Subject NameADVANCE QUANTUM MECHANICS Subject Code- MPM-221
 Teacher Name

Dr. Abhishek Kumar Gupta

Department of Physics and Material Science

Email: akgpms@mmmut.ac.in

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

Syllabus??

Credit 04 (3-1-0)

MPM-221: ADVANCE QUANTUM MECHANICS

Unit I: Formulation of Relativistic Quantum Theory

Relativistic Notations, The Klein-Gordon equation, Physical interpretation, Probability current density \& Inadequacy of Klein-Gordon equation, Dirac relativistic equation \& Mathematical formulation, α and β matrices and related algebra, Properties of four matrices α and β, Matrix representation of $\alpha_{i}^{\prime s}$ and β, True continuity equation and interpretation.

Unit II: Covariance of Dirac Equation

Covariant form of Dirac equation, Dirac gamma (γ) matrices, Representation and properties, Trace identities, fifth gamma matrix γ^{5}, Solution of Dirac equation for free particle (Plane wave solution), Dirac spinor, Helicity operator, Explicit form, Negative energy states

Unit III: Field Quantization

Introduction to quantum field theory, Lagrangian field theory, Euler-Lagrange equations, Hamiltonian formalism, Quantized Lagrangian field theory, Canonical commutation relations, The Klein-Gordon field, Second quantization, Hamiltonian and Momentum, Normal ordering, Fock space, The complex Klein-Gordan field: complex scalar field

Unit IV: Approximate Methods

Time independent perturbation theory, The Variational method, Estimation of ground state energy, The Wentzel-KramersBrillouin (WKB) method, Validity of the WKB approximation, Time-Dependent Perturbation theory, Transition probability, Fermi-Golden Rule

Books \& References:
1: Advance Quantum Mechanics by J. J. Sakurai (Pearson Education India)
2: Relativistic Quantum Mechanics by James D. Bjorken and Sidney D. Drell (McGraw-Hill Book Company; New York, 1964).
3: An Introduction to Relativistic Quantum Field Theory by S.S. Schweber (Harper \& Row, New York, 1961).
4: Quantum Field Theory by F. Mandl \& G. Shaw (John Wiley and Sons Ltd, 1984)

Session 2020-21

Lectures of Unit- I

Relativistic quantum mechanics (RQM)

Relativistic quantum mechanics (RQM) is formulation of quantum mechanics (QM) which is applicable to all massive particles propagating at all velocities up to those comparable to the speed of light \mathbf{c} and can accommodate massless particles.
$V=0$ to $c, m=0$ to $V \& m=$ infinite.

The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics.

- Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a nonrelativistic background, a few of them (e.g. the Dirac or path-integral formalism) also work with special relativity.

Madan Mohan Malaviya Univ. of Technology, Gorakhpur

RQMs have beauty and features to explore depth understanding of-

| The | prediction | of | matter | and | antimatter, | |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| -Spin | magnetic | moments | of | elementary | spin | fermions, |

-Fine structure, and quantum dynamics of charged particles in electromagnetic fields.
-Depth of high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics.
-The most successful (and most widely used) RQM is relativistic quantum field theory (QFT), in which elementary particles are interpreted as field quanta. A unique consequence of QFT that has been tested against other RQMs is the failure of conservation of particle number, for example in matter creation and annihilation.

Klein-Gordon equation

-The Klein-Gordon equation is a relativistic wave equation, related to the Schrödinger equation.
-It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy-momentum relation. Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles.
-Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of s calar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction (with unknown interaction term in the Hamiltonian, the practical utility is limited.

Schrödinger representation?

Equation

Time-dependent equation
The form of the Schrödinger equation depends on the physical situation (see below for special cases). The most general form is the time-dependent Schrödinger equation (TDSE), which gives a description of a system evolving with time:[5]:143

> Time-dependent Schrödinger equation (general)
> $i \hbar \frac{d}{d t}|\Psi(t)\rangle=\hat{H}|\Psi(t)\rangle$
where i is the imaginary unit, $\hbar=\frac{h}{2 \pi}$ is the reduced Planck constant having the dimension of action, ${ }^{[6][7][n o t e ~ 2]} \Psi$ (the Greek letter psi) is the state vector of the quantum system, t is time, and \hat{H} is the Hamiltonian operator. The position-space wave function of the quantum system is nothing but the components in the expansion of the state vector in terms of the position eigenvector $|\mathbf{r}\rangle$. It is a scalar function, expressed as $\Psi(\mathbf{r}, t)=\langle\mathbf{r} \mid \Psi\rangle$. Similarly, the momentum-space wave function can be defined as $\tilde{\Psi}(\mathbf{p}, t)=\langle\mathbf{p} \mid \Psi\rangle$, where

A wave function that satisfies the nonrelativistic Schrödinger equation with $V=0$. In other words, this corresponds to a particle traveling freely through empty space. The real part of the wave function is plotted here. $|\mathbf{p}\rangle$ is the momentum eigenvector.

The most famous example is the nonrelativistic Schrödinger equation for the wave function in position space $\Psi(\mathbf{r}, t)$ of a single particle subject to a potential $V(r, t)$, such as that due to an electric field. ${ }^{[8][n o t e ~ 3]}$

Time-dependent Schrödinger equation in position basis (single nonrelativistic particle)
$i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r}, t)\right] \Psi(\mathbf{r}, t)$
where m is the particle's mass, and ∇^{2} is the Laplacian.

Schrödinger representation?

Time-independent equation

The time-dependent Schrödinger equation described above predicts that wave functions can form standing waves, called stationary states.[Dote 4] These states are particularly important as their individual study later simplifies the task of solving the time-dependent Schrödinger equation for any state. Stationary states can also be described by a simpler form of the Schrödinger equation, the time-independent Schrödinger equation (TISE).

Time-independent Schrödinger equation (general)

$$
\hat{\mathbf{H}}|\Psi\rangle=E|\Psi\rangle
$$

where E is a constant equal to the energy level of the system. This is only used when the Hamiltonian itself is not dependent on time explicitly. However, even in this case the total wave function still has a time dependency.

Each of these three rows is a wave function which satisfies the time-dependent Schrödinger equation for a harmonic oscillator. Left: The real part (blue) and imaginary part (red) of the wave function. Right: The probability distribution of finding the particle with this wave function at a given position. The top two rows are examples of stationary states, which correspond to standing waves. The bottom row is an example of a state which is not a stationary state. The right column illustrates why stationary states are called "stationary".

In the language of linear algebra, this equation is an eigenvalue equation. Therefore, the wave function is an eigenfunction of the Hamiltonian operator with corresponding eigenvalue(s) E.
As before, the most common manifestation is the nonrelativistic Schrödinger equation for a single particle moving in an electric field (but not a magnetic field):

Time-independent Schrödinger equation (single nonrelativistic particle)

$$
\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right] \Psi(\mathbf{r})=E \Psi(\mathbf{r})
$$

with definitions as above. Here, the form of the Hamiltonian operator comes from classical mechanics, where the Hamiltonian function is the sum of the kinetic and potential energies. That is, $H=T+V=\frac{\|\mathbf{p}\|^{2}}{2 m}+V(x, y, z)$ for a single particle in the non-relativistic limit.

Energy-momentum relation

In physics, the energy-momentum relation, or relativistic dispersion relation, is the relativistic equation relating an object's total energy to its rest (intrinsic) mass and momentum. It is the extension of massenergy relation for objects in motion:

$$
E^{2}=(p c)^{2}+\left(m_{0} c^{2}\right)^{2}
$$

This equations holds for a system, such as a particle or macroscopic body, having intrinsic rest mass $m 0$, total energy E, and a momentum of magnitude p, where the constant c is the speed of light, assuming the special relativity case of flat spacetime.
The Dirac sea model, which was used to predict the existence of antimatter, is closely related to the energy-momentum equation.

Formulation of Relativistic

Quantum Theory

- Klein-G Equation

- Dirac Equayon: free particles
- Dirac Equation: interactions

$$
e^{+} e^{-} \nRightarrow \mu^{+} \mu^{-} \text {cross section }
$$

Klein-Gordon equation

The Klein-Gordon equation (Klein-Fock-Gordon equation or sometimes Klein-Gordon-Fock equation) is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy-momentum_relation. Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. ${ }^{[1]}$ Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the
pions are unstable and also experience the strong interaction (with unknown interaction term in the Hamiltonian, the practical utility is limited.
The equation can be put into the form of a Schrödinger equation. In this form it is expressed as two coupled differential equations, each of first order in time. ${ }^{[3]}$ The solutions have two components, reflecting the charge degree of freedom in relativity. ${ }^{[3][4]}$ It admits a conserved quantity, but this is not positive definite. The wave function cannot therefore be interpreted as a probability amplitude. The conserved quantity is instead interpreted as electric charge, and the norm squared of the wave function is interpreted as a charge density. The equation describes all spinless particles with positive, negative, and zero charge.

Any solution of the free Dirac equation is, component-wise, a solution of the free Klein-Gordon equation.
The equation does not form the basis of a consistent quantum relativistic one-particle theory. There is no known such theory for particles of any spin. For full reconciliation of quantum mechanics with special relativity, quantum field theory_is needed, in which the Klein-Gordon equation reemerges as the equation obeyed by the components of all free quantum fields. ${ }^{[n b}{ }^{11]}$ In quantum field theory, the solutions of the free (noninteracting) versions of the original equations still play a role. They are needed to build the Hilbert space (Fock space) and to express quantum field by using complete sets (spanning sets of Hilbert space) of wave functions.

Klein-Gordon Equation

For particles of rest mass m, energy and momentum are related by

$$
\begin{equation*}
E^{2}=m^{2} c^{4}+c^{2} \mathbf{p}^{2} \tag{3.1}
\end{equation*}
$$

If the particles can be described by a single scalar wavefunction $\phi(x)$, the prescription of non-relativistic quantum mechanics

$$
\begin{equation*}
\mathbf{p} \rightarrow-\mathrm{i} \hbar \nabla, \quad E \rightarrow \mathrm{i} \hbar \partial / \partial t \tag{3.2}
\end{equation*}
$$

Icads to the Klein-Gordon equation (2.27):

$$
\begin{equation*}
\left(\square+\mu^{2}\right) \phi(x)=0 \tag{3.3}
\end{equation*}
$$

Lorentz invariant Schrödinger eqn. ?

With the quantum mechanical energy \& momentum operators:

$$
\begin{aligned}
& \mathrm{E}=i \frac{\partial}{\partial t} \\
& \vec{p}=-i \vec{\nabla}
\end{aligned}
$$

$$
\text { recall: } p^{\mu}=(E, \vec{p}) \text { and } \partial^{\mu}=\left(\frac{\partial}{\partial t},-\frac{\partial}{\partial x},-\frac{\partial}{\partial y},-\frac{\partial}{\partial z}\right)=\left(\frac{\partial}{\partial t},-\vec{\nabla}\right)
$$

You simply 'derive' the Schrödinger equation from classical mechanics:

$$
\mathrm{E}=\frac{\boldsymbol{p}^{2}}{2 m} \rightarrow i \frac{\partial}{\partial t} \phi=-\frac{1}{2 m} \nabla^{2} \phi
$$

With the relativistic relation between E, p \& m you get:
$E^{2}=\boldsymbol{p}^{2}+m^{2} \rightarrow \frac{\partial^{2}}{\partial t^{2}} \phi=\nabla^{2} \phi-m^{2} \phi$

Free Klein-Gordon particle wave functions

With the quantum mechanical energy \& momentum operators:

$$
\begin{array}{ll}
\mathrm{E}=i \frac{\partial}{\partial t} & \text { recall: } \boldsymbol{p}^{\mu}=(\boldsymbol{E}, \overrightarrow{\boldsymbol{p}}) \text { and } \partial^{\mu}=\left(\frac{\partial}{\partial t},-\frac{\partial}{\partial x},-\frac{\partial}{\partial y},-\frac{\partial}{\partial z}\right)=\left(\frac{\partial}{\partial t},-\vec{\nabla}\right) \\
\vec{p}=-i \vec{\nabla} & \begin{array}{l}
\text { non-relativistic } E=\frac{p^{2}}{2 m} \text { yields Schrödinger equation: } i \frac{\partial}{\partial t} \phi=-\frac{1}{2 m} \nabla^{2} \phi
\end{array}
\end{array}
$$

We 'derived' Klein-Gordon equation from relativistic $E^{2}=\vec{p}^{2}+m^{2}$
$\frac{\partial^{2}}{\partial t^{2}} \phi=\nabla^{2} \phi-m^{2} \phi$ or $\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi=0$

'Simple' plane-wave solutions for ϕ : ??

Use 4-derivatives to make Klein-Gordon equation Lorentz invariant:

$$
\frac{\partial^{2}}{\partial t^{2}} \phi=\nabla^{2} \phi-m^{2} \phi \rightarrow\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi \quad=0
$$

'Simple' plane-wave solutions for ϕ : ??
1 Let the som \& eak-ci-egt

$$
\left(\partial^{\mu} \partial \mu+\frac{m^{2} c^{2}}{h^{2}}\right) \varphi(x)=0,1 \text { in m }
$$

farm of blare wave is:

$$
Y(x)=\psi(k) e^{-i k x}=Y(k) e^{-i k_{\mu} x^{\mu}} \xrightarrow{ }
$$

where 4 -wet k is defined on

$$
k^{4}=\left(\frac{0}{c}, R^{4}\right) \rightarrow B
$$

The $\frac{-c}{k} \xrightarrow[i s]{ } \xrightarrow{i s}$ freq. of wave 2 \& $\therefore 4$-momentum veetr could be:-

$$
b^{\mu}=\left(\frac{\square}{c}, \vec{A}\right)=\left(\frac{\hbar \omega}{c}, \hbar \vec{R}\right) \rightarrow \infty
$$

'Simple' plane-wave solutions for $\phi:$??
2 foom (o) $\& 2$

$$
\begin{aligned}
& \partial^{\mu} \partial \mu \psi(x)=\psi(k) \partial^{\mu}\left(\frac{\partial}{\partial x^{\mu}} e^{i k \mu x^{\mu}}\right) \\
& =P(k) \partial^{\mu} \text { (-iku } e^{-i k u x \mu)} \\
& =-k^{2 r} p \mu(k) e^{-i k x^{2 l}} 5 \\
& \text { Use above in equ (o) oren k.c. } \\
& \text { oax becares: }
\end{aligned}
$$

$$
\left(k^{\mu} k \mu-\frac{m^{2} c^{2}}{t^{2}}\right) \psi(x)=0 \rightarrow \square
$$

G which can be solnet for

$$
\begin{aligned}
& z^{\mu} b_{\mu}=\frac{m^{2} c^{2}}{\hbar^{2}} \\
& , \quad \frac{\omega^{2}}{c^{2}}-k^{2}=\frac{m^{2} c^{2}}{\hbar^{2}} \\
\Rightarrow & \hbar^{2} \omega^{2}-b^{2} k^{2} c^{2}=m^{2} c^{4} \\
\Rightarrow & h^{2} \omega^{2}=m^{2} c^{4}+b^{2} c^{2} \\
& \quad k^{2}=b^{2} c^{2}+m^{2} c^{4} .
\end{aligned}
$$

Probability \& current densities ??

Probability \& current densities

Probability \& current densities Cont..
4 taking couplex convesat I akc. oqn, we set

$$
\nabla^{2} y^{*}-\frac{1}{c^{2}} \frac{\partial^{2} t^{*}}{\partial t^{2}}-\frac{m^{2} c^{2}}{t^{2}} \psi^{*}=0 \quad \overrightarrow{-x}
$$

muespleses (15 RCOH my $t^{2} e+$ votp
\rightarrow fom left $\&$ riput we get

$$
\begin{align*}
& \psi^{2} \sigma^{2} \psi-\frac{1}{c^{2}} \psi=\frac{\partial^{2} \phi}{\partial \lambda^{2}}-\frac{m^{2} c^{2}}{\hbar^{2}} \phi^{2} \psi=0 \tag{63}\\
& 4 \nabla^{2} \psi^{x}-\frac{1}{c^{2}} \psi \frac{\partial^{2} \phi^{*}}{\partial x^{2}}-\frac{m^{2} c^{2}}{x^{2}}+\psi=\varnothing \\
& \text { sebrom } \\
& 15-16
\end{align*}
$$

$$
\psi \nabla^{2} \psi-\psi \nabla^{2} \psi-\frac{1}{c^{2}}\left[\psi \frac{\partial^{2} \psi}{\partial \psi^{2}}-\psi \frac{\partial^{2} p^{2}}{\partial \theta^{2}}\right]=0
$$

or, $\rightarrow\left[\psi^{2} \nabla \varphi-\psi \nabla \psi^{2}\right]-\frac{1}{c^{2}} \frac{\theta}{\partial y}$
T x* d甘 $2 V^{2020 / 9111}$

Probability \& current densities Cont.

$$
\begin{aligned}
& 5
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\partial}{\partial t}\left[\frac{\hbar}{2 i m c^{2}}\left(P \frac{\partial \psi^{*}}{\partial t}-\psi \times \frac{\partial p}{\partial t}\right)\right]=\{ \\
& \text { put } \rho(\bar{r}, t)=\frac{t}{2 \operatorname{imc}^{2}}\left(\psi \frac{\partial \varphi^{x}}{\partial t}-\varphi^{x} \frac{\partial \varphi}{\partial r}\right) \rightarrow \text { at } \\
& \text { e } \quad \vec{j}(r, t)=\frac{h}{2 i m}\left(p \quad \nabla-\varphi>\boldsymbol{p}^{2}\right. \\
& \text { ean (T) becomen. } \\
& \nabla \cdot \vec{J}(r, t)+\frac{\partial \rho}{\partial t}(r, t)=0 \\
& \text { wish is unde bvown oquation of } \\
& \text { consinuits. }
\end{aligned}
$$

Difficulties with Probability densities
Di Micuety aron $\rho(\bar{r}, t)$:-
in sean (IO cunt density jor, i) have the same som as in ho u-
relativist he cone, but the $\rho(v$,
can not be interpreted as
position probability densiks in anolasy into now selativistc
3 anolasy in which $\rho(\vec{r}, A)=4^{*} \psi$,
) be came if following season:-

$$
\begin{gathered}
P(\bar{\gamma}, t)=\frac{\hbar}{2 i m c^{2}}\left(\psi \frac{\partial \varphi^{p}}{\partial t}-\varphi^{\nu} \frac{\partial P}{\partial \rho}\right) \\
=\frac{1}{2 m c^{2}}\left[\left(-i \hbar \frac{\partial \psi^{\psi}}{\partial t}\right) \psi\right.
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow P\left(v_{0} t\right)=\frac{h}{2=i c^{2}}\left(t \frac{\partial y^{p}}{\partial t}-\varphi \frac{\partial x}{\partial \theta}\right) \\
& =\frac{1}{2 m c^{2}}\left[\left(-\dot{\hbar} \frac{\partial \psi^{*}}{\partial t}\right) t\right. \\
& \left.+\psi^{*}\left(i \hbar \frac{\partial \psi}{\partial \tau}\right)\right] \\
& \left.=\frac{1}{2 m a}\left[\epsilon E \psi^{*}\right) \psi+\psi^{*}(E \psi)\right] \\
& =\frac{1}{2 m c^{2}}\left[E \psi^{\infty} \psi+E \infty\right] \\
& \rho(\bar{x}, 0)=\frac{E}{m c^{2}}\left[\psi^{\infty} \infty\right] \text {] } \\
& \because E= \pm \sqrt{p^{2} c^{2}+w^{2} c u}
\end{aligned}
$$

$\overrightarrow{c a n} t \rightarrow$ enessu of a poncribe can be eithen the or we. $\Rightarrow \quad \rho(\bar{r}, \Rightarrow) \geq 3$ nat deplisely
\Rightarrow st is not reganded as cancusinal pooviling tend.

Dirac Relativistic Equation??

14 mathematical formulation :-1

Dirac
Relativistic
Equation Cont.

$$
\begin{aligned}
& \because E \psi=H \psi \\
& , \ldots \frac{2 \hbar \cdot \partial \psi}{\partial t}=H \psi
\end{aligned}
$$

Dirac. for an equpwloch, H is linear in energy \& mavutiou.

in time derivative f space derivatives ar will. Pis eau have the form:

$$
\begin{aligned}
& \begin{array}{l}
i \hbar \frac{\partial \varphi\left(x^{\prime}\right)}{\partial t}=\left[\begin{array}{l}
\left.c(\vec{\alpha} \cdot \bar{P})+\beta m^{2}\right) \psi(x, t) \\
=H \Psi(x, \rightarrow)
\end{array}\right]
\end{array} \\
& =H Y(x,-) \\
& 4-C \vec{\alpha} \cdot \vec{p}+\beta w_{2020 / 9 / 18}^{2} \text { 08:05 }
\end{aligned}
$$

Dirac
Relativistic

$$
\begin{aligned}
& \begin{aligned}
\\
\left.i \hbar \frac{\partial \varphi(x)}{\partial t}=\left[\begin{array}{l}
c \\
\\
\end{array}(\overrightarrow{2} \cdot \bar{P})+\beta m^{2}\right)\right] \psi(x, t)
\end{aligned} \\
& \text { Here, } H=c_{0} \overrightarrow{2} \cdot \vec{p}+\beta m c^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\beta m c^{2}+\frac{\hbar c}{i}\left(2, \frac{\partial}{\partial x^{2}}+2=\frac{\partial}{\partial x^{2}}\right. \\
& \left.+\alpha_{3} \frac{\partial}{\partial x^{0}}\right)
\end{aligned}
$$

here $P_{1}, P_{2}, P_{3} \equiv \frac{\hbar}{i} \frac{\partial}{\partial x^{4}}, \frac{\hbar}{i} \frac{\partial}{\partial x^{2}}, \frac{\hbar \theta}{i x^{3}}$
are the components of the monentin, understood to be she momentous operator.

$$
\left.H=-i \hbar c(\vec{\alpha} \cdot \vec{\nabla})+\beta m c^{2}\right\}^{2}
$$

Dirac Relativistic Equation Cont.
$16 \therefore$ Dirac -an can be utter in defect form:-

$$
\begin{gathered}
{\left[\beta m c^{2}+c\left(\sum_{n=1}^{3} \alpha_{n} p_{n}\right)\right] \psi\left(x_{n} \rho\right)=i-\frac{\partial \psi(n}{\partial t}} \\
\frac{\hbar c}{i}\left(\alpha_{1} \frac{\partial \psi}{\partial x^{i}}+\alpha_{2} \frac{\partial \psi}{\partial x^{2}}+\alpha_{3} \frac{\partial \phi}{\partial x^{2}}\right)+\beta m^{2} \psi \\
=i \frac{\partial \psi}{\partial t}
\end{gathered}
$$

or,

$$
\begin{aligned}
{\left[c \vec{\alpha} \cdot(-i \hbar \vec{\nabla})+\beta m c^{2}\right] \psi\left(x_{0} t\right) } & =\frac{i \hbar+t}{\partial t} \\
& =E \Psi
\end{aligned}
$$

simply

$$
\int_{\operatorname{Simple}}^{\operatorname{Sim}} \underset{\rightarrow T}{ }
$$

$$
\begin{aligned}
17\left(c \vec{\alpha} \cdot(-i \hbar \overrightarrow{\vec{v}})+\beta m \alpha^{2}\right) \psi(x, t) & =\frac{2 \hbar}{2 \lambda} \\
& =E \Psi
\end{aligned}
$$

Dirac
Relativistic Equation Cont.

Diraces purtose in cartiry this eqn wos to extlain she behavian of oh. relativistically maving el, \& so to allo the atom to preated in a mannier Consistert eith the relatinty.

- Dirac's eq had for deaper implications for the structure of vocter \& introduced new nathematical classes of objeols. that are now ensentide elements of findainental Agm 2 A .

18 New things in Dirac's eq 3) is how to find ont :-

Dirac
9×4 Disc matrices $\alpha_{2}\left(\operatorname{lor} \alpha_{i}\right)$
\& 4-conponect wave frechise ψ.
operating the er (5) by $\left(E+c \vec{\alpha} \cdot p^{0}+\beta m c^{2}\right)$ Sim left, (t) we set

$$
\left(E+c \vec{\alpha} \cdot \bar{p}+\beta m c^{2}\right)\left(E-c \vec{\alpha} \cdot \bar{p}-\beta m \theta^{\gamma}\right\rangle
$$

or,

$$
\left[E^{2}-\left(c \vec{\alpha} \bar{p}+\beta m c^{2}\right)^{2}\right] p=0
$$

$$
\left\{\begin{array}{l}
\left\{E^{2}-c^{2}(\overrightarrow{2}-\vec{p})^{2}-\beta^{2} m^{2} c^{4}\right. \\
-m c^{3}(\overrightarrow{2} \cdot \vec{p}) \beta-m c^{3} \beta \overrightarrow{2} \cdot \vec{\beta}+\vec{b}
\end{array}\right.
$$

$$
\therefore \text { (b) }
$$

$$
\begin{aligned}
E^{2} & -c^{2}\left(\alpha_{x} p_{x}+\alpha_{1} p_{4}+\alpha_{3} p_{3}\right)^{2} \\
& -p^{2} m^{2} c^{4}-m c^{3}\left(\alpha_{x} p_{x}+\alpha_{y} p_{y}+\alpha_{3} B_{3}\right) \beta
\end{aligned}
$$

Dirac
Relativistic
Equation Cont.
or,

$$
\left[E E^{2}-c^{2} \sum \alpha_{x}^{2} P_{x}^{2}+\alpha_{y}^{2} P_{y}^{2}+\alpha_{3}^{2} P_{z}^{2}+\right.
$$

$$
\left(\alpha_{x} \alpha_{y}+\alpha_{y} \alpha_{x}\right) P_{x} P_{y}+
$$

$$
\left(\alpha_{y} \alpha_{3}+\alpha_{3} \alpha_{y}\right) P_{y} P_{3}+
$$

$$
\left.\left(\alpha_{z} \alpha_{x}+\alpha_{x} \alpha_{z}\right) P_{z} P_{x}\right\}-\beta^{2} w^{\prime} c^{\prime}
$$

$$
-m c^{3}\left\{\left(\alpha_{x} \beta+\beta \alpha x\right) \text { pr }+\right.
$$

$$
(\alpha y \beta+\beta \alpha y) P_{y}+
$$

$$
\left.\left.\left(\alpha_{z} \beta+\beta \alpha_{z}\right) p_{z}\right\}_{20,9 / 18}\right]_{2}=0
$$

$$
\text { 20 20, } 0^{\prime \prime} / 1808
$$

$$
\left[2 z^{2}-c^{2} \sum \alpha_{x}^{2} p_{x}^{2}+\alpha_{3}^{2} p_{y}^{2}+\alpha_{3}^{2} p_{3}^{2}+\right.
$$

Dirac
Relativistic Equation Cont.

$$
\begin{gathered}
\left(\alpha_{x} \alpha_{y}+\alpha_{y} \alpha_{x}\right) P_{x} P_{y}+ \\
\left(\alpha_{y} \alpha_{3}+\alpha_{z} \alpha_{y}\right) P_{y} P_{3}+ \\
\left.\left(\alpha_{z} \alpha_{x}+\alpha_{x} \alpha_{z}\right) P_{z} P_{x}\right\}-\beta^{2} m^{2} c^{4} \\
-m c^{3}\left\{\left(\alpha_{x} \beta+\beta \alpha_{x}\right) P_{x}+\right. \\
\left(\alpha_{y} \beta+\beta \alpha_{y}\right) P_{y}+ \\
\left.\left.\left(\alpha_{z} \beta+\beta \alpha_{z}\right) P_{z}\right\}\right] \Psi=0
\end{gathered}
$$

abso, whe knowe frmk.4-equ tero

$$
\left[E^{2}-c^{2}\left(P_{x}^{2}+P_{y}^{2}+P_{s}^{2}\right)-m^{2} c^{2}\right] y>G
$$

combaning (8) R(I), we cas got that, bue both are may stent , ie surreof If Four natices $\alpha_{i}\left(=\alpha_{x}, d_{y}, \alpha_{3}\right)$ 2020'9 fhe

27mabry al seibsa:-

Dirac
Relativistic
Equation Cont.

Ci $\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}$. Ci $\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=0 \alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{2}=2 \sum_{i j}(10.0$

$$
\text { ग.e. }\left\{\begin{array}{l}
\alpha_{x} \alpha_{y}+\alpha_{y} \alpha_{x}=0 \\
\alpha_{y} \alpha_{z}+\alpha_{z} \alpha_{y}=0 ; \\
\alpha_{z} \alpha_{x}+\alpha_{x} \alpha_{z}=0
\end{array}\right\}!
$$

(i1) $\quad \alpha i k+k \alpha j=0$ \square
\rightarrow II

$$
\left[\begin{array}{l}
\alpha_{x} \beta+\beta \alpha_{x}=0 ; \\
\alpha_{y} \beta+\beta \alpha_{y}=0 ; \\
\alpha_{z} \beta+\beta \alpha_{z}=0
\end{array}\right]
$$

anticonumute wih ove sint pean
,e. mey anticominat
(15)

$$
\begin{align*}
& \alpha_{i}{ }^{2}=\beta^{2}=1=\text { Identiy. } \\
& \text { matix. } \\
& \alpha_{x}^{2}=\alpha_{y}^{2}=\alpha_{z}^{2}=\beta^{2}=1
\end{align*}
$$

$$
\begin{aligned}
& 22\left[E \psi+\hbar^{2} c^{2} \sum_{i, j=1}^{3} \frac{\alpha_{j} \alpha_{i}+\alpha_{i} \alpha_{j}}{2} \frac{\partial^{2} \psi}{\partial x^{i} \partial x^{j}}\right. \\
& \frac{-\hbar m c^{3}}{i} \sum_{i=1}^{3}\left(\alpha_{i} \psi+\beta \alpha_{i}\right) \frac{\partial \psi}{\partial x^{4}} \\
& \left.-\beta^{2} m^{2} c^{4} \psi\right] \psi=0
\end{aligned}
$$

Dirac Relativistic Equation Cont.

$$
\begin{gathered}
\text { or, })+\frac{\hbar m c^{3}}{i}() \\
+\beta^{2} \psi=-\hbar^{2} c^{2}\left(m^{2} c^{4} \psi\right. \\
-\hbar^{2} \frac{\partial^{2} \psi}{\partial t^{2}}=-\hbar^{2} c^{2}()+\frac{\hbar m e^{3}}{i}() \\
+\beta^{2} m^{2} c^{4} \psi
\end{gathered}
$$

Properties of four matrices $\alpha:<\beta=1$

Dirac Cont.
(c) The α_{i} \& β must be Hermitian matrices.

Component of Hamiltonian opbearig in $\sigma^{\text {th }}$ row $\& \tau^{\text {th }}$ column o:

$$
\begin{aligned}
\hat{H}_{\sigma \tau}= & \frac{\hbar c}{i}\left(\alpha_{1} \frac{\partial}{\partial x^{1}}+\alpha_{2} \frac{\partial}{\partial x^{2}}+\alpha_{3} \frac{\partial}{\partial x^{2}}\right) \sigma_{\tau} \\
& +\beta_{\sigma} \tau^{m c^{2}}
\end{aligned}
$$

Since, $f_{\sigma} \tau$ is physically observalle \& Hermitian operator \& sum of Hermitian operator is abs Hermitian obevare. Therefore α;'s $\alpha \beta$ are also Hermitian operator.

24 operator. Therefore α_{i} s $\& \beta$ are

Dirac Relativistic Equation Cont.
(e) Eigen values of α is \& β :-

Eigen value eqn is

$$
\begin{aligned}
& A|\psi\rangle=a|\psi\rangle \\
\Rightarrow & \alpha_{i}|\psi\rangle=\lambda|\psi\rangle \\
\Rightarrow & \alpha_{i}{ }^{2}|\psi\rangle=\alpha_{i}(\lambda|\psi\rangle) \\
\Rightarrow & |\psi\rangle=\lambda\left(\alpha_{i}|\psi\rangle\right. \\
\Rightarrow & |\psi\rangle=\lambda^{2}|\psi\rangle \\
& \lambda^{2}= \pm 1
\end{aligned}
$$

Now,
$\Rightarrow 25$ eigenvalues of α_{i} 's \& β are real le. ± 1.
(3) $\alpha ;, 5$ \& β ere anticominutater
grom ean (10), we have

$$
\because \quad \alpha_{j} \alpha_{k}+\alpha_{k} \alpha_{j}=2 \delta_{j k}
$$

if $j \neq k$ oun

$$
\begin{gathered}
\alpha_{j} \alpha_{k}+\alpha_{k} \alpha_{j}=0 \\
\Rightarrow\left\{\alpha_{j}, \alpha_{k}\right\}=0 \\
\& \quad \alpha_{i} \beta+\beta \alpha_{i}=0 \\
\Rightarrow\left\{\alpha_{i}, \beta\right\}=0
\end{gathered}
$$

(4) Trace of $\alpha_{i}^{\prime \prime s}$ \& β matrices

Dirac Relativistic Equation Cont. are zero.
from ear $t+$, we have

$$
\begin{aligned}
& \alpha_{i} \beta=-\beta \alpha_{i} \\
& \Rightarrow \quad \alpha \beta \beta=-\beta \alpha_{j} \beta \\
& \Rightarrow \alpha_{i}=-\beta \alpha_{i} \beta \\
& \therefore \quad \text { Trace }\left(\alpha_{i}\right)=\text { Trace }\left(-\beta d_{i} \beta\right) \\
& =-\operatorname{Trave}\left(\alpha ; \beta^{2}\right) \\
& \left\{\because \operatorname{Tr}[A B C]=\operatorname{Tr}\left[C^{2}\right]\right. \\
& =-\operatorname{Trare}(\alpha ;) \\
& \Rightarrow \frac{\text { Trace }(\alpha ;)=0}{\alpha ; \beta=-\beta \alpha ;} \\
& \Rightarrow \quad \alpha_{i}^{2} \beta=-\alpha \beta \alpha ; \\
& \Rightarrow \quad B=-\alpha_{i} \beta \alpha ;
\end{aligned}
$$

$$
\begin{align*}
& 27 \Rightarrow \operatorname{Tr}(\beta)=-\operatorname{Trace}\left(\beta \alpha_{i}^{2}\right) \\
&=-\operatorname{Trace} \beta \\
& \Rightarrow \quad \operatorname{Trace}(\beta)=0
\end{align*}
$$

Dirac
eau (90) $4(4 B$, shows mat the trace of each of matrices $\alpha_{i} \nless \beta$ must be zero.
(5) Dimension of $\alpha_{i}{ }^{\prime}$ s \& β 'मixatrices

Since the trace is jut the sum of eigenvalues, the number f the \& wee eigenvalue ± 8 must be equal and the α \& \& β must be equal and the be even dimensinal
therefore be

28 matrix ripresentation of ${ }_{2}$ is 4 β Disac matrices

Dirac
Relativistic Equation Cont.

Since we. know that mortices $\alpha_{i} \alpha \beta$ are s.t. their squares = mity \& they anticommute wirh anothen. As, we alrexdy know that theor are 3 wele known 2×2 matrice σ_{x}, σ_{y}, σ_{y} (which ärecalle d as Paceli stin matrices). Whilh ove ixdobendent \& non-commuting matrices q siven as \rightarrow

$$
\begin{aligned}
& \sigma_{x}=\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma_{y}=\sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \sigma_{3}=\sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

(6a)
(6b)
$6 c$
as
29 independent \& non-commuting

Dirac
Relativistic
Equation Cont. matrices g sven $a_{s} \rightarrow$

$$
\begin{aligned}
& \sigma_{x}=\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma_{y}=\sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \sigma_{3}=\sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

(ba)

There 3 Pauli sion matrices are satisfying following properties:cis $\left(\sigma^{1}\right)^{2}=\left(\sigma^{2}\right)^{2}=\left(\sigma^{3}\right)^{2}=1$
(1)

$$
\begin{aligned}
& \sigma_{1}^{1} \sigma^{2}=i \sigma^{3} \\
& \sigma^{2} \sigma^{3}=i \sigma^{1} \\
& \sigma^{3} \sigma^{1}=i \sigma^{2}
\end{aligned}
$$

Dirac
Relativistic Equation Cont.

$$
\begin{align*}
& \sigma^{R} \sigma^{R} l=s^{R l}+i \epsilon^{k l m} \sigma^{m}
\end{align*}
$$

\& Also if we take

$$
\alpha^{i}=\sigma_{2+2 \text { matrix }}(i=1,2,3 \text { or } x, 3,3)
$$

\& $\beta=I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
Clearly, these fam matrices are linearly independat matrices.
because three matrices $\sigma_{x}, \sigma_{y}, \sigma_{3}$ one already indepentuct hence over omer fourth lineavey indent of there native is $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. we can see that ate rn above four matrix satisfied the Condibiea 10 \& 12

30awe can see that th, attime above four matrix satishied the

Dirac
Relativistic Equation Cont.

Condiniar $10 \& 12$

$$
\begin{gathered}
\text { ne. } \alpha_{j} \alpha_{k}+\alpha_{k} \alpha_{j}=2 \delta_{j k} \\
\& \alpha_{i}^{2}=\beta^{2}=1
\end{gathered}
$$

but it can's gll flled ha candin's or (i1) $c . \quad \alpha, \beta+\beta^{2} i=0$.
becaue as β is a unt matrixe 4 Therofore if cirl commute winh each α; rathar to anticommete with overy α; hence β as a unt matix not satidjing all the propenties of Disac pativies.

31 Now, we, will shaw that The next simplest choice is they are 4×4 matrices

Dirac
Relativistic Equation Cont..
rather to 3×3 matrices as we. know that Disc matrices $\alpha_{i} \& \beta$ onanist be even dimentinal.

$$
\therefore
$$

we vise choose β matrix as.

$$
\beta=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Since β anticommute curls all the components of α_{i} hence α_{i} abs should be 4×4 matrix. There fore; ustry fault sim matrices $\sigma_{x}, \sigma_{y} \& \sigma_{3}$ we can have $\alpha_{x}, 4_{x} \alpha_{3}$ as follows : -

There fore; using pauli sym manes

Dirac
Relativistic Equation 32 Cont..

$$
\begin{aligned}
& 32 \\
& \alpha_{x}=\alpha_{1}=\left(\begin{array}{cc}
0 & \sigma_{x} \\
\sigma_{x} & 0
\end{array}\right)=\left(\begin{array}{cc:cc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\hdashline 0 & i & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
& \alpha_{y}=\alpha_{2}=\left(\begin{array}{ll}
0 & \sigma_{y} \\
\sigma_{y} & 0
\end{array}\right)=\left(\begin{array}{cc|cc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
\hdashline 0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right. \\
& \& \alpha_{z}=\alpha_{3}=\left(\begin{array}{lll}
0 & \sigma_{z} \\
\sigma_{z} & 0
\end{array}\right)=\left(\begin{array}{cc|cc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right.
\end{aligned}
$$

Add there 4×1 matrices arno Hesnition $\&$ in abbriniate form they can be expressed as toll aw.

Dirac Relativistic Cont.

$$
\beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) ; \vec{\alpha}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right)
$$

where each element is a matrix of a rows \& \&
clearly, All the above four matrices satisfies, all the condition of (10) (10) (12) If Dirac matrices by heep of above ean^{n} ba.

$$
\begin{aligned}
2^{i} \alpha^{j} & =\left(\begin{array}{cc}
0 & \sigma^{i} \\
\sigma & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma j \\
\sigma^{j} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sigma_{i} & \sigma^{j} \\
0 & \sigma^{i} \sigma^{j}
\end{array}\right)
\end{aligned}
$$

34
clearly, All the above clearly, All the satisfies, all

Dirac
Relativistic
Equation Cont. the conditions of (10) (10) (N) of Dirac matrices by heep of above en ba.

$$
\left.\begin{array}{rl}
2^{j} \alpha^{j} & =\left(\begin{array}{cc}
0 & \sigma^{j} \\
\sigma & 0
\end{array}\right)\left(\begin{array}{ccc}
0 & \sigma^{j} \\
\sigma^{j} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sigma^{i} \sigma^{j} & \sigma^{i} \sigma^{j}
\end{array}\right) \\
0 & \sigma^{i j}+i \sum_{k=1}^{3} \epsilon^{i j k}\left(\begin{array}{cc}
\sigma_{k} & 0 \\
0 & \sigma_{k}
\end{array}\right) \\
\alpha^{i} \alpha j & =\delta^{i j}+i \epsilon^{i j k} \sum k
\end{array}\right) .
$$

$\left\{\right.$ when $\left.\Sigma^{k}=\left(\begin{array}{ll}\sigma_{p} & 0 \\ 0 & \sigma_{R}\end{array}\right)\right\}$

Dirac
Relativistic Equation Cont.

Suplose β can be wilton on a linean combination of α_{i} 's then :-

$$
\beta=b_{i} \alpha_{i} \longrightarrow(i)
$$

$$
\begin{array}{ll}
\because & \alpha_{j} \beta+\beta \alpha_{j}=0 \\
\Rightarrow & \alpha_{j} b_{i} \alpha_{i}+b_{i} \alpha_{i} \alpha_{j}=0 \\
\Rightarrow & b ;\left(\alpha_{j} \alpha_{i}+\alpha_{i} \alpha_{j}\right)=0 \\
\Rightarrow & b_{j}\left(2 \sigma_{j i}\right)=0 \\
\Rightarrow & \\
& 2 b_{j}=0 \\
\text { Inm, } & \\
& b_{j}=0 \quad(-j=1,2,3)
\end{array}
$$

?.e. β can not be witten as a linean Combinatis of α; 's.
finilaviz, α; can not be visten as linear combination g α;,$~ \& \beta$.

Croba bility Density \& cunt 36 Density: True interpreting

Dirac H : True continue by equation
me will now chock whether the Dirac equation leads is the cornet probability density or not.
As we know the Dirac reladinstic eq n is :-

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=\frac{\hbar c}{i} \sum_{k=1}^{3} \alpha_{k} \frac{\partial \psi}{\partial x^{2}}+\beta m c^{2} \psi \tag{1}
\end{equation*}
$$

- As $\alpha_{i} \& B$ are 4×4 notices then P will be 4×1 col omen man

$$
\psi=\left[\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{3}
\end{array}\right]
$$

37 it $\frac{\partial \psi}{\partial t}=\frac{\hbar c}{i} \sum_{k=1}^{3} \alpha_{k} \frac{\partial \psi}{\partial x^{k}}+\beta m c^{2} \psi$

Dirac
Relativistic Cont.

38 multivy eq (8) by ψ^{2} dou left and ears 2 by 4 frem oright \&ses suntert (1) - (2)

Dirac
Relativistic
Equation Cont.

$$
\begin{aligned}
& i \hbar \psi^{*} \frac{\partial \psi}{\partial t}=\frac{\hbar c}{i} \sum_{k=1}^{3} \psi^{*} \alpha_{k} \frac{\partial}{\partial x^{k}} \psi \rightarrow \mathrm{c}^{2} \psi \beta \psi \\
& -i \hbar \frac{\partial \psi^{k} \psi}{\partial t}=\frac{-\hbar c}{i} \sum_{k=1}^{3} \frac{\partial \varphi^{*}}{\partial x^{k}} \alpha_{k}^{\psi}+m^{2} x^{2} \beta \psi \\
& \begin{aligned}
& i \hbar\left[\psi^{*} \partial_{x} \psi+\partial_{\star} \psi^{*} \psi\right]=\frac{\hbar c^{2}}{i}\left({\overline{\sum_{21}^{\prime \prime}}}_{\psi^{3}} \alpha_{k} \theta_{k} \psi\right. \\
&\left.+\partial_{k} \psi^{*} \alpha_{k} \psi\right)
\end{aligned} \\
& \text { \{where } \left.\partial_{t}=\frac{\partial}{\partial t} \& \partial_{k}=\frac{\partial}{\partial x^{k}}\right\} \\
& \Rightarrow i \hbar \frac{\partial}{\partial t}\left(\psi^{*} \psi\right)=-i t c \sum_{k=1}^{3} \frac{\theta}{\partial x^{k}}\left(\psi^{*} \nu_{k} k\right) \\
& \text { or }_{1} \frac{\partial}{\partial t} \rho=-\frac{\partial}{\partial x^{k}}\left(c \phi^{\alpha} \alpha_{k} \nmid\right)
\end{aligned}
$$

$$
o_{1}^{39} \frac{\partial}{\partial t} \rho=-\frac{\partial}{\partial x^{k}}\left(c \psi^{k} \alpha_{k} \psi\right)
$$

Dirac
Relativistic Equation Cont..

$$
\begin{aligned}
& \text { or, } \frac{\partial s}{\partial t}+\frac{\partial}{\partial x^{k}}\left(c \varphi^{*} \alpha_{k} \psi\right)=0 \\
& \Rightarrow \frac{\partial s}{\partial t}+\frac{\partial}{\partial x^{k}}(j k)=0 \\
& \text { or, } \frac{\partial f}{\partial t}+\operatorname{div} \dot{j}=0
\end{aligned}
$$

where

$$
\begin{aligned}
& \rho=\psi^{\infty} \psi=\text { probalikility } \\
& \rho=\sum_{r=1}^{4} \psi_{r}^{x} \psi_{\sigma}
\end{aligned}
$$

40 \& P rbability curvert deming

Dirac
Relativistic Equation Cont.

41 \& Probability cumert deming

Dirac
Relativistic Equation Cont.

$$
1 j^{j^{k}}=c \psi^{k} \alpha_{k}^{\psi}
$$

G with three compacts.
covariant form. for an" (3)

$$
\begin{aligned}
& \frac{c}{c} \frac{\partial}{\partial \theta}\left(\varphi^{\infty} \psi\right)+\sum_{i=1}^{3} \frac{\partial}{\partial x_{k}}\left(c \psi^{\infty} \alpha_{2} \theta\right)=d \\
& \text { or } \frac{\partial}{\partial(x)}(<-+p)+\sum_{k=1}^{B} \frac{\partial}{\partial x^{2}}\left(<\psi^{-}+x\right) \infty \\
& \text { or, } \quad \frac{\partial}{\partial x_{0}}(j 0)+\sum_{n=1}^{3} \frac{\partial}{\partial x^{2}}(j k)=0 \\
& \text { N. } \quad \sum_{\mu=0}^{4} \frac{\partial}{\partial x^{\mu}}(j \mu)=0 \\
& \Rightarrow \sqrt{ } \quad \partial i^{\mu}=0
\end{aligned}
$$

where ja $=\left(j^{0}, j^{3}, 3^{2}, j^{3}\right)$

$$
\begin{gathered}
=\left(c \psi^{2} \varphi, c \psi^{2} \alpha_{2} \psi, c \psi^{\psi} \alpha_{y} \psi,\right. \\
\left.c \psi^{\psi} \alpha_{3} \psi\right)
\end{gathered}
$$

Covariance form of the Dirac Equation
Covaisen-e tome of the Abece
Equation:
quation:-

muetsty divac -q 2
$i \hbar \frac{\partial \psi}{\partial t}=\frac{t c}{i} \tau_{i} \frac{\partial y}{\partial x}+\psi^{2}=c^{2} \psi \rightarrow C$
equas forting.

$$
\text { y } \frac{\beta / 2}{} \text { e we will inpobul }
$$

$$
\begin{aligned}
& \text { a motiar } \\
& \qquad \gamma^{0}=p \quad \gamma^{3}=p \alpha, i=1,3 \\
& e \text { wele wet as fllowe: }
\end{aligned}
$$

$$
i \hbar \beta \frac{\partial \psi}{x(t)}=-i \hbar\left[\beta \beta_{n} \frac{\partial v}{\partial x^{x}}\right]+m c \psi
$$

$$
\left.\begin{array}{c}
i \hbar\left[\beta \frac{\partial \phi}{\partial x^{2}}+\beta \alpha, \frac{\partial \psi}{\partial x^{2}}+\beta \alpha_{2} \frac{\partial \psi}{\partial x^{2}}+\beta^{\alpha} \frac{\partial \alpha^{2}}{\partial x^{2}}\right] \\
-\left(x_{c} c\right) \psi=0
\end{array}\right]
$$

$$
-(x c) \psi=0
$$

$$
i \hbar\left[r^{0} \frac{\partial \varphi}{\partial x^{0}}+r^{4} \frac{\partial \psi}{\partial x^{1}}+r^{2} \frac{\partial \phi}{\partial x^{2}}+\frac{\left.\gamma^{3} \frac{\partial \psi}{\partial x^{3}}\right]}{}\right.
$$

$$
\operatorname{in} 0, \psi=0
$$

$$
i h\left[r^{0} \frac{\partial y}{\partial x^{0}}+\gamma^{k} \frac{\partial y}{\partial x^{k}}\right]-\left(x^{2}\right) \psi-0
$$

Covariance form of the Dirac Equation
In natural wits, the Dirac eqn una be written as

$$
\left(i r^{\mu} \partial_{\mu}-m\right) \begin{aligned}
& \psi=0 \\
& L \text { where } \psi \text { is a Vised } \\
& \text { spinor }
\end{aligned}
$$

In feynman notation, ne disc eft:

$$
(2 \phi-m) \psi=0)
$$

ψ is a multi-combenent object (Spinor).

$$
\bar{\psi}=\psi^{+} \gamma^{0} \text { takes care of } \bar{\gamma}^{+}=-\vec{\gamma}
$$

Eusefal in taking Hermitian conjugate of ole equation.

G ximua Matrices :-
It is important to realize in Dirace ean that, the wave funchizs (ψ) is now \&-combonent cotmin vector.
We wler now, introduce detail eprobertion, new matrices $\gamma \mu$. aljebrai of new matrices $\gamma \mu$.
Since. γ matrices are defined on:

$$
\gamma^{0}=\beta \quad \& \gamma^{\dot{j}}=\beta \alpha_{j} ; \dot{j}=1,2 \lambda
$$

f we have already ixtoduced that
wing pacll spin matrices, α if β matricesies ane

$$
\begin{array}{cc}
\text { defined cas }
\end{array} \alpha_{j}=\left(\begin{array}{cc}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right) \text { \& } \beta=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

where I donder unt 2×2 malrix \& Then the γ-matrices are.

$$
\begin{aligned}
V^{0} & =\beta=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right) \\
\& \gamma^{\dot{j}} & =\beta \alpha_{j}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \sigma_{j} \\
-\dot{\sigma j} & 0
\end{array}\right)
\end{aligned}
$$

e e
$\left\{r^{0}, r^{1}, r^{2}, r^{3}\right\}$ also hnoam a Divac matrices, ore a ret of conventronal matrices with specitic anti commutation rens

In Disece
Spinors facililitate shacethe combutations f are vey fundannowl to she Disac Eqre for relatinidicy Shin $\xlongequal[2]{ }$ toubeles.

In Dirac reproventadiong the for contravaiont gamma matices are:

$$
\left.\begin{array}{l}
\gamma_{0}^{0}=\left(\begin{array}{llll}
1 & & & \\
& & 1 & -1 \\
& & & -1
\end{array}\right)=\gamma^{1}=\left(\begin{array}{ccc}
& 1 & 1 \\
-1 & &
\end{array}\right) \\
\gamma^{2}=\left(\begin{array}{cccc}
0 & & & \\
0 & i & &
\end{array}\right), \gamma^{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{array}\right)
$$

other three are space like matrices. (2) follown anti

Properties of Gamma Matrices
properties of Divas γ-matices
(I) V^{θ} is Hemiction while γ^{j} are antihemition oberator.

Prool: \rightarrow Since $2 j \& \beta$ both one
Rence.
$\because \gamma^{0}=\beta \rightarrow \gamma^{\circ}$ is Hemition operact \& $\quad \vec{r}=\beta \alpha_{j}$

$$
\begin{aligned}
\vec{\gamma}=\beta \alpha_{j} & \left(\beta \alpha_{j}^{+}\right. \\
\Rightarrow\left(\gamma^{j}\right)^{+} & =(\beta)^{+} \\
& =\alpha_{j}^{+} \beta^{+} \\
& =2 j \beta \\
& =-\beta \beta_{j} \\
& =-\gamma^{j}
\end{aligned}
$$

$\Rightarrow \overrightarrow{\gamma^{\prime}}$ antikermition opentr.
(2) Anticommutation Property:-

$$
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} I
$$

$$
\text { or }\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 z^{\mu \nu} I
$$

where $j^{-n v}=\left(\begin{array}{ccc}1 & 0 & - \\ 0 & -i & -i \\ 0 & 0 & -i\end{array}\right)$
\& $\mathrm{J} \rightarrow 4 \times 4$ nit mortix)

$$
\begin{aligned}
& \ldots g_{00}=-g_{11}=-g_{22}=-g_{30}+1 \\
&-0 \text { tor } \mu \neq \nu
\end{aligned}
$$

$$
\sim g_{\mu \nu}=0 \text { for } \mu \neq \nu
$$

Properties of Gamma Matrices

Prof (xx)

$$
\begin{aligned}
& \gamma^{0} \gamma^{2}+\gamma^{\nu} \gamma^{0}, \nu \neq 0 \\
& r^{0} r^{2}+r^{2} r^{0}=0 \\
& \because \gamma^{\circ} \gamma^{\gamma}=\beta \alpha_{0}=\beta\left(-\alpha_{\gamma} \beta\right) \\
& \text { - }-\beta \alpha, \beta \\
& =-\gamma^{2} \beta \\
& =-\gamma^{2} \gamma^{0} \\
& \Rightarrow \sqrt{r^{0} r^{2}+r^{y} r^{0}}=0 \\
& \text { (ब) for } \mu \neq \nu \neq 0 \\
& \gamma^{\mu} \gamma^{\nu}=\left(\beta \alpha_{\mu}\right)\left(\beta \alpha_{\nu}\right) \\
& =\left(\beta \alpha_{\mu}\right)\left(-\alpha_{\nu} \beta\right) \\
& =-\beta\left(\alpha_{\mu} \alpha_{\nu}\right) \beta \\
& =\beta\left(\alpha_{\nu} \alpha_{\mu}\right) \beta \\
& =(\beta \alpha \nu)(2 \mu \beta) \\
& =-\gamma^{\nu} \gamma^{\mu} \\
& \Rightarrow \sqrt{\gamma^{\mu} \gamma^{\mu}+\gamma^{\nu} \gamma^{\mu}}=0
\end{aligned}
$$

(iii) for $\mu=v$

$$
\begin{aligned}
& \text { (iii) for } \mu=v \\
& \Rightarrow\left\{r^{\mu \nu} \nabla^{* v}\right\}=\left(r^{\mu}\right)^{2}+\left(r^{\mu}\right)^{2}
\end{aligned}
$$

 opecatr: $(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B)$
(2) $\operatorname{rr}(\operatorname{ra})=r \operatorname{tr}(A)$
(3) $\operatorname{Tr}(A B C)=\operatorname{Tr}(C+B)=\operatorname{Tr}(B C A)$
(3) Trace identities

The gamma matrices obey the following trace istentitias
(\&)(4)(4) $\operatorname{tr}_{\gamma}\left(\gamma^{\mu}\right)=0$

$$
\text { ne- } \gamma^{\mu \prime} \text { is are tracalesnmather }
$$

$$
\operatorname{Tr}\left(r^{*}\right)=\operatorname{Tr}(\beta)=\operatorname{Tr}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
$$

$$
\operatorname{Tr}\left(\gamma^{\dot{2}}\right)=T_{\gamma}\left(\gamma^{i}-\gamma^{\circ} \gamma^{\circ}\right) \quad\left\{\because\left(r^{\circ}\right)^{2}=1\right.
$$

$$
=\operatorname{Tr}\left(\boldsymbol{v}^{0} v^{j} r^{o}\right)
$$

$$
\left\{\begin{array}{c}
\because \operatorname{Tr}(A B C)=\operatorname{Tr}(C A B) \\
=\operatorname{Tr}(B C A)
\end{array}\right.
$$

$$
\begin{array}{r}
-\operatorname{Tr}\left(v^{i} r^{0} r^{0}\right) \\
\text { (ansi }
\end{array}
$$

(cant conman)

$$
\Rightarrow \quad \operatorname{Tr}\left(\gamma^{i}\right)=0
$$

Sun (3) 2 (5)
$\Rightarrow \quad \operatorname{tr}\left(r^{\mu}\right)=0$

$$
\begin{aligned}
& \text { (3) square of } \gamma \text {-matrices: } \\
& \left(\gamma^{0}\right)^{2}=p^{2}=1 \\
& \left(\gamma^{i}\right)^{2}=\gamma^{i} \gamma^{i} \\
& =(\beta 2 ;)(\beta i) \\
& -(\alpha ; \beta)\left(\beta^{2 i}\right)=-\alpha i r^{2} 2 ; \\
& =-(\alpha ;)^{2}=-1 \\
& \Rightarrow \sqrt{\left(\gamma^{j}\right)^{2}=-1}
\end{aligned}
$$

Properties of Gamma Matrices
More bace identitios
(3)

$$
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}
$$

Prif: -

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=\frac{1}{2}\left[\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)+\operatorname{Tr}\left(\gamma^{\gamma} \gamma^{\mu}\right)\right] \\
& =\frac{1}{2} \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\gamma} \gamma^{\mu}\right) \\
& =\frac{1}{2} \operatorname{Tr}\left(\left\{\gamma^{\mu}, \gamma^{\nu}\right\}\right) \\
& =\frac{1}{2} \operatorname{Tr}\left(2 g^{\mu \nu} I\right) \\
& =\frac{1}{2} \times 2 g^{\mu \nu} \quad \operatorname{Tr}(I) \\
& =4 g^{\mu \nu} \quad\left\{\because \quad 4=\begin{array}{c}
4 \times \mu \text { unct }
\end{array}\right\} .
\end{aligned}
$$

Properties of Gamma Matrices

It is usetue t defin the produd
\& a gamuar notrices an tollows:

$$
\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

γ^{5} has arso an alternative frue

$$
\sqrt{\gamma^{5}=\frac{a^{2}}{4!} \text { Eerxep } \gamma^{\mu} \gamma^{\prime} \gamma^{\alpha} \gamma^{F}} \text { Some prhertice are of } \gamma^{5} \text { are: }
$$

$$
\left(r^{5}\right)^{7}=r^{5}
$$

it eirgenvalues one ± 1 beca-

$$
\left(\gamma^{5}\right)^{2}=I_{4}=1
$$

it anticommute in the 4 gas
wabrices:

$$
\left\{\gamma^{5} \gamma^{\mu}\right\}=\gamma^{5} \gamma^{\mu}+\gamma^{\mu} \gamma^{5}=0
$$

The arove Diracematrices can be custiten in termin of birac bais. Dirac bowin is defined by tollowg

$$
\gamma^{0}=\left(\begin{array}{ll}
J & 0 \\
0 & -1
\end{array}\right)=\beta \& \overrightarrow{2}=\left(\begin{array}{ll}
0 & \overrightarrow{0} \\
0
\end{array}\right)
$$

$$
\gamma^{k}=\left(\begin{array}{ccc}
0 & \sigma & k \\
0_{0} & 0
\end{array}\right), \begin{aligned}
& \text { Wher } k=1 \rightarrow 03 \\
& k \sigma_{p} \text { ane mataica. }
\end{aligned}
$$

$$
\gamma^{5}=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

$$
\left\{\begin{array}{l}
\text { where; }\left(\begin{array}{ll}
0 & 1 \\
\sigma_{1} & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \\
\sigma_{3}=\left(\begin{array}{c}
1 \\
0
\end{array}\right.
\end{array}\right\}\left\{\begin{array}{l}
\text { satishone sein} \\
\frac{\sigma i}{} \sigma_{j}=\delta_{i j}+i \varepsilon_{i j k} \sigma_{k}
\end{array}\right\}
$$

Properties of Gamma Matrices
(i) Trace of γ^{5} :
(1.) Trace of $\gamma^{5}=0$

Prot :-

$$
\begin{aligned}
& \operatorname{Tr}\left(\gamma^{5}\right)=\operatorname{Tr}\left(\gamma^{0} \gamma^{0} \gamma^{5}\right) \\
& \because \gamma^{\circ} \gamma^{0}=1 \\
& =-\operatorname{tr}\left(r^{0} \gamma^{5} r^{0}\right) \\
& \left\{\begin{array}{l}
\text { anti commute } \\
r^{s} \text { nim } r
\end{array}\right\} \\
& \left.r^{s} \text { win } r \cdot\right\} \\
& =-\operatorname{tr}\left(r^{0} r^{0} r^{5}\right) \\
& \operatorname{ar}(\mathrm{MCC})=\operatorname{sr}(\operatorname{CAB} B) \\
& =-\operatorname{tr}\left(r^{5}\right) \\
& \Rightarrow \quad 2 \operatorname{tr}\left(r^{5}\right)=0 \\
& \Rightarrow \quad \operatorname{tr}\left(r^{5}\right)=0
\end{aligned}
$$

similaney, we can Now ont

$$
\operatorname{tr}\left(r^{\mu} \gamma^{\nu} \gamma^{5}\right)=0
$$

pe. Pace 1 odd no. of γ is ser. Ir $\left(\gamma^{\mu}\right)=0$

Tr $($ odd $x \cos r)=0$

Solution of Dirac Equation for free particles: Plane wave solution

Solution of Dirac Equation for free particles: Continue...

$$
\begin{aligned}
& \Rightarrow \quad\left(p^{2}-m^{2}\right)^{2}=0 \\
& \Rightarrow \quad p^{2}=m^{2} \\
& \Rightarrow \quad p_{0}^{2}-\vec{p}^{2}=m^{2} \\
& \text { on } \quad p_{0}^{2}=\vec{p}^{2}+m^{2}
\end{aligned}
$$

$$
\text { or, } p_{0}= \pm E(\bar{p}) \text { (in national, }
$$

$\left\{\because \quad E(\vec{p})=\sqrt{\vec{p}^{2}+w^{2}}\right\}-(5)$
\Rightarrow there exists two solution $u+(\bar{p}) \& \quad u-(\vec{F})$ corrospudy to two values of eneray $+E(\vec{p}) \&-E(\vec{p})$ respatimes.

- Let us suppose surat $u_{+}(\vec{P})$ is a solution for $p_{0}=+E(\bar{p})=\sqrt{\bar{p}^{2} \tan 2}$
so that $u+(\vec{p})$ satisfied me bine eq.,

$$
\Rightarrow \quad 1(\bar{\alpha} \cdot \bar{p}+\beta m) u_{+}(\bar{p})=E(\bar{p}) u_{+}(\bar{p})
$$

Let us write
$u_{+}=\binom{u_{1}}{u_{2}}$, where $u_{1} 4 u_{2}$ with
have two camperents and adobe The value of $\stackrel{\text { mower }}{\alpha} \& \beta$ as:

$$
\vec{\alpha}=\left(\begin{array}{ll}
0 & F \\
\frac{\sigma}{\sigma} & 0
\end{array}\right) \& \beta=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)
$$

Hence eq x written a.
$\left.\left.\left[\left(\begin{array}{cc}0 & \sigma \\ \sigma & 0\end{array}\right) \vec{p}+\left(\begin{array}{cc}J & 0 \\ 0 & -I\end{array}\right) m\right]\binom{u_{1}}{u_{2}} \overline{E(P)}(\vec{P})^{E(P)} \right\rvert\, \begin{array}{l}u_{1} \\ u_{2}\end{array}\right)$

$$
\begin{array}{r}
\left.\Rightarrow\left[\begin{array}{cc}
0 & \bar{\sigma} \cdot p \\
\bar{\sigma} \cdot p & 0
\end{array}\right)+\left(\begin{array}{cc}
m & 0 \\
0 & -m
\end{array}\right)\right]\binom{u_{1}}{u_{2}} \\
\\
=\binom{E(\bar{p}) u_{1}}{E(\bar{p}) u_{2}}
\end{array}
$$

$$
\rightarrow\left(\begin{array}{cc}
m & \bar{\sigma} \cdot \vec{p} \\
\bar{\sigma} \cdot \bar{p} & -m
\end{array}\right)\binom{u_{1}}{u_{2}}=\left(\begin{array}{ll}
E(\bar{p}) & u_{1} \\
E(\bar{p}) & u_{2}
\end{array}\right)
$$

Solution of Dirac Equation for free particles: Continue

Solution of Dirac Equation for free particles: Continue

To add the contribution of spin of the partice parrallel to the disectian 4 onotion, we wiel atro check same what differectay how the opeuts comesheandito to spin 1 particle (re. Helicity ovenant $s(\bar{p})$ or simkly the helicity If the pautile behave work.. Hamiltomian orenator

$$
\bar{H}=c \bar{\alpha} \cdot \bar{p}+\beta m c^{2} .
$$

we usel find the , the randetonian opendtr commutes जith $\$(\bar{P})$ where.

$$
\text { i. } s(\bar{P})=\frac{\sum \cdot \bar{p}}{|\bar{P}|} \text {, winere } \bar{\Sigma}=\left(\begin{array}{l}
\bar{\sigma} \\
0 \\
0
\end{array}\right)
$$

is a helicity opevator or siukes heteciby g the pathile; \& paprically it correspands to the stin of the partide parrallel to the direchion of motim:

$$
s(\bar{r})=\bar{z} \cdot \hat{n} \text {, wh } \hat{n}=\frac{\bar{p}}{|\bar{r}|}
$$

Hoco, here we coill mention done
propenties of $S(T)$ and we will show that $=$ since ..
(1) $S(V)$ comulte inth \vec{H} obeutm

$$
\text { ve }[s(\vec{y}), x]=0 \text { \& }
$$

(III) $s^{2}(\bar{p})=1$ \& (IIIDignean values

$$
\text { of } s(\bar{p})= \pm 1
$$

hence the solutions A the Disac eq^{m} can be thenefore chosen to be simuetaneous eagen tructions of \bar{H} \& $S(\bar{P})$.
\& also since $\varepsilon v^{\prime} s f(F)= \pm 1$,
\therefore for a given monentan \& sign of she cheral, the solutions can therefore be clainfied accosding to the einenvalues (EU'S) +1 or -1 of $\delta(\bar{p})$.

- Thenetore, the enesyolns can be clamify accoxding to eizen values of Helicity opertor. .e. for a siven $\bar{p} L+E, S(\bar{p})= \pm 1$.

$u_{+}^{+} \rightarrow$ eneroy	$+E$	+1
u_{+}	$+E$	-1

Solution of Dirac Equation for free particles: Continue

Solution of Dirac Equation for free particles: Continue

Explicite fro of two linearly inderendant solution :

An explicit form for two linearly independent sols for the energy $\&$ momention \bar{P} is given by.

$$
u_{+}^{(2)}(\bar{p})=N(\bar{r})\left[\begin{array}{c}
\binom{0}{1} \\
\frac{\bar{\sigma} \cdot \bar{p}}{E(\bar{p})+m}\binom{0}{1}
\end{array}\right]
$$

where $N(\bar{p})$ is normali zation. constant determine b) the requirement hat :-

$$
u^{*} u=1
$$

use $13 a$ in this condor

$$
\begin{aligned}
& u^{x} u=1 \\
& \Rightarrow \quad N^{2}(p)\left[\begin{array}{lll}
1 & 0 & \frac{\bar{\sigma} \bar{p}}{E(\bar{p})+m}
\end{array} 0\left[\begin{array}{c}
1 \\
0 \\
\frac{\bar{\sigma} p}{\overline{F(k)+m}} 0
\end{array}\right]=1\right.
\end{aligned}
$$

$$
\Rightarrow N^{2}(p)\left(1+0+\frac{(\bar{\sigma} \bar{p})^{2}}{[E(r)+w]^{2}}+0\right)=1
$$

$$
\Rightarrow \quad N^{2}(r)\left[1+\frac{\bar{p}^{2}}{(\mathbb{E}+m)^{2}}\right]=1 .
$$

$$
\left[\because(\bar{\sigma} \cdot \bar{p})^{2}=\bar{p}^{2}\right]
$$

$$
\Rightarrow \quad N^{2}(r)\left[1+\frac{E^{2}-m^{2}}{E+m y^{2}}\right]=1
$$

$$
\left\{\begin{array}{l}
\therefore E^{2}=\bar{p}^{2}+m^{2} \\
\Rightarrow b^{2}=E^{2}-m^{2}
\end{array}\right\}
$$

$$
\Rightarrow \quad N^{2}(r)\left[\frac{E+m+E-m}{E+m}\right]=1
$$

$$
\Rightarrow \quad N^{2}(r)\left(\frac{2 E}{E+m}\right)=1
$$

$$
\left.\Rightarrow N^{2}(r)\left(\frac{E+m}{2 E}\right)^{m}-(r)=\sqrt{2 \pi}\right)
$$

put this in $13 a=\triangle 113 b$ set the, explicit form two linearly sadependert solis or the energy \& momertion \bar{p}. (Put \& $\&$ ind of may Woken that these two solutions 132 * (136) are orthogonal to each other, $2 e$.,

$$
u_{t}^{(r)^{x}}(r) u_{+}^{(s)}(p)=\delta_{r s}, r, s=1,2
$$

Solution of Dirac Equation for free particles: Continue

The above soms $(13 a<13 b)$ are not eigenfunctions of $S(b)$. Positine energy soms. comespoudy to dofinite helicidy are obtaind by th mofing that corsidesing the eigenvalue $e q^{n}$ as follous:

$$
s(\bar{p}) u_{+}^{(\pm)}(\bar{p})= \pm u_{+}^{(\pm)}(\bar{p}) \longrightarrow 16
$$

In ean (16) Pat followings:.
(1) $s(\bar{F})=\frac{\bar{\sum} \cdot \bar{r}}{|\bar{p}|}=\sum \cdot \frac{\bar{p}}{|\bar{p}|}=\overline{\sum n}=\left(\begin{array}{cc}\bar{\sigma} \cdot \bar{n} & 0 \\ 0 & \bar{\sigma} \cdot \dot{n}\end{array}\right.$
$\rightarrow 17$
where \bar{x} is the unit veet in the diret ${ }^{\text {w }}$

$$
\text { of } \vec{p} \quad \& \quad \bar{n}=\frac{\bar{p}}{|\bar{p}|}
$$

(fi)

$$
\left.\begin{array}{l}
=\binom{u_{1}^{(\pm)}}{|\bar{p}| \frac{\bar{\sigma} \bar{n}}{E+m} u_{1}^{(t)}}\left\{\text { whare } \frac{\overline{E+i n}}{\bar{E}+m} u_{1}^{(t)}=u_{2}^{(\pm)}\right.
\end{array}\right\}
$$

Sohere. $u_{1}^{(\pm)}$\& $u_{2}^{(t)}$ are ohe lepter 2 lower componart respectively of

Let us first soluc ean val for twe helicixy only, Dhener evaluating aly for v_{1}.
$\therefore 19 a$ becorges

$$
\left(\frac{19 a}{\sigma}, \bar{r}\right) u_{+1}^{+1}=+u_{1}^{+1}
$$

put here: \rightarrow calli"vatio

$$
\bar{\sigma} \cdot \bar{n}=\sigma_{1} n_{1}+\sigma_{2} n_{2}+r_{3} n_{3}
$$

$$
\begin{aligned}
& =\bar{n}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) n_{1}+\left(\begin{array}{cc}
0 & -i \\
; & 0
\end{array}\right) n_{2}+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) n_{3} \\
& =
\end{aligned}
$$

$$
=\left(\begin{array}{ll}
\infty & n_{1} \\
n_{1} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -i n_{2} \\
\operatorname{en} 2 & 0
\end{array}\right)+\left(\begin{array}{cc}
n_{3} & 0 \\
0 & -n_{3}
\end{array}\right)
$$

$$
-\left[\begin{array}{ll}
\left(n_{3}\right) & \left(n_{1}-i n_{2}\right) \\
\left(n_{1}+i m_{2}\right. & -n_{3}
\end{array}\right]-22 a
$$

\& also liet us chorse

$$
u_{1}(t)=\binom{A}{B} \rightarrow 22 b
$$

Where $A \& \&$ are contarts need to be deternined here.
put $[22 \& 8$ \& in $2 T$ \& we get

Solution of Dirac Equation for free particles: Continue

Solution of Dirac Equation for free particles: Continue

So, for a given momentum these cue 4 -linearly independed som tor Dirac equation. These are chasecterijed by

$$
\pm E(p) \quad \& \quad s(p)= \pm 1
$$

Solution of Dirac Equation for free particles: Plane wave solution

KG-equation $\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \phi=0$, problem?

'Surprise' of the plane-wave $\phi=N e^{-i p \cdot x}=N e^{-i E t+i \vec{p} \cdot \vec{x}}$ solutions, if you plug them in the KG equation you find:

$$
\left\{\begin{aligned}
& E^{2}=\vec{p}^{2}+m^{2} \Rightarrow E= \pm \sqrt{\vec{p}^{2}+m^{2}} \text { solutions with } E<0 \\
& \rho=2|N|^{2} E\left\{\begin{array}{lll}
\geq 0 & E \geq 0 & \text { solutions with } \rho<0 \\
\leq 0 & E \leq 0 &
\end{array}\right. \text { 组 }
\end{aligned}\right.
$$

One way out: drop KG equation! That is what Dirac successfully did! Other way out: re-interpret in terms of charge density \& charge flow:

$$
j^{\mu} \rightarrow q \times j^{\mu}=2|N|^{2}(q \times E, q \times \vec{p}) \begin{cases}j^{0} \geq 0 & q>0 \text { particles } \\ j^{0}<0 & q<0 \text { particles }\end{cases}
$$

In reality (electrons negatively charged) just the opposite way ...:

$$
\left\{\begin{array}{l}
E>0 \text { particles with } q=-|e| \\
E<0 \text { anti-particles with } q=+|e|
\end{array}\right.
$$

Dirac quatio ,

2

Schrödinger - Klein-Gordon - Dirac

Quantum mechanical E \& \boldsymbol{p} operators: $\left[\begin{array}{ll}\mathrm{E}=i \frac{\partial}{\partial t} \\ \vec{p}=-i \vec{\nabla} & \begin{array}{l}\boldsymbol{p}^{\mu}=(E, \vec{p}) \\ \rightarrow i \partial^{\mu}=i\left(\frac{\partial}{\partial t^{\prime}},-\vec{V}\right)\end{array}\end{array}\right.$
You simply 'derive' the Schrödinger equation from classical mechanics:

$$
\mathrm{E}=\frac{\boldsymbol{p}^{2}}{2 m} \rightarrow i \frac{\partial}{\partial t} \phi=-\frac{1}{2 m} \nabla^{2} \phi
$$

Schrödinger equation

With the relativistic relation between $E, p \& m$ you get:
$E^{2}=\boldsymbol{p}^{2}+m^{2} \rightarrow \frac{\partial^{2}}{\partial t^{2}} \phi=\nabla^{2} \phi-m^{2} \phi$
The negative energy solutions led Dirac to try an equation with first order derivatives in time (like Schrödinger) as well as in space

$$
i \frac{\partial}{\partial t} \phi=-i \vec{\alpha} \cdot \vec{\nabla} \phi+\beta m \phi
$$

Does it make sense?

Also Dirac equation should reflect: $\quad E^{2}=\overrightarrow{\boldsymbol{p}}^{2}+\boldsymbol{m}^{2}$

Basically squaring: $\boldsymbol{i} \frac{\boldsymbol{\partial}}{\boldsymbol{\partial} \boldsymbol{t}} \phi=-\boldsymbol{i} \vec{\alpha} \cdot \overrightarrow{\boldsymbol{\nabla}} \phi+\beta \boldsymbol{m} \phi=\vec{\alpha} \cdot \overrightarrow{\boldsymbol{p}} \phi+\beta \boldsymbol{m} \phi$
Tells you:

$$
\begin{aligned}
\underbrace{(\vec{\alpha} \cdot \vec{p}+\beta m c)^{2}=} & \left(\alpha_{i} p_{i}+\beta m c\right)\left(\alpha_{j} p_{j}+\beta m c\right) \\
= & \beta^{2} m^{2} c^{2} \longrightarrow \\
& +\sum_{i}\left[\alpha_{i}^{2} p_{i}^{2}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) p_{i} m c\right] \longrightarrow
\end{aligned} \begin{aligned}
& \beta_{i}^{2}=1 \\
& \mathbf{E}^{2}=1
\end{aligned}
$$

Properties of α_{i} and β

β and α can not be simple commuting numbers, but must be matrices

Because $\beta^{2}=\alpha_{i}{ }^{2}=1$, both β and α must have eigenvalues ± 1
Since the eigenvalues are real (± 1), both β and α must be Hermitean

$$
\alpha_{i}^{\dagger}=\alpha_{i} \quad \text { en } \quad \beta^{\dagger}=\beta
$$

$$
A_{i j} B_{j k} C_{k i}=C_{k i} A_{i j} B_{j k}=B_{j k} C_{k i} A_{i j}
$$

Both β and α must be traceless matrices: $\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)=\operatorname{Tr}(B C A)$

anti

$$
\beta^{2}=1 \quad \text { cyclic } \quad \text { commutation } \quad \beta^{2}=1
$$

$\operatorname{Tr}\left(\alpha_{i}\right)=\operatorname{Tr}\left(\alpha_{i} \beta \beta\right)=\operatorname{Tr}\left(\beta \alpha_{i} \beta\right)=-\operatorname{Tr}\left(\alpha_{i} \beta \beta\right)=-\operatorname{Tr}\left(\alpha_{i}\right)$ and hence $\operatorname{Tr}\left(\alpha_{i}\right)=0$
You can easily show the dimension d of the matrices β, α to be even:
either: $i \neq j:\left|\alpha_{i} \alpha_{j}\right|=\left|-\alpha_{j} \alpha_{i}\right|=(-1)^{d}\left|\alpha_{j} \alpha_{i}\right|= \begin{cases}-\left|\alpha_{i} \alpha_{j}\right|, & \text { d odd } \\ +\left|\alpha_{i} \alpha_{j}\right|, & \text { d even }\end{cases}$ or: with eigenvalues ± 1, matrices are only traceless in even dimensions

Explicit expressions for α_{i} and β

In 2 dimensions, you find at most 3 anti-commuting matrices, Pauli spin matrices:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

In 4 dimensions, you can find 4 anti-commuting matrices, numerous possibilities, Dirac-Pauli representation:

$$
\beta=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad \alpha_{k}=\left(\begin{array}{lr}
0 & \sigma_{k} \\
\sigma_{k} & 0
\end{array}\right)
$$

$\beta=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \quad \alpha_{1}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right) \quad \alpha_{2}=\left(\begin{array}{cccc}0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0\end{array}\right) \quad \alpha_{3}=\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)$
Any other set of 4 anti-commutating matrices will give same physics
(if the Dirac equation is to make any sense at all of course and ... if it would not: we would not be discussing it here!)

Co-variant form: Dirac γ-matrices

$i \frac{\partial}{\partial t} \phi=-i \vec{\alpha} \cdot \vec{\nabla} \phi+\beta m \phi$ does not look that Lorentz invariant
Multiplying on the left with β and collecting all the derivatives gives:

$$
m \phi=i \beta \frac{\partial}{\partial t} \phi+i \beta \vec{\alpha} \cdot \vec{\nabla} \phi \equiv i \gamma^{\mu} \partial_{\mu} \phi \quad \text { note: } \partial_{\mu}=\left(\partial_{t},+\vec{\nabla}\right)
$$

Hereby, the Dirac γ-matrices are defined as:

$$
\gamma^{0} \equiv \beta=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad \gamma^{k} \equiv \beta \alpha_{k}=\left(\begin{array}{cc}
0 & \sigma_{k} \\
-\sigma_{k} & 0
\end{array}\right)
$$

And you can verify that: $\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$
$\begin{array}{rrr}\text { As well as: } \begin{aligned}\left(\gamma^{0}\right)^{2} & =+1 \\ \left(\gamma^{k}\right)^{2} & =-1\end{aligned} & \text { and: } \begin{aligned} \gamma^{0 \dagger} & =+\gamma^{0} \\ \gamma^{k \dagger} & =-\gamma^{k}\end{aligned} \rightarrow \gamma^{\mu+}=\gamma^{0} \boldsymbol{\gamma}^{\mu} \boldsymbol{\gamma}^{\mathbf{0}}\end{array}$

Co-variant form: Dirac γ-matrices

$\beta=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \quad \alpha_{1}=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right) \alpha_{2}=\left(\begin{array}{rrrr}0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0\end{array}\right) \quad \alpha_{3}=\left(\begin{array}{rrrrr}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right)$
$\boldsymbol{m} \phi=\boldsymbol{i} \gamma^{\mu} \boldsymbol{\partial}_{\mu} \phi$ with the Dirac γ-matrices defined as:

$$
\gamma^{0} \equiv \beta=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad \gamma^{k} \equiv \beta \alpha_{k}=\left(\begin{array}{cc}
0 & \sigma_{k} \\
-\sigma_{k} & 0
\end{array}\right)
$$

$$
\begin{aligned}
\gamma^{0}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) & \gamma^{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \\
\gamma^{2}=\left(\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right) & \gamma^{3}=\left(\begin{array}{cccc}
\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Warning!

This $m \phi=i \gamma^{\mu} \partial_{\mu} \phi$ notation is misleading, γ^{μ} is not a 4-vector! The γ^{μ} are just a set of four 4×4 matrices, which do no not transform at all i.e. in every frame they are the same, despite the μ-index.

The Dirac wave-functions (ϕ or ψ), so-called 'spinors' have interesting Lorentz transformation properties which we will discuss shortly. After that it will become clear why the notation with γ^{μ} is usefu!!
\& beautifu!!
To make things even worse, we define: $\left\{\begin{array}{l}\gamma_{0}=+\gamma^{0} \\ \gamma_{k}=-\gamma^{k}\end{array}\right.$

Spinors \& (Dirac) matrices

$$
\boldsymbol{\phi}=\left(\begin{array}{l}
* \\
* \\
* \\
*
\end{array}\right) \quad \boldsymbol{\phi}^{+}=\left(\begin{array}{llll}
* & * & * & *
\end{array}\right) \quad \boldsymbol{\gamma}^{\mu}=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)
$$

$$
\begin{aligned}
& \boldsymbol{\gamma}^{\mu} \boldsymbol{\phi}=\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right) \times\left(\begin{array}{l}
* \\
* \\
* \\
* \\
*
\end{array}\right)=\left(\begin{array}{l}
* \\
* \\
* \\
*
\end{array}\right) \quad \boldsymbol{r}^{\mu} \boldsymbol{\phi}^{+}=\left(\begin{array}{ccccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right) \times(* * * * * N
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\phi}^{+} \boldsymbol{\phi}=\left(\begin{array}{llll}
* & * & * & *
\end{array}\right) \times\left(\begin{array}{l}
* \\
* \\
* \\
*
\end{array}\right)=\left(\begin{array}{lll}
*
\end{array}\right) \quad \phi \phi^{+}=\left(\begin{array}{l}
* \\
* \\
* \\
*
\end{array}\right) \times\left(\begin{array}{lllll}
* & * & * & *
\end{array}\right)=\left(\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right)
\end{aligned}
$$

Dirac current \& probability densities

 Proceed analogously to Schrödinger \& Klein-Gordon equations, but with Hermitean instead of complex conjugate wave-functions:$$
\begin{array}{rlrl}
0 & = & -i \hbar \partial_{\mu} \psi^{\dagger} \gamma^{\mu \dagger}-m c \psi^{\dagger} & \leftarrow \\
& =-i \hbar \partial_{0} \psi^{\dagger} \gamma^{0}+i \hbar \partial_{k} \psi^{\dagger} \gamma^{k}-m c \psi^{\dagger} \\
& \longrightarrow-i \hbar \partial_{0} \psi^{\dagger} \gamma^{0} \gamma^{0}+i \hbar \partial_{k} \psi^{\dagger} \gamma^{k} \gamma^{0}-m c \psi^{\dagger} \gamma^{0} \\
& =-i \hbar \partial_{0} \psi^{\dagger} \gamma^{0} \gamma^{0}-i \hbar \partial_{k} \psi^{\dagger} \gamma^{0} \gamma^{k}-m c \psi^{\dagger} \gamma^{0} \\
& =-i \hbar \partial_{\mu} \psi^{\dagger} \gamma^{0} \gamma^{\mu}-m c \psi^{\dagger} \gamma^{0} \\
\left(\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}\right) & \longrightarrow-i \hbar \partial_{\mu} \bar{\psi} \gamma^{\mu}-m c \bar{\psi} \\
\text { Dirac equations for } \bar{\psi} \& \psi:\{\longrightarrow \bar{\psi})
\end{array}
$$

Add these two equations to get:
Conserved 4-current: $\quad 0=i \hbar\left(\partial_{\mu} \bar{\psi}\right) \gamma^{\mu} \psi+i \hbar \bar{\psi} \gamma^{\mu}\left(\partial_{\mu} \psi\right)=i \hbar \partial_{\mu}\left[\bar{\psi} \gamma^{\mu} \psi\right]$

$$
j^{\mu}=\bar{\psi} \gamma^{\mu} \psi\left\{\begin{array}{l}
j^{0}=\bar{\psi} \gamma^{0} \psi=\left|\psi_{0}\right|^{2}+\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}+\left|\psi_{3}\right|^{2} \geq 0 \\
j^{k}=\bar{\psi} \gamma^{k} \psi \quad \text { (exactly what Dirac aimed to achieve } \ldots \text {) }
\end{array}\right.
$$

Solutions: particles @ rest $\overrightarrow{\boldsymbol{p}}=\overrightarrow{\mathbf{0}}$

Dirac equation for $\vec{p}=\overrightarrow{0}$ is simple: $i \hbar \gamma^{0} \partial_{0} \psi-m c \psi=0$
Solve by splitting 4-component in two 2-components: $\psi=\binom{\psi_{A}}{\psi_{B}}$ with $\left.\partial_{0} \equiv 1 / c\right) \partial_{t}$ follows: $\quad\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)\binom{\partial \psi_{A} / \partial_{t}}{\partial \psi_{B} / \partial_{t}}=-\frac{i m c^{2}}{\hbar}\binom{\psi_{A}}{\psi_{B}}$
solutions:

$$
\psi^{(1)} \propto e^{-\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \psi^{\psi^{(2)}} \propto e^{-\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

$$
\left.\psi^{(3)} \propto e^{+\frac{i m^{2}{ }^{2}}{\hbar} t}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)\right\rangle_{\psi}
$$

$$
\psi_{\psi^{(4)}} \propto e^{+\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

Solutions: moving particles $\overrightarrow{\boldsymbol{p}} \neq \overrightarrow{\mathbf{0}}$

 Dirac equation for $\vec{p} \neq \overrightarrow{\mathbf{0}}$ less simple: $\quad i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0$ Anticipate plane-waves: $\quad \psi=u(p) e^{-\frac{i}{\hbar}(E t-\vec{p} \cdot \vec{x})}=u(p) e^{-\frac{i}{\hbar} p \cdot x}$And again anticipate two 2-components: $\quad u(p)=\binom{u_{A}(p)}{u_{B}(p)}$
Plugging this in gives: $\quad 0=\left(\gamma^{\mu} p_{\mu}-m c\right) u(p)=\left(\gamma^{0} p_{0}-\gamma^{k} p_{k}-m c\right) u(p)$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
E / c-m c & -\vec{p} \cdot \vec{\sigma} \\
\vec{p} \cdot \vec{\sigma} & -E / c-m c
\end{array}\right)\binom{u_{A}(p)}{u_{B}(p)} \\
& =\binom{(E / c-m c) u_{A}(p)-\vec{p} \cdot \vec{\sigma} u_{B}(p)}{\vec{p} \cdot \vec{\sigma} u_{A}(p)-(E / c+m c) u_{B}(p)} \\
& \Rightarrow\left\{\begin{array}{l}
u_{A}(p)=\frac{c}{E-m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{B}(p) \\
u_{B}(p)=\frac{c}{E+m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{A}(p)
\end{array}\right.
\end{aligned}
$$

Solutions: moving particles $\overrightarrow{\boldsymbol{p}} \neq \overrightarrow{\mathbf{0}}$

Solutions: pick $u_{A}(p) \&$ calculate $u_{B}(p): \quad u_{B}(p)=\frac{c}{E+m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{A}(p)$

In limit $\overrightarrow{\boldsymbol{p}} \rightarrow \overrightarrow{\mathbf{0}}$ you retrieve the $\mathrm{E}>0$ solutions, hence these are $\overrightarrow{\boldsymbol{p}} \neq \overrightarrow{\mathbf{0}}$ electron solutions Similarly: pick $u_{B}(p) \&$ calculate $u_{A}(p): \quad u_{A}(p)=\frac{c}{E-m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{B}(p)$

In limit $\vec{p} \rightarrow \overrightarrow{\mathbf{0}}$ you retrieve the $E<0$ solutions, hence these are $\overrightarrow{\boldsymbol{p}} \neq \overrightarrow{\mathbf{0}}$ positron solutions

Dirac equation

From: $E^{2}=\vec{p}^{2}+m^{2} \&$ classical \rightarrow QM 'transcription': -

$$
\partial^{\mu}=\left(\partial_{t},-\vec{\nabla}\right)
$$

$$
\int_{-} \mathrm{E}=i \frac{\partial}{\partial t}
$$

$$
\vec{p}=-i \vec{\nabla}
$$

We found: $\boldsymbol{i} \frac{\boldsymbol{\partial}}{\boldsymbol{\partial} t} \phi=-\boldsymbol{i} \vec{\alpha} \cdot \vec{\nabla} \phi+\beta \boldsymbol{m} \phi=\vec{\alpha} \cdot \overrightarrow{\boldsymbol{p}} \phi+\beta \boldsymbol{m} \phi$
With $\beta, \alpha_{1}, \alpha_{2}$ \& $\alpha_{3}(4 \times 4)$ matrices, satisfying:
E^{2} 구 $\vec{p}^{2}+m^{2}$

$$
\begin{aligned}
\underbrace{(\vec{\alpha} \cdot \vec{p}+\beta m c)^{2}=} & \left(\alpha_{i} p_{i}+\beta m c\right)\left(\alpha_{j} p_{j}+\beta m c\right) \\
= & \beta^{2} m^{2} c^{2} \xrightarrow{2} \beta^{2}=1 \\
& +\sum_{i}\left[\alpha_{i}^{2} p_{i}^{2}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) p_{i} m c\right] \longrightarrow \begin{array}{r}
\alpha_{i}^{2}=1 \\
\mathbf{E}^{2} \alpha+\beta \alpha=0
\end{array} \\
& +\sum_{i>j}\left[\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}\right] \longrightarrow i \neq j: \alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=0
\end{aligned}
$$

$$
\beta=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}-1.1\right) \alpha_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \alpha_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right) \alpha_{3}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & -1 \\
0 & -1 & 0 & 0
\end{array}\right)
$$

Co-variant form: Dirac γ-matrices

 Dirac's original form does not look covariant: $i \frac{\partial}{\partial t} \phi=-i \vec{\alpha} \cdot \vec{\nabla} \phi+\beta m \phi$ Multiplying on the left with β and collecting all the derivatives gives covariant form:$$
m \phi=i \beta \frac{\partial}{\partial t} \phi+i \beta \vec{\alpha} \cdot \vec{\nabla} \phi \equiv i \gamma^{\mu} \partial_{\mu} \phi \quad \text { note: } \partial_{\mu}=\left(\partial_{t},+\vec{\nabla}\right)
$$

With Dirac γ-matrices defined as: $\gamma^{0}=\beta=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad \gamma^{k}=\beta \alpha^{k}=\left(\begin{array}{cc}0 & \sigma_{k} \\ -\sigma_{k} & 0\end{array}\right)$
$\gamma^{0}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \gamma^{1}=\left(\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0\end{array}\right) \gamma^{2}=\left(\begin{array}{cccc}0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0\end{array}\right) \gamma^{3}=\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$
From the properties of $\beta, \alpha_{1}, \alpha_{2} \& \alpha_{3}$ follows: $\quad \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$

$$
\begin{array}{ll}
\left(\gamma^{0}\right)^{2}=+1 & \gamma^{0 \dagger}=+\gamma^{0} \\
\left(\gamma^{k}\right)^{2}=-1 & \gamma^{k \dagger}=-\gamma^{k+} \rightarrow \boldsymbol{\gamma}^{\mu+}=\boldsymbol{\gamma}^{0} \boldsymbol{\gamma}^{\mu} \boldsymbol{\gamma}^{0}
\end{array}
$$

Dirac particle solutions: spinors

Ansatz solution: $\psi=\left[\begin{array}{l}u_{A}(p) \\ u_{B}(p)\end{array}\right] e^{-i p \cdot x} \longrightarrow$ Dirac eqn. $\left\{\begin{array}{l}u_{A}(p)=\frac{\vec{p} \cdot \vec{\sigma}}{E-m} u_{B}(p) \\ u_{B}(p)=\frac{\vec{p} \cdot \vec{\sigma}}{E+m} u_{A}(p)\end{array}\right.$
$\overrightarrow{\boldsymbol{p}}=\overrightarrow{\mathbf{0}}$ solutions:
$\psi^{(1)} \propto e^{-\frac{i m c^{2}}{\hbar} t}\binom{1}{0}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) \psi^{2}=\binom{0}{1}$ spin $1 / 2$ electrons
$E>0$
$\overrightarrow{\boldsymbol{p}} \neq \overrightarrow{\mathbf{0}}$ solutions:

$$
\psi^{-\frac{i}{\hbar} p \cdot x} \propto\left(\begin{array}{c}
0 \\
1 \\
\frac{c\left(p_{x}-i p_{y}\right)}{E+m c^{2}} \\
\frac{-c p_{z}}{E+m c^{2}}
\end{array}\right)
$$

	$e^{+} \quad u_{B}=\binom{0}{1}$
$u_{B}=\binom{\mathbf{1}}{\mathbf{0}}$	
$\psi^{(3)} \propto e^{+\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l} 0 \\ 0 \\ 1 \\ 0 \end{array}\right)$	$\psi^{(4)} \propto e^{+\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l} 0 \\ 0 \\ 0 \\ 1 \end{array}\right)$
$\psi^{(3)} \propto$	$\psi^{(4)} \propto$
$e^{-\frac{i}{\hbar} p \cdot x}\left(\begin{array}{c}\frac{c p_{z}}{E E c^{2}} \\ \frac{c\left(p x+i p_{y}\right.}{} \\ \frac{E-m p^{2}}{} \\ 1 \\ 0\end{array}\right)$	$e^{-\frac{i}{\hbar} p \cdot x}\left(\begin{array}{c}\frac{c\left(p_{x}-i p_{y}\right)}{E-m c^{2}} \\ \frac{-c z_{z}}{E-m c^{2}} \\ 0 \\ 1\end{array}\right)$

Dirac equation: more onfree particles normalisation
 4-vector current anti-particles

sorry for the c's

One more look at $\vec{p} \cdot \vec{\sigma}$

The conditions: $\left\{\begin{array}{l}u_{A}(p)=\frac{c}{E-m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{B}(p) \\ u_{B}(p)=\frac{c}{E+m c^{2}}(\vec{p} \cdot \vec{\sigma}) u_{A}(p)\end{array}\right.$
Imply: $\quad u_{A}(p)=\frac{c^{2}}{E^{2}-m^{2} c^{4}}(\vec{p} \cdot \vec{\sigma})^{2} u_{A}(p)$
$\Rightarrow 1=\frac{c^{2}}{E^{2}-m^{2} c^{4}}(\vec{p} \cdot \vec{\sigma})^{2} \Rightarrow \begin{gathered}\boldsymbol{p}^{2} \boldsymbol{c}^{2}=E^{2}-\boldsymbol{m}^{2} \boldsymbol{c}^{4} \\ \text { i.e. energy-momentum } \\ \text { relation, as expected }\end{gathered}$
Check this:

$$
\begin{aligned}
(\vec{p} \cdot \vec{\sigma}) & =p_{x}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+p_{y}\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right)+p_{z}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
p_{z} & \left(p_{x}-i p_{y}\right) \\
\left(p_{x}+i p_{y}\right) & -p_{z}
\end{array}\right) \Rightarrow(\vec{p} \cdot \vec{\sigma})^{2}=\left(\begin{array}{cc}
p_{z}^{2}+\left(p_{x}-i p_{y}\right)\left(p_{x}+i p_{y}\right) & \ldots \\
\ldots
\end{array}\right)=\vec{p}^{2}
\end{aligned}
$$

Normalisation of the Dirac spinors

 Just calculate it!:Spinors 1 \& 2, E>0:

$$
\begin{aligned}
\psi^{\dagger} \psi & =1+\frac{p_{x}^{2} c^{2}+p_{y}^{2} c^{2}+p_{z}^{2} c^{2}}{\left(E+m c^{2}\right)^{2}} \\
& =1+\frac{E^{2}-m^{2} c^{4}}{\left(E+m c^{2}\right)^{2}} \\
& =1+\frac{E-m c^{2}}{E+m c^{2}}=\frac{2 E}{E+m c^{2}}=\frac{2|E|}{|E|+m c^{2}} \rightarrow N=\sqrt{|E|+m c^{2}}
\end{aligned}
$$

To normalize @ 2E particles/unit volume

Spinors 3 \& 4, $E<0$:

$$
\begin{aligned}
\psi^{\dagger} \psi & =1+\frac{p_{x}^{2} c^{2}+p_{y}^{2} c^{2}+p_{z}^{2} c^{2}}{\left(E-m c^{2}\right)^{2}} \\
& =1+\frac{E^{2}-m^{2} c^{4}}{\left(E-m c^{2}\right)^{2}} \\
& =1+\frac{E+m c^{2}}{E-m c^{2}}=\frac{2 E}{E-m c^{2}}=\frac{2|E|}{|E|+m c^{2}} \rightarrow N=\sqrt{|E|+m c^{2}}
\end{aligned}
$$

To normalize @ 2E particles/unit volume

Current \& probability densities

Again, just plug it in! $j^{\mu}=\bar{\psi} \gamma^{\mu} \psi \begin{cases}j^{0}=\bar{\psi} \gamma^{0} \psi & \text { always using } \\ j^{k}=\bar{\psi} \gamma^{k} \psi & \mathrm{~N}=\sqrt{|E|+m c^{2}}\end{cases}$

$$
\begin{gathered}
\begin{array}{c}
\text { particle } \\
\text { @ rest }
\end{array} \\
\begin{array}{r}
\left(\begin{array}{l}
1 \\
\mathrm{~N} \\
\hline
\end{array}\right. \\
\begin{array}{|cc}
\lfloor 0 \\
\hline
\end{array} \\
\hline
\end{array}
\end{gathered}\left\{\begin{array}{l}
j^{0}=\bar{\psi}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \psi=\psi^{\dagger} \psi=2 m c^{2} \quad \rightarrow 2|E| \geq 0 \\
j^{k}=\bar{\psi}\left(\begin{array}{cc}
0 & \sigma_{k} \\
-\sigma_{k} & 0
\end{array}\right) \psi=\psi^{\dagger}\left(\begin{array}{cc}
0 & \sigma_{k} \\
\sigma_{k} & 0
\end{array}\right) \psi=\overrightarrow{0}
\end{array}\right.
$$

$$
\underset{\text { particle }}{\text { moving }}\left\{j^{0}=\bar{\psi}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \psi=\psi^{\dagger} \psi=\left\{\begin{array}{ll}
+2 E & E>0 \\
-2 E & E<0
\end{array} \quad \rightarrow 2|E| \geq 0\right.\right.
$$

$$
j^{k}=\bar{\psi}\left(\begin{array}{cc}
0 & \sigma_{k} \\
-\sigma_{k} & 0
\end{array}\right) \psi=\psi^{\dot{\dagger}}\left(\begin{array}{cc}
0 & \sigma_{k} \\
\sigma_{k} & 0
\end{array}\right) \psi=\left\{\begin{array}{cc}
+2 \vec{p} & E>0 \\
-2 \vec{p} & E<0
\end{array}\right.
$$

Current \& probability densities

Explicit verification of j_{x} for moving particle solution $\psi^{(1)}$:

$$
\begin{aligned}
j_{x} & =|N|^{2}\left(1,0, \frac{c p_{z}}{E+m c^{2}}, \frac{c\left(p_{x}-i p_{y}\right)}{E+m c^{2}}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
\frac{c p_{z}}{E+m c^{2}} \\
\frac{c\left(p_{x}+i p_{y}\right)}{E+m c^{2}}
\end{array}\right) \\
& =|N|^{2}\left(1,0, \frac{c p_{z}}{E+m c^{2}}, \frac{c\left(p_{x}-i p_{y}\right)}{E+m c^{2}}\right)\left(\begin{array}{c}
\frac{c\left(p_{x}+i p_{y}\right)}{E+m c^{2}} \\
\frac{c p_{z}}{E+m c^{2}} \\
0 \\
1
\end{array}\right) \\
& =|N|^{2}\left(\frac{c\left(p_{x}+i p_{y}\right)}{\left.E+\frac{c\left(p_{x}-i p_{y}\right)}{E+m c^{2}}\right)}\right. \\
& =|N|^{2} \frac{c c p_{x} c^{2}}{E+m c^{2}} \rightarrow 2 p_{x}
\end{aligned}
$$

And j_{x} for moving anti-particle solution $\psi^{(3)}: j_{x}=|N|^{2} \frac{2 c p_{x}}{E-m c^{2}} \rightarrow-2 p_{x}$

Antiparticles

Surprising applications
 PET - Positron Emission Tomography

Particles \& Anti-particles

4-component Dirac spinors $\rightarrow 4$-solutions.
These represent: 2 spin states of the electron
2 spin states of the anti-electron i.e. the positron

Different ways how to proceed:

- Use $E>0$ \& $E<0$ solutions of the electron Dirac eqn.
- Use E>0 \& E<O solutions of the positron Dirac eqn.
- Use E>0 solutions for the 'particle' i.e. electron \& Use $E<0$ solutions for the 'anti-particle' i.e. positron

Will opt for the last option:
i.e. using the physical E \& \vec{p} to characterize states

And now: $E<0 \rightarrow$ antiparticles

'Dirac sea': fill all E<O states (thanks to Pauli exclusion principle)

But: - does not work for bosons

- an infinite energy sea not a nice concept ...

And now: $E<0 \rightarrow$ antiparticles

'Feynman-Stückelberg': E<O particle solutions propagating backwards in time E>O anti-particle solutions propagating forwards in time

$$
e^{-i(-E)(-t)}=e^{-i E t}
$$

'Up-shot':
Dirac equation accommodates both particle \& antiparticles!

Sequel:
will use particle \& anti-particle spinors labelled with their physical, E>0 \& real \vec{p}, kinematics. (exponents remain opposite)

We had: Dirac 'u'-spinors

$$
\begin{gathered}
\psi^{(1)}=\sqrt{E+m} e^{-i p \cdot x}\left(\begin{array}{c}
1 \\
0 \\
\frac{p_{z}}{E+m} \\
\frac{p_{x}+i p_{y}}{E+m}
\end{array}\right) \\
\equiv u_{1}(E, \vec{p}) e^{-i p \cdot x}
\end{gathered}
$$

$$
\begin{gathered}
\psi^{(2)}=\sqrt{E+m} e^{-i p \cdot x}\left(\begin{array}{c}
0 \\
1 \\
\frac{p_{x}-i p_{y}}{E+m} \\
\frac{-p_{z}}{E+m}
\end{array}\right) \\
\equiv u_{2}(E, \vec{p}) e^{-i p \cdot x}
\end{gathered}
$$

$$
\psi^{(3)}=\sqrt{|E|+m} e^{-i p \cdot x}\left(\begin{array}{c}
\frac{p_{z}}{E-m} \\
\frac{p_{x}+i p_{y}}{E-m} \\
1 \\
0
\end{array}\right)
$$

$$
\psi^{(4)}=\sqrt{|E|+m} e^{-i p \cdot x}\left(\begin{array}{c}
\frac{p_{x}-i p_{y}}{E-m} \\
\frac{-p_{z}}{E-m} \\
0 \\
1
\end{array}\right)
$$

$$
\equiv u_{3}(E, \vec{p}) e^{-i p \cdot x}
$$

$$
\equiv u_{4}(E, \vec{p}) e^{-i p \cdot x}
$$

From now on use: Dirac ' u '- \& ' v '-spinors

u-spinors: for electrons, labeled with physical E>0 \& $\overrightarrow{\boldsymbol{p}}$

$$
\begin{aligned}
\psi^{(1)}= & \sqrt{E+m} e^{-i p \cdot x}\left(\begin{array}{c}
1 \\
0 \\
\frac{p_{z}}{E+m} \\
\frac{p_{x}+i p_{y}}{E+m}
\end{array}\right) \\
& \equiv \boldsymbol{u}_{\mathbf{1}}(\boldsymbol{E}, \overrightarrow{\boldsymbol{p}}) \boldsymbol{e}^{-\boldsymbol{i} \boldsymbol{p} \cdot \boldsymbol{x}}
\end{aligned}
$$

$$
\psi^{(2)}=\sqrt{E+m} e^{-i p \cdot x}\left(\begin{array}{c}
0 \\
1 \\
\frac{p_{x}-i p_{y}}{E+m} \\
\frac{-p_{z}}{E+m}
\end{array}\right)
$$

$$
\equiv u_{2}(E, \vec{p}) e^{-i p \cdot x}
$$

v-spinors: for positrons, labeled with physical E>0 \& $\overrightarrow{\boldsymbol{p}}$

$$
\begin{aligned}
& u_{4}(-E,-\vec{p}) e^{+i p \cdot x} \equiv \boldsymbol{v}_{\mathbf{1}}(\boldsymbol{E}, \overrightarrow{\boldsymbol{p}}) \boldsymbol{e}^{+\boldsymbol{i} \boldsymbol{p} \cdot \boldsymbol{x}} \\
& u_{3}(-E,-\vec{p}) e^{+i p \cdot x} \equiv \boldsymbol{v}_{\mathbf{2}}(\boldsymbol{E}, \overrightarrow{\boldsymbol{p}}) \boldsymbol{e}^{+i \boldsymbol{i} \cdot \boldsymbol{x}}
\end{aligned}
$$

Dirac equation

Dirac equation in original form with matrices $\vec{\alpha} \& \beta$:
$i \frac{\partial}{\partial t} \psi=-i \vec{\alpha} \cdot \vec{\nabla} \psi+\beta m \psi$
With plane-wave solutions: $\psi=u(p) e^{-i p \cdot x}=\left[\begin{array}{l}u_{A}(p) \\ u_{B}(p)\end{array}\right] e^{-i p \cdot x}$ you find for spinor $u(p)$: $E u(p)=\vec{\alpha} \cdot \overrightarrow{\boldsymbol{p}} \boldsymbol{u}(\boldsymbol{p})+\beta \boldsymbol{m} \boldsymbol{u}(\boldsymbol{p})$

This algabraic equation for $u(p)$ you can solve for particles with $p^{\mu}=(\boldsymbol{E}, \overrightarrow{\boldsymbol{p}})$

Co-variant form of Dirac equation with matrices γ^{μ} :
$m \psi=i \gamma^{\mu} \partial_{\mu} \psi$ with $\psi=u(p) e^{-i p \cdot x}=\left[\begin{array}{l}u_{A}(p) \\ u_{B}(p)\end{array}\right] e^{-i p \cdot x}$ you get $\left(\gamma^{\mu} \boldsymbol{p}_{\mu}-m\right) u(p)=0$ Explicit expressions for the γ^{μ} matrices:
$\gamma^{0}=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \gamma^{1}=\left(\begin{array}{rrrr}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0\end{array}\right) \gamma^{2}=\left(\begin{array}{cccc}0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0\end{array}\right) \gamma^{3}=\left(\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$
And the algebra for the γ^{μ} matrices: $\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu}$

Spinors

Ansatz solution: $\psi=\left[\begin{array}{l}u_{A}(p) \\ u_{B}(p)\end{array}\right] e^{-i p \cdot x} \longrightarrow$ Dirac eqn. $\left\{\begin{array}{l}u_{A}(p)=\frac{\vec{p} \cdot \vec{\sigma}}{E-m} u_{B}(p) \\ u_{B}(p)=\frac{\vec{p} \cdot \vec{\sigma}}{E+m} u_{A}(p)\end{array}\right.$
$\overrightarrow{\boldsymbol{p}}=\overrightarrow{\mathbf{0}}$ solutions:

spin $1 / 2$ electrons $\vec{p} \neq 0$ solutions:

$$
\psi^{(1)} \propto\left(\begin{array}{c}
1 \\
0 \\
\frac{c}{\hbar} \frac{i}{\hbar} p \cdot x \\
\frac{c p x}{E+c_{z}^{2}} \\
\frac{c\left(p_{x}+p_{y}\right)}{E+m c^{2}}
\end{array}\right) \quad \psi^{-\frac{i}{\hbar} p \cdot x}\left(\begin{array}{c}
0 \\
1 \\
\frac{c\left(p_{x}-i p_{y}\right)}{E(2)} \\
\frac{-c c_{z}^{2}}{E+m c^{2}}
\end{array}\right)
$$

$$
\begin{gathered}
\boldsymbol{u}_{\boldsymbol{B}}=\binom{\mathbf{1}}{\mathbf{0}} \\
\psi^{(3)} \propto e^{+\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \\
\psi^{+} \boldsymbol{u}_{\boldsymbol{B}}=\binom{\mathbf{0}}{1} \\
\downarrow \\
e^{+\frac{i m c^{2}}{\hbar} t}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

spin $1 / 2$ positrons
$E<0$
$\psi^{(3)} \propto$
$e^{-\frac{i}{\hbar} p \cdot x}\left(\begin{array}{c}\frac{c p_{x}}{E-m c^{2}} \\ \frac{c\left(t x_{x}+\left\langle p_{y}\right.\right.}{E-m c^{2}} \\ E-m \\ 0\end{array}\right)$
$\psi^{(4)} \propto$
$e^{-\frac{i}{\hbar} p \cdot x}\left(\begin{array}{c}\frac{c\left(p_{x}-i p_{y}\right)}{E-m p_{2}} \\ \frac{-m z_{z}}{E-m c^{2}} \\ 0 \\ 1\end{array}\right)$

Particles \& anti-particles

u-spinors: for electrons, labeled with physical E>0 \& $\overrightarrow{\boldsymbol{p}}$

$$
\psi^{(1)}=\sqrt{E+m} e^{-i p \cdot x}\left(\begin{array}{c}
1 \\
0 \\
\frac{p_{z}}{E+m} \\
\frac{p_{x}+i p_{y}}{E+m}
\end{array}\right)
$$

$$
\psi^{(2)}=\sqrt{E+m} e^{-i p \cdot x}\left(\begin{array}{c}
0 \\
1 \\
\frac{p_{x}-i p_{y}}{E+m} \\
\frac{-p_{z}}{E+m}
\end{array}\right)
$$

$$
=u_{1}(E, \vec{p}) e^{-i p \cdot x}
$$

$$
=u_{2}(E, \vec{p}) e^{-i p \cdot x}
$$

v-spinors: for positrons, labeled with physical E>0 \& $\overrightarrow{\boldsymbol{p}}$

$$
\psi^{(1)}=u_{4}(-E,-\vec{p}) e^{+i p \cdot x}
$$

$$
\psi^{(2)}=u_{3}(-E,-\vec{p}) e^{+i p \cdot x}
$$

$$
=v_{1}(E, \vec{p}) e^{+i p \cdot x}
$$

$$
=v_{2}(E, \vec{p}) e^{+i p \cdot x}
$$

Dirac equation: more onfree particles

Dirac particles \& spin

As you might guess, the two-fold degeneracy is because of the spin $=1 / 2$ nature of the particles the Dirac equation describes!

How do you see this?
Use commutator with Hamiltonian $H=\vec{\alpha} \cdot \vec{p}+\beta m c$ to find conserved quantities
First attempt: orbital angular momentum $\vec{L} \equiv \vec{r} \times \vec{p}$ tells you:

$$
\begin{aligned}
{[H, \vec{L}] } & =[\vec{\alpha} \cdot \vec{p}+\beta m c, \vec{r} \times \vec{p}]=\alpha_{l}\left[p_{l}, \vec{r} \times \vec{p}\right]=\alpha_{l} p_{l}(\vec{r} \times \vec{p})-\alpha_{l}(\vec{r} \times \vec{p}) p_{l} \\
& =\alpha_{l} p_{l} \varepsilon_{i j k} r_{j} p_{k}-\alpha_{l} \varepsilon_{i j k} r_{j} p_{k} p_{l} \\
& =\alpha_{l} \frac{h}{i} \delta_{l j} \varepsilon_{i j k} p_{k}=\alpha_{l} \frac{h}{i} \varepsilon_{i l k} p_{k}=\frac{h}{i} \vec{\alpha} \times \vec{p}=-i h \vec{\alpha} \times \vec{p} \neq \overrightarrow{0}
\end{aligned}
$$

Second attempt: internal angular momentum $\quad \vec{\Sigma} \equiv\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right)$ tells you:

$$
[H, \vec{\Sigma}]=[\vec{\alpha} \cdot \vec{p}+\beta m c, \vec{\Sigma}]=p_{k}\left[\alpha_{k}, \Sigma_{l}\right]=p_{k}\left(\begin{array}{cc}
0 & +\left[\sigma_{k}, \sigma_{l}\right] \\
+\left[\sigma_{k}, \sigma_{l}\right] & 0
\end{array}\right)
$$

$$
=p_{k} 2 i \varepsilon_{k l m}\left(\begin{array}{cc}
0 & +\sigma_{m} \\
+\sigma_{m} & 0
\end{array}\right)=2 i p_{k} \varepsilon_{k l m} \alpha_{m} \equiv 2 i \vec{\alpha} \times \vec{p} \neq \overrightarrow{0} \bigodot_{\begin{array}{r}
\text { total spin } \\
\vec{J} \equiv \vec{L}+1 / 2 h \vec{\Sigma} \\
\text { is conserved! }
\end{array}}^{\begin{array}{r}
\text { ton }
\end{array}}
$$

Dirac particles \& spin

Do we indeed describe particles with spin $=1 / 2$?

$$
\left(\frac{1}{2} \vec{\Sigma}\right)^{2} \psi=\frac{3}{4} \psi \sim s(s+1) \psi \quad \longrightarrow \quad s=\frac{1}{2} \quad \text { Yes! }
$$

For particles with $\boldsymbol{p}=\mathbf{0}: \frac{1}{2} \Sigma_{3} \psi= \begin{cases}\psi^{(1)}: & +\frac{1}{2} \times \psi^{(1)} \\ \psi^{(2)}: & -\frac{1}{2} \times \psi^{(2)} \\ \psi^{(3)}: & +\frac{1}{2} \times \psi^{(3)} \\ \psi^{(4)}: & -\frac{1}{2} \times \psi^{(4)}\end{cases}$

For particles with $p \neq 0$ we can not use Σ_{3}, but we can use spin //p: $1 / 2 \vec{\Sigma} \cdot \hat{p}$

$$
[H, \vec{\Sigma} \cdot \hat{\vec{p}}]=\hat{\vec{p}} \cdot[H, \vec{\Sigma}]=\hat{\vec{p}} \cdot 2 i \vec{\alpha} \times \vec{p}=0 \quad \text { Are you sure? Check it yourself! }
$$

$1 / 2 \vec{\Sigma} \cdot \hat{p}$ is called helicity with eigenvalues: $\pm 1 / 2$

helicity $+1 / 2$
helicity - $1 / 2$

Helicity states

Instead of $u_{1} \& u_{2}$ spinors, we could use helicity $\pm 1 / 2: u_{\uparrow} \& u_{\downarrow}$ spinors (\& similarly for v-spinors)
$\begin{gathered}\text { You 'simply' solve the } \\ \text { eigenvalue equation: }\end{gathered} \quad \frac{1}{2 \mathrm{p}}\left(\begin{array}{cc}\sigma \cdot \mathbf{p} & 0 \\ 0 & \sigma \cdot \mathbf{p}\end{array}\right)\binom{u_{A}}{u_{B}}=\lambda\binom{u_{A}}{u_{B}} \Rightarrow \begin{aligned} & (\sigma \cdot \mathbf{p}) u_{A}=2 \mathrm{p} \lambda u_{A} \\ & (\sigma \cdot \mathbf{p}) u_{B}=2 \mathrm{p} \lambda u_{B}\end{aligned}$

Eigenvalues, use $(\sigma \cdot \mathbf{p})^{2}=\mathrm{p}^{2}: \quad \mathrm{p}^{2} u_{A}=2 \mathrm{p} \lambda(\sigma \cdot \mathbf{p}) u_{A}=4 \mathrm{p}^{2} \lambda^{2} u_{A} \Rightarrow \lambda= \pm 1 / 2$ as it should

With u_{A}, you get u_{B} using the Dirac eqn. as we did before (easier now $\sigma \cdot \vec{p} u_{A}=2 p \lambda u_{A}$):

$$
(\sigma \cdot \mathbf{p}) u_{A}=(E+m) u_{B:} \Rightarrow u_{B}=2 \lambda\left(\frac{\mathrm{p}}{E+m}\right) u_{A}
$$

Helicity states

 helicity + $1 / 2$ RH
solving $(\sigma \cdot \mathbf{p}) u_{A}=2 \mathrm{p} \lambda u_{A}$
easiest using spherical coordinates: $\mathbf{p}=(\mathrm{p} \sin \theta \cos \phi, \mathrm{p} \sin \theta \sin \phi, \mathrm{p} \cos \theta)$
yields: $\frac{1}{2 \mathrm{p}}(\sigma \cdot \mathbf{p})=\frac{1}{2 \mathrm{p}}\left(\begin{array}{cc}p_{z} & p_{x}-i p_{y} \\ p_{x}+i p_{y} & -p_{z}\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}\cos \theta & \sin \theta e^{-i \phi} \\ \sin \theta e^{i \phi} & -\cos \theta\end{array}\right)$
with $u_{A}=\binom{a}{b}$ follows: $\left(\begin{array}{cc}\cos \theta & \sin \theta e^{-i \phi} \\ \sin \theta e^{i \phi} & -\cos \theta\end{array}\right)\binom{a}{b}=2 \lambda\binom{a}{b}$ or: $\left\{\begin{array}{l}a \cos \theta+b \sin \theta \boldsymbol{e}^{-i \varphi}=2 \lambda a \\ a \sin \theta e^{+i \varphi}-b \cos \theta=2 \lambda b\end{array}\right.$

$$
\Rightarrow \quad \frac{b}{a}=\frac{2 \lambda-\cos \theta}{\sin \theta} e^{i \phi}
$$

$$
\text { For } \lambda=+1 / 2: \quad \frac{b}{a}=\frac{1-\cos \theta}{\sin \theta} e^{i \phi}=\frac{2 \sin ^{2}\left(\frac{\theta}{2}\right)}{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)} e^{i \phi}=e^{i \phi} \frac{\sin \left(\frac{\theta}{2}\right)}{\cos \left(\frac{\theta}{2}\right)} \Rightarrow u_{\uparrow}=N\left(\begin{array}{c}
\cos \left(\frac{\theta}{2}\right) \\
e^{i \phi} \sin \left(\frac{\theta}{2}\right) \\
\frac{\mathrm{p}}{E+m} \cos \left(\frac{\theta}{2}\right) \\
\frac{\mathrm{p}}{E+m} e^{i \phi} \sin \left(\frac{\theta}{2}\right)
\end{array}\right)
$$

Helicity states

$c \equiv \cos (\theta / 2)$

Particles

$$
u_{\uparrow}=\sqrt{E+m}\left(\begin{array}{c}
c \\
s e^{i \phi} \\
\frac{\mathrm{p}}{E+m} c \\
\frac{\mathrm{p}}{E+m} s e^{i \phi}
\end{array}\right) \quad u_{\downarrow}=\sqrt{E+m}\left(\begin{array}{c}
-s \\
c e^{i \phi} \\
\frac{\mathrm{p}}{E+m} s \\
-\frac{\mathrm{p}}{E+m} c e^{i \phi}
\end{array}\right)
$$

Anti-particles

$v_{\uparrow}=\sqrt{E+m}\left(\begin{array}{c}\frac{\mathrm{p}}{E+m} s \\ -\frac{\mathrm{p}}{E+m} c e^{i \phi} \\ -s \\ c e^{i \phi}\end{array}\right)$

$$
v_{\downarrow}=\sqrt{E+m}\left(\begin{array}{c}
\frac{\mathrm{p}}{E+m} c \\
\frac{\mathrm{p}}{E+m} s e^{i \phi} \\
c \\
s e^{i \phi}
\end{array}\right)
$$

Remark:

we have used physical E \& p for the v-spinors. Nevertheless: exponents still reflect negative energy (\& momentum)! This means that the physical E, p and even helicity of v-spinors are obtained using the opposite of the operators used for u-spinors! Afteral: we are re-interpreting the unwanted negative energy solutions of the Dirac eqn.!

Chirality

For massless \& extremely relativistic particles, helicity states become simple:

Particles $\quad u_{\uparrow}=\sqrt{E}\left(\begin{array}{c}c \\ s e^{i \varphi} \\ c \\ s e^{i \varphi}\end{array}\right) \equiv \boldsymbol{u}_{R} \quad u_{\downarrow}=\sqrt{E}\left(\begin{array}{c}-s \\ c e^{i \varphi} \\ s \\ -c e^{i \varphi}\end{array}\right) \equiv \boldsymbol{u}_{L}$
Anti-particles $\quad v_{\uparrow}=\sqrt{E}\left(\begin{array}{c}s \\ -c e^{i \varphi} \\ -s \\ c e^{i \varphi}\end{array}\right) \equiv v_{R} \quad v_{\downarrow}=\sqrt{E}\left(\begin{array}{c}c \\ e^{i \varphi} \\ c \\ s e^{i \varphi}\end{array}\right) \quad \equiv v_{L}$

These four states are also eigenstates of: $\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right) \equiv \gamma^{5} \quad \boldsymbol{\gamma}^{5}=\boldsymbol{i} \boldsymbol{\gamma}^{0} \boldsymbol{\gamma}^{1} \boldsymbol{\gamma}^{2} \boldsymbol{\gamma}^{\mathbf{3}}$
Eigenstates of γ^{5} called: Left-handed (L)
Simple check: $\quad \gamma^{5} u_{\uparrow}=+u_{\uparrow} \quad$ and: $\quad \gamma^{5} v_{\uparrow}=-v_{\uparrow}$

$$
\gamma^{5} u_{\downarrow}=-u_{\downarrow} \quad \gamma^{5} v_{\downarrow}=+v_{\downarrow}
$$

Right handed (R) chiral states.
Weak interactions!

Dirac equation:

 more on free particles
* transformation properties

International Linear Collider (Japan?)

Real life examples: LEP $e^{+} e^{-}$

Real life examples: LEP $e^{+} e^{-}$

detector

particle identification

Real life examples: LEP $e^{+} e^{-}$

Other processes

Compton scattering: $e^{-} \gamma \rightarrow e^{-} \gamma$

Pair creation: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \gamma \gamma$

