SYNTAX:

COMPUTE FUNCTION(expression) [BY expression]
 where the FUNCTION might include SUM, MAX, MIN, etc. and
 EXPRESSION is usually a column name or alias.

Date Conversions
Sybase and Microsoft's SQL Server can insert dates into a table in various formats; they
can also extract dates in several different types of formats. This section shows you how
to use SQL Server's CONVERT command to manipulate the way a date is displayed.

SYNTAX:

CONVERT (datatype [(length)], expression, format)

The following date formats are available with SQL Server when using the CONVERT
function:

Format code Format picture

100 mon dd yyyy hh:miAM/PM

101 mm/dd/yy

102 yy.mm.dd

103 dd/mm/yy

104 dd.mm.yy

105 dd-mm-yy

106 dd mon yy

107 mon dd, yy

108 hh:mi:ss

109 mon dd, yyyy hh:mi:ss:mmmAM/PM

110 mm-dd-yy

111 yy/mm/dd

112 yymmdd

INPUT:

select "PayDate" = convert(char(15), paydate, 107)
from payment_table
where customer_id = 012845

OUTPUT:

PayDate

May 1, 1997

ANALYSIS:

The preceding example uses the format code 107 with the CONVERT function. According
to the date format table, code 107 will display the date in the format mon dd, yy.

SQL Server Diagnostic Tools--SET Commands
Transact-SQL provides a list of SET commands that enable you to turn on various
options that help you analyze Transact-SQL statements. Here are some of the popular
SET commands:

● SET STATISTICS IO ON tells the server to return the number of logical and
physical page requests.

● SET STATISTICS TIME ON tells the server to display the execution time of an
SQL statement.

● SET SHOWPLAN ON tells the server to show the execution plan for the
designated query.

● SET NOEXEC ON tells the server to parse the designated query, but not to
execute it.

● SET PARSONLY ON tells the server to check for syntax for the designated query,
but not to execute it.

Transact-SQL also has the following commands that help to control what is displayed
as part of the output from your queries:

● SET ROWCOUNT n tells the server to display only the first n records retrieved
from a query.

● SET NOCOUNT ON tells the server not to report the number of rows returned by
a query.

NOTE: If you are concerned with tuning your SQL statements, refer to Day
15, "Streamlining SQL Statements for Improved Performance."

Summary
Day 19 introduces a number of topics that add some teeth to your SQL programming
expertise. The basic SQL topics that you learned earlier in this book are extremely
important and provide the foundation for all database programming work you
undertake. However, these topics are just a foundation. The SQL procedural language
concepts explained yesterday and today build on your foundation of SQL. They give you,
the database programmer, a great deal of power when accessing data in your relational

database.

The Transact-SQL language included with the Microsoft and Sybase SQL Server
database products provide many of the programming constructs found in popular third-
and fourth-generation languages. Its features include the IF statement, the WHILE
loop, and the capability to declare and use local and global variables.

Keep in mind that Day 19 is a brief introduction to the features and techniques of
Transact-SQL code. Feel free to dive head first into your documentation and experiment
with all the tools that are available to you. For more detailed coverage of Transact-
SQL, refer to the Microsoft SQL Server Transact-SQL documentation.

Q&A
Q Does SQL provide a FOR loop?

A Programming constructs such as the FOR loop, the WHILE loop, and the CASE
statement are extensions to ANSI SQL. Therefore, the use of these items varies
widely among database systems. For instance, Oracle provides the FOR loop,
whereas Transact-SQL (SQL Server) does not. Of course, a WHILE loop can
increment a variable within the loop, which can simulate the FOR loop.

Q I am developing a Windows (or Macintosh) application in which the user
interface consists of Windows GUI elements, such as windows and dialog
boxes. Can I use the PRINT statement to issue messages to the user?

A SQL is entirely platform independent. Therefore, issuing the PRINT statement
will not pop up a message box. To output messages to the user, your SQL
procedures can return predetermined values that indicate success or failure.
Then the user can be notified of the status of the queries. (The PRINT command is
most useful for debugging because a PRINT statement executed within a stored
procedure will not be output to the screen anyway.)

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. True or False: The use of the word SQL in Oracle's PL/SQL and

Microsoft/Sybase's Transact-SQL implies that these products are fully compliant
with the ANSI standard.

2. True or False: Static SQL is less flexible than Dynamic SQL, although the
performance of static SQL can be better.

Exercises

1. If you are not using Sybase/Microsoft SQL Server, compare your product's
extensions to ANSI SQL to the extensions mentioned today.

2. Write a brief set of statements that will check for the existence of some
condition. If this condition is true, perform some operation. Otherwise, perform
another operation.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 20 -
SQL*Plus

Objectives
Today you will learn about SQL*Plus, the SQL interface for Oracle's RDBMS. By the
end of Day 20, you will understand the following elements of SQL*Plus:

● How to use the SQL*Plus buffer

● How to format reports attractively

● How to manipulate dates

● How to make interactive queries

● How to construct advanced reports

● How to use the powerful DECODE function

Introduction
We are presenting SQL*Plus today because of Oracle's dominance in the relational
database market and because of the power and flexibility SQL*Plus offers to the
database user. SQL*Plus resembles Transact-SQL (see Day 19, "Transact-SQL: An
Introduction") in many ways. Both implementations comply with the ANSI SQL standard
for the most part, which is still the skeleton of any implementation.

SQL*Plus commands can enhance an SQL session and improve the format of queries from
the database. SQL*Plus can also format reports, much like a dedicated report writer.
SQL*Plus supplements both standard SQL and PL/SQL and helps relational database
programmers gather data that is in a desirable format.

The SQL*Plus Buffer
The SQL*Plus buffer is an area that stores commands that are specific to your
particular SQL session. These commands include the most recently executed SQL
statement and commands that you have used to customize your SQL session, such as
formatting commands and variable assignments. This buffer is like a short-term memory.
Here are some of the most common SQL buffer commands:

● LIST line_number--Lists a line from the statement in the buffer and designates
it as the current line.

● CHANGE/old_value/new_value--Changes old_value to new_value on the
current line in the buffer.

● APPEND text--Appends text to the current line in the buffer.

● DEL-- Deletes the current line in the buffer.

● SAVE newfile--Saves the SQL statement in the buffer to a file.

● GET filename--Gets an SQL file and places it into the buffer.

● /--Executes the SQL statement in the buffer.

We begin with a simple SQL statement:

INPUT:

SQL> select *
 2 from products
 3 where unit_cost > 25;

OUTPUT:

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P01 MICKEY MOUSE LAMP 29.95
P06 SQL COMMAND REFERENCE 29.99
P07 BLACK LEATHER BRIEFCASE 99.99

The LIST command lists the most recently executed SQL statement in the buffer. The
output will simply be the displayed statement.

SQL> list
 1 select *
 2 from products
 3* where unit_cost > 25

ANALYSIS:

Notice that each line is numbered. Line numbers are important in the buffer; they act as
pointers that enable you to modify specific lines of your statement using the SQL*PLUS
buffer. The SQL*Plus buffer is not a full screen editor; after you hit Enter, you cannot
use the cursor to move up a line, as shown in the following example.

INPUT:

SQL> select *
 2 from products
 3 where unit_cost > 25
 4 /

NOTE: As with SQL commands, you may issue SQL*Plus commands in either
uppercase or lowercase.

TIP: You can abbreviate most SQL*Plus commands; for example, LIST can be
abbreviated as l.

You can move to a specific line from the buffer by placing a line number after the l:

INPUT:

SQL> l3

 3* where unit_cost > 25

ANALYSIS:

Notice the asterisk after the line number 3. This asterisk denotes the current line
number. Pay close attention to the placement of the asterisk in today's examples.
Whenever a line is marked by the asterisk, you can make changes to that line.

Because you know that your current line is 3, you are free to make changes. The syntax
for the CHANGE command is as follows:

SYNTAX:

CHANGE/old_value/new_value

or

C/old_value/new_value

INPUT:

SQL> c/>/<

OUTPUT:

 3* where unit_cost < 25

INPUT:

SQL> l

OUTPUT:

 1 select *
 2 from products
 3* where unit_cost < 25

ANALYSIS:

The greater than sign (>) has been changed to less than (<) on line 3. Notice after the
change was made that the newly modified line was displayed. If you issue the LIST
command or l, you can see the full statement. Now execute the statement:

INPUT:

SQL> /

OUTPUT:

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99

ANALYSIS:

The forward slash at the SQL> prompt executes any statement that is in the buffer.

INPUT:

SQL> l

OUTPUT:

 1 select *
 2 from products
 3* where unit_cost < 25

Now, you can add a line to your statement by typing a new line number at the SQL>
prompt and entering text. After you make the addition, get a full statement listing.
Here's an example:

INPUT:

SQL> 4 order by unit_cost
SQL> 1

OUTPUT:

 1 select *
 2 from products
 3 where unit_cost < 25
 4* order by unit_cost

ANALYSIS:

Deleting a line is easier than adding a line. Simply type DEL 4 at the SQL> prompt to
delete line 4. Now get another statement listing to verify that the line is gone.

INPUT:

SQL> DEL4
SQL> l

OUTPUT:

 1 select *
 2 from products
 3* where unit_cost < 25

Another way to add one or more lines to your statement is to use the INPUT command.
As you can see in the preceding list, the current line number is 3. At the prompt type
input and then press Enter. Now you can begin typing text. Each time you press Enter,
another line will be created. If you press Enter twice, you will obtain another SQL>
prompt. Now if you display a statement listing, as in the following example, you can see
that line 4 has been added.

INPUT:

SQL> input
 4i and product_id = 'P01'
 5i
SQL> l

OUTPUT:

 1 select *
 2 from products
 3 where unit_cost < 25
 4 and product_id = 'P01'
 5* order by unit_cost

To append text to the current line, issue the APPEND command followed by the text.
Compare the output in the preceding example--the current line number is 5--to the
following example.

INPUT:

SQL> append desc

OUTPUT:

 5* order by unit_cost desc

Now get a full listing of your statement:

INPUT:

SQL> l

OUTPUT:

 1 select *
 2 from products
 3 where unit_cost < 25
 4 and product_id = 'P01'
 5* order by unit_cost desc

Suppose you want to wipe the slate clean. You can clear the contents of the SQL*Plus
buffer by issuing the command CLEAR BUFFER. As you will see later, you can also use
the CLEAR command to clear specific settings from the buffer, such as column
formatting information and computes on a report.

INPUT:

SQL> clear buffer

OUTPUT:

buffer cleared

INPUT:

SQL> l

OUTPUT:

No lines in SQL buffer.

ANALYSIS:

Obviously, you won't be able to retrieve anything from an empty buffer. You aren't a
master yet, but you should be able to maneuver with ease by manipulating your
commands in the buffer.

The DESCRIBE Command
The handy DESCRIBE command enables you to view the structure of a table quickly
without having to create a query against the data dictionary.

SYNTAX:

DESC[RIBE] table_name

Take a look at the two tables you will be using throughout the day.

INPUT:

SQL> describe orders

OUTPUT:

 Name Null? Type

 ------------------------------- -------- ----
 ORDER_NUM NOT NULL NUMBER(2)
 CUSTOMER NOT NULL VARCHAR2(30)
 PRODUCT_ID NOT NULL CHAR(3)
 PRODUCT_QTY NOT NULL NUMBER(5)
 DELIVERY_DATE DATE

The following statement uses the abbreviation DESC instead of DESCRIBE:

INPUT:

SQL> desc products

OUTPUT:

 Name Null? Type
 ------------------------------- -------- ----
 PRODUCT_ID NOT NULL VARCHAR2(3)
 PRODUCT_NAME NOT NULL VARCHAR2(30)
 UNIT_COST NOT NULL NUMBER(8,2)

ANALYSIS:

DESC displays each column name, which columns must contain data (NULL/NOT NULL),
and the data type for each column. If you are writing many queries, you will find that
few days go by without using this command. Over a long time, this command can save you
many hours of programming time. Without DESCRIBE you would have to search through
project documentation or even database manuals containing lists of data dictionary
tables to get this information.

The SHOW Command
The SHOW command displays the session's current settings, from formatting commands to
who you are. SHOW ALL displays all settings. This discussion covers some of the most
common settings.

INPUT:

SQL> show all

OUTPUT:

appinfo is ON and set to "SQL*Plus"
arraysize 15
autocommit OFF
autoprint OFF
autotrace OFF

blockterminator "." (hex 2e)
btitle OFF and is the 1st few characters of the next SELECT statement
closecursor OFF
colsep " "
cmdsep OFF
compatibility version NATIVE
concat "." (hex 2e)
copycommit 0
copytypecheck is ON
crt ""
define "&" (hex 26)
echo OFF
editfile "afiedt.buf"
embedded OFF
escape OFF
feedback ON for 6 or more rows
flagger OFF
flush ON
heading ON
headsep "|" (hex 7c)
linesize 100
lno 6
long 80
longchunksize 80
maxdata 60000
newpage 1
null ""
numformat ""
numwidth 9
pagesize 24
pause is OFF
pno 1
recsep WRAP
recsepchar " " (hex 20)
release 703020200
repheader OFF and is NULL
repfooter OFF and is NULL
serveroutput OFF
showmode OFF
spool OFF
sqlcase MIXED
sqlcode 1007
sqlcontinue "> "
sqlnumber ON
sqlprefix "#" (hex 23)
sqlprompt "SQL> "
sqlterminator ";" (hex 3b)
suffix "SQL"
tab ON
termout ON
time OFF
timing OFF
trimout ON
trimspool OFF

ttitle OFF and is the 1st few characters of the next SELECT statement
underline "-" (hex 2d)
user is "RYAN"
verify ON
wrap : lines will be wrapped

The SHOW command displays a specific setting entered by the user. Suppose you have
access to multiple database user IDs and you want to see how you are logged on. You
can issue the following command:

INPUT:

SQL> show user

OUTPUT:

user is "RYAN"

To see the current line size of output, you would type:

INPUT:

SQL> show linesize

OUTPUT:

linesize 100

File Commands
Various commands enable you to manipulate files in SQL*Plus. These commands include
creating a file, editing the file using a full-screen editor as opposed to using the
SQL*Plus buffer, and redirecting output to a file. You also need to know how to
execute an SQL file after it is created.

The SAVE, GET, and EDIT Commands

The SAVE command saves the contents of the SQL statement in the buffer to a file
whose name you specify. For example:

INPUT:

SQL> select *
 2 from products
 3 where unit_cost < 25

SQL> save query1.sql

OUTPUT:

Created file query1.sql

ANALYSIS:

After a file has been saved, you can use the GET command to list the file. GET is very
similar to the LIST command. Just remember that GET deals with statements that have
been saved to files, whereas LIST deals with the statement that is stored in the buffer.

INPUT:

SQL> get query1

OUTPUT:

 1 select *
 2 from products
 3* where unit_cost < 25

You can use the EDIT command either to create a new file or to edit an existing file.
When issuing this command, you are taken into a full-screen editor, more than likely
Notepad in Windows. You will find that it is usually easier to modify a file with EDIT
than through the buffer, particularly if you are dealing with a large or complex
statement. Figure 20.1 shows an example of the EDIT command.

INPUT:

SQL> edit query1.sql

Figure 20.1.
Editing a file in SQL*Plus.

Starting a File

Now that you know how to create and edit an SQL file, the command to execute it is
simple. It can take one of the following forms:

SYNTAX:

START filename

or

STA filename

or

@filename

TIP: Commands are not case sensitive.

INPUT:

SQL> start query1.sql

OUTPUT:

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99

NOTE: You do not have to specify the file extension .sql to start a file
from SQL*Plus. The database assumes that the file you are executing has
this extension. Similarly, when you are creating a file from the SQL>
prompt or use SAVE, GET, or EDIT, you do not have to include the extension
if it is .sql.

INPUT:

SQL> @query1

OUTPUT:

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99

INPUT:

SQL> run query1

OUTPUT:

 1 select *
 2 from products
 3* where unit_cost < 25

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99

Notice that when you use RUN to execute a query, the statement is echoed, or displayed
on the screen.

Spooling Query Output

Viewing the output of your query on the screen is very convenient, but what if you
want to save the results for future reference or you want to print the file? The SPOOL
command allows you to send your output to a specified file. If the file does not exist, it
will be created. If the file exists, it will be overwritten, as shown in Figure 20.2.

INPUT:

SQL> spool prod.lst
SQL> select *
 2 from products;

OUTPUT:

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P01 MICKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99
P06 SQL COMMAND REFERENCE 29.99
P07 BLACK LEATHER BRIEFCASE 99.99

7 rows selected.

INPUT:

SQL> spool off
SQL> edit prod.lst

ANALYSIS:

The output in Figure 20.2 is an SQL*Plus file. You must use the SPOOL OFF command to
stop spooling to a file. When you exit SQL*Plus, SPOOL OFF is automatic. But if you do
not exit and you continue to work in SQL*Plus, everything you do will be spooled to
your file until you issue the command SPOOL OFF.

Figure 20.2.
Spooling your output to a file.

SET Commands
SET commands in Oracle change SQL*Plus session settings. By using these commands, you
can customize your SQL working environment and invoke options to make your output
results more presentable. You can control many of the SET commands by turning an
option on or off.

To see how the SET commands work, perform a simple select:

INPUT:

SQL> select *
 2 from products;

OUTPUT:

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P01 MICKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99
P06 SQL COMMAND REFERENCE 29.99
P07 BLACK LEATHER BRIEFCASE 99.99

7 rows selected.

ANALYSIS:

The last line of output

7 rows selected.

is called feedback, which is an SQL setting that can be modified. The settings have

defaults, and in this case the default for FEEDBACK is on. If you wanted, you could type

SET FEEDBACK ON

before issuing your select statement. Now suppose that you do not want to see the
feedback, as happens to be the case with some reports, particularly summarized reports
with computations.

INPUT:

SQL> set feedback off
SQL> select *
 2 from products;

OUTPUT:

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P01 MICKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99
P06 SQL COMMAND REFERENCE 29.99
P07 BLACK LEATHER BRIEFCASE 99.99

ANALYSIS:

SET FEEDBACK OFF turns off the feedback display.

In some cases you may want to suppress the column headings from being displayed on a
report. This setting is called HEADING, which can also be set ON or OFF.

INPUT:

SQL> set heading off
SQL> /

OUTPUT:

P01 MICKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99
P06 SQL COMMAND REFERENCE 29.99
P07 BLACK LEATHER BRIEFCASE 99.99

ANALYSIS:

The column headings have been eliminated from the output. Only the actual data is
displayed.

You can change a wide array of settings to manipulate how your output is displayed.
One option, LINESIZE, allows you to specify the length of each line of your output. A
small line size will more than likely cause your output to wrap; increasing the line size
may be necessary to suppress wrapping of a line that exceeds the default 80 characters.
Unless you are using wide computer paper (11 x 14), you may want to landscape print
your report if you are using a line size greater than 80. The following example shows
the use of LINESIZE.

INPUT:

SQL> set linesize 40
SQL> /

OUTPUT:

P01 MICKEY MOUSE LAMP
 29.95

P02 NO 2 PENCILS - 20 PACK
 1.99

P03 COFFEE MUG
 6.95

P04 FAR SIDE CALENDAR
 10.5

P05 NATURE CALENDAR
 12.99

P06 SQL COMMAND REFERENCE
 29.99

P07 BLACK LEATHER BRIEFCASE

 99.99

You can also adjust the size of each page of your output by using the setting PAGESIZE.
If you are simply viewing your output on screen, the best setting for PAGESIZE is 23,
which eliminates multiple page breaks per screen. In the following example PAGESIZE is
set to a low number to show you what happens on each page break.

INPUT:

SQL> set linesize 80
SQL> set heading on
SQL> set pagesize 7
SQL> /

OUTPUT:

PRO PRODUCT_NAME UNIT_COST
-- ------------------------------ --------
P01 MICKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5

PRO PRODUCT_NAME UNIT_COST
-- ------------------------------ --------
P05 NATURE CALENDAR 12.99
P06 SQL COMMAND REFERENCE 29.99
P07 BLACK LEATHER BRIEFCASE 99.99

ANALYSIS:

Using the setting of PAGESIZE 7, the maximum number of lines that may appear on a
single page is seven. New column headings will print automatically at the start of each
new page.

The TIME setting displays the current time as part of your SQL> prompt.

INPUT:

SQL> set time on

OUTPUT:

08:52:02 SQL>

These were just a few of the SET options, but they are all manipulated in basically the
same way. As you saw from the vast list of SET commands in the earlier output from the
SHOW ALL statement, you have many options when customizing your SQL*Plus session.
Experiment with each option and see what you like best. You will probably keep the
default for many options, but you may find yourself changing other options frequently
based on different scenarios.

LOGIN.SQL File
When you log out of SQL*Plus, all of your session settings are cleared. When you log
back in, your settings will have to be reinitialized if they are not the defaults unless

you are using a login.sql file. This file is automatically executed when you sign on to
SQL*Plus. This initialization file is similar to the autoexec.bat file on your PC or
your .profile in a UNIX Korn Shell environment.

In Personal Oracle7 you can use the EDIT command to create your Login.sql file, as
shown in Figure 20.3.

Figure 20.3.
Your Login.sql file.

When you log on to SQL*Plus, here is what you will see:

SQL*Plus: Release 3.3.2.0.2 - Production on Sun May 11 20:37:58 1997

Copyright (c) Oracle Corporation 1979, 1994. All rights reserved.

Enter password: ****

Connected to:
Personal Oracle7 Release 7.3.2.2.0 - Production Release
With the distributed and replication options
PL/SQL Release 2.3.2.0.0 - Production

'HELLO!

HELLO !

20:38:02 SQL>

CLEAR Command
In SQL*Plus, settings are cleared by logging off, or exiting SQL*Plus. Some of your
settings may also be cleared by using the CLEAR command, as shown in the following
examples.

INPUT:

SQL> clear col

OUTPUT:

columns cleared

INPUT:

SQL> clear break

OUTPUT:

breaks cleared

INPUT:

SQL> clear compute

OUTPUT:

computes cleared

Formatting Your Output
SQL*Plus also has commands that enable you to arrange your output in almost any
format. This section covers the basic formatting commands for report titles, column
headings and formats, and giving a column a "new value."

TTITLE and BTITLE

TTITLE and BTITLE enable you to create titles on your reports. Previous days covered
queries and output, but with SQL*Plus you can convert simple output into presentable
reports. The TTITLE command places a title at the top of each page of your output or
report. BTITLE places a title at the bottom of each page of your report. Many options
are available with each of these commands, but today's presentation covers the
essentials. Here is the basic syntax of TTITLE and BTITLE:

SYNTAX:

TTITLE [center|left|right] 'text' [&variable] [skip n]
BTITLE [center|left|right] 'text' [&variable] [skip n]

INPUT:

SQL> ttitle 'A LIST OF PRODUCTS'
SQL> btitle 'THAT IS ALL'
SQL> set pagesize 15
SQL> /

OUTPUT:

Wed May 07
page 1
 A LIST OF PRODUCTS

PRO PRODUCT_NAME UNIT_COST

-- ------------------------------ ---------
P01 MICKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99
P06 SQL COMMAND REFERENCE 29.99
P07 BLACK LEATHER BRIEFCASE 99.99

 THAT IS ALL

7 rows selected.

ANALYSIS:

The title appears at the top of the page and at the bottom. Many people use the bottom
title for signature blocks to verify or make changes to data on the report. Also, in the
top title the date and page number are part of the title.

Formatting Columns (COLUMN, HEADING, FORMAT)

Formatting columns refers to the columns that are to be displayed or the columns that
are listed after the SELECT in an SQL statement. The COLUMN, HEADING, and FORMAT
commands rename column headings and control the way the data appears on the report.

The COL[UMN] command is usually used with either the HEADING command or the
FORMAT command. COLUMN defines the column that you wish to format. The column that
you are defining must appear exactly as it is typed in the SELECT statement. You may use
a column alias instead of the full column name to identify a column with this command.

When using the HEADING command, you must use the COLUMN command to identify the
column on which to place the heading.

When using the FORMAT command, you must use the COLUMN command to identify the
column you wish to format.

The basic syntax for using all three commands follows. Note that the HEADING and
FORMAT commands are optional. In the FORMAT syntax, you must use an a if the data has
a character format or use 0s and 9s to specify number data types. Decimals may also be
used with numeric values. The number to the right of the a is the total width that you
wish to allow for the specified column.

SYNTAX:

COL[UMN] column_name HEA[DING] "new_heading" FOR[MAT] [a1|99.99]

The simple SELECT statement that follows shows the formatting of a column. The
specified column is of NUMBER data type, and we want to display the number in a decimal
format with a dollar sign.

INPUT:

SQL> column unit_cost heading "PRICE" format $99.99
SQL> select product_name, unit_cost
 2 from products;

OUTPUT:

PRODUCT_NAME PRICE
------------------------------ -------
MICKEY MOUSE LAMP $29.95
NO 2 PENCILS - 20 PACK $1.99
COFFEE MUG $6.95
FAR SIDE CALENDAR $10.50
NATURE CALENDAR $12.99
SQL COMMAND REFERENCE $29.99
BLACK LEATHER BRIEFCASE $99.99

7 rows selected.

ANALYSIS:

Because we used the format 99.99, the maximum number that will be displayed is 99.99.

Now try abbreviating the commands. Here's something neat you can do with the
HEADING command:

INPUT:

SQL> col unit_cost hea "UNIT|COST" for $09.99
SQL> select product_name, unit_cost
 2 from products;

OUTPUT:

PRODUCT_NAME UNIT COST
---------------------------- ---------
MICKEY MOUSE LAMP $29.95
NO 2 PENCILS - 20 PACK $01.99
COFFEE MUG $06.95
FAR SIDE CALENDAR $10.50
NATURE CALENDAR $12.99
SQL COMMAND REFERENCE $29.99
BLACK LEATHER BRIEFCASE $99.99

7 rows selected.

ANALYSIS:

The pipe sign (|) in the HEADING command forces the following text of the column
heading to be printed on the next line. You may use multiple pipe signs. The technique is
handy when the width of your report starts to push the limits of the maximum available
line size. The format of the unit cost column is now 09.99. The maximum number
displayed is still 99.99, but now a 0 will precede all numbers less than 10. You may
prefer this format because it makes the dollar amounts appear uniform.

Report and Group Summaries
What would a report be without summaries and computations? Let's just say that you
would have one frustrated programmer. Certain commands in SQL*Plus allow you to
break up your report into one or more types of groups and perform summaries or
computations on each group. BREAK is a little different from SQL's standard group
functions, such as COUNT() and SUM(). These functions are used with report and
group summaries to provide a more complete report.

BREAK ON

The BREAK ON command breaks returned rows of data from an SQL statement into one
or more groups. If you break on a customer's name, then by default the customer's name
will be printed only the first time it is returned and left blank with each row of data
with the corresponding name. Here is the very basic syntax of the BREAK ON command:

SYNTAX:

BRE[AK] [ON column1 ON column2...][SKIP n|PAGE][DUP|NODUP]

You may also break on REPORT and ROW. Breaking on REPORT performs computations on
the report as a whole, whereas breaking on ROW performs computations on each group of
rows.

The SKIP option allows you to skip a number of lines or a page on each group. DUP or
NODUP suggests whether you want duplicates to be printed in each group. The default is
NODUP.

Here is an example:

INPUT:

SQL> col unit_cost head 'UNIT|COST' for $09.99

SQL> break on customer
SQL> select o.customer, p.product_name, p.unit_cost
 2 from orders o,
 3 products p
 4 where o.product_id = p.product_id
 5 order by customer;

OUTPUT:

CUSTOMER PRODUCT_NAME UNIT COST
------------------------------ ---------------------------- ---------
JONES and SONS MICKEY MOUSE LAMP $29.95
 NO 2 PENCILS - 20 PACK $01.99
 COFFEE MUG $06.95
PARAKEET CONSULTING GROUP MICKEY MOUSE LAMP $29.95
 NO 2 PENCILS - 20 PACK $01.99
 SQL COMMAND REFERENCE $29.99
 BLACK LEATHER BRIEFCASE $99.99
 FAR SIDE CALENDAR $10.50
PLEWSKY MOBILE CARWASH MICKEY MOUSE LAMP $29.95
 BLACK LEATHER BRIEFCASE $99.99
 BLACK LEATHER BRIEFCASE $99.99
 NO 2 PENCILS - 20 PACK $01.99
 NO 2 PENCILS - 20 PACK $01.99

13 rows selected.

Each unique customer is printed only once. This report is much easier to read than one in
which duplicate customer names are printed. You must order your results in the same
order as the column(s) on which you are breaking for the BREAK command to work.

COMPUTE

The COMPUTE command is used with the BREAK ON command. COMPUTE allows you to
perform various computations on each group of data and/or on the entire report.

SYNTAX:

COMP[UTE] function OF column_or_alias ON column_or_row_or_report

Some of the more popular functions are

● AVG--Computes the average value on each group.

● COUNT--Computes a count of values on each group.

● SUM--Computes a sum of values on each group.

Suppose you want to create a report that lists the information from the PRODUCTS
table and computes the average product cost on the report.

INPUT:

SQL> break on report
SQL> compute avg of unit_cost on report
SQL> select *
 2 from products;

OUTPUT:

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P01 MICKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.50
P05 NATURE CALENDAR 12.99
P06 SQL COMMAND REFERENCE 29.99
P07 BLACK LEATHER BRIEFCASE 99.99

avg 27.48

ANALYSIS:

You can obtain the information you want by breaking on REPORT and then computing
the avg of the unit_cost on REPORT.

Remember the CLEAR command? Now clear the last compute from the buffer and start
again--but this time you want to compute the amount of money spent by each customer.
Because you do not want to see the average any longer, you should also clear the
computes.

INPUT:

SQL> clear compute

OUTPUT:

computes cleared

Now clear the last BREAK. (You don't really have to clear the BREAK in this case
because you still intend to break on report.)

INPUT:

SQL> clear break

OUTPUT:

breaks cleared

The next step is to reenter the breaks and computes the way you want them now. You
will also have to reformat the column unit_cost to accommodate a larger number
because you are computing a sum of the unit_cost on the report. You need to allow
room for the grand total that uses the same format as the column on which it is being
figured. So you need to add another place to the left of the decimal.

INPUT:

SQL> col unit_cost hea 'UNIT|COST' for $099.99
SQL> break on report on customer skip 1
SQL> compute sum of unit_cost on customer
SQL> compute sum of unit_cost on report

Now list the last SQL statement from the buffer.

INPUT:

SQL> l

OUTPUT:

 1 select o.customer, p.product_name, p.unit_cost
 2 from orders o,
 3 products p
 4 where o.product_id = p.product_id
 5* order by customer

ANALYSIS:

Now that you have verified that this statement is the one you want, you can execute it:

INPUT:

SQL> /

OUTPUT:

 UNIT
CUSTOMER PRODUCT_NAME COST
------------------------------ ------------------------------ --------
JONES and SONS MICKEY MOUSE LAMP $029.95

 NO 2 PENCILS - 20 PACK $001.99
 COFFEE MUG $006.95
****************************** --------
sum $038.89

PARAKEET CONSULTING GROUP MICKEY MOUSE LAMP $029.95
 NO 2 PENCILS - 20 PACK $001.99
 SQL COMMAND REFERENCE $029.99
 BLACK LEATHER BRIEFCASE $099.99
 FAR SIDE CALENDAR $010.50
****************************** --------
sum $172.42

PLEWSKY MOBILE CARWASH MICKEY MOUSE LAMP $029.95
 BLACK LEATHER BRIEFCASE $099.99
 BLACK LEATHER BRIEFCASE $099.99
 NO 2 PENCILS - 20 PACK $001.99
 NO 2 PENCILS - 20 PACK $001.99
****************************** --------

 UNIT
CUSTOMER PRODUCT_NAME COST
----------------------------- ------------------------------ --------
sum $233.91

sum $445.22

13 rows selected.

ANALYSIS:

This example computed the total amount that each customer spent and also calculated
a grand total for all customers.

By now you should understand the basics of formatting columns, grouping data on the
report, and performing computations on each group.

Using Variables in SQL*Plus
Without actually getting into a procedural language, you can still define variables in
your SQL statement. You can use special options in SQL*Plus (covered in this section) to
accept input from the user to pass parameters into your SQL program.

Substitution Variables (&)

An ampersand (&) is the character that calls a value for a variable within an SQL
script. If the variable has not previously been defined, the user will be prompted to
enter a value.

INPUT:

SQL> select *
 2 from &TBL
 3 /

Enter value for tbl: products

The user entered the value "products."

OUTPUT:

old 2: from &TBL
new 2: from products

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P01 MICKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99
P06 SQL COMMAND REFERENCE 29.99
P07 BLACK LEATHER BRIEFCASE 99.99

7 rows selected.

ANALYSIS:

The value products was substituted in the place of &TBL in this "interactive query."

DEFINE

You can use DEFINE to assign values to variables within an SQL script file. If you define
your variables within the script, users are not prompted to enter a value for the
variable at runtime, as they are if you use the &. The next example issues the same
SELECT statement as the preceding example, but this time the value of TBL is defined
within the script.

INPUT:

SQL> define TBL=products
SQL> select *
 2 from &TBL;

OUTPUT:

old 2: from &TBL
new 2: from products

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P01 MICKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99
P06 SQL COMMAND REFERENCE 29.99
P07 BLACK LEATHER BRIEFCASE 99.99

7 rows selected.

ANALYSIS:

Both queries achieved the same result. The next section describes another way to prompt
users for script parameters.

ACCEPT

ACCEPT enables the user to enter a value to fill a variable at script runtime. ACCEPT
does the same thing as the & with no DEFINE but is a little more controlled. ACCEPT
also allows you to issue user-friendly prompts.

The next example starts by clearing the buffer:

INPUT:

SQL> clear buffer

OUTPUT:

buffer cleared

Then it uses an INPUT command to enter the new SQL statement into the buffer. If you
started to type your statement without issuing the INPUT command first, you would be
prompted to enter the value for newtitle first. Alternatively, you could go straight
into a new file and write your statement.

INPUT:

SQL> input
 1 accept newtitle prompt 'Enter Title for Report: '
 2 ttitle center newtitle
 3 select *
 4 from products
 5
SQL> save prod

OUTPUT:

File "prod.sql" already exists.
Use another name or "SAVE filename REPLACE".

ANALYSIS:

Whoops...the file prod.sql already exists. Let's say that you need the old prod.sql
and do not care to overwrite it. You will have to use the replace option to save the
statement in the buffer to prod.sql. Notice the use of PROMPT in the preceding
statement. PROMPT displays text to the screen that tells the user exactly what to
enter.

INPUT:

SQL> save prod replace

OUTPUT:

Wrote file prod

Now you can use the START command to execute the file.

INPUT:

SQL> start prod

Enter Title for Report: A LIST OF PRODUCTS

OUTPUT:

 A LIST OF PRODUCTS

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P01 MICKEY MOUSE LAMP 29.95
P02 NO 2 PENCILS - 20 PACK 1.99
P03 COFFEE MUG 6.95
P04 FAR SIDE CALENDAR 10.5
P05 NATURE CALENDAR 12.99
P06 SQL COMMAND REFERENCE 29.99
P07 BLACK LEATHER BRIEFCASE 99.99

7 rows selected.

ANALYSIS:

The text that you entered becomes the current title of the report.

The next example shows how you can use substitution variables anywhere in a
statement:

INPUT:

SQL> input
 1 accept prod_id prompt 'Enter PRODUCT ID to Search for: '
 2 select *
 3 from products
 4 where product_id = '&prod_id'
 5
SQL> save prod1

OUTPUT:

Created file prod1

INPUT:

SQL> start prod1

Enter PRODUCT ID to Search for: P01

OUTPUT:

old 3: where product_id = '&prod_id'
new 3: where product_id = 'P01'

 A LIST OF PRODUCTS

PRO PRODUCT_NAME UNIT_COST
--- ------------------------------ ---------
P01 MICKEY MOUSE LAMP 29.95

ANALYSIS:

You can use variables to meet many needs--for example, to name the file to which to
spool your output or to specify an expression in the ORDER BY clause. One of the ways
to use substitution variables is to enter reporting dates in the WHERE clause for
transactional quality assurance reports. If your query is designed to retrieve
information on one particular individual at a time, you may want to add a substitution
variable to be compared with the SSN column of a table.

NEW_VALUE

The NEW_VALUE command passes the value of a selected column into an undefined
variable of your choice. The syntax is as follows:

SYNTAX:

COL[UMN] column_name NEW_VALUE new_name

You call the values of variables by using the & character; for example:

&new_name

The COLUMN command must be used with NEW_VALUE.

Notice how the & and COLUMN command are used together in the next SQL*Plus file. The
GET command gets the file.

INPUT:

SQL> get prod1

OUTPUT:

line 5 truncated.
 1 ttitle left 'Report for Product: &prod_title' skip 2
 2 col product_name new_value prod_title
 3 select product_name, unit_cost
 4 from products
 5* where product_name = 'COFFEE MUG'

INPUT:

SQL> @prod1

OUTPUT:

Report for Product: COFFEE MUG

PRODUCT_NAME UNIT_COST
------------------------------ ----------
COFFEE MUG 6.95

ANALYSIS:

The value for the column PRODUCT_NAME was passed into the variable prod_title by
means of new_value. The value of the variable prod_title was then called in the
TTITLE.

For more information on variables in SQL, see Day 18, "PL/SQL: An Introduction," and
Day 19.

The DUAL Table
The DUAL table is a dummy table that exists in every Oracle database. This table is
composed of one column called DUMMY whose only row of data is the value X. The DUAL
table is available to all database users and can be used for general purposes, such as
performing arithmetic (where it can serve as a calculator) or manipulating the format
of the SYSDATE.

INPUT:

SQL> desc dual;

OUTPUT:

 Name Null? Type
 ------------------------------- -------- ----
 DUMMY VARCHAR2(1)

INPUT:

SQL> select *
 2 from dual;

OUTPUT:

D
-
X

Take a look at a couple of examples using the DUAL table:

INPUT:

SQL> select sysdate
 2 from dual;

OUTPUT:

SYSDATE

08-MAY-97

INPUT:

SQL> select 2 * 2

 2 from dual;

OUTPUT:

 2*2

 4

Pretty simple. The first statement selected SYSDATE from the DUAL table and got
today's date. The second example shows how to multiply in the DUAL table. Our answer
for 2 * 2 is 4.

The DECODE Function
The DECODE function is one of the most powerful commands in SQL*Plus--and perhaps
the most powerful. The standard language of SQL lacks procedural functions that are
contained in languages such as COBOL and C.

The DECODE statement is similar to an IF...THEN statement in a procedural
programming language. Where flexibility is required for complex reporting needs,
DECODE is often able to fill the gap between SQL and the functions of a procedural
language.

SYNTAX:

DECODE(column1, value1, output1, value2, output2, output3)

The syntax example performs the DECODE function on column1. If column1 has a value
of value1, then display output1 instead of the column's current value. If column1 has
a value of value2, then display output2 instead of the column's current value. If
column1 has a value of anything other than value1 or value2, then display output3
instead of the column's current value.

How about some examples? First, perform a simple select on a new table:

INPUT:

SQL> select * from states;

OUTPUT:

ST
--
IN
FL

KY
IL
OH
CA
NY

7 rows selected.

Now use the DECODE command:

INPUT:

SQL> select decode(state,'IN','INDIANA','OTHER') state
 2 from states;

OUTPUT:

STATE

INDIANA
OTHER
OTHER
OTHER
OTHER
OTHER
OTHER

7 rows selected.

ANALYSIS:

Only one row met the condition where the value of state was IN, so only that one row
was displayed as INDIANA. The other states took the default and therefore were
displayed as OTHER.

The next example provides output strings for each value in the table. Just in case your
table has states that are not in your DECODE list, you should still enter a default
value of 'OTHER'.

INPUT:

SQL> select decode(state,'IN','INDIANA',
 2 'FL','FLORIDA',
 3 'KY','KENTUCKY',
 4 'IL','ILLINOIS',
 5 'OH','OHIO',
 6 'CA','CALIFORNIA',
 7 'NY','NEW YORK','OTHER')
 8 from states;

OUTPUT:

DECODE(STATE)

INDIANA
FLORIDA
KENTUCKY
ILLINOIS
OHIO
CALIFORNIA
NEW YORK

7 rows selected.

That was too easy. The next example introduces the PAY table. This table shows more of
the power that is contained within DECODE.

INPUT:

SQL> col hour_rate hea "HOURLY|RATE" for 99.00
SQL> col date_last_raise hea "LAST|RAISE"
SQL> select name, hour_rate, date_last_raise
 2 from pay;

OUTPUT:

 HOURLY LAST
NAME RATE RAISE
-------------------- ------ --------
JOHN 12.60 01-JAN-96
JEFF 8.50 17-MAR-97
RON 9.35 01-OCT-96
RYAN 7.00 15-MAY-96
BRYAN 11.00 01-JUN-96
MARY 17.50 01-JAN-96
ELAINE 14.20 01-FEB-97

7 rows selected.

Are you ready? It is time to give every individual in the PAY table a pay raise. If the year
of an individual's last raise is 1996, calculate a 10 percent raise. If the year of the
individual's last raise is 1997, calculate a 20 percent raise. In addition, display the
percent raise for each individual in either situation.

INPUT:

SQL> col new_pay hea 'NEW PAY' for 99.00
SQL> col hour_rate hea 'HOURLY|RATE' for 99.00
SQL> col date_last_raise hea 'LAST|RAISE'
SQL> select name, hour_rate, date_last_raise,

 2 decode(substr(date_last_raise,8,2),'96',hour_rate * 1.2,
 3 '97',hour_rate * 1.1)
new_pay,
 4 decode(substr(date_last_raise,8,2),'96','20%',
 5 '97','10%',null)
increase
 6 from pay;

OUTPUT:

 HOURLY LAST
NAME RATE RAISE NEW PAY INC
-------------------- ------ --------- ------- ---
JOHN 12.60 01-JAN-96 15.12 20%
JEFF 8.50 17-MAR-97 9.35 10%
RON 9.35 01-OCT-96 11.22 20%
RYAN 7.00 15-MAY-96 8.40 20%
BRYAN 11.00 01-JUN-96 13.20 20%
MARY 17.50 01-JAN-96 21.00 20%
ELAINE 14.20 01-FEB-97 15.62 10%

7 rows selected.

ANALYSIS:

According to the output, everyone will be receiving a 20 percent pay increase except
Jeff and Elaine, who have already received one raise this year.

DATE Conversions
If you want to add a touch of class to the way dates are displayed, then you can use the
TO_CHAR function to change the "date picture." This example starts by obtaining today's
date:

INPUT:

SQL> select sysdate
 2 from dual;

OUTPUT:

SYSDATE

08-MAY-97

When converting a date to a character string, you use the TO_CHAR function with the
following syntax:

SYNTAX:

TO_CHAR(sysdate,'date picture')

date picture is how you want the date to look. Some of the most common parts of the
date picture are as follows: Month The current month spelled out.

Mon The current month abbreviated.

Day The current day of the week.

mm The number of the current month.

yy The last two numbers of the current year.

dd The current day of the month.

yyyy The current year.

ddd The current day of the year since January 1.

hh The current hour of the day.

mi The current minute of the hour.

ss The current seconds of the minute.

a.m. Displays a.m. or p.m.

The date picture may also contain commas and literal strings as long as the string is
enclosed by double quotation marks "".

INPUT:

SQL> col today for a20
SQL> select to_char(sysdate,'Mon dd, yyyy') today
 2 from dual;

OUTPUT:

TODAY

May 08, 1997

ANALYSIS:

Notice how we used the COLUMN command on the alias today.

INPUT:

SQL> col today hea 'TODAYs JULIAN DATE' for a20
SQL> select to_char(sysdate,'ddd') today

 2 from dual;

OUTPUT:

TODAYs JULIAN DATE

128

ANALYSIS:

Some companies prefer to express the Julian date with the two-digit year preceding the
three-digit day. Your date picture could also look like this: 'yyddd'.

Assume that you wrote a little script and saved it as day. The next example gets the
file, looks at it, and executes it to retrieve various pieces of converted date
information.

INPUT:

SQL> get day

OUTPUT:

line 10 truncated.
 1 set echo on
 2 col day for a10
 3 col today for a25
 4 col year for a25
 5 col time for a15
 6 select to_char(sysdate,'Day') day,
 7 to_char(sysdate,'Mon dd, yyyy') today,
 8 to_char(sysdate,'Year') year,
 9 to_char(sysdate,'hh:mi:ss a.m.') time
 10* from dual

Now you can run the script:

INPUT:

SQL> @day

OUTPUT:

SQL> set echo on
SQL> col day for a10
SQL> col today for a25
SQL> col year for a25
SQL> col time for a15

SQL> select to_char(sysdate,'Day') day,
 2 to_char(sysdate,'Mon dd, yyyy') today,
 3 to_char(sysdate,'Year') year,
 4 to_char(sysdate,'hh:mi:ss a.m.') time
 5 from dual;

DAY TODAY YEAR TIME
---------- ------------------------ ----------------------- -----------
-
Thursday May 08, 1997 Nineteen Ninety-Seven 04:10:43
p.m.

ANALYSIS:

In this example the entire statement was shown before it ran because ECHO was set to
ON. In addition, sysdate was broken into four columns and the date was converted into
four formats.

The TO_DATE function enables you to convert text into a date format. The syntax is
basically the same as TO_CHAR.

SYNTAX:

TO_DATE(expression,'date_picture')

Try a couple of examples:

INPUT:

SQL> select to_date('19970501','yyyymmdd') "NEW DATE"
 2 from dual;

OUTPUT:

NEW DATE

01-MAY-97

INPUT:

SQL> select to_date('05/01/97','mm"/"dd"/"yy') "NEW DATE"
 2 from dual;

OUTPUT:

NEW DATE

01-MAY-97

ANALYSIS:

Notice the use of double quotation marks to represent a literal string.

Running a Series of SQL Files
An SQL script file can include anything that you can type into the SQL buffer at the
SQL> prompt, even commands that execute another SQL script. Yes, you can start an SQL
script from within another SQL script. Figure 20.4 shows a script file that was created
using the EDIT command. The file contains multiple SQL statements as well as commands
to run other SQL scripts.

INPUT:

SQL> edit main.sql

OUTPUT:

SQL> @main

ANALYSIS:

By starting main.sql, you will be executing each SQL command that is contained
within the script. Query1 through query5 will also be executed, in that order, as
shown in Figure 20.4.

Figure 20.4.
Running SQL scripts from within an SQL script.

Adding Comments to Your SQL Script
SQL*Plus gives you three ways to place comments in your file:

● -- places a comment on one line at a time.

● REMARK also places a comment on one line at a time.

● /* */ places a comment(s) on one or more lines.

Study the following example:

INPUT:

SQL> input
 1 REMARK this is a comment
 2 -- this is a comment too
 3 REM
 4 -- SET COMMANDS
 5 set echo on
 6 set feedback on
 7 -- SQL STATEMENT
 8 select *
 9 from products
 10
SQL>

To see how comments look in an SQL script file, type the following:

SQL> edit query10

Advanced Reports
Now let's have some fun. By taking the concepts that you have learned today, as well
as what you learned earlier, you can now create some fancy reports. Suppose that you
have a script named report1.sql. Start it, sit back, and observe.

INPUT:

SQL> @report1

OUTPUT:

SQL> set echo on
SQL> set pagesize 50
SQL> set feedback off
SQL> set newpage 0
SQL> col product_name hea 'PRODUCT|NAME' for a20 trunc
SQL> col unit_cost hea 'UNIT|COST' for $99.99
SQL> col product_qty hea 'QTY' for 999
SQL> col total for $99,999.99
SQL> spool report
SQL> compute sum of total on customer
SQL> compute sum of total on report
SQL> break on report on customer skip 1
SQL> select o.customer, p.product_name, p.unit_cost,
 2 o.product_qty, (p.unit_cost * o.product_qty) total
 3 from orders o,
 4 products p
 5 where o.product_id = p.product_id
 6 order by customer
 7 /

CUSTOMER PRODUCT UNIT QTY TOTAL
 NAME COST
--------------------------- --------------------- ------ ----- --------
--
JONES and SONS MICKEY MOUSE LAMP $29.95 50
$1,497.50
 NO 2 PENCILS - 20 PA $1.99 10
$19.90
 COFFEE MUG $6.95 10
$69.50
****************************** --------
--
sum
$1,586.90

PARAKEET CONSULTING GROUP MICKEY MOUSE LAMP $29.95 5
$149.75
 NO 2 PENCILS - 20 PA $1.99 15
$29.85
 SQL COMMAND REFERENC $29.99 10
$299.90
 BLACK LEATHER BRIEFC $99.99 1
$99.99
 FAR SIDE CALENDAR $10.50 22
$231.00
****************************** --------
--
sum
$810.49

PLEWSKY MOBILE CARWASH MICKEY MOUSE LAMP $29.95 1
$29.95
 BLACK LEATHER BRIEFC $99.99 5
$499.95
 BLACK LEATHER BRIEFC $99.99 1
$99.99
 NO 2 PENCILS - 20 PA $1.99 10
$19.90
 NO 2 PENCILS - 20 PA $1.99 10
$19.90
****************************** --------
--
sum
$669.69

--
sum
$3,067.08
SQL> Input truncated to 9 characters
spool off

ANALYSIS:

Several things are taking place in this script. If you look at the actual SQL statement,
you can see that it is selecting a data from two tables and performing an arithmetic
function as well. The statement joins the two tables in the WHERE clause and is ordered
by the customer's name. Those are the basics. In addition, SQL*Plus commands format the
data the way we want to see it. These commands break the report into groups, making
computations on each group and making a computation on the report as a whole.

Summary
Day 20 explains Oracle's extension to the standard language of SQL. These commands
are only a fraction of what is available to you in SQL*Plus. If you use Oracle's
products, check your database documentation, take the knowledge that you have
learned here, and explore the endless possibilities that lie before you. You will find
that you can accomplish almost any reporting task using SQL*Plus rather than by
resorting to a procedural programming language. If you are not using Oracle products,
use what you have learned today to improve the ways you retrieve data in your
implementation. Most major implementations have extensions, or enhancements, to the
accepted standard language of SQL.

Q&A
Q Why should I spend valuable time learning SQL*Plus when I can achieve
the same results using straight SQL?

A If your requirements for reports are simple, straight SQL is fine. But you can
reduce the time you spend on reports by using SQL*Plus. And you can be sure that
the person who needs your reports will always want more information.

Q How can I select SYSDATE from the DUAL table if it is not a column?

A You can select SYSDATE from DUAL or any other valid table because SYSDATE is
a pseudocolumn.

Q When using the DECODE command, can I use a DECODE within another
DECODE?

A Yes, you can DECODE within a DECODE. In SQL you can perform functions on
other functions to achieve the desired results.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the

material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. Which commands can modify your preferences for an SQL session?

2. Can your SQL script prompt a user for a parameter and execute the SQL
statement using the entered parameter?

3. If you are creating a summarized report on entries in a CUSTOMER table, how
would you group your data for your report?

4. Are there limitations to what you can have in your LOGIN.SQL file?

5. True or False: The DECODE function is the equivalent of a loop in a procedural
programming language.

6. True or False: If you spool the output of your query to an existing file, your
output will be appended to that file.

Exercises

1. Using the PRODUCTS table at the beginning of Day 20, write a query that will
select all data and compute a count of the records returned on the report
without using the SET FEEDBACK ON command.

2. Suppose today is Monday, May 12, 1998. Write a query that will produce the
following output:

Today is Monday, May 12 1998

3. Use the following SQL statement for this Exercise:

 1 select *
 2 from orders
 3 where customer_id = '001'
 4* order by customer_id;

Without retyping the statement in the SQL buffer, change the table in the FROM
clause to the CUSTOMER table.

Now append DESC to the ORDER BY clause.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Day 21 -

Common SQL Mistakes/Errors and
Resolutions

Objectives
Welcome to Day 21. By the end of today, you will have become familiar with the
following:

● Several typical errors and their resolutions

● Common logical shortcomings of SQL users

● Ways to prevent daily setbacks caused by errors

Introduction
Today you will see various common errors that everyone--from novice to pro--makes
when using SQL. You will never be able to avoid all errors and/or mistakes, but being
familiar with a wide range of errors will help you resolve them in as short a time as
possible.

NOTE: We used Personal Oracle7 for our examples. Your particular

implementation will be very similar in the type of error, but could differ in
the numbering or naming of the error. We ran our SQL statements using
SQL*PLUS and set ECHO and FEEDBACK to on to see the statement.

Keep in mind that some mistakes will actually yield error messages, whereas others may
just be inadequacies in logic that will inevitably cause more significant errors or
problems down the road. With a strict sense of attention to detail, you can avoid most
problems, although you will always find yourself stumbling upon errors.

Common Errors
This section describes many common errors that you will receive while executing all
types of SQL statements. Most are simple and make you want to kick yourself on the
hind side, whereas other seemingly obvious errors are misleading.

Table or View Does Not Exist

When you receive an error stating that the table you are trying to access does not
exist, it seems obvious; for example:

INPUT:

SQL> @tables.sql

OUTPUT:

SQL> spool tables.lst
SQL> set echo on
SQL> set feedback on
SQL> set pagesize 1000
SQL> select owner|| '.' || table_name
 2 from sys.dba_table
 3 where owner = 'SYSTEM'
 4 order by table_name
 5 /
 from sys.dba_table
 *
ERROR at line 2:
ORA-00942: table or view does not exist
 SQL> spool off
 SQL>

ANALYSIS:

Notice the asterisk below the word table. The correct table name is sys.dba_tables.

An s was omitted from the table name.

But what if you know the table exists and you still receive this error? Sometimes when
you receive this error, the table does in fact exist, but there may be a security problem--
that is, the table exists, but you do not have access to it. This error can also be the
database server's way of saying nicely, "You don't have permission to access this table!"

TIP: Before you allow panic to set in, immediately verify whether or not
the table exists using a DBA account, if available, or the schema account.
You will often find that the table does exist and that the user lacks the
appropriate privileges to access it.

Invalid Username or Password

INPUT:

 SQL*Plus: Release 3.2.3.0.0 - on Sat May 10 11:15:35 1997
Copyright (c) Oracle Corporation 1979, 1994. All rights reserved.
Enter user-name: rplew
Enter password:

OUTPUT:

ERROR: ORA-01017: invalid username/password; logon denied
Enter user-name:

This error was caused either by entering the incorrect username or the incorrect
password. Try again. If unsuccessful, have your password reset. If you are sure that you
typed in the correct username and password, then make sure that you are attempting to
connect to the correct database if you have access to more than one database.

FROM Keyword Not Specified

INPUT:

SQL> @tblspc.sql

OUTPUT:

SQL> spool tblspc.lst
SQL> set echo on
SQL> set feedback on
SQL> set pagesize 1000
SQL> select substr(tablespace_name,1,15) a,

 2 substrfile_name, 1,45) c, bytes
 3 from sys.dba_data_files
 4 order by tablespace_name;
 substrfile_name, 1,45) c, bytes
 *
ERROR at line 2:
ORA-00923: FROM keyword not found where expected
SQL> spool off
SQL>

ANALYSIS:

This error can be misleading. The keyword FROM is there, but you are missing a left
parenthesis between substr and file_name on line 2. This error can also be caused by
a missing comma between column names in the SELECT statement. If a column in the
SELECT statement is not followed by a comma, the query processor automatically looks
for the FROM keyword. The previous statement has been corrected as follows:

SQL> select substr(tablespace_name,1,15) a,
 2 substr(file_name,1,45) c, bytes
 3 from sys.dba_data_files
 4 order by tablespace_name;

Group Function Is Not Allowed Here

INPUT:

SQL> select count(last_name), first_name, phone_number
 2 from employee_tbl
 3 group by count(last_name), first_name, phone_number
 4 /

OUTPUT:

 group by count(last_name), first_name, phone_number
 *
ERROR at line 3:
ORA-00934: group function is not allowed here
SQL>

ANALYSIS:

As with any group function, COUNT may not be used in the GROUP BY clause. You can
list only column and nongroup functions, such as SUBSTR, in the GROUP BY clause.

TIP: COUNT is a function that is being performed on groups in the query.

The previous statement has been corrected using the proper syntax:

SQL> select count(last_name), first_name, phone_number
 2 from employee_tbl
 3 group by last_name, first_name, phone_number;

Invalid Column Name

INPUT:

SQL> @tables.sql

OUTPUT:

SQL> spool tables.lst
SQL> set echo on
SQL> set feedback on
SQL> set pagesize 1000
SQL> select owner|| '.' || tablename
 2 from sys.dba_tables
 3 where owner = 'SYSTEM'
 4 order by table_name
 5 /
 select owner|| '.' || tablename
 *
ERROR at line 1:
ORA-00904: invalid column name
SQL> spool off
SQL>

ANALYSIS:

In line 1 the column tablename is incorrect. The correct column name is table_name.
The underscore was omitted. To see the correct columns, use the DESCRIBE command.
This error can also occur when trying to qualify a column in the SELECT statement by
the wrong table name.

Missing Keyword

INPUT:

SQL> create view emp_view
 2 select * from employee_tbl
 3 /

OUTPUT:

 select * from employee_tbl
 *
ERROR at line 2:
ORA-00905: missing keyword
SQL>

ANALYSIS:

Here the syntax is incorrect. This error occurs when you omit a mandatory word with
any given command syntax. If you are using an optional part of the command, that
option may require a certain keyword. The missing keyword in this example is as. The
statement should look like this:

SQL> create view emp_view as
 2 select * from employee_tbl
 3 /

Missing Left Parenthesis

INPUT:

SQL> @insert.sql

OUTPUT:

SQL> insert into people_tbl values
 2 '303785523', 'SMITH', 'JOHN', 'JAY', 'MALE', '10-JAN-50')
 3 /
 '303785523', 'SMITH', 'JOHN', 'JAY', 'MALE', '10-JAN-50')
 *
 ERROR at line 2:
 ORA-00906: missing left parenthesis
SQL>

ANALYSIS:

On line 2 a parenthesis does not appear before the Social Security number. The correct
syntax should look like this:

SQL> insert into people_tbl values
 2 ('303785523', 'SMITH', 'JOHN', 'JAY', 'MALE', '10-JAN-50')
 3 /

Missing Right Parenthesis

INPUT:

SQL> @tblspc.sql

OUTPUT:

SQL> spool tblspc.lst
SQL> set echo on
SQL> set feedback on
SQL> set pagesize 1000
SQL> select substr(tablespace_name,1,15 a,
 2 substr(file_name, 1,45) c, bytes
 3 from sys.dba_data_files
 4 order by tablespace_name;
 select substr(tablespace_name,1,15 a,
 *
ERROR at line 1:
ORA-00907: missing right parenthesis
SQL> spool off
SQL>

ANALYSIS:

On line 1 the right parenthesis is missing from the substr. The correct syntax looks like
this:

 SQL> select substr(tablespace_name,1,15) a,
 2 substr(file_name,1,45) c, bytes
 3 from sys.dba_data_files
 4 order by tablespace_name;

Missing Comma

INPUT:

SQL> @ezinsert.sql

OUTPUT:

SQL> spool ezinsert.lst
SQL> set echo on
SQL> set feedback on
SQL> insert into office_tbl values
 2 ('303785523' 'SMITH', 'OFFICE OF THE STATE OF INDIANA, ADJUTANT
GENERAL')
 3 /
 ('303785523' 'SMITH', 'OFFICE OF THE STATE OF INDIANA, ADJUTANT
GENERAL')
 *
ERROR at line 2:
ORA-00917: missing comma
SQL> spool off

SQL>

ANALYSIS:

On line 2 a comma is missing between the Social Security number and SMITH.

Column Ambiguously Defined

INPUT:

SQL> @employee_tbl

OUTPUT:

SQL> spool employee.lst
SQL> set echo on
SQL> set feedback on
SQL> select p.ssn, name, e.address, e.phone
 2 from employee_tbl e,
 3 payroll_tbl p
 4 where e.ssn =p.ssn;
 select p.ssn, name, e.address, e.phone
 *
ERROR at line 1:
ORA-00918: column ambigously defined
SQL> spool off
SQL>

ANALYSIS:

On line 1 the column name has not been defined. The tables have been given aliases of e
and p. Decide which table to pull the name from and define it with the table alias.

SQL Command Not Properly Ended

INPUT:

SQL> create view emp_tbl as
 2 select * from employee_tbl
 3 order by name
 4 /

OUTPUT:

 order by name
 *
ERROR at line 3:
ORA-00933: SQL command not properly ended

SQL>

ANALYSIS:

Why is the command not properly ended? You know you can use a / to end an SQL
statement. Another fooler. An ORDER BY clause cannot be used in a CREATE VIEW
statement. Use a GROUP BY instead. Here the query processor is looking for a
terminator (semicolon or forward slash) before the ORDER BY clause because the
processor assumes the ORDER BY is not part of the CREATE VIEW statement. Because the
terminator is not found before the ORDER BY, this error is returned instead of an error
pointing to the ORDER BY.

Missing Expression

INPUT:

SQL> @tables.sql

OUTPUT:

SQL> spool tables.lst
SQL> set echo on
SQL> set feedback on
SQL> set pagesize 1000
SQL> select owner|| '.' || table,
 2 from sys.dba_tables
 3 where owner = 'SYSTEM'
 4 order by table_name
 5 /
 from sys.dba_tables
 *
ERROR at line 2:
ORA-00936: missing expression
SQL> spool off
SQL>

ANALYSIS:

Notice the comma after table on the first line; therefore, the query processor is
looking for another column in the SELECT clause. At this point, the processor is not
expecting the FROM clause.

Not Enough Arguments for Function

INPUT:

SQL> @tblspc.sql

OUTPUT:

SQL> spool tblspc.lst
SQL> set echo on
SQL> set feedback on
SQL> set pagesize 1000
SQL> select substr(tablespace_name,1,15) a,
 2 decode(substr(file_name,1,45)) c, bytes
 3 from sys.dba_data_files
 4 order by tablespace_name;
 decode(substr(file_name,1,45)) c, bytes
 *
ERROR at line 2:
ORA-00938: not enough arguments for function
SQL> spool off
SQL>

ANALYSIS:

There are not enough arguments for the DECODE function. Check your implementation
for the proper syntax.

Not Enough Values

INPUT:

SQL> @ezinsert.sql

OUTPUT:

SQL> spool ezinsert.lst
SQL> set echo on
SQL> set feedback on
SQL> insert into employee_tbl values
 2 ('303785523', 'SMITH', 'JOHN', 'JAY', 'MALE')
 3 /
 insert into employee_tbl values
 *
ERROR at line 1:
ORA-00947: not enough values
SQL> spool off
SQL>

ANALYSIS:

A column value is missing. Perform a DESCRIBE command on the table to find the missing
column. You can insert the specified data only if you list the columns that are to be
inserted into, as shown in the next example:

INPUT:

SQL> spool ezinsert.lst
SQL> set echo on
SQL> set feedback on
SQL> insert into employee_tbl (ssn, last_name, first_name, mid_name,
sex)
 2 values ('303785523', 'SMITH', 'JOHN', 'JAY', 'MALE')
 3 /

Integrity Constraint Violated--Parent Key Not Found

INPUT:

SQL> insert into payroll_tbl values
 2 ('111111111', 'SMITH', 'JOHN')
 3 /

OUTPUT:

 insert into payroll_tbl values
 *
ERROR at line 1:
ORA-02291: integrity constraint (employee_cons) violated - parent
key not found
SQL>

ANALYSIS:

This error was caused by attempting to insert data into a table without the data
existing in the parent table. Check the parent table for correct data. If missing, then
you must insert the data into the parent table before attempting to insert data into the
child table.

Oracle Not Available

INPUT:

(sun_su3)/home> sqlplus
SQL*Plus: Release 3.2.3.0.0 - Production on Sat May 10 11:19:50 1997
Copyright (c) Oracle Corporation 1979, 1994. All rights reserved.
Enter user-name: rplew
Enter password:

OUTPUT:

ERROR: ORA-01034: ORACLE not available

ORA-07318: smsget: open error when opening sgadef.dbf file.

ANALYSIS:

You were trying to sign on to SQL*PLUS. The database is probably down. Check status
of the database. Also, make sure that you are trying to connect to the correct database
if you have access to multiple databases.

Inserted Value Too Large for Column

INPUT:

SQL> @ezinsert.sql

OUTPUT:

SQL> spool ezinsert.lst
SQL> set echo on
SQL> set feedback on
SQL> insert into office_tbl values
 2 ('303785523', 'SMITH', 'OFFICE OF THE STATE OF INDIANA, ADJUTANT
GENERAL')
 3 /
 insert into office_tbl values
 *
ERROR at line 1:
ORA-01401: inserted value too large for column
SQL> spool off
SQL>

ANALYSIS:

One of the values being inserted is too large for the column. Use the DESCRIBE
command on the table for the correct data length. If necessary, you can perform an
ALTER TABLE command on the table to expand the column width.

TNS:listener Could Not Resolve SID Given in Connect Descriptor

INPUT:

SQLDBA> connect rplew/xxxx@database1

OUTPUT:

ORA-12505: TNS:listener could not resolve SID given in connect
descriptor
SQLDBA> disconnect

Disconnected.
SQLDBA>

ANALYSIS:

This error is very common in Oracle databases. The listener referred to in the preceding
error is the process that allows requests from a client to communicate with the
database on a remote server. Here you were attempting to connect to the database.
Either the incorrect database name was typed in or the listener is down. Check the
database name and try again. If unsuccessful, notify the database administrator of the
problem.

Insufficient Privileges During Grants

INPUT:

SQL> grant select on people_tbl to ron;

OUTPUT:

grant select on people_tbl to ron
 *
ERROR at line 1:
ORA-01749: you may not GRANT/REVOKE privileges to/from yourself
SQL>

INPUT:

SQL> grant select on demo.employee to ron;

OUTPUT:

grant select on demo.employee to ron
 *
ERROR at line 1:
ORA-01031: insufficient privileges
SQL>

This error occurs if you are trying to grant privileges on another user's table and you
do not have the proper privilege to do so. You must own the table to be able to grant
privileges on the table to other users. In Oracle you may be granted a privilege with the
Admin option, which means that you can grant the specified privilege on another user's
table to another user. Check your implementation for the particular privileges you
need to grant a privilege.

Escape Character in Your Statement--Invalid Character

Escape characters are very frustrating when trying to debug a broken SQL statement.
This situation can occur if you use the backspace key while you are entering your SQL
statement in the buffer or a file. Sometimes the backspace key puts an invalid character
in the statement depending upon how your keys are mapped, even though you might not
be able see the character.

Cannot Create Operating System File

This error has a number of causes. The most common causes are that the associated disk is
full or incorrect permissions have been set on the file system. If the disk is full, you
must remove unwanted files. If permissions are incorrect, change them to the correct
settings. This error is more of an operating system error, so you may need to get advice
from your system administrator.

Common Logical Mistakes
So far today we have covered faults in SQL statements that generate actual error
messages. Most of these errors are obvious, and their resolutions leave little to the
imagination. The next few mistakes are more (or less) logical, and they may cause
problems later--if not immediately.

Using Reserved Words in Your SQL statement

INPUT:

SQL> select sysdate DATE
 2 from dual;

OUTPUT:

select sysdate DATE
 *
ERROR at line 1:
ORA-00923: FROM keyword not found where expected

ANALYSIS:

In this example the query processor is not expecting the word DATE because it is a
reserved word. There is no comma after the pseudocolumn SYSDATE; therefore, the next
element expected is the FROM clause.

INPUT:

SQL> select sysdate "DATE"

 2 from dual;

OUTPUT:

DATE

15-MAY-97

ANALYSIS:

Notice how the reserved word problem is alleviated by enclosing the word DATE with
double quotation marks. Double quotation marks allow you to display the literal
string DATE as a column alias.

NOTE: Be sure to check your specific database documentation to get a list
of reserved words, as these reserved words will vary between different
implementations.

You may or may not have to use double quotation marks when naming a column alias. In
the following example you do not have to use double quotation marks because TODAY is
not a reserved word. To be sure, check your specific implementation.

INPUT:

SQL> select sysdate TODAY
 2 from dual;

OUTPUT:

TODAY

15-MAY-97
SQL>

The Use of DISTINCT When Selecting Multiple Columns

INPUT:

SQL> select distinct(city), distinct(zip)
 2 from address_tbl;

OUTPUT:

select distinct(city), distinct(zip)
 *

ERROR at line 1:
ORA-00936: missing expression
SQL>

ANALYSIS:

A city can have more than one ZIP code. As a rule, you should use the DISTINCT
command on only one selected column.

Dropping an Unqualified Table

Whenever dropping a table, always use the owner or schema. You can have duplicate
table names in the database. If you don't use the owner/schema name, then the wrong
table could be dropped.

The risky syntax for dropping a table:

SYNTAX:

SQL> drop table people_tbl;

The next statement is much safer because it specifies the owner of the table you want to
drop.

SYNTAX:

SQL> drop table ron.people_tbl;

WARNING: Qualifying the table when dropping it is always a safe practice,
although sometimes this step may be unnecessary. Never issue the DROP
TABLE command without first verifying the user id by which you are
connected to the database.

The Use of Public Synonyms in a Multischema Database

Synonyms make life easier for users; however, public synonyms open tables that you
might not want all users to see. Use caution when granting public synonyms especially
in a multischema environment.

The Dreaded Cartesian Product

INPUT:

SQL> select a.ssn, p.last_n
 2 from address_tbl a,
 3 people_tbl p;

OUTPUT:

SSN LAST_NAME
--------- ---------------
303785523 SMITH
313507927 SMITH
490552223 SMITH
312667771 SMITH
420001690 SMITH
303785523 JONES
313507927 JONES
490552223 JONES
312667771 JONES
420001690 JONES
303785523 OSBORN
313507927 OSBORN
490552223 OSBORN
312667771 OSBORN
420001690 OSBORN
303785523 JONES
313507927 JONES
490552223 JONES
312667771 JONES
420001690 JONES

16 rows selected.

This error is caused when you do not join the tables in the WHERE clause. Notice how
many rows were selected. Both of the preceding tables have 4 rows; therefore, we
wanted 4 rows returned instead of the 16 rows that we received. Without the use of a
join in the WHERE clause, each row in the first table is matched up with each row in the
second. To calculate the total number of rows returned, you would multiple 4 rows by
4 rows, which yields 16. Unfortunately, most of your tables will contain more than 4
rows of data, with some possibly exceeding thousands or millions of rows. In these cases
don't bother doing the multiplication, for your query is sure to become a run-away
query.

Failure to Enforce Input Standards

Assuring that input standards are adhered to is commonly known as quality assurance
(QA). Without frequent checks on the data entered by data entry clerks, you run a very
high risk of hosting trash in your database. A good way to keep a handle on quality
assurance is to create several QA reports using SQL, run then on a timely basis, and
present their output to the data entry manager for appropriate action to correct errors
or data inconsistencies.

Failure to Enforce File System Structure Conventions

You can waste a lot of time when you work with file systems that are not standardized.
Check your implementation for recommended file system structures.

Allowing Large Tables to Take Default Storage Parameters

Default storage parameters will vary with implementations, but they are usually
rather small. When a large or dynamic table is created and forced to take the default
storage, serious table fragmentation can occur, which can severely hinder database
performance. Good planning before table creation will help to avoid this. The
following example uses Oracle's storage parameter options.

INPUT:

SQL> create table test_tbl
 2 (ssn number(9) not null,
 3 name varchar2(30) not null)
 4 storage
 5 (initial extent 100M
 6 next extent 20M
 7 minextents 1
 8 maxextents 121
 9 pctincrease 0};

Placing Objects in the System Tablespace

The following statement shows a table being created in the SYSTEM tablespace.
Although this statement will not return an error, it is likely to cause future problems.

INPUT:

SQL> create table test_tbl
 2 (ssn number(9) not null,
 3 name varchar2(30) not null)
 4 tablespace SYSTEM
 5 storage
 6 (initial extent 100M
 7 next extent 20M
 8 minextents 1
 9 maxextents 121
 10 pctincrease 0};

The next example corrects this so-called problem:

INPUT:

SQL> create table test_tbl
 2 (ssn number(9) not null,
 3 name varchar2(30) not null)
 4 tablespace linda_ts
 5 (initial extent 100M
 6 next extent 20M
 7 minextents 1
 8 maxextents 121
 9 pctincrease 0};

ANALYSIS:

In Oracle, the SYSTEM tablespace is typically used to store SYSTEM owned objects, such
as those composing the data dictionary. If you happen to place dynamic tables in this
tablespace and they grow, you run the risk of corrupting or at least filling up the free
space, which in turn will probably cause the database to crash. In this event the
database may be forced into an unrecoverable state. Always store application and user
tables in separately designated tablespaces.

Failure to Compress Large Backup Files

If you do large exports and do not compress the files, you will probably run out of disk
space to store the files. Always compress the export files. If you are storing archived log
files on hard disk instead of on tape, these files can be and probably should be
compressed to save space.

Failure to Budget System Resources

You should always budget your system resources before you create your database. The
result of not budgeting system resources could be a poorly performing database. You
should always know whether the database is going to be used for transactions,
warehousing, or queries only. The database's function will affect the number and size
of rollback segments. The number of database users will inevitably affect the sizing of
the USERS and TEMP tablespaces. Do you have enough space to stripe your larger
tables? Tables and indexes should be stored on separate devices to reduce disk
contention. You should keep the redo logs and the data tablespaces on separate devices
to alleviate disk contention. These are just a few of the issues to address when
considering system resources.

Preventing Problems with Your Data
Your data processing center should have a backup system set up. If your database is
small to medium, you can take the extra precaution of using EXPORT to ensure that
your data is backed up. You should make a backup of the export file and keep it in

another location for further safety. Remember that these files can be large and will
require a great deal of space.

Searching for Duplicate Records in Your Database

If your database is perfectly planned, you should not have a problem with duplicate
records. You can avoid duplicate records by using constraints, foreign keys, and unique
indexes.

Summary
Many different types of errors--literally hundreds--can stand in the way of you and
your data. Luckily, most errors/mistakes are not disasters and are easy to remedy.
However, some errors/mistakes that happen are very serious. You need to be careful
whenever you try to correct an error/mistake, as the error can multiply if you do not
dig out the root of the problem. When you do make mistakes, as you definitely will, use
them as learning experiences.

TIP: We prefer to document everything related to database errors,
especially uncommon errors that we happen to stumble upon. A file of
errors is an invaluable Troubleshooting reference.

NOTE: Day 21 provides you with a sample of some of the most common
Personal Oracle7 errors. For a complete list of errors and suggested
resolutions, remember to refer to your database documentation.

Q&A
Q You make it sound as if every error has a remedy, so why worry?

A Yes, most errors/mistakes are easy to remedy; but suppose you drop a table in a
production environment. You might need hours or days to do a database recovery.
The database will be done during this time, and your company will be paying
overtime to several people to complete the fix. The boss will not be happy.

Q Any advice on how to avoid errors/mistakes?

A Being human, you will never avoid all errors/mistakes; however, you can avoid
many of them through training, concentration, self-confidence, good attitude,

and a stress-free work environment.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered, as well as exercises to provide you with experience in using what you
have learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix F, "Answers to Quizzes and Exercises."

Quiz

1. A user calls and says, "I can't sign on to the database. But everything was
working fine yesterday. The error says invalid user/password. Can you help me?"
What steps should you take?

2. Why should tables have storage clauses and a tablespace destination?

Exercises

1. Suppose you are logged on to the database as SYSTEM, and you wish to drop a
table called HISTORY in your schema. Your regular user id is JSMITH. What is the
correct syntax to drop this table?

2. Correct the following error:

INPUT:

SQL> select sysdate DATE
 2 from dual;

OUTPUT:

select sysdate DATE
 *
ERROR at line 1:
ORA-00923: FROM keyword not found where expected

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

Week 3 In Review
This week should have been very productive. Week 3 shows you the flexibility of SQL,
explains how you can apply these features to real-world problems, and introduces some
popular extensions to SQL. You should know how to use the tools that are available
with your implementation of SQL to make your code more readable. By now you realize
that all implementations of SQL share the same general concepts, although the syntax
may differ slightly.

You should have a clear understanding of the data dictionary, what data it contains,
and how to retrieve useful information from it. If you understand how to generate SQL
from another SQL statement, you should be ready to fly to unlimited heights.

What about errors? You will never be immune from syntax errors or logical mistakes,
but as you gain experience with SQL, you will learn how to avoid many problems. But
then again, errors can be excellent learning opportunities.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Appendix A -
Glossary of Common SQL Statements

ALTER DATABASE

ALTER DATABASE database_name;

ALTER DATABASE command changes the size or settings of a database. Its syntax varies
widely among different database systems.

ALTER USER

ALTER USER user

ALTER USER statement changes a user's system settings such as password.

BEGIN TRANSACTION

1> BEGIN TRANSACTION transaction_name
2> transaction type
3> if exists
4> begin

BEGIN TRANSACTION statement signifies the beginning of a user transaction. A
transaction ends when it is either committed (see COMMIT TRANSACTION) or canceled
(see ROLLBACK TRANSACTION). A transaction is a logical unit of work.

CLOSE CURSOR

close cursor_name

CLOSE cursor_name statement closes the cursor and clears it of data. To completely
remove the cursor, use the DEALLOCATE CURSOR statement.

COMMIT TRANSACTION

SQL> COMMIT;

COMMIT TRANSACTION statement saves all work begun since the beginning of the
transaction (since the BEGIN TRANSACTION statement was executed).

CREATE DATABASE

SQL> CREATE DATABASE database_name;

database_name creates a new database. Many different options can be supplied, such as
the device on which to create the database and the size of the initial database.

CREATE INDEX

CREATE INDEX index_name
ON table_name(column_name1, [column_name2], ...);

the contents of the indexed field(s).

CREATE PROCEDURE

create procedure procedure_name
 [[(]@parameter_name
 datatype [(length) | (precision [, scale])
 [= default][output]
 [, @parameter_name
 datatype [(length) | (precision [, scale])
 [= default][output]]...[)]]
 [with recompile]
 as SQL_statements

CREATE PROCEDURE statement creates a new stored procedure in the database. This
stored procedure can consist of SQL statements and can then be executed using the
EXECUTE command. Stored procedures support input and output parameters passing and
can return an integer value for status checking.

CREATE TABLE

CREATE TABLE table_name
(field1 datatype [NOT NULL],
 field2 datatype [NOT NULL],
 field3 datatype [NOT NULL]...)

CREATE TABLE statement creates a new table within a database. Each optional field is
provided with a name and data type for creation within that table.

CREATE TRIGGER

create trigger trigger_name
 on table_name
 for {insert, update, delete}
 as SQL_Statements

CREATE TRIGGER statement creates a trigger object in the database that will execute
its SQL statements when its corresponding table is modified through an INSERT,
UPDATE, or DELETE. Triggers can also call stored procedures to execute complex tasks.

CREATE USER

CREATE USER user

CREATE USER statement creates a new user account complete with user ID and
password.

CREATE VIEW

CREATE VIEW <view_name> [(column1, column2...)] AS
SELECT <table_name column_names>
FROM <table_name>

using the CREATE VIEW statement. After a view is created, it can be queried and data
within the view can be modified.

DEALLOCATE CURSOR

deallocate cursor cursor_name

DEALLOCATE CURSOR statement completely removes the cursor from memory and frees
the name for use by another cursor. You should always close the cursor with the
CLOSE CURSOR statement before deallocating it.

DECLARE CURSOR

declare cursor_name cursor
 for select_statement

DECLARE CURSOR statement creates a new cursor from the SELECT statement query.
The FETCH statement scrolls the cursor through the data until the variables have
been loaded. Then the cursor scrolls to the next record.

DROP DATABASE

DROP DATABASE database_name;

DROP DATABASE statement completely deletes a database, including all data and the
database's physical structure on disk.

DROP INDEX

DROP INDEX index_name;

DROP INDEX statement removes an index from a table.

DROP PROCEDURE

drop procedure procedure_name

DROP PROCEDURE statement drops a stored procedure from the database; its function is
similar to the DROP TABLE and DROP INDEX statements.

DROP TABLE

DROP TABLE table_name;

DROP TABLE statement drops a table from a database.

DROP TRIGGER

DROP TRIGGER trigger_name

DROP TRIGGER statement removes a trigger from a database.

DROP VIEW

DROP VIEW view_name;

DROP VIEW statement removes a view from a database.

EXECUTE

execute [@return_status =]
 procedure_name
 [[@parameter_name =] value |
 [@parameter_name =] @variable [output]...]]

EXECUTE command runs a stored procedure and its associated SQL statements.
Parameters can be passed to the stored procedure, and data can be returned in these
parameters if the output keyword is used.

FETCH

fetch cursor_name [into fetch_target_list]

FETCH command loads the contents of the cursor's data into the provided program
variables. After the variables have been loaded, the cursor scrolls to the next record.

FROM

FROM <tableref> [, <tableref> ...]

FROM specifies which tables are used and/or joined.

GRANT

GRANT role TO user

or

GRANT system_privilege TO {user_name | role | PUBLIC}

GRANT command grants a privilege or role to a user who has been created using the
CREATE USER command.

GROUP BY

GROUP BY <col> [, <col> ...]

GROUP BY statement groups all the rows with the same column value.

HAVING

HAVING <search_cond>

HAVING is valid only with GROUP BY and limits the selection of groups to those that
satisfy the search condition.

INTERSECT

INTERSECT

INTERSECT returns all the common elements of two SELECT statements.

ORDER BY

ORDER BY <order_list>

ORDER BY statement orders the returned values by the specified column(s).

ROLLBACK TRANSACTION

ROLLBACK TRANSACTION statement effectively cancels all work done within a
transaction (since the BEGIN TRANSACTION statement was executed).

REVOKE

REVOKE role FROM user;

or

REVOKE {object_priv | ALL [PRIVILEGES]}
[, {object_priv | ALL [PRIVILEGES]}] ...
ON [schema.]object
FROM {user | role | PUBLIC} [, {user | role | PUBLIC}] ...

REVOKE command removes a database privilege from a user, whether it be a system
privilege or a role.

SELECT

SELECT [DISTINCT | ALL]

SELECT statement is the beginning of each data retrieval statement. The modifier
DISTINCT specifies unique values and prevents duplicates. ALL is the default and
allows duplicates.

SET TRANSACTION

SQL> SET TRANSACTION (READ ONLY | USE ROLLBACK SEGMENT);

SET TRANSACTION enables the user to specify when a transaction should begin. The
READ ONLY option locks a set of records until the transaction ends to ensure that the
data is not changed.

UNION

UNION

UNION statement returns all the elements of two SELECT statements.

WHERE

WHERE <search_cond>

WHERE statement limits the rows retrieved to those meeting the search condition.

*

* gets all the columns of a particular table.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Appendix B -
Source Code Listings for the C++ Program

Used on Day 14

// tyssqvw.h : interface of the CTyssqlView class
//
///

class CTyssqlSet;

class CTyssqlView : public CRecordView
{
protected: // create from serialization only
 CTyssqlView();
 DECLARE_DYNCREATE(CTyssqlView)

public:
 //{{AFX_DATA(CTyssqlView)
 enum { IDD = IDD_TYSSQL_FORM };
 CTyssqlSet* m_pSet;
 //}}AFX_DATA

// Attributes
public:
 CTyssqlDoc* GetDocument();

// Operations
public:
 virtual CRecordset* OnGetRecordset();

// Implementation
public:

 virtual ~CTyssqlView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:
 virtual void DoDataExchange(CDataExchange* pDX);// DDX/DDV support
 virtual void OnInitialUpdate(); // called first time after
construct

// Generated message map functions
protected:
 //{{AFX_MSG(CTyssqlView)
 // NOTE - the ClassWizard will add and remove member functions
here.
 // DO NOT EDIT what you see in these blocks of generated
code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

#ifndef _DEBUG // debug version in tyssqvw.cpp
inline CTyssqlDoc* CTyssqlView::GetDocument()
 { return (CTyssqlDoc*)m_pDocument; }
#endif

///

// tyssql.h : main header file for the TYSSQL application
//

#ifndef __AFXWIN_H__
 #error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h" // main symbols

///
// CTyssqlApp:
// See tyssql.cpp for the implementation of this class
//

class CTyssqlApp : public CWinApp
{
public:
 CTyssqlApp();

// Overrides
 virtual BOOL InitInstance();

// Implementation

 //{{AFX_MSG(CTyssqlApp)
 afx_msg void OnAppAbout();
 // NOTE - the ClassWizard will add and remove member functions

here.
 // DO NOT EDIT what you see in these blocks of generated
code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///
// tyssqset.h : interface of the CTyssqlSet class
//
///

class CTyssqlSet : public CRecordset
{
DECLARE_DYNAMIC(CTyssqlSet)

public:
 CTyssqlSet(CDatabase* pDatabase = NULL);

// Field/Param Data
 //{{AFX_FIELD(CTyssqlSet, CRecordset)
 CString m_NAME;
 CString m_ADDRESS;
 CString m_STATE;
 CString m_ZIP;
 CString m_PHONE;
 CString m_REMARKS;
 //}}AFX_FIELD

// Implementation
protected:
 virtual CString GetDefaultConnect(); // Default connection
string
 virtual CString GetDefaultSQL(); // default SQL for Recordset
 virtual void DoFieldExchange(CFieldExchange* pFX); // RFX
support
};

// tyssqdoc.h : interface of the CTyssqlDoc class
//
///

class CTyssqlDoc : public CDocument
{
protected: // create from serialization only
 CTyssqlDoc();
 DECLARE_DYNCREATE(CTyssqlDoc)

// Attributes
public:
 CTyssqlSet m_tyssqlSet;

// Operations
public:

// Implementation
public:
 virtual ~CTyssqlDoc();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:
 virtual BOOL OnNewDocument();

// Generated message map functions
protected:
 //{{AFX_MSG(CTyssqlDoc)
 // NOTE - the ClassWizard will add and remove member functions
here.
 // DO NOT EDIT what you see in these blocks of generated
code !
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///
// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions (including VB)
#include <afxdb.h> // MFC database classes

//

//{{NO_DEPENDENCIES}}
// App Studio generated include file.
// Used by TYSSQL.RC
//
#define IDR_MAINFRAME 2
#define IDD_ABOUTBOX 100
#define IDD_TYSSQL_FORM 101
#define IDP_FAILED_OPEN_DATABASE 103
#define IDC_NAME 1000
#define IDC_ADDRESS 1001
#define IDC_STATE 1002
#define IDC_ZIP 1003

// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS

#define _APS_NEXT_RESOURCE_VALUE 102
#define _APS_NEXT_COMMAND_VALUE 32771
#define _APS_NEXT_CONTROL_VALUE 1004

#define _APS_NEXT_SYMED_VALUE 101
#endif
#endif

///

// mainfrm.h : interface of the CMainFrame class
//
///

class CMainFrame : public CFrameWnd
{
protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:

// Operations
public:

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 // NOTE - the ClassWizard will add and remove member functions
here.
 // DO NOT EDIT what you see in these blocks of generated
code!
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

///

// tyssqvw.cpp : implementation of the CTyssqlView class
//

#include "stdafx.h"
#include "tyssql.h"

#include "tyssqset.h"

#include "tyssqdoc.h"
#include "tyssqvw.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///

// CTyssqlView

IMPLEMENT_DYNCREATE(CTyssqlView, CRecordView)

BEGIN_MESSAGE_MAP(CTyssqlView, CRecordView)
 //{{AFX_MSG_MAP(CTyssqlView)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated
code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CTyssqlView construction/destruction

CTyssqlView::CTyssqlView()
 : CRecordView(CTyssqlView::IDD)
{
 //{{AFX_DATA_INIT(CTyssqlView)
 m_pSet = NULL;
 //}}AFX_DATA_INIT
 // TODO: add construction code here
}

CTyssqlView::~CTyssqlView()
{
}

void CTyssqlView::DoDataExchange(CDataExchange* pDX)
{
 CRecordView::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CTyssqlView)
 DDX_FieldText(pDX, IDC_ADDRESS, m_pSet->m_ADDRESS, m_pSet);
 DDX_FieldText(pDX, IDC_NAME, m_pSet->m_NAME, m_pSet);
 DDX_FieldText(pDX, IDC_STATE, m_pSet->m_STATE, m_pSet);
 DDX_FieldText(pDX, IDC_ZIP, m_pSet->m_ZIP, m_pSet);
 //}}AFX_DATA_MAP
}

void CTyssqlView::OnInitialUpdate()
{
 m_pSet = &GetDocument()->m_tyssqlSet;
 CRecordView::OnInitialUpdate();

}

///
// CTyssqlView diagnostics

#ifdef _DEBUG
void CTyssqlView::AssertValid() const
{
 CRecordView::AssertValid();
}

void CTyssqlView::Dump(CDumpContext& dc) const
{
 CRecordView::Dump(dc);
}

CTyssqlDoc* CTyssqlView::GetDocument() // non-debug version is inline
{
 ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CTyssqlDoc)));
 return (CTyssqlDoc*)m_pDocument;
}
#endif //_DEBUG

///
// CTyssqlView database support

CRecordset* CTyssqlView::OnGetRecordset()
{
 return m_pSet;
}

///
// CTyssqlView message handlers

// tyssqset.cpp : implementation of the CTyssqlSet class
//

#include "stdafx.h"
#include "tyssql.h"
#include "tyssqset.h"

///
// CTyssqlSet implementation

IMPLEMENT_DYNAMIC(CTyssqlSet, CRecordset)

CTyssqlSet::CTyssqlSet(CDatabase* pdb)
 : CRecordset(pdb)
{
 //{{AFX_FIELD_INIT(CTyssqlSet)
 m_NAME = "";
 m_ADDRESS = "";
 m_STATE = "";
 m_ZIP = "";
 m_PHONE = "";

 m_REMARKS = "";
 m_nFields = 6;
 //}}AFX_FIELD_INIT
}

CString CTyssqlSet::GetDefaultConnect()
{
 return "ODBC;DSN=TYSSQL;";
}

CString CTyssqlSet::GetDefaultSQL()
{
 return "SELECT * FROM CUSTOMER ORDER BY NAME";
}

void CTyssqlSet::DoFieldExchange(CFieldExchange* pFX)
{
 //{{AFX_FIELD_MAP(CTyssqlSet)
 pFX->SetFieldType(CFieldExchange::outputColumn);
 RFX_Text(pFX, "NAME", m_NAME);
 RFX_Text(pFX, "ADDRESS", m_ADDRESS);
 RFX_Text(pFX, "STATE", m_STATE);
 RFX_Text(pFX, "ZIP", m_ZIP);
 RFX_Text(pFX, "PHONE", m_PHONE);
 RFX_Text(pFX, "REMARKS", m_REMARKS);
 //}}AFX_FIELD_MAP
}

// tyssql.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "tyssql.h"

#include "mainfrm.h"
#include "tyssqset.h"
#include "tyssqdoc.h"
#include "tyssqvw.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CTyssqlApp

BEGIN_MESSAGE_MAP(CTyssqlApp, CWinApp)
 //{{AFX_MSG_MAP(CTyssqlApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated
code!
 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

///
// CTyssqlApp construction

CTyssqlApp::CTyssqlApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CTyssqlApp object

CTyssqlApp NEAR theApp;

///
// CTyssqlApp initialization

BOOL CTyssqlApp::InitInstance()
{
 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need.

 SetDialogBkColor(); // Set dialog background color to gray
 LoadStdProfileSettings(); // Load standard INI file options
(including MRU)

 // Register the application's document templates. Document
templates
 // serve as the connection between documents, frame windows and
views.

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CTyssqlDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CTyssqlView));
 AddDocTemplate(pDocTemplate);

 // create a new (empty) document
 OnFileNew();

 if (m_lpCmdLine[0] != '\0')
 {
 // TODO: add command line processing here
 }

 return TRUE;
}

///

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

// Implementation
protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CTyssqlApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();
}

///
// CTyssqlApp commands
// tyssqdoc.cpp : implementation of the CTyssqlDoc class
//

#include "stdafx.h"
#include "tyssql.h"

#include "tyssqset.h"
#include "tyssqdoc.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CTyssqlDoc

IMPLEMENT_DYNCREATE(CTyssqlDoc, CDocument)

BEGIN_MESSAGE_MAP(CTyssqlDoc, CDocument)
 //{{AFX_MSG_MAP(CTyssqlDoc)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated
code!
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CTyssqlDoc construction/destruction

CTyssqlDoc::CTyssqlDoc()
{
 // TODO: add one-time construction code here
}

CTyssqlDoc::~CTyssqlDoc()
{
}

BOOL CTyssqlDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 // TODO: add reinitialization code here
 // (SDI documents will reuse this document)

 return TRUE;
}

///
// CTyssqlDoc diagnostics

#ifdef _DEBUG
void CTyssqlDoc::AssertValid() const
{
 CDocument::AssertValid();
}

void CTyssqlDoc::Dump(CDumpContext& dc) const

{
 CDocument::Dump(dc);
}
#endif //_DEBUG

///
// CTyssqlDoc commands

// stdafx.cpp : source file that includes just the standard includes
// stdafx.pch will be the pre-compiled header
// stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

// mainfrm.cpp : implementation of the CMainFrame class
//

#include "stdafx.h"
#include "tyssql.h"

#include "mainfrm.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CMainFrame

IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated
code !
 ON_WM_CREATE()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// arrays of IDs used to initialize control bars

// toolbar buttons - IDs are command buttons
static UINT BASED_CODE buttons[] =
{
 // same order as in the bitmap 'toolbar.bmp'
 ID_EDIT_CUT,
 ID_EDIT_COPY,
 ID_EDIT_PASTE,
 ID_SEPARATOR,
 ID_FILE_PRINT,
 ID_SEPARATOR,
 ID_RECORD_FIRST,

 ID_RECORD_PREV,
 ID_RECORD_NEXT,
 ID_RECORD_LAST,
 ID_SEPARATOR,
 ID_APP_ABOUT,
};

static UINT BASED_CODE indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
};

///
// CMainFrame construction/destruction

CMainFrame::CMainFrame()
{
 // TODO: add member initialization code here
}

CMainFrame::~CMainFrame()
{
}

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndToolBar.Create(this) ||
 !m_wndToolBar.LoadBitmap(IDR_MAINFRAME) ||
 !m_wndToolBar.SetButtons(buttons,
 sizeof(buttons)/sizeof(UINT)))
 {
 TRACE("Failed to create toolbar\n");
 return -1; // fail to create
 }

 if (!m_wndStatusBar.Create(this) ||
 !m_wndStatusBar.SetIndicators(indicators,
 sizeof(indicators)/sizeof(UINT)))
 {
 TRACE("Failed to create status bar\n");
 return -1; // fail to create
 }

 return 0;
}

///
// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const
{
 CFrameWnd::AssertValid();
}

void CMainFrame::Dump(CDumpContext& dc) const
{
 CFrameWnd::Dump(dc);
}

#endif //_DEBUG

///
// CMainFrame message handlers

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Appendix C -
Source Code Listings for the Delphi

Program Used on Day 14
program Tyssql;
uses
 Forms,
 Unit1 in 'UNIT1.PAS' {Form1},
 Unit2 in 'UNIT2.PAS' {Form2};
{$R *.RES}
begin
 Application.CreateForm(TForm2, Form2);
 Application.CreateForm(TForm1, Form1);
 Application.Run;
end.
unit Unit1;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, Dialogs;
type
 TForm1 = class(TForm)
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;
implementation
{$R *.DFM}
end.

unit Unit2;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 StdCtrls, Forms, DBCtrls, DB, DBGrids, DBTables, Grids, Mask,
ExtCtrls;
type
 TForm2 = class(TForm)
 ScrollBox: TScrollBox;
 Label1: TLabel;
 EditPARTNUM: TDBEdit;
 Label2: TLabel;
 EditDESCRIPTION: TDBEdit;
 Label3: TLabel;
 EditPRICE: TDBEdit;
 DBGrid1: TDBGrid;
 DBNavigator: TDBNavigator;
 Panel1: TPanel;
 DataSource1: TDataSource;
 Panel2: TPanel;
 Panel3: TPanel;
 Query1: TQuery;
 Query2: TQuery;
 DataSource2: TDataSource;
 procedure FormCreate(Sender: TObject);
 private
 { private declarations }
 public
 { public declarations }
 end;
var
 Form2: TForm2;
implementation
{$R *.DFM}
procedure TForm2.FormCreate(Sender: TObject);
begin
 Query1.Open;
 Query2.Open;
end;
end.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Appendix D -
Resources

Books
● Developing Sybase Applications

Imprint: Sams
Author: Daniel J. Worden
ISBN: 0-672-30700-6

● Sybase Developer's Guide

Imprint: Sams
Author: Daniel J. Worden
ISBN: 0-672-30467-8

● Microsoft SQL Server 6.5 Unleashed, 2E

Imprint: Sams
Author: David Solomon, Ray Rankins, et al.
ISBN: 0-672-30956-4

● Teach Yourself Delphi in 21 Days

Imprint: Sams
Author: Andrew Wozniewicz
ISBN: 0-672-30470-8

● Delphi Developer's Guide

Imprint: Sams
Authors: Steve Teixeira and Xavier Pacheco
ISBN: 0-672-30704-9

● Delphi Programming Unleashed

Imprint: Sams
Author: Charlie Calvert
ISBN: 0-672-30499-6

● Essential Oracle 7.2

Imprint: Sams
Author: Tom Luers
ISBN: 0-672-30873-8

● Developing Personal Oracle7 for Windows 95 Applications

Imprint: Sams
Author: David Lockman
ISBN: 0-672-31025-2

● Teach Yourself C++ Programming in 21 Days

Imprint: Sams
Author: Jesse Liberty
ISBN: 0-672-30541-0

● Teach Yourself Tansact-SQL in 21 Days

Imprint: SAMS
Author: Bennett Wm. McEwan and David Solomon
ISBN: 0-672-31045-7

● Teach Yourself PL/SQL in 21 Days

Imprint: SAMS
Author: Tom Luers, Timothy Atwood, and Jonathan Gennick
ISBN: 0-672-31123-2

Please check the Information SuperLibrary at www.mcp.com for further information

http://www.mcp.com/

and new releases.

Magazines
● DBMS

P.O Box 469039
Escondido, CA 92046-9039
800-334-8152

● Oracle Magazine

500 Oracle Parkway
Box 659510 Redwood Shores, CA 94065-1600
415-506-5304

Internet URLs for the Keyword SQL
● http://www.aslaninc.com/

Aslan Computing Inc.: Specializes in SQL databases, Windows development tools,
Windows NT networking, and Web services.

● http://www.radix.net/~ablaze/

Ablaze Business Systems, Inc.: A leading Microsoft Solution Provider specializing
in Visual Basic, MS Server, PowerBuilder, and the Internet.

● http://www.fourgen.com/

FourGen: Open systems software supporting Windows, 4GL, UNIX, SQL, and OLE
standards.

● http://www.innovision1.com/steelep4/ddi.html

Digital Dreamshop: Providers of innovative client/server applications, computer
graphics services, and commercial software programming in Visual Basic, Access,
Transact-SQL, C++, and Delphi.

● http://www.novalink.com/bachman/index.html

Bachman Information Systems: Vendor of database design tools for Sybase and

http://www.aslaninc.com/
http://www.radix.net/%7eablaze/
http://www.fourgen.com/
http://www.indirect.com/www/steelep4/ddi.html
http://www.novalink.com/bachman/index.html

Microsoft SQL Server databases and other development tools.

● http://www.everyware.com/

EveryWare Development Corp.: Developers of Butler SQL, the SQL database
server for Macintosh.

● http://www.edb.com/nb/index.html

Netbase: Netbase provides a low-cost client/server SQL database for UNIX.

● http://www.quadbase.com/quadbase.htm

Quadbase: Quadbase-SQL is a high-performance, full-featured, industrial-
strength SQL relational DBMS.

● http://www.sagus.com/

Software AG of North America (SAGNA): Develops and markets open,
multiplatform product solutions in the areas of distributed computing (ENTIRE),
application engineering (NATURAL), SQL querying and reporting (ESPERANT),
database management (ADABAS), and data warehousing.

● http://www.nis.net/sqlpower/

Sql Power Tools: Second-generation tools for SQL developers and database
administrators.

● http://world.std.com/~engwiz/

English Wizard: English Wizard translates plain English into SQL for access to
your database.

● http://www.microsoft.com/SQL/

Microsoft.

● http://www.jcc.com/sql_stnd.html

SQL Standards: The central source of information about the SQL standards
process and its current state.

http://www.everyware.com/
http://www.edb.com/nb/index.html
http://www.quadbase.com/quadbase.htm
http://www.sagus.com/
http://www.nis.net/sqlpower/
http://world.std.com/%7eengwiz/
http://www.microsoft.com/SQL/
http://www.jcc.com/sql_stnd.html

● http://www.sybase.com/WWW/

Connecting to Sybase SQL Server via the World Wide Web.

● http://www.ncsa.uiuc.edu/SDG/People/jason/pub/

gsql/starthere.html

GSQL: A Mosaic-SQL gateway.

FTP Sites
● ftp://ftp.cc.gatech.edu/pub/gvu/www/pitkow/ gsql-oracle/oracle-

backend.html

GSQL: Oracle Backend.

Newsgroups
● news:comp.databases.oracle

Usenet: The SQL database products of the Oracle Corporation.

● news:comp.databases.sybase

Usenet: Implementations of the SQL Server.

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.sybase.com/WWW/
http://www.ncsa.uiuc.edu/SDG/People/jason/pub/gsql/starthere.html
http://www.ncsa.uiuc.edu/SDG/People/jason/pub/gsql/starthere.html
ftp://ftp.cc.gatech.edu/pub/gvu/www/pitkow/gsql-oracle/oracle-backend.html
ftp://ftp.cc.gatech.edu/pub/gvu/www/pitkow/gsql-oracle/oracle-backend.html
news:comp.databases.oracle
file:///D|/UncleVan/Current/(ebook%20-%20html)%20Teach%20Yourself%20SQL%20in%2021%20Days/ news:comp.databases.sybase

Teach Yourself SQL in 21 Days, Second
Edition

-Appendix E -
ASCII Table

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

- Appendix F -
Answers to Quizzes and Exercises

Day 1, "Introduction to SQL"

Quiz Answers

1. What makes SQL a nonprocedural language?
SQL determines what should be done, not how it should be done. The database
must implement the SQL request. This feature is a big plus in cross-platform, cross-
language development.

2. How can you tell whether a database is truly relational?
Apply Dr. Codd's 12 (we know there are 13) rules.

3. What can you do with SQL?
SQL enables you to select, insert, modify, and delete the information in a
database; perform system security functions and set user permissions on tables and
databases; handle online transaction processing within an application; create
stored procedures and triggers to reduce application coding; and transfer data
between different databases.

4. Name the process that separates data into distinct, unique sets.
Normalization reduces the amount of repetition and complexity of the structure
of the previous level.

Exercise Answer

Determine whether the database you use at work or at home is truly relational.
(On your own.)

Day 2, "Introduction to the Query: The SELECT
Statement"

Quiz Answers

1. Do the following statements return the same or different output:

SELECT * FROM CHECKS;
select * from checks;?

The only difference between the two statements is that one statement is in
lowercase and the other uppercase. Case sensitivity is not normally a factor in
the syntax of SQL. However, be aware of capitalization when dealing with data.

2. None of the following queries work. Why not?

a. Select *
The FROM clause is missing. The two mandatory components of a SELECT
statement are the SELECT and FROM.

b. Select * from checks
The semicolon, which identifies the end of a SQL statement, is missing.

c. Select amount name payee FROM checks;
You need a comma between each column name: Select amount, name, payee
FROM checks;

3. Which of the following SQL statements will work?

a. select *
from checks;

b. select * from checks;

c. select * from checks
/

All the above work.

Exercise Answers

1. Using the CHECKS table from earlier today, write a query to return just the
check numbers and the remarks.

SELECT CHECK#, REMARKS FROM CHECKS;

2. Rewrite the query from exercise 1 so that the remarks will appear as the first
column in your query results.

SELECT REMARKS, CHECK# FROM CHECKS;

3. Using the CHECKS table, write a query to return all the unique remarks.

SELECT DISTINCT REMARKS FROM CHECKS;

Day 3, "Expressions, Conditions, and Operators"

Quiz Answers

Use the FRIENDS table to answer the following questions.

LASTNAME FIRSTNAME AREACODE PHONE ST ZIP
--------------- ---------------- -------- -------- -- ------
BUNDY AL 100 555-1111 IL 22333
MEZA AL 200 555-2222 UK
MERRICK BUD 300 555-6666 CO 80212
MAST JD 381 555-6767 LA 23456
BULHER FERRIS 345 555-3223 IL 23332
PERKINS ALTON 911 555-3116 CA 95633
BOSS SIR 204 555-2345 CT 95633

1. Write a query that returns everyone in the database whose last name begins
with M.

SELECT * FROM FRIENDS WHERE LASTNAME LIKE 'M%';

2. Write a query that returns everyone who lives in Illinois with a first name of
AL.

SELECT * FROM FRIENDS
WHERE STATE = 'IL'
AND FIRSTNAME = 'AL';

3. Given two tables (PART1 and PART2) containing columns named PARTNO, how
would you find out which part numbers are in both tables? Write the query.

Use the INTERSECT. Remember that INTERSECT returns rows common to both
queries.

SELECT PARTNO FROM PART1
INTERSECT
SELECT PARTNO FROM PART2;

4. What shorthand could you use instead of WHERE a >= 10 AND a <=30?

WHERE a BETWEEN 10 AND 30;

5. What will this query return?

SELECT FIRSTNAME
FROM FRIENDS
WHERE FIRSTNAME = 'AL'
 AND LASTNAME = 'BULHER';

Nothing will be returned, as both conditions are not true.

Exercise Answers

1. Using the FRIENDS table, write a query that returns the following:

NAME ST
------------------- --
AL FROM IL

INPUT:

SQL> SELECT (FIRSTNAME || 'FROM') NAME, STATE
 2 FROM FRIENDS
 3 WHERE STATE = 'IL'
 4 AND
 5 LASTNAME = 'BUNDY';

2. Using the FRIENDS table, write a query that returns the following:

NAME PHONE
-------------------------- ------------
MERRICK, BUD 300-555-6666
MAST, JD 381-555-6767
BULHER, FERRIS 345-555-3223

INPUT:

SQL>SELECT LASTNAME || ',' || FIRSTNAME NAME,
 2 AREACODE || '-' || PHONE PHONE
 3 FROM FRIENDS
 4 WHERE AREACODE BETWEEN 300 AND 400;

Day 4, "Functions: Molding the Data You Retrieve"

Quiz Answers

1. Which function capitalizes the first letter of a character string and makes the
rest lowercase?
INITCAP

2. Which functions are also known by the name ?
Group functions and aggregate functions are the same thing.

3. Will this query work?

SQL> SELECT COUNT(LASTNAME) FROM CHARACTERS;

Yes, it will return the total of rows.
4. How about this one?

sql> SELECT SUM(LASTNAME) FROM CHARACTERS

No, the query won't work because LASTNAME is a character field.

5. Assuming that they are separate columns, which function(s) would splice
together FIRSTNAME and LASTNAME?
The CONCAT function and the || symbol.

6. What does the answer 6 mean from the following SELECT?

INPUT:

SQL> SELECT COUNT(*) FROM TEAMSTATS;

OUTPUT:

COUNT(*)

6 is the number of records in the table.

7. Will the following statement work?

SQL> SELECT SUBSTR LASTNAME,1,5 FROM NAME_TBL;

No, missing () around lastname,1,5. Also, a better plan is to give the column an
alias. The statement should look like this:

SQL> SELECT SUBSTR(LASTNAME,1,5) NAME FROM NAME_TBL;

Exercise Answers

1. Using today's TEAMSTATS table, write a query to determine who is batting
under .25. (For the baseball-challenged reader, batting average is hits/ab.)

INPUT:

SQL> SELECT NAME FROM TEAMSTATS
 2 WHERE (HITS/AB) < .25;

OUTPUT:

NAME

HAMHOCKER
CASEY

2. Using today's CHARACTERS table, write a query that will return the following:

OUTPUT:

INITIALS__________CODE
K.A.P. 32

1 row selected.

INPUT:

SQL> select substr(firstname,1,1)||'.'||
 substr(middlename,1,1)||'.'||
 substr(lastname,1,1)||'.' INITIALS, code
 from characters
 where code = 32;

Day 5, "Clauses in SQL"

Quiz Answers

1. Which clause works just like LIKE(<exp>%)?
STARTING WITH

2. What is the function of the GROUP BY clause, and what other clause does it
act like?
The GROUP BY clause groups data result sets that have been manipulated by
various functions. The GROUP BY clause acts like the ORDER BY clause in that it
orders the results of the query in the order the columns are listed in the GROUP
BY.

3. Will this SELECT work?

SQL> SELECT NAME, AVG(SALARY), DEPARTMENT
 FROM PAY_TBL
 WHERE DEPARTMENT = 'ACCOUNTING'
 ORDER BY NAME
 GROUP BY DEPARTMENT, SALARY;

No, the syntax is incorrect. The GROUP BY must come before the ORDER BY. Also,
all the selected columns must be listed in the GROUP BY.

4. When using the HAVING clause, do you always have to use a GROUP BY also?
Yes.

5. Can you use ORDER BY on a column that is not one of the columns in the
SELECT statement?

Yes, it is not necessary to use the SELECT statement on a column that you put in
the ORDER BY clause.

Exercise Answers

1. Using the ORGCHART table from the preceding examples, find out how many
people on each team have 30 or more days of sick leave.

Here is your baseline that shows how many folks are on each team.

INPUT:

SELECT TEAM, COUNT(TEAM)
FROM ORGCHART
GROUP BY TEAM;

OUTPUT:

TEAM COUNT
=============== ===========

COLLECTIONS 2
MARKETING 3
PR 1
RESEARCH 2

Compare it to the query that solves the question:

INPUT:

SELECT TEAM, COUNT(TEAM)
FROM ORGCHART
WHERE SICKLEAVE >=30
GROUP BY TEAM;

OUTPUT:

TEAM COUNT
=============== ===========

COLLECTIONS 1
MARKETING 1
RESEARCH 1

The output shows the number of people on each team with a SICKLEAVE balance
of 30 days or more.

2. Using the CHECKS table, write a SELECT that will return the following:

OUTPUT:

CHECK#_____PAYEE_______AMOUNT__
 1 MA BELL 150

INPUT:

SQL> SELECT CHECK#, PAYEE, AMOUNT
 FROM CHECKS
 WHERE CHECK# = 1;

You can get the same results in several ways. Can you think of some more?

Day 6, "Joining Tables"

Quiz Answers

1. How many rows would a two-table join produce if one table had 50,000 rows and
the other had 100,000?

5,000,000,000 rows.

2. What type of join appears in the following select statement?

 select e.name, e.employee_id, ep.salary
 from employee_tbl e,
 employee_pay_tbl ep
 where e.employee_id = ep.employee_id;

The preceding join is an equi-join. You are matching all the employee_ids in the
two tables.

3. Will the following SELECT statements work?

 select name, employee_id, salary
 from employee_tbl e,
 employee_pay_tbl ep
 where employee_id = employee_id
 and name like '%MITH';

No. The columns and tables are not properly named. Remember column and table
aliases.

 select e.name, e.employee_id, ep.salary
 from employee_tbl e,
 employee_pay_tbl ep
 where name like '%MITH';

No. The join command is missing in the where clause.

 select e.name, e.employee_id, ep.salary
 from employee_tbl e,
 employee_pay_tbl ep
 where e.employee_id = ep.employee_id
 and e.name like '%MITH';

Yes. The syntax is correct.

4. In the WHERE clause, when joining the tables, should you do the join first or
the conditions?

The joins should go before the conditions.

5. In joining tables are you limited to one-column joins, or can you join on more
than one column?

You can join on more than one column. You may be forced to join on multiple
columns depending on what makes a row of data unique or the specific conditions
you want to place on the data to be retrieved.

Exercise Answers

1. In the section on joining tables to themselves, the last example returned two
combinations. Rewrite the query so only one entry comes up for each redundant
part number.

INPUT/OUTPUT:

SELECT F.PARTNUM, F.DESCRIPTION,
S.PARTNUM,S.DESCRIPTION
FROM PART F, PART S
WHERE F.PARTNUM = S.PARTNUM
AND F.DESCRIPTION <> S.DESCRIPTION
AND F.DESCRIPTION > S.DESCRIPTION

 PARTNUM DESCRIPTION PARTNUM DESCRIPTION
========== ================ =========== ====================

 76 ROAD BIKE 76 CLIPPLESS SHOE

2. Rewrite the following query to make it more readable and shorter.

INPUT:

 select orders.orderedon, orders.name, part.partnum,
 part.price, part.description from orders, part
 where orders.partnum = part.partnum and
orders.orderedon
 between '1-SEP-96' and '30-SEP-96'
 order by part.partnum;

Answer:

SQL> select o.orderedon ORDER_DATE, o.name NAME, p.partnum PART#,
 p.price PRICE, p.description DESCRIPTION
 from orders o,
 part p
 where o.partnum = p.partnum

 and o.orderedon like '%SEP%'
 order by ORDER_DATE;

3. From the PART table and the ORDERS table, make up a query that will return
the following:

OUTPUT:

ORDEREDON NAME PARTNUM QUANTITY
================== ================== ======= ========
2-SEP-96 TRUE WHEEL 10 1

Answer:

 select o.orderedon ORDEREDON, o.name NAME, p.partnum PARTNUM,
o.quanity QUANITY
 from orders o,
 part p
 where o.partnum = p.partnum
 and o.orderedon like '%SEP%';

Many other queries will also work.

Day 7, "Subqueries: The Embedded SELECT
Statement"

Quiz Answers

1. In the section on nested subqueries, the sample subquery returned several
values:

LE SHOPPE
BIKE SPEC
LE SHOPPE
BIKE SPEC
JACKS BIKE

Some of these are duplicates. Why aren't these duplicates in the final result set?
The result set has no duplicates because the query that called the subquery

SELECT ALL C.NAME, C.ADDRESS, C.STATE,C.ZIP
FROM CUSTOMER C
WHERE C.NAME IN

returned only the rows where NAME was in the list examined by the statement IN.

Don't confuse this simple IN statement with the more complex join.

2. Are the following statements true or false?

The aggregate functions SUM, COUNT, MIN, MAX, and AVG all return multiple
values.
False. They all return a single value.

The maximum number of subqueries that can be nested is two.
False. The limit is a function of your implementation.
Correlated subqueries are completely self-contained.
False. Correlated subqueries enable you to use an outside reference.

3. Will the following subqueries work using the ORDERS table and the PART
table?

INPUT/OUTPUT:

 SQL> SELECT *
 FROM PART;

 PARTNUM DESCRIPTION PRICE
 54 PEDALS 54.25
 42 SEATS 24.50
 46 TIRES 15.25
 23 MOUNTAIN BIKE 350.45
 76 ROAD BIKE 530.00
 10 TANDEM 1200.00
6 rows selected.

INPUT/OUTPUT:

 SQL> SELECT *
 FROM ORDERS;

 ORDEREDON NAME PARTNUM QUANITY REMARKS
 15-MAY-96 TRUE WHEEL 23 6 PAID
 19-MAY-96 TRUE WHEEL 76 3 PAID
 2-SEP-96 TRUE WHEEL 10 1 PAID
 30-JUN-96 BIKE SPEC 54 10 PAID
 30-MAY-96 BIKE SPEC 10 2 PAID
 30-MAY-96 BIKE SPEC 23 8 PAID
 17-JAN-96 BIKE SPEC 76 11 PAID
 17-JAN-96 LE SHOPPE 76 5 PAID
 1-JUN-96 LE SHOPPE 10 3 PAID
 1-JUN-96 AAA BIKE 10 1 PAID
 1-JUN-96 AAA BIKE 76 4 PAID
 1-JUN-96 AAA BIKE 46 14 PAID
 11-JUL-96 JACKS BIKE 76 14 PAID
13 rows selected.

a. SQL> SELECT * FROM ORDERS
WHERE PARTNUM =
SELECT PARTNUM FROM PART
WHERE DESCRIPTION = 'TRUE WHEEL';

No. Missing the parenthesis around the subquery.

b. SQL> SELECT PARTNUM
FROM ORDERS
WHERE PARTNUM =
(SELECT * FROM PART
WHERE DESCRIPTION = 'LE SHOPPE');

No. The SQL engine cannot correlate all the columns in the part table with the
operator =.

c. SQL> SELECT NAME, PARTNUM
FROM ORDERS
WHERE EXISTS
(SELECT * FROM ORDERS
WHERE NAME = 'TRUE WHEEL');

Yes. This subquery is correct.

Exercise Answer

Write a query using the table ORDERS to return all the NAMEs and ORDEREDON dates
for every store that comes after JACKS BIKE in the alphabet.

INPUT/OUTPUT:

SELECT NAME, ORDEREDON
FROM ORDERS
WHERE NAME >
(SELECT NAME
FROM ORDERS
WHERE NAME ='JACKS BIKE')

NAME ORDEREDON
========== ===========

TRUE WHEEL 15-MAY-1996
TRUE WHEEL 19-MAY-1996
TRUE WHEEL 2-SEP-1996
TRUE WHEEL 30-JUN-1996
LE SHOPPE 17-JAN-1996

LE SHOPPE 1-JUN-1996

Day 8, "Manipulating Data"

Quiz Answers

1. What is wrong with the following statement?

DELETE COLLECTION;

If you want to delete all records from the COLLECTION table, you must use the
following syntax:

DELETE FROM COLLECTION;

Keep in mind that this statement will delete all records. You can qualify which
records you want to delete by using the following syntax:

DELETE FROM COLLECTION
WHERE VALUE = 125

This statement would delete all records with a value of 125.

2. What is wrong with the following statement?

INSERT INTO COLLECTION SELECT * FROM TABLE_2

This statement was designed to insert all the records from TABLE_2 into the
COLLECTION table. The main problem here is using the INTO keyword with the
INSERT statement. When copying data from one table into another table, you
must use the following syntax:

INSERT COLLECTION
SELECT * FROM TABLE_2;

Also, remember that the data types of the fields selected from TABLE_2 must
exactly match the data types and order of the fields within the COLLECTION
table.

3. What is wrong with the following statement?

UPDATE COLLECTION ("HONUS WAGNER CARD", 25000, "FOUND IT");

This statement confuses the UPDATE function with the INSERT function. To

UPDATE values into the COLLECTIONS table, use the following syntax:

UPDATE COLLECTIONS
SET NAME = "HONUS WAGNER CARD",
 VALUE = 25000,
 REMARKS = "FOUND IT";

4. What would happen if you issued the following statement?

SQL> DELETE * FROM COLLECTION;

Nothing would be deleted because of incorrect syntax. The * is not required here.

5. What would happen if you issued the following statement?

SQL> DELETE FROM COLLECTION;

All rows in the COLLECTION table will be deleted.

6. What would happen if you issued the following statement?

SQL> UPDATE COLLECTION
 SET WORTH = 555
 SET REMARKS = 'UP FROM 525';

All values in the COLLECTION table for the worth column are now 555, and all
remarks in the COLLECTION table now say UP FROM 525. Probably not a good
thing!

7. Will the following SQL statement work?

SQL> INSERT INTO COLLECTION
 SET VALUES = 900
 WHERE ITEM = 'STRING';

No. The syntax is not correct. The INSERT and the SET do not go together.

8. Will the following SQL statement work?

SQL> UPDATE COLLECTION
 SET VALUES = 900
 WHERE ITEM = 'STRING';

Yes. This syntax is correct.

Exercise Answers

1. Try inserting values with incorrect data types into a table. Note the errors and
then insert values with correct data types into the same table.

Regardless of the implementation you are using, the errors that you receive
should indicate that the data you are trying to insert is not compatible with the
data type that has been assigned to the column(s) of the table.

2. Using your database system, try exporting a table (or an entire database) to
some other format. Then import the data back into your database. Familiarize
yourself with this capability. Also, export the tables to another database format
if your DBMS supports this feature. Then use the other system to open these files
and examine them.

See your database documentation for the exact syntax when exporting or
importing data. You may want to delete all rows from your table if you are
performing repeated imports. Always test your export/import utilities before using
them on production data. If your tables have unique constraints on columns and
you fail to truncate the data from those tables before import, then you will be
showered by unique constraint errors.

Day 9, "Creating and Maintaining Tables"

Quiz Answers

1. True or False: The ALTER DATABASE statement is often used to modify an
existing table's structure.

False. Most systems do not have an ALTER DATABASE command. The ALTER TABLE
command is used to modify an existing table's structure.

2. True or False: The DROP TABLE command is functionally equivalent to the
DELETE FROM <table_name> command.

False. The DROP TABLE command is not equivalent to the DELETE FROM
<table_name> command. The DROP TABLE command completely deletes the table
along with its structure from the database. The DELETE FROM... command
removes only the records from a table. The table's structure remains in the
database.

3. True or False: To add a new table to a database, use the CREATE TABLE
command.
True.

4. What is wrong with the following statement?

INPUT:

CREATE TABLE new_table (
ID NUMBER,
FIELD1 char(40),
FIELD2 char(80),
ID char(40);

This statement has two problems. The first problem is that the name ID is repeated
within the table. Even though the data types are different, reusing a field name
within a table is illegal. The second problem is that the closing parentheses are
missing from the end of the statement. It should look like this:

INPUT:

CREATE TABLE new_table (
ID NUMBER,
FIELD1 char(40),
FIELD2 char(80));

5. What is wrong with the following statement?

INPUT:

ALTER DATABASE BILLS (
COMPANY char(80));

The command to modify a field's data type or length is the ALTER TABLE command,
not the ALTER DATABASE command.

6. When a table is created, who is the owner?

The owner of the new table would be whoever created the table. If you signed on
as your ID, then your ID would be the owner. If you signed on as SYSTEM, then
SYSTEM would be the owner.

7. If data in a character column has varying lengths, what is the best choice for
the data type?

VARCHAR2 is the best choice. Here's what happens with the CHAR data type when
the data length varies:

INPUT/OUTPUT:

SQL> SELECT *
 2 FROM NAME_TABLE;

LAST_NAME FIRST_NAME
JONES NANCY
SMITH JOHN
2 rows selected.

SQL> SELECT LAST_NAME
 2 FROM NAME_TABLE
 3 WHERE LAST_NAME LIKE '%MITH';

No rows selected.

ANALYSIS:

You were looking for SMITH, but SMITH does exist in our table. The query finds
SMITH because the column LAST_NAME is CHAR and there are spaces after SMITH.
The SELECT statement did not ask for these spaces. Here's the correct statement
to find SMITH:

INPUT/OUTPUT:

SQL> SELECT LAST_NAME
 2 FROM NAME_TABLE
 3 WHERE LAST_NAME LIKE '%MITH%';

LAST_NAME
SMITH
1 row selected.

ANALYSIS:

By adding the % after MITH, the SELECT statement found SMITH and the spaces
after the name.

TIP: When creating tables, plan your data types to avoid this type of
situation. Be aware of how your data types act. If you allocate 30 bytes for
a column and some values in the column contain fewer than 30 bytes, does
the particular data type pad spaces to fill up 30 bytes? If so, consider how
this may affect your select statements. Know your data and its structure.

8. Can you have duplicate table names?

Yes. Just as long as the owner or schema is not the same.

Exercise Answers

1. Add two tables to the BILLS database named BANK and ACCOUNT_TYPE using
any format you like. The BANK table should contain information about the BANK
field used in the BANK_ACCOUNTS table in the examples. The ACCOUNT_TYPE table
should contain information about the ACCOUNT_TYPE field in the
BANK_ACCOUNTS table also. Try to reduce the data as much as possible.

You should use the CREATE TABLE command to make the tables. Possible SQL
statements would look like this:

 SQL> CREATE TABLE BANK
 2 (ACCOUNT_ID NUMBER(30) NOT NULL,
 BANK_NAME VARCHAR2(30) NOT NULL,
 ST_ADDRESS VARCHAR2(30) NOT NULL,
 CITY VARCHAR2(15) NOT NULL,
 STATE CHAR(2) NOT NULL,
 ZIP NUMBER(5) NOT NULL;

 SQL> CREATE TABLE ACCOUNT_TYPE
 (ACCOUNT_ID NUMBER(30) NOT NULL,
 SAVINGS CHAR(30),
 CHECKING CHAR(30);

2. With the five tables that you have created--BILLS, BANK_ACCOUNTS, COMPANY,
BANK, and ACCOUNT_TYPE--change the table structure so that instead of using
CHAR fields as keys, you use integer ID fields as keys.

SQL> ALTER TABLE BILLS DROP PRIMARY KEY;
SQL> ALTER TABLE BILLS ADD (PRIMARY KEY (ACCOUNT_ID));
SQL> ALTER TABLE COMPANY ADD (PRIMARY KEY (ACCOUNT_ID));

3. Using your knowledge of SQL joins (see Day 6, "Joining Tables"), write several
queries to join the tables in the BILLS database.

Because we altered the tables in the previous exercise and made the key field the
ACCOUNT_ID column, all the tables can be joined by this column. You can join the
tables in any combination; you can even join all five tables. Don't forget to
qualify your columns and tables.

Day 10, "Creating Views and Indexes"

Quiz Answers

1. What will happen if a unique index is created on a nonunique field?

Depending on which database you are using, you will receive some type of error
and no index at all will be created. The constituent fields of a unique index must
form a unique value.

2. Are the following statements true or false?

Both views and indexes take up space in the database and therefore must be
factored in the planning of the database size.

False. Only indexes take up physical space.
If someone updates a table on which a view has been created, the view must have
an identical update performed on it to see the same data.

False. If someone updates a table, then the view will see the updated data.
If you have the disk space and you really want to get your queries smoking, the
more indexes the better.

False. Sometimes too many indexes can actually slow down your queries.

3. Is the following CREATE statement correct?

SQL> create view credit_debts as
 (select all from debts
 where account_id = 4);

No. You do not need the parentheses; also the word all should been an *.

4. Is the following CREATE statement correct?

SQL> create unique view debts as
 select * from debts_tbl;

No. There is no such thing as a unique view.

5. Is the following CREATE statement correct?

SQL> drop * from view debts;

No. The correct syntax is

drop view debts;

6. Is the following CREATE statement correct?

SQL> create index id_index on bills
 (account_id);

Yes. This syntax is correct.

Exercise Answers

1. Examine the database system you are using. Does it support views? What options
are you allowed to use when creating a view? Write a simple SQL statement that
will create a view using the appropriate syntax. Perform some traditional
operations such as SELECT or DELETE and then DROP the view.

Check your implementation's data dictionary for the proper tables to query for
information on views.

2. Examine the database system you are using to determine how it supports indexes.
You will undoubtedly have a wide range of options. Try out some of these options
on a table that exists within your database. In particular, determine whether you
are allowed to create UNIQUE or CLUSTERED indexes on a table within your
database.

Microsoft Access allows developers to use graphical tools to add indexes to a
table. These indexes can combine multiple fields, and the sort order can also be
set graphically. Other systems require you to type the CREATE INDEX statement
at a command line.

3. If possible, locate a table that has several thousand records. Use a stopwatch
or clock to time various operations against the database. Add some indexes and see
whether you can notice a performance improvement. Try to follow the tips given
to you today.

Indexes improve performance when the operation returns a small subset of
records. As queries return a larger portion of a table's records, the performance
improvement gained by using indexes becomes negligible. Using indexes can even
slow down queries in some situations.

Day 11, "Controlling Transactions"

Quiz Answers

1. When nesting transactions, does issuing a ROLLBACK TRANSACTION command
cancel the current transaction and roll back the batch of statements into the
upper-level transaction? Why or why not?

No. When nesting transactions, any rollback of a transaction cancels all the
transactions currently in progress. The effect of all the transactions will not
truly be saved until the outer transaction has been committed.

2. Can savepoints be used to "save off" portions of a transaction? Why or why not?
Yes. Savepoints allow the programmer to save off statements within a
transaction. If desired, the transaction can then be rolled back to this savepoint
instead of to the beginning of the transaction.

3. Can a COMMIT command be used by itself or must it be embedded?
A COMMIT command can be issued by itself or in the transaction.

4. If you issue the COMMIT command and then discover a mistake, can you still use
the ROLLBACK command?
Yes and No. You can issue the command, but it will not roll back the changes.

5. Will using a savepoint in the middle of a transaction save all that happened
before it automatically?

No. A savepoint comes into play only if a ROLLBACK command is issued--and then
only the changes made after the savepoint will be rolled back.

Exercise Answers

1. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> START TRANSACTION
 INSERT INTO CUSTOMERS VALUES
 ('SMITH', 'JOHN')
SQL> COMMIT;

Answer:

SQL> SET TRANSACTION;
 INSERT INTO CUSTOMERS VALUES
 ('SMITH', 'JOHN');
SQL> COMMIT;

2. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> SET TRANSACTION;
 UPDATE BALANCES SET CURR_BAL = 25000;
SQL> COMMIT;

Answer:

SQL> SET TRANSACTION;
 UPDATE BALANCES SET CURR_BAL = 25000;
SQL> COMMIT;

This statement is correct and will work quite well; however, you have just
updated everyone's current balance to $25,000!

3. Use Personal Oracle7 syntax and correct the syntax (if necessary) for the
following:

SQL> SET TRANSACTION;
 INSERT INTO BALANCES VALUES
 ('567.34', '230.00', '8');
SQL> ROLLBACK;

This statement is correct. Nothing will be inserted.

Day 12, "Database Security"

Quiz Answers

1. What is wrong with the following statement?

SQL> GRANT CONNECTION TO DAVID;

There is no CONNECTION role. The proper syntax is

SQL> GRANT CONNECT TO DAVID;

2. True or False (and why): Dropping a user will cause all objects owned by that
user to be dropped as well.

This statement is true only if the DROP USER user name CASCADE statement is
executed. The CASCADE option tells the system to drop all objects owned by the
user as well as that user.

3. What would happen if you created a table and granted select privileges on the
table to public?

Everyone could select from your table, even users you may not want to be able to
view your data.

4. Is the following SQL statement correct?

SQL> create user RON
 identified by RON;

Yes. This syntax creates a user. However, the user will acquire the default
settings, which may not be desirable. Check your implementation for these
settings.

5. Is the following SQL statement correct?

SQL> alter RON
 identified by RON;

No. The user is missing. The correct syntax is

SQL> alter user RON
 identified by RON;

6. Is the following SQL statement correct?

SQL> grant connect, resource to RON;

Yes. The syntax is correct.

7. If you own a table, who can select from that table?

Only users with the select privilege on your table.

Exercise Answer

Experiment with your database system's security by creating a table and then by
creating a user. Give this user various privileges and then take them away.

(On your own.)

Day 13, "Advanced SQL Topics"

Quiz Answers

1. True or False: Microsoft Visual C++ allows programmers to call the ODBC API
directly.

False. Microsoft Visual C++ encapsulates the ODBC library with a set of C++
classes. These classes provide a higher-level interface to the ODBC functions,
which results in an easier-to-use set of functions. However, the overall
functionality is somewhat limited. If you purchase the ODBC Software
Development Kit (SDK) (you can obtain the SDK by joining the Microsoft
Developers Network), you can call the API directly from within a Visual C++
application.

2. True or False: The ODBC API can be called directly only from a C program.
False. The ODBC API resides within DLLs that can be bound by a number of
languages, including Visual Basic and Borland's Object Pascal.

3. True or False: Dynamic SQL requires the use of a precompiler.
False. Static SQL requires a precomplier. Dynamic SQL is just that: dynamic. The
SQL statements used with Dynamic SQL can be prepared and executed at runtime.

4. What does the # in front of a temporary table signify?
SQL Server uses the # to flag a temporary table.

5. What must be done after closing a cursor to return memory?
You must deallocate the cursor. The syntax is

SQL> deallocate cursor cursor_name;

6. Are triggers used with the SELECT statement?

No. They are executed by the use of UPDATE, DELETE, or INSERT.

7. If you have a trigger on a table and the table is dropped, does the trigger still
exist?

No. The trigger is automatically dropped when the table is dropped.

Exercise Answers

1. Create a sample database application. (We used a music collection to illustrate
these points today.) Break this application into logical data groupings.

2. List of queries you think will be required to complete this application.

3. List the various rules you want to maintain in the database.

4. Create a database schema for the various groups of data you described in step 1.

5. Convert the queries in step 2 to stored procedures.

6. Convert the rules in step 3 to triggers.

7. Combine steps 4, 5, and 6 into a large script file that can be used to build the
database and all its associated procedures.

8. Insert some sample data. (This step can also be a part of the script file in step 7.)

9. Execute the procedures you have created to test their functionality.
(On your own.)

Day 14, "Dynamic Uses of SQL"

Quiz Answers

1. In which object does Microsoft Visual C++ place its SQL?
In the CRecordSet object's GetDefaultSQL member. Remember, you can change
the string held here to manipulate your table.

2. In which object does Delphi place its SQL?
In the TQuery object.

3. What is ODBC?
ODBC stands for open database connectivity. This technology enables Windows-
based programs to access a database through a driver.

4. What does Delphi do?
Delphi provides a scalable interface to various databases.

Exercise Answers

1. Change the sort order in the C++ example from ascending to descending on the
State field.

Change the return value of GetDefaultSQL as shown in the following code
fragment:

CString CTyssqlSet::GetDefaultSQL()
{
return " SELECT * FROM CUSTOMER ORDER DESC BY STATE ";
}

2. Go out, find an application that needs SQL, and use it.
(On your own.)

Day 15, "Streamlining SQL Statements for Improved
Performance"

Quiz Answers

1. What does streamline an SQL statement mean?
Streamlining an SQL statement is taking the path with the least resistance by
carefully planning your statement and arranging the elements within your
clauses properly.

2. Should tables and their corresponding indexes reside on the same disk?
Absolutely not. If possible, always store tables and indexes separately to avoid
disk contention.

3. Why is the arrangement of conditions in an SQL statement important?
For more efficient data access (the path with the least resistance).

4. What happens during a full-table scan?
A table is read row by row instead of using an index that points to specific rows.

5. How can you avoid a full-table scan?
A full-table scan can be avoided by creating an index or rearranging the
conditions in an SQL statement that are indexed.

6. What are some common hindrances of general performance?
Common performance pitfalls include

❍ Insufficient shared memory

❍ Limited number of available disk drives

❍ Improper usage of available disk drives

❍ Running large batch loads that are unscheduled

❍ Failing to commit or rollback transactions

❍ Improper sizing of tables and indexes

Exercise Answers

1. Make the following SQL statement more readable.

SELECT EMPLOYEE.LAST_NAME, EMPLOYEE.FIRST_NAME, EMPLOYEE.MIDDLE_NAME,
EMPLOYEE.ADDRESS, EMPLOYEE.PHONE_NUMBER, PAYROLL.SALARY,
PAYROLL.POSITION,
EMPLOYEE.SSN, PAYROLL.START_DATE FROM EMPLOYEE, PAYROLL WHERE
EMPLOYEE.SSN = PAYROLL.SSN AND EMPLOYEE.LAST_NAME LIKE 'S%' AND
PAYROLL.SALARY > 20000;

You should reformat the SQL statement as follows, depending on the consistent
format of your choice:

SELECT E.LAST_NAME, E.FIRST_NAME, E.MIDDLE_NAME,
 E.ADDRESS, E.PHONE_NUMBER, P.SALARY,
 P.POSITION, E.SSN, P.START_DATE
FROM EMPLOYEE E,
 PAYROLL P
WHERE E.SSN = P.SSN
 AND E.LAST_NAME LIKE 'S%'
 AND P.SALARY > 20000;

2. Rearrange the conditions in the following query to optimize data retrieval
time.Use the following statistics (on the tables in their entirety) to determine
the order of the conditions:

593 individuals have the last name SMITH.

712 individuals live in INDIANAPOLIS.

3,492 individuals are MALE.

1,233 individuals earn a salary >= 30,000.

5,009 individuals are single.

Individual_id is the primary key for both tables.

SELECT M.INDIVIDUAL_NAME, M.ADDRESS, M.CITY, M.STATE, M.ZIP_CODE,
 S.SEX, S.MARITAL_STATUS, S.SALARY
FROM MAILING_TBL M,
 INDIVIDUAL_STAT_TBL S
WHERE M.NAME LIKE 'SMITH%'
 AND M.CITY = 'INDIANAPOLIS'
 AND S.SEX = 'MALE'
 AND S.SALARY >= 30000

 AND S.MARITAL_STATUS = 'S'
 AND M.INDIVIDUAL_ID = S.INDIVIDUAL_ID;

Answer:

According to the statistics, your new query should look similar to the following
answer. Name like 'SMITH%' is the most restrictive condition because it will
return the fewest rows:

SELECT M.INDIVIDUAL_NAME, M.ADDRESS, M.CITY, M.STATE, M.ZIP_CODE,
 S.SEX, S.MARITAL_STATUS, S.SALARY
FROM MAILING_TBL M,
 INDIVIDUAL_STAT_TBL S
WHERE M.INDIVIDUAL_ID = S.INDIVIDUAL_ID
 AND S.MARITAL_STATUS = 'S'
 AND S.SEX = 'MALE'
 AND S.SALARY >= 30000
 AND M.CITY = 'INDIANAPOLIS'
 AND M.NAME LIKE 'SMITH%';

Day 16, "Using Views to Retrieve Useful Information
from the Data Dictionary"

Quiz Answers

1. In Oracle, how can you find out what tables and views you own?

By selecting from USER_CATALOG or CAT. The name of the data dictionary object
will vary by implementation, but all versions have basically the same information
about objects such as tables and views.

2. What types of information are stored in the data dictionary?
Database design, user statistics, processes, objects, growth of objects, performance
statistics, stored SQL code, database security.

3. How can you use performance statistics?

Performance statistics suggest ways to improve database performance by modifying
database parameters and streamlining SQL, which may also include the use of
indexes and an evaluation of their efficiency.

4. What are some database objects?
Tables, indexes, synonyms, clusters, views.

Exercise Answers

Suppose you are managing a small to medium-size database. Your job responsibilities
include developing and managing the database. Another individual is inserting large
amounts of data into a table and receives an error indicating a lack of space. You must
determine the cause of the problem. Does the user's tablespace quota need to be
increased, or do you need to allocate more space to the tablespace? Prepare a step-by-
step list that explains how you will gather the necessary information from the data
dictionary. You do not need to list specific table or view names.

1. Look up the error in your database documentation.

2. Query the data dictionary for information on the table, its current size,
tablespace quota on the user, and space allocated in the tablespace (the
tablespace that holds the target table).

3. Determine how much space the user needs to finish inserting the data.

4. What is the real problem? Does the user's tablespace quota need to be increased,
or do you need to allocate more space to the tablespace?

5. If the user does not have a sufficient quota, then increase the quota. If the
current tablespace is filled, you may want to allocate more space or move the
target table to a tablespace with more free space.

6. You may decide not to increase the user's quota or not to allocate more space
to the tablespace. In either case you may have to consider purging old data or
archiving the data off to tape.

These steps are not irrevocable. Your action plan may vary depending upon your
company policy or your individual situation.

Day 17, "Using SQL to Generate SQL Statements"

Quiz Answers

1. From which two sources can you generate SQL scripts?

You can generate SQL scripts from database tables and the data dictionary.

2. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF

SQL> SET FEEDBACK OFF
SQL> SPOOL CNT.SQL
SQL> SELECT 'COUNT(*) FROM ' || TABLE_NAME || ';'
 2 FROM CAT
 3 /

Yes the SQL statement will generate an SQL script, but the generated script will
not work. You need select 'select' in front of count(*):

SELECT 'SELECT COUNT(*) FROM ' || TABLE_NAME || ';'

Otherwise, your output will look like this:

COUNT(*) FROM TABLE_NAME;

which is not a valid SQL statement.

3. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SPOOL GRANT.SQL
SQL> SELECT 'GRANT CONNECT DBA TO ' || USERNAME || ';'
 2 FROM SYS.DBA_USERS
 3 WHERE USERNAME NOT IN ('SYS','SYSTEM','SCOTT')
 4 /

Once again, yes and no. The statement will generate an SQL script, but the SQL
that it generates will be incomplete. You need to add a comma between the
privileges CONNECT and DBA:

SELECT 'GRANT CONNECT, DBA TO ' || USERNAME || ';'

4. Will the following SQL statement work? Will the generated output work?

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SELECT 'GRANT CONNECT, DBA TO ' || USERNAME || ';'
 2 FROM SYS.DBA_USERS
 3 WHERE USERNAME NOT IN ('SYS','SYSTEM','SCOTT')
 4 /

Yes. The syntax of the main statement is valid, and the SQL that will be
generated will grant CONNECT and DBA to all users selected.

5. True or False: It is best to set feedback on when generating SQL.

False. You do not care how many rows are being selected, as that will not be part
of the syntax of your generated statements.

6. True or False: When generating SQL from SQL, always spool to a list or log file
for a record of what happened.

False. You should spool to an .sql file, or whatever your naming convention is
for an SQL file. However, you may choose to spool within your generated file.

7. True or False: Before generating SQL to truncate tables, you should always
make sure you have a good backup of the tables.

True. Just to be safe.

8. What is the ed command?

The ed command takes you into a full screen text editor. ed is very similar to vi
on a UNIX system and appears like a Windows Notepad file.

9. What does the spool off command do?
The spool off command closes an open spool file.

Exercise Answers

1. Using the SYS.DBA_USERS view (Personal Oracle7), create an SQL statement
that will generate a series of GRANT statements to five new users: John, Kevin,
Ryan, Ron, and Chris. Use the column called USERNAME. Grant them Select access
to history_tbl.

SQL> SET ECHO OFF
SQL> SET FEEDBACK OFF
SQL> SPOOL GRANTS.SQL
SQL> SELECT 'GRANT SELECT ON HISTORY_TBL TO ' || USERNAME || ';'
 2 FROM SYS.DBA_USERS
 3 WHERE USERNAME IN ('JOHN','KEVIN','RYAN','RON','CHRIS')
 4 /

grant select on history_tbl to JOHN;
grant select on history_tbl to KEVIN;
grant select on history_tbl to RYAN;
grant select on history_tbl to RON;
grant select on history_tbl to CHRIS;

2. Using the examples in this chapter as guidelines, create some SQL statements
that will generate SQL that you can use.

There are no wrong answers as long as the syntax is correct in your generated
statements.

WARNING: Until you completely understand the concepts presented in this
chapter, take caution when generating SQL statements that will modify
existing data or database structures.

Day 18, "PL/SQL: An Introduction"

Quiz Answers

1. How is a database trigger used?

A database trigger takes a specified action when data in a specified table is
manipulated. For instance, if you make a change to a table, a trigger could insert
a row of data into a history table to audit the change.

2. Can related procedures be stored together?
Related procedures may be stored together in a package.

3. True or False: Data Manipulation Language can be used in a PL/SQL statement.
True.

4. True or False: Data Definition Language can be used in a PL/SQL statement.

False. DDL cannot be used in a PL/SQL statement. It is not a good idea to automate
the process of making structural changes to a database.

5. Is text output directly a part of the PL/SQL syntax?
Text output is not directly a part of the language of PL/SQL; however, text
output is supported by the standard package DBMS_OUTPUT.

6. List the three major parts of a PL/SQL statement.
DECLARE section, PROCEDURE section, EXCEPTION section.

7. List the commands that are associated with cursor control.
DECLARE, OPEN, FETCH, CLOSE.

Exercise Answers

1. Declare a variable called HourlyPay in which the maximum accepted value is

99.99/hour.

DECLARE
 HourlyPay number(4,2);

2. Define a cursor whose content is all the data in the CUSTOMER_TABLE where
the CITY is INDIANAPOLIS.

DECLARE
 cursor c1 is
 select * from customer_table
 where city = 'INDIANAPOLIS';

3. Define an exception called UnknownCode.

DECLARE
 UnknownCode EXCEPTION;

4. Write a statement that will set the AMT in the AMOUNT_TABLE to 10 if CODE is
A, set the AMT to 20 if CODE is B, and raise an exception called UnknownCode if
CODE is neither A nor B. The table has one row.

IF (CODE = 'A') THEN
 update AMOUNT_TABLE
 set AMT = 10;
 ELSIF (CODE = 'B') THEN
 update AMOUNT_TABLE
 set AMT = 20;
 ELSE
 raise UnknownCode;
 END IF;

Day 19, "Transact-SQL: An Introduction"

Quiz Answers

1. True or False: The use of the word SQL in Oracle's PL/SQL and
Microsoft/Sybase's Transact-SQL implies that these products are fully compliant
with the ANSI standard.

False. The word is not protected by copyright. The products mentioned do comply
with much of the ANSI standard, but they do not fully comply with everything in
that standard.

2. True or False: Static SQL is less flexible than Dynamic SQL, although the
performance of static SQL can be better.

True. Static SQL requires the use of a precompiler, and its queries cannot be
prepared at runtime. Therefore, static SQL is less flexible than dynamic SQL, but
because the query is already processed, the performance can be better.

Exercise Answers

1. If you are not using Sybase/Microsoft SQL Server, compare your product's
extensions to ANSI SQL to the extensions mentioned today.

Because nearly all of Day 19 deals with Transact-SQL, we did not explore the
many other extensions to ANSI SQL. Most documentation that accompanies
database products makes some effort to point out any SQL extensions provided.
Keep in mind that using these extensions will make porting your queries to other
databases more difficult.

2. Write a brief set of statements that will check for the existence of some
condition. If this condition is true, perform some operation. Otherwise, perform
another operation.

This operation requires an IF statement. There are no wrong answers as long as
you follow the syntax for logical statements (IF statements) discussed today.

Day 20, "SQL*Plus"

Quiz Answers

1. Which commands can modify your preferences for an SQL session?

SET commands change the settings available with your SQL session.

2. Can your SQL script prompt a user for a parameter and execute the SQL
statement using the entered parameter?

Yes. Your script can accept parameters from a user and pass them into variables.

3. If you are creating a summarized report on entries in a CUSTOMER table, how
would you group your data for your report?

You would probably break your groups by customer because you are selecting
from the CUSTOMER table.

4. Are there limitations to what you can have in your LOGIN.SQL file?

The only limitations are that the text in your LOGIN.SQL file must be valid SQL
and SQL*Plus commands.

5. True or False: The DECODE function is the equivalent of a loop in a procedural
programming language.

False. DECODE is like an IF...THEN statement.

6. True or False: If you spool the output of your query to an existing file, your
output will be appended to that file.

False. The new output will overwrite the original file.

Exercise Answers

1. Using the PRODUCTS table at the beginning of Day 20, write a query that will
select all data and compute a count of the records returned on the report
without using the SET FEEDBACK ON command.

compute sum of count(*) on report
 break on report
 select product_id, product_name, unit_cost, count(*)
 from products
 group by product_id, product_name, unit_cost;

2. Suppose today is Monday, May 12, 1998. Write a query that will produce the
following output:

Today is Monday, May 12 1998

Answer:

set heading off
select to_char(sysdate,' "Today is "Day, Month dd yyyy')
from dual;

3. Use the following SQL statement for this exercise:

1 select *
2 from orders
3 where customer_id = '001'
4* order by customer_id;

Without retyping the statement in the SQL buffer, change the table in the

FROM clause to the CUSTOMER table:

l2
c/orders/customer

Now append DESC to the ORDER BY clause:

l4
append DESC

Day 21, "Common SQL Mistakes/Errors and
Resolutions"

Quiz Answers

1. A user calls and says, "I can't sign on to the database. But everything was
working fine yesterday. The error says invalid user/password. Can you help me?"
What steps should you take?

At first you would think to yourself, yeah sure, you just forgot your password.
But this error can be returned if a front-end application cannot connect to the
database. However, if you know the database is up and functional, just change the
password by using the ALTER USER command and tell the user what the new
password is.

2. Why should tables have storage clauses and a tablespace destination?
In order for tables not to take the default settings for storage, you must include
the storage clause. Otherwise medium to large tables will fill up and take
extents, causing slower performance. They also may run out of space, causing a
halt to your work until the DBA can fix the space problem.

Exercise Answers

1. Suppose you are logged on to the database as SYSTEM, and you wish to drop a
table called HISTORY in your schema. Your regular user ID is JSMITH. What is
the correct syntax to drop this table?

Because you are signed on as SYSTEM, be sure to qualify the table by including
the table owner. If you do not specify the table owner, you could accidentally
drop a table called HISTORY in the SYSTEM schema, if it exists.

SQL> DROP TABLE JSMITH.HISTORY;

2. Correct the following error:

INPUT:

SQL> select sysdate DATE
 2 from dual;

OUTPUT:

select sysdate DATE
 *
ERROR at line 1:
ORA-00923: FROM keyword not found where expected

DATE is a reserved word in Oracle SQL. If you want to name a column heading
DATE, then you must use double quotation marks: "DATE".

© Copyright, Macmillan Computer Publishing. All rights reserved.

Teach Yourself SQL in 21 Days, Second
Edition

©Copyright, Macmillan Computer Publishing. All rights reserved.

No part of this book may be used or reproduced in any form or by any means, or
stored in a database or retrieval system without prior written permission of the
publisher except in the case of brief quotations embodied in critical articles and
reviews.

For information, address Macmillan Publishing, 201 West 103rd Street,
Indianapolis, IN 46290.

This material is provided "as is" without any warranty of any kind.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

Back

	Local Disk
	Table of Contents
	Introduction
	Week 1 at a Glance
	Day 1 -- Introduction to SQL
	Day 2 -- Introduction to the Query: The SELECT Statement
	Day 3 -- Expressions, Conditions, and Operators
	Day 4 -- Functions: Molding the Data You Retrieve
	Day 5 -- Clauses in SQL
	Day 6 -- Joining Tables
	Ch 7 -- Subqueries: The Embedded SELECT Statement
	Week 1 In Review
	Week 2 at a Glance
	Ch 8 -- Manipulating Data
	Day 9 -- Creating and Maintaining Tables
	Day 10 -- Creating Views and Indexes
	Day 11 -- Controlling Transactions
	Day 12 -- Database Security
	Day 13 -- Advanced SQL Topic
	Ch 14 -- Dynamic Uses of SQL
	Week 2 In Review
	Week 3 At A Glance
	Ch 15 -- Streamlining SQL Statements for Improved Performance
	Ch 16 -- Using Views to Retrieve Useful Information from the Data Dictionary
	Ch 17 -- Using SQL to Generate SQL Statements
	Ch 18 -- PL/SQL: An Introduction
	Ch 19 -- Transact-SQL: An Introduction
	Ch 20 -- SQL*Plus
	Ch 21 -- Common SQL Mistakes/Errors and Resolutions
	Week 3 In Review
	Appendix A -- Glossary of Common SQL Statements
	Appendix B -- Source Code Listings for the C++ Program Used on Day 14
	Appendix C -- Source Code Listings for the Delphi Program Used on Day 14
	Appendix D -- Resources
	Appendix E -- ASCII Table
	Appendix F -- Answers to Quizzes and Exercises
	Copyright

