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Abstract

While Reinforcement Learning (RL) is not traditionally designed for interactive
supervisory input from a human teacher, several works in both robot and software
agents have adapted it for human input by letting a human trainer control the
reward signal. In this work, we experimentally examine the assumption underlying
these works, namely that the human-given reward is compatible with the traditional
RL reward signal. We describe an experimental platform with a simulated RL robot
and present an analysis of real-time human teaching behavior found in a study in
which untrained subjects taught the robot to perform a new task. We report three
main observations on how people administer feedback when teaching a robot a
task through Reinforcement Learning: (a) they use the reward channel not only for
feedback, but also for future-directed guidance; (b) they have a positive bias to their
feedback — possibly using the signal as a motivational channel; and (c) they change
their behavior as they develop a mental model of the robotic learner. Given this, we
made specific modifications to the simulated RL robot, and analyzed and evaluated
its learning behavior in four additional experiments with human trainers. We report
significant improvements on several learning measures. This work demonstrates the
importance of understanding the human-teacher /robot-learner partnership in order
to design algorithms that support how people want to teach while simultaneously
improving the robot’s learning behavior.
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1 Introduction

As robots enter the human environment to assist people in their daily lives,
the ability for ordinary people to easily teach them new tasks will be key to
their success. Various works have addressed some of the hard problems robots
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face when learning in the real-world, e.g., real-time learning in environments
that are partially observable, dynamic, continuous (Mataric, 1997; Thrun and
Mitchell, 1993; Thrun, 2002). However, learning quickly from interactions with
a human teacher poses additional challenges (e.g., limited human patience,
ambiguous human input, etc.) as well as benefits for machine learning systems.

Several examples of agents that learn interactively with a human teacher are
based on Reinforcement Learning (RL). RL has certain desirable qualities,
such as the possibility to explore and learn from experience. However, many
also question RL as a viable technique for learning in complex real-world en-
vironments because of practical problems, such as long training time require-
ments; non-scaling state representations; sparse rewards; and safe exploration
strategies. Many of these considerations are particularly pertinent to robots
using RL, prompting the use of human guidance. As a result, RL has been
utilized for teaching robots and game characters; a popular approach incor-
porates real-time human feedback by having a person supply reward and/or
punishment as an additional input to the reward function (Blumberg et al.,
2002; Kaplan et al., 2002; Isbell et al., 2001; Evans, 2002; Stern et al., 1998).

Most of this work models the human input as indistinguishable from any other
feedback coming from the environment, and implicitly assumes people will cor-
rectly communicate feedback as expected by the algorithm. We question these
assumptions and argue that reinforcement-based learning approaches should
be reformulated to more effectively incorporate a human teacher. To address
this, we advocate a systems approach that integrates machine learning into a
Human-Robot Interaction (HRI) framework. Our first goal is to understand
the nature of the teacher’s input in order to adequately support a human
teacher’s contribution in guiding a robot’s exploration. Specifically, we want
to understand how people want to teach and what they want to communicate to
the robot learner. Our second goal is to incorporate these insights into standard
machine learning frameworks to improve a robot’s learning behavior.

This paper presents a series of five experiments analyzing the scenario of a
human teaching a virtual robot to perform a novel task within a reinforcement-
based learning framework. Our experimental system, Sophie’s Kitchen, is a
computer game that allows a QQ-Learning agent to be trained interactively to
perform a task.!

In the first experiment (Sec. 5) we use this game to study 18 people’s interac-
tions with the agent and present an analysis of human teaching behavior. We
have found several prominent characteristics for how human players approach

I Q-Learning is used as the instrument for this work because it is a standard and
widely understood RL algorithm, thus affording the transfer of these lessons to other
reinforcement-based approaches.



the task of explicitly teaching a RL agent with direct control of the reward
signal. To our knowledge, this work is the first to explicitly address and report
such results, relevant to any interactive learning algorithm.

e People want the ability to direct the agent’s attention to guide the explo-
ration process.

e People have a positive bias in their rewarding behavior, suggesting that
players convey both instrumental and motivational intents with their com-
munication channel.

e People adapt their teaching strategy as they develop a mental model of the
agent’s learning.

The second contribution of this work is to incorporate these findings into spe-
cific modifications of the agent’s graphical interface and its RL algorithm. We
subsequently had over 200 people play the game in four follow-up experiments,
showing that our modifications significantly improve the learning behavior of
the agent and make the agent’s exploratory behavior more appropriately re-
sponsive to the human’s instruction.

e Leveraging Human Guidance: In the second experiment (Sec. 8), we
show the positive effects of adding a guidance channel of communication.
Human players are able to direct the agents attention to yield a faster and
more efficient learning process.

e Transparency to Guide a Human Teacher: In the third experiment
(Sec. 9), we show that transparency behaviors, such as gaze, that reveal the
internal state of the agent can be utilized to improve the human’s teaching.

e The Asymmetry of Human Feedback: In the fourth and fifth experi-
ments (Sec. 10), we show beneficial asymmetric interpretations of feedback
from a human partner. The fourth experiment shows that giving human
players a separate motivational communication channel decreases the posi-
tive rewards bias. The fifth experiment shows the benefits of treating neg-
ative feedback from the human as both feedback for the last action and a
suggestion to reverse the action if possible.

We believe this work contributes to the design of real-time learning agents
that are better matched to human teaching behavior. Not only do such agents
learn more effectively, but they are also easier to teach. By understanding
the coupled human-teacher/robot-learner system, we demonstrate that it is
possible to design algorithms that support how people want to teach while
simultaneously improving the machine’s ability to learn.



2 Background: Related Works in Human-Trainable Systems

A review of related works in machine learning yields several interesting dimen-
sions upon which human-trainable systems can be characterized. One interest-
ing dimension is implicit verses explicit training. For instance, personalization
agents and adaptive user interfaces rely on the human as an implicit teacher to
model human preferences or activities through passive observation of the user’s
behavior (Lashkari et al., 1994; Horvitz et al., 1998; Mitchell et al., 2006). In
contrast, this work addresses explicit training where the human teaches the
learner through interaction.

For systems that learn via interaction, another salient dimension is whether the
human or the machine leads the interaction. For instance, active learning or
learning with queries is an approach that explicitly acknowledges an interactive
supervisor (Cohn et al., 1995; Schohn and Cohn, 2000). Through queries, the
algorithm is in control of the interaction without regard of what a human
will be able to provide in a real scenario. In contrast, this work addresses the
human-side of the interaction and specifically asks how do humans want to
teach machines?

A third interesting dimension is the balance between having the machine rely
on human guidance verses its own exploration to learn new tasks. A number
of systems rely on a human guidance paradigm where the learning problem is
essentially reduced to programming through natural interfaces — with little if
any exploration on the part of the machine, yielding a dependence on having
a human present to learn (e.g., learning by demonstration (Nicolescu and
Matari¢, 2003; Schaal, 1999; Voyles and Khosla, 1998; Lieberman, 2001), by
tutelage (Lockerd and Breazeal, 2004), or straight communication (Lauria
et al., 2002)). In contrast, modified reinforcement-based approaches (e.g., the
human contributes to the reward function) are positioned strongly along the
exploration dimension (Blumberg et al., 2002; Kaplan et al., 2002; Isbell et al.,
2001; Evans, 2002; Stern et al., 1998).

In contrast, an important goal of this work is to create learning systems that
can dynamically slide along the exploration-guidance spectrum, to leverage a
human teacher when present as well as learn effectively on its own. While there
are known practical issues with RL (training time requirements, representa-
tions of state and hidden state, practical and safe exploration strategies), we
believe that an appropriate reformulation of RL-based approaches to include
input from a human teacher could alleviate these current shortcomings. To
do this properly, we must deeply understand the human teacher as a unique
contribution that is distinct from other forms of feedback coming from the
environment.
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Fig. 1. 1(a) is a standard view of supervised learning, analyze input and output a
model or classifier, etc. Our approach includes the human teacher, 1(b), emphasiz-
ing that teaching/learning is a two-way process. We add transparency, where the
machine learner provides feedback to the human teacher during learning; and we
augment the human input with guidance. We aim to enhance the performance of
the tightly coupled partnership of a machine learner with a human teacher.

3 Approach: A HRI Framework for Machine Learning

Our approach is based on a Social Learner Hypothesis, namely that humans
will naturally want to teach robots as social learners. As such, our work draws
inspiration from Situated Learning Theory — a field of study that looks at the
social world of children and how it contributes to their development. A key
concept is scaffolding, where a teacher provides support such that a learner
can achieve something they would not be able to accomplish independently
(L. S. Vygotsky, 1978; Greenfield, 1984).

In a situated learning interaction, the teaching and learning processes are in-
timately coupled. A good instructor maintains a mental model of the learner’s
state (e.g., what is understood so far, what remains confusing or unknown,
etc.) in order to appropriately support the learner’s current needs. In partic-
ular, attention direction is one of the essential mechanisms that contribute to
structuring the learning process (Wertsch et al., 1984). Other scaffolding acts
include providing feedback, structuring successive experiences, regulating the
complexity of information, and otherwise guiding the learner’s exploration. In
general, this is a complex process where the teacher dynamically adjusts their
support based on the learner’s demonstrated skill level and success.

The learner, in turn, helps the instructor by making their learning process
transparent to the teacher through communicative acts (such as facial expres-
sions, gestures, gaze, or vocalizations that reveal understanding, confusion,
attention), and by demonstrating their current knowledge and mastery of the
task (Krauss et al., 1996; Argyle et al., 1973). Through this reciprocal and
tightly coupled interaction, the learner and instructor cooperate to simplify
the task for the other — making each a more effective partner.



This situated learning process stands in dramatic contrast to typical machine
learning scenarios that have traditionally ignored “teachability issues” such as
how to make the teaching-learning process interactive or intuitive for a human
partner. We advocate a new perspective that reframes the machine learning
problem as an interaction between the human and the machine. This allows us
to take advantage of human teaching behavior to construct a machine learning
process that is more amenable to the human partner.

Figure 1(a) is a high level view of a supervised machine learning process. A
human provides input to the learning mechanism, which performs its task and
provides the output. Alternatively, an HRI perspective of machine learning
models the complete human-machine system, characterized in Figure 1(b).
This simple diagram highlights the key aspects of a social learning system,
an interaction approach to machine learning forces the research community to
consider many new questions. We need a principled theory of the content and
dynamics of this tightly coupled process in order to design systems that can
learn effectively from ordinary users.

Input Channels: A social interaction approach begins with the question:
“How do humans want to teach?” In addition to designing the interaction
based on what the machine needs to succeed in learning, we need to also
understand what kinds of intentions people will try to communicate in their
everyday teaching behavior. We can then change the input portion of the
machine learning training process to better accommodate a human partner.
It is important to understand the many ways that natural human social cues
(e.g. referencing, attention direction, etc.) can frame the learning problem for
a standard machine learning process. This paper explicitly examines the effect
of allowing the human to guide the attention of a learner as well as provide
feedback during its exploration process.

Output Channels: A social interaction approach asks: “How can the out-
put provided by the learning agent improve the performance of the teaching-
learning system?” In a tightly coupled interaction, a ‘black box’ learning pro-
cess does nothing to improve the quality and relevance of the instructional
guidance. However, transparency of the internal state of the machine could
greatly improve the learning experience. By communicating its internal state,
revealing what is known and what is unclear, the robot can guide the teaching
process. To be most effective, the robot should reveal its internal state in a
manner that is intuitive for the human partner (Breazeal, 2002; Arkin et al.,
2003). For instance, facial expression, eye gaze, and behavior choices are a
significant part of this output channel.

Input/Output Dynamics: Combining the previous two topics, we recognize
that these input and output channels interact over time. The dynamics of the
interaction can change the nature of the input from the human. In partic-
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Fig. 2. Sophie’s Kitchen. The agent is in the center, with a shelf on the right, oven
on the left, a table in between, and five cake baking objects. The vertical bar is the
interactive reward and is controlled by the human.

ular, the temporal structure of teaching versus performing may significantly
influence the behavior of the human. An incremental, on-line learning system
creates a very different experience for the human than a system that must
receive a full set of training examples before its performance can be evalu-
ated. Iterative feedback allows for on-line refinement; the human can provide
another example or correct mistakes right away instead of waiting to evaluate
the results at the end of the training process. Moreover, the sense that progress
is being made may keep the human engaged with the training process for a
longer period of time, which in turn benefits the learning system.

4 Experimental Platform: Sophie’s Kitchen

To investigate the ways in which social interaction can impact machine learn-
ing for robots, we have implemented a Java-based simulation platform, “So-
phie’s Kitchen”, to experiment with learning algorithms and enhancements.
Sophie’s Kitchen is an object-based state-action MDP space for a single agent,
Sophie, using a fixed set of actions on a fixed set of stateful objects.

4.1 Sophie’s Kitchen MDP

The task scenario used is a kitchen world (see Fig. 2), where the agent, Sophie,
learns to bake a cake. This system is defined by (L, 0,3, T, A).

e There are a finite set of k locations L = {ly,...,l;}. In our kitchen task,
k = 4; L = {Shelf, Table, Oven, Agent}. As shown in Fig. 2, the agent is
surrounded by a shelf, table and oven; and the location Agent is available to
objects (i.e., when the agent picks up an object, then it has location Agent).

e There is a finite set of n objects O = {o4,...,0,}. Each object can be in one
of an object-specific number of mutually exclusive object states. Thus, €2; is
the set of states for object 0;, and O* = (1 x ... x Q,,) is the entire object



configuration space. In the kitchen task scenario n = 5: the objects Flour,
Eggs, and Spoon each have only one object state; the object Bowl has five
object states: empty, flour, eggs, both, mixed; and the object Tray has
three object states: empty, batter, baked.

e Let L* be the possible agent locations: L* = {Shelf, Table,Oven}; and
let L be the possible object locations: LY = {Shelf, Table, Oven, Agent}.
Then the legal set of states is ¥ C (L4 x LY x O*), and a specific state is
defined by (4, 1,, .. .1, ,w): the agent’s location, I, € L*, and each object’s
location, I,, € LY, and the object configuration, w € O*.

e T is a transition function:¥ x A +— X. The action space A is expanded
from four atomic actions (GO<x>, PUT-DOWN<x>, PICK-UP<x>, USE<x><y>):
Assuming the locations L# are arranged in a ring, the agent can always GO
left or right to change location; she can PICK-UP any object in her current
location; she can PUT-DOWN any object in her possession; and she can USE
any object in her possession on any object in her current location. The agent
can hold only one object at a time. Thus the set of actions available at a
particular time is dependent on the particular state, and is a subset of the
entire action space, A. Executing an action advances the world state in a
deterministic way defined by 7T'. For example, executing PICK-UP <Flour>
advances the state of the world such that the Flour has location Agent.
USEing an ingredient on the Bowl puts that ingredient in it; using the Spoon
on the both-Bowl transitions its state to the mixed-Bowl, etc.

In the initial state, sy, all objects and the agent are at location Shelf. A
successful completion of the task will include putting flour and eggs in the
bowl, stirring the ingredients using the spoon, then transferring the batter
into the tray, and finally putting the tray in the oven. Some end states are
so-called disaster states (for example—putting the eggs in the oven), which
result in a negative reward (r = —1), the termination of the current trial, and
a transition to state sg. In order to encourage short sequences, an inherent
negative reward of r = —.04 is placed in any non-goal state.

The kitchen task has on the order of 10,000 states with between 2 and 7 actions
available in each state. If the agent is left to learn on its own in this space
(restarting in random states rather than sy after a disaster/goal is reached),
it requires a few thousand actions before the goal state is reached for the first
time. Due to the flexibility of the task, there are many action sequences that
can lead to the desired goal. Here is one such sequence:

PICK-UP Bowl; GO right; PUT-DOWN Bowl; GO left; PICK-UP Flour; GO right;
USE Flour,Bowl; PUT-DOWN Flour; GO left; PICK-UP Eggs; GO right; USE
Eggs,Bowl; PUT-DOWN Eggs; GO 1eft; PICK-UP Spoon; GO right; USE Spoon,Bowl;
PUT-DOWN Spoon; GO 1left; PICK-UP Tray; GO right; PUT-DOWN Tray; PICK-UP
Bowl; USE Bowl,Tray; PUT-DOWN Bowl; PICK-UP Tray; GO right; PUT-DOWN
Tray.



Algorithm 1 Q-Learning with Interactive Rewards from a Human Partner

1: s =last state, s’ =current state, a =last action, r =reward
2: while learning do
3:  a = random select weighted by Q[s, a] values
4:  execute a, and transition to s’
(small delay to allow for human reward)
5.  sense reward, r
6: update Q-value:

Qls, a] — Q[s, a] + a(r + y(mazy Q[s', a']) — Q[s, a])

7: end while

4.2 Learning Algorithm

The algorithm implemented for the experiments presented in this paper is
a standard Q-Learning algorithm (learning rate a@ = .3 and discount factor
v =.75) (Watkins and Dayan, 1992). This is shown above in Algorithm 1. A
slight delay happens in line 4 as the agent’s action is animated and also to
allow the human time to issue interactive rewards. Q-Learning is used as the
instrument for this work because it is a widely understood RL algorithm, thus
affording the transfer of these lessons to other reinforcement-based approaches.

4.8 Interactive Rewards Interface

A central feature of Sophie’s Kitchen is the interactive reward interface. Us-
ing the mouse, a human trainer can—at any point in the operation of the
agent—award a scalar reward signal r € [—1, 1]. The user receives visual feed-
back enabling them to tune the reward signal before sending it to the agent.
Choosing and sending the reward does not halt the progress of the agent,
which runs asynchronously to the interactive human reward.

The interface also lets the user make a distinction between rewarding the whole
state of the world or the state of a particular object (object specific rewards).
An object specific reward is administered by doing a feedback message on
a particular object (objects are highlighted when the mouse is over them to
indicate that any subsequent reward will be object specific). This distinction
exists to test a hypothesis that people will prefer to communicate feedback
about particular aspects of a state rather than the entire state. However, object
specific rewards are used only to learn about the human trainer’s behavior
and communicative intent; the learning algorithm treats all rewards in the
traditional sense of pertaining to a whole state and action pair.



5 Experiment: How People Teach RL Agents

Some may claim it is fairly obvious that a standard Reinforcement Learning
agent is not suitable for learning an assistive task using interactive reward
training as described above—if only due to the vast number of trials neces-
sary to form a reasonable policy. However, the details of what exactly needs
adjustment, and what human factors are dominant in such an interaction,
are largely unexplored. It is these components that we wish to uncover and
enumerate. The purpose of this initial experiment with Sophie’s Kitchen is to
understand, when given a single reward channel (as in prior works), how do
people use it to teach the agent?

5.1 Experiment Design

In the experiment, 18 participants were solicited from the campus community
and came to our research lab. Each volunteer played a computer game, in
which their goal was to get the virtual robot, Sophie, to learn how to bake a
cake on her own. Participants were asked to rate their expertise with machine
learning software and systems on a scale of 1 to 7, (1=no experience, 7T=very
experienced), and we found it was an above average but reasonably diverse
population (mean=3.7; standard deviation=2.3).?2

Participants were told they could not tell Sophie what to do, nor could they
do actions directly, but they could send Sophie the following messages via a
mouse to help her learn the task:

e Click and drag the mouse up to make a green box, a positive message; and
down for red/negative.

e By lifting the mouse button, the message is sent to Sohpie, she sees the
color and size of the message.

e Clicking on an object, this tells Sophie your message is about that object.
As in, “Hey Sophie, this is what I'm talking about...” If you click anywhere
else, Sophie assumes your feedback pertains to everything in general.

The system maintains an activity log and records time step and real time
of each of the following: state transitions, actions, human rewards, reward
aboutness (if object specific), disasters, and goals. Additionally, there was an
informal interview after subjects completed the task.

2 We had both male and female participants, but did not keep gender statistics of
the population.

10



5.2 Results of the Teaching Study

Of the 18 participants only one person did not succeed in teaching Sophie
the task. During the first day of testing, four participants had to interrupt
their trial due to a software error. As a result, some of the analysis below
includes only the 13 individuals that finished the complete task. However,
since participants who experienced this error still spent a significant amount
of time training the agent, their data is included in those parts of the analysis
that relate to overall reward behavior. In this section we present three main
findings about how people approach the task of teaching an RL agent with
an interactive reward signal. 1) They assume the ability to guide the agent.
2) Their teaching behavior changes as they develop a mental model for the
learning agent. 3) There is a positive bias in user rewards.

5.2.1 Guidance Intentions

Even though the instructions clearly stated that communication of both gen-
eral and object specific rewards were feedback messages, many people assumed
that object specific rewards were future directed messages or guidance for the
agent. Several people mentioned this in the interview, and this is also suggested
through behavioral evidence in the game logs.

An object reward used in a standard RL sense, should pertain to the last object
the agent used. Figure 3 has a mark for each player, indicating the percentage
of object specific rewards that were about the last object the agent used:
100% would indicate that the player always used object rewards in a feedback
connotation, and 0% would mean they never used object rewards as feedback.
We can see that several players had object rewards that were rarely correlated
to the last object (i.e., for 8 people less than 50% of their object rewards were
about the last object).

Interview responses suggested these people’s rewards actually pertain to the
future, indicating what they want (or do not want) the agent to use next. A
single test case is used to show how many people used object rewards as a
guidance mechanism: When the agent is facing the shelf, a guidance reward
could be administered (i.e., what to pick up). Further, a positive reward given
to either the empty bowl or empty tray on the shelf could only be interpreted
as guidance since this state would not be part of any desired sequence of the
task (only the initial state). Thus, rewards to empty bowls and trays in this
configuration serve to measure the prevalence of guidance behavior.

Figure 4 indicates how many people tried giving rewards to the bowl or tray
when they were empty on the shelf. Nearly all of the participants, 15 of 18,
gave rewards to the bowl or tray objects sitting empty on the shelf. This leads

11
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Fig. 3. There is one mark for each player, indicating their percentage of object
rewards that were about the last object of attention. This graph shows that many
people had object rewards that were rarely about the last object, thus rarely used
in a feedback orientation.

Number of People

0 rewards >| reward
to empty to empty
bowl/tray  bowl/tray

Fig. 4. A reward to the empty bowl or tray on the shelf is assumed to be meant
as guidance instead of feedback. This graph shows that 15 of the 18 players gave
rewards to the bowl/tray empty on the shelf.

to the conclusion that many participants tried using the reward channel to
guide the agent’s behavior to particular objects, giving rewards for actions
the agent was about to do in addition to the traditional rewards for what the
agent had just done.

These anticipatory rewards observed from everyday human trainers will re-
quire new attention in learning systems and algorithms in order for agents to
correctly interpret their human partners. Section 8 covers the design, imple-
mentation, and evaluation of algorithm and interface modifications for utilizing
guidance.

5.2.2  Inferring a Model of the Learner

Informed by related work (Isbell et al., 2001), it is reasonable to expect people
would habituate to the activity and that feedback would decrease over the
training session. However, just the opposite was found: the ratio of rewards
to actions over the entire training session had a mean of .77 and standard
deviation of .18. Additionally, there is an increasing trend in the rewards-to-

12
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Fig. 5. Ratio of rewards to actions over the first three quarters of the training
sessions shows an increasing trend.

actions ratio over the first three quarters of training. Fig. 5 shows data for the
first three quarters for training, each graph has one bar for each individual
indicating the ratio of rewards to actions. A 1:1 ratio in this case means that
the human teacher gives a reward after every action taken by the agent. By
the third graph more bars are approaching or surpassing a ratio of 1.

One explanation for this increasing trend is a shift in mental model; as people
realize the impact of their feedback they adjusted their reward schedule to
fit this model of the learner. This finds anecdotal support in the interview
responses. Many users reported that at some point they came to the conclu-
sion that their feedback was helping the agent learn and they subsequently
gave more rewards. Many users described the agent as a “stage” learner, that
it would seem to make large improvements all at once. This is precisely the
behavior one sees with a Q-Learning agent: fairly random exploration initially,
and the results of learning are not seen until the agent restarts after a fail-
ure. Without any particular understanding of the algorithm, participants were
quickly able to develop a reasonable mental model of the agent through the
interaction. They were encouraged by the learning progress, and subsequently
gave more rewards.

A second expectation was that people would naturally use goal-oriented and
intentional communication (measured by allowing people to specify object
specific rewards, see Sec. 4.3). The difference between the first and last quarters
of training shows that many people tried the object specific rewards at first but
stopped using them over time (Fig. 6). In the interview, many users reported
that the object rewards “did not seem to be working.” Thus, many participants
tried the object specific rewards initially, but were able to detect over time
that an object specific reward did not have a different effect on the learning
process than a general reward (which is true), and therefore stopped using the
object rewards.

These are concrete examples of the human trainer’s propensity to learn from

13
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Fig. 6. Each bar represents an individual and the height is the percentage of object
rewards. The difference in the first and last training quarters shows a drop off in
usage over time.
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Fig. 7. Histograms of rewards for each individual in the first quarter of their session.
The left column is negative rewards and the right is positive rewards. Most people
even in the first quarter of training have a much higher bar on the right.

the agent how to best impact the process. This presents a huge opportunity
for an interactive learning agent to improve its own learning environment by
communicating more internal state to the human teacher, making the learning
process more transparent. Section 9 details the implementation and evaluation
of a transparent gazing behavior to improve the learning environment.
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5.2.8  An Asymmetric Use of Rewards

For many people, a large majority of rewards given were positive, the mean
percentage of positive rewards for all players was 69.8%. This was thought
at first to be due to the agent improving and exhibiting more correct behav-
ior over time (soliciting more positive rewards); however, the data from the
first quarter of training shows that well before the agent is behaving correctly,
the majority of participants still show a positive bias. Fig. 7 shows reward
histograms for each participant’s first quarter of training; the number of neg-
ative rewards on the left and positive rewards on the right, most participants
have a much larger bar on the right. A plausible hypothesis is that people
are falling into a natural teaching interaction with the agent, treating it as a
social entity that needs encouragement. Some people specifically mentioned
in the interview that they felt positive feedback would be better for learning.
Section 10 details the implementation and evaluation of Sophie’s Kitchen with
asymmetric human rewards.

6 Lessons Learned from the Teaching Study

The findings in this study offer empirical evidence to support our Social
Learner Hypothesis and the concept of partnership when humans teach ar-
tificial agents. When untrained users are asked to interactively train a RL
agent, we see them treat the agent in a social way, tending towards positive
feedback, guiding the robot, and adjusting their training behavior as the in-
teraction proceeds, reacting to the behavior of the learner. Importantly, we
see this tendency even without specifically adding any behavior to the robot
to elicit this attitude. This suggests that there is a human propensity to treat
and understand other entities as intentional agents, and to adapt to them.

To date, RL does not account for the teacher’s commitment to adapt to the
learner, presenting an opportunity for an interactive learning agent to improve
its own learning environment by communicating more of its internal state.

Additionally, our findings indicate that the learning agent can take better
advantage of the different kinds of messages a human teacher is trying to
communicate. In common RL, a reward signal is stationary and is some func-
tion of the environment. It is usually a symmetrical scalar value indicating
positive or negative feedback for being in the current state or for a particu-
lar state-action pair. Introducing human-derived real-time reward prompts us
to reconsider these assumptions. We find that with a single communication
channel people have various communicative intents—feedback, guidance, and
motivation. Augmenting the human reward channel will likely be helpful to
both the human teacher and the machine learning algorithm.
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Finally, timing of rewards has been a topic in the RL community, particularly
the credit assignment problem associated with delayed rewards. As opposed
to delayed rewards, however, we saw that many human teachers administered
anticipatory or guidance rewards to the agent. While delayed rewards have
been discussed, the concept of rewarding the action the agent is about to do
is novel and will require new tools and attention in the RL community.

7 Next Steps: Modifications and Follow-Up Experiments

The results from our first experiment suggest a few specific recommenda-
tions for interactive machine learning. One of these recommendations is that
the communication from the human teaching partner cannot be merged into
one single reward signal. We need to embellish the communication channel
to account for the various intentions people wish to convey to the machine,
particularly guidance intentions. Additionally, people tune their behavior to
match the needs of the machine, and this process can be augmented with more
transparency of the internal state of the learner.

These lessons motivate a set of specific extensions to the system in order
to more deeply understand the impact of social guidance and transparency
behaviors on a machine learning process. In follow-up versions of the Sophie
game we examine the following extensions:

Guidance: Having found people try to communicate both guidance and feed-
back in their reward message, the next version of Sophie distinguishes between
these two inputs. Users can still send a normal feedback message, but they
can also communicate attention direction or guidance. The learning algorithm
is biased to select an actions based on this attention direction signal when it
is available.

Gaze as a Transparency Behavior: A second modification to Sophie’s
Kitchen explores the effect of gazing between the objects of attention for
equally valuable candidate actions during the action selection phase. This
communicates a level of uncertainty through the amount of gazing that pre-
cedes action. We expect this transparency behavior to improve the teacher’s
mental model of the learner, creating a more understandable interaction for
the human and a better learning environment for the machine. Specifically,
we expect more guidance to be administered when the agent seems uncertain.

Undo: A third modification has the Sophie agent respond to negative feedback
with an UNDO behavior (natural correlate or opposite action) when possible.
This is expected to increase the responsiveness and transparency of the agent
and could balance the amount of positive and negative rewards seen. The
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(a) Feedback message. (b) Guidance message.

Fig. 8. The embellished communication channel includes the feedback messages as
well as guidance messages. In 8(a), feedback is given by left-clicking and dragging
the mouse up to make a green box (positive) and down for red (negative). In 8(b),
guidance is given by right-clicking on an object of attention, selecting it with the
yellow square.

algorithm changes such that in the step following negative feedback, the ac-
tion selection mechanism chooses the action that ‘un-does’ the last action if
possible.

Motivation: One hypothesis about the positive rewards bias is that people
were using the reward channel for motivation. A fourth modification of the
Sophie game allows explicit encouragement or discouragement by administer-
ing a reward on Sophie. This will allow people to distinguish specific feedback
about the task (e.g., “That was good!”) from general motivational feedback
(e.g., “Doing good Sophie!”).

8 Leveraging Human Guidance

We modified the Sophie’s Kitchen game to add a guidance channel of com-
munication. Based on prior work with supervised RL, the expectation is that
a guidance signal should improve learning (Clouse and Utgoff, 1992; Maclin
et al., 2005; Smart and Kaelbling, 2002) (which we confirm in an experi-
ment with an expert trainer). The contribution of our work is the focus on
non-expert human trainers. In an experiment we show that everyday human
teachers can use attention direction as a form of guidance, to improve the
learning behavior of an RL agent.

8.1 Modification to Game Interface

The guidance intentions identified in our teaching experiment suggests that
people want to speak directly to the action selection part of the algorithm to
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influence the exploration strategy. To accomplish this, we added a guidance
channel of communication to distinguish this intention from feedback. Clicking
the right mouse button draws an outline of a yellow square. When the yellow
square is administered on top of an object, this communicates a guidance
message to the learning agent and the content of the message is the object.
Figure 8(b) shows the player guiding Sophie to pay attention to the bowl.
Note, the left mouse button still allows the player to give feedback as described
previously, but there are no longer object rewards.

8.2 Modification to Learning Algorithm

Algorithm 1 describes the standard Q-Learning algorithm used for the initial
interactive training sessions with Sophie’s Kitchen. Conceptually, our modified
version gives the algorithm a pre-action and post-action phase in order to
incorporate the new guidance input. In the pre-action phase the agent registers
guidance communication to bias action selection, and in the post-action phase
the agent uses the reward channel in the standard way to evaluate that action
and update a policy. The modified learning process is shown in Algorithm 2.

The agent begins each iteration of the learning loop by pausing to allow the
teacher time to administer guidance (1.5 seconds). The agent saves the object
of the human’s guidance messages as ¢g. During the action selection step, the
default behavior chooses randomly between the set of actions with the highest
Q-values, within a bound (. However, if any guidance messages were received,
the agent will instead choose randomly between the set of actions that have
to do with the object g. In this way the human’s guidance messages bias the
action selection mechanism, narrowing the set of actions the agent considers.

8.8 FEvaluation: Guidance Improves Learning

The first experiment we ran with the guidance modification evaluates the
effects of guidance from an expert trainer. This is analogous to prior works,
and serves to confirm that supervision is beneficial to the agent in Sophie’s
Kitchen. We collected data from expert?® training sessions, in two conditions:

(1) No guidance: has feedback only and the trainer gives one positive or
negative reward after every action.

(2) Guidance: has both guidance and feedback available; the trainer uses the
same feedback behavior and additionally guides to the desired object at
every opportunity.

3 one of the authors
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Algorithm 2 Interactive Q-Learning modified to incorporate interactive hu-
man guidance in addition to feedback.
while learning do
while waiting for guidance do
if receive human guidance message then
g = guide-object
end if
end while
if received guidance then
a = random selection of actions containing ¢
else
a = random selection weighted by Q[s, a] values
end if
execute a, and transition to s
(small delay to allow for human reward)
sense reward, r
update Q-value:

Qls,al — Q[s,a] + a(r + v(mazsQ[s',d']) — Q[s, a])

15: end while

e
e

[ —

For the user’s benefit, we limited the task for this testing (e.g., taking out the
spoon/stirring step, among other things). We had one user follow the above
expert protocol for 10 training sessions in each condition. The results of this
experiment are summarized in Table 1, showing that guidance improves several
learning metrics. The number of training trials needed to learn the task was
significantly less, 30%; as was the number actions needed to learn the task,
39% less. In the guidance condition the number of unique states visited was
significantly less, 40%; thus the task was learned more efficiently. And finally
the guidance condition was more successful, the number of trials ending in
failure was 48% less, and the number of failed trials before the first successful
trial was 45% less.

Having found guidance has the potential to drastically improve several metrics
of the agent’s learning behavior, our final evaluation of the guidance modi-
fication looks at how the agent performs with ordinary human trainers. We
solicited 11 people to come to our research lab to play the Sophie’s Kitchen
game using both feedback and guidance messages. We added the following in-
structions about the guidance messages to the instructions from the previous
experiment (and took out object specific rewards):

You can direct Sophie’s attention to particular objects with guidance mes-

sages. Click the right mouse button to make a yellow square, and use it to
help guide Sophie to objects, as in ‘Pay attention to this!’
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Table 1

An expert user trained 20 agents, with and without guidance, following a strict
best-case protocol in each condition; this yields theoretical best-case effects of guid-
ance on learning. (F = failed trials, G = first success). Results from 1-tailed t-tests.

Measure Mean | Mean | chg | t(18) p
no guide | guide
# trials 6.4 4.5 30% | 2.48 .01
# actions 151.5 926 |39% | 4.9 <.01
#F 4.4 2.3 48% | 2.65 <.01
# F before G 4.2 2.3 45% | 2.37 .01
# states 43.5 259 | 40% | 6.27 | <.01

We compare the game logs of these players (the guidance condition), to 17
who played without the guidance signal (the no guidance condition). This
comparison is summarized in Table 2.

Guidance players were faster than no guidance players. The number of train-
ing trials needed to learn the task was 48.8% less, and the number actions
needed was 54.9% less. Thus, the ability for the human teacher to guide the
agent’s attention to appropriate objects at appropriate times creates a signif-
icantly faster learning interaction.

The guidance condition provided a significantly more successful training ex-
perience. The number of trials ending in failure was 37.5% less, and the number
of failed trials before the first successful trial was 41.2% less. A more successful
training experience is particularly desirable when the learning agent is a robot
that may not be able to withstand very many failure conditions. Additionally,
a successful interaction, especially reaching the first successful attempt sooner,
may help the human teacher feel that progress is being made and prolong their
engagement in the process.

Finally, agents in the guidance condition learned the task by visiting a signifi-
cantly smaller number of unique states, 49.6% less than the no guidance con-
dition. Additionally, we analyze the percentage of time spent in a good portion
of the state space, defined as G = {every unique state in X}, where X = {all
non-cyclic sequences, So, ..., S, such that n < 1.25(min_sequence_length), and
s, = a goal state}. The average percentage of time that guidance agents spent
in G was 72.4%, and is significantly higher than the 60.3% average of no
guidance agents. Thus, attention direction helps the human teacher keep the
exploration of the agent within a smaller and more positive (useful) portion of
the state space. This is a particularly important result since that the ability to
deal with large state spaces has long been a criticism of RL. A human partner
may help the algorithm overcome this challenge.
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Table 2

Non-expert human players trained Sophie with and without guidance communi-
cation available and also show positive effects of guidance on the learning. (F =
failed trials, G = first success). Results from 1-tailed t-tests.

Measure Mean | Mean | chg | t(26) p
no guide | guide

7 trials 28.52 14.6 | 49% | 2.68 <.01
# actions 816.44 368 | 55% | 2.91 <.01
#F 18.89 11.8 38% | 2.61 <.01
# F before G 18.7 11 41% | 2.82 <.01
# states 124.44 62.7 | 50% | 5.64 | <.001
% good states 60.3 72.4 -5.02 | <.001

9 Transparency to Guide a Human Teacher

In the previous section, we saw that the ability for the human teacher to direct
the Sophie agent’s attention has significant positive effects on several learning
metrics. This section reports a related result — that the ability of the agent
to use gaze as a transparency behavior results in measurably better human
guidance instruction.

Gaze requires that the learning agent have a physical/graphical embodiment
that can be understood by the human as having a forward heading. In general,
gaze precedes an action and communicates something about the action that
is going to follow. In this way gaze serves as a transparency device, allowing
an onlooker to make inferences about what the agent is likely to do next,
their level of confidence and certainty about the environment, and perhaps
whether or not guidance is necessary. A gaze behavior was added to the So-
phie’s Kitchen game. The modified game was deployed on the World Wide
Web, and data was collected from over 50 people playing the game, allowing
for a concrete analysis of the effect Sophie’s gaze had on a human teacher’s
behavior.

9.1 Modification to Game Interface

Recall the interactive Q-Learning algorithm modified for guidance (Algorithm
2). The gaze behavior modification makes one alteration to the stage at which
the agent is waiting for guidance, shown in Algorithm 3. When the agent
is waiting for guidance, it finds the set of actions, A", with the highest Q-
values, within a bound (. Va € A, the learning agent gazes for 1 second at
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Fig. 9. Two figures illustrating Sophie’s gazing transparency behavior. In Fig. 9(a)
Sophie is facing the shelf, gazing at the tray prior to selecting a next action; in Fig.
9(a) at the bowl.

Algorithm 3 Interactive Q-Learning with guidance and a gazing trans-
parency behavior.
1: while learning do
2: A" =ay...a,), the n actions from s with the highest @) values within a
bound [

3: fori=1..ndo

4: o = the object of attention of a;

5: if 0 # null then

6: set gaze of the agent to be o for 1 sec.

7 end if

8: end for

9:  if receive human guidance message then
10: g = guide-object
11: a = random selection of actions containing g
12:  else
13: a = random selection weighted by Q[s, a] values
14:  end if

15:  execute a, and transition to s

(small delay to allow for human reward)
16:  sense reward, r
17:  update policy:

Qls,al — Q[s,a] + a(r + y(mazQ[s', a']) — Qls, a])

18: end while

the object-of-attention of a (if it has one). For an example of how the
Sophie agent orients towards an object to communicate gazing, see Fig. 9.
This gazing behavior during the pre-action phase communicates a level of un-
certainty through the amount of gazing that precedes an action. It introduces
an additional delay (proportional to uncertainty) prior to the action selection
step, both soliciting and providing the opportunity for guidance messages from

22



the human. This also communicates overall task certainty or confidence as the
agent will speed up when every set, A", has a single action. The hypothesis
is that this transparency will improve the teacher’s model of the learner, cre-
ating a more understandable interaction for the human and a better learning
environment for the agent.

9.2 Evaluation: Gaze Improves Guidance

To evaluate the use of transparency, we deployed the Sophie’s Kitchen game
on the World Wide Web. Participants were asked to play the computer game
and were given instructions on administering feedback and guidance. Each of
the 52 participants played the game in one of the following test conditions:

e Guidance: Players had both the feedback and the guidance channels of
communication.

e Gaze-guide: Players had the feedback and guidance channels. Additionally,
the agent used the gaze behavior.

The system maintained an activity log and recorded time step and real time of
each of the following: state transitions, actions, human rewards, guidance mes-
sages and objects, gaze actions, disasters, and goals. These logs were analyzed
to test the transparency hypothesis: Learners can help shape their learning
environment by communicating aspects of the internal process. In particular,
the gaze behavior will improve a teacher’s guidance instruction.

This hypothesis is evaluated through the comparison of players that had the
guidance condition versus those that had the gaze-guide condition. These
results are summarized in Table 3. Note that the players that did not have the
gaze behavior still had ample opportunity to administer guidance; however,
the time that the agent waits is uniform throughout.

Looking at the timing of each player’s guidance instruction, their communi-
cation can be separated into two segments: the percentage of guidance that
was given when the number of action choices was > 3 (high uncertainty),
and when choices were < 3 (low uncertainty), note that these are overlapping
classes. Three is chosen as the midpoint because the number of action choices
available to the agent at any time in the web-based version of Sophie’s Kitchen
is at most 5. Thus we describe a situation where the number of equally valued
action choices is > 3 as high uncertainty, and < 3 as low uncertainty.

Players in the gaze-guide condition had a significantly lower percentage of
guidance when the agent had low uncertainty compared to the players in the
guidance condition, t(51) = —2.22,p = .015. And conversely the percentage
of guidance when the agent had high uncertainty increased from the guidance
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Table 3

1-tailed t-test showing the effect of gaze on guidance. Compared to the guidance
distribution without gaze, the gaze condition caused a decrease when uncertainty
was low and an increase when uncertainty was high. (uncertainty low = number of
action choices < 3, high = number of choices > 3).

Measure Gaze-Guide | Guidance | t(51) p

% Guidance when 79 85 -2.22 | <.05

uncertainty low

% Guidance when 48 36 1.96 <.05

uncertainty high

to the gaze-guide condition, ¢(51) = 1.96,p = .027. Thus, when the agent
uses the gaze behavior to indicate which actions it is considering, the human
trainers do a better job matching their instruction to the needs of the agent
throughout the training session. They give more guidance when it is needed
and less when it is not.

10 The Asymmetry of Human Feedback

One of the main findings in our initial experiment concerned the biased nature
of positive and negative feedback from a human partner. Clearly, people have
different intentions they are communicating with their positive and negative
feedback messages. In this section we present to modifications to the game
interface that address the asymmetric meanings of human feedback.

One hypothesis is that people are falling into a natural teaching interaction
with the agent, treating it as a social entity that needs motivation and en-
couragement. People may feel bad giving negative rewards to the agent, or feel
that it is important to be both instrumental and motivational with their com-
munication channel. In interviews a number of participants mentioned that
they believed the agent would learn better from positive feedback.

Another hypothesis is that negative rewards did not produce the expected
reaction from the robot. A typical RL agent does not have an instantaneous
reaction to either positive or negative rewards, but in the case of negative
rewards, this could be interpreted as the agent “ignoring” the human’s feed-
back. In that case, the user may stop using them when they feel the agent is
not taking their input into account. One way to address this is to introduce
an UNDO behavior. Many actions (PICK-UP, PUT-DOWN, TURN) have a natural
correlate or opposite action that can be performed in response to negative
feedback. This could add to the responsiveness and transparency of the agent
and balance the amount of positive and negative rewards seen.
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Fig. 10. A reward is considered motivational rather than instrumental if it is admin-
istered on Sophie, as pictured here. Instructions about this input channel indicate
that it is for general feedback about the task (e.g. ”Doing good Sophie!” or ”Doing
bad!”) as opposed to feedback about a particular action.

We explore both of these hypotheses in this section. First, we look at adding
a motivation channel of communication, to test if the positive bias was due
to motivational intentions. Second, we add the UNDO behavior and show that
this reaction to a person’s negative feedback produces a significantly better
learning behavior for the RL agent.

10.1 Motiwation

In this experiment, we add a motivation communication channel. Our hypoth-
esis is that we should see the positive bias decrease when the players have a
separate channel for motivational versus instrumental communication.

10.1.1 Modification to the Game Interface

For this experiment we have the original feedback channel of communication,
and a dedicated motivational input. This is done by considering a reward
motivational if it is administered on Sophie. For visual feedback the agent
is shaded yellow to let the user know that a subsequent reward will be mo-
tivational. Figure 10 shows a positive motivational message to Sophie. The
game instructions given to players indicate that this input channel is for gen-
eral feedback about the task (e.g. "Doing good Sophie!” or ”Doing bad!”) as
opposed to feedback about a particular action.

10.1.2  FEvaluation: Motivation Intentions Confirmed

To test our hypothesis about people’s motivational intents, we deployed the
Sophie’s Kitchen game on the World Wide Web and had 98 volunteers play the
game. Players that had the motivation signal had a significantly more balanced
feedback valance than the players that did not have it. Players that did not

have a motivational channel had a mean ratio (%) of 2.07; whereas
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those with the motivational channel had a mean ratio of 1.688. This is a
significant effect, ¢(96) = —2.02, p = .022. Thus, we conclude that motivation
is a separate intention that was folded into the players’ positive feedback in
the initial study. Future work is to understand how an agent can utilize this
signal in a different way to improve the learning interaction.

10.2 UNDO Behavior

The UNDO modification addresses a second aspect of the asymmetric meaning
of human feedback. The intuition is that positive feedback tells a learner un-
deniably, “what you did was good.” However, negative feedback has multiple
meanings: 1) that the last action was bad, and 2) that the current state is bad
and future actions should correct that. Thus, negative feedback is about both
the past and about future intentions for action. In the final modification to
Sophie’s Kitchen, the algorithm assumes that a negatively reinforced action
should be reversed if possible. This UNDO interpretation of negative feedback
shows significant improvements in several metrics of learning.

10.2.1 Modification to the Algorithm

This baseline algorithm is modified to respond to negative feedback with
an UNDO behavior (a natural correlate or opposite action) when possible.
Thus a negative reward affects the policy in the normal fashion, but also
alters the subsequent action selection if possible. The proper UNDO behav-
ior is represented within each primitive action and is accessed with an undo
function: GO [direction] returns GO [-direction]; PICK-UP [object] re-
turns PUT-DOWN [object]; PUT-DOWN [object] returns PICK-UP [object];
USE actions are not reversible. Algorithm 4 shows how this is implemented
with the changes in lines 2 — 6, as compared to the baseline Algorithm 1.

10.2.2 FEvaluation of UNDO Behavior

We found the UNDO response to negative feedback from the human trainer
significantly improves the learning performance of the agent in a number of
ways. Data was collected from 97 human participants by deploying the So-
phie’s Kitchen game on the World Wide Web.

The Sophie’s Kitchen platform offers a measurable comparison between two
conditions of the learning algorithm. In the baseline case the algorithm han-
dles both positive and negative feedback in a standard way, feedback is incor-
porated into the value function (Alg. 1). In the undo case the algorithm uses
feedback to update the value function but then also uses negative feedback
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Algorithm 4 Interactive Q-Learning with the addition of the UNDO behavior
1: while learning do

2:  if (reward last cycle < —.25) and (can undo last action, a,s:) then
3 a = undo(aqst)

4: else
5.
6

7

a = random select weighted by Q([s, a] values
end if
execute a, and transition to s’
(small delay to allow for human reward)
:  sense reward, r
9:  update policy:

Qls,a] — Q[s,a] + a(r + v(mazyQ[s',d']) — Q[s, a])

10: end while

in the action selection stage as an indication that the best action to perform
next is the reverse of the negatively reinforced action (Alg. 4). Statistically
significant differences were found between the baseline and undo conditions
on a number of learning metrics (summarized in Table 4).

The UNDO behavior helps the agent avoid failure. The total number of failures
during the learning phase was 37% less in the undo case. This is particularly
interesting for robotic agents that need to learn in the real world where learn-
ing from failure may not be a viable option. The undo case also had 40% less
failures before the first success. This is especially important when the agent is
learning with a human partner. The human partner will have limited patience
and will need to see progress quickly in order to remain engaged in the task.
Thus, the undo behavior seems to be a good technique for reaching the first
success faster.

There was a nearly significant effect for the number of actions required to learn
the task, with the undo condition requiring 12% less steps (the high degree of
variance in the number of steps needed to learn the task leads to the higher
p value). Another indication of the efficiency of the undo case compared to
the baseline is in the state space needed to learn the task. The number of
unique states visited is 13% less in the undo case. This indicates that when
the algorithm interprets negative feedback as a directive for reversing the
previous action, or returning to the previous state, the resulting behavior is
more efficient in its use of the state space to learn the desired task.
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Table 4

1-tailed t-test: Significant differences were found between the baseline and undo
conditions, in training sessions with nearly 100 non-expert human subjects playing
the Sophie’s Kitchen game online.

Measure Mean baseline | Mean undo | chg | t(96) p
# states 48.3 42 13% | -2.26 =.01
#F 6.94 4.37 37% | -3.76 | <.001
# F before G 6.4 3.87 40% | -3.7 | <.001
# actions to G 208.86 164.93 21% | -2.25 =.01
# actions 255.68 224.2 12% | -1.32 | =.095

11 Discussion

Robotic and software agents that operate in human environments will need
the ability to learn new skills and tasks ‘on the job’ from everyday people.
It is important for designers of learning systems to recognize that while the
average consumer is not familiar with machine learning techniques, they are
intimately familiar with various forms of social learning (e.g., tutelage, imita-
tion, etc.). This raises two important and related research questions for the
machine learning community. 1) How do people want to teach machines? 2)
How do we design machines that learn effectively from natural human inter-
action? In this paper we have demonstrated the utility of a socially guided
machine learning approach, exploring the ways machines can be designed to
more fully take advantage of a natural human teaching interaction.

Our work emphasizes the interactive elements in teaching. There are inher-
ently two sides to an interaction, in this case the human teacher and the
machine learner. Our approach aims to enhance standard machine learning
algorithms from both perspectives of this interaction: modifying the algorithm
to build a better learning agent, and modifying the interaction techniques to
provide a better experience for the human teacher. Understanding how hu-
mans want to teach is an important part of this process.

The scenario of human input has received some attention in the machine
learning community (see Sec. 2 for several examples). Many prior works have
addressed how human input can theoretically impact a learning algorithm or
interaction. In contrast, this work addresses the nature of real people as teach-
ers; our ground truth evaluation is the performance of the machine learner with
non-expert human teachers. Whereas prior works typically lend control either
to the machine or the human, our contribution is the focus on how a machine
learner can use transparency behaviors to steer the instruction it receives from
a human, creating more reciprocal control of the interaction.
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Several prior works that utilize a human teacher are inspired by animal or hu-
man learning. For instance, game characters that the human player can shape
through interaction have been successfully incorporated into a few computer
games (Evans, 2002; Stanley et al., 2005; Stern et al., 1998). Breazeal et al.
have demonstrated aspects of collaboration and social learning on a humanoid
robot, using social cues to guide instruction (Breazeal et al., 2004). Animal
training techniques and human tutelage have been explored in several robotic
agents (Kaplan et al., 2002; Saksida et al., 1998; Steels and Kaplan, 2001;
Lockerd and Breazeal, 2004). As a software agent example, Blumberg’s vir-
tual dog character can be taught via clicker training, and behavior can be
shaped by a human teacher (Blumberg et al., 2002).

Many of these works agree with our situated learning paradigm for machines,
and have emphasized that an artificial agent should use social techniques to
create a better interface for a human partner. This work goes beyond gleaning
inspiration from natural forms of social learning/teaching to formalize this
inspiration and empirically ground it in observed human teaching behavior
through extensive user studies. One of the main contributions of this work
is empirical evidence that social interaction is not only a good idea because
it creates a good interface for a human partner, but also because it create a
better learning environment and significant learning benefits for an agent.

Our findings indicate that a learning agent can take better advantage of the
different kinds of messages a human teacher is trying to communicate. We find
that, given a single communication channel, people have various communica-
tive intents.

In addition to common instrumental feedback, people assume they can guide
the agent, even when we explicitly told people that only feedback messages
were supported. In their guidance communication, people mean to bias the
action selection mechanism of the RL algorithm. When we allow this, intro-
ducing a separate interaction channel for attention direction and modifying the
action selection mechanism of the algorithm, we see a significant improvement
in the agent’s learning. The agent is able to learn tasks using fewer actions
over fewer trials. It has a more efficient exploration strategy that wasted less
time in irrelevant states. We argue that a less random and more sensible ex-
ploration will lead to more understandable and teachable agents. Guidance
also led to fewer failed trials and less time to the first successful trial. This
is a particularly important improvement in that it implies a less frustrating
teaching experience, which in turn creates a more engaging interaction for the
human.

We also see that players treat the agent as a social entity and want a moti-

vational channel of communication to encourage it. This is seen despite the
fact that the learning agent in this work is very mechanistic and simplistic.
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One can assume that this effect will only be more prominent with characters
that are explicitly designed to be socially and emotionally appealing. We ar-
gue that to build successful agents that learn from people, attention of the
research community should focus on understanding and supporting the psy-
chology and social expectations of the human teacher. It remains future work
to explore how this motivational or encouragement channel of communication
should influence the learning algorithm in a different way than the ordinary
positive and negative feedback. Our hypothesis is that this communication is
intended to influence the internal motivations, drives and goals of the agent.

This work offers a concrete example that the transparency of the agent’s be-
havior to the human can improve its learning environment. In a social learning
interaction both learner and teacher influence the performance of the tutorial
dyad. While this observation seems straightforward in the human literature,
little attention has been paid to the communication between human teacher
and artificial agent in the traditional machine learning literature. Particularly,
we believe that the transparency of the learner’s internal process is paramount
to the success of the tutorial dialog. Specifically, this work has shown that when
the learning agent uses gazing behaviors to reveal its uncertainties and poten-
tial next actions, people were significantly better at providing more guidance
when it was needed and less when it was not. Thus the agent, through its own
behavior, was able to shape the human’s input to be more appropriate. Gaze
is just one such transparency device, the exploration of various devices and
their relation to the learning process is part of our future work.

Additionally these transparency behaviors serve to boost the realism and be-
lievability of the character overall, thereby making it more engaging for the
human. The creation of believable characters that people find emotionally ap-
pealing and engaging has long been a challenge (Thomas and Johnson, 1981;
Bates, 1997). Autonomy complicates this goal further, since the character has
to continually make action choices that are reasonable and useful as well as
believable and engaging. Blumberg et al. has some of the most extensive work
in this domain (Blumberg, 1997; Tomlinson and Blumberg, 2002) within a
dog learning context. Thus another challenge for teachable characters is to be
appropriately responsive to the human’s instruction.

In this work we have studied one aspect of such responsiveness, informed by
our initial user study. Negative feedback from a human teacher can be treated
as both feedback for the action and suggestion to perform an UNDO behavior
and reverse the action if possible. When this is part of the agent’s behavior,
learning is improved in both speed and efficiency.

We chose to use the Q-Learning algorithm for this work because it is standard

and widely understood. This affords the transfer of these lessons and modi-
fications to other reinforcement-based approaches. We have shown significant
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improvements in an RL domain showing that learning in a situated interaction
with a human partner can help overcome some of the well recognized problems
of RL. Furthermore, these improvements in learning will contribute to higher
quality interactive learning agents that are better equipped to take advantage
of the ways that people naturally approach teaching.

12 Conclusion

This work shows that designing for the complete human-machine learning
system creates a more successful robot learner. Our initial experiment with
an interactive computer game character lead to three main findings: people
assume they can guide the agent, they dynamically adjust their behavior as
they develop a model of the agent, and they have a positive bias in their
rewards.

We addressed these findings in four follow-up experiments with modified ver-
sions of the Sophie’s Kitchen game. Our modifications include: an embellished
channel of communication that distinguishes between guidance, feedback, and
motivational intents; endowing the character with transparency behaviors that
reveal specific aspects of the agent’s learning process; and providing a more
natural reaction to negative feedback. A series of user studies show that these
empirically informed modifications result in several learning improvements
across several dimensions including the speed of task learning, the efficiency
of state exploration, the understandability of the agent’s learning process for
the human, and a significant drop in the number of failed trials encountered
during learning.

Importantly, in this work we acknowledge that the ground truth evaluation for
systems meant to learn from people is performance with non-expert humans.
This topic deserves more attention from the machine learning community, as it
will be important for progress towards a social learning scenario for machines.
This series of experiments with an interactive learning agent illustrates the
effectiveness of this approach for building machines that can learn from ordi-
nary people. The ability to utilize and leverage social skills is far more than
a nice interface technique. It can positively impact the dynamics of under-
lying learning mechanisms to show significant improvements in a real-time
interactive learning session with non-expert human teachers.
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