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Abstract 

In this study, we were interested in exploring the extent to which advanced mathematics lecturers 

provide students opportunities to play a role in considering or generating course content. To do 

this, we examined the questioning practices of 11 lecturers who taught advanced mathematics 

courses at the university level. Because we are unaware of other studies examining advanced 

mathematics lecturers’ questioning, we first analyzed the data using an open coding scheme to 

categorize the types of content lecturers solicited and the opportunities they provided students to 

participate in generating course content. In a second round of analysis, we examined the extent to 

which lecturers provide students opportunities to generate mathematical contributions and to 

engage in reasoning researchers have identified as important in advanced mathematics. Our 

findings highlight that although lecturers asked many questions, lecturers did not provide 

substantial opportunities for students to participate in generating mathematical content and 

reasoning. Additionally, we provide several examples of lecturers providing students some 

opportunities to generate important contributions. We conclude by providing implications and 

areas for future research. 

 

 

Key words: Questioning, Teaching of advanced mathematics courses, Opportunities to 

participate  
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Teacher questioning and invitations to participate in advanced mathematics lectures 

In the United States and internationally, lecture is the most common form of teaching in 

undergraduate advanced mathematics courses (Artemeva & Fox, 2011; Blair, Kirkman, & 

Maxwell, 2013; Fukawa-Connelly, Johnson, & Keller, 2016). Recent literature reviews suggest 

these lectures have been unsuccessful in promoting student learning. After taking advanced 

mathematics courses, most students develop neither understandings of course content (e.g., 

Rasmussen & Wawro, 2017) nor the skills required to be successful mathematicians, such as 

proof-writing (e.g., Stylianides, Stylianides, & Weber, 2017). In a recent meta-analysis, Chi and 

Wiley (2014) provided a theoretical framework of engagement by categorizing overt behaviors 

students displayed. By synthesizing the results of several empirical studies, Chi and Wiley 

argued that students are more likely to learn if they are making inferences about course content 

as compared to if they are only recording what their lecturers say. Because questioning is a 

common way lecturers can engage students in knowledge construction (e.g., Gabel & Dreyfus, 

2017; Lew, Fukawa-Connelly, Mejia-Ramos, & Weber, 2016), in this study we explore the 

extent to which advanced mathematics lecturers provide students opportunities to generate 

course content via questions.  To do this, we examined 11 lecturers’ questions in advanced 

mathematics courses. By advanced mathematics courses, we mean pure mathematics courses for 

university students with a focus on proofs instead of computations.
1
 Specifically, we address the 

research questions: 

1. What mathematical content do lecturers’ questions solicit in advanced 

mathematics courses?  

                                                 
1
 In the United States, mathematics students usually take these courses after completing a calculus sequence and an 

introduction to proof course. In other countries, university mathematics students take these courses in their first year. 
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2. In what ways do lecturers’ use of questions promote (or fail to promote) 

opportunities for students to participate in advanced mathematics lecturers? 

In what follows, we first synthesize relevant areas of research: teaching in advanced 

mathematics and teacher questioning in K-14 mathematics. We then present our analytical 

framework describing how we conceptualize opportunities to participate and mathematical 

contributions in advanced mathematics. Next, we provide information about the lecturers and 

describe how we coded the data. We then present results from two rounds of coding, highlighting 

how lecturers provided students limited opportunities to consider or generate course content. We 

conclude by summarizing our results, relating our results to the extant literature, and providing 

implications and areas for future research.  

1. Literature Review 

 Because we are unaware of other studies of advanced mathematics lecturers’ use of 

questions, we situate our study in two related areas of research. We first present central results 

from the literature examining teaching in advanced mathematics. We then summarize the 

literature on teachers’ use of questions in K-14 mathematics.  

1. 1. Teaching in advanced mathematics  

 For brevity’s sake, we do not provide a comprehensive review of literature on teaching 

advanced mathematics
2
 but instead present several central findings that are relevant to this paper. 

First, researchers using both large-scale surveys (Blair, Kirkman, & Maxwell, 2013; Fukawa-

Connelly, Johnson, & Keller, 2016) and observations (Artemeva & Fox, 2011) have found that 

lecture is the predominant mode of instruction in advanced mathematics courses in the United 

States and internationally. These lectures largely consist of what Artemeva and Fox (2011) call 

                                                 
2
 We point the reader to Gabel and Dreyfus (2016) and Lew et al. (2016) for such reviews. 
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“chalk talk”. “Chalk talk” occurs when the lecturer writes mathematics on the blackboard, 

provides an oral commentary of the meaning of the written mathematics, and occasionally 

presents a metacommentary on the reasoning processes involved in doing mathematics.  

Second, lecturers in advanced mathematics attempt to convey more than just formal 

mathematics in their lectures (i.e., definitions, theorems, and proofs). For instance, researchers 

have shown some lecturers frequently provide examples (e.g., Fukawa-Connelly & Newton, 

2014; Fukawa-Connelly, Weber, & Mejia-Ramos, 2017; Mills, 2014) and informal 

representations of mathematical concepts (e.g., Fukawa-Connelly, Weber, & Mejia-Ramos, 

2017; Weber, 2004) during their lectures. Lecturers also have been observed describing informal 

reasoning processes they use to construct a proof (e.g., Gabel & Dreyfus, 2016; Lew et al., 2016; 

Weber, 2004). However, students often do not recognize the point the lecturer is attempting to 

make (e.g., Lew et al., 2016) and typically leave their advanced mathematics courses without the 

understandings and skills expected of them (e.g., Rasmussen & Wawro, 2017; Stylianides, 

Stylianides, & Weber, 2017).  

Because lecture is the predominate mode of instruction and students are not developing 

the understandings expected of them, there is a need to better understand the opportunities 

students are given to develop understandings of course content in advanced mathematics 

lectures. As giving students opportunities to consider or generate course content has been shown 

to improve student learning (Chi & Wiley, 2014), there is a need to examine the extent to which 

lecturers provide students opportunities to make mathematical contributions in these courses.  

1. 2. Inviting student participation in K-14 mathematics 
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There is a large body of research examining teacher questioning in K-14 mathematics.
3
 

Due to potential similarities between advanced mathematics lectures and K-14 teachers’ use of 

questions, we synthesize the literature examining the content K-14 teachers’ questions solicit and 

the wait time they provide their students to respond to questions.  

1. 2. 1. Categorizing teachers’ questions  

Across studies categorizing teachers’ questions in K-14 mathematics, we synthesized 

four broad categories of questions: factual, probing, generative, and orienting questions. Factual 

questions ask students to provide something already known including facts, rules, or procedures 

(e.g., Boaler & Brodie, 2004; Hiebert & Wearne, 1993; Moyer & Milewicz, 2002; Nathan & 

Kim, 2009; Sahin & Kulm, 2008; Viirman, 2015). Probing questions ask students to explain or 

elaborate on their thinking (e.g., Boaler & Brodie, 2004; Franke et al., 2009; Hiebert & Wearne, 

1993; Moyer & Milewicz, 2002; Sahin & Kulm, 2008). Generative questions ask students to 

provide mathematical information or a next step that is not factual (e.g., Boaler & Brodie, 2004; 

Hiebert & Wearne, 1993). Finally, orienting questions direct students’ attention to specific ideas 

or solution strategies (e.g., Wood, 1998). Some researchers such as Boaler and Brodie (2004) 

and Hiebert and Wearne (1993) have elaborated on these broad categories, looking at different 

types of factual questions, probing questions and so on, but these more nuanced taxonomies are 

beyond the scope of this paper. 

A shared finding across primary mathematics (e.g., Franke et al., 2009), secondary 

mathematics (e.g., Boaler & Brodie, 2004; Sahin & Kulm, 2008), and undergraduate 

                                                 
3
 Researchers have examined teacher questioning in K-12 classrooms (e.g., Boaler & Brodie, 2004), community 

college classrooms (Mesa 2010; Mesa, Celis, & Lande, 2013), and calculus classrooms (Viirman, 2015). As the 

pedagogical goals of these courses tend to be similar (i.e., helping students develop conceptual understanding and/or 

procedural competence) and this literature has produced findings that are largely consistent, we collapse our review 

to K-14 mathematics. 
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calculus (Viirman, 2015) is that teachers predominately pose factual questions. This occurs even 

though researchers claim that factual questions limit students engagement and do not promote 

students’ developing robust understandings (e.g., Stein, Remillard, & Smith, 2007).  

1. 2. 2. Examining teachers’ wait time  

Researchers have indicated that longer wait times can invite greater student participation, 

contribute to classroom discourse, and improve student achievement (e.g., Duell, Lynch, 

Ellsworth, & Moore, 1992; Mesa, 2010; Tobin, 1986). For example, Tobin (1986) found that 

increasing middle school teachers’ wait time to between three and five seconds produced 

positive changes in classroom discourse and student achievement in both mathematics and 

language arts. As a general rule, researchers have posited students should be given at least three 

seconds to respond to a question (e.g., Rowe, 1974; Swift & Gooding, 1983; Tobin, 1986) on the 

grounds that with wait times under three seconds, “students are not encouraged to voice an 

answer or contribution and therefore opportunities for participation are shut down” (Mesa, 2010, 

p. 67). However, in the K-14 classrooms where studies have been conducted both in the United 

States (e.g., Aizikovitsh-Udi & Star, 2011; Duell et al., 1992; Mesa, 2010; Rowe, 1986) and 

internationally (e.g., Heinze & Erhard, 2006), teachers usually do not provide students with three 

seconds to answer a question. Hence, when teachers ask questions in K-14 classrooms, these 

questions often do not provide students with significant opportunities to participate; the extent to 

which such findings are also true in advanced mathematics courses is an open question.  

2. Analytical Framework 

Based on the aforementioned literature, we consider a lecturer’s question as a 

participation opportunity for students either if a student provides an answer to the question or if 

the lecturer gives students at least three seconds to respond. Because of our interest in lecturers 

verbally prompting students to consider or generate course content, we considered direct 
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statements not phrased in the form of a question (e.g., “[Student name] give me an example of a 

non-commutative ring.”) as questions in our analysis. 

2. 1. Mathematical contributions in advanced mathematics 

We are interested in the types of mathematical contributions lecturers solicit via 

questions. We broadly define mathematical contributions to include mathematical content and 

ways of reasoning. By mathematical content, we are referring to formal (e.g. proofs, definitions) 

and informal (e.g., heuristics) content that is often stated or drawn to represent a mathematical 

idea. By ways of reasoning we are referring to identifying productive directions for approaching 

mathematical problems and evaluating whether a particular approach or assertion is valid or 

productive. By broadly defining mathematical contributions, we intend to capture as many 

opportunities as possible for students to offer contributions in response to lecturers’ questions.  

 Fukawa-Connelly, Weber, and Mejia-Ramos (2017) synthesized the research literature on 

lecturing in advanced mathematics to characterize mathematical contributions commonly made 

in these lectures. They noted that although lectures were typically structured around formal 

products—specifically definitions, propositions, and proofs—lecturers also discussed examples, 

informal representations of mathematical concepts, and heuristics for solving mathematical 

problems including mathematical methods. An example of a concept is a specific object that 

satisfies the concept’s definition (e.g., 5 is an example of a prime number). An informal 

representation is a diagrammatic or graphical representation of a concept, or a description of a 

concept in colloquial English (e.g., a strictly increasing function is a graph that goes up from left 

to right). A mathematical method is a non-algorithmic approach to accomplish a general task or 

conditions under which a technique is likely to be useful (e.g., a useful way to prove a sequence 
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is convergent when you do not have a limit candidate is to show that the sequence is a Cauchy 

sequence).
4
  

2. 1. 1. Ways of thinking particular to proving in advanced mathematics 

Given the significance of proofs in advanced mathematics courses (e.g., Weber, 2001), 

we view the extent to which lecturers provide students opportunities to engage in the reasoning 

processes used in proof construction to be particularly important. Alcock (2010) identified four 

modes of reasoning successful provers use. Structural thinking involves generating a proof by 

using the formal structure of a statement. Instantiation involves understanding statements by 

considering examples to which a statement applies. Creative thinking involves identifying 

mathematical properties or manipulations that may lead in productive proof directions. Finally, 

critical thinking involves checking the correctness of assertions within a proof, either by 

checking if the assertion holds for particular example objects or examining if expected properties 

are preserved by the inference.  

3. Participants, Data Collection, And Methods 

We recruited participants by sending e-mails to every lecturer at three doctoral-granting 

institutions in the eastern United States who was teaching an advanced mathematics course. We 

asked to observe and audio-record one of their lectures. Lecturers were not told the purpose of 

the study. Eleven lecturers agreed. The content of their courses is summarized in Table 1 below.  

Table 1 

Description of lecturer, course content, and content in the observed lesson 

                                                 
4
 Fukawa-Connelly, Weber, and Mejia-Ramos (2017) also discussed modeling mathematical behavior as occurring 

when a lecturer emphasizes the types of practices, questions, and appraisals that are common or natural in 

mathematics. However, this is not relevant for the purposes of this paper. 
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Lecturer Overarching 

Course-content 

Description of content in the lesson  

L1  Number Theory Transfinite arithmetic, counting  

L2  Real Analysis Infinite series, convergence, examples of sequences that do and 

do not converge 

L3  Number Theory Prime number theorem, approximations of the prime number 

theorem 

L4 Linear algebra Jordan Canonical form, T-invariant subspaces 

L5  Abstract algebra Exam problems, permutations, cycle notation, operations on 

permutations, order 

L6  Number theory Reduced residue systems, Euler’s theorem, multiplicative 

functions, Euler phi function 

L7  Geometry Isometries and similarities 

L8  Abstract algebra Ideals, principal ideals, how congruence mod n is similar to 

congruence in polynomials 

L9  Abstract Algebra Ideals, congruence modulo an ideal, well-defined operations 

L10  Real Analysis Partitions, Riemann integration, Riemann integral 

L11  Differential 

Geometry 

Gaussian curvature, eigenvalues & eigenvectors, principal 

curvature  

All lectures were approximately 80 minutes in length. All professors gave “chalk talk” 

lectures (Artemeva & Fox, 2011). Each class had between seven and 30 students enrolled, with a 

mean of approximately 18 students. A researcher audio-recorded the lecture while transcribing 

everything that the lecturer wrote on the board.  

3. 1. Analyzing for student contributions and wait time 

 In order to examine students’ opportunities to participate, each lecture was transcribed 

and a member of the research team identified every time a lecturer solicited a mathematical 
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contribution.
5
 We coded each question for wait time and who responded to the question. To do 

this, we listened to the audio-recording and noted the number of seconds that passed after a 

lecturer asked a question before someone spoke, truncating wait time of partial seconds (e.g., if 

the next utterance was between two and three seconds, we recorded a wait time of two seconds). 

We then noted if the lecturer or a student spoke next. 

3.2. Analyzing the data using an open coding scheme 

We engaged in two rounds of coding to categorize the content lecturers solicited via 

questions. Because research on teacher questioning in advanced mathematics lectures is limited, 

we initially used an open coding scheme, engaging in thematic analysis (Braun & Clarke, 2006), 

to categorize the mathematical contributions lecturers’ questions solicited. Although our 

knowledge of the mathematics education literature with respect to proof (e.g., Alcock & Weber, 

2005; Selden & Selden, 2003) and questioning (e.g., Boaler & Brodie 2004) informed this 

analysis, we aimed to let the data create our categories rather than force the data into pre-existing 

categories. After going through all of the lectures, we synthesized our preliminary codes into 

operationalized categories presented in Table 2 (for more details regarding the context of each 

example in Table 2, see Appendix A in the Extra Supplementary Materials). 

Table 2 

Categories, descriptions, and examples of question types we identified. 

Category Description Example 

Fact Questions asking for a closed form 

mathematical response that did not 

ask for a course of action. 

 

Do you remember what Cauchy 

means, for a sequence to be 

Cauchy? 

 

Next Step Questions asking students to 

recommend a course of action that 

A’C’ is equal to kAC and B’C’ 

is equal to kBC. Therefore, 

                                                 
5
 Because we focus on the mathematical contributions, questions that were non-mathematical (e.g., Do you know 

when your exam is?) were excluded from our analysis.  
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would continue the logical 

progression of a proof or example. 

 

therefore now what? 

Proof 

Framework  

Questions addressing higher level 

logical structures of a proof. 

 

What will I start [the proof] out 

assuming? 

 

Warrant Questions asking for a justification 

for a statement or claim.  

 

Why is that true? 

 

Evaluation Questions asking students to 

provide a truth-value for a 

statement. 

 

So, claim RL2(A’) is A’. 

Wouldn't that be nice. Is it true?  

Convention Questions addressing a convention 

or notation. 

 

How do you write the identity in 

cycle notation?  

Other Questions that do not fit into the 

other categories 

Here’s a field Q which is in R, 

we talked about compatibility of 

operations, and this was a 

pedagogical risk, of how, well, 

what are we to make of the 

operations here? 

In coding for mathematical contribution, we focused on what type of student contribution 

would constitute a literal answer to the question. For instance, if a lecturer asked “is this claim 

true?,” we coded this question as asking students to evaluate the truth-value of a claim because a 

“yes” or “no” response would constitute an answer to the question. If a student responded, “yes, 

the claim is true because…” and proceeded to provide a warrant for the claim, we still coded the 

question as an evaluation question, not a warrant question.
6
  

After we operationalized our categories, each lecture was assigned to one of the original 

coders to code each question using these categories. Subsequently, a randomly chosen 20-minute 

segment of each 80-minute lecture was re-coded by another member of the research team to 

                                                 
6
 It is possible that due to the socio-mathematical norms in the class, lecturer questions were soliciting contributions 

that went beyond what was literally stated in the question. However, we observed few instances of students 

providing answers that went beyond what was explicitly solicited in the question. 
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check for inter-rater reliability. The coders agreed on 236 of the 258 recoded questions (91.5% 

agreement, Cohen’s Kappa = .90), representing a very high level of agreement. 

3. 3. Analyzing the data in relation to our analytic framework 

In the second phase of analysis, we recoded the data to examine the extent lecturers’ 

questions solicited the mathematical contributions described in the analytic framework. Before 

examining teachers’ questioning, another research team documented each instance in which a 

definition, proposition, proof, example, informal representation, and mathematical method were 

presented during a lecture. The results of this analysis were presented in Fukawa-Connelly, 

Weber, and Mejia-Ramos (2017). The purpose of this second round of analysis was to explore 

how often lecturers provided students opportunities to consider or generate this mathematical 

content via questioning.  For instance, for example contributions, we (the authors of the current 

paper) flagged instances in which a lecturer asked students to provide an example of a concept. 

For proposition contributions, we included any question that asked students to state a theorem, 

proposition, lemma, or corollary as well as any statement outside the context of proofs with 

hypotheses and claims. Because questions regarding most of these contributions were rare, we 

did not compute inter-rater reliability, but instead resolved disputes through discussion. 

Within any of the content that Fukawa-Connelly, Weber, and Mejia-Ramos (2017) coded 

as proof, we coded questions that pertained to Alcock’s (2010) four modes of reasoning. We 

coded a lecturer’s question as soliciting structural thinking when the lecturer asked students to 

provide a part of a proofs framework, or, a type of symbolic unpacking of a definition or other 

known result (e.g., “when we see the statement for all epsilon, what do we do?”). To code for an 

instantiation, we identified any instance where, during a proof, a lecturer referenced an example 

that would illustrate part of the proof. We coded a lecturer’s question as soliciting creative 
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thinking if the lecturer asked students to identify examples, properties, or manipulations that 

solicited the crux of the proof. Finally, we coded for critical thinking when a lecturer either 

solicited a counter-example or asked for implications of claims that went beyond an algebraic 

manipulation in a proof. Questions soliciting each of Alcock’s (2010) four modes of reasoning 

were rare, so again we resolved disputes through discussion. 

4. Results   

Lecturer questioning was common in our data set; across the 11 lectures, there were 619 

questions that solicited mathematical contributions. On average, the lecturers posed 56 questions 

per 80-minute lecture. There was substantial variance in how many questions lecturers posed. 

Nine lecturers asked between 15 and 90 questions. However, one lecturer (L10) asked only four 

questions and another lecturer (L8) asked 202. In what follows, we first present the results from 

the open coding and then from the coding done in relation to our analytic framework. We 

incorporate data relevant to the ways in which lecturers’ provided students’ opportunities to 

participate throughout. 

4. 1. Trends in lecturers’ questioning in regards to general content and opportunities to 

participate  

Table 3 presents the average number of times per lecture each question type we identified 

in our open coding was posed. Table 3 also includes the standard deviation, median, and 

maximum number of questions for each type. Although there was substantial variance in each of 

these categories, Table 3 reveals some general trends across the lectures. Most importantly, the 

majority of questions asked students to recall information or procedures (Fact) or provide the 

next step in a computation or proof (Next Step). There was an average of 37 questions of these 
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two types per lecture, or 66% of the questions asked (see Extra Supplementary Materials 

Appendix B Table 1B and Figure 1B for counts of each question type by lecturer). 

Table 3 

The average number of questions, standard deviation, median, and maximum number of 

questions by category. 

Questioning 

Category 

Average number of 

questions per lecture  

Standard 

Deviation 

Median Max 

Fact 26.2  25.6 18 80 

Next Step 10.7  16.2 5 56 

Proof Framework 2.8  4.9 0 13 

Warrant 5.5  5.6 4 18 

Evaluation 3.1  2.9 2 9 

Convention 2.5  3.5 1 11 

Other  5.4  5.9 2 18 

 

Table 4 presents the extent that lecturers provided students opportunities to respond to 

questions. Recall, we categorized a question as a participation opportunity either if a student 

provided an answer to the question or if the lecturer gave students at least three seconds to 

respond. We highlight that students did not respond to the majority of questions. Further, when 

students did not respond to a question, lecturers infrequently provided three seconds of wait time.  

Table 4 

The average number of questions, student responses, and participation opportunities for each 

questioning category.  

Question Type Average number of 

questions per 

lecture 

Average number of 

student responses per 

lecture (as a % of that 

question type) 

Average number of 

participation opportunities 

(as a % of that question 

type) 
Fact 26.4 10.5 (40%) 14.1 (54%) 
Next Step 10.5 4.1 (39%) 5.1 (49%) 
Proof Framework 2.9 1.4 (48%) 1.5 (51%) 
Warrant 5.6 2.5 (44%) 3.1 (55%) 
Evaluation 3.1 1.0 (32%) 1.4 (44%) 
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Convention 2.5 1.0 (41%) 1.2 (48%) 
Other 5.4 1.3 (24%) 2.0 (38%) 
    
Total 56.3 21.6 (38%) 28.2 (50%) 

 

With respect to lecturers’ use of wait time, students were given limited time to respond to 

questions. Across all categories (Table 5), 80% of questions had a wait time of less than three 

seconds and 51% of the questions had a wait time of less than one second.  

Table 5 

Average number of questions per lecture by category and wait time 

Question Type Avg. 0 s. (%) 1-2 s. (%) 3-4 s. (%) >5 s. (%) 

Fact 26.4 13.1 (50%) 6.8 (26%) 4.0 (15%) 2.5 (9%) 

Next Step 10.5 4.8 (46%) 3.8 (36%) 1.4 (13%) 0.5 (5%) 

Proof Framework 2.9 1.5 (52%) 0.9 (32%) 0.3 (10%) 0.2 (7%) 

Warrant 5.6 2.8 (50%) 1.7 (31%) 0.5 (8%) 0.6 (11%) 

Evaluation 3.1 2.0 (65%) 0.6 (21%) 0.4 (12%) 0.1 (3%) 

Convention 2.5 1.2 (48%) 0.9 (37%) 0.3 (11%) 0.1 (4%) 

Other 5.4 3.2 (59%) 1.5 (27%) 0.5 (9%) 0.4 (7%) 

      

Total 56.3 28.5 (51%)  16.3 (29%) 7.2 (13%) 4.4 (8%) 

 

4. 2. Questions pertaining to the mathematical contributions in advanced mathematics lecturers 

 In the sub-sections that follow we highlight how lecturers posed questions pertaining to 

the mathematical contributions in advanced mathematics synthesized by Fukawa-Connelly, 

Weber, and Mejia-Ramos (2017). For each contribution we provide the number of questions 

asked by lecturers pertaining to the content, the number of participation opportunities, and 

examples of ways in which lecturers promoted opportunities for students to consider or generate 

these mathematical contributions.   

4. 2. 1. Definitions 
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The lecturers presented a total of 21 definitions in the lectures.
7
 Three lecturers each 

asked a single question in which they solicited either a definition or a critical piece of a 

definition. While L1 did not present any formal definitions, L1’s use of questions to solicit 

definitions was notable. L1’s set theory lecture was devoted to inviting students to consider 

what definitions for cardinality, cardinal addition, cardinal multiplication, and cardinal 

exponentiation should look like without ever providing a formal definition for the latter three.
8
 

For example, when introducing cardinal multiplication L1 asked, “What should a definition of 

multiplication be? What does it come out to be in familiar cases? What laws does it satisfy?” He 

then described how cardinal multiplication mimicked the Cartesian product and provided a 

numeric example. In this example, as with cardinal addition and exponentiation, L1 asked 

students to consider how to define cardinal operations and what properties need to be maintained 

in order for these operations to be well defined. Hence, L1 provided an example of how a 

lecturer can solicit definitions via questions in an advanced mathematics course. 

4. 2. 2. Propositions 

 The lecturers presented a total of 59 propositions. Five lecturers each asked students to 

pose or complete exactly one proposition; all five of these questions were coded as a 

participation opportunity. As an example, after finishing a proof of the maximum number of 

primes between 0 and x, L3 intended to prove Euler’s Theorem of convergence. He prompted his 

students,  

                                                 
7
 For more on how each contribution was counted across the lectures we refer the reader to Fukawa-Connelly, 

Weber, and Mejia-Ramos (2017). 
8
 Because L1 did not provide a formal definition, cardinal addition, multiplication, and exponentiation are not part 

of the 21 total definitions presented by the lecturers. 
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L3: There is another thing that I wanted to prove… this is called Euler’s theorem… it 

says the following, the sum over all primes p of 1/p, yeah, what can you say about it? 

Primes. What’s the sum over all integers n, of 1/n? 

S: It’s, that’s divergent. 

The italicized question solicited the claim of Euler’s theorem, and was therefore coded as 

pertaining to a proposition. As the student provided a response to this question, this was coded as 

an opportunity for a student to state a proposition (i.e., that the series in question was divergent). 

4. 2. 3. Examples 

The lecturers presented a total of 65 examples. Two lecturers asked questions that 

solicited a total of five examples; three of these questions were coded as participation 

opportunities. In an abstract algebra lecture about rings and ideals, L8 was continuing her 

introduction of ideal and explaining that some ideals are described as left-ideals. While doing so 

she solicited an example asking, “What’s our classic example of non-commutative rings?” 

Multiple students responded, “matrices,” which L8 claimed required sided-ideals. Later in the 

lecture, L8 solicited an example of an ideal asking, “What was an example of an ideal in the ring 

Z?” She then prompted a student to respond to this question. Hence, L8 provided students some 

opportunity to generate examples. 

4. 2. 4. Informal Representations 

The lecturers presented a total of 157 informal representations. Two lecturers asked 

questions that solicited four informal representations. L7 asked three of these questions and we 

coded each question as a participation opportunity. After presenting a definition of dilation, L7 

indicated there were several cases to consider depending on the value of the ratio of dilation, k.  
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L7: So k could be between 0 and 1, that’s one case, or k can be bigger than 1, but we also 

can consider the possibility that k is negative, right? So let’s start out with some point O 

and P, so O is gonna be the center of our dilation. Let’s consider another point, maybe 

Q… Will somebody give us a sketch of what it looks like if k is between 0 and 1? [Student 

1 name], you’ll do one? Who will do it for k bigger than one? [Student 2 name], I feel 

like you want to do it. 

A third student volunteered to produce a sketch for negative k values and the students produced 

the requested representations. Hence, L7 provided students opportunities to generate informal 

representations. 

4. 2. 5. Mathematical Method 

The lecturers presented a total of 61 mathematical methods (i.e., heuristics for 

accomplishing certain types of tasks or when certain techniques would be useful). Four lecturers 

each solicited exactly one method from their students; one question was a participation 

opportunity. As an example of a question we coded as pertaining to mathematical method, 

consider L7 beginning to prove that all isometries can be written as the composition of three 

reflections.  

L7: So, in some sense, reflections are like our little generators, right? I think this is pretty 

cool, and the proof is actually much easier than you might expect. So the proof is this. We 

said that if you want to know an isometry, it’s enough to know what the isometry does to 

what? 

S: Three points. 

We described the italicized question as pertaining to mathematical method as the question 

solicited a critical piece of information that contributes to a non-algorithmic means of 
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understanding a particular transformation. Essentially L7 was asking for an efficient way to 

characterize an isometry. The student’s response stated this critical approach.  

4. 2. 6. Summary 

 Table 6 presents the total number of each contribution across the 11 lectures, the number 

of contributions lecturers solicited via questions, and the number of participation opportunities to 

generate the contribution. Although the lecturers frequently presented definitions, propositions, 

proofs, and so on, these lecturers rarely solicited a contribution via questions and almost never 

provided students participation opportunities to generate a contribution.  

Table 6  

The total number of contributions in this data set as identified by Fukawa-Connelly, Weber, and 

Mejia-Ramos (2017), the number of contributions lecturers solicited via questions, and the 

number of participation opportunities across the lectures.  

Mathematical 

Contribution 

Total number 

of 

contributions  

Number of 

questions soliciting 

a contribution 

Number of participation 

opportunities to provide 

the contribution 
Definitions 21 3 1 

Propositions 59 5 5 

Examples 65 5 3 

Informal 

Representation 

157 4 3 

Method 61 4 1 

    

Total 363 21 13 

 

4. 3. Lecturer questioning when presenting proofs 

Proofs played an important part in the lectures that we observed; proofs accounted for 

28% of the total lecture time. Further, 26% of the questions asked occurred within the context of 

a proof. Proofs also differed from the other contributions as the average proof took six minutes to 
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produce whereas the other contributions described by Fukawa-Connelly, Weber, and Mejia-

Ramos (2017) were usually provided by the lecturer or student within seconds. In this section, 

we present our findings regarding lecturer questioning when presenting proofs with respect to 

our initial analysis and to Alcock’s (2010) description of important reasoning processes used by 

successful provers.  

Lecturers asked 163 questions while presenting proofs with 93 participation 

opportunities. Table 7 provides counts from the initial analysis for questions posed during 

proofs. Lectures provided students with considerably more participation opportunities with 

respect to proofs (9 per lecture) as compared to the other five contributions described by 

Fukawa-Connelly, Weber, and Mejia-Ramos (2017). Consistent with the lectures as a whole, 

Fact and Next Step questions comprised the majority of these participation opportunities. Proof 

Framework and Warrant questions occurred on average only two times per lecture.
9
  

Table 7 

The average number of questions per lecture, average number of questions students responded 

to, and average number of participation opportunities for each questioning category during 

proof presentations.  

Question Type Average number of 

questions during a 

proof per lecture 

Average number of 

questions students 

responded to per 

lecture  

Average number of 

participation 

opportunities per lecture 

Fact 5.7 2.2  2.9 
Next Step 4.0 2.3 2.5 
Proof Framework 2.0 1.2 1.3 
Warrant 1.8 0.8 0.9 
Evaluation 0.4 0.1 0.2 
Convention 0.1 0.0 0.0 

                                                 
9
 The number of Proof Framework questions per lecturer is less than those counted for the entirety of the lectures as 

some Proof Framework questions occurred outside of the context of formally writing a proof (e.g., considering how 

one would start a proof without ever actually writing the proof). 
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Other 0.8 0.5 0.7 
    

Total 14.8 7.3 8.7 
We provide an atypical example to show how one lecturer provided students 

opportunities to make important mathematical contributions when presenting a proof. 

Throughout his real analysis lecture, L2 provided students many opportunities make 

mathematical contributions. The following excerpt shows L2 calling on students without them 

necessarily volunteering to engage the students in proving that multiplying a converging series 

by a constant generates a convergent series (i.e. Given that {SN} converges to A where SN = a1 + 

… + aN then {TN} converges to cA where TN = (ca1) + … + (caN)). For each question, we provide 

the question code and wait time using the convention [Code; wait time in seconds].  

[1] L2: [S1
10

], you want to start, how do you prove this one? [Proof Framework; 1]. 

[2] S1: Start with what you know.  

[3] L2: Always a good strategy. What do you know? [Proof Framework; 1].  

[4] S1: We know that an converges to A.  

[5] L2: [Writes “Given that {SN} converges to A, where SN =a1+…+aN”] Okay, [S2], that’s 

what we know.
11

 [Next Step; 1].  

[6] S2: cSn equals the [inaudible].  

[7] L2: Okay, so. Write what you know, write what you’re going to show. Now [S3], I guess 

you’re next. So this is what you know, this is what you’re trying to show. What would 

you do next? [Next Step; 1]. 

[8] S3: I’d grab a c from each of the terms.  

[9] L2: [Writes “TN = cSN”] Like that? [Non-Mathematical]. 

                                                 
10

 S1 was the first student to respond in this excerpt but was the 18
th

 student called on to this point in the lecture. 
11

 We coded L2’s statement as an invitation to participate as S19 responded to this statement by providing the next 

step in the proof.  
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[10] S3: Yeah.  

[11] L2: So what is true then? [Next Step; 1].  

[12] S3: It converges to c times whatever SN converges to. [L2 writes “But TN = cSN, so this 

converges to clim SN = cA.”] 

[13] L2: [S4], why is that true? [Warrant; 2]. 

[14] S4: [inaudible] 

[15] L2: The theorems we proved – you’re absolutely right by the theorem that we proved. 

We note two of the six questions L2 asked were Proof Framework questions (Turns 1 and 

3) and one was a Warrant question (Turn 13). These questions went beyond recalling facts or 

giving suggestions for next steps, and were particular to contributing to the proof L2 and his 

students were generating. Hence, L2 provided students opportunities to make important 

mathematical contributions while writing a proof.  

In terms of Alcock’s (2010) ways of thinking, we coded the questions in Turns 1 and 3 as 

asking students to engage in structural thinking as the questions asked students to generate a 

proof by considering the formal structure of the proof; both questions were participation 

opportunities for students. Across all 11 lectures, there were 44 questions that pertained to 

structural thinking and 29 of these questions were participation opportunities. Hence, lecturers 

did provide students some opportunities to participate in structural thinking.  

There were an additional three questions that solicited critical thinking, all by L7. For 

example, during a proof that any isometry can be written as the composition of three reflections, 

L7 was discussing the transformation of particular points under reflections. After defining a 

reflection that sent A to A’ she defined a second reflection (RL2) that would send B to B’. She 

then said, “So claim, RL2(A’) is A’. Wouldn't that be nice. Is it true? Is A’ equidistant from these 
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two? So this is true.” L7 asked students to consider the correctness of her assertion that RL2(A’) 

is A’. Hence, we coded these two questions as soliciting critical thinking. In the sample of 11 

lectures, there were no questions pertaining to Alcock’s (2010) descriptions of creative thinking 

or instantiation during the construction of a proof.  Hence, lecturers rarely solicited critical 

thinking, creative thinking, or instantiation via questions when presenting proofs. 

5. Discussion 

Although we examined a new population, advanced mathematics lecturers, the results of 

our open coding are largely consistent with the K-14 literature. For instance, we found that 

lecturers predominately (66% of all questions) asked students to provide factual information or a 

next step (e.g., Boaler & Brodie, 2004; Franke et al., 2009; Viirman, 2015); in our population, 

lecturers infrequently asked questions seeking other types of mathematical contributions (e.g., 

warrants, evaluation). Such findings may indicate that regardless of grade level or content, 

questions soliciting a fact or next step tend to be the easiest questions for teachers to ask or the 

questions teachers believe students are most capable of answering.  

Although, we identified several questioning categories consistent with the K-14 

mathematics literature, we also identified novel questioning categories. Fact questions and Next 

Step questions are consistent with the factual and generative questions in the K-14 literature 

(e.g., Boaler & Brodie, 2004; Hiebert & Wearne, 1993). To our knowledge, the categories of 

Proof Framework and Convention were not discussed in papers categorizing questions in K-14 

mathematics. The existence of Proof Framework questions is perhaps not surprising, as proofs 

are often central to advanced mathematics classes (e.g., Alcock & Weber, 2005). The emergence 

of Convention questions might signal the increased importance of notation and syntax in 

advanced mathematics.  
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Despite the fact that each mathematical contribution described by Fukawa-Connelly, 

Weber, and Mejia-Ramos (2017) was common across the lectures, with the exception of proofs, 

lecturers infrequently solicited this content via questions. Further, students almost never actually 

provided this content. With respect to Alcock’s (2010) ways of thinking in proof construction, 

although students were given opportunities to address questions soliciting structural thinking, 

there were limited questions soliciting critical thinking and no opportunities to engage in creative 

thinking or instantiation. Further, lecturers asking Proof Framework and Warrant questions on 

average only two times per lecture is notable considering researchers (Alcock & Weber, 2005; 

Selden & Selden, 2003) have indicated identifying proof frameworks and warrants are important 

skills in understanding and producing proofs. Such findings may provide some insight into why 

students leave their advanced mathematics courses without the proving skills expected of them 

(Stylianides, Stylianides, & Weber, 2017).  

Although lecturers generally did not use questions to promote opportunities for students 

to participate in advanced mathematics courses, we provided several examples of lecturers 

eliciting some contributions from students (e.g., L7 having students generate informal 

representations and mathematical methods). These examples empirically support Pinto’s (2013) 

and Weber’s (2004) observations that lecturing in advanced mathematics is a multifaceted 

practice and there may not be a single “traditional” lecture in advanced mathematics courses.  

We are cautious about generalizing the findings of this study to all advanced mathematics 

lecturers for several reasons. First, the lecturers were all at research universities from the United 

States. Second, the lecturers all volunteered to participate in our study. Third, our sample was 

relatively small (11 lecturers). However, this study does highlight that even if lecturers 

frequently ask questions, they still might not be providing students with opportunities to 
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contribute to course content. Further, our analysis identifies interesting reasons for why this 

might be the case. However, any claims about the general trends that we observed should be 

treated only as tentative hypotheses that require validation in further studies. 

6. Implications and Directions for Future Research 

Across our sample, students were given limited opportunities to generate content in their 

advanced mathematics courses. Based on their meta-analysis, Chi and Wiley (2014) concluded 

that providing students opportunities to generate course content can support students developing 

more sophisticated understandings. Students lack of opportunities to participate in their advanced 

mathematics lectures may be one reason they fail to develop the understandings and skills 

expected of them in these courses (e.g., Rasmussen & Wawro, 2017; Stylianides, Stylianides, & 

Weber, 2017).  

We conjecture students may develop more sophisticated understandings if they are given 

more opportunities to generate course content. To test this conjecture, we propose one area for 

future research involving investigating if the number of opportunities students have to make (or 

at least consider making) mathematical contributions in a lecture correlates with student 

understanding and achievement. For instance, our findings indicate that students were willing to 

provide warrants, evaluate mathematical statements, or provide examples when these 

contributions were solicited (students’ response rates to these questions were similar to their 

response rates to Fact and Next Step questions). If advanced mathematics lecturers provide 

students more opportunities to address (or at least consider via longer wait times) more of the 

former types of questions, would students develop better understandings of the course content?  

 In the previous section, we discussed limitations of our self-selected sample of 11 

lecturers. Artemeva and Fox (2011) indicated that “chalk talk” in advanced mathematics is a 
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relatively consistent practice in the U.S. and internationally but also highlighted some differences 

they attributed to different cultural-historical contexts. As Artemeva and Fox (2011) did not 

address lecturer questioning, it would be interesting to explore the extent that lecturers at other 

types of universities or in other countries used similar questioning practices. For instance, in the 

United States, smaller liberal arts colleges typically have smaller class sizes and are taught by 

faculty members whose institutional obligations are more geared toward teaching than research. 

In other countries, class sizes are typically much larger. In both cases lecturers questioning 

practices might differ from the lecturers in our sample. Further, future researchers may be 

interested in exploring the teaching practices of lecturers who have been involved in professional 

development specific to teaching or have won awards for their teaching versus lecturers who 

have not had such experiences or acknowledgements. Hence, we intend our findings to serve as a 

starting point for more robust investigations into advanced mathematics lecturers’ use of 

questions to solicit mathematical contributions from students.  
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