Teaching HPC Systems and Parallel Programming
with Small Scale Clusters of Embedded SoCs

Lluc Alvarez
Barcelona Supercomputing Center
Universitat Politecnica de Catalunya
lluc.alvarez@bsc.es

Abstract—In the last decades, the continuous proliferation of
High-Performance Computing (HPC) systems and data centers
has augmented the demand for expert HPC system designers,
administrators and programmers. For this reason, most uni-
versities have introduced courses on HPC systems and parallel
programming in their degrees. However, the laboratory assign-
ments of these courses generally use clusters that are owned,
managed and administrated by the university. This methodology
has been shown effective to teach parallel programming, but
using a remote cluster prevents the students from experimenting
with the design, set up and administration of such systems.

This paper presents a methodology and framework to teach
HPC systems and parallel programming using a small-scale
cluster of embedded System-on-Chip (SoC) boards. These SoCs
are very cheap, their processors are fundamentally very similar
to the ones found in HPC, and they are ready to execute Linux
out of the box, so they provide a great opportunity to be
used in laboratory assignments for the students to experience
with assembling a cluster, setting it up, and configuring all the
software ecosystem. In addition, this paper shows that the small-
scale cluster can be used as the evaluation platform for parallel
programming assignments.

Index Terms—HPC systems, parallel programming, teaching

I. INTRODUCTION

The importance of High-Performance Computing (HPC) in
our society has continuously increased over the years. In the
early years, the very few existing HPC systems were based
on vector processors specialised for scientific computations
and they were only used by a small amount of experts;
programmability and usability were not the key issues at
that moment. The trend changed when supercomputers started
to adopt “high-end” commodity technologies (e.g. general-
purpose cores), which opened the door to a rich software
ecosystem and, consequently, to many advantages in program-
ming productivity. This was a key factor for the popularisation
of HPC infrastructures, which spread throughout many re-
search and industrial sectors. In the last years, the proliferation
of HPC systems and data centers has gone even further with
the emergence of mobile devices and cloud services. In the
current scenario, the demand for expert HPC system designers,
administrators and programmers is higher than ever, and will

This work is partially supported by the Spanish Government through
Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science
and Technology (contracts TIN2015-65316-P and FJCI-2016-30985), and by
the Generalitat de Catalunya (contract 2017-SGR-1414).

Eduard Ayguade
Barcelona Supercomputing Center
Universitat Politecnica de Catalunya

eduard.ayguade @bsc.es

Filippo Mantovani
Barcelona Supercomputing Center
filippo.mantovani @bsc.es

likely continue growing to keep improving the performance
and efficiency of HPC systems in the future.

In the last years, many universities have introduced courses
on HPC systems and parallel programming in their degrees.
Given the cost of modern HPC infrastructures, the laboratory
assignments of most of these courses use clusters that are
owned, managed and administrated by the university. This
methodology is convenient to teach parallel programming, as
the students only need to connect remotely to the cluster to do
the programming work for the assignment. However, using a
remote cluster prevents the students from experimenting with
the design, set up and the administration of such systems.

Fortunately, with the advent of Systems-on-Chip (SoCs) for
the embedded and the multimedia domains, today it is very
easy and very cheap to build a small-scale cluster. Modern
commercial SoCs for the embedded domain equip processors
that are fundamentally very similar to the ones found in HPC
systems, and are ready to execute Linux out of the box. So,
these devices provide a great opportunity for the students
to experience with assembling a cluster, setting it up, and
configuring all the required software to have a fully operative
small-scale HPC cluster.

This paper presents the methodology and framework that
we propose for teaching HPC systems and parallel program-
ming using a small-scale HPC cluster of embedded SoCs.
This methodology has been successfully used to support
teaching activities in Parallel Programming and Architectures
(PAP), a third-year elective subject in the Bachelor Degree
in Informatics Engineering at the Barcelona School of In-
formatics (FIB) of the Universitat Politcnica de Catalunya
(UPC) - BarcelonaTech. After presenting the PAP course
description and environment we first give an overview of
the components of the small-scale cluster, which we name
Odroid cluster after the Odroid-XU4 boards [1] that form
it. Then the paper describes the methodology that we use in
two laboratory assignments of the course. The first laboratory
assignment consists on setting the Odroid cluster up and doing
an evaluation of its main characteristics. The cluster setup
consists on physically assembling the boards, configuring
the network topology of the cluster, and installing all the
software ecosystem typically found in HPC platforms. In the
evaluation part the students discover the main characteristics
of the Odroid-XU4 boards, they learn how the threads and

the processes of a parallel program are distributed among the
processors and the nodes, and they experiment with the effects
of heterogeneity. The second laboratory assignment consists on
parallelizing an application implementing the heat diffusion
algorithm with MPI [2] and OpenMP [3] and evaluating it
on the Odroid cluster. The complete framework presented in
this paper greatly facilitates the learning of the design, the set
up and the software ecosystem of HPC systems, as well as
being a very appealing platform for the evaluation of parallel
programming assignments.

The rest of this paper is organized as follows: Section II
explains the course and its methodology. Section III gives an
overview of the Odroid cluster and its components. Section IV
describes the work to be done by the students to evaluate
the Odroid cluster and to understand its main characteristics.
Section V then shows how we use the Odroid cluster as a
platform for a parallel programming assignment. Section VII
remarks the main conclusions of this work. Finally, sec-
tion VIII presents as an annex the step-by-step process that
is followed by the students in the laboratory assignment to set
up the cluster.

II. CONTEXT, COURSE DESCRIPTION AND
METHODOLOGY

Parallel Programming and Architectures (PAP) is a third-
year (sixth term) optional subject in the Bachelor Degree in
Informatics Engineering at the Barcelona School of Informat-
ics (FIB) of the Universitat Politecnica de Catalunya (UPC)
- BarcelonaTech. The subject comes after Parallelism (PAR
[4]), a core subject in the Bachelor Degree that covers the
fundamental aspects of parallelism, parallel programming with
OpenMP and shared—memory multiprocessor architectures.
PAP extends the concepts and methodologies introduced in
PAR, by focussing on the low-level aspects of implement-
ing a programming model such as OpenMP, making use
of low-level threading (Pthreads); the subject also covers
distributed—memory cluster architectures and how to program
them using MPI. Another elective course, Graphical Units and
Accelerators (TGA) explores the use of accelerators, with an
emphasis on GPUs, to exploit data-level parallelism. PAR, PAP
and TGA are complemented by a compulsory course in the
Computer Engineering specialisation, Multiprocessor Archi-
tectures, in which the architecture of (mainly shared-memory)
multiprocessor architectures is covered in detail. Another
elective subject in the same specialisation, Architecture-aware
Programming (PCA), mainly covers programming techniques
for reducing the execution time of sequential applications,
including SIMD vectorisation and FPGA acceleration.

The course is done in a 15-week term (one semester), with 4
contact hours per week: 2 hours dedicated to theory/problems
and 2 hours dedicated to laboratory. Students are expected to
invest about 5-6 additional hours per week to do homework
and personal study (over these 15 weeks). Thus, the total effort

devoted to the subject is 6 ECTS credits!.

The content of the course is divided in three main blocks.
The first block has the objective of opening the black box
behind the compilation and execution of OpenMP programs;
it covers the internals of runtime systems for shared-memory
programming, focusing on the most relevant aspects of thread
management, work generation and execution, and synchro-
nisation; in a very practical way, students explore different
alternatives for implementing a minimal OpenMP-compliant
runtime library, using Pthreads, providing support for both
the work—sharing and tasking execution models. This block
takes 4 theory/problems sessions (mainly covering low—level
Pthreads programming) and 6 laboratory sessions (individual
work). At the end of the laboratory sessions for this block, a
session is devoted to share experiences and learnings. Addi-
tional details about this block and the laboratory assignment
can be found elsewhere [5].

The second block has the objective of understanding the
scaling path to parallel machines with large number of pro-
cessors, beyond the single-node shared—memory architectures
students are familiar with; it covers the main hardware com-
ponents of such systems (processors, accelerators, memories
and their interconnection). This block takes 4 theory/problems
sessions devoted to analyse in detail how the ratio FLOPs/Byte
evolves in the scaling path (i.e. number of potential floating—
point operations per byte of data from accessed from/to mem-
ory/interconnect). The roofline model [6], plotting floating-
point performance as a function of the compute units peak
performance, data access peak bandwidth and arithmetic in-
tensity, is used to understand this evolution and its implications
on data sharing in parallel program; the evolution of the
energy efficiency (Flops/Watt) is also covered. The block also
takes 3 laboratory sessions in which students 1) physically
assemble a small cluster based on Odroid boards [1], 2)
set up the Ethernet network and the Network File System
(NFS), 3) install and configure all the software required to
execute MPI and OpenMP parallel programs, and 4) evaluate
the cluster using some simple benchmarks. This laboratory
work is complemented with a guided learning assignment
in which groups of students propose the design of a real
HPC system, based on commodity components, with certain
performance/power trade-offs and economic budget; this is
an excellent opportunity for them to take a look at real
components and include cost as one of the important trade-offs
in HPC system design. The proposed designs are presented,
discussed and ranked in a session with the idea of sharing the
criteria used by each group of students.

The last block in the course has the objective of studying
the basics of parallel programming for distributed-memory
architectures, using MPI; it covers the aspects related with
the creation of processes/groups and the different data com-

IThe European Credit Transfer System (ECTS) is a unit of appraisal of the
academic activity of the student. It takes into account student attendance at
lectures, the time of personal study, exercises, labs and assignments, together
with the time needed to do examinations. One ECTS credit is equivalent to
25-30 hours of student work.

munication strategies and the trade-offs. This block has a
duration of 3 theory/problems and 3 laboratory sessions. In
the laboratory students develop a hybrid MPI/OpenMP imple-
mentation of the classical heat diffusion problem, evaluating
its performance on the Odroid cluster that they have already
assembled. Although the laboratory assignment in this block
could be done in production cluster available at the departmen-
t/university, we preferred to continue in the Odroid cluster.
During the 6 sessions students are expected to administrate
the Odroid cluster. In particular, they are asked to deal with
all the potential problems that they may encounter, to write
scripts to automatise setup and evaluation processes, and to
install libraries and tools (editors, debuggers, etc) to have a
productive programming environment.

The rest of the paper focus on the laboratory activities
related with these two last blocks in PAP.

Compute Compute
node 0 Head node node 2
Compute ; Compute
node 1 Switch node 3

Fig. 1: Scheme of the Odroid cluster.

III. ODROID CLUSTER OVERVIEW AND COMPONENTS

This section provides an overview of the Odroid cluster that
is used in the laboratory assignments. Figure 1 illustrates the
main components of the Odroid cluster. It consists of one head
node and four compute nodes connected through a switch.
The head node acts as the gateway for accessing the cluster
and is also in charge of providing Internet connection to the
whole cluster and to host the DHCP server. The hardware
components required to assemble the cluster are listed below:

o head node: personal computer (PC) with 2 network
interfaces.

o compute nodes: 4 Odroid-XU4 boards, each with a
eMMC card with a pre-installed Ubuntu 16.04, as shown
in Figure 2.

o 1 8-port Gigabit Ethernet desktop switch.

e 1 power supply for the Odroid-XU4 boards and switch.

The Odroid-XU4 boards are based on the Samsung Exynos5
Octa chip [7], a low-power heterogeneous multicore processor
based on the ARM big.LITTLE architecture [8]. Each proces-
sor consists of 4 Cortex-A15 out-of-order cores running at 1.9
GHz and 4 Cortex-A7 in-order cores running at 1.3 GHz. In
addition the board includes a LPDDR3 RAM chip of 2GB as
main memory and ports for Gigabit Ethernet, eMMC 5.0 and
1SD Flash storage, USBs and HDMI display. The board also
comes with an active cooling fan mounted on top of the socket
(not shown in Figure 2).

The head node and the 4 compute nodes are connected to
the 8-port Gigabit Ethernet switch. A picture of the assembled
cluster is shown in Figure 3. As shown in the picture, we
provide a methacrylate plate that has the switch and the

Fig. 2: Odroid-XU4 board.

power supply already attached, and also some free space for
the students to stack the Odroid boards vertically. This way
the cluster is much more compact and only a single plug is
required for the whole cluster.

Section VIII is an annex that provides detailed information
about the required steps to set the Odroid cluster up.

IV. ODROID CLUSTER EVALUATION

A. Cluster Characteristics

In order to understand the main characteristics of the Odroid
boards, we ask the students to use the commands 1scpu to
obtain general information about the node and "1lscpu -e"
to get per-core information. We also encourage them to inspect
the file /cpu/cpuinfo to get additional details about the
cores. In addition, the students are asked to use the 1stopo
command (included in the hwloc package) to get a graphical
representation of all the components of a compute node.

Fig. 3: Picture of the Odroid cluster.

B. Thread and Process Distribution

To find out how the threads and the processes are distributed
across the Odroid cluster, we ask the students to experiment
with a “Hello world!” benchmark programmed in hybrid
MPI/OpenMP. The benchmark simply prints, for each thread,
its process ID, its thread ID and the name of the MPI host
where it is executed.

First the students experience with the MPI process distri-
bution. To do so they disable the OpenMP parallelization at
compile time and execute the hello world benchmark with
the command mpirun.mpich -np P -machinefile
machines ./hello_world. Note that the -np op-
tion specifies the number of MPI processes (P), and the
-machinefile option specifies the file that describes the
names of the nodes to be used in the execution and the number
of processes per node. We provide two machine files, shown
in Figure 4, one that specifies 8 processes per node and one
that specifies 1 process per node. The students execute with 1
to 32 processes using both machine files and report how the
processes are distributed across the nodes.

odroid-0:8 odroid-0:1
odroid-1:8 odroid-1:1
odroid-2:8 odroid-2:1
odroid-3:8 odroid-3:1

(a) 8 processes per node (b) 1 process per node

Fig. 4: Machine files for MPI programs.

Then the students experience with the distribution
of MPI processes and OpenMP threads. To do so
they compile the benchmark with support for OpenMP
and execute it with the command mpirun.mpich
-np P —-machinefile machines -genv
OMP_NUM_THREADS T ./hello_world. In addition
to the number of MPI processes and the machine file, the
—genv option specifies the number of OpenMP threads
(T) that each MPI process spawns. The students test both
machine files in executions with 1 to 4 processes and 1 to 8
threads and observe how these are distributed in the cluster.

C. Heterogeneity

One of the main characteristics of the Odroid boards is
the heterogeneity of the cores, as explained in Section III.
We provide the students with a very simple compute-intensive
kernel that calculates the number Pi, which allows to clearly
understand and experience the heterogeneity of the ARM
big.LITTLE architecture.

Listing 1 shows the code of the Pi benchmark. The first
part (lines 2 to 6) initializes the variables and calculates the
start and end of the iteration space (for the loop in line 9)
assigned to each MPI process. The second part (lines 8 to 12)
is the main kernel, which is a compute-intensive loop that can
be parallelized using the OpenMP parallel for construct
with a reduction. The last part (lines 14 to 16) calculates the
partial results (Local_pi) in each MPI process and reduces

void pi(int num_steps) {

1
2 chunk_size = num_steps / num_procs;

3 start = proc_id * chunk_size;

4 end = (proc_id + 1) % chunk_size;

5 h =1.0 / (double) num_steps;

6 sum = 0.0;

7

8 #pragma omp parallel for reduction (+: sum)
9 for (i = start; 1 < end; ++1i) {

10 x = h * ((double)i - 0.5);

1 sum += 4.0 /
12 }

(1.0 + x%*x);

14 local_pi = h % sum;
15 MPI_Reduce (&local_pi, &global_pi, 1,
16 MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD) ;

Listing 1: Pi source code.

them in a global variable (global_pi) to obtain the final
result.

We ask the students to compile and execute the Pi bench-
mark with 1.28G steps and different number of MPI processes
(1 to 4) and OpenMP threads (1 to 8). Note that the OpenMP
parallel for construct in the source code does not spec-
ify any schedule for the iterations of the loop, so the static one
is used by default (one contiguous block of (end — start) +T
iterations per thread, being 7" the number of OpenMP threads
per MPI process. Figure 5a shows the scalability of the bench-

22
20 1{==— 1 MPI process
18 1{—— 2 MPI processes
1671 — 4 mpi processes
% 144
g 124
g 10
» 8
6 4
41
2 4
0

1 2 4 8 16 32
Total number of threads

(a) Scalability

(b) Execution trace

Fig. 5: Scalability and execution timeline of the Pi benchmark
with a static OpenMP schedule.

mark with the static scheduler. The figure shows the speedup
achieved by augmenting the total number of threads. The total
number of threads are derived from the executions with 1 to 4
MPI processes and 1 to 8 OpenMP threads per process. The
MPI processes are distributed across the nodes. The results
show perfect scalability when up to 4 threads per process
are used. This happens because the benchmark is compute
intensive and the threads are scheduled on the fast cores by
default. The parallel efficiency decreases when 8 threads per
process are used, achieving speedups of 4.85x, 9.42x and
18.32x with 1, 2 and 4 MPI processes, respectively. These
performance degradations are caused by the heterogeneity of
the ARM big.LITTLE architecture. As shown in the execution
timeline (obtained with Extrae and visualized with Paraver) in
Figure 5b, the execution phases (in blue) of the fast cores end
significantly earlier than the ones of the slow cores, so then
the fast cores have to wait (in black) for the slow cores to
finish. This execution imbalance (not work imbalance) is due
to the different computing power of the two kinds of cores
in the processor, preventing the Pi benchmark from scaling
further in executions with more than 4 threads per process.

To mitigate the effects of heterogeneity we ask the students
to try to improve the performance of the Pi benchmark by
using a dynamic schedule in OpenMP with different chunk
sizes (number of iterations per chunk dynamically assigned to
a thread). Figure 6a shows the scalability of the Pi benchmark

22
20 1{=— 1 MPI process
18 1|—— 2 MPI processes
1671 — 4 mpi processes
% 144
K 124
g 10
» 8
6 4
44
2 4
0

Total number of threads

(a) Scalability

e
(AR RN RN NN NNNAT
(AR RN R NN R RERARNNNRAT]
RN RN N RN RN RN R RN R RN NNRY]
[r e
NN RN R RN AR RN R RN AR RN NRAN]
[|
e
[e I |
RN RN R NN RN N RN R N NN NN RN AR RN RN R RN NN RN
FEEEEEEEEE T E PR PR PP P P PP P L
HHHHHH (RN RN RN R NN RN \HHHHHH\ HHHHHHH\HH
[|
H\HHH H\HHHHHHH\HHHHHHH\HH \HHHHHH\ H\HH\H\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \
[|
\HHHHHH\ H\HHHHH\ HHHHHHHHHH \HHHHHHH (A
| I |
\mmumu Hmuumu HHHHHHHHHHHHHHHH\HHHHHH\
\\\\\\\\\\\\\ \\\\ \ i

(b) Execution trace

Fig. 6: Scalability and execution trace of the Pi benchmark
with a dynamic OpenMP scheduler and chunk size 512.

with a dynamic scheduler and a chunk size of 512, which
is the best granularity for this experiment. As in the case of
the static scheduler, the results show perfect scalability with
up to 4 threads per process. When 8 threads per process are
used the scalability is slightly better than the one obtained
with the static scheduler, achieving respective speedups of
5.26x, 10.34x and 20.50x with 1, 2 and 4 MPI processes. The
execution trace in Figure 6b clearly shows how the dynamic
scheduler perfectly distributes the work among the threads, so
the time the threads spend waiting in the barrier is negligible.
However, achieving perfect scalability is impossible because
of two important aspects of the architecture. One is the reduced
compute capabilities of the slow cores compared to the fast
ones, and the second one is the DVFS controller that, in order
not to exceed the power and temperature caps, lowers the
frequency and the voltage of the cores when they are all active
at the same time.

V. PARALLELIZATION OF THE HEAT DIFFUSION PROGRAM

In the last assignment of the course the students have to
parallelize a sequential code that simulates heat diffusion in a
solid body using the Jacobi solver for the heat equation. The
program is executed with a configuration file that specifies
the maximum number of simulation steps, the size of the
bi-dimensional solid body and the number of heat sources,
with their individual position, size and temperature. Two
configuration files are provided, one for programming and
debugging and one for evaluating the parallelization. The
program reports some performance measurements (execution
time, floating point operations, the residual and the number of
simulations steps performed) and an image file with a gradient
from red (hot) to dark blue (cold) for the final solution.
Figure 7 shows the output of the program for a solid with
two heat sources, one in the upper left corner and one at the
bottom center.

An skeleton of the code for the heat diffusion benchmark
is shown in Listing 2. Note that the code contains comments
to guide the parallelization strategy, that is explained in the

P

.

Fig. 7: Image of the temperature of the solid body.

void heat () {
Read configuration file
Allocate memory
Initialize matrices and heat sources

// MPI-1:
// MPI-2:

Broadcast input parameters

1
2
3
4
5
6
7 Distribute matrix
8

9 while (1) {

1 // MPI-3: Exchange halos

12

13 // OPENMP-1: Parallelize loop

14 for (i=1; i<N-1; 1i++) {

15 for (3=1; J<N-1; Jj++) {

16 utmp[i] [j] = 0.20 = (

17 ulil [5] + // center
18 ulil [§-11 + // left
19 uli] [J+1]1 + // right
20 uli-1113] + // top
21 uli+11[j1); // bottom
2

23 diff = utmp[i][J] — ulill3];

24 residual += diff » diff;

25 }

26 }

27

28 // MPI-3: Exchange halos

29

30 aux = u;

31 u = utmp;

32 utmp = aux;

33

34 // MPI-4: Communicate residual

35

36 iter++;

37 if (residual < R && iter == MAX_ITERS)
38 break;

39 }

40

41 // MPI-2: Distribute matrix

Listing 2: Heat diffusion source code.

two next subsections. In the initialization (lines 2, 3 and 4),
the program reads the input configuration file to establish the
input parameters, including the size of the matrices (), the
threshold value for convergence (R), and the maximum number
of iterations. Then the programs allocates the memory for two
matrices (u and utmp) and initializes them according to the
heat sources. Then the code enters the main loop (lines 9
to 39), that has three main parts. The first part (lines 14 to
26) computes one step of the heat diffusion simulation. The
computation is a 5-point 2D stencil that uses two matrices,
one as input and one as output. The second part (lines 30
to 32) swaps the matrices so that the output of the previous
stencil becomes the input of the next stencil in the following
iteration. The third part (lines 36 to 38) checks if the solution
has converged or the maximum amount of iterations has been
reached.

A. MPI Parallelization Strategy

The heat diffusion code we provide to the students with
contains a commented skeleton for the MPI and the OpenMP

(256 + 2) column:

(256 + 2) column:

»o
PR
—lo

(64 +2) rows

128 64
129| 65

(256 +2) ro

256
257

@ space for master @ space for worker

Fig. 8: Global and local storage for the matrix of the heat
diffusion algorithm with different processes.

parallelization, as shown in Listing 2. The students first
parallelize the application with MPI following a series of steps.

The first step, labeled as MPI-1 in line 6, consists on
exchanging the information regarding the parameters of the
execution between the processes. On one hand, the master
first reads the configuration file, allocates memory and sends
the execution parameters to the workers; then it computes the
heat equation on the whole 2D space, and finally it reports
the performance metrics and generates the output file. On
the other hand, each worker receives from the master the
information required to solve the heat equation, allocates
memory, performs the computation on the whole 2D space
and finishes. Note that this version does not benefit from the
parallel execution since workers replicate the work done by
the master.

The second step, labeled as MPI-2 in lines 7 and 41,
consists on distributing the matrices among the processes so
that the master and the workers solve the equation for a subset
of consecutive rows. Figure 8 shows an example for a 256x256
matrix (plus the halos) distributed among 4 processes. After
computing its part of the matrix, the workers return the part
of the matrix they have computed to the master in order to
re-construct the complete 2D data space. This version of the
code does not generate a correct result because the processes
do not communicate the boundaries to the neighbor processes
at each simulation step.

The third step, labeled as MPI-3 in line 11 and 28,
consists on adding the necessary communication so that, at
each simulation step, the boundaries are exchanged between
consecutive processors. The students have the freedom to use
the MPI communication routines they find more appropriate.
This version of the code still generates an incorrect solution
because the total number of simulation steps done in each
process is controlled by the local residual of each process
and the maximum number of simulation steps specified in
the configuration file, instead of computing the residual and
checking the convergence globally.

The fourth and last step, labeled as MPI-4 in line 34,
consists on adding the necessary communication to control the
number of simulation steps of all the processes by computing
a global residual value at every simulation step. The students
again can use the communication strategy that they find most
appropriate. This version of the code generates exactly the

8
74— 1 node
P b 2 nodes
o —— 4 nodes
22
8%
" 31
2 4
1 4
(e T T v T .
1 2 4 8 16 32
Total number of processes
(a) MPI
8
74— 1 MPI proCess | .. .
6™ 2 MPl processes|
—— 4 MPI processes
Q 54
=]
g%
" 31
2 4
1 4

1 2 4 8 16 32

Total number of threads
(b) MPI+OpenMP with static scheduler

8

74 1 MPI proCess | .

6™ 2 MPl processes|

—— 4 MPI processes

Q D e ————————
=]
§ T
W) 3 e T

2 heasssaccasasasancsangieccnnapurccccapfuocncccncnnancncccnnnnccancanananaccnnancncnccacncnanannan

T

1 2 4 8 16 32
Total number of threads

(c) MPI+OpenMP with dynamic scheduler

Fig. 9: Speedup of the different parallel implementations of
the heat diffusion algorithm.

same result as the one generated by the sequential code.

B. HYbrid MPI/OpenMP Parallelization Strategy

Once the students have successfully parallelized the heat
diffusion algorithm with MPI they proceed with the hybrid
MPI/OpenMP implementation. Adding the OpenMP paral-
lelization on top of the MPI implementation is quite trivial,
as it only requires introducing an OpenMP parallel for
reduction (+:residual) construct in the stencil kernel
(labeled as OPENMP-1 in line 13). We also encourage the
students to try different OpenMP schedulers to mitigate the
effects of the heterogeneity, as they have learned in the
previous laboratory assignment.

C. Evaluation on the Odroid Cluster

After successfully parallelizing the heat diffusion program
the students proceed with its performance evaluation on the
Odroid cluster.

Figure 9a shows the scalability of the MPI parallel imple-
mentation of the heat diffusion benchmark. The figure shows
the speedup achieved by augmenting the total number of

processes, which are derived from executions with 1 to 8
MPI processes per node and 1 to 4 nodes. It can be observed
that, when up to 4 processes are used in each node, the
program scales up to 3.06x, 4.17x and 5.41x with 1, 2 and
4 nodes, respectively. In addition, the performance drops with
8 processes per node, reducing the speedups to 2.16x, 2.89x
and 3.81x with 1, 2 and 4 nodes, respectively. This exact trend
is repeated in the hybrid MPI/OpenMP implementation with
a static scheduler, as shown in Figure 9b. As in the case of
the Pi benchmark, the performance degradations when using 8
threads or processes per node are caused by the heterogeneity
of the cores and the inability of the parallel implementation
to dynamically balance the load in such scenario. Figures 9a
and 9b also reflect the higher cost of communicating data
across the nodes rather than inside the nodes. It can be
observed that, in the MPI version executing with 4 total
processes, using 1 node for all the processes is 54% faster
than spreading them across 4 nodes.

The scalability of the hybrid MPI/OpenMP implementation
with a dynamic scheduler is shown in Figure 9c. It can be
observed that, when using 8 threads per node, the performance
does not drop as in the previous two versions of the code.
However, the performance gains are very low compared to
the executions with 4 threads per node and the same number
of nodes. Another important difference is that the scalability
obtained with up to 4 threads per node is slightly higher than
in the other two implementations. With 4 threads per node the
results show that the dynamic scheduler is 18%, 10% and 8%
faster than the static one in executions with 1, 2 and 4 nodes,
respectively.

VI. PREVIOUS AND RELATED WORK

The widespread availability and low cost of single-board
computers based on SoC have provided to educators the
possibility of building small clusters and explore different
ways to use them in their courses related to parallel and
distributed computing. Several “microclusters” based on vari-
ous Raspberry Pi and Odroid models, Nvidia’s Jetson TK1 or
Adapteva’s Parallella are presented in [9]. Authors in that pub-
lication also present the various strategies followed by them
regarding the use of their microclusters and summarise some
earlier examples of microclusters that have been inspirational
for the recent proposals based on inexpensive single-board
computers and.

In this paragraph we comment on some of the microclusters
presented in [9] with the aim of observing the similarities
and differences with the proposal in this paper. David Toth
introduced in 2014 the first version of the Half Shoebox
Cluster (HSC) [10], which equipped two compute nodes based
on ARM Cortex-A7 dual core processors, with the purpose
of teaching Pthreads, OpenMP and MPI. The HSC has been
continuously evolving, and the six subsequent versions of the
HSC were built with various Odroid SoCs such as the U3, the
C1, the XU3-Lite, the C1+, the XU4, and the C2. The XU3-
Lite and the XU4 have 8-core ARM CPUs, while the rest of
QOdroid boards have 4-core CPUs. Rosie [11], constructed in

2014 by Libby Shoop, consisted of 6 NVIDIA TKI1 single
board computers. each equipped with a quad-core Cortex-
A1S processor and an integrated Kepler GPU with 192 cores.
The cluster has been used to teach heterogeneous computing
techniques with OpenMP, MPI and CUDA. Finally, Student-
Parallella [12], with 4 Parallella nodes, each with a Zynq 7000-
series dual core ARM Cortex-A9 and an Epiphany coprocessor
with 16 cores, was constructed by Suzanne Matthews and
covering the native Epiphany programming model, Pthreads,
OpenMP and MPI in her parallel computing elective course.

Most of the previously mentioned microclusters were de-
signed with the idea of having an alternative to 1) non-
dedicated networks of workstations in laboratory classrooms,
2) the relatively expensive to build and maintain high-
performance departamental/university clusters or 3) the far-
away” cloud systems such as Amazon’s EC2. In addition,
seeing the cluster in action, with all components and cables,
encourages students interest for parallel and distributed con-
cepts. Usually microclusters are given to the students pre-
assembled and configured, ready to be used to learn parallel
programming using Pthreads, OpenMP, MPI and/or CUDA.

Based on our experience at the Barcelona Supercomputing
Center (BSC-CNS), hosting the Marenostrum cluster—in—a—
chapel supercomputer, observing how well trained HPC sys-
tem administrators were offered good positions to setup and
administrate datacenters in companies and research institu-
tions, we decided to design a module, practical in nature, to
teach these skills. The first laboratory assignment presented in
this paper was created making emphasis on the cluster setup
process, HPC software ecosystem configuration and initial
performance testing, trying to mimic as much as possible the
real systems found in supercomputing centers. Contrary to
the use of microclusters, the use of traditional HPC clusters
or cloud systems hides all these aspects from students. Once
build and tested by each group of students, the microcluster
is programmed using hybrid MPI/OpenMP in the proposed
second assignment.

Our first Odroid-XU3 microcluster was build during the
spring semester in 2015 by a couple of undergraduate students
doing an optional laboratory assignment; the initiaitive was
followed by the current Odroid-XU4 microcluster that has
been used since then. In fact, using the microcluster to learn
and practice MPI programming (the second assignment) was
a proposal that originated from our students after building,
configuring and testing the microcluster during the 2016 spring
semester.

There are organizations like XSEDE [13] and the Blue Wa-
ters program [14] that provide parallel computing resources for
educational purposes. However, getting set up on these systems
is a non-trivial process and requires the faculty member to be
well-organized to submit a small grant proposal at the right
time, get student accounts set up, and get comfortable with
the systems themselves. For faculty new to parallel computing,
these challenges can be a high barrier to being able to teach
parallel computing.

VII. CONCLUSIONS AND EVOLUTION

The continuous expansion of HPC systems and data centers
has come together with an increasing demand for expert
HPC system designers, administrators and programmers. To
fulfill this demand, most university degrees have introduced
courses on parallel programming and HPC systems in recent
years. However, very often the laboratory assignments of these
courses only focus on the parallel programming part, and
the students never experiment with the design, set up and
administration of HPC systems.

This paper presents a methodology and framework to use
small-scale clusters of single-board embedded SoCs to teach
HPC systems and parallel programming. In contrast to the tra-
ditional methodology for teaching parallel programming with
remote clusters managed by the university, using small-scale
clusters allows the students to experience with assembling a
cluster, setting it up, configuring all the software ecosystem,
and administrating it during the duration of the course. In
this paper we show that these SoCs have very appealing
characteristics for being used in laboratory classes, given their
low cost, their ability to execute the same software stack
as HPC systems, and the similarity between their processors
and the ones used in HPC. Moreover, we show that these
small-scale clusters are also a very attractive platform to
experience with relevant aspects of today HPC systems such as
heterogeneity (different kinds of cores), variation of frequency
with number of active cores, or cost of data communication.

A very positive adoption of the two assignments in the
elective Parallel Architectures and Programming (PAP) course
has been observed. Between 15 and 20 students yearly follow
the course and build 5 independent clusters working in groups
of 4 students; although the number of students per group
may seem large, the curiosity and surprises found while doing
the two assignments motivates interesting discussions among
them.

VIII. ANNEX: ODROID CLUSTER SETUP

This section describes the required steps that to set the
Odroid cluster up. These steps are followed by the students in
the laboratory assignment of the second block of the course.

A. Assembling the Odroid Cluster

The first step is to identify all the components that we
provide, which are listed in Section III (with all cables,
screws and separators required). The students then physically
assemble the Odroid boards, stacking them vertically using the
separators.

B. Head Node Setup

The PC that is used as head node has two network interfaces
and runs a Ubuntu Desktop 16.04. The primary functions of
the head node are to share the Internet connection with the
compute nodes and to act as the DHCP server.

To set the head node up the PC has to be connected to
Internet using one of the network interfaces and to the Gigabit
Ethernet switch using the second network interface. To share

the Internet connection with the compute nodes the students
use the Linux Network Manager, which allows to easily share
the Internet connection using a GUI. To do so, the students
need to identify the network interface that is connected to
the switch, edit its properties, and select the option “Method:
Shared to other computers” in the “IPv4 Settings” tab.

To check that the head node is properly connected to
Internet and to the switch, we ask the students to use
and explain the output of the ifconfig command. If the
connections are properly configured, the output shows that
the head node is connected to two networks, one using the
network interface that is connected to Internet (enp0s25, with
IP 192.168.60.XXX by default), and one using the interface
that is connected to the switch (enp7s4, with IP 10.42.0.1 by
default).

C. Compute Nodes Setup

Each compute node boots its own operating system image
from the eMMC card and is assigned an IP address by the
DHCP server in the head node. The following steps need to
be followed to appropriately configure the compute nodes as
part of the cluster.

The first step to be done is to install the 4 eMMC cards in
the 4 Odroid boards and to connect the 4 boards to the switch
using 4 Ethernet cables. The boards include a switch to choose
the boot media (uSD or eMMC), so the 4 switches have to be
positioned to boot from eMMC card. The eMMC cards that
are provided to the students already contain a pre-installed
Ubuntu 16.04 operating system.

The second step is to boot the compute nodes and to give
them a unique host name. It is very important to turn on the
compute nodes one by one because, since they all run the same
operating system image, they all have the same host name, so
they cause host name conflicts in the network if all of them try
to boot at the same time. To boot a compute node and change
its host name the students turn on the board and wait for it
to boot. The compute nodes are not connected to any display
nor peripheral, so all the interaction with them has to be done
via SSH from the head node. To check if the compute node
has booted and is connected to the network, the command
nmap —sn 10.42.0.0/24 has to be used from the head
node. If the compute node is up, the output of this command
shows a line similar to this: Nmap scan report for
10.42.0.230; Host is up (0.0012s latency).
This means that the compute node is up and is connected to
the network with the IP address 10.42.0.230, so the students
can connect from the head node to the compute node using
SSH to its IP address (ssh odroid@10.42.0.230). Once
connected to the compute node, changing its host name can
be done by simply editing the file /etc/hostname so
that it contains the desired name. After changing the host
name the board needs to be rebooted and, after checking that
the compute node has booted correctly and is visible in the
network (using again the nmap command from the head node),
the student can repeat this step for the rest of compute nodes.

We encourage the students to use a naming convention
for the compute nodes that facilitates their identification in
the physical rack. For instance, we propose to name the
compute nodes as odroid-0, odroid-1, odroid-2 and
odroid-3, being odroid-0 the board at the bottom and
odroid-3 the board at the top of the rack.

D. Trusted SSH Connections

SSH keys are a well-known way to identify trusted com-
puters in a network. We use SSH keys in the Odroid cluster
to allow any compute node to access any other one without
requiring any password. In order to do so, the students have
to follow the next steps for each compute node.

The first step is to generate a private authentication key pair
(a public and a private key) using the command ssh-keygen
-t rsa. The generated public and private keys are by default
located in .ssh/id_rsa.pub and .ssh/id_rsa in the
home directory, respectively.

The second step is to add the public key to the list
of authorized keys for the same compute node. To do so
the students simply need to execute the command cat
.ssh/id_rsa.pub >> .ssh/authorized_keys.

The third and last step is to transfer the public key
generated for the compute node to the rest of compute
nodes. This is done with the command ssh-copy-id
odroidRodroid-X, being odroid-X the compute node
to which the public key is transferred. So, to transfer the
public key of a compute node (i.e., odroid-0) to the rest of
compute nodes, the command has to be executed three times
(i.e., to odroid-1, to odroid-2 and to odroid-3).

These previous three steps have to be repeated in all the
compute nodes. At the end of the process each compute node
should have the public keys of all the compute nodes, and any
compute node should be able to access any other one without
entering any password. We ask the students to make sure the
whole process worked by trying to access different compute
nodes from each other via SSH.

E. NFS Setup

Network File System (NFS) is a distributed file system
protocol that allows different nodes to share files over a
network. The protocol requires one node to act as a NFS
server, while the rest of nodes act as clients. In this section we
assume the compute node odroid-0 is the NFS server, while
odroid-1, odroid-2 and odroid-3 are the NFS clients.
In order to set up a shared directory between the compute
nodes the students follow a series of steps.

The first step is to install the NFS packages and to create the
directory that is going to be shared across the nodes. This step
is done in all the compute nodes. To install the NFS packages
the students just need to use the command apt install
nfs—common, and then they create the directory that will be
shared via NFS, i.e. /sharedDir.

The second step is to configure one of the compute nodes to
be the NFS server. To do that, the students first have to select
one of the compute nodes to be the NFS server, odroid-0

for example. Then they have to install the NFS server pack-
ages in the selected node with the command apt install
nfs-kernel-server. Finally they have to export the NFS
directory of the NFS server node to the rest of nodes by editing
the file /etc/exports on odroid-0 so that it contains the
following: /sharedDir = (rw, sync). Once this is done
the NFS server has to be restarted with the command sudo
service nfs-kernel-server restart.

The third step is to configure the NFS directory in the rest
of compute nodes. Assuming the compute node odroid-0
is the NFS server and the rest of nodes are the NFS clients,
the students can mount the directory /sharedDir of the
compute node odroid-0 on a local directory of the com-
pute nodes odroid-1, odroid-2 and odroid-3 using
the command mount -t nfs odroid-0:/sharedDir
/sharedDir. However, we encourage the students to au-
tomatize this so that it gets mounted at boot time. This can be
done by modifying the file /etc/fstab of the NFS client
nodes (odroid-1, odroid-2 and odroid-3) so that it
contains the line odroid-0:/sharedDir /sharedDir
nfs. Note that the file /etc/fstab is formed by columns.
The first column odroid-0:/sharedDir specifies the
NEFES server node and the NFS directory it exports, the second
column specifies the local NFS directory, and the third column
specifies the file system type.

Once the NFS server and the NFS clients have been
configured, the students check that the NFS works properly.
To do so we ask the students to access all the compute nodes,
write a file in the shared directory from that node, and then
check that all the files are visible by all the nodes.

F. Software Environment for Parallel Programming

Once all the hardware and the system software is set up,
the last step to have a fully operational Odroid cluster is to
install the software environment for the two standard parallel
programming modes used in HPC: MPI and OpenMP. In order
to understand the behaviour and the performance of the par-
allel programs we also install Extrae [15], an instrumentation
library to transparently trace MPI and OpenMP programs, and
Paraver [16], a trace visualiser and analyser that will allow
students to understand the execution of parallel applications.
Both are freely available at the Barcelona Supercompunting
Center tools website [17].

OpenMP is available by default with the GNU compiler
(gcc in the case of C), so the students do not need to install
it manually. In contrast, the MPI packages are not installed
by default, so the students must do it. Among the multiple
implementations available for MPI we opt to use MPICH,
which only requires to install the mpich package in every
compute node.

To install Extrae the students first have to install all
the required packages in all the compute nodes: 1ibtool,
automake, m4, perl, libunwind-dev, libxml2-dev,
binutils-dev, and 1ibiberty-dev. Then the students
manually configure, compile and install the Extrae library in
the NFS shared directory. To do this they use the commands

./bootstrap; ./configure ——with-mpi=/usr
—-with-unwind=/usr —--without-dyninst
——without-papi --disable-parallel-merge
—--prefix=/sharedDir/extrae; make —-7j 8; make
install. To use Extrae we provide the students with
scripts that automatically enable the tracing of their parallel
programs and post-process the generated trace so it is ready
to be analysed with Paraver.

Finally, the students download Paraver directly as a pre-
compiled binary for x86_64 architectures, which can be exe-
cuted straight away in the head node.

REFERENCES

[11 “https://wiki.odroid.com/odroid-xu4/odroid-xu4.”

[2] “MPI: A Message-passing Interface Standard. Version 3.1. June 2015.”

[3] “OpenMP Application Program Interface. Version 4.5. November 2015.”

[4] E. Ayguade and D. Jimenez-Gonzalez, “An approach to task-based
parallel programming for undergraduate students,” Journal on Parallel
and Distributed Computing, vol. 118, no. P1, pp. 140-156, 2018.

[5] E. Ayguade, L. Alvarez, and F. Banchelli, “OpenMP: what’s inside the
black box?” Peachy Parallel Assignments (EduHPC 2018), 2018.

[6] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65-76, Apr. 2009.

[7] “https://www.samsung.com/semiconductor/minisite/exynos/products/
mobileprocessor/exynos-5-octa-5420.”

[8] P. Greenhalgh, “big.LITTLE Processing with ARM Cortex-Al5 &
Cortex-A7,” ARM White paper, 2011.

[9] S. Holt, A. Meaux, J. Roth, and D. Toth, “Using inexpensive microclus-
ters and accessible materials for cost-effective parallel and distributed
computing education,” Journal of Computational Science Education,
vol. 8, no. 3, pp. 2-10, Dec. 2017.

[10] D. Toth, “A portable cluster for each student,” in 20/4 IEEE Interna-
tional Parallel Distributed Processing Symposium Workshops, 2014, pp.
1130-1134.

[11] J. C. Adams, J. Caswell, S. J. Matthews, C. Peck, E. Shoop, D. Toth, and
J. Wolfer, “The micro-cluster showcase: 7 inexpensive beowulf clusters
for teaching pdc,” in Proceedings of the 47th ACM Technical Symposium
on Computing Science Education, 2016, pp. 82-83.

[12] S. J. Matthews, “Teaching with parallella: A first look in an under-
graduate parallel computing course,” Journal of Computer Sciences in
Colleges, vol. 31, no. 3, pp. 18-27, Jan. 2016.

[13] “XSEDE. https://www.xsede.org/.”

[14] “iBlue Waters. http://www.ncsa.illinois.edu/enabling/bluewaters.”

[15] “Barcelona Supercomputing Center. Extrae User Guide Manual. Version
2.2.0.2011”

[16] V. Pillet, J. Labarta, T. Cortes, and S. Girona, ‘“Paraver: A Tool to
Visualize and Analyze Parallel Code,” in Proceedings of WoTUG-18:
transputer and occam developments, vol. 44, no. 1, 1995, pp. 17-31.

[17] “https://tools.bsc.es/downloads.”

