
Teaching the foundations of thermodynamics with
PYro

Christopher R. Martin
Penn State University

Altoona Campus
Altoona, PA 16601

Email: crm28@psu.edu

Jacob P. Moore
Penn State University
Mont Alto Campus

Mont Alto, PA 17237

Joseph A. Ranalli
Penn State University

Hazelton Campus
Hazelton, PA 18202

Abstract—One of the key skills developed in foundational
thermodynamics courses is obtaining property and state data for
various substances of interest. Typically, students are instructed
to perform this task through the use of tables or computer
software. In this paper, we present and evaluate modules for
teaching the foundations of thermodynamics using free open-
source software intended to port to students’ professional lives.
The approach introduces the PYro thermodynamic property
calculator. PYro is implemented in Python, which is free and
available on most widely used platforms. PYro is clearly docu-
mented, and all data are readily traceable to reputable sources.
Most of the data describe ideal gases from the NIST JANAF
database, but there is also support for mixtures (such as air)
and multiphase substances (such as steam). The interface design
makes the software appropriate to most tasks in introductory
and intermediate thermodynamics courses without requiring
proficiency in the Python language. While the idea of using
software to teach thermodynamics is far from new, commercial
software usually comes at a substantial price and places the
implementation burden on the instructor. On the other hand,
educational software rarely transitions into students’ professional
lives. This paper proposes a model for productively separating
the development of skills (like table look-ups) from knowledge
and concepts.

In addition to an introduction of the tool, this paper provides
results of preliminary evaluation conducted within a thermo-
dynamics classroom. The authors developed a learning module
demonstrating the use of PYro to compute states for an ideal
Brayton cycle. Students were tasked with performing parametric
analysis on the cycle, by varying various limiting factors (e.g.
combustor pressure, turbine inlet temperature). Students were
asked to compare power produced and cycle efficiency computed
under these conditions. At the end of the module, students were
surveyed about the experience of working with the software.
Evaluation is provided in the form of instructor and student
feedback from a classroom implementation. We propose that this
utilization of the tool demonstrates its ability to promote higher-
level cognitive thinking in problem solving, removing the time
intensive task of performing table look-ups and allowing them
to focus on more holistic questions of cycle performance.

I. INTRODUCTION

Instruction in thermodynamics usually requires blending
challenging abstract ideas with skills-based topics like inter-
polation and table look-ups. The inherently multi-dimensional
interdependent nature of properties has long made thermo-
dynamics notoriously challenging for engineering students,
and the problem is often exacerbated when simultaneously

applying the ideas to cycles, psychrometrics, combustion, heat
transfer, and other applications common to engineering fields.

We support the idea that by shortening the time it takes to
answer the question, “I wonder what happens when. . . ” and by
empowering students to answer those questions themselves, it
is possible to economically make exploration a part of learning
thermodynamics. For example, precious few students are ever
motivated enough to dive into property tables to see what a jet
engine will do at different altitudes. When posed the question
with a tool for answering the question in seconds, we create an
environment where students are more likely to ask and answer
their own questions beyond what we ask. If their tools also
port to their professional lives, then the skills they develop
will also have been well invested.

For professional applications, there are countless for-profit
packages available with their own specialties, and a number
of thermodynamic texts come with calculators of their own.
Unfortunately, the professional grade packages seem to be
rarely used in education, and educational packages seem to be
similarly absent in industry. If a software package is likely to
span the needs of both educational and industrial institutions,
it must simultaneously be robust, inexpensive, intuitive, and
reputable.

Certainly, there are existing for-profit models for offering
expensive software at a discount to academic institutions to
make such an arrangement possible. However, we focus our
attention on software that is “free and open.” The GNU
Operating System project, sponsored by the Free Software
Foundation, currently defines free software as providing the
user four freedoms; to use for any purpose, to study and
change the software, to distribute copies of the software, and
to distribute modifications of the software [1]. This model
frees people to modify code to suit their own needs, but also
creates the possibility for communities wherein living copies
of software can evolve over time.

A. Background

The use of software to help teach thermodynamics is
certainly not new. Previous research on the potential benefits
of software in education has focused on proprietary compiled
codes distributed with text books [2], [3]. Some recent efforts
towards specialized free educational software [4], [5] do exist.



Karimi, in particular, warns against treating these systems as
“black boxes,” lest students learn dependence on the computer
for verbatim answers without seeking any deeper insights.
Instead, he advocates (as do we) for the integration of software
in education in such a way as to empower students to discover
the “fundamental physical laws” too often inaccessible to
students while they grapple with tables and interpolation. We
go further, and argue that students benefit more if they can
use the same tools in a professional role that they were using
when they first studied the topic.

It is not apparent that even the proprietary codes long
distributed with widely used texts have achieved any level of
popularity among industrial users. A brief survey of thermo-
dynamic software packages available seems to suggest a few
classes of packages; calculators for materials science, chemical
reaction calculators, and property calculators. The calculators
for materials science focus heavily on predicting crystalline
morphology in alloys. Chemical reaction calculators tend to
focus more heavily on gas phase properties and chemical
kinetic data. Property calculators simply report properties of
substances without design for a specific application. While we
make some effort to describe the current state of the art, we
do not give an exhaustive survey of available packages here.
If we did, it would almost certainly exceed eight pages, and
may be out of date by the time this document were printed.

There are several mature competing codes for materials
science applications that have been available before the start of
the millennium [6], [7], [8], [9], [10], [11], [12], some of which
are reported to be in wide use today. These codes focus largely
on phase equilibrium calculations relevant to crystallography
and metallurgy. They are of particular value to the material
science community because they predict phase diagrams for
multi-component systems.

Chemical reaction calculators date back at least to the
1980s; notably including W. C. Reynolds’s Fortran-based
STANJAN code [13], the proprietary Chemkin code, and
the popular open-source Cantera project they inspired. These
codes focus largely on chemical equilibrium calculations in
gas-phase reactions (combustion), but their scope has broad-
ened with time to include multiphase phenomena like surface
interactions and soot formation.

We classify software that retrieves information about sub-
stances, agnostic to the purpose for which it is used, as “prop-
erty calculators.” Of these, there are many; often focusing on
a particular class of substances or properties. NIST maintains
extensive databases that fit into this category, notably the
proprietary NIST-ASME implementation of the properties of
steam [14], web-based JANAF tables [15] from which many of
PYro’s data are taken with permission, and web-based atomic
spectra database [16]. We further narrow our focus to software
that fits in this category.

We conclude from this preliminary survey that there are
excellent packages already available, but many of them are
proprietary or highly specialized. We therefore shift our atten-
tion to portable packages appropriate for use in both industry
and education with a premium on flexibility. We imagine a

TABLE I
REQUIREMENTS FOR PROPERTY SOFTWARE FROM EDUCATION AND

PROFESSIONAL APPLICATIONS

Requirements for Education Requirements for Industry

Streamlined standardized interface
for all data formats

Traceability of original source data
to reputable sources

Minimal programming proficiency
required

Detailed documentation on all fea-
tures

Documentation available “in-line” Regular support and maintenance
across system upgrades

Actively maintained modules and
examples

Multi-platoform support (e.g. Win-
dows, Linux, Mac-OS, etc. . . )

Tools for automating challenging
activities

Wide variety of data (e.g. fluid,
thermochemical, electrical)

Free and open Tools automating the most com-
mon activities

platform capable of accessing a wide variety of properties of
substances and mixtures from incompatibly formatted sources,
but with a standard interface.

In Table I, we propose a brief list of requirements for such
a system were it to serve the needs of both professionals and
students. Python is a natural choice for a language in which
to provide this kind of service. It is free, widely used in a
number of scientific communities, and uses syntax that trans-
lates naturally from other languages. A number of proprietary
software packages already widely adopted by practitioners
are designed with a Python interface (e.g. Matlab, Labview,
ANSYS/Fluent). Additionally, Python has excellent means for
providing “in-line” documentation; it has support for objects
that users can query for documentation at the command line
without needing to look up additional resources.

There are currently several thermodynamics codes dis-
tributed for Python; perhaps most notably Cantera, CoolProp,
and Thermopy. As we have mentioned, Cantera is a mature,
actively maintained, widely used, and well documented system
for combustion modeling. Thermopy offers steam properties,
some ideal gas properties, and psychrometric data in separate
modules, and was last updated in 2009. The most applicable
to the present topic is CoolProp, which includes multi-phase
thermodynamic data for 118 species. PYro distinguishes itself
from these alternatives in its capacity for stringing together in-
compatible data sources with a standard “pythonic” interface.
Cantera and CoolProp are by far the most capable packages,
but they offer python API hooks into compiled libraries, which
can limit the elegance of the interface. That withstanding, the
value of these packages is not to be minimized; depending on
what instructors are trying to achieve, these may be excellent
alternatives.

This is the motivation for the PYro project. What we present
here is implementation in a classroom of a young incarnation
of the project. The software is intended to grow over time with



the help of students, teachers, and practitioners.

II. PYRO PACKAGE

The PYro package was released in November of 2015, and
has already seen its first update. It is a living project, and
there are plans to expand it continuously. That established,
old versions of the code are published in perpetuity.

A. Approach

When composing a property calculator, the author must first
decide how the data are to be formatted. Will the software
interpolated between tabulated values, will it use an equation
of state whose coefficients are listed for each substance, or
will there be some more sophisticated manner of curve fit?
When attempting to knit together data of different types from
different sources, this challenge becomes quite impossible
without substantial effort.

PYro makes no attempt to store data in a unified format.
Instead, the package is organized into individual classes (like
igfit and igtab) that tend to their own data, which need
be nothing alike (like curve fit and tabulated data). For the
most part, the user never needs to be aware of that distinction.
Each object provides its own methods (or functions), and offers
documentation on how to use them. As a result, there is no
need to realize that thermochemical data for diatomic oxygen
is stored as a curve fit, xenon is tabulated explicitly, air only
knows what its made of (and nothing more), and steam is a
more complicated matter.

B. Interface

To gain access to a substance’s properties, users request an
object representing that substance. At the command line, this
may look like the following:

>>> air = pyro.get(’air’)

The object now stored in the variable named ‘air’ knows
everything it needs to retrieve the properties of air. Properties
are calculated as a function of temperature and pressure. The
interface allows users to call out temperature (T ) and pressure
(p) explicitly by name or simply pass them in order like in a
traditional function call. Here, we calculate the enthalpy (h)
and specific heat (cp) of air at 450K and 1.47bar.

>>> air.h(T=450., p=1.47)
149.49651484733164
>>> air.cp(450., 1.47)
1.0226922187797265
>>> air.cp()
1.0034916652356838

In the last example, no arguments are given, so PYro de-
faults to standard values for temperature and pressure (300K,
1.013bar). The interested user can reconfigure those numbers.
All of the properties are standardized to a kJ, kg, s, K,
bar system. These units were chosen to be mathematically
intuitive, while producing conveniently sized numbers for most
applications.

Of course, not all substances are the same. For example, air
is a mixture, so in addition to its thermophysical properties,
users can find out what its constituents are. A mass fraction
(Y ) is the portion of a mixture’s total mass contributed by
each of the constituent substances. When we call air’s mass
fraction function, we retrieve a Python object that names each
of the component gases and its mass fraction.

>>> air.Y()
{u’Ar’: 0.012895662694107133,
u’CO2’: 0.00047710404152028824,
u’N2’: 0.7552050549294919,
u’O2’: 0.23142217833488057}

Here, we see that by mass, air is 1.3% argon, .05% CO2,
75.5% N2, and 23.1% O2. The air.X() method gives the
same constituents in volumetric fractions. Pure substances like
oxygen or steam have no need for Y() or X() methods.

On the other hand, substances that include multiphase data
offer up some special options to help users characterize the
phase changes.

>>> steam = pyro.get(’steam’)
>>> steam.h(T=450., p=1.47)
2827.075794818073
>>> steam.hs(T=450.)
(749.29333968000344, 2774.4101890593283)
>>> steam.h(T=450., x=0.5)
1761.851764369666

Here, we see the enthalpy of steam at 450K and 1.47bar, the
saturation enthalpies (liquid and vapor) of steam at 450K, and
enthalpy of 50% quality steam at 450K. Gas phase data have
no need for hs() methods since they do not saturate.

>>> steam.triple()
(273.16, 0.00611657)
>>> steam.critical()
(647.096, 220.64)

PYro can also report the very special conditions at which water
exists in three phases (the triple point), and the point above
which the liquid-vapor phase transition disappears (the critical
point).

All data come with detailed citations provided by the
info() function. For example,

>>> pyro.info(’steam’)

returns a printout that identifies the data class used, the source
file’s location on the hard drive, the date it was last modified,
and the following text:

“Multi-phase steam curve fits are taken from the
IF-97 report http://iapws.org/relguide/IF97-Rev.html
Maintained by the International Association for the
Properties of Water and Steam, the Industrial For-
mulation of 1997 provides curve fits for precisely
calculating the properties of water and steam. De-
tailed citations for original data may be found on
the IAPWS website.



Fig. 1. Density of steam across temperature and pressure; the saturation lines
are in red.

All properties have been validated against the tests
recommended by the IF-97 report, the exception
being constant-volume specific heat. It was validated
by first validating internal energy and numerically
differentiating it with respect to temperature at con-
stant volume.”

C. Capabilities and Limitations

As of version 1.2, PYro contains 79 substances. Most of
those are gas-phase data taken from the JANAF tables or curve
fits of those same data. There are also mixtures of gases like
air, H35 (a blend of hydrogen and argon), and F5 (a blend
of nitrogen and hydrogen). Steam is the first multiphase data
type available in PYro with more planned in future releases.

All substances have a basic standard data set defined; spe-
cific heats, enthalpy, entropy, molecular weight, and density.
Some substances also define additional data like we discuss
above. Using tools already available in PYro and sample codes
available on PYro’s website [17], it is possible to generate
multidimensional plots like Figure 1 that students can rotate
and manipulate.

The problem often arises that users need to use the proper-
ties in reverse. For example, there are a number of problems
that require students to find a temperature given pressure
and entropy. Version 1.2 also introduced the psolve()
function, which returns temperature and pressure given any
two properties.

>>> air.s(T=450.)
7.1115470914719481
>>> air.h(T=450.)
149.49651484733164
>>> air.psolve(s=7.11155, h=149.4965)
(449.99998548211147, 1.0132394288744628)

While psolve() works quite well with gas data, it is not
entirely stable when used with steam. The discontinuity due
to the phase change can cause convergence issues. This issue

is intermittent, is well understood, and future releases will
resolve the problem.

PYro is primarily limited by its data set. Version 1.2
includes no solid phase data, and all of the data are thermo-
physical. Future releases will add new substances like refrig-
erants, and electro-mechanical data like thermal conductivity,
viscosity, electrical conductivity, permeability, and others.

There are plans to create amalgamated data classes so that
different data classes that describe the same substance can
be knitted seamlessly together. For example, a data class that
describes the paramagnetic properties of oxygen might be
jammed together with the thermodynamic data, so that users
would still see only a single object representing the single
substance.

III. EDUCATIONAL PILOT TESTING

The first educational implementation of PYro was in a small
thermodynamics class. Version 1.2 of the PYro software was
used in a two day lab activity examining the effect of input
conditions on the power and efficiency of an ideal Brayton
cycle engine. The pilot was conducted in an class with three
sophomore engineering students in a small public institution.
Prior to the lab, the instructor had used a combination of
lookup tables in the course textbook and the web-based
NIST database for material properties. The instructor and all
students had no prior coding experience with Python. After
the experience, students commented on their experience with
the software on a survey.

A. Description of the Activity

In the first phase of the lab, the instructor provided a basic
shell code with some setup code, initial conditions, and basic
comments to guide students in the overall process they needed
to follow to find engine power and efficiency. The students
were introduced to the Brayton cycle one class period prior to
the lab. They had some basic familiarity with the cycle, and
had calculated these quantities once before using lookup tables
for air in the textbook. Students guided the process discussion,
and the instructor guided the students in the required syntax.
By the end of the first fifty-minute section, all students had
successfully determined the engine power and cycle efficiency
for the given input conditions.

On the second day of the lab, the instructor gave the students
a pre-built code chunk to create a T-s plot for the cycle.
With about ten minutes of debugging, the students were able
to see a T-s plot for their cycle with input conditions and
outputs notated on the plot. An example of this plot is shown
in Figure 2. After students had successfully created the T-
s plots, the instructor asked students to begin playing with
the inputs (input temperature, pressure, mass flow rate, post
combustor temperature, and pressure ratio) and to observe the
results on power, efficiency, and the shape of the T-s plot.
When using the air tables, determining the impact of such a
change would take 20-30 minutes of calculations, but with the
code already developed, determining the impact of the change
took only seconds (changing the input and then re-running



Fig. 2. Temperature-entropy process diagram for a Brayton cycle, generated
automatically using a script built on PYro.

the code). After being given some unstructured time to play
with these variables, students were asked which inputs did
not have a significant impact on power or efficiency (such as
input pressure), which impacted engine performance in some
ways but not others (such as mass flow rate impacting power
but not efficiency) and which impacted both outputs (such as
input temperature and pressure ratio). At the conclusion of the
lab a short survey was distributed to gather feedback from the
students on their experiences with the software.

B. Summary of Survey Results

This pilot was designed to identify any problems in the
software and to solicit next steps for documentation, examples,
and features. The pilot group consisted of three students,
allowing highly individualized reflections rather than substan-
tive empirical conclusions. Students were prompted with two
seven-level Likert scale questions:

1) “I feel that the lab helped me better understand the
Brayton cycle.”

2) “I feel that the PYro software is useful in learning about
thermodynamics.”

with options 1:Strongly Disagree, 2:Disagree, 3:Mildly Dis-
agree, 4:Neutral, 5:Mildly Agree, 6:Agree, 7:Strongly Agree.
Students were also prompted with three free response ques-
tions:

3) “What features of PYro do you feel were most useful?”
4) “What features of PYro do you feel could be improved?”
5) “What would you change about the Brayton lab?”

All three students responded with a six (6) to question 1.
Two students responded with a seven (7) to question 2, and
one student responded with a six (6).

Responses to question 3 universally focused on the ease of
obtaining property values quickly and the ability to change
parameters of the analysis. Since the exercise focused on that
specifically, these comments are not particularly surprising, but

the degree success in achieving the perception of ease of use
in novice users is an unexpected positive result.

Responses to question 4 included a call for better in-
line documentation and functionality already offered in the
psolve() function. The third student offered no suggestions.
In-line documentation is ideal for the intent of the PYro
package, since it makes learning through exploration feasible.
We interpret the comment about psolve() as an implicit
indication for the need for a more intuitive way for users to
browse the package’s capabilities.

In response to question 5, one student reported being
satisfied with the lab as it was. Both of the remaining students
actually asked for more complexity. One student wanted to
learn enough to construct the scripts “from scratch,” and the
other student wanted to go into more detail modeling the cycle.

IV. CONCLUSIONS AND RECOMMENDATIONS

Instructors wishing to consider implementing PYro in their
course should visit the website [17] and explore whether PYro
is appropriate to the course. There is a good chance that it will
work well for topics in combustion, heat transfer, cycles, and
especially foundational thermodynamics, but that will depend
strongly on precisely what is being covered and how.

The responses to question 5 underline an inherent challenge
in using activities like these; students who are inspired to dig
deeper may not always be motivated in compatible directions.
Some students will want to master the programming aspects,
other students may be fascinated by the thermodynamics,
and other students may simply be satisfied to complete the
assignment and move on. That is certainly not a bad thing, so
we recommend including additional materials to allow more
motivated students to self-educate. There are excellent online
tutorials for Python [18] that are regularly updated.

Students and instructors without prior experience in Python
can certainly succeed with the package, but that will always
limit what can be done comfortably. There is a slowly expand-
ing set of example codes on the PYro website that might be
enough for introductory needs. To broaden the audience that
will find PYro useful, there are a number of future activities
planned:

• Matlab has built-in Python support. Attempts to elegantly
integrate PYro with Matlab are planned, but have not yet
begun.

• The data set should be broadened to include materials
most common to undergraduate courses; refrigerants,
liquids, solids, etc.

• Example codes and modules should be broadened and
simplified to ease integration for non-Python users.

• psolve() should be improved for stability in multi-
phase systems.

• Example integration in larger classes should provide
broader data sets.

• PYro’s distribution should be ported to the built-in pip
Python packaging system to ease installation and improve
visibility on the web.



As a young package, PYro’s progress is dependent on devel-
oping a community of users and accumulating user feedback.
We implore users to contact us with their experiences; good
or bad. If PYro is insufficient for a task, we encourage users
to contact the author or post ideas on PYro’s discussion page
on new features. In the meantime, we also encourage users to
consider some of the other excellent work represented by the
CoolProp and Cantera packages.
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