
SIEMENSSIEMENSSIEMENS

Teamcenter
Rapid Start 11.6

SettingUpWorkflows
for Product
Development

RS025 • 11.6





Contents

What is Workflow Designer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

What is Workflow Designer? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Before you begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Syntax definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
What is a workflow? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Workflow elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Workflow process template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Workflow task template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Workflow privileged user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9
Workflow Designer interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Workflow Designer view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
Workflow Designer menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
Workflow Designer buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Workflow Designer panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
Migrating workflow attachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
Editing active workflow processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Background processing for processes and tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Refreshing Workflow Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26
Delete key removes workflow objects and backspace key removes text . . . . . . . . . . . . . 1-26
Save time when creating multiple tasks of the same type . . . . . . . . . . . . . . . . . . . . . . . 1-27
Move and resize the Handler dialog box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27
Workflow errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29
Teamcenter rich client perspectives and views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30

Creating workflow process templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Structuring a workflow process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Example of building a workflow process template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Create workflow process templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Creating baseline workflow process templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Create a quick-release workflow process template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Creating Custom Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Creating subprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

What are workflow subprocesses? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Creating subprocesses from a workflow template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Creating subprocesses for multiple targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Creating subprocesses for assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Creating subprocesses for related objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Creating ad hoc subprocesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

Associate templates with a target object type and a user groupSelect a default process
template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

Core templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Delete workflow process templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19

RS025 11.6 Setting Up Workflows for Product Development 3



Contents

Workflow examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Change Manager workflow example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Add Status task example: Replace status of target objects . . . . . . . . . . . . . . . . . . . . . . 2-30

Editing workflow process templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

Determining which editing options to use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Editing offline versus online . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
How process template edits are applied to active processes . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Enable template edits for active processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Edit a workflow process template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Apply process template edits to active processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

Viewing workflow process templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

Viewing templates in the task hierarchy tree or process flow pane . . . . . . . . . . . . . . . . . . . . . 4-1
View a subtask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
View a parent task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
View the root task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Viewing a subprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
View task attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Set Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Set Recipients list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
View task handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4

Adding tasks to workflow process templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

Workflow task actions and states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Task templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

Task template definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Custom tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Do tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Review tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Add Status tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Or tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Acknowledge tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Condition tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Route tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10
Validate tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11

Adding tasks to a process template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Create your own specific workflow requirements with a Custom task . . . . . . . . . . . . . . . 5-12
Specify user actions with a Do task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Require users to look at targets with a Review task . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
Attach a status to targets with an Add Status task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Continue the workflow with an Or task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Inform users of a workflow's progress with an Acknowledge task . . . . . . . . . . . . . . . . . . 5-16
Branching a workflow with a Condition task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Distribute targets to users with a Route task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22
Check for errors with a Validate task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23
Automatically reassign tasks for inactive users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36

Insert a task into a template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-36

4 Setting Up Workflows for Product Development RS025 11.6

Contents



Contents

Drag and drop a task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-40
Cut and paste a task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-40
Delete a task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-41
Localize task names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-41

Linking tasks in a workflow process template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

Explicit and assumed links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Link tasks manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
Delete links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Creating failure paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Developing workflow process templates with backwards branches . . . . . . . . . . . . . . . . . . . . . 6-3
Converting legacy backwards branching templates to the new behavior . . . . . . . . . . . . . . . . . 6-4
Moving to a previous task after Review or Route task is rejected . . . . . . . . . . . . . . . . . . . . . . 6-6

Modifying task behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

Using attributes and handlers to modify tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
Edit task attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
What are task handlers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
View task handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Create task handlers based on existing handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Create new task handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Edit task handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Configuring rule quorums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
Delete task handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11
Create an ACL and recipients for a task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11
Requiring a PKI digital signature during a workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
Requiring PKI authentication to perform a workflow task . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14
Adding schedule tasks and attachments to a workflow process . . . . . . . . . . . . . . . . . . . . . . 7-14

Manage signoff behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

Signoff profile creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Quorum and required signoff behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1
Workflow task assignment options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Create a signoff profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
Define a surrogate for another user (requires administrative privileges) . . . . . . . . . . . . . . . . . . 8-4

Using workflows to manage security and project data . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

Managing security and project data using custom forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
Assign members to projects using workflow arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1
Assign a project to workflow targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Setting the security classification on a workflow target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3

Using workflow templates at multiple Teamcenter sites . . . . . . . . . . . . . . . . . . . . . . . . 10-1

Configuring remote workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Distributing workflow templates using Multi-Site Collaboration . . . . . . . . . . . . . . . . . . . . . . . 10-1

Replicate a workflow template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1
Synchronize replicated templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

Distributing workflow templates using Workflow Designer . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

RS025 11.6 Setting Up Workflows for Product Development 5

Contents



Contents

Importing and exporting workflow templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Import workflow templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4
Export workflow templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5

Working with remote inboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

Sending schedule tasks through workflows at remote sites . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
Enabling remote inboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1
Working with task data in remote inboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
Subscribe to a remote inbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3
Check out data to your local site from a remote site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4
Export data to your local site from a remote site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4

Workflow handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

What are workflow handlers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1
Updating your task templates to use the new handler and argument names . . . . . . . . . . . . . 12-2
Renaming your custom handlers and arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
Renaming of Teamcenter handlers, arguments, values, and keywords . . . . . . . . . . . . . . . . . 12-9
Handler argument values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-16

Syntax for handler arguments and values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-16
Keywords as argument values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-16
Lists of values as argument values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-24
Differentiating between classes and types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-26
Specifying relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-27

Debugging handler data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-28
Action Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-29
Rule handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-396

TCRS-generate-pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-416
TCRS-bom-plmxml-export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-418

6 Setting Up Workflows for Product Development RS025 11.6

Contents



Chapter 1: What is Workflow Designer?

What is Workflow Designer?
Workflow stems from the concept that all work goes through one or more workflow processes to
accomplish an objective. Workflow is the automation of these business processes. Using workflow,
documents, information, and tasks are passed between participants during the completion of a
particular workflow process.

As a system administrator, use Workflow Designer to design workflow process templates that
incorporate your company's business practices and procedures. End users use the templates to
initiate workflow processes in My Teamcenter and Workflow Viewer.

To design and maintain workflow processes in Workflow Designer, you can perform the following
actions:

• Create templates.

• View templates.

• Add tasks to templates.

• Link tasks.

• Modify task behavior.

• Import and export workflow templates.

Before you begin
Prerequisites

Using the Workflow Designer application in Edit mode requires
Teamcenter administrator privileges.

Enable Workflow
Designer

To enable the Workflow Designer feature, select it during installation.

If you have trouble accessing Workflow Designer, see your system
administrator.

Note

You can log on to Teamcenter only once. If you try to log on to
multiple workstations, an error message appears.

RS025 11.6 Setting Up Workflows for Product Development 1-1



Chapter 1: What is Workflow Designer?

Configure Workflow
Designer

You can accept Workflow Designer’s default configuration settings, or modify
them using workflow preferences.

Note

Either the Process view or Task view can be set as the default in
the TCVIEWER_default_workflow_view preference.

Start Workflow
Designer In the navigation pane, click Workflow Designer .

Note

The Administration Data Report site provides a list of default administration values.

Select the Workflow tile to expand the view of all default elements and values.

Select the Preferences tile for information on preferences and default values in Configuring
Teamcenter > Managing Preferences.

Syntax definitions
This manual uses a set of conventions to define the syntax of Teamcenter commands, functions, and
properties. Following is a sample syntax format:

harvester_jt.pl [bookmark-file-name bookmark-file-name ...]
[directory-name directory-name ...]

The conventions are:

1-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?

https://docs.plm.automation.siemens.com/data_services/resources/tc/11.5/tcrefs/custom/en_US/AdminDataReport/index.html


What is Workflow Designer?

Bold Bold text represents words and symbols you must type exactly as shown.

In the preceding example, you type harvester_jt.pl exactly as shown.

Italic Italic text represents values that you supply.

In the preceding example, you supply values for bookmark-file-name and
directory-name.

text-text A hyphen separates two words that describe a single value.

In the preceding example, bookmark-file-name is a single value.

| A vertical bar represents a choice between mutually exclusive elements.

[ ] Brackets represent optional elements.

... An ellipsis indicates that you can repeat the preceding element.

Following are examples of correct syntax for the harvester_jt.pl: command:

harvester_jt.pl
harvester_jt.pl assembly123.bkm
harvester_jt.pl assembly123.bkm assembly124.bkm assembly125.bkm
harvester_jt.pl AssemblyBookmarks

What is a workflow?

Introduction to Workflow

A workflow is the automation of business procedures in which documents, information or tasks are
passed from one participant to another in a way that is governed by rules or procedures. Teamcenter
workflows allow you to manage your product data processes. Typically, documents, information, or
tasks are passed from one participant to another in a way that is governed by rules or procedures.

A workflow process is initiated by a user, and workflow tasks are assigned to users.

As shown in the following diagram, in a basic workflow the initial Start step leads to the active Do
task, Create Design. The Do task leads to a pending Review task, Design Signoff, and then to
the final Finish step.

Workflow benefits

The benefits of automating your business processes include:

RS025 11.6 Setting Up Workflows for Product Development 1-3

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

• Improved efficiency—The automation of your business processes can result in the elimination of
unnecessary steps.

• Better process control—Company business processes are more easily managed with
standardized work methods and the availability of audit trails.

• Improved customer service—Consistent business processes increases predictability in levels
of response to customers.

• Flexibility—Computer-modeled processes can be quickly and easily redesigned to meet changing
business needs.

• Continual process improvement—The resulting focus on business processes leads to their
streamlining and simplification.

Workflow examples

For example, you can create a simple review workflow in which an object is reviewed. Depending on
the outcome of the review, one of two tasks is then required. When either of the tasks is performed,
the workflow is complete. At completion, the object is granted a specified status.

Typically, an object sent through a review workflow is granted Released status after successful
completion. Standard workflow behavior for released objects are that their release time and date is
marked and the object is made read-only.

In this example, if an item revision containing a design part and its accompanying documentation is
sent through design review, and the Post Approval task completes (rather than the Post Rejection
task), the item revision part is marked as Released when the workflow finishes. The item revision
and the objects it contains (the design part, and the documentation) are made read-only. No further
changes can be made to the design, enforcing the review that was just performed.

In another example, you can create a more complicated workflow containing a Condition task. In this
workflow, whether a specified condition is met or not determines the second round of tasks. Which
tasks are required depend on whether the condition was met.

1-4 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Teamcenter workflows are extensible by handlers; small ITK programs used to extend and customize
the tasks. are essential to the creation of highly functional, flexible workflows.

• Action handlers perform an action, such as attaching objects or sending an e-mail.

• Rule handlers confirm a defined rule has been satisfied.

Using workflows

You can use workflows in Teamcenter to manage your processes and changes in many applications,
such as:

• Change Manager

Workflows are ideal for managing your change process as problem reports lead to change
requests which lead to change notices. With a well-designed change process and matching
workflow process template, you can ensure that the right people perform the correct tasks
in the proper order.

• Systems Engineering

A typical Systems Engineering workflow is the requirements, functional, logical, and physical
design (RFLP) process. The process is iterative and may be repeated during the design or
development of a product.

RS025 11.6 Setting Up Workflows for Product Development 1-5

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

You can construct a workflow process template that matches your organization’s version of the
RFLP process.

Note

For ease of use, Siemens PLM Software recommends using My Teamcenter to initiate
and complete workflow processes because the entire procedure can be accomplished
from within your inbox in My Worklist. You can also initiate workflows from the Workflow
Viewer application.

Workflow elements
Workflows pass documents, information, and tasks between participants during the completion of a
particular process. A workflow process can be large and complicated or simple and straightforward.

1-6 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Note

Certain privileged users can perform administrative actions in a process, such as removing
a user who is no longer with the company. A privileged user may be the responsible
party, the process owner, or a member of a system administration group. You may be a
privileged user in certain processes but only be able to perform standard user actions
in other processes.

Workflow element Description
Workflow template Blueprints of workflow processes. Your administrator creates process

templates. A specific process is defined by placing tasks in the template
in the required order of performance. Additional requirements, such as
quorums and duration times, may also be included in the template.

For more information about creating and managing templates, see
Workflow Designer.

Container tasks Tasks that contain other include tasks:

• Review

Contains select-signoff-team and perform-signoffs tasks. The
Decision options are Approve, Reject, and No Decision.

• Acknowledge

Contains select-signoff-team and perform-signoffs tasks. The
Decision options are Acknowledged and Not Acknowledged.

• Route

Contains Review, Acknowledge and Notify tasks.
Interactive tasks Tasks that require user interaction display in the affected user’s

worklists. Different types of tasks have different interactive
requirements. Typical tasks include:

• select-signoff-team

The assigned user is required to select a signoff team to sign off
the target object of the task.

• perform-signoffs

Assigned users are required to review and sign off the target object
of the task.

• Do

The assigned user is required to review and perform the task
instructions, then mark the task complete.

• Notify

RS025 11.6 Setting Up Workflows for Product Development 1-7

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

Workflow element Description

The assigned user is required to reply.
Process tasks Tasks that perform noninteractive functions, such as branching the

workflow, specifying query criteria, and error handling. When you
view a workflow using the Process View, these tasks are displayed.
These tasks require no user interaction, so they do not appear in user
worklists.

Parent processes Workflow processes can contain child workflow processes. In
these situations, the initial workflow process is the parent workflow
process, and it contains a subprocess. Parent workflow processes
are dependent upon subprocesses; they cannot complete until the
subprocess completes.

Workflow handlers Small ITK programs used to extend and customize workflow tasks.
Action handlers perform actions, such as attaching objects, sending
email, or determining whether a rule has been satisfied.

Task attributes Attributes that further configure task behavior. You can set security
attributes, customize task symbols, and define condition results.

Quorum requirements Values that specify the number of approvals required before
perform-signoffs tasks can complete and workflows can proceed.

Workflow process template
A workflow process describes the individual tasks and the task sequence required to model the
workflow process. Workflow process templates define a blueprint of a workflow process or task to
be performed at your site.

Browse mode is the default mode when you first access the Workflow Designer. Click Browse
to view workflow process data and the details of the workflow process. You cannot make any
modifications in this mode.

The graphic-oriented Workflow Designer display allows you to easily browse through the workflow
process templates.

• Task flow

• Task hierarchy

• Task attributes

• Task handlers

Workflow task template
A task template is a blueprint of a workflow task. A task is a fundamental building block used to
construct a workflow process. Each task defines a set of actions, rules, and resources used to
accomplish that task.

1-8 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Task Definition

Do Task
Has two options if at least one failure path is configured:
Complete confirms the completion of a task and triggers the
branching to a success path. Unable to Complete indicates
the task is unable to complete, for various reasons.

Uses the EPM-hold handler, which stops the task from
automatically completing when started.

Acknowledge Task
Uses the Acknowledged and Not Acknowledged subtasks,
each of which has its own dialog box.

Review Task
Uses the select-signoff-team and perform-signoffs
subtasks, each of which has its own dialog box.

Wait for Undecided Reviewers is an option that allows the
workflow designer user to set the Review task to wait for all
reviewers to submit their decisions before completing and
following the appropriate path.

Route Task
Uses the Review, Acknowledge, and Notify subtasks, each
of which has its own dialog box.

Task Use it as a starting point for creating your own custom tasks,
such as tasks to carry your custom forms or other site-specific
tasks for users to complete. This task template is synonymous
with the EPMTask template.

Condition Task
Branches a workflow according to defined query
criteria. Requires that the succeeding task contains an
EPM-check-condition handler that accepts a Boolean value
of either True or False.

Validate Task Branches a workflow along two or more paths. Active paths
flowing out of the task are determined by whether specified
workflow errors occur.

Use this task to design workflows around anticipated errors.

Add Status Task
Creates and adds a release status to the target objects of
the workflow process. It is a visual milestone in a workflow
process. No dialog box is associated with this type of task.

Or Task
Continues the workflow process when any one of its multiple
task predecessors is completed or promoted. There is no limit
to the number of predecessors an Or task may have.

Workflow privileged user
System administrators can create access rules and assign access privileges for workflow tasks.

• Access privileges are required to permit a workflow user to perform certain workflow tasks:

o Removing a user from an active workflow.

o Promoting or demoting a task in an active workflow.

RS025 11.6 Setting Up Workflows for Product Development 1-9

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

• Workflow task permissions are:

o Specific to the workflow process template.

o Granted to a user by an Access Manager ACL on the workflow task, or by the rule tree.

Note

Configure the WRKFLW_modify_completed_workflow preference to true to allow
users to modify tasks from completed or aborted workflows.

To specify the access privileges needed to modify workflow targets configure the
WRKFLW_modify_target_list_access_privilege preference

• Typically, the named-ACL used to grant permissions to promote or demote a task is the
EPM-set-rule-based-protection handler.

Note

WRKFLW_skip_root_task_from_acl_evaluation controls whether the access
management rights evaluation will include the workflow acccessors related to the Root
Task or not.

For more information about setting permissions, see Acess Manager.

For more information about the EPM-set-rule-based-protection workflow handler, see Workflow
Designer.

Workflow Designer interface

Workflow Designer view

Workflow Designer uses the standard Teamcenter rich client interface.

1-10 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

1 Process Template box Lists either all process or all task templates, depending
on whether Process or Task is selected for the Template
Type.

2 Task hierarchy tree Displays hierarchical tasks of the template shown in the
process template box. The tree shows the relationship
of all tasks in a process template or subtasks in a task
template.

Note

The hierarchy tree does not indicate the task
execution order.

3 Process flow pane Displays a sequential, graphical representation of all
tasks in the selected workflow process template or of all
subtasks within a selected task template.

4 Template manager pane Contains elements related to managing the selected
workflow process template or task template. Elements
displayed in the window are dependent on the status and
configuration of the selected template.

If a template stage is set to Under Construction, the
template is visible only to users with administrative
privileges. Under Construction templates have the Set
Stage to Available check box. This check box does not
display when the template stage is set to Available.

RS025 11.6 Setting Up Workflows for Product Development 1-11

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

Workflow Designer menus

File menu

File menu commands allow you to create workflow process templates and exit Workflow Designer
and the rich client user interface.

Command Description
New Root Template Allows you to create a new workflow process and task templates.

The following table lists the elements available in the New Root Template dialog box.

Element Description
New Root Template Name Type a name for the new template. The default name is

New Process #, where # is the next number available to
make the template name unique.

Based On Root Template Choose a template from the list. The default choice is
Empty Template, which provides a blank template on
which to build.

Core templates are delivered with rich client. You can
base a new template on a core template or on any other
existing workflow process template listed in the list.

Template Type Choose the type of template to create:

• Process template
Encompasses an entire workflow process, beginning
with the Start action, ending with the Finish action, and
containing all required tasks to complete the workflow
process.

• Task template
Contains only a single task.

Task hierarchy tree Lists the tasks included in the selected template. Tasks are
listed in the order they were created. The task hierarchy
order will not necessarily be replicated in the process
flow pane because of the great flexibility for graphically
arranging task flow that the latter provides.

When creating a template, you can view, but you cannot
modify, the task hierarchy.

Name Lists the name of the selected template.

When creating a template, you can view, but you cannot
modify, the Name box of the selected template.

Description Lists descriptive notes added by users.

When creating a template, you can view, but you cannot
modify, the Description box.

1-12 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Element Description
Task Attributes button Click to view the task attributes for the selected template.

When creating a template, you can view, but you cannot
modify, the task attributes.

Task Handlers button Click to view the task handlers for the selected template.

When creating a template, you can view, but you cannot
modify, the task handlers.

Task Signoff button Click to view the task signoff team member profiles for the
selected template.

When creating a template, you can view, but you cannot
modify, the task signoff team member profiles.

Process flow pane Shows the task flow of the selected template.

When creating a template, you can view, but you cannot
modify, the tasks.

OK button Click to finish creating the new template and close the
dialog box.

Apply button Click to finish creating the new template. The dialog box
remains open, allowing you to create additional templates.

Cancel button Click to cancel the operation.

Edit menu

Edit menu commands allow you to build and edit workflow process templates.

Command Description
Template Lists the task templates available in Teamcenter.

Task Workflow Designer default template setting. The Task template is
synonymous with the EPMTask template.

Do Task
Has two options if at least one failure path is configured: Complete
confirms the completion of a task and triggers the branching to a
success path. Unable to Complete indicates the task is unable to
complete, for various reasons.

Uses the EPM-hold handler, which stops the task from automatically
completing when started.

RS025 11.6 Setting Up Workflows for Product Development 1-13

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

Command Description

Review Task
Uses the select-signoff-team and perform-signoffs subtasks, each
of which has its own pane in the Viewer view.

Wait for Undecided Reviewers is an option to set the Review task
to wait for all reviewers to submit their decisions before completing
and following the appropriate path.

Tip

A Teamcenter administrator can customize the
perform-signoffs pane to add boxes and buttons, validate
users' input in the new boxes, configure the summary table,
and configure the Signoff Decision dialog box.

Add Status Task
Creates and adds a release status to the target objects of the workflow
process. It is a visual milestone in a workflow process. There is no
dialog box associated with this type of task.

Note

The WRKFLW_retain_ACL_objects_on_release
preference determines the state of access control list objects
on a target when a release status is applied. Valid values
are true or false.

Or Task
Inserts an Or task into the workflow process. This task continues the
workflow process when any one of its multiple task predecessors is
completed or promoted. There is no limit to the number of predecessors
an Or task may have.

Acknowledge Task
Inserts an Acknowledge task into the workflow process. This task
uses the Acknowledged and Not Acknowledged subtasks, each
of which has its own dialog box.

Condition Task
Inserts a Condition task into the workflow process. This task requires
that the succeeding task contains an EPM-check-condition handler
that accepts a Boolean value of either True or False.

Route Task
Inserts a Route task into the workflow process. This task uses the
Review, Acknowledge, and Notify subtasks, each of which has its
own dialog box.

Validate Task Inserts a Validate task into the workflow process. This task give you
the ability to respond to errors by providing an alternate path which the
workflow process traverses when an error occurs.

1-14 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Command Description
Template Filter Associates a list of workflow process templates with a designated target

object type and user group. You can apply the list to only one type and
group at a time. Subtypes and subgroups do not inherit this association.

Caution

This feature is deprecated as of Teamcenter 11.2. Siemens
PLM Software recommends that you associate templates
by using Business Modeler IDE conditions. Conditions
offer greater versatility, with criteria such as session group,
role, and user; target project and target release status; and
custom criteria (both session-specific and target-specific)
that a Teamcenter administrator can create.

Mode Lists the two working modes: Edit and Browse.

Browse
Allows you to view the workflow process data and inspect the details of
the workflow process. You cannot make any modifications in this mode.

Browse mode is the default mode.

Edit
Allows you to create and edit workflow process templates.

To use the Workflow Designer in Edit mode, you need to be a member
of the system administration group.

Note

Access may be restricted even if you have administrator
privileges.

View menu

View menu commands allow you to view workflow process template properties.

Command Description
Task Properties Opens the Task Properties dialog box allowing you to view the Task

Attributes and Task Handlers dialog box. The Task Signoff dialog
box is also available if the selected task is a select-signoff-team task.

Tools menu

Tools menu command allows you to import, export, and purge workflow templates.

Command Description
Export Exports a workflow template to a file.
Import Imports a workflow template from a file.
Purge Templates Deletes old workflow templates.

RS025 11.6 Setting Up Workflows for Product Development 1-15

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

Go menu

Go menu commands allow you to maneuver through a workflow process template.

Command Description
Up a Level Opens the parent task of the currently selected task from the task

hierarchy tree.
Down a Level Opens a container task (Review task, Acknowledge task, Route task)

currently selected in the task hierarchy tree. If the selected task is not a
container task, no task is opened.

Top Level Opens the root task of the workflow process.

Workflow Designer buttons

Button Description

Task Properties Displays the name, description, attributes, and handlers of the selected
task.

Task Attributes Displays and opens for edit the named ACL, task type, and quorum
requirements for the selected task.

Task Handlers Displays and opens for edit task handlers for the selected task.

Task Signoffs Displays and opens for edit the group, role, quorum, and number of
reviewer requirements for the selected task.

Task Inserts an empty task with no handlers into the workflow template for
you to customize.

Do Task
Inserts a Do task into the workflow template. This task has two
options, if at least one failure path is configured: Complete confirms
the completion of a task and triggers the branching to a success path.
Unable to Complete indicates the task is unable to complete, for
various reasons.

This task uses the EPM-hold handler, which stops the task from
automatically completing once started.

Review Task
Inserts a Review task into the workflow template. This task uses the
select-signoff-team and perform-signoffs subtasks, each of which
has its own dialog box.

Wait for Undecided Reviewers is an option that allows the workflow
designer user to set the Review task to wait for all reviewers to submit
their decisions before completing and following the appropriate path.

Add Status Task
Inserts an Add Status task into the workflow template. This task
creates and adds a release status to the target objects of the workflow
process. It is a visual milestone in a workflow process. There is no
dialog box associated with this type of task.

1-16 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Button Description

Or Task
Inserts an Or task into the workflow process. This task continues the
workflow process when any one of its multiple task predecessors is
completed or promoted. There is no limit to the number of predecessors
an Or task may have.

Acknowledge Task
Inserts an Acknowledge task into the workflow template. This task
uses the Acknowledged and Not Acknowledged subtasks, each of
which has its own dialog box.

Condition Task
Inserts a Condition task into the workflow template. This task requires
that the succeeding task contains an EPM-check-condition handler
that accepts a Boolean value of either True or False.

Route Task
Inserts a Route task into the workflow template. This task uses the
Review, Acknowledge, and Notify subtasks, each of which has its
own dialog box.

Validate Task Inserts a Validate task into the workflow template. This task gives you
the ability to respond to errors by providing an alternate path which the
workflow process traverses when an error occurs.

Up a Task Level Displays the task one level higher than the current task.

Down a Task Level Displays the task one level lower than the current task.

Workflow Designer panes

Task attributes

The following table lists the elements available in the Attributes pane.

Element Description
Named ACL Click to display the Named ACL dialog box.

Task Type Lists the type of task template assigned to the selected
task.

Icons Displays the symbol that has been assigned to the selected
task. You can also add custom symbols to this list.

Condition Query Displays when a Condition task is selected. The entry
lists the query selected to determine the true and false
paths of the Condition path. If a query is not yet defined, it
is listed as empty.

Click the entry to display the Condition Query dialog box,
which you can use to change, modify, or delete the defined
query.

RS025 11.6 Setting Up Workflows for Product Development 1-17

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

Element Description
Duration Displays when the selected task contains a defined

duration. The entry lists the length of time allowed for
the completion of the project. If the task is not completed
within the specified amount of time, the task's status
changes to late, and the task becomes overdue.

Click Set to display the Set Duration dialog box, which
you can use to set a length of time in which the task must
be performed. If the task is not completed within the
specified amount of time the task's status changes to late,
and the task becomes overdue.

Recipients Displays the names of users selected to receive program
mail when the selected task becomes overdue.

Click Set to display the Select Recipients dialog box,
which you can use to select users who will receive program
mail if the selected task becomes overdue.

Show Task in Process Stage List Displays the task in the Process Stage List property for
the target object. Tasks in the Process Stage List are
used to determine the ACL for the target objects.

Process in Background Indicates if the task is to be run in the background.

Task handlers

The following table lists the elements available in the Handlers pane of the Properties dialog box.

Element Description
Task action tree A hierarchical tree consisting of folders representing each of

the task actions. Each folder contains the handlers associated
with that task action.

Action handlers exist as direct descendants of the parent task
action folders.

Rule handlers exist as children of rules. Rules are direct
descendants of task action folders.

Move Handler Up Moves the selected handler up within a folder.

Move Handler Down Moves the selected handler down within a folder.

Expand All Folders Expands all folders.

Collapse All Folders Collapses all folders.

Handler Type Indicates an action handler or rule handler.

1-18 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Element Description
Quorum In Browse mode, when a predefined rule handler is selected,

displays an integer representing the number required for the
approval quorum.

In Edit mode, you can type or modify the approval quorum
number, but only when a rule handler is selected as the
Handler Type.

Task Action The selected task action from the list receives a handler when it
is created.

Action/Rule Handler Allows you to select an existing handler or define a new one.
The system reads the existing handlers from a properties file.

Edit this box only when an action handler or rule handler is
selected at definition time, and Workflow Designer is in Edit
mode.

Argument When a predefined handler is selected, this box displays the
handler's predefined arguments.

In Edit mode, you can add new arguments by clicking the Add
button and typing new arguments and values. You can also
remove arguments and reorder them using the Remove, ,
and buttons.

Value(s) When a predefined handler is selected, this box displays the
values of the handler's predefined arguments.

In Edit mode, you can add new values to arguments by clicking
the Add button and typing new arguments and values.

Create This button is available only when Workflow Designer is in Edit
mode.

Click Create to create a new handler using the data currently
displayed in the handler display area.

Delete This button is available only when Workflow Designer is in Edit
mode.

Click Delete to remove the selected handler from the current
list of handlers for the task.

Modify This button is available only when Workflow Designer is in Edit
mode.

Click Modify to update the selected handler to reflect the data
currently displayed in the handler display area.

Help Selecting a handler from the Handler box and clicking Help
displays the documentation for the selected handler.

Performs a Copy action Places the selected handler in the clipboard.

RS025 11.6 Setting Up Workflows for Product Development 1-19

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

Element Description

Performs a Paste action In Edit mode, places the copied handler in the selected
location.

• To paste on another action in the task, select the target
action in the task action tree.

• To paste on another task in the same template, select the
target task in the task hierarchy tree.

• To paste on a task in another template, select the target
template from the Process Template list.

Task signoffs

The following table lists the elements available in the Signoff Profile pane.

Element Description
Signoff Profiles Reflects when the task state is modified as a result of other

activities, such as assignment or completion of signoffs.

Task state is displayed at run time only. It is never editable
from within this pane.

Group Lists the user responsible for the task.
Role Lists the roles responsible for the task.
Number of Reviewers Click the menu to select an to be associated with the

selected task.
Allow sub-group members Grants members of subgroups permission to sign off

instead of members of the designated group.
Signoffs Quorum Numeric: Select numeric and type a whole number or

ALL.

Percentage: Enter a percentage.

Wait for Undecided Reviewers: Select this option ensure
all users have a chance to review and comment. Without
this option, it is possible for the workflow process to be
approved or rejected before all users have had a chance
to review and comment.

Create This button is available only when Workflow Designer is
in Edit mode.

Click Create to create a new signoff profile using the data
currently displayed in the signoff profile display area.

1-20 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Element Description
Delete This button is available only when Workflow Designer is

in Edit mode.

Click Delete to remove the selected profile from the current
list of signoff profiles for the task.

Modify This button is available only when Workflow Designer is
in Edit mode.

Click Modify to update the selected to reflect the data
currently displayed in the signoff profile display area.

Close Clicking Close dismisses the dialog box.

As you make selections, the system enters into the
database all selections made within the dialog box.

Migrating workflow attachments

Administrators can use the migrate_wf_attachments utility to migrate workflow attachments from
VLA property-based attachments to GRM relation-based workflow task attachments. GRM relations
are used for change related objects and proposed replica objects for remote workflows. It is possible
to add the same object to the same workflow using different VLA property-based attachments and
GRM relation-based workflow task attachments.

GRM relations are created between EPMTask as the primary object and the attachment as the
secondary object. The attachment type determines the GRM relation.

Attachment type GRM relation
Target Fnd0EPMTarget
Reference Fnd0EPMReference
Signoff Fnd0EPMSignoff
ReleaseStatus Fnd0EPMReleaseStatus
InterProcess Task Fnd0EPMInterProcessTask
Schedule Task Fnd0EPMScheduleTask
Replica Proposed
Target

Fnd0EPMReplicaTarget

To support user attachments, a GRM relation type corresponding to a user attachment type is
required.

For example, for a user attachment of type 1100, there must be GRM relation named
Fnd0EPM_user_attach_1100. Migration support is provided by the migrate_wf_attachments
migration utility, as well as by run-time migration.

RS025 11.6 Setting Up Workflows for Product Development 1-21

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

Note

The VLA data on the EPMTask is removed automatically during runtime migration only
when all the attachments on the task are migrated successfully.

This improves search and reporting performance when large numbers of target attachments are
added and removed by two synchronized VLAs rather than a GRM. This impacts the criteria for which
the attachments are searched using saved queries.

For example, to search all the targets attached to a task with the task name, the query is constructed
as shown. This an example of a reverse reference type of Query on ItemRevision.

The ItemRevisions are added with a GRM relation Fnd0EPMTarget as secondary objects to the
root EPMTask.

Example

You can create two workflow templates SimpleDoExample and TestDoExample and
run each on two different item revisions, IR1 and IR2. When the query is run with
SimpleDoExample as the name in the query, only IR1 is returned.

Use the migrate_wf_attachments utility to:

• Migrate active jobs during the upgrade process.

• Migrate completed jobs after the upgrade.

Note

Migration on-demand is supported. When a workflow process that has not been migrated
is opened, the attachments are migrated automatically.

After successful migration, all the attachment data on the EPMTask should be obtained using the
new GRM relations. The EPMTask attachment and the attachment types attributes are deprecated
and are not to be used.

1-22 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Note

The attachments attribute on EPMTask is deprecated in 11.x. Queries related to this
attribute need to use the above GRM relations to refer to the attachment objects.

As an example, the following query uses the attachments attribute on the EPMTask from
process_stage_list of ItemRevision. It checks the user_name of the Signoff objects added on
these EPMTasks.

Create a simple Review Task process template and in the Task properties panel for both
Select-Signoff Task and Perform-Signoff Task, check the option Show Task in Process Stage
List so that the tasks appear in the Process Stage List.

Login as tcadmin and run the above Workflow on an Item Revision. Select tcadmin as reviewer and
complete the Select-Signoff Task. Run the Teamcenter 10.x query that uses the attachments
attribute of EPMTask, as shown below, and the Item Revision is listed as expected.

Note

This method works with 10.x.

Modify the query to use the corresponding GRM relation Fnd0EPMSignoff that is used for attaching
the Signoff objects to Signoff tasks for Tc11.x.

RS025 11.6 Setting Up Workflows for Product Development 1-23

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

Editing active workflow processes

There are two methods for modifying active workflows in Teamcenter:

• Using Workflow Viewer, you can modify a single active workflow by selecting an object associated
with the workflow (typically one of the workflow targets or attachments), using the Send To
command to view the active workflow in Workflow Viewer, and then editing the workflow process
in Design mode.

• Using Workflow Designer, you can modify all active workflow processes based on a particular
workflow template by selecting the workflow template to be edited and changing to Edit mode to
make your edits. (Changing to Edit mode prompts you to take the process template offline; do
so) After making your edits, selecting the Set Stage to Available check box displays a dialog box
asking if you want to apply your changes to all active workflow processes, and if so, whether you
want this update to take place in the background. Run updates in the background if the changes
affect a large number of active workflow processes and therefore take considerable time. If you
do not run the updates in the background, you can not continue to use the Teamcenter interface
until the updates are complete.

By default, this behavior is not enabled. You must configure the ability to modify all active
workflow processes by setting the EPM_enable_apply_template_changes preference to either
OPTIONAL or AUTOMATIC.

Background processing for processes and tasks

Requirements for background processing

Background processing of template edits applied to active workflow processes allows the edits to
be performed asynchronously (behind the scenes) without pausing your interaction with Workflow
Designer.

Consider the processing time required to apply edits to all active workflow processes based on a
particular workflow template. If Workflow Designer is processing edits to 10–20 active workflow
processes, as may occur when testing the edits, the Workflow Designer interface does not noticeably
slow down. But if the workflow template is in a production environment and has generated hundreds

1-24 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

of active templates, processing time can be extensive. Performing the edits in the background
prevents Workflow Designer from pausing until the edits complete.

The update duration depends on the type of edits made to the workflow processes. For example, it
takes longer to remove tasks than add tasks. Edits within tasks (handlers, attributes, etc.) require
minimal processing time.

Background processing of workflow objects requires the following:

• A four-tier architecture environment. Users running in a two-tier environment can successfully
submit requests for asynchronous processing if there is a four-tier Teamcenter environment
available to accept the request.

• Configuration of asynchronous services.

You can also configure individual tasks in a workflow process to execute in the background with
asynchronous processing.

Note

When a task is submitted for background processing, the task is removed from all inboxes.

Configure tasks for background processing

You can configure individual tasks in a workflow process to run in the background. If they are
configured for background processing, all of those tasks’ actions, except Perform and Assign, are
processed asynchronously.

Note

Your system must meet the requirements for background processing.

1. Set the EPM_task_execution_mode preference to one of the following values:

BACKGROUND All tasks run in the background.

This value overrides the Execute Asynchronously property value of
each task template.

CONFIGURABLE Each task template's Execute Asynchronously property determines
that task's processing.

• If the value is True, the task runs in the background.

• If the value is False, the task runs concurrently with your Workflow
Designer interactions.

2. If you set the EPM_task_execution_mode preference value to CONFIGURABLE, open
Workflow Designer and select the process template with the tasks you want to run in the
background.

3. In Edit mode, select the task, and then click the Task Attributes button.

RS025 11.6 Setting Up Workflows for Product Development 1-25

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

4. Select the Process in Background check box and close the Attributes dialog box.
This action changes the Execute Asynchronously property value to True in the Properties
dialog box.

Repeat this step for each task you want to run in the background

• Child tasks of those chosen to process in the background are processed in the background
also.

• You can set only the root task and its children to background processing.

5. When you have configured all the tasks in the workflow process template you want to run in the
background, select the Set Stage to Available check box and click Yes in the Stage Change
dialog box.

When you create a workflow using the process template, the workflow runs the tasks that have the
Process in Background check box selected in the background.

Refreshing Workflow Designer

You can refresh the display by:

• Moving up or down a level.

• Going to the top level.

• Choosing View→Refresh All.

• Setting the template to the Available stage.

Delete key removes workflow objects and backspace key removes text

While working in Edit mode in Workflow Designer, the system interprets the use of the Delete key
on your keyboard as an instruction to delete a workflow object.

Caution

Do not use the Delete key to delete characters in text boxes within a workflow template.

To change existing text in a Description or Instructions box:
• Use the Backspace key to remove unwanted text; type new characters into the box

To change text in the Argument and Value(s) boxes in the Handlers dialog box:
• Double-click in the box containing the text you want to modify or delete. Use the Backspace key

to remove unwanted text; type new characters into the box.

Note

Handler values are case sensitive and must be accurate to the letter.

1-26 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Save time when creating multiple tasks of the same type

When creating a workflow process template, sometimes the process calls for several of the same
types of tasks, such as several Do tasks, that have the same or similar set of handlers and arguments.

Instead of adding the tasks, selecting the handlers, and typing the arguments and values individually,
you can do the following:

1. Add the first task to the process template.

2. Select the handlers you want to add and type the arguments and values for each one.

3. Copy the task and paste it back in the process template.

4. Edit the handler arguments and values in the new copy of the task.

This saves you the time and effort of retyping arguments and values as well as reduces the possibility
of typos when creating your process template.

Move and resize the Handler dialog box

Undocking the Handler dialog box allows you resize it and move it anywhere in the Teamcenter
window.

1. Click the Handler button to open the Handler dialog box.

2. Double-click anywhere in the dialog box to undock it.

Behavior Example
Docked

RS025 11.6 Setting Up Workflows for Product Development 1-27

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

Behavior Example
Undocked

When you leave the Handler dialog box docked, you can move between one task’s handlers and
another task’s handlers by selecting a different task in the task hierarchy tree. For example:

1. Click the Handler button to open the Handler dialog box.

(Do not undock the dialog box.)

2. Select the Change Admin II (CM) task in the task hierarchy tree.

The dialog box is populated with all the handlers on the Change Admin II (CM) task.

Modify handler arguments and values as needed.

3. Select the Check Change Type task in the task hierarchy tree.

The dialog box is populated with all the handlers on the Check Change Type task.

Modify handler arguments and values as needed.

1-28 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Task hierarchy tree Handler dialog box

Workflow errors

When a Start action is triggered on a task, all the handlers placed on that action are run in the
order listed. If all the handlers complete, the state transitions to Started, then the handlers on the
Complete action are run. When the handlers on the Complete action successfully complete, the
state transitions to Completed.

If all the handlers do not complete successfully, a workflow error is generated. If necessary, an
error message appears. For example:

• If there is an error during workflow process initiation, an error message may state that the action
of initiating the workflow process was successful but that a downstream error was generated
by one of the root task's subtasks.

• If there are two tasks in a workflow process template and a handler on the Start action of the
second task generates an error after the first task completes successfully, the workflow displays a
Warning dialog box with the following error message instead of an Error dialog box.

RS025 11.6 Setting Up Workflows for Product Development 1-29

What is Workflow Designer?



Chapter 1: What is Workflow Designer?

The action was successful. Additional information has been included on the
error stack.

Note

If an error occurs at workflow process creation, the workflow process is not created, and
the new workflow process does not exist in the database.

If an error occurs on the root task, the workflow process is automatically deleted. A
workflow process with no started tasks has no visibility, and without the root task, the
workflow process itself cannot be performed.

Teamcenter rich client perspectives and views

Within the Teamcenter rich client user interface, functionality is provided in perspectives and views.
Some applications use perspectives and views to rearrange how the functionality is presented. Other
applications use a single perspective and view to present information.

• Perspectives

Are containers for a set of views and editors that exist within the perspective.

o A perspective exists in a window along with any number of other perspectives, but only
one perspective can be displayed at a time.

o In applications that use multiple views, you can add and rearrange views to display multiple
sets of information simultaneously within a perspective.

o You can save a rearranged perspective with the current name, or create a new perspective
by saving the new arrangement of views with a new name.

• Views and view networks

In some Teamcenter applications, using rich client views and view networks, you can navigate
to a hierarchy of information, display information about selected objects, open an editor, or
display properties.

o Views that work with related information typically react to selection changes in other views.

o Changes to data made in a view can be saved immediately.

o Any view can be opened in any perspective, and any combination of views can be saved in a
current perspective or in a new perspective.

o A view network consists of a primary view and one or more secondary views that are
associated. View networks can be arranged in a single view folder or in multiple view folders.

o Objects selected in a view may provide context for a shortcut menu. The shortcut menu is
usually displayed by right-clicking.

1-30 Setting Up Workflows for Product Development RS025 11.6

Chapter 1: What is Workflow Designer?



What is Workflow Designer?

Note

If your site has online help installed, you can access application and view help from the rich
client Help menu or by pressing F1. Some views, such as Communication Monitor, Print
Object, and Performance Monitor, are auxiliary views that may be used for debugging
and that may not be displayed automatically by any particular perspective.

RS025 11.6 Setting Up Workflows for Product Development 1-31

What is Workflow Designer?





Chapter 2: Creating workflow process templates

Structuring a workflow process
A workflow process describes the individual tasks and the task sequence required to model the
workflow process. In Enterprise Process Modeling (EPM), tasks have both temporal (time) and
hierarchical (structure) relationships. With these characteristics, individual tasks can run sequentially
(serially) or asynchronously (in parallel).

A workflow process template is a predefined workflow structure, which you can use as a pattern for
your own workflow processes. You can define a specific workflow process by placing workflow tasks
in the required order of performance. You can define additional workflow process requirements (such
as placing a status on targets, creating subprocesses, and so on) in the template using workflow
handlers. Workflow Designer allows you to create both serial and parallel workflow process templates,
and provides you with core templates on which you can build new workflow process templates.

In EPM, each instance of a workflow process uses a workflow process template. This allows each
workflow process template to be used as a blueprint for creating multiple workflow processes.

Each EPM workflow process contains a group of nested tasks. The top-level task of every workflow
process is referred to as the root task.

Process

Root Task

task_1 task_2

task_1a task_1b task_2a task_2b

Sample EPM workflow process structure

The root task is the top-level parent task that contains all the other tasks as subtasks. It is the first
task run when a workflow process is initiated and the last task to complete before the workflow
process itself is completed.

RS025 11.6 Setting Up Workflows for Product Development 2-1



Chapter 2: Creating workflow process templates

In the following graphic, the root task is the first task shown in the task hierarchy tree, the CN Fast
Track task.

To place handlers on the root task, select the Start node and click the Handlers button.

Note

A default workflow process template is defined using the
WorkspaceObject_default_workflow_template preference. This preference does not
affect new revisions.

The specified template is automatically selected when submitting existing workspace
objects to a new workflow process. This preference does not apply to object creation. For
new objects, the default workflow template selection is intentionally left blank. Workflow
template filters are used to restrict the list of available templates for both existing and
new objects.

To set a default workflow template on a new revision, select the process manually when
creating the revision.

Example of building a workflow process template
Workflow process templates define a blueprint of a workflow to be performed at your site.

For example, a workflow process template outlining the workflow process required for a final design
review, named Final Design Review, contains the following tasks:

• A Review task in which the assigned user is responsible for choosing signoff team members who
meet specified group or role requirements. Wait for Undecided Reviewers is an option that
allows the workflow designer user to set the Review task to wait for all reviewers to submit their
decisions before completing and following the appropriate path.

• A Do task containing instructions to publish the review findings.

2-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

• Another Do task containing instructions to implement review edits.

• An Add Status task which changes the status of the target objects to Released upon completion
of the workflow process.

After you finish a new workflow process template, you select the Set Stage to Available check box
so that the template appears in the Task Hierarchy list.

Note

When you close Workflow Designer, the system displays a dialog box listing workflow
process templates that are not marked as available. From this dialog box, you can select
one or more workflow process templates to be made available to users.

The Task Hierarchy list is accessible from within both Workflow Designer and My Teamcenter.
Users initiate a workflow process on a Teamcenter object from within My Teamcenter by choosing
File→Workflow process and working through the New Process dialog box.

Create workflow process templates
1. Choose File→New Root Template.

The New Root Template dialog box appears.

2. In the New Root Template Name box, type a template name.

The box can contain a maximum of 32 characters.

3. From the Based On Root Template list, select an existing template on which to base the new
template.

The list displays the available workflow process templates.

When you choose an existing template from the Based On Root Template list, the task hierarchy
tree and the viewer display workflow process and task information for the selected template.
Selecting a task from the tree displays any subtasks in the viewer; the task name and description
are displayed in their respective boxes. This information regarding the existing template is only
for viewing in the New Root Template dialog box; it cannot be modified.

RS025 11.6 Setting Up Workflows for Product Development 2-3

Creating workflow process templates



Chapter 2: Creating workflow process templates

You can also click the Task Attributes, Task Handlers and Task Signoff buttons to view the
existing template's task attribute, task handler, and task signoff information.

4. For Template Type, select Process.

5. After you view all the necessary template information, click one of the following:

• OK to create the template and close the dialog box.

• Apply to create the template and retain the dialog box so you can create another template.

• Cancel to cancel the operation.

In Workflow Designer, the Task Hierarchy list displays the template name. The under
construction symbol to the left of the template name indicates that the template is still
in the process of being designed.

Note

Templates with the under construction designation are visible only to system
administrators within Workflow Designer. They are not visible to end users who are
using the File→New Process option in My Teamcenter to associate a workflow
process with objects.

6. Configure your template:

• Workflow process template

Configure the workflow task actions and states.

Configure the explicit and assumed links.

• Task template

Configure the attributes and handlers.

7. Close the New Root Template dialog box.

8. Select Set Stage to Available in the lower-left panel.

In Workflow Designer, the Process Template list no longer displays the under construction
symbol next to the template name.

In My Teamcenter, the Process Template list, within the New Process dialog box, displays the
template name. All users at your site can now access the template.

2-4 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

Note

Workflow template filters affect:

• The Process Template choices displayed by the New Process Dialog dialog box.

• The Process Template List choices displayed by the New Item dialog box Define
Workflow Information page.

Administrators and customizers can use Business Modeler IDE conditions to configure
workflow template filters.

Creating baseline workflow process templates
The baseline feature allows you to create a baseline, or a snapshot of a work-in-process item
revision and its component objects without incrementing the revision of the item. This enables you to
capture a product design at a particular stage without having to stop work or generate an undesired
revision of the item.

Before you can implement baseline functionality, you must create one or more custom workflow
process templates to support baseline release procedures. These workflow process templates must
define a zero-step release procedure, which allows the baseline to become a released object that
cannot be modified. This type of workflow process template is referred to as a quick release template.

After the quick release template is created, you need to set its name in the
Baseline_release_procedures preference. Once this preference is set, the name of the quick
release workflow process template displays in the Release Procedure list and can be selected
by a user.

Create a quick-release workflow process template
1. Choose File→New Root Template.

The New Root Template dialog box appears.

2. In the New Root Template dialog box, select the Process option for Template Type, type a
name in the New Root Template Name box, and select Empty Template from the Based on
Root Template list.

3. Click OK.

4. On the toolbar, click the Add Status Task Template button.

5. Double-click between the Start and Finish tasks in the process flow pane to insert the new
Add Status task.

6. Create a path between the Start node and the Add Status task by placing the cursor in the body
of the Start node and dragging it to the body of the Add Status task.

RS025 11.6 Setting Up Workflows for Product Development 2-5

Creating workflow process templates



Chapter 2: Creating workflow process templates

7. Create a path between the Add Status task and the Finish node by placing the cursor in the
body of the Add Status task and dragging it to the body of the Finish node.

8. Select the Set Stage to Available check box to make the template available.

By adding the Add Status task, your new quick-release workflow process template contains the
required EPM-create-status and EPM-set-status handlers.

The template displays in the Process Template list and in the Based On Root Template list in
the New Root Template dialog box.

Creating Custom Templates
1. Choose File → New Root Template.

The New Root Template dialog box appears.

2. In the New Root Template dialog box:

• Select the Task option for Template Type.

• Type a name in the New Root Template Name box.

• Select Empty Template from the Based on Root Template list.

3. Click OK.

2-6 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

4. Select the Set Stage to Available check box to make the template available.

5. Select Tools → Export.

6. Select the newly created task and add it to the list of selected tasks.

Click OK.

7. From the desktop, open the exported task template XML file.

Add the following:

• objectType=" EPM<YOUR_CUSTOM_TASK>TaskTemplate "

• iconKey=”<YOUR_CUSTOM_TASK_KEY>”

8. Save the XML file.

9. Select Tools → Import to import the template.

The task is now available.

Creating subprocesses

What are workflow subprocesses?

Subprocesses are child workflow processes of a parent workflow process. You can create
subprocesses while performing tasks from your worklist.

Note

If the parent process is dependent on the subprocess, the parent process cannot complete
until the subprocess completes. For example, if the action handler is used to create
subprocesses for multiple targets from a parent process, the parent processes are
dependent on the subprocesses.

A typical scenario is one in which you receive a task in your worklist that is dependent upon the
completion of an additional workflow process. You decide to create a workflow subprocess to track
the work which must be completed before you can complete the task in the parent workflow.

Subprocesses are created in two locations:

Parent workflow
templates

Administrators can . For example, a parent workflow template can be
configured to automatically launch subprocesses for each target of the parent
workflow.

RS025 11.6 Setting Up Workflows for Product Development 2-7

Creating workflow process templates



Chapter 2: Creating workflow process templates

My Worklist End users can while performing tasks from their worklist or from Workflow
Viewer. Generally, any user can create a workflow subprocess from a task
within their worklist. This functionality is not limited to privileged users.

When you create a workflow subprocess from an in-process task in your
worklist, you create a dependency between the selected task in the parent
process and the newly created subprocess. The targets of the active parent
workflow process are carried over if you check the Inherit Targets box. If a
subprocess is created from an in-process task, the task cannot complete until
the subprocess completes.

Note

The behavior of the Inherit Targets box is determined
by the EPM_multiple_processes_targets and
EPM_sub_process_target_inheritance preferences.

Regardless of how these two preferences are set to control the
inheritance of target objects from the parent process, users can
always manually add or remove targets from subprocesses.

Note

Access to create workflow subprocesses is governed by the Access Manager Has Class
(Task) rule and the Task Named access control list (ACL). The same permissions allowing
you to perform the task allows you to create a subprocess from the task.

Note

Workflow subprocesses are not always dependent on parent processes. The
WRKFLW_skip_abort_on_sub_process preference is honored only for independent
subprocesses.

Set the WRKFLW_skip_abort_on_sub_process preference to true to skip abort of
subprocess when a parent process is aborted.

If there is a dependency from a parent process to its subprocesses, aborting the parent will
abort the dependent subprocesses, irrespective of the value of the preference.

The default value is false which will abort the subprocesses along with parent process.

Creating subprocesses from a workflow template

Sometimes you want a workflow process to generate additional workflows as it proceeds. For
example, you may want a workflow to generate additional workflows (subprocesses) for each target
of the parent process. This would be useful if you want each target to undergo a separate review
and signoff process.

2-8 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

Use the EPM-create-sub-process action handler to create subprocesses. You can add the handler
multiple times to a single task action, allowing you to use different workflow process templates per
target object type. Use the handler to:

• Set dependencies between the parent process and its subprocesses.

• Define targets and attachments for the subprocesses.

• Transfer attachments from the parent process to a subprocess.

• Create subprocesses for multiple targets.

• Create subprocesses for assemblies.

• Create subprocesses for related objects.

The handler accepts numerous arguments, allowing you to create a wide variety of instances for
generating subprocesses. For example:

• The following argument settings create a subprocess based on the Clinical Trials Phase I
template, which inherits all the targets and reference attachments from the parent process.
Because the workflow process name is not defined, a workflow process name for the child
process is automatically generated in the format parentprocess:count.

Argument Value
-template Clinical Trials Phase I
-from_attach ALL
-to_attach ALL

• The following argument settings launch a subprocess based on the Clinical Trials Phase I
workflow process template. All item revisions from the parent process are excluded as targets for
the new workflow process.

Argument Value
-template Clinical Trials Phase I
-from_attach ALL
-to_attach TARGET
-exclude_type ItemRevision

• The following argument settings launch multiple subprocesses based on the Clinical Trials
Phase I workflow process template. Each item revision that was a target or reference attachment
of the parent process launches a new subprocess with that item revision as the target.

For example, if the parent process contained three item revisions as targets, three different
subprocesses are launched.

Argument Value
-template Clinical Trials Phase I
-from_attach ALL

RS025 11.6 Setting Up Workflows for Product Development 2-9

Creating workflow process templates



Chapter 2: Creating workflow process templates

Argument Value
-to_attach TARGET
-include_type ItemRevision
-multiple_processes

Creating subprocesses for multiple targets

You can use various configurations of the EPM-create-sub-process action handler to create
subprocesses for multiple targets from a parent process.

The most straightforward method to create subprocesses for multiple targets is to use the
-multiple_processes argument to create individual subprocesses for each target in the parent
process. The newly created subprocesses can either be a clone of the parent process or a different
workflow process.

You can refine this method by using the -include_type argument along with the -multiple_processes
argument to create individual subprocesses for each target of a specific type in the parent process.
Or you can use the -exclude_type argument along with the -multiple_processes argument to create
individual subprocesses for each target except the specified types in the parent process.

All these methods are based on the concept of the parent process always creating one or more
subprocesses.

Depending on your business process needs, a more elegant method is to create a workflow process
branched with a Condition task that is configured to query for multiple targets. The technique of
querying for multiple targets means a subprocess is only created when there are multiple targets.
When there is a single target, the other branch of the parent process is followed. This is an efficient
design if subprocesses are only needed when multiple targets are involved.

Consider the following workflow template, in which a generic task template is named Multiple
Targets and configured to create subprocesses for each target.

In this example, Pharmaceuticals, Inc., uses such a workflow for its drug trial reviews. The typical trial
contains multiple products, but occasionally a trial contains only one product.

If this workflow process is initiated on an item revision containing three targets, the Condition task
query returns True and follows the True path containing the Multiple Targets task, which creates
three subprocesses: one subprocess for each target in the parent process. Each subprocess is a
clone of the parent process.

2-10 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

Because each of the subprocesses always only contains a single target, as each subprocess is
initiated the Condition task query returns False and follows the False path containing the Launch
Trial and Review Results tasks.

In trials that review only a single product, the parent process follows the False path. No unnecessary
subprocess is created.

The following procedure illustrates how to configure the workflow in this example:

Note

Before you begin, confirm that the EPM_multiple_processes_targets preference is set
to ON by choosing Edit→Options to launch the Options dialog box and locating the
preference using the Filters link.

If the preference is not created at your site, create the preference and set it to ON.

1. In Workflow Designer, choose File→New Root Template to create a new workflow process
template.

2. Type a name for the new workflow process in the New Root Template Name box, select Empty
Template from the Based On Root Template list, and click OK.

The workflow process template appears in the process flow pane.

3. On the toolbar, ensure you are in Edit mode.

This allows you to edit the workflow process template.

4. Insert a Condition task into the workflow process by clicking the Condition Task button on the
toolbar, and then double-clicking in the process flow pane to the right of the Start node.

The new Condition task is inserted at the cursor point.

5. Rename the Condition task by selecting the task in the task hierarchy tree, and then typing Has
Multiple Targets? in the Name box in the template manager pane, and pressing the Enter key.

6. Create a query for the Has Multiple Targets? task to determine whether the workflow process
contains multiple targets by completing the following steps:

a. In Teamcenter, switch to the Query Builder application.

b. In , create a new query calledWF - Has Multiple Targets by completing the query boxes as
shown and clicking Create.

RS025 11.6 Setting Up Workflows for Product Development 2-11

Creating workflow process templates



Chapter 2: Creating workflow process templates

c. Return to Workflow Designer.

7. Associate the WF - Has Multiple Targets query with the Has Multiple Targets? task.

a. Select the Has Multiple Targets? task and click Task Attributes in the template
manager pane.

b. In the Task Attributes dialog box, click the Condition Query box. (The box currently
indicates it is empty because no queries are associated with the Condition task.)

The Condition Query dialog box appears.

c. In the Condition Query dialog box, scroll down the Build/Select Query list to theWF - Has
Multiple Targets query and double-click the query.

The query name appears in the New Query box at the bottom of the dialog box.

d. Select Task as the Query Against option.

e. Click OK to choose the query and exit the dialog box.

The Task Attributes dialog box reappears. WF - Has Multiple Targets displays in the
Condition Query box.

f. Close the Task Attributes dialog box.

2-12 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

The Has Multiple Targets? task is now configured to query whether the workflow process
contains multiple targets. When the workflow process contains multiple targets the True path
is followed; when the workflow process contains a single target, the False path is followed.

8. Configure the Has Multiple Targets? task to retrieve the number of targets from the Multiple
Targets task by completing the following steps:

a. In the process flow pane, select the Has Multiple Targets? task and click Task Handlers
in the template manager pane.

b. In the task action in the left-side of the dialog box, select the Start action.

c. In the right-side of the dialog box, select Action Handler for the handler type.

d. In the Action Handler list, select EPM-set-task-result-to-property.

e. Type -property in the Argument box and num_targets in the Value(s) box.

f. Click Add in the right side of the dialog box to add another argument/value line.

g. Type -source in the Argument box and task in the Value(s) box.

h. Click Create at the bottom of the dialog box to add the handler to the Start action of the Has
Multiple Targets? task.

9. When you created theWF - Has Multiple Targets query on the Has Multiple Targets? task, the
EPM-set-condition handler was automatically placed on the task's Start action.

Confirm the handler contains the following settings:

a. The -query in the Argument box andWF - Has Multiple Targets in the Value(s) box.

b. The -query_type in the Argument box and Task in the Value(s) box.

10. Select the EPM-set-task-result-to-property handler in the folder list and click the Up button
under the folder list to move it above the EPM-set-condition handler in the Start action.

Note

The order of the two handlers on the Start action is important.
EPM-set-task-result-to-property must be before EPM-set-condition.

11. Close the Handlers dialog box.

12. Insert a Do task above and to the right of the Condition task.

13. Rename the Do task to Launch Trial.

14. Configure the Launch Trial task to attach the dataset and BOM view revision by completing
the following steps:

RS025 11.6 Setting Up Workflows for Product Development 2-13

Creating workflow process templates



Chapter 2: Creating workflow process templates

a. In the process flow pane, select the Launch Trial task and click Task Handlers in the
template manager pane.

b. In the task action tree in the left side of the dialog box, select the Start action.

c. In the right side of the dialog box, select Action Handler for the handler type.

d. In the Action Handler list, select EPM-attach-related-objects.

e. Type -relation in the Argument box and IMAN_specification in the Value(s) box.

f. Click Add in the right side of the dialog box to add another argument/value line.

g. Type -attachment in the Argument box and target in the Value(s) box.

h. Click Create in the bottom of the dialog box to add the handler.

i. Select the EPM-attach-related-objects handler you just created from the folder list on
the left.

j. Replace IMAN_specification with PSBOMViewRevision as the value for the -relation
argument and click Create.

You should have two EPM-attach-related-objects handlers in the Start action, one with the
IMAN_specification relation and one with the PSBOMViewRevision relation.

k. Close the Handlers dialog box.

15. Insert a Review task to the right of the Launch Trial task.

16. Rename the Review task to Review Results.

17. Insert a generic task below and to the right of the Has Multiple Targets? task.

18. Rename the task to Multiple Targets.

19. Configure the Multiple Targets task to generate subprocesses by completing the following steps:

a. In the process flow pane, select the Multiple Targets task and click Task Handlers in the
template manager pane.

b. In the task action tree in the left side of the dialog box, select the Complete action.

c. In the right side of the dialog box, select Action Handler for the handler type.

d. In the Action Handler list, select EPM-create-sub-process.

e. Type -from_attach in the Argument box and Target in the Value(s) box.

f. Click Add in the right side of the dialog box to add another argument/value line.

g. Type -to_attach in the Argument box and Target in the Value(s) box.

2-14 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

h. Click Add in the right side of the dialog box to add another argument/value line.

i. Type -process_name in the Argument box and SubProcess in the Value(s) box.

j. Click Add in the right side of the dialog box to add another argument/value line.

k. Type -multiple_processes in the Argument box. Do not type a value in the Value(s) box.

l. Type -template in the Argument box and the name for this template that you used in step 2
in the Value(s) box.

m. Click Create in the bottom of the dialog box to add the handler to the Complete action of
the Multiple Targets task.

The system responds with a warning that says The use of EPM-create-sub-process handler

has resulted in a loop. Teamcenter detected that the -template argument referenced
the template that you are creating. However, since the subprocesses generated will follow
the False path, no loop occurs. Click OK.

n. Close the Handlers dialog box.

20. Create an Or task to reconcile the True and False paths by clicking the Or task button on
the toolbar, and then double-click in the process flow pane to the right of the Review Results
and Multiple Targets tasks.

21. Draw a flow path from the Start task to the Has Multiple Targets? task by placing the cursor in
the body of the Start task and dragging it to the body of the Has Multiple Targets? task.

22. Draw a flow path from the Has Multiple Targets? task to the Launch Trial task.

By default, the path is a True path.

23. Change the flow path to a False path by right-clicking the line you have just drawn and choosing
Set Path To False Path.

The flow path changes to a False path.

24. Draw a flow path from the Has Multiple Targets? task to the Multiple Targets task.

By default, the path is a True path.

25. Draw a flow path from the Launch Trial task to the Review Results task by placing the cursor in
the body of the Launch Trial task and dragging it to the body of the Review Results task.

26. Draw a flow path from the Review Results task to the Or task.

27. Draw a flow path from the Multiple Targets task to the Or task.

28. Draw a flow path from the Or task to the Finish node.

29. Select the Set Stage to Available check box to put your template online.

The template is now ready to use.

RS025 11.6 Setting Up Workflows for Product Development 2-15

Creating workflow process templates



Chapter 2: Creating workflow process templates

Creating subprocesses for assemblies

In workflow processes that contain assemblies, there are various arguments you can use with the
EPM-create-sub-process action handler to create subprocesses for components of the assemblies.

Argument Behavior
-process_assembly Searches for assemblies in the target,

reference, or all (as specified by the
-from_attach argument) and creates
subprocesses for each component.

-depth Specifies the depth to which the assembly
is traversed.

-rev_rule Specifies the revision rule applied to the
assembly.

-include_related_type Creates subprocesses only for assembly
components of the types specified in this
argument.

-exclude_related_type Does not creates subprocesses for
assembly components of the types specified
in this argument.

Note

The -include_related_type and -exclude_related_type arguments can be used in
conjunction with each other. If used in conjunction, the -include_related_type argument
takes precedence; first the objects are processed against -include_related_type and then
processed against -exclude_related_type.

Creating subprocesses for related objects

There are various arguments you can use with the EPM-create-sub-process action handler to create
subprocesses for related objects of target and reference data.

Argument Behavior

-relation

Creates subprocesses for each object attached by the specified
relation to the target or reference object. (Specify a particular
target, or reference object, or all, using the -from_attach
argument.)

-include_related_type Creates subprocesses only for related objects of the type(s)
specified in this argument.

-exclude_related_type Does not creates subprocesses for related objects of the type(s)
specified in this argument.

2-16 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

Note

The -include_related_type and -exclude_related_type arguments can be used in
conjunction with each other. If used in conjunction, the -include_related_type argument
takes precedence; first the objects are processed against -include_related_type, and
then -exclude_related_type.

Creating ad hoc subprocesses

End users can create ad hoc workflow subprocesses while performing tasks from their worklist or
from .

For example, users might want to create a workflow subprocess after receiving a task in their worklist
dependent upon the completion of one or more tasks not tracked by the existing workflow. They
create a workflow subprocess to track the additional tasks.

Associate templates with a target object type and a user groupSelect
a default process template

Caution

This feature is deprecated as of Teamcenter 11.2. By default, conditions written in the
Business Modeler IDE control template association.

Siemens PLM Software recommends that you use Business Modeler IDE conditions to
associate templates. Conditions offer greater versatility, with criteria such as session
group, role, and user; target project and target release status; and custom criteria, both
session-specific and target-specific, that a Teamcenter administrator can create.

To continue using the deprecated feature, you must:

• Set the WRKFLW_use_legacy_template_filter preference to true.

• Set the CR_allow_alternate_procedures preference to Assigned or any.

Also deprecated are some other preferences that this feature uses. These preference
names follow the pattern of TC_object-type_release_procedure.

Based on the target's object type and the initiating user's group, you can define which workflow
process templates appear in the Assigned Process Template list of the Process Template Filter
Dialog dialog box.

You can select the required filtering criteria when a template is in edit mode. When the
CR_allow_alternate_procedures preference is set to none, additional filtering criteria applies to
targets that are added while the workflow is in progress.

RS025 11.6 Setting Up Workflows for Product Development 2-17

Creating workflow process templates



Chapter 2: Creating workflow process templates

Note

• If you associate templates with object types that have subtypes, Teamcenter does
not automatically associate the templates with the subtypes. You must associate
the templates with the subtypes as well.

• If a user subgroup has no associated templates for an object type, the subgroup
inherits its templates from its first parent group that has associated templates for that
object type. If you explicitly associate templates with a subgroup, the subgroup does
not inherit templates from its parent group.

1. Choose Edit→Template Filter.

The Process Template Filter Dialog dialog box opens.

2. From the Group Name list, select the group whose workflow process template list you want to
filter.

3. From the Object Type list, select the target object.

The Object Type list displays all the target object types defined in the database.

4. From the Defined Process Template list, select the workflow process template you want to
display for the selected group and object and click the button.

The selected workflow process template moves to the Assigned Process Template list.

5. Repeat the previous step until you have selected all the workflow process templates you want to
display for the selected group and object type.

6. Click one of the following:

• OK to save the Assigned Process Template list and exit the dialog box.

• Apply to save the Assigned Process Template list. The dialog box remains open allowing
you to create additional filters.

2-18 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

• Clear to refresh the Assigned Process Template list based on the previous saved result.

• Cancel to close the dialog box without applying the changes.

Note

To remove a workflow process template from the Assigned Process Template list, select
the template and click the button. The selected template is moved to the Defined
Process Template list.

Core templates
The following table lists the templates and their associated types included with the rich client.

Template
name

Task template definition
type

Task type value
specified in task
template

Executing
task's real
type

Executing
task's task
type

Process EPMTaskDefinition EPMTask EPMTask EPMTask
Review
Process

EPMTaskDefinition EPMTask EPMTask EPMTask

Task EPMTaskDefinition EPMTask EPMTask EPMTask
Review
Task

EPMTaskDefinition EPMReviewTask EPMTask EPMReviewTask

Do Task EPMDoTaskDefinition EPMDoTask EPMTask EPMDoTask
Or Task EPMTaskDefinition EPMTask EPMTask EPMTask
Add Status
Task

EPMTaskDefinition EPMTask EPMTask EPMTask

Change
Management
Procedure

EPMTaskDefinition EPMTask EPMTask EPMTask

Change
Management
Item

EPMTaskDefinition EPMTask EPMTask EPMTask

Delete workflow process templates
1. Select the template you want to delete from the Process Template list.

Warning

Do not delete the Process template. Teamcenter needs this template to create new
templates. You cannot create new templates unless you import or create another
one with this name.

RS025 11.6 Setting Up Workflows for Product Development 2-19

Creating workflow process templates



Chapter 2: Creating workflow process templates

2. At the top of the task hierarchy tree, select the template.

3. In the toolbar, click the Delete button.

4. In the Delete dialog box, click Yes.

The selected template is removed from the system.

Workflow examples

Change Manager workflow example

You can change this example to match your participants, organization, and conditions.

Note

If you are using Aerospace and Defense business objects (for example,
Adc0ChangeRqstRevision), you can add them to the -type and -include_types
arguments.

When this example is completed, the workflow should look like the following.

1. In Workflow Designer, choose File→New Root Template, name your template, select Empty
Template as your root template, and then click OK.

Note

Ensure that the EPM-assign-team-selector and EPM-auto-assign-rest handlers are
attached to the Start task action.

2. To the Start task action, add the EPM-set-property handler with the following arguments and
values:

Arguments Values
-property CMIsFastTrack
-value No
-to_attach TARGET

2-20 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

Arguments Values
-include_type ChangeRequestRevision

-bypass

These arguments set the ECR CMIsFastTrack property to No, which ensures that the ECR
starts on the standard track.

3. Create an Or task named Or 1, and draw a path from the Start task.

4. Create a Validate task named Is Specialist Assigned?, to check the ECR for an assigned
change specialist.

• Add the EPM-check-object-properties handler to the Start task action with the following
arguments and values:

Arguments Values
-include_type ChangeRequestRevision
-property ChangeSpecialist
-attachment target

• Draw a path from the Or 1 task.

A Validate task needs tasks at the end of a Complete path and Error path. If a change specialist
is not assigned, you must correct that error.

5. In case a change specialist is not assigned, create a Do task named Assign Specialist.

• For the Do task, add the EPM-auto-assign handler to the Start task action with the following
argument and value:

Arguments Values
-assignee resourcepool:Change Management::Manager

• Draw an Error path from the Is Specialist Assigned? task.

• Draw a Complete path to the Or 1 task.

This assigns the task to any user who has the Manager role in the Change Management group.
The Manager must edit the ECR object to add a change specialist 1 to it. Once that is done,
the user can go back to the workflow, click Complete on the task, and the workflow moves
along the Complete path.

Note

By default, the Do task has automatically configured EPM-check-condition,
EPM-inherit, and EPM-hold handlers. You do not have to alter these.

RS025 11.6 Setting Up Workflows for Product Development 2-21

Creating workflow process templates



Chapter 2: Creating workflow process templates

6. Create an Or task named Or 2, and draw a Complete path from the Is Specialist Assigned?
task.

7. Create a Validate task named Are Analyst & CRB Assigned?, to check if an analyst or change
review board members are assigned to the ECR.

• Add the EPM-check-object-properties handler to the Start task action of this task with the
following arguments and values:

Arguments Values
-include_type ChangeRequestRevision
-property Analyst,ChangeReviewBoard
-attachment target

• Draw a Complete path from the Or 2 task.

8. In case an analyst or change review board members are not assigned, create a Do task named
Assign Analyst & CRB.

• For the Do task, add the EPM-auto-assign handler to the Start task action with the following
argument and value:

Arguments Values
-assignee $CHANGE_SPECIALIST1

• Draw an Error path from the Are Analysts & CRB Assigned? task.

• Draw a Complete path to the Or 2 task.

This assigns the task to the user who has been assigned as the change specialist 1 for the ECR.
The change specialist 1 must edit the ECR object to add the missing analyst or change review
board members to it. Once that is done, the user can go back to the workflow, click Complete on
the task, and the workflow moves along the Complete path.

Note

By default, the Do task has automatically configured EPM-check-condition,
EPM-inherit, and EPM-hold handlers. You do not have to alter these.

9. Create an Or task named Or 3, and draw a Complete path from the Are Analysts & CRB
Assigned? task.

10. Create a Do task named Identify Impacted Items, Propose Solution.

• Add the EPM-auto-assign handler to the Start task action with the following argument
and value:

Arguments Values
-assignee $ANALYST

2-22 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

• Draw a Complete path from the Or 3 task.

This assigns the task to the user who has been assigned as the analyst for the ECR. The analyst
follows the instructions in the workflow. Once that is done, the analyst can go back to the
workflow, click Complete on the task, and the workflow moves along the Complete path.

Note

By default, the Do task has automatically configured EPM-inherit and EPM-hold
handlers. You do not have to alter these.

11. Create a Condition task named Planning Complete?.

• Add the EPM-auto-assign handler to the Start task action with the following argument
and value:

Arguments Values
-assignee $CHANGE_SPECIALIST1

• Draw a Complete path from the Identify Impacted Items, Propose Solution task.

• Draw a custom path named Plan Not OK to the Or 3 task.

This assigns the task to the user who has been assigned as the change specialist 1 for the ECR.
The change specialist 1 follows the instructions in the workflow. Once that is done, the analyst
can go back to the workflow and select one of the three paths based on the results. The three
paths are added once more tasks further along the workflow are created.

Note

By default, the Condition task has automatically configured the EPM-check-condition
handler. You do not have to alter it.

12. Create a Review task named CRB Review Proposed Solution.

• Add the EPM-set-property handler to the Start task action with the following arguments
and values:

Arguments Values
-property CMMaturity
-value Reviewing
-to_attach TARGET

-include_type ChangeRequestRevision

-bypass

• Draw a custom path named Plan OK – Standard Track from the Planning Complete? task.

RS025 11.6 Setting Up Workflows for Product Development 2-23

Creating workflow process templates



Chapter 2: Creating workflow process templates

This sets the ECR’s Maturity property to Reviewing, which notes that the change review board
is looking at the proposed change.

Note

By default, the Review task has automatically configured the EPM-inherit,
EPM-set-rule-base-protection, and EPM-execute-follow-up handlers. You do not
have to alter these.

13. Create a Condition task named Set CRB Results.

• Add the EPM-auto-assign handler to the Start task action with the following argument
and value:

Arguments Values
-assignee $CHANGE_SPECIALIST1

• Draw an Error path from the CRB Review Proposed Solution task.

This assigns the task to the user who has been assigned as the change specialist 1 for the ECR.
The change specialist 1 follows the instructions in the workflow. Once that is done, the analyst
can go back to the workflow and select one of the three paths based on the results. The three
paths are added once more tasks further along the workflow are created.

Note

By default, the Condition task has automatically configured the EPM-check-condition
handler. You do not have to alter it.

14. Create a custom task named Set Disposition: Investigate.

• Add the EPM-set-property handler to the Start task action with the following arguments
and values:

Arguments Values
-property CMDisposition
-value Investigate
-to_attach TARGET

-include_type ChangeRequestRevision

-bypass

• Draw a custom path named Rework from the Set CRB Results task.

• Draw a Complete path to the Or 3 task.

This sets the ECR’s Disposition property to Investigate, which indicates the analyst needs to
do more work on the ECR.

2-24 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

Note

By default, the task has automatically configured the EPM-check-condition handler.
You do not have to alter it.

15. Create a custom task named Notify Rejected.

• Add the EPM-set-property handler to the Start task action with the following arguments
and values:

Arguments Values
-property CMDisposition
-value Disapproved
-to_attach TARGET

-include_type ChangeRequestRevision

-bypass

This sets the ECR’s Disposition property to Disapproved, which indicates no further action
is to be taken with the ECR.

• Add the EPM-notify handler to the Start task action with the following arguments and values:

Arguments Values
-recipient $REQUESTOR,$ANALYST
-subject CR Rejected
-attachment $TARGET

This sends an e-mail to the ECR requestor and analyst notifying them that the ECR has
been rejected by the change review board.

• Draw a custom path named Rejected from the Set CRB Results task.

Note

By default, the task has automatically configured the EPM-check-condition handler.
You do not have to alter it.

16. Create a Do task named Close PRs.

• Add the EPM-auto-assign handler to the Start task action with the following argument
and value:

Arguments Values
-assignee $CHANGE_SPECIALIST1

RS025 11.6 Setting Up Workflows for Product Development 2-25

Creating workflow process templates



Chapter 2: Creating workflow process templates

This assigns the task to the user who has been assigned as the change specialist 1 for the
ECR. The analyst follows the instructions in the workflow. Once that is done, the analyst
can go back to the workflow, click Complete on the task, and the workflow moves along
the Complete path.

• To the Start task action, add a EPM-set-property handler with the following arguments
and values:

Arguments Values
-property CMClosure,CMMaturity
-value Closed,Complete
-to_attach TARGET

-include_types ChangeRequestRevision

-bypass

This sets the ECR’s Closure and Maturity properties to Closed and Complete, respectively,
which closes out the ECR.

• Draw a Complete path from the Notify Rejected task.

Note

By default, the Do task has automatically configured EPM-inherit and EPM-hold
handlers. You do not have to alter these.

17. Create an Or task named Or 4.

• Draw a custom path named Approved from the Set CRB Results task.

• Draw a Complete path from the CRB Review Proposed Solution task.

18. Create a custom task named Notify CR Approved.

• Add the EPM-set-property handler to the Start task action with the following arguments
and values:

Arguments Values
-property CMDisposition
-value Approved
-to_attach TARGET

-include_type ChangeRequestRevision

-bypass

This sets the ECR’s Disposition property to Approved, which allows a change notice to
be derived from the ECR.

2-26 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

• Add the EPM-notify handler to the Start task action with the following arguments and values:

Arguments Values
-recipient $REQUESTOR,$ANALYST
-subject CR Approved
-attachment $TARGET

This sends an e-mail to the ECR requestor and analyst notifying them that the ECR has
been approved by the change review board.

• Draw a Complete path from the Or 4 task.

19. Create a Do task named Derive CN.

• Add the EPM-auto-assign handler to the Start task action with the following argument
and value:

Arguments Values
-assignee $CHANGE_SPECIALIST1

This assigns the task to the user who has been assigned as the change specialist 1 for the
ECR. The analyst follows the instructions in the workflow. Once that is done, the analyst
can go back to the workflow, click Complete on the task, and the workflow moves along
the Complete path.

• To the Start task action, add a EPM-set-property handler with the following arguments
and values:

Arguments Values
-property CMMaturity
-value Reviewing
-to_attach TARGET

-include_type ChangeRequestRevision

-bypass

This sets the ECR’s Maturity property to Reviewing, which allows an ECN to be derived.

• To the Complete task action, add a EPM-set-property handler with the following arguments
and values:

Arguments Values
-property CMMaturity
-value Executing
-to_attach TARGET

-include_type ChangeRequestRevision

RS025 11.6 Setting Up Workflows for Product Development 2-27

Creating workflow process templates



Chapter 2: Creating workflow process templates

Arguments Values
-bypass

This sets the ECR’s Maturity property to Executing, which closes out the ECR after the
ECN has been derived.

Note

By default, the Do task has automatically configured EPM-inherit and EPM-hold
handlers. You do not have to alter these.

20. Create a Do task named Derive CN, Start CN, Fast Track.

• Add the EPM-auto-assign handler to the Start task action with the following argument
and value:

Arguments Values
-assignee $CHANGE_SPECIALIST1

This assigns the task to the user who has been assigned as the change specialist 1 for the
ECR. The analyst follows the instructions in the workflow. Once that is done, the analyst
can go back to the workflow, click Complete on the task, and the workflow moves along
the Complete path.

• To the Start task action, add a EPM-set-property handler with the following arguments
and values:

Arguments Values
-property CMMaturity,CMDisposition
-value Reviewing,Approved
-to_attach TARGET

-include_type ChangeRequestRevision

-bypass

This sets the ECR’s Maturity and Disposition properties to Reviewing and Approved,
respectively, which allows the ECR to be placed on the fast track.

• To the Start task action, add another EPM-set-property handler with the following arguments
and values:

Arguments Values
-property CMIsFastTrack
-value Yes
-to_attach TARGET

-include_type ChangeRequestRevision

2-28 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

Arguments Values
-bypass

This sets the ECR’s Is Fast Track? property to Yes, which notes the ECR went through the
fast track process.

• To the Complete task action, add another EPM-set-property handler with the following
arguments and values:

Arguments Values
-property CMMaturity
-value Executing
-to_attach TARGET

-include_type ChangeRequestRevision

-bypass

This sets the ECR’s CMMaturity property to Executing, which completes the ECR in the
change process and allows a change notice to be derived from it.

Note

By default, the Do task has automatically configured inherit and EPM-hold handlers.
You do not have to alter these.

21. Create an Or task named Or 5.

• Draw a Complete path from the Close PRs task.

• Draw a Complete path from the Derive CN task.

• Draw a Complete path from the Derive CN, Start CN, Fast Track task.

• Draw a Complete path to the Finish task.

You can apply this workflow to any ECR revision object.

RS025 11.6 Setting Up Workflows for Product Development 2-29

Creating workflow process templates



Chapter 2: Creating workflow process templates

Add Status task example: Replace status of target objects

ACMERP workflow process

This workflow process example illustrates how to add status to objects which, for whatever reason,
do not have the required status.

For example, after importing numerous objects from another system, a one-time change of status
may be required so the status of the newly imported objects conform with the current system.

This workflow process applies a status of ACMERP to all target objects. If any targets have a different
status, that status is replaced with ACMERP.

Start task

The Start node contains all the handlers for the root task. The root task contains all the other tasks
within a workflow process. It is the first task to start and the last task to complete. Therefore, the
handlers placed on the root task control the beginning and end of the workflow process itself, not
merely the behavior of an individual task.

In this workflow example, handlers placed on the Start action of the root task:

• Confirm the workflow process is initiated by the correct role.

• Confirm the correct target objects are selected.

• Confirm the selected target objects are checked in.

• Automatically attach the correct target objects to the workflow.

2-30 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

• Attach all the components of the target assembly as targets of the workflow process.

• Configure the assembly to Working.

• Exclude any release objects from being attached.

• Attach all assembly components that were not added as targets as references.

• Attach all objects with various specified relations as targets of the workflow.

Note

Do not place handlers on the -perform action of an Add Status task, as they are not
executed on this task type.

Start action Rule handler: EPM-check-action-performer-role
Arguments:Values -responsible:DBA

-responsible:ME

Description: Checks whether a member of the DBA or ME groups initiated the workflow. If
not, the workflow does not proceed.

Start action Rule handler: EPM-validate-target-objects
Arguments:Values -include_type:ACMEPartMfgRevision,ACMEMEProcessRevision,

ACMEMEOPRevision

Description: Restricts the types of objects that can be added as target objects
to ACMEPartMfgRevision, ACMEMEProcessRevision and
ACMEMEOPRevision.

Start action Rule handler: EPM-assert-targets-checked-in
Arguments:Values No arguments set. (This handler does not accept arguments.)

Description: Confirms that all objects selected as targets of the workflow process are
checked in.

Start action Action handler: PS-attach-assembly-components
Arguments:Values -depth:1

-exclude_released

-rev_rule:Working

-include_related_type:ACMETypes

-add_excluded_as_ref

Description: Traverses one level into the assembly and attaches all the components of
the target assembly as targets of the workflow process, and then configures
the assembly to Working.

Excludes any release objects, collects only ACMETypes objects, and
attaches all assembly components that were not added as targets as
references.

RS025 11.6 Setting Up Workflows for Product Development 2-31

Creating workflow process templates



Chapter 2: Creating workflow process templates

Start action Action handler: EPM-attach-related-objects
Arguments:Values -relation:IMAN_METarget

-attachment:target

Description: Attaches all objects with an IMAN_METarget relation as targets of the
workflow.

Start action Action handler: EPM-attach-related-objects
Arguments:Values -relation:IMAN_specification

-attachment:target

Description: Attaches all objects with an IMAN_specification relation as targets of the
workflow.

Start action Action handler: EPM-attach-related-objects
Arguments:Values -relation:IMAN_Rendering

-attachment:target

Description: Attaches all objects with an IMAN_Rendering relation as targets of the
workflow.

Start action Action handler: EPM-attach-related-objects
Arguments:Values -relation:IMAN_Reference

-attachment:target

Description: Attaches all objects with an IMAN_Reference relation as targets of the
workflow.

Start action Action handler: EPM-attach-related-objects
Arguments:Values -relation:PSBOMViewRevision

-attachment:target

Description: Attaches all objects with a PSBOMViewRevision relation as targets of the
workflow.

ACMERP (Add Status task)

2-32 Setting Up Workflows for Product Development RS025 11.6

Chapter 2: Creating workflow process templates



Creating workflow process templates

In this workflow example, handlers placed on the Start action of the ACMERP task:

• Attach the ACMERP status to the ACMERP task.

Handlers placed on the Complete action of the ACMERP task:

• Delete all existing statuses assigned to any target objects and replace them with the ACMERP
status.

Start action Action handler: EPM-create-status

Arguments:Values -status:ACMERP

Description: Attaches the ACMERP status to the ACMERP task.

Note

The ACMERP status should be already defined in the Business
Modeler IDE.

Complete action Action handler: EPM-set-status

Arguments:Values -action:replace

Description: Deletes all existing statuses assigned to any target objects and replaces
them with the ACMERP status.

RS025 11.6 Setting Up Workflows for Product Development 2-33

Creating workflow process templates





Chapter 3: Editing workflow process templates

Determining which editing options to use
Perform edits on existing workflow process templates by selecting the template to be edited and

clicking the Edit Mode button.

Consider the following questions before editing a workflow template.

Editing task Description
Edit offline or online? Offline editing prevents users from accessing the workflow template

while you edit. Use this option when you do not want the old
version of the workflow template available for use until your edits
are complete.

Online editing allows users to initiate workflows based on the old
version of the workflow template, while you edit a copy of the same
template. When you switch the edited version to the Available
stage, the older copy is overwritten; only the edited copy remains
available from the interface.

Apply edits to running
workflow processes?

After editing a workflow template, you can apply the edits to all
active processes that are based on the template. When you select
the Set Stage to Available check box, the Apply Template
Changes dialog box asks whether to apply the edits to all active
workflow processes based on the template.

Select the Apply template changes to all active workflow
processes check box to update each active workflow process
based on the workflow template as follows:

• If the edits in the workflow template occur later in the workflow
than the active workflow process has reached, the edits are
applied to the workflow.

• If the edits in the workflow template occur earlier, and the
active workflow has already passed the place where the edits
were made, the edits do not take effect unless the task or path
is re-run (using backward branching or loops) or the task is
demoted.

• If the edits in the workflow template impact an active task, the
edits are applied after the task completes and take effect only if
the task is re-run.

RS025 11.6 Setting Up Workflows for Product Development 3-1



Chapter 3: Editing workflow process templates

Editing task Description

• If the edits delete the currently active task, the next task is
started.

Which workflow components
can be edited?

You can edit any aspect of the workflow process template, including:

• Changing the template name

• Adding and removing tasks

• Adding, deleting, redrawing, and resetting flow paths

• Adding, deleting, and resetting handlers, attributes, task
attributes, and attachments

Editing offline versus online
Deciding whether to edit a workflow template online or offline is determined by whether you want to
grant users access to the existing version of the workflow template while you edit it.

• Offline editing prevents users from accessing the workflow template while you edit it. Use this
option when you do not want the old version of the template available until your edits are complete.

Select Yes in the Offline? dialog box to edit offline. With this option, there is only one instance of
the template. The system sets the workflow template to the Under Construction stage. The
template is not available to users initiating workflow processes against objects; it does not appear
in the Process Template list in the New Process dialog box.

Only users with privileges to edit workflow templates can see the workflow template in the

Process Template list, which is marked with the Under Construction symbol. When you
switch the workflow template to the Available stage, the edited workflow template becomes
available to users.

• Online editing allows users to initiate workflows based on the existing version of the workflow
template while you edit a copy of the same template.

Select No in the Offline? dialog box to edit online. The system makes a copy of the workflow
template and sets it to the Under Construction stage; this is the version you edit. Both versions
of the workflow template appear in the Process Template list in the New Process dialog box.

The Under Construction symbol appears next to the version being edited. You also have
the option of not displaying templates under construction by unchecking the Show Under
Construction Templates checkbox in the New Process dialog box.

Users can continue to use the existing version of the workflow template. When you switch the
edited version to the Available stage, the existing copy is overwritten; only the edited copy
remains available.

3-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 3: Editing workflow process templates



Editing workflow process templates

How process template edits are applied to active processes
When you edit a workflow process template, you can apply the edits to active processes that are
based on the template. This action modifies all of the template's active processes simultaneously.

Note

• The EPM_enable_apply_template_changes preference value must be set to
OPTIONAL or AUTOMATIC.

• You can set up background processing to apply template edits asynchronously, without
pausing your Workflow Designer interaction.

If template edits They are applied to the active process
Occur at a point that the active process
has not reached

When you click OK in the Apply Template Changes
dialog box, with the Apply template changes to all active
workflow processes check box selected.

Occur at a point that the active process
has passed

Only if the edited task or path is rerun in a
backward-branching path, is rerun in a loop, or if the task
is demoted.

Otherwise, the edits do not take effect until the next new
process that is based on the template.

Affect a task that is in progress After the task is complete.

Unless the task is rerun in a backward-branching path, is
rerun in a loop, or is demoted, the edits do not take effect
until the next new process that is based on the template.

Note

If the edits delete a task that is in progress,
the next task is started. The deleted task is
removed from the worklists of users who log in
subsequently.

Active workflow processes can be updated in a similar manner when importing updated versions of a
workflow template, through either Workflow Designer or the plmxml_import utility.

Enable template edits for active processes
Applying workflow template edits to active workflow processes requires editing the
EPM_enable_apply_template_changes preference value.

1. Choose Edit→Options to open the Options dialog box.

2. At the bottom left of the dialog box, click the Filter tab. Type
EPM_enable_apply_template_changes in the Search by preference name box.

RS025 11.6 Setting Up Workflows for Product Development 3-3

Editing workflow process templates



Chapter 3: Editing workflow process templates

3. Select the EPM_enable_apply_template_changes option and set the value to one of the
following:

The following values are available.

Value Description
NONE Default value. Suppresses applying all edits to active processes.

OPTIONAL Applies workflow template edits to active processes based on
each selected workflow template.

AUTOMATIC Automatically applies edits to a workflow template to all active
workflow processes based on the edited template.

Edit a workflow process template
1. Select the template from the Process Template box.

2. On the main toolbar, click Edit Mode .

A dialog box asks whether you want to take the selected process template offline. Select Yes to
take the workflow template offline, preventing users from initiating workflow processes based on
this template while you edit. The workflow template is not available to users from the Process
Template list while you keep the template offline.

3. (Optional) Rename the template by selecting the existing template name in the Name box under
the Set Stage to Available check box and typing a new name over the selection. Alternatively,
backspace from the end of the name to delete the characters. After you type a new name, click
one of the tasks in the task hierarchy tree to set the new name. You cannot change the name
using the Process Template box.

Warning

You cannot select the existing name and use the Delete key to delete the entire name
at once. The system interprets use of the Delete key as a command to delete an
object from the database.

4. (Optional) Add, place, and remove tasks; also, add, delete, redraw, and reset flow paths.

5. (Optional) Add, remove, and modify task attributes by clicking the Task Attributes button.

3-4 Setting Up Workflows for Product Development RS025 11.6

Chapter 3: Editing workflow process templates



Editing workflow process templates

Note

Process Template attributes also include the Filter Condition option.

• Add a filter condition in the Task Attributes panel using the dropdown.

• To remove an applied Filter Condition, select the condition text in the dialog
box and clear the field.

• Optionally, after editing is complete and the updated Process Template is
available, click Purge Templates in the Toolsmenu to remove the template cache.

6. (Optional) Edit task handlers by clicking the Task Handlers button.

7. (Optional) Edit perform signoff teams by clicking the Task Signoff button.

8. After you finish your edits, select the Set Stage to Available check box.

The Stage Change message states that changing the template stage to Available makes the
template visible to all users, and asks if you want to continue.

9. To make the template available, click Yes.

The Apply Template Changes dialog box opens.

Note

If you click No in the Stage Change message, the template remains in Edit mode
for further changes.

10. Click OK to save your edits and apply them in the background to the template's active workflow
processes.

RS025 11.6 Setting Up Workflows for Product Development 3-5

Editing workflow process templates



Chapter 3: Editing workflow process templates

Caution

• The EPM_enable_apply_template_changes preference value must be set to
OPTIONAL or AUTOMATIC.

• Your system must be set up for background processing.

• If you clear the Apply template changes to all active workflow processes
check box and click OK, your edits are saved but are not applied, and the template
returns to Browse mode.

• The Update processes in background check box is selected by default. If you
clear the check box, your edits are applied in real time, and Teamcenter may be
unavailable until the updates complete. Siemens PLM Software recommends
that you leave the check box selected, so that template edits are applied
asynchronously, without pausing your Workflow Designer interaction.

Apply process template edits to active processes
After editing a workflow process template, you can make the template available to users and apply
the edits to active processes based on the template.

The setting configured in the EPM_enable_apply_template_changes option determines how and
when the processes are applied. Only the OPTIONAL or AUTOMATIC values apply edits to active
processes.

NONE
Default value that suppresses applying all edits to active processes.

OPTIONAL
Applies workflow template edits to active processes based on each selected workflow template.

It allows you to choose on a case-by-case basis whether to apply workflow template edits to
active workflow processes based on the workflow template.

AUTOMATIC
Automatically applies edits to a workflow template to all active workflow processes based on
the edited template.

By default, this setting applies the edits in the background. However, background processing
requires a four-tier architecture environment. (In a two-tier environment, you can successfully
submit requests for asynchronous processing if a four-tier Teamcenter environment is available
to accept them.)

Note

Dispatcher must be enabled and configured for asynchronous processing.

3-6 Setting Up Workflows for Product Development RS025 11.6

Chapter 3: Editing workflow process templates



Editing workflow process templates

1. Select the Set stage to available check box to change the workflow template’s stage to
Available.

The Apply Template Changes dialog box appears asking whether to apply your edits to all
active workflow processes based on the template.

Note

You can also change a workflow template’s stage from Under Construction to
Available when closing Workflow Designer. The Set To Available Stage Template
dialog box displays whenever under construction workflow templates exist when you
close Workflow Designer.

Using this dialog box to change a template’s stage does not allow you to apply
template edits to active workflow processes.

2. Select the Apply template changes to all active workflow processes check box.

Your edits are applied to each active workflow process based on that workflow template.

3. (Optional) Select the Update processes in background check box.

Your edits are applied in the background. The updates run asynchronously, and you are notified
by Teamcenter mail when the updates complete.

Typically, you only want to update workflow processes in real time when your changes impact
10–20 active workflow processes, as in testing scenarios.

Note

Updating the workflow processes in the background is recommended. The Update
processes in background check box is selected by default.

If background processing is not configured and supported at your site, active workflow
processes are updated in real time.

Note

If you apply the updates in real time, Teamcenter is unavailable until the updates
complete. Although this method is suitable for testing, it is not recommended for
updating more than 30 to 50 workflow processes.

Update duration depends on the type of edits made to the workflow processes.
For example, it takes longer to remove tasks than to add tasks. Edits within tasks
(handlers, attributes, etc.) require minimal processing time.

You can also edit an active workflow process in Workflow Viewer, in which you edit the particular
active workflow process, not the workflow template on which it is based. This method allows you to
edit only one active workflow process at a time.

RS025 11.6 Setting Up Workflows for Product Development 3-7

Editing workflow process templates





Chapter 4: Viewing workflow process templates

Viewing templates in the task hierarchy tree or process flow pane
The task hierarchy tree presents a root-level workflow process, along with its tasks and subtasks, in
a hierarchical listing.

The process flow pane provides graphical views of the different levels of a workflow process. You
can view all the tasks in an entire workflow process, or the subtasks in a task, or the subtasks of
subtasks, and so on.

View a subtask
You can move down a level in a workflow process template from either the task hierarchy tree or the

process flow pane while in either Edit or Browse mode.

• In the task hierarchy tree, select a task whose subtasks you want to view. Click Go→Down
a Task Level.

The subtasks display in the process flow pane.

For example, selecting a container task displays the task's subtasks in the process flow pane.
Selecting the root task displays the first task listed in the task hierarchy tree in the process
flow pane.

• In the process flow pane, double-click the task node whose subtasks you want to view.

The process flow pane displays the subtasks of the selected task.

Note

If you select a task node with no subtasks, the process flow pane displays an empty
template, with only the Start and Finish nodes showing.

• In the task hierarchy tree, select the task node whose subtasks you want to view. Click Down
a Task Level.

The process flow pane displays the subtasks of the selected task node.

View a parent task
You can move up a level in a workflow process template from either the task hierarchy tree or the

process flow pane, while in either Edit or Browse mode.

You can view the parent task in one of these ways:

RS025 11.6 Setting Up Workflows for Product Development 4-1



Chapter 4: Viewing workflow process templates

• In the process flow pane, select the task node whose parent task you want to view. Click Up
a Task Level.

The process flow pane displays the parent task of the selected task.

Note

If the root task's subtasks are showing in the process flow pane, you are already at the
top level and the system ignores the Up a Task Level action.

• In the task hierarchy tree, select the task node whose parent task you want to view. Click Up
a Task Level.

The process flow pane displays the parent task of the selected task.

View the root task
You can move to the top level from anywhere in a workflow process template from either the task
hierarchy tree or the process flow pane, while in either edit or browse mode.

1. In the process flow pane, select any task node. Choose Go→Top Level.

The process flow pane displays the top level of the workflow process.

Note

If the root task's subtasks are showing in the process flow pane, you are already at
the top level.

2. In the task hierarchy tree, select any task node. Click Go→Top Level.

The process flow pane displays the top level of the workflow process.

Viewing a subprocess
Subprocesses are started from the parent workflow process under each task of the parent workflow
process. You can cut and paste a workflow process to create a new subprocess.

When you expand a task in My Worklist, a subprocess folder displays with Target and Reference
folders. All the subprocesses of the parent workflow process display under this folder. If the workflow
process does not have any workflow subprocesses, the system does not display any folders.

View task attributes
When you view task attributes in browse mode, you have read only access.

1. Click Browse Mode.

2. Select the task whose attributes you want to view.

4-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 4: Viewing workflow process templates



Viewing workflow process templates

3. Click Task Properties in the toolbar.

The Task Properties dialog box appears. The Name box displays the name of the selected
workflow process or task template. The Description box lists the task description.

4. The Attributes Pane dialog box appears.

• The Named ACL box lists the one assigned to this task.

• The Task Type box lists the type of task template assigned to the selected task.

• The Icons box displays the symbol that has been assigned to the selected task. You can
also add custom symbols to this list.

• If a Condition task is selected, the Condition Query box displays the name of the assigned
query. If a query has not yet been defined, only the Condition Query button displays.

If a Condition task is selected, the Condition Result box displays the result of the query:
either true or false. If a query has not yet been defined, the result is listed as unset.

• The Duration box displays the length of time allowed for the completion of the project. You
can define the duration length in the template of the selected task. You can also define the
duration length in the Attributes dialog box when the selected task is in a Pending state
and you are in Edit mode.

• The Recipients list displays the names of users selected to receive program mail when
the selected task becomes overdue. You can set the Recipients list from this dialog box
if you are in Edit mode.

5. Select Show Task in Process Stage List to enable template staging functionality. The Set
Stage to Available check box is displayed for new templates.

6. If the Process in Background check box is selected, the task runs in the background, so the
user can continue to work with Teamcenter while the task is executing. If the check box is cleared,
the task runs in the foreground, and the user must wait for it to complete.

7. Click Close.

Set Duration
The Duration box displays the length of time allowed for the completion of the project. You can define
the duration length in the template of the selected task. You can also define the duration length in the
Attributes dialog box when the selected task is in a Pending state.

1. Click Set to the right of the Duration box.

The Set Duration dialog box appears.

2. Type an integer value for any or all of the following fields to indicate the length of time that can
pass before the selected tasks need to reach completion:

• Years
• Weeks

RS025 11.6 Setting Up Workflows for Product Development 4-3

Viewing workflow process templates



Chapter 4: Viewing workflow process templates

• Days
• Hours
• Minutes

3. Click one of the following:

• OK to save the changes to the database and close the dialog box.

• Clear to clear all boxes.

• Cancel to close the dialog box without applying the changes.

Set Recipients list
The Recipients list displays the names of users selected to receive program mail when the selected
task becomes overdue. You can set the Recipients list from this dialog box.

1. Click Set to the right of the Recipient box.

The Select Recipients dialog box is displayed.

2. Type the user, group, or address list search criteria for users you want to select.

3. Click either User, Group, or Address List, based on the search criteria you entered. The search
results display in the boxes below. To display all users in the selected grouping, type an asterisk
and click the appropriate button. All users in the selected grouping are displayed in the box below.

4. Select the users you want to define as recipients from the search results. You can choose
multiple users by pressing Ctrl and selecting the desired names.

5. Click User.

The selected users display in the box in the right side of the dialog box. These are the selected
recipients.

6. Click one of the following:

• OK to save the changes to the database and close the dialog box.

• Cancel to close the dialog box without applying the changes.

7. (Optional) Select the Show Task in Process Stage List to display the task in the Process Stage
List property for the target object.

8. Click Close.

View task handlers
Viewing task handlers in browse mode allows read access only.

1. Click Browse Mode.

4-4 Setting Up Workflows for Product Development RS025 11.6

Chapter 4: Viewing workflow process templates



Viewing workflow process templates

2. Select the task whose handlers you want to view. To view handler information for the root task of
the workflow process (the initial Start task), select the workflow process.

3. Click the Task Handlers panel.

The Task Handlers dialog box appears. In the left pane, the Handler lists the handlers assigned
to the selected task.

4. Click Expand All Folders or Collapse All Folders to view the contents of the Handler.

Based on the type of handler selected, either the Rule Handler or Action Handler appear, listing
the name of the rule or action handler assigned to the selected task.

If the selected task involves selecting signoff teams or performing signoffs, the Quorum box lists
the number or percentage required for an approval quorum.

The Argument list shows the arguments assigned to the selected task.

The Task Action list shows the actions assigned to the selected task.

5. Click Close.

RS025 11.6 Setting Up Workflows for Product Development 4-5

Viewing workflow process templates





Chapter 5: Adding tasks to workflow process templates

Workflow task actions and states
A task is a building block in a workflow process template. Each task defines a set of actions, rules,
and resources used to accomplish that task, and every task is always in one of seven defined states.
Each instance of a task uses a task template, enabling you to use each task template as a blueprint
for creating multiple tasks.

When workflow process templates are used in run time, that is, when the templates are used to run
an actual workflow process in Workflow Viewer or My Teamcenter, the workflow process moves
through actions and states.

• Actions

Transition a task from one state to another. The goal for each task is to eventually reach the
Completed state.

• States

Control and coordinate the execution of each individual task in a workflow process.

The workflow process is run by the state-transition engine. This engine controls workflow process
flow by:

• Executing handlers and related internal logic.

• Setting tasks to their required state, based on task execution results.

• Placing workflow tasks in the appropriate My Worklist folders.

The following graphic shows how the workflow states and actions interact. States are circled; actions
are designated by arrowed lines, indicating the direction the action moves from one state to another.

RS025 11.6 Setting Up Workflows for Product Development 5-1



Chapter 5: Adding tasks to workflow process templates

The following table lists the possible beginning states each action can transition from, and the
possible ending states each action can transition to:

Action Beginning state Ending state Description
Assign Unassigned Pending Assigns a task to a responsible party.
Start Pending Started Starts a task.
Complete Started Completed Completes a task.

5-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

Action Beginning state Ending state Description
Perform Any state Any state Runs any handlers placed on the Perform

action. For interactive tasks, displays the
appropriate perform dialog box for that
task.

This action does not transition a task’s
state.

This action can be performed multiple
times on any given task, and can be
triggered by both the state transition
engine and by handlers.

Suspend Any state Suspended Puts a task on hold.
Resume Unassigned

Pending

Started

Any state Resumes a suspended task by returning
the task to its previous state.

Skip Started

Completed

Unassigned

Pending

Failed

Skipped Bypasses the current task and starts the
successor task(s).

Undo Started

Completed

Skipped

Failed

Pending Undoes a task by returning the task to the
Pending state.

Fail Started Failed Indicates a task configured with a failed
path is unsuccessful in fulfilling its
requirements.

Abort Any state Aborted Cancels a task without attempting to
complete it.

An example of how actions and states work is that when a Start action is triggered on a task, all the
handlers placed on that action are run in the order listed. If the handlers all complete successfully,
then the task's state transitions to Started. The Complete action is automatically triggered on the
task and all the handlers placed on that action are run in the order listed. If the handlers all complete
successfully, the task's state transitions to Complete. The system attempts to start the successor
tasks.

RS025 11.6 Setting Up Workflows for Product Development 5-3

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

Note

Use the INBOX_hide_suspended_tasks preference to configure how a user's inbox
displays tasks that are in either the Suspend or Resume state.

Task templates

Task template definitions

This table lists the task templates available in Workflow Designer. Click the task template name for
step-by-step instructions on adding the task template to a workflow process template.

Symbol Task template Definition
Task The default task template (EPMTaskTemplate type). Use it as a starting

point for creating your own custom tasks, such as tasks to carry your custom
forms or other site-specific tasks for users to complete.

Do Task Has two options if at least one failure path is configured: Complete confirms
the completion of a task and triggers the branching to a success path.
Unable to Complete indicates the task is unable to complete, for various
reasons.

Uses the EPM-hold handler, which stops the task from automatically
finishing when started.

Review Task Uses the select-signoff-team and perform-signoffs subtasks, each of
which has its own dialog box.

Wait for Undecided Reviewers is an option that allows the workflow
designer user to set the Review task to wait for all reviewers to submit their
decisions before finishing and following the appropriate path.

Add Status Task Creates and adds a release status to the target objects of the workflow
process. It is a visual milestone in a workflow process. No dialog box is
associated with this type of task.

Or Task Continues the workflow process when any one of its multiple task
predecessors is completed or promoted. There is no limit to the number of
predecessors an or task may have.

Acknowledge Task Uses the Acknowledged and Not Acknowledged subtasks, each of which
has its own dialog box.

Condition Task Branches a workflow according to defined query criteria. Requires that the
succeeding task contains an EPM-check-condition handler that accepts a
Boolean value of either True or False.

Route Task Uses the Review, Acknowledge, and Notify subtasks, each of which has
its own dialog box.

Validate Task Branches a workflow along two or more paths. Active paths flowing out of
the task are determined by whether specified workflow errors occur.

Use this task to design workflows around anticipated errors.

5-4 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

Custom tasks

The Task template is the default task template (EPMTaskTemplate type). Use it as a starting point
for creating your own custom tasks, such as tasks to carry your custom forms or other site-specific
tasks for users to complete.

For example, you may want a task to display a form with fields that users fill in. To set up the custom
Task template, you use the Handlers panel. Your steps can be similar to those in the following
example.

• Place the EPM-create-form action handler on the Start action.

Using the handler arguments, you define the form and attach it to the task. The handler generates
the form when the Start action is initiated.

• Place the EPM-display-form action handler on the Perform action.

You specify the form type and the task with the handler arguments. The handler displays the form
when the Perform action is initiated.

• Place the EPM-hold rule handler on the Complete action.

RS025 11.6 Setting Up Workflows for Product Development 5-5

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

The handler checks the task_result property of the task. If that property value is not Completed,
the handler pauses the task. The user fills in the form fields, and then performs a manual
Complete action.

Tip

If Show Task in Process Stage List is selected in the Attributes panel, users can
perform the task when the target object is selected or opened in its home location. Click
Display the Task Attributes Panel at the bottom of the template manager pane to open
the Attributes panel.

Do tasks

Use the Do task to define actions for a user to complete. When this task is performed in a workflow
process, it displays the required actions to the user in the Instruction box of the task.

Note

Configure the WRKFLW_task_complete preference to use single click functionality for a
Do task. Setting the value to true, the Complete value is selected by default for the
Done button.

If you require user authentication before this Do task is performed, add the
EPM-require-authentication handler to the Perform action of the task. When you implement user
authentication for this task, a password box appears below the Comments box. Users must type
their user password in this box before they can click Apply and complete the task.

After completing the instructions, the user must select the Complete check box. The task does
not complete until the user selects the check box. (This task is automatically configured with the
EPM-hold handler to stop the task from completing until the check box is selected.) When the user
selects the check box, the task sets the handler's argument to False and changes the status to
Complete.

If the task is configured with a failure path the user can select one of the following check boxes:

5-6 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

• Complete confirms the completion of the task and continues the workflow down the success path.

• Unable to Complete indicates the user is unable to complete the instructions and continues
the workflow down the failure path.

Review tasks

Use the Review task to route workflow targets (documents, parts, designs, and so on) for review.

Note

Configure the WRKFLW_task_complete preference to use single click functionality for a
Select Signoff Team review task. Setting the value to true, the Ad-hoc Done check box
is selected by default. This also sets the associated task_result property to Complete
by default.

The task includes two subtasks:

• The select-signoff-team subtask requires the workflow process initiator to select the users
who will perform the review (the signoff team). You can configure this subtask with predefined
group/role profiles that the workflow process initiator must select or allow the workflow process
initiator to selector users of his choice in an ad hoc manner.

This subtask uses selection functionality from the Organization application, allowing the selector
to search by group/role/user and to select signoff members individually or by project teams
or address lists.

• The perform-signoffs subtask is then distributed to the selected signoff team, prompting them to
review the target objects and signoff.

Caution

Do not add or delete subtasks from the Review task. It may cause an error that prevents
the task from executing.

When this task is performed in a workflow process, the perform-signoffs task displays three options
to each signoff team member: Approve, Reject, and No Decision. Selecting either Approve or
Reject performs the task. No Decision is the default selection, selecting this option does not
perform the task.

If you require user authentication before this Review task can be performed, add the
EPM-require-authentication handler to the Perform action of the task. When you implement user
authentication for this task, a password box appears below the Comments box. Users must type
their user password in this box before they can click Apply and complete the task.

If a user manually promotes a Review task that has both an Approve path and Reject path using the
Actions→Promote command in My Teamcenter or Workflow Viewer, then they must select which
path the workflow process is to follow at that time.

RS025 11.6 Setting Up Workflows for Product Development 5-7

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

Add Status tasks

Use the Add Status task template to create and add a Release status to the target objects of the
workflow process.

This template is a visual milestone in the workflow process. There is no action for the user to perform,
and therefore, no dialog box associated with the Add Status task.

Or tasks

Use an Or task template to continue the workflow process when any one of its multiple task
predecessors is completed or promoted. There is no limit to the number of predecessors an Or task
may have. Typically, Or tasks are used to unite parallel paths create by:

• True/false condition paths branching from Condition tasks.

• Parallel links branching from a single task.

This template is a visual milestone in the workflow process. There is no dialog box associated
with the Or task.

Acknowledge tasks

Use the Acknowledge task to define the Signoff Team profiles with which a user complies to assign
acknowledgment responsibilities to other users. This template also provides the perform-signoffs
task for the Signoff Team members to complete.

Caution

• Do not add or delete subtasks from the Acknowledge task. It may cause an error
that prevents the task from executing.

• Signoff profiles are unavailable for the Acknowledge task if it is a subtask within the
Route task template. The Route task does not function properly if signoff profiles are
defined for the subtasks. The Route task template is designed to be used as an
electronic routing sheet, and the workflow process initiator assigns specific signoff
members.

When this task is performed in a workflow process, the Acknowledge task displays two decision
commands to members of the selected signoff team: Acknowledged and No Decision. Signoff team
members choose one of the above commands to perform the signoff.

If you require user authentication before this Acknowledge task is performed, add the
EPM-require-authentication handler to the Perform action of the task. When you implement user
authentication for this task, a password box appears below the Comments box. Users must type
their user password in this box before they can click Apply and complete the task.

Condition tasks

Use the Condition Task template to branch your workflow process according to defined criteria.
Because this task template is used to branch workflow process flow, you must always create at

5-8 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

least two paths branching off from the task. The paths can be either success paths, failure paths,
or a combination of the two.

• Success paths can be either true paths, false paths, or paths with a customized result.

• Failure paths can only be generated from manual Condition tasks. They allow an alternate
course when a specified task is rejected, a user determines the path cannot be completed, or
an error occurs.

Tip

If you use a Condition task to branch your workflow process, you can use one or more Or
tasks later in the workflow process to resolve the paths into a single path.

The system determines which of the branches flowing from a Condition task to perform based on
the task result. The task result is stored in the Condition task. The successor tasks have a handler
configured with a value that may match the task result. After the task result is set, the successor
tasks are examined and any successor tasks containing a value matching the task result are started.
Use any of the following methods to set the task results:

• Create a query against the target (automatic only).

• Create a query against the task (automatic only).

• Create a query against subprocesses (automatic only).

If there are multiple subprocesses, a query runs on the associated subprocesses and the results
are used to branch accordingly. The query is typically configured to look at the root task’s result
attribute for all the subprocesses.

If there is only one subprocess and it is configured to set the result on the Condition task, no
query is needed, and the workflow follows the branch based on the result.

• Configure the task result from the manual Condition task's dialog box.

A Condition task can be configured to complete either automatically or manually. You need to
determine which configuration is best suited for the workflow process template you are defining.
Typically, if a handler can determine the criteria, it is best to configure the task as automatic.

Task Description
Automatic Condition task Add an action handler that sets the task's result to true,

false, or a customized value.

The simplest way to achieve this is to use the task
template's interface to define a condition query at
design time; this automatically inserts the action
handler. Alternatively, you can create a custom action
handler that uses ITK to verify criteria.

RS025 11.6 Setting Up Workflows for Product Development 5-9

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

Task Description
Manual Condition task During design, you do not define a query or add an

action handler to the task template.

Because no query is defined and no action handler is
configured to set the task result, when the workflow
process is run, the end user must manually indicate a
value using an interactive dialog box. The value chosen
by the end user is used to set the task result.

Caution

To ensure desired results, condition tasks that run queries in workflows should always have
at least one target object when a condition query is run against workflow targets.

• When a condition task runs a condition query against workflow targets, the system
searches the database for that query class and filters the results based on the workflow
target objects.

• Because handlers can move objects between targets and references in a workflow, the
workflow may have objects in the references folder, but no objects in the targets folder.
The condition query will not search in the database if the workflow does not have any
targets. This will set a false path of the condition task.

Route tasks

Use the Route task as a router sheet with which a user assigns review, acknowledge and notification
responsibilities to specified users.

Note

Configure the WRKFLW_task_complete preference to use single click functionality for a
Select Signoff Team route task. Setting the value to true, the Ad-hoc Done check box
is selected by default. This also sets the associated task_result property to Complete
by default.

When this task is performed in a workflow process, the Route task displays three subtasks: Review,
Acknowledge, and Notify. The workflow process initiator can then assign other users to perform
these tasks. The selected users are the signoff team.

5-10 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

Caution

• Do not add or delete subtasks from the Route task. It may cause an error that
prevents the task from running.

• Signoff profiles are unavailable for the Acknowledge subtask within the Route task
template. The Route task does not function properly if a signoff profile is defined for
the Acknowledge subtask. The Route task template is designed to be used as an
electronic routing sheet, and the workflow process initiator assigns specific signoff
members.

After the Route task is performed, the selected signoff team is prompted to perform the Review or
Acknowledge tasks or simply notified of the review through program mail. Notified users do not
need to perform any task.

If you want to require user authentication before the Review or Acknowledge subtasks can be
performed, add the EPM-require-authentication handler to the Perform action of the subtask (the
perform-signoffs task of either the Review or Acknowledge subtasks). When you implement user
authentication for either of these subtasks, a password box appears below the Comments box.
Users must type their user password in this box before they can click Apply and complete the task.

If a user manually promotes a Route task that has both an Approve path and Reject path using the
Actions→Promote command in My Teamcenter or Workflow Viewer, then they must select which
path the workflow process is to follow at that time.

You can also route or reassign tasks to another user from your inbox, in the same manner as
selecting a signoff task. You can select options and designate specific users to notify, acknowledge,
or review tasks.

To set up the display of the Task View pane, configure the WORKFLOW_new_route_task_panel
preference. Display choices are ON for list box view or OFF for option button view.

Validate tasks

The Validate task branches a workflow along two or more paths. The path followed is determined
by whether specified errors occur during a workflow. Use this task to design workflows around
anticipated errors (such as checked out targets), unexpected errors (such as failed scripts or failure of
custom handlers), or to track any and all workflow errors.

Configure the Validate task by defining one or more success and failure paths flowing from the task.
The success path is followed if no error occurs. The failure path is followed when errors occur.

When errors occur, you determine if the failure path is followed when:

• Any error occurs.

• Only when an error you specify on a list of error codes occurs.

RS025 11.6 Setting Up Workflows for Product Development 5-11

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

Note

In the context of the Validate task, workflow error means any error generated by a
workflow handler.

Configure the task to follow a failure path by pairing a workflow handler and an error code.
Place a handler to be validated on the Validate task and then add the respective error code
to the path's error list (or set the path to fail on any error).

Adding tasks to a process template

Create your own specific workflow requirements with a Custom task

1. On the toolbar, click Edit Mode .

2. On the toolbar, click Task .

3. In the process flow pane, double-click where you want to place the new Custom task.

A new task appears, with a default name of New Task #, where # is incremented until the task
name becomes unique within this workflow process template.

4. (Optional, but recommended) In the Name box, type a new name for the task.

5. (Optional) In the Instructions box, type the actions the user must perform.

6. Explicitly link the task to the predecessor tasks.

7. (Optional) Configure task attributes by clicking Task Attributes in the template manager pane.
Use task attributes to manage task security, duration, display, and quorum behavior.

8. Configure task handlers by clicking Task Handlers in the template manager pane.

Handlers are essential to designing flexible, complex workflows. Use action handlers to perform
all types of digital actions, such as running scripts, sending e-mail, creating forms, and assigning
responsibility for various workflow tasks. Use rule handlers to implement workflow rules, such as
adding status, demoting tasks, displaying forms, and notifying workflow participants.

Specify user actions with a Do task

1. On the toolbar, click Edit Mode .

2. On the toolbar, click Do Task .

3. In the process flow pane, double-click where you want to place the new Do task.

A new Do task appears with the default name of New Do Task #, where # is incremented until
the task name becomes unique within this workflow process template.

5-12 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

4. (Optional, but recommended) In the Name box, type a new name for the task.

5. (Optional) In the Instructions box, type the actions the user must perform.

6. Explicitly link the task to the predecessor tasks.

7. (Optional) Configure task attributes by clicking Task Attributes in the template manager pane.
Use task attributes to manage task security, duration, display, and quorum behavior.

8. Configure task handlers by clicking Task Handlers in the template manager pane.

Handlers are essential to designing flexible, complex workflows. Use action handlers to perform
all types of digital actions, such as running scripts, sending e-mails, creating forms, and assigning
responsibility for various workflow tasks. Use rule handlers to implement workflow rules, such as
adding status, demoting tasks, displaying forms, and notifying workflow participants.

When this task is performed in a workflow process, it displays required actions to the user in the
Instruction box of the task. After completing the specified action, the user must select the Complete
check box.

If the task is configured with a failure path, the user can select one of the following check boxes:

• Complete confirms the completion of the task and continues the workflow down the success path.

• Unable to Complete indicates the user is unable to complete the instructions and continues
the workflow down the failure path.

Require users to look at targets with a Review task

Caution

Do not add or delete subtasks from the Review task. It may cause an error that prevents
the task from executing.

1. On the toolbar, click Edit Mode .

2. On the toolbar, click Review Task .

3. In the process flow pane, double-click where you want to place the new Review task.

A new Review task displays with a default name of New Review Task #, where # is incremented
until the task name becomes unique within this workflow process template.

4. (Optional, but recommended) In the Name box, type a new name for the task.

5. (Optional) In the Instructions box, type the actions the user must perform.

6. Explicitly link the task to the predecessor tasks.

7. (Optional) Configure task attributes by clicking Task Attributes in the template manager pane.
Use task attributes to manage task security, duration, display, and quorum behavior.

RS025 11.6 Setting Up Workflows for Product Development 5-13

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

8. Configure task handlers by clicking Task Handlers in the template manager pane.

Handlers are essential to designing flexible, complex workflows. Use action handlers to perform
all types of digital actions, such as running scripts, sending e-mail, creating forms, and assigning
responsibility for various workflow tasks. Use rule handlers to implement workflow rules, such as
adding status, demoting tasks, displaying forms, and notifying workflow participants.

9. Define a signoff profile.

• Double-click the Review task in the task hierarchy tree.

The task expands, listing the select-signoff-team and perform-signoffs subtasks.

Note

You can change the names of the select-signoff-team and perform-signoffs
subtasks. For example, you can rename the subtasks to specify their parent task
or the current step in the process (such as select-design-signoff-team).

• Select the select-signoff-team subtask, and then click Task Signoff in the lower left of the
Workflow Designer pane.

The Signoff Profiles dialog box appears.

• Select a Group and Role.

Note

Define the signoff profiles by group or role, not by individual users. For example,
if you want three managers from the Marketing group, all managers from the
Engineering group, and 51% of the engineers from the Engineering group to sign off
on this particular Review task, create three group profiles: a Marketing/manager
profile, an Engineering/manager profile, and an Engineering/engineer profile.

You can use the wildcard (*) to leave both the group and role category
undesignated.

• Select and type the number or percentage of reviewers required for this particular
group/role signoff profile. In the previous example, the Marketing/manager profile
requires three reviewers, the Engineering/manager profile requires all reviewers, and the
Engineering/engineer profile requires 51% of reviewers.

• Select the Allow sub-group members check box to grant members of subgroups permission
to sign off instead of members of the designated group.

• Click Create to add this profile to the Signoff Profiles list.

• Click Modify to change an existing profile in the Signoff Profiles list.

• Click Delete to delete an existing profile in the Signoff Profiles list.

5-14 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

10. Select and enter the number or percentage of reviewers required to satisfy an approval quorum.

You can designate the number or percentage of reviewers required for the approval quorum,
to be between one and the total number of users required for the selected signoff. The default
setting is Numeric with the value of All. Select Wait for Undecided Reviewers if you want all
of the required users to have a chance to review and comment before the workflow process
can be rejected or approved.

Note

If you set the WRKFLW_allow_wait_for_undecided_override preference to False,
the Wait for Undecided Reviewers option is hidden.

11. After you add all the customer profiles, close the Signoff Profiles dialog box by choosing Close
in the upper right corner of the dialog box.

Attach a status to targets with an Add Status task

1. On the toolbar, click Edit Mode .

2. Click Add Status task.

3. Double-click the location in the process flow pane, where you want to place the new Add Status
task node.

A new Add Status task node displays with a default name of New Add Status Task #, where #
is incremented until the task name becomes unique within this workflow process template.

4. (Optional, but recommended) In the Name box, type a new name for the task.

5. (Optional) In the Instructions box, type the actions the user must perform.

6. Explicitly link the task to the predecessor tasks.

7. (Optional) Configure task attributes by clicking Task Attributes in the template manager pane.
Use task attributes to manage task security, duration, display, and quorum behavior.

8. Configure task handlers by clicking Task Handlers in the template manager pane.

Handlers are essential to designing flexible, complex workflows. Use action handlers to perform
all types of digital actions, such as running scripts, sending e-mail, creating forms, and assigning
responsibility for various workflow tasks. Use rule handlers to implement workflow rules, such as
adding status, demoting tasks, displaying forms, and notifying workflow participants.

Continue the workflow with an Or task

1. On the toolbar, click Edit Mode .

2. On the toolbar, click Or task .

RS025 11.6 Setting Up Workflows for Product Development 5-15

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

3. Double-click the location in the process flow pane where you want to place the new Or task node.

A new Or task node displays with a default name of Or Task #, where # is incremented until the
task name becomes unique within this workflow process template.

4. (Optional, but recommended) In the Name box, type a new name for the task.

5. (Optional) In the Instructions box, type the actions the user must perform.

6. Explicitly link the task to the predecessor tasks.

7. (Optional) Configure task attributes by clicking Task Attributes in the template manager pane.
Use task attributes to manage task security, duration, display, and quorum behavior.

8. Configure task handlers by clicking Task Handlers in the template manager pane.

Handlers are essential to designing flexible, complex workflows. Use action handlers to perform
all types of digital actions, such as running scripts, sending e-mail, creating forms, and assigning
responsibility for various workflow tasks. Use rule handlers to implement workflow rules, such as
adding status, demoting tasks, displaying forms, and notifying workflow participants.

Inform users of a workflow's progress with an Acknowledge task

1. On the toolbar, click Edit Mode .

2. On the toolbar, click Acknowledge Task .

3. In the process flow pane, double-click where you want to place the new Acknowledge task.

A new Acknowledge task appears, with a default name of New Acknowledge Task #, where #
is incremented until the task name becomes unique within this workflow process template.

4. (Optional, but recommended) In the Name box, type a new name for the task.

5. (Optional) In the Instructions box, type the actions the user must perform.

6. Explicitly link the task to the predecessor tasks.

7. (Optional) Configure task attributes by clicking Task Attributes in the template manager pane.
Use task attributes to manage task security, duration, display, and quorum behavior.

8. Configure task handlers by clicking Task Handlers in the template manager pane.

Handlers are essential to designing flexible, complex workflows. Use action handlers to perform
all types of digital actions, such as running scripts, sending e-mail, creating forms, and assigning
responsibility for various workflow tasks. Use rule handlers to implement workflow rules, such as
adding status, demoting tasks, displaying forms, and notifying workflow participants.

9. Define a signoff profile.

5-16 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

Warning

Signoff profiles are unavailable for the Acknowledge task if it is a subtask within the
Route task template. The Route task does not function properly if signoff profiles are
defined for the subtasks. The Route task template is designed to be used as an
electronic routing sheet, and the workflow process initiator assigns specific signoff
members.

a. Double-click the Acknowledge task in the task hierarchy tree.

The task expands, listing the select-signoff-team and perform-signoffs subtasks.

Note

You can change the names of the select-signoff-team and perform-signoffs
subtasks. For example, you can rename the subtasks to specify their parent task
or the current step in the process (such as select-design-signoff-team).

b. Select the select-signoff-team subtask, and then click the Task Signoff Panel button in the
lower left of the Workflow Designer window.

The Signoff Profiles dialog box appears.

c. Select a group from the Group list.

d. Select a role from the Role list.

Note

Define the signoff profiles by group or role, not by individual users. For example,
if you want three managers from the Marketing group, all of the managers
from the Engineering group, and 51% of the engineers from the Engineering
group to sign off on this particular Acknowledge task, create three group
profiles: a Marketing/manager profile, an Engineering/manager profile, and an
Engineering/engineer profile.

You can use the wildcard (*) to leave both the group and role category
undesignated.

e. Select or type the number of reviewers or percentage required for this particular group/role
signoff profile.

In the previous example, the Marketing/manager profile requires three reviewers, the
Engineering/manager profile requires all reviewers, and the Engineering/engineer profile
requires 51% of reviewers.

f. Select the Allow sub-group members check box to grant members of subgroups permission
to sign off instead of members of the designated group.

g. Click Create to add this profile to the Signoff Profiles list.

RS025 11.6 Setting Up Workflows for Product Development 5-17

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

h. Click Modify to change an existing profile in the Signoff Profiles list.

i. Click Delete to delete an existing profile in the Signoff Profiles list.

10. Select and type the number or percentage of reviewers required to satisfy an approval quorum.

You can designate the number or percentage of reviewers required for the approval quorum to be
between one and the total number of users required for the selected signoff. The default setting
is Numeric and the value is All. Select Wait for Undecided Reviewers if you want all of the
required users to have a chance to review and comment before the workflow process can be
rejected or approved.

11. After you add all the customer profiles, close the Signoff Profiles dialog box by clicking Close in
the upper right corner of the dialog box.

Branching a workflow with a Condition task

Creating manual Condition tasks

Condition tasks configured to proceed manually require a user action before the task can proceed to
completion.

• When the workflow reaches this task's Start action, the task appears in the selected user's
worklist.

• The user completes the instructions, defines the condition path as True or False, clicks OK to
complete the task and allow the workflow to continue.

You should type text in the Task Instructions box that poses a question or set of parameters
that require a true or false answer.

• If the user selects Unset, the task does not complete.

Use a manual Condition task when it requires additional information from the user and cannot
be automated.

Example

For example, the task may require a part temperature reading from a usage test. In this
case, because the stress test results are not input into Teamcenter, the database cannot be
queried on the resulting temperature range. Instead, you can create a manual Condition
task whose instructions state: Check part temperature. If more than 100°F, set to True.
The task displays in the assigned user's Inbox. The user can then carry out the instructions
and set the condition path either to True (if the part temperature was more than 100°F)
or to False (if the part temperature was less than 100°F).

Create a manual Condition task by inserting the Condition Task template into the workflow process.
Do not define a condition query or any custom handler that defines a result for the task.

If you want to require user authentication before a manual Condition task can be performed, add the
EPM-require-authentication handler to the Perform action of the task. When you implement user

5-18 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

authentication for this task, a password box appears below the Comments box. Users must type
their user password in this box before they can click Apply and complete the task.

Creating automatic Condition tasks

Condition tasks configured to proceed automatically act as visual milestones in the workflow process.
There is no action for a user to perform, and therefore, no dialog box is associated with the automatic
Condition task.

Use an automatic Condition task when a database query can be defined for the decision branch;
whether a specific part review has been approved, for example. If all part reviews are tracked through
workflow, this information is in the database. To determine if the review of a specific part came back
approved or rejected, you can perform a database query.

Example

For example, use a Condition Task template to create a conditional task that routes to
an approval form if a selected part has been approved, but routes to a request form if the
same selected part has not been approved. This is accomplished by defining a query
that asks: Has 00431/C been approved?

• If the query result is true, the workflow continues along the Condition task's true path,
proceeding to a Do task containing instructions to complete an approval form.

• If the query result is false, the workflow moves to the Condition task's false path,
proceeding to a Do task containing instructions to complete a Request for Change
form.

You can also query multiple subprocesses, and the results are used to branch accordingly. The query
is typically configured to look at the root task’s result attribute for all the subprocesses.

Example

For example, use a Condition Task template to create a conditional task for a change
request object that initiates two subprocesses: one that checks to see if a change specialist
has been assigned and one that checks if an analyst has been assigned. The task is
configured to check if all subprocesses return true.

• If the query results are true for both subprocesses, the workflow continues along the
Condition task's true path, proceeding to a Do task containing instructions for the
assigned users to identify impacted items and propose solutions.

• If the query results are not true for both subprocesses, the workflow moves to the
Condition task's false path, proceeding to a Do task to assign a user to the change
specialist or analyst role.

If there is only one subprocess and it is configured to set the result on the Condition task, no query is
needed, and the workflow follows the branch based on the result.

RS025 11.6 Setting Up Workflows for Product Development 5-19

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

Alternatively, you can create a custom action handler that uses ITK to check for the required criteria,
as long as the handler uses the EPM_set_condition_task_result ITK call to set the task result
to true or false.

Note

If the system encounters a problem with performing the query as defined for an automatic
Condition task, it sends the task to the responsible party's Inbox for manual completion.

Configuring Condition tasks

Do not have a true path and false path converge on the Finish node. Paths are explicitly AND tasks
and need a successor task at the merge point to complete. Typically, an Or task, which is specifically
configured to require only one predecessor path to complete for it to start, is used to join the two
paths. However, you can also use a Generic task or another kind of task.

Do not place a Condition task as the last task in a workflow process. The Finish node is not a task
and should not be linked as a successor task to the Condition task.

Add a Condition task to a process template

1. On the toolbar, click Edit Mode .

2. On the toolbar, click Condition Task .

3. In the process flow pane, double-click where you want to place the new Condition task.

A new Condition task appears with a default name of New Condition Task#, where # is
incremented until the task name becomes unique within this workflow process template.

4. (Optional, but recommended) Type a new name for the task in the Name box.

5. (Optional) Type any instructions for the task into the Instructions box. If this is a manual
Condition task, these instructions should prompt for the configuration of the task's true and
false paths.

6. Right-click the new Condition task and choose Task Properties.

7. Create an automatic Condition task by creating a database query for the task by performing the
following subtasks. Do not define a query if you want to create a manual Condition task.

a. Click the Condition Query button.

The Condition Query Dialog dialog box appears.

b. Perform one of the following:

• If the required query already exists, select the query from the query list.

• If the required query does not exist, create a new query.

5-20 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

c. Select Target, Task, or Sub-Process to determine if the query is performed on the workflow
process attachments, the task to which the query is attached, or the subprocesses that the
Condition task depends on, respectively.

When Target is selected, the Include Replica Proposed Targets is active. Select the
Include Replica Proposed Targets to include targets on the remote workflow task in the
search.

d. Select All, Any, or None to determine whether all, any, or none of the target attachments or
subprocesses must meet the query criteria to set the Condition task's result to True. If you
clicked Task, these buttons are unavailable.

e. Click OK or Apply to assign the query to the Condition task.

The query is assigned to the task and is performed when the task reaches a Started state.

8. Create two or more tasks to succeed the Condition task; the true/false condition paths link
the Condition task to the succeeding tasks.

9. (Optional) Configure task attributes by clicking Task Attributes in the template manager pane.
Use task attributes to manage task security, duration, display, and quorum behavior.

10. Configure task handlers by clicking Task Handlers in the template manager pane.

Handlers are essential to designing flexible, complex workflows.

• Use action handlers to perform all types of digital actions, such as running scripts, sending
e-mail, creating forms, and assigning responsibility for various workflow tasks.

• Use rule handlers to implement workflow rules, such as adding status, demoting tasks,
displaying forms, and notifying workflow participants.

Set Condition task paths

Because Condition tasks are used to branch your workflow process according to defined criteria, you
must always create at least two paths branching off from the task. The paths can be either success
paths, failure paths, or a combination of the two.

To draw and configure success paths from a Condition task:

1. On the toolbar, click Edit Mode .

2. Create one or more tasks to succeed the Condition task.

3. Select the Condition task, placing the cursor in the body of the task (not the blue bar at the
top). Draw a path from the Condition task to the succeeding task by dragging the cursor to
the succeeding task.

A blue path displays between the two tasks.

4. Right-click the path and select the desired path type.

RS025 11.6 Setting Up Workflows for Product Development 5-21

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

• The Set Path to True Path option creates a forward-branching path. Creating this path
automatically places a rule handler on the Condition task to check the condition of the
specified target. When the condition is True, the workflow process proceeds along this path.

• The Set Path to False Path option creates a backward-branching path. Creating this path
automatically places a rule handler on the Condition task to check the condition of the
specified target. When the condition is False, the workflow process proceeds along this path.

• The Set Custom Result option allows you to define a custom task result. Enter any string
to define the task result.

For example, you could enter Production to indicate the workflow process flowing into a
production-ready branch.

Note

If you select this option and want the Condition task to be automatically processed,
you must ensure the task result is sent to the Condition task. You can do this
either by writing custom code or using the EPM-set-task-result-to-property
handler. Custom conditions can also appear as manual condition options and
appear as buttons in the Condition dialog box.

5. If you selected a true or false path, the flow path displays True or False, respectively.

If you defined a custom result, the flow path displays the string you entered. In this example,
the flow path displays Production.

Create as many paths off of the Condition task as required for your workflow process. In this
example, after creating a production-ready branch, you could create Design and Release branches
by creating additional succeeding tasks and creating additional customized flow paths from the
Condition task.

Distribute targets to users with a Route task

1. On the toolbar, click Edit Mode .

2. On the toolbar, click Route Task .

3. In the process flow pane, double-click where you want to place the new Route task node.

A new Route task node displays with a default name of New Route Task #, where # is
incremented until the task name becomes unique within this workflow process template.

4. (Optional, but recommended) In the Name box, type a new name for the task.

5. (Optional) In the Instructions box, type any instructions for the task.

5-22 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

Note

Signoff profiles are unavailable for the Acknowledge subtask within the Route task
template. The Route task does not function properly if a signoff profile is defined for
the Acknowledge subtask. The Route task template is designed to be used as an
electronic routing sheet, and the workflow process initiator assigns specific signoff
members.

6. Explicitly link the task to the predecessor tasks.

7. (Optional) Configure task attributes by clicking Task Attributes in the template manager pane.
Use task attributes to manage task security, duration, display, and quorum behavior.

8. Configure task handlers by clicking Task Handlers in the template manager pane.

Handlers are essential to designing flexible, complex workflows. Use action handlers to perform
all types of digital actions, such as running scripts, sending e-mail, creating forms, and assigning
responsibility for various workflow tasks. Use rule handlers to implement workflow rules, such as
adding status, demoting tasks, displaying forms, and notifying workflow participants.

9. (Optional) You can change the names of the Review, Acknowledge, their select-signoff-team
and perform-signoffs subtasks, and Notify subtasks. For example, you can rename
the subtasks to specify their parent task or the current step in the process (such as
select-design-signoff-team or Design Review).

Check for errors with a Validate task

Find error codes

All error codes are documented in the Integration Toolkit Function Reference. Error codes are
grouped by module. For example, Application Encapsulation (AE) errors are listed within the AE
module, Appearances errors are listed within the Appearances module, and so forth.

Most workflow errors are displayed within the Enterprise Process Modeling (EPM) module.

To display a list of error messages:

1. Go to the Help Library and open the Integration Toolkit Function Reference.

Note

To access the Integration Toolkit Function Reference, install the Teamcenter developer
references when you , or go to the Global Technical Access Center (GTAC):

https://support.industrysoftware.automation.siemens.com/docs/teamcenter/

2. At the top of the page, select the Modules header.

3. In the Modules page, scroll down to the appropriate module.

RS025 11.6 Setting Up Workflows for Product Development 5-23

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

For example, to see all Enterprise Process Modeling (EPM) errors, which contain the majority of
workflow errors, scroll to EPM Errors and click the link.

4. The error page displays all errors for that module. Error numbers are defined as module base
value + error code.

For example, the EPM_internal_error error has an error code of EMH_EPM_error_base + 1.

5. To determine the error base value for the selected module:

a. Return to the Modules page.

b. Scroll down to EMH Constants and click the link.

c. The Error Message Handler (EMH) Constants page displays the error base of each module.

For example, the error base value of EMH_EMP_error_base is 33000.

Thus, the error number for the EPM_internal_error error is the concatenation of the EPM
modules error base (33000) and the error code (1), creating an error code of 33001.

Although using workflow (EPM) error codes with the Validate task may be the most common usage,
the task works with any error code. You can add error codes from any module, or custom error
codes, to the Results List.

Add error codes

After drawing a failure path between the Validate task and a successor task, you must specify how
you want the failure path to respond to workflow errors.

The failure path can be configured to activate when:

• Any error occurs by selecting Set To Error Path.

This option automatically configures the failure path to activate upon any error. No additional
steps are required.

• Specific errors occur by selecting Set Error Codes and completing the following procedure.

5-24 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

1. Right-click the path you want to configure as a failure path.

2. Select Set Error Codes to specify which error codes you want the Validate task to check.

The Set Error Codes dialog box appears.

3. In the Set Error Codes dialog box, select the Branch on Selected Errors option.

4. In the Add or Remove Error Code box, type an EPM error code. For example, type 32009
(RES_OBJECT_IS_RESERVED) to ensure the failure path is followed whenever a target is
not checked in.

RS025 11.6 Setting Up Workflows for Product Development 5-25

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

5. Click Add to add this error to the Results List.

6. Continue adding errors to the Results List until you have specified all the errors you want to
cause the workflow process to follow the failure path.

7. Click OK to close the Set Error Codes dialog box.

The selected path appears as a broken path, indicating it is now a failure path.

Insert and configure a Validate task

1. On the toolbar, click Edit Mode .

2. On the toolbar, click Validate Task .

3. In the process flow pane, double-click where you want to place the new Validate task.

A new Validate task appears with the default name of New Validate Task #, where # is
incremented until the task name becomes unique within this workflow process template.

4. (Optional, but recommended) In the Name box, type a new name for the task.

5. (Optional) In the Instructions box, type the actions the user must perform.

6. Explicitly link the predecessor task to the Validate task.

7. (Optional) Configure task attributes by clicking Task Attributes in the template manager pane.
Use task attributes to manage task security, duration, display, and quorum behavior.

8. Configure task handlers by clicking Task Handlers in the template manager pane.

Handlers are essential to designing flexible, complex workflows. Use action handlers to perform
all types of digital actions, such as running scripts, sending e-mail, creating forms, and assigning

5-26 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

responsibility for various workflow tasks. Use rule handlers to implement workflow rules, such as
adding status, demoting tasks, displaying forms, and notifying workflow participants.

Validate task example: Close gaps in your workflow

At Design, Inc., employees check out documents that are targets of workflows and sometimes neglect
to check them back in. Teamcenter does not allow users to initiate a workflow process on a target
that is checked out. However, at Design, Inc., no business rules prevent users from checking out
targets after a workflow process is initiated. When the workflow reaches the review stage, and the
required targets are checked out, the workflow cannot complete.

In this example, this situation is anticipated and the Validate task is used to provide a correction.
The task is placed before the review stage of the workflow and configured to verify that all targets
are checked in. If so, a success path is followed. If not, the workflow follows a failure path that
includes an additional Do task assigned to a manager. The Do task instructs the manager to get
the targets checked in, and then complete the Do task. After the error condition is corrected, the
Do task's success path traverses back into the main workflow.

The Validate task is configured to validate whether targets are checked in by placing
the EPM-assert-targets-checked-in rule handler on the Start action, and specifying the
target-checked-out error in the error list.

The following procedure illustrates how to configure the workflow in this example.

1. Choose File→New Root Template to create a new workflow process.

2. Type a name for the new workflow process in the New Root Template Name box and click OK.

The workflow process template appears in the process flow pane.

3. On the toolbar, click Edit .

This puts the application in Edit mode, allowing you to edit the workflow process template.

4. Insert a Do task into the workflow process by clicking the Do task button on the toolbar, and
then double-clicking in the process flow pane to the right of the Start node.

The new Do task is inserted at the cursor point.

RS025 11.6 Setting Up Workflows for Product Development 5-27

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

5. Draw a success path from the Start node to the Do task by placing the cursor in the body of the
Start node and dragging it to the body of the Do task. By default, flow paths are success paths.
No configuration is necessary to create a success path.

6. Insert a Validate task to the right of the Do task.

7. Draw a success path from the Do task to the Validate task.

8. Configure the Validate task to check whether the target is checked in by adding the
EPM-assert-targets-checked-in rule handler to the Start action:

a. In the process flow pane, ensure the Validate task is still selected. In the Template view,

click the Handlers button .

The Handlers dialog box appears.

b. In the task action in the left-side of the dialog box, select the Start action.

c. In the right-side of the dialog box, select Rule Handler for the handler type.

d. In the Rule Handler list, select EPM-assert-targets-checked-in. No handler arguments
are required for this handler in this example.

e. Click Create at the bottom of the dialog box to add the handler to the Start action of the
new Validate task.

f. Close the Handlers dialog box.

9. Insert a Do task above and to the right of the Validate task. This is the first of the two
successor tasks used in this example.

10. Rename the Do task by selecting the task in the task hierarchy tree, and then typing Success in
the Name box in the template manager pane.

11. Draw a success path from the Validate task to the Success task.

12. Insert a Do task below and to the right of the Validate task. This is the second of the two
successor tasks uses in this example.

13. Rename this second successor task to Failure (target checked-out).

14. Create a failure path between the Validate task and the Failure (target checked-out) task by
placing the cursor in the body of the Validate task and dragging it to the body of the Failure
(target checked-out) task.

15. Right-click the path you have just drawn. A list provides you with two options. Selecting either
option creates a failure path.

For this example, select Set Error Codes to specify the specific error code you want the Validate
task to validate.

5-28 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

The Set Error Codes dialog box appears.

16. In the dialog box, type the EPM error code you want to cause the workflow process to follow the
failure path. For this example, type 32009 (RES_OBJECT_IS_RESERVED) to ensure the failure
path is followed whenever a target is not checked in.

17. Click Add to add this error to the Results List.

18. Click OK to close the Set Error Codes dialog box.

The selected path appears as a broken path, indicating it is now a failure path.

19. Insert another Do task after the Failure (target checked-out) task.

20. Rename the Do task to Check in Targets.

21. In the Instructions box of the Check in Targets task, type instructions directing the manager to
ensure all workflow targets are checked in, and to then complete the task.

22. Draw a success path from the Failure (target checked-out) task to the Check in Targets task.

23. Reconcile the success and failure paths by inserting an Or task and linking it to the Success
task (the final interactive task of the success path) and the Check in Targets task (the final
interactive task of the failure path).

• Click the Or task button on the toolbar, and then double-click in the process flow pane to
the right of the Success and Check in Targets tasks.

• Draw a flow path from the Success task to the Or task.

• Draw a flow path from the Check in Targets task to the Or task.

24. Link the Or task to the Finish node to complete the workflow.

RS025 11.6 Setting Up Workflows for Product Development 5-29

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

When the workflow is run, either the success or failure path is followed, depending on whether the
RES_OBJECT_IS_RESERVED error is triggered.

Validate task example: Improve user response time

At Business Corporation, the product review process has become increasingly complicated. Different
products require different sets of review documents and the exponential growth of the product line
has generated twenty different review documents that can be chosen as workflow targets.

Over the past year, the Teamcenter administrator has had to demote and restart more than 100
review workflows because users have selected inappropriate target objects. The administrator has
long used the EPM-validate-target-objects rule handler at the beginning of the workflow to display
an error to the project initiator at the time the workflow is launched. But too often the initiator ignores
or misunderstands the message. As Business Corporation review processes become more complex,
more workflows stall as team members ignore the error as they launch the workflow, and team leads
do not track the error logs in a timely manner.

The administrator solved this problem using the Validate task and backward branching. He added
a Validate task to the workflow, with the Validate task configured to branch down the failure path
when the EPM_invalid_target_type error occurs. The failure path branches backward to the Select
Proper Targets task, prompting the workflow process initiator to select the correct target. Once the
targets are correct, the workflow process continues down the success path.

The following procedure illustrates how to configure the workflow in this example:

1. Choose File→New Root Template to create a new workflow process.

2. Type a name for the new workflow process in the New Root Template Name box and click OK.

The workflow process template appears in the process flow pane.

3. On the toolbar, click Edit .

This puts the application in Edit mode, allowing you to edit the workflow process template.

4. Insert a Do task into the workflow process by clicking the Do task button on the toolbar, and
then double-clicking in the process flow pane below and to the right of the Start node.

The new Do task is inserted at the cursor point.

5-30 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

5. Rename the Do task by selecting the task in the task hierarchy tree, and then typing Select
Proper Targets in the Name box in the template manager pane.

6. Draw a success path from the Start node to the Select Proper Targets task by placing the cursor
in the body of the Start node and dragging it to the body of the Select Proper Targets task. By
default, flow paths are success paths. No configuration is necessary to create a success path.

7. Insert a Validate task above the Select Proper Targets task and to the right of the Start node.

8. Draw a success path from the Select Proper Targets task to the Validate task by placing the
cursor in the body of the Select Proper Targets task and dragging it to the body of the Validate
task.

If proper targets are selected, the workflow flows from Select Proper Targets, through the
Validate task, and on to the next Do task you create.

9. Insert an Or task to the right of the Select Proper Targets task.

10. Draw a failure path from the Validate task to the Or task by placing the cursor in the body of
the Validate task and dragging it to the body of the Or task.
When proper targets are not selected, the workflow branches backward to the Or task and then
to the Select Proper Targets task, prompting the user to select proper targets.

11. Configure the path as a failure path by right-clicking the path you have just drawn. A shortcut
menu provides you with two options. Selecting either option creates a failure path.

For this example, select Set Error Codes to specify the specific error code you want the Validate
task to validate.

The Set Error Codes dialog box appears.

12. In the dialog box, type the EPM error code you want to cause the workflow process to follow the
failure path. For this example, type 33127 (EPM_invalid_target_type ) to ensure the failure path
is followed whenever a target is not checked in.

13. Click Add to add this error to the Results List.

14. Click OK to close the Set Error Codes dialog box.
The selected path appears as a broken path, indicating it is now a failure path.

15. Draw a success path from the Or task to the Select Proper Targets task and another one from
there to the Validate task.

16. Configure the Validate task to check whether correct target types have been selected by adding
the EPM-validate-target-objects rule handler to the Start action:
a. In the process flow pane, ensure the Validate task is still selected. In the Template view,

click the Handlers button .

The Handlers dialog box appears.

b. In the task action in the left-side of the dialog box, select the Start action.

RS025 11.6 Setting Up Workflows for Product Development 5-31

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

c. In the right-side of the dialog box, select Rule Handler for the handler type.

d. In the Rule Handler list, select EPM-validate-target-objects. No handler arguments are
required for this handler in this example.

e. Click Create to add the handler to the Start action of the new Validate task.

f. Close the Handlers dialog box.

17. Insert a Do task to the right of the Validate task.

18. Rename the Do task to Targets OK.

19. Draw a success path from the Validate task to the Targets OK task by placing the cursor in the
body of the Validate task and dragging it to the body of the Targets OK task.

20. Draw a success path from the Targets OK task to the Finish node to complete the workflow.

When the workflow is run, it cannot progress past the Validate task until the workflow targets
are validated as correct. The workflow raises user awareness of incorrect targets by sending an
interactive task to the workflow process initiator each time the EPM_invalid_target_type error
occurs, prompting the user to select valid targets.

Validate task example: Track errors from custom handlers

Corporate Ltd. uses a workflow to manage its quarterly budget analysis and review. The workflow
includes a custom handler that runs a script to generate and distribute a budget report from various
Excel files. The custom handler was placed on the Start action of a Do task (named Distribute
Quarterly Budget) immediately succeeding a Review task.

Occasionally the script cannot complete because of computation errors. The custom handler
generates an error when the script cannot complete. But as the script runs overnight, the error does
not immediately display. Because the error recipient (in this case, the workflow process initiator) is
not logged in at time of error, the error does not redisplay when the user logs in. The result is that the
workflow has stalled one or more days before the workflow process initiator notices the delay.

The Teamcenter administrator solved this problem by inserting a Validate task before the Do task
and drawing a success path between them. Then the administrator inserted another Do task (named
Manually Compile/Distribute Quarterly Budget) parallel to the first, connected it to the Validate
task with a failure path and assigned the task to the lead accountant. The Validate task is configured
to follow the failure path when the script error is thrown. Whenever the compilation script fails, the
lead accountant is prompted to recompile the budget.

Because the Validate task can be configured to respond to any specific error, even errors thrown by
custom handlers, the failure of the custom handler can be taken into consideration and managed.

5-32 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

The following procedure illustrates how to configure the workflow in this example:

1. Choose File→New Root Template to create a new workflow process.

2. Type a name for the new workflow process in the New Root Template Name box and click OK.

The workflow process template appears in the process flow pane.

3. On the toolbar, click Edit .

This puts the application in Edit mode, allowing you to edit the workflow process template.

4. Insert a Review task into the workflow process by clicking the Review task button on the
toolbar, and then double-clicking in the process flow pane to the right of the Start node.

The new Review task is inserted at the cursor point.

5. Rename the Review task by selecting the task in the task hierarchy tree, and then typing
Review/Request Funding in the Name box in the template manager pane.

6. Draw a success path from the Start node to the Review/Request Funding task by placing
the cursor in the body of the Start node and dragging it to the body of the Review/Request
Funding task. By default, flow paths are success paths. No configuration is necessary to create
a success path.

7. Insert a Validate task to the right of the Review/Request Funding task.

8. Draw a success path from the Review/Request Funding task to the Validate task by placing
the cursor in the body of the Review/Request Funding task and dragging it to the body of the
Validate task.

9. Configure the Validate task to check whether the script fails by adding the custom handler used
to run the budget-compilation script to the Start action:

RS025 11.6 Setting Up Workflows for Product Development 5-33

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

a. In the process flow pane, ensure the Validate task is still selected. In the Template view,

click the Handlers button .

The Handlers dialog box appears.

b. In the task action in the left-side of the dialog box, select the Start action.

c. In the right-side of the dialog box, select Action Handler for the handler type.

d. In the Action Handler list, type budget-compilation. No handler arguments are required
for this handler in this example.

e. Click Create at the bottom of the dialog box to add the handler to the Start action of the
new Validate task.

f. Close the Handlers dialog box.

10. Insert a Do task above and to the right of the Validate task. This is the first of the two
successor tasks uses in this example.

11. Rename the Do task to Distribute Quarterly Budget.

12. Draw a success path from the Validate task to the Distribute Quarterly Budget task by placing
the cursor in the body of the Validate task.

13. Insert another Do task above the Distribute Quarterly Budget task. This is the second of
the two successor tasks used in this example.

14. Rename this second successor task Manually Compile/Distribute Quarterly Budget.

15. In the Instructions box of the Manually Compile/Distribute Quarterly Budget task, type
instructions directing the lead accountant to manually compile and distribute the budget report,
then to complete the task.

16. Create a failure path between the Validate task and the Manually Compile/Distribute Quarterly
Budget task by placing the cursor in the body of the Validate task and dragging it to the body
of the Manually Compile/Distribute Quarterly Budget task.

17. Right-click the path you have just drawn. A list provides you with two options. Selecting either
option creates a failure path.

For this example, select Set Error Codes to specify the specific error code you want the Validate
task to validate.

The Set Error Codes dialog box appears.

18. In the dialog box, type the custom error code you want to cause the workflow process to follow
the failure path. For this example, type 99001 (custom error budget-compilation).

19. Click Add to add this error to the Results List.

5-34 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

20. Click OK to close the Set Error Codes dialog box.

The selected path appears as a broken path, indicating that it is now a failure path.

21. Reconcile the success and failure paths by inserting a generic task and linking it to the Distribute
Quarterly Budget task (on the success path) and the Manually Compile/Distribute Quarterly
Budget task (on the failure path).

• Click the Task task button on the toolbar, then double-click in the process flow pane to
the right of the Distribute Quarterly Budget and Manually Compile/Distribute Quarterly
Budget tasks.

The new generic task is inserted at the cursor point.

• Rename the generic task Quarterly Meeting.

• Draw a success path from the Distribute Quarterly Budget task to the Quarterly Meeting
task.

• Draw a success path from the Manually Compile/Distribute Quarterly Budget task to the
Quarterly Meeting task.

22. In the Instructions box of the Quarterly Meeting task, type instructions directing the finance
officer to host the cross-team finance meeting to discuss budget needs and to then complete the
task.

23. Insert a Route task below the Quarterly Meeting task.

24. Rename the Route task to Review and Approve Funding.

25. In the Instructions box of the Review and Approve Funding task, type instructions directing the
finance officer to route the revised budget requests to all stakeholders and interested parties.

26. Link the Quarterly Meeting task to the Review and Approve Funding task.

27. Link the Review and Approve Funding task to the Finish node to complete the workflow.

RS025 11.6 Setting Up Workflows for Product Development 5-35

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

When the workflow is run, the success path is followed if the budget script successfully completes, or
the failure path is followed if the script fails. This workflow raises user awareness of the script failure
by having an interactive task sent to the lead accountant when this error occurs.

Validate task behavior

The Validate task's behavior depends upon how its failure path is configured and what errors are
received.

Failure criteria you specified Error thrown (if any) Task behavior
Fail if any error Any error Failure path is followed.
Fail if error on error list occurs Error on error list Failure path is followed.
Fail if error on error list occurs Error not on error list Workflow process halts. Task

remains in Started state and an
error appears.

No failure path configured Any error Workflow process stops. Task
remains in Started state and an
error appears.

Regardless of whether failure
path was configured, and
whether errors occurred

No errors occur Success path followed. If no
success path was configured,
workflow process stops.

Automatically reassign tasks for inactive users

Workflow tasks can be redirected around inactive users, for example, users who are out of the
office. There are two preferences that can be set: WRKFLW_admin_for_inactive_user and
WRKFLW_error_on_invalid_dynamic_participant.

When a task or signoff is assigned to a user, Workflow checks to see if the user has an out-of-office
turned on. If the user is out of the office or otherwise inactive, Workflow reassigns the task to the
resource pool corresponding to the user's group and role.

In the case of an adhoc signoff, the signoff task is reassigned to the user's group resource pool.

When a task is reassigned from an inactive participant, an email indicating the task reassignment
is sent to a mailing list defined in the WRKFLW_admin_for_inactive_user preference. If the
preference is not set, the email is sent to the process owner.

Insert a task into a template

1. On the Workflow Designer toolbar, click Edit Mode .

2. On the toolbar, click one of the task buttons.

5-36 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

Button Task Definition
Do Task Has two options if at least one failure path is

configured: Complete confirms the completion
of a task and triggers the branching to a success
path. Unable to Complete indicates the task is
unable to complete, for various reasons.

Uses the EPM-hold handler, which stops
the task from automatically completing when
started.

Acknowledge Task Uses the Acknowledged and Not
Acknowledged subtasks, each of which
has its own dialog box.

Review Task Uses the select-signoff-team and
perform-signoffs subtasks, each of
which has its own dialog box.

Wait for Undecided Reviewers is an option
that allows the workflow designer user to set the
Review task to wait for all reviewers to submit
their decisions before completing and following
the appropriate path.

Route Task Uses the Review, Acknowledge, and Notify
subtasks, each of which has its own dialog box.

Task Use it as a starting point for creating your
own custom tasks, such as tasks to carry
your custom forms or other site-specific tasks
for users to complete. This task template is
synonymous with the EPMTask template.

Condition Task Branches a workflow according to defined
query criteria. Requires that the succeeding
task contains a EPM-check-condition handler
that accepts a Boolean value of either True or
False.

Validate Task Branches a workflow along two or more
paths. Active paths flowing out of the task
are determined by whether specified workflow
errors occur.

Use this task to design workflows around
anticipated errors.

Add Status Task Creates and adds a release status to the target
objects of the workflow process. It is a visual
milestone in a workflow process. No dialog box
is associated with this type of task.

RS025 11.6 Setting Up Workflows for Product Development 5-37

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

Button Task Definition
Or Task Continues the workflow process when any one

of its multiple task predecessors is completed
or promoted. There is no limit to the number of
predecessors an or task may have.

3. In the process flow pane, double-click where you want to place the new task.

A new task appears with the default name of New task_typeTask #, where task_type is the
kind of task you selected and # is incremented until the task name becomes unique within this
workflow process template.

4. (Optional, but recommended) In the Name box, type a new name for the task.

5. (Optional) In the Instructions box, type the actions users must perform for this task.

6. Explicitly link the task to the predecessor tasks.

7. (Optional) Configure task attributes by clicking Task Attributes in the template manager pane.
Use task attributes to manage task security, duration, display, and quorum behavior.

8. Configure task handlers by clicking Task Handlers in the template manager pane.

Handlers are essential to designing flexible, complex workflows. Use action handlers to perform
all types of digital actions, such as running scripts, sending e-mails, creating forms, and assigning
responsibility for various workflow tasks. Use rule handlers to implement workflow rules, such as
adding status, demoting tasks, displaying forms, and notifying workflow participants.

9. Follow the additional steps listed based on the task you inserted.

Task Additional steps

Do Task
None.

Acknowledge Task or

Review Task

For more information about completing the insertion
process, see step 10.

Route Task
None.

Warning

The Route task is designed to be used as an
electronic routing sheet. The workflow process
initiator assigns specific signoff members. Signoff
profiles for the Review subtask should not be
defined within this task. Signoff profiles are
unavailable for the Acknowledge subtask. The
task does not function properly if signoff profiles
are defined at this stage.

5-38 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

Task Additional steps

Task
None.

Condition Task
Additional steps are required for the Condition task.

Validate Task Additional configuration steps are required for the Validate
task.

Add Status Task
None.

Or Task
None.

10. For an Acknowledge Task or Review Task :

a. Define a signoff profile.

A. Double-click the task in the task hierarchy tree.

The task expands, listing the select-signoff-team and perform-signoffs subtasks.

B. Select the select-signoff-team subtask, and then click the Task Signoff Panel button in
the lower left of the Workflow Designer window.

The Signoff Profiles dialog box appears.

C. Select a group from the Group list then select a role from the Role list.

Note

Define the signoff profiles by group or role, not by individual users. For
example, if you want three managers from the Marketing group, all of the
managers from the Engineering group, and 51% of the engineers from the
Engineering group to sign off on this particular Acknowledge task, create
three group profiles: a Marketing/manager profile, an Engineering/manager
profile, and an Engineering/engineer profile.

You can use the wildcard (*) to leave both the group and role category
undesignated.

D. Select or type the number of reviewers or percentage required for this particular
group/role signoff profile.

In the previous example, the Marketing/manager profile requires three reviewers, the
Engineering/manager profile requires all reviewers, and the Engineering/engineer
profile requires 51% of reviewers.

E. Select the Allow sub-group members check box to grant members of subgroups
permission to sign off instead of members of the designated group.

F. Click Create to add this profile to the Signoff Profiles list.

RS025 11.6 Setting Up Workflows for Product Development 5-39

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

G. Click Modify to change an existing profile in the Signoff Profiles list.

H. Click Delete to delete an existing profile in the Signoff Profiles list.

b. Select and type the number or percentage of reviewers required to satisfy a quorum.

You can designate the number or percentage of reviewers required for the quorum to be
between one and the total number of users required for the selected signoff. The default
setting is Numeric and the value is All. Select Wait for Undecided Reviewers if you want
all of the required users to have a chance to review and comment before the workflow
process can be rejected or approved.

c. After you add all the customer profiles, close the Signoff Profiles dialog box by clicking
Close in the upper right corner of the dialog box.

Drag and drop a task

1. On the toolbar, click Edit .

2. In the process flow pane, identify the task you want to move. If the task has paths linking it to
other tasks, delete the paths.

3. Select the task you want to move by clicking the blue title bar.

4. Drag the task to the desired location in the workflow process template.

5. Draw a path from the task you want to be the preceding task to the newly moved task. The path
you draw, (also called an explicit link) determines the order in which tasks are performed.

Note

Moving tasks and their associated paths in the process flow pane changes the order in
which tasks are performed. Using the process flow pane to manage task order is the
recommended method.

It is important to note that the task hierarchy tree lists tasks in the order they were first
created. This order is not altered as you change task order within the process flow pane.
The order displayed in the task hierarchy tree does not indicate task execution order.

Cut and paste a task

1. On the toolbar, click Edit .

2. In the process flow pane, select the task you want to move by clicking the body of the task.

3. Click one of the following, as needed:

• Click Cut if you want to remove the task from its current location and paste it elsewhere.

5-40 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Adding tasks to workflow process templates

The system removes the task from its location in the workflow process template and sends it
to the clipboard.

• Click Copy if you want a copy of the existing task to be pasted elsewhere.

A copy of the task is sent to the clipboard.

4. Click Paste.

The task is pasted to the upper left-hand corner of the process flow pane.

5. Select the newly pasted task by clicking the blue title bar.

6. Drag the task to the desired location in the workflow process template.

Note

Moving tasks and their associated paths in the process flow pane changes the order
in which tasks are performed. Using the process flow pane to manage task order
is the recommended method.

It is important to note that the task hierarchy tree lists tasks in the order they were first
created. This order is not altered as you change task order within the process flow
pane. The order displayed in the task hierarchy tree does not indicate task execution
order.

Delete a task

1. On the toolbar, click Edit Mode .

2. Click the task node you want to delete.

Once selected, the task bar turns blue.

3. Click Delete.

The selected task and any attached links are deleted.

Note

If you do not replace the deleted links with explicit links, Workflow Designer creates
assumed links for you.

Localize task names
To localize workflow task names for a workflow process:

1. In the Business Modeler IDE, set the Localizable constant to true on the EPMTaskTemplate
business object template_name property.

RS025 11.6 Setting Up Workflows for Product Development 5-41

Adding tasks to workflow process templates



Chapter 5: Adding tasks to workflow process templates

2. In Workflow Designer in the rich client:

a. Select a process template.

b. Display the Properties dialog.

c. Provide the localized value for the template_name property.

3. Do this for each task in the workflow template.

4. Create the workflow process using the workflow template.

5-42 Setting Up Workflows for Product Development RS025 11.6

Chapter 5: Adding tasks to workflow process templates



Chapter 6: Linking tasks in a workflow process template

Explicit and assumed links
A link establishes the sequence by which peer-level tasks are run, indicating that the task on the
arrow end of the path cannot start until the task on the start end is completed.

Explicit links Manually created links, drawn from the predecessor task to the successor task.

Assumed links Automatically created by the system if no explicit links have been created from
the Start node by the time the template is set to the Available stage.

When you put a workflow template in Edit mode and draw a single link from the Start node to
another task node, assumed link behavior is disabled. The system does not draw assumed links,
even if you leave tasks unlinked and change the workflow template to the Available stage. Any
unlinked tasks are skipped when a workflow process based on the workflow template is initiated, and
no error messages appear.

Caution

When you place workflow templates created before Teamcenter 8.3 and 8.1.1.1 in Edit
mode, the system removes all links originating from the Start node. If this occurs, manually
redraw any removed links.

Link tasks manually
Each workflow requires an execution sequence. Arrows represent paths between tasks, whether
assumed or explicit. The arrow identifies the sequence from a starting task to an ending task. Tasks
must be completed in sequence.

Creating a link manually produces an explicit task and should be linked immediately after inserting
tasks. Saving the workflow process, or switching away from Workflow Designer before manually
linking tasks, prompts Teamcenter to automatically insert assumed links.

Tip

Always explicitly link your tasks to ensure predictable results.

Each link consists of a predecessor task and a successor task.

1. On the Workflow Designer toolbar, click Edit Mode .

2. Insert tasks.

3. Click a predecessor task node.

RS025 11.6 Setting Up Workflows for Product Development 6-1



Chapter 6: Linking tasks in a workflow process template

Note

Do not click the title bar of the task node. Clicking the title bar begins a drag process.

4. Hold the mouse button and drag the cursor to a successor task.

A link arrow follows the cursor. When the cursor moves over a task node, the node is highlighted.

5. Release the mouse button.

A link arrow connects the predecessor and successor nodes creating an explicit task.

Delete links
When you delete a task from a template, the system deletes its links along with the task. If you do not
reestablish explicit links among the remaining tasks, the system creates assumed links.

1. On the toolbar, click Edit Mode .

2. In the process flow pane, click the link you want to delete. The link turns blue.

3. Click Delete.

The system deletes the selected link.

Note

If you do not replace a deleted link with an explicit link, Workflow Designer automatically
creates a link from the Start node to each unlinked task.

Creating failure paths
A failure path gives an alternate course that a workflow process can follow in any of the following
scenarios:

• A task is rejected.

• The user determines that the task cannot be completed.

• There is an error.

When creating a workflow, each path is configured as either a success path or a failure path. A
failure path must be configured into the workflow process template at design time. A task follows
the appropriate path based on the task’s outcome. A success path is traversed when a task’s state
transitions to Complete or when a task is promoted and it transitions to a Skipped state. A task
completes upon the successful execution of the task’s handlers on the Complete action.

Backward branching allows a path to be routed backward to some previous task in the workflow
process flow, including the Start node. Both success and failure paths are capable of branching in a

6-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 6: Linking tasks in a workflow process template



Linking tasks in a workflow process template

backward direction. Backward branching allows the re-execution of a task with a Complete or
Skipped task state.

To create a failure path, right-click an arrow and select the appropriate failure option. Failure path
options display differently for different tasks.

Task Failure option
Do Set to Unable to Complete
Review Set to Reject
Route Set to Reject
Condition Set to Unable to Complete
Validate Set to Error Path
EPM Set to Unable to Complete

This example shows the options for an existing Condition task failure path.

Developing workflow process templates with backwards branches
You might need to construct a workflow process template that branches backwards, in other words,
one that links directly or indirectly to a task earlier in the flow that has already been performed.

In this example, Task 3 branches backwards to Task 1, which was already performed.

RS025 11.6 Setting Up Workflows for Product Development 6-3

Linking tasks in a workflow process template



Chapter 6: Linking tasks in a workflow process template

The way Teamcenter processes tasks repeated in the backwards-branching loop depends on the
version of Teamcenter you are using.

• In the legacy versions (Teamcenter versions 9.1 and earlier, 8.3.3.2 and earlier), the workflow
automatically determines if the repeated task could be restarted.

• In later versions (Teamcenter versions 10.1 and later, 9.1.1 and later, 8.3.3.3 and later), you
must design the workflow with Or tasks or custom tasks that act as And tasks to determine the
behavior of the repeated tasks shown in the following example.

In this case, because of the custom And task, both Task 1 and Task 2 must complete before
the workflow moves to Task 3. If Task 3 is rejected, the workflow moves to Task 4 and then
with the Or task moves back to Task 3 again.

Newly created templates have the new behavior even if based on a legacy template that has the
legacy behavior.

Converting legacy backwards branching templates to the new
behavior
If the workflow process template was created in a legacy version, it retains the legacy behavior
unless the user converts it to the new behavior.

6-4 Setting Up Workflows for Product Development RS025 11.6

Chapter 6: Linking tasks in a workflow process template



Linking tasks in a workflow process template

Note

If the user converts the template, it might need to be redesigned to produce the required
workflow correctly. For example, if the legacy template looks like the following:

And the user converts this template to the new style, any process based on this template
stalls because Task 2 is waiting for Task 3 to complete and Task 3 is waiting for Task
2 to complete. To complete successfully using the new style, the template should be
redesigned to look like the following:

The introduction of the Or task allows the process to complete because Or tasks do not
require all predecessor tasks to complete.

To convert to the new behavior, theWRKFLW_convert_backward_path_representation preference
must be set to true so the option to convert is displayed when the legacy template is taken offline.

When the legacy template is taken offline, the user can select the Convert Backward Branches to
New Style check box to convert the template or clear the check box to keep it in the legacy style.

Note

• If the user converts the template to the new style, it cannot be converted back to the
legacy style.

• An imported legacy template retains its legacy behavior until it is taken offline and
converted by a user.

Siemens PLM Software encourages you to convert your templates. A future version will automatically
convert the templates for you.

RS025 11.6 Setting Up Workflows for Product Development 6-5

Linking tasks in a workflow process template



Chapter 6: Linking tasks in a workflow process template

Moving to a previous task after Review or Route task is rejected
When designing a workflow process that moves back to a previous task if a Review or Route task
is rejected, you must determine if the workflow should be demoted to a previous task or follow a
failure path.

Note

Do not use a failure path together with the EPM-demote-on-reject and EPM-demote
handlers—use either the failure path or the handlers.

• EPM-demote-on-reject and EPM-demote handlers

Use these handlers to move the workflow backwards to a previous task.

o If the Design Approval Review task is rejected, the EPM-demote-on-reject handler with
the -num_rejections=-1 argument placed on the Perform action of its perform-signoffs
subtask demotes the task when a quorum cannot be reached. The EPM-demote handler
with no arguments on the Undo action of the Review task demotes the workflow back to the
Update Specification Do task. The Do task must be completed again before moving the
workflow forward again.

o If the Engineering Approval Review task is rejected, the EPM-demote-on-reject handler
with the -num_rejections=-1 argument placed on the Perform action of its perform-signoffs
subtask demotes the task when a quorum cannot be reached. The EPM-demote handler
with the -task_target=Update Specification argument on the Undo action of the Review

6-6 Setting Up Workflows for Product Development RS025 11.6

Chapter 6: Linking tasks in a workflow process template



Linking tasks in a workflow process template

task demotes the workflow back to the Update Specification Do task. The Do task must be
completed again before moving the workflow forward again.

o Once both Review tasks are approved, the workflow completes.

• Failure path

You can design a workflow process so that if any of several Review tasks are rejected, the
workflow is sent back to the same point. However, you must insert an Or task to receive the
failure path from the rejected tasks. For example:

In the following invalid configuration without an Or task, the Update Specification Do task awaits
rejection from all Review tasks, which stalls the workflow.

RS025 11.6 Setting Up Workflows for Product Development 6-7

Linking tasks in a workflow process template



Chapter 6: Linking tasks in a workflow process template

If a Review or Route task is rejected and there is no failure path or EPM-demote-on-reject handler
attached, the task remains in the Started state and the workflow does not move forward until a
user intervenes.

6-8 Setting Up Workflows for Product Development RS025 11.6

Chapter 6: Linking tasks in a workflow process template



Chapter 7: Modifying task behavior

Using attributes and handlers to modify tasks
Modify task behavior within a workflow process template using attributes and handlers.

• Attributes

Allows you to set requirements and/or restrictions on a task. Possible task attributes are:

o Named ACL
o Template name
o Signoff quorum
o Release status
o Icons

• Handlers:

Small ITK programs or functions. Handlers are the lowest-level building blocks in EPM. You
use handlers to extend and customize tasks. The following is a list of the types of functions
you can add to a task:

o Set protections
o Assign reviewers
o Demote a task
o Perform a signoff
o Change a status

There are two kinds of handlers:

o Action handlers:

Extend and customize task actions. Action handlers perform such actions as displaying
information, retrieving the results of previous tasks (inherit), notifying users, setting object
protections, and launching applications.

o Rule handlers:

Integrate workflow business rules into EPM workflow processes at the task level. Rule
handlers attach conditions to an action.

Many conditions defined by a rule handler are binary (that is, they are either true or false).
However, some conditions are neither true nor false. EPM allows two or more rule handlers
to be combined using logical AND/OR conditions. When several rule handlers are combined
using a logical OR condition, rule handler quorums specify the number of rule handlers that
must return go for the action to complete.

For more information on handlers refer to What are workflow handlers.

RS025 11.6 Setting Up Workflows for Product Development 7-1



Chapter 7: Modifying task behavior

Caution

You cannot modify shipped task templates by changing the structure of the subtasks.
Modifying the original task templates shipped with Teamcenter in this manner affects all
subsequent workflows. This may affect the database during a future upgrade when the
upgrade script attempts to update the task templates.

Instead of modifying templates, create custom tasks to perform the desired actions. You can extend
shipped task templates using attributes and handlers.

Example

You want to add a task to your process that notifies users of a deadline inherent to the
process. You know that the Route task shipped with Teamcenter contains within it a
Notify subtask. You would not strip out the Acknowledge and Review subtasks within the
Route task. Rather, you would create a new task, for example, NotifyDeadline, and add
the EPM-notify action handler to the task.

Edit task attributes
You can customize a task by editing its attributes.

1. On the Workflow Designer toolbar, click Edit Mode .

2. Click Task Properties in the toolbar.

The system displays the Task Properties dialog box.

The Name box lists the name of the selected workflow process template or task template.

3. (Optional) Type task instructions into the Instructions box.

4. Click the Attributes Panel tab.

The system displays the Attributes Panel dialog box.

5. Click Named ACL to add permissions for target objects.

a. Use one of the following methods to select an ACL to apply to the task.

• In the ACL Name box, select an existing ACL.

o Click the system Named ACL button to list ACL names created in Access
Manager.

o Click the workflow Named ACL button to list ACL names created in Workflow
Designer.

• In the ACL Name box, type a new ACL name and click Create .

The new ACL is added to the list of workflow named ACLs.

7-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 7: Modifying task behavior



Modifying task behavior

A. Add access control entries (ACEs) to define the permissions for the named ACL.

B. Click Save to save the ACEs for the named ACL.

b. Click Assign to ACL Name to update the Assigned ACL Name box.

This action creates the EPM-set-rule-based-protection handler on the Start action for
the task.

c. (Optional) To verify the assignment, view the Task Handler panel.

6. If the selected task is a Condition task, you can:

• Select a graphic from the Icons list.

• Click Condition Query to define a query.

The system displays the Condition Query dialog box.

• for the Condition task.

The Duration box displays the length of time allowed for the completion of the project. You
can define the duration length in the template of the selected task. You can also define
duration length in the Attributes dialog box when the selected task is in a Pending state.

Note

The Task Manager daemon must be installed to see color-coding relating to
task completion.

7. To set the Duration box:

• Type an integer value for any or all of the following boxes to indicate the length of time that
can pass before the selected tasks needs to reach completion:

o Years
o Weeks
o Days
o Hours
o Minutes

• Click one of the following, as needed:

o OK

Saves the changes to the database and closes the dialog box.

o Clear

Clears all boxes.

o Cancel

Closes the dialog box without making any changes.

RS025 11.6 Setting Up Workflows for Product Development 7-3

Modifying task behavior



Chapter 7: Modifying task behavior

The Recipients list displays the names of users selected to receive program mail when the
selected task becomes overdue. You can set the Recipients list from this dialog box.

8. To set the Recipients list:

• Click Set to the right of the Recipient box.

The system displays the Select Recipients dialog box.

• Type the user, group, or address list search criteria for users you want to select.

• Based on the search criteria you entered, click either User, Group, or Address List.

The search results display in the box below. To display all users in the selected grouping,
type * and click the appropriate button. All users in the selected grouping display in the box.

• Select the users you want to define as recipients from the search results. You can choose
multiple users by pressing Ctrl and clicking the desired names.

• Click Users.

The selected users display in the box in the right side of the dialog box. These are the
selected recipients.

• To delete a recipient, click Delete.

• Close the Named ACL dialog box.

Note

When a named ACL is applied to a task and the Named ACL dialog box is closed,
the Show Task in Process Stage List property on the Tasks Attributes Panel is
automatically selected.

o The Show Task in Process Stage List displays the task in the Process
Stage List property for the target object.

o Tasks in the Process Stage List are used to determine the ACL for the target
objects.

9. Select Show Task in Process Stage List to display the task in the Process Stage List property
for the target object.

• Select the Show Task in Process Stage List property when a named ACL is defined for a
task.

• Clear Show Task in Process Stage List when there are no named ACL and
EPM-set-rule-based-protection handler defined for this task, and the task does not need to
appear in the target object Process Stage List. For example, clear this box for subtasks
or parent tasks.

7-4 Setting Up Workflows for Product Development RS025 11.6

Chapter 7: Modifying task behavior



Modifying task behavior

Note

The Process Stage List also determines the task’s attributes, such as responsible
party or signoff approvers, factored into the currently active named ACL.

10. Select Require Task Confirmation on Complete to require users to confirm a selected
interactive task is completed in Active Workspace.

Selecting a root task requires completion confirmation on all child tasks.

Note

The confirmation of completion dialog displays with a task-specific message in Active
Workspace.

11. Select Process in Background to run the task in the background so the user can continue to
work with Teamcenter while the task is executing.

Clear Process in Background to run the task in the foreground. The user must wait for it to
complete.

12. Click Close to save the changes to the database and close the dialog box.

What are task handlers?
You can customize task behavior by creating and modifying task handlers. A task handler is a small
ITK program or function. Handlers are the lowest level building blocks in EPM and are used to
extend and customize tasks.

View task handlers
You can display the task handlers of a selected task from Workflow Designer or from Workflow
Viewer while in design mode by performing the following steps:

1. Click Browse Mode.

2. Select the task whose handlers you want to view. To view handler information for the root task of
the workflow process (the initial Start task) select the workflow process.

3. Click the Task Handlers pane.

The system displays the Task Handlers dialog box. In the left pane, the handler tree lists the
handlers assigned to the selected task.

To more easily view the contents of the handler tree, you can click Expand All Folders or
Collapse All Folders.

RS025 11.6 Setting Up Workflows for Product Development 7-5

Modifying task behavior



Chapter 7: Modifying task behavior

Create task handlers based on existing handlers
You can create new task handlers based on an existing handler. Use this procedure when one or
more attributes of the new handler are contained in an existing handler. To create a handler, perform
the following steps from the Task Handlers dialog box in either Workflow Designer or when in design
mode in Workflow Viewer:

1. On the toolbar, click Edit Mode .

2. Select the handler from the handler tree that you want to use as a template for the new handler.

The Handler Type, Quorum, Task Action, and Action/Rule Handler boxes display the current
settings for the selected handler.

3. Edit the data in the boxes as required for the new handler.

If the selected task involves selecting signoff teams or performing signoffs, select and enter type
the number or percentage required for the approval quorum in the Quorum box.

4. Edit existing arguments in the Argument table by selecting the value cell to the right of the
argument cell and deleting the existing values. Add new value information by double-clicking in
the cell to initiate the text-field editor, and then entering the required values.

Separate multiple values by a comma.

5. Add a new argument row by clicking the Argument table. Type the new argument name into the
argument cell by double-clicking in the cell to initiate the text-field editor, then entering the required
argument name. Type the corresponding values into the value cell to the right of the argument
cell by double-clicking in the cell to initiate the text-field editor, then entering the required values.

Separate multiple values by a comma. You can display documentation for the selected handler
by clicking Help.

6. Change the argument order by selecting an argument row and clicking Up or Down
(located to the right of the table) to move the argument row up or down, respectively.

7. Change the handler order by selecting a handler in the handler tree and clicking Up or Down
(located below the tree) to move the argument row up or down, respectively.

8. Click Create to create a new handler based on the data now displayed in the dialog box.

The system creates the new handler and displays it in the handler tree.

Create new task handlers
You can create new task handlers with no preexisting data. Use this procedure when no existing
handlers contain the necessary attributes. To create a new handler, perform the following steps from
the Task Handlers dialog box in either Workflow Designer or when in design mode in Workflow
Viewer:

1. Decide the type of handler you want to create:

• Rule handler

7-6 Setting Up Workflows for Product Development RS025 11.6

Chapter 7: Modifying task behavior



Modifying task behavior

Click Rule Handler.

• Action handler
Click Action Handler.

2. Select a handler from the Action Handler or Rule Handler list.

3. Add a new argument row by clicking Add next to the Argument table. Type the new argument
name into the argument cell by double-clicking in the cell to initiate the text-field editor, then
typing in the required argument name. Type the corresponding values into the value cell to the
right of the argument cell by double-clicking in the cell to initiate the text-field editor, then entering
the required values.

Separate multiple values by a comma. You can display documentation for the selected handler
by clicking Help.

4. Change the argument order by selecting an argument row and clicking Up or Down
(located to the right of the table) to move the argument row up or down, respectively.

5. Change the handler order by selecting a handler in the handler tree and clicking Up or Down
(located below the tree) to move the argument row up or down, respectively.

6. Click Create to create a new handler based on the data currently displayed in the handler's
display area.

The system creates the new handler and displays it in the handler tree.

Edit task handlers
To modify task handlers, you must edit the argument table. To edit a handler, perform the following
steps from the Task Handlers dialog box in either Workflow Designer or when in design mode
in Workflow Viewer:

1. Select the handler you want to edit from the handler tree.

The Handler Type, Quorum, Task Action and Action/Rule Handler boxes display the current
settings for the selected handler.

2. Edit existing arguments in the Argument table by deleting the existing values from the value cell
to the right of the argument cell, and then double-clicking in the cell to initiate the text-field editor
and entering the required values.

Separate multiple values by a comma. You can display documentation for the selected handler
by clicking Help.

3. Change the argument order by selecting an argument row and clicking Up or Down
(located to the right of the table) to move the argument row up or down, respectively.

4. Change the handler order by selecting a handler in the handler tree and clicking Up or Down
(located below the tree) to move the argument row up or down, respectively.

5. Add a new argument to the Argument table.

RS025 11.6 Setting Up Workflows for Product Development 7-7

Modifying task behavior



Chapter 7: Modifying task behavior

a. Type the new argument name in the argument cell by double-clicking in the cell to initiate the
text-field editor, then entering the required argument name.

b. Type the corresponding values in the value cell to the right of the argument cell by
double-clicking in the cell to initiate the text-field editor, and then entering the required values.

Separate multiple values by a comma.

6. Click Modify to update the selected handler to reflect the data currently displayed in the handler's
display area.

The system modifies the selected handler.

Configuring rule quorums
You can include one or more rule handlers under a Rule container.

You can then set the Rule container Quorum value to specify whether one rule, all rules, or a number
of rules must be satisfied for the task to progress.

For example, if a Rule container has five rule handlers, but you only require two of them to pass,
you can set the rule handler quorum value to 2.

The Rule container label changes automatically based on the number of handlers in the container
and the Quorum value, which specifies the number of handlers that must be satisfied for the task
to proceed.

The Rule container label can be:

• Rule - Quorum:displayed when the Quorum value is set to:

o -1, which is equivalent to All. In this case, every rule must pass to meet the quorum.

o A number greater than 1, but less than the number of rules in the Rule container.

• Rule - OR:displayed when the Quorum value is set to 1 and there are two or more rules in
the Rule container.

7-8 Setting Up Workflows for Product Development RS025 11.6

Chapter 7: Modifying task behavior



Modifying task behavior

• Rule - AND: displayed when the quorum number is equal to the number of rules in the Rule
container.

Note

If you set the WRKFLW_allow_quorum_override value to False the user cannot modify
the quorum value. This will remove the Numeric or Percent options, as well.

Examples

• Condition to satisfy: Every rule in the Rule container must be satisfied for the workflow to continue.

o Quorum value: -1, which is equivalent to All. In this case, every rule must be satisfied
to meet the quorum.

o Rule container label: Rule - Quorum.

In this example, there are three rule handlers in the Rule container and the Quorum value
is -1, so all rules must be satisfied.

• Condition to satisfy: More than one rule but less than the number of rules in the Rule container
must be satisfied for the workflow to continue.

o Quorum value: Greater than one but less than the total number of rules.

o Rule container label: Rule - Quorum.

In this example, the Quorum value is 2, so if any two of the three rules is satisfied, the workflow
can continue.

RS025 11.6 Setting Up Workflows for Product Development 7-9

Modifying task behavior



Chapter 7: Modifying task behavior

• Condition to satisfy: if any of the rules is satisfied, the workflow can continue.

o Quorum value: 1, and there are several rules in the Rule container.

o Rule container label: Rule - OR.

In this example, the Quorum value is 1, so if any of the three rules is satisfied, the workflow can
continue.

• Condition to satisfy: All rules must be satisfied for the workflow to continue.

o Quorum value: Equal to the number of rules in the Rule container.

o Rule container label: Rule - AND.

In this example, the Quorum value is 3, which matches the number of rule handlers.

7-10 Setting Up Workflows for Product Development RS025 11.6

Chapter 7: Modifying task behavior



Modifying task behavior

Delete task handlers
When a handler is no longer required, you can delete it as explained in this section. To delete a
handler, perform the following steps from the Task Handlers dialog box in either Workflow Designer
or when in design mode in Workflow Viewer:

• Select the desired handler from the handler tree and click Delete.

The system deletes the selected handler and no longer displays it in the tree.

Create an ACL and recipients for a task

1. On the toolbar, click Edit Mode .

2. Click Task Properties in the toolbar.

The system displays the Task Properties dialog box.
The Name box lists the name of the selected workflow process template or task template.

3. Click the Attributes Panel tab.

The system displays the Attributes Panel dialog box.

4. Click Named ACL to add permissions for the task and target objects.

a. Click Assign to ACL Name to update the Assigned ACL Name box.

This action creates the EPM-set-rule-based-protection handler on the Start action for
the task.

b. (Optional) To verify the assignment, view the Task Handler panel.

5. Use one of the following methods to select an ACL to apply to the task.

• In the ACL Name box, select an existing ACL.

RS025 11.6 Setting Up Workflows for Product Development 7-11

Modifying task behavior



Chapter 7: Modifying task behavior

o Click the system Named ACL button to list ACL names created in Access Manager.

o Click the workflow Named ACL button to list ACL names created in Workflow
Designer.

6. In the ACL Name box, type a new ACL name and click Create .

The new ACL is added to the list of workflow named ACLs.

a. Add access control entries (ACEs) to define the permissions for the named ACL.

b. Click Save to save the ACEs for the named ACL.

7. To set the Recipients list:

• Click Set to the right of the Recipient box.

The system displays the Select Recipients dialog box.

• Type the user, group, or address list search criteria for users you want to select.

• Based on the search criteria you entered, click either User, Group, or Address List.

The search results display in the box below. To display all users in the selected grouping,
type * and click the appropriate button. All users in the selected grouping display in the box.

• Select the users you want to define as recipients from the search results. You can choose
multiple users by pressing Ctrl and clicking the desired names.

• Click Users.

The selected users display in the box in the right side of the dialog box. These are the
selected recipients.

• To delete a recipient, click Delete.

• Close the Named ACL dialog box.

Note

When a named ACL is applied to a task and the Named ACL dialog box is closed,
the Show Task in Process Stage List property on the Tasks Attributes Panel is
automatically selected.

o The Show Task in Process Stage List displays the task in the Process
Stage List property for the target object.

o Tasks in the Process Stage List are used to determine the ACL for the target
objects.

8. Select Show Task in Process Stage List to display the task in the Process Stage List property
for the target object.

7-12 Setting Up Workflows for Product Development RS025 11.6

Chapter 7: Modifying task behavior



Modifying task behavior

• Select the Show Task in Process Stage List property when a named ACL is defined for a
task.

• Clear the Show Task in Process Stage List when there are no named ACL and
EPM-set-rule-based-protection handler defined for this task, and the task does not need to
appear in the target object Process Stage List. For example, clear this box for subtasks
or parent tasks.

Note

The Process Stage List also determines the task’s attributes, such as responsible
party or signoff approvers, factored into the currently active named ACL.

9. Click Close to save the changes to the database and close the dialog box.

Requiring a PKI digital signature during a workflow
If you wish users to apply their PKI digital signature to objects in workflow, place the
EPM-apply-digital-signature handler on an interactive workflow task. Where the handler is placed
depends upon when you want the user to apply the digital signature.

Application
of the digital
signature

Place the handler as
follows

Results

User applies
signature to the
workflow targets.

On the Complete action of
a Do, select-signoff-team,
perform-signoffs,
Condition, or form task.

If the PKI authentication passed, their digital
signature is applied to the workflow targets.

If a schedule task is attached as a schedule
attachment to the workflow, the digital signature is
also applied to it.

User needs to
be authenticated
while selecting
signoff members
during the routing
of the task.

On the Complete action
of the select-signoff-team
subtask of the Review task
under the Route task.

Multiple reviewers
usually need to
sign off the task.

On the Perform action of
the perform-signoffs task.

Every user signing off the task is prompted for
authentication.

The digital signature from each user is applied
when that user signs off.

If you want to check for valid digital signatures during the workflow, place the
EPM-verify-digital-signature handler on a workflow task. You can use this handler on a Validate
task and configure a failure path if the minimum number of valid signatures is not present or if there
are void signatures, depending on the arguments used in the handler.

RS025 11.6 Setting Up Workflows for Product Development 7-13

Modifying task behavior



Chapter 7: Modifying task behavior

Note

• You can configure which attributes of an object cannot be changed after a digital
signature is applied.

• Do not design the workflow to modify the configured attributes of the object using
other handlers on the same or a subsequent task in the workflow, including final
approval. Modifications to configured attributes should be performed in tasks previous
to applying the digital signature.

• If a schedule task is attached to workflow with a schedule task attachment, do not
configure the State, Actual Finish Date, and Percent Complete attributes because
they are updated when workflow completes after the digital signature is applied.

• For change management objects, do not configure the change states (Closure,
Maturity, and Disposition) because they are updated following a digital signature.

Digital signatures are PKI authentication attempts and are logged as an audit event.

Requiring PKI authentication to perform a workflow task
If you want users to authenticate themselves before they can complete a workflow task, place the
handler on an interactive workflow task. The task is completed only after the user provides valid PKI
authentication, but does not apply a digital signature on any object.

PKI authentication attempts are logged as an audit event.

Adding schedule tasks and attachments to a workflow process
You can locate the schedule tasks attached to the workflow and add their related change objects as
target or reference objects to the workflow as well as the schedule task itself.

Use the EPM-attach-related-objects handler with the -from_attch argument on a task in the
workflow process to add them.

7-14 Setting Up Workflows for Product Development RS025 11.6

Chapter 7: Modifying task behavior



Chapter 8: Manage signoff behavior

Signoff profile creation
Signoff profiles are created by administrators based on group or role, making it easier to assign
approvers to a task. Defined in the process template, signoff profiles are particularly useful in
enforcing groups and roles in a signoff. For example, if you want three managers from the Marketing
group, all managers from the Engineering group, and 51% of the engineers from the Engineering
group to sign off on a particular Review task, the administrator creates three group profiles: a
Marketing/manager profile, an Engineering/manager profile, and an Engineering/engineer profile.

To enhance project-based user assignments, administrators can use the
WRKFLW_show_user_assignment_options preference to determine which tab in
the signoff tree is active by default: the Organization tab or the Project Teams tab. By default,
Organization is selected. You can also choose to show only the Organization tab and hide the
Project Teams tab, or vice-versa. Users are filtered using group or role membership criteria.

Once an administrator has defined a signoff profile, you, as a member of the signoff profile, can
choose to approve tasks by one of the following methods:

• Quorum format: approval based on a specified minimum number of approvers

• Percentage: approval based on specified percent of approvers

• All: approval based on return of all review and comments

Quorum and required signoff behavior
Use quorums for task signoffs to indicate the number (percentage) of users who must approve
the task in order for it to complete.

• Use a quorum when a signoff task should proceed without waiting for undecided reviewers.

• Use a quorum to reduce the number of decisions required for the task to proceed.

Use required reviewers to ensure that the key reviewers have provided their decision.

RS025 11.6 Setting Up Workflows for Product Development 8-1



Chapter 8: Manage signoff behavior

Note

You can use required signoffs with quorums to prevent the task from completing until all
required reviewers provide a signoff decision.

For example:

• When a task has five reviewers, but none are required, and quorum is set to 2; the task
proceeds when two reviewers provide their decisions.

• If, however, one of the five reviewers is marked as required; the task does not proceed
until the required reviewer provides a decision, even if the quorum is met.

You can make a reviewer required using one of the following methods:

• Use the Assign All Tasks tab when a workflow is created.

The EPM_valid_user_to_apply_assingment_list preference determines which users are
authorized for assigning resources.

• Assign when selecting a signoff team.

• Use the EPM-adhoc-signoffs or EPM-fill-in-reviewers handlers with the -required setting.

Use the SIGNOFF_adhoc_quorum preference to configure constraints on the quorum value during
team selection. When ad hoc signoff is enabled, you can set quorum value limits or no constraints.

Workflow task assignment options
There are two categories of workflow task assignment options:

Interactive task assignment Interactive tasks can use individual users or
resource pools, but requires user input to
complete. It includes manual assignment of
tasks and the creation and application of process
assignment lists (PALs).

Automated task assignment Automated task assignment can use individual
users, resource pools, or dynamic participants.
Four action handlers perform automated
assignment:

• EPM-auto-assign

• EPM-auto-assign-rest

• EPM-adhoc-signoffs

• EPM-fill-in-reviewers

8-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 8: Manage signoff behavior



Manage signoff behavior

Note

Use theWRKFLW_allow_signoff_assignment_to_OOO_user preference to control task
assignment of a signoff when the delegate is a member of the signoff team.

True assigns the signoff to the out-of-office user, while False assigns it to the resource
pool of the out-of-office user.

Create a signoff profile
1. Double-click the Review task in the task hierarchy tree.

The task expands, listing the select-signoff-team subtasks.

Note

You can change the names of the select-signoff-team and perform-signoffs
subtasks. For example, you can rename the subtasks to specify their parent task or
the current step in the process (such as select-design-signoff-team).

2. Select the select-signoff-team subtask, and then click Task Signoff in the lower left of the
Workflow Designer pane.

The Signoff Profiles dialog box appears.

3. Select a Group and Role.

Note

Define the signoff profiles by group or role, not by individual users. For example, if you
want three managers from the Marketing group, all managers from the Engineering
group, and 51% of the engineers from the Engineering group to sign off on this
particular Review task, create three group profiles: a Marketing/manager profile, an
Engineering/manager profile, and an Engineering/engineer profile.

You can use the wildcard (*) to leave both the group and role category undesignated.

4. Type the number or percentage of reviewers required for this particular group/role signoff profile.

5. Select the Allow sub-group members check box to grant members of subgroups permission to
sign off instead of members of the designated group.

6. Click Create to add this profile to the Signoff Profiles list. To change an existing profile in
the Signoff Profiles list, click Modify. To delete an existing profile in the Signoff Profiles
list, click Delete.

RS025 11.6 Setting Up Workflows for Product Development 8-3

Manage signoff behavior



Chapter 8: Manage signoff behavior

Define a surrogate for another user (requires administrative
privileges)

1. Click My Worklist in the navigation pane.

The system displays your inbox.

2. Choose Tools→Workflow Surrogate.

The system displays the Workflow Surrogate dialog box.

3. Select the group, role, and user for whom you are defining surrogates.

The dialog box displays surrogates for the selected user in the Current Surrogate User(s) list.

Note

You can choose all roles within a group by selecting the asterisk (*) rather than
selecting a specific role.

4. Select the group, role, and user to be a surrogate.

5. Set the Surrogate Effective Dates effectivity start date for the surrogate user as follows:

a. Click the calendar button in the From box to open the popup calendar.

b. Select the month in which the surrogate user becomes effective. Click the back arrow to
scroll to the previous month or click the forward arrow to scroll to the next month.

c. Type the year in which the surrogate user becomes effective.

Click the back arrow to scroll to the previous month or click the forward arrow to scroll
to the next month.

d. Select the day the surrogate user becomes effective by clicking the appropriate square
on the calendar.

e. Type the hour, minute, and second at which the surrogate user's effectivity begins in the
h, m, and s boxes.

Use the 24-hour clock format; for example, type 1:30 p.m. as 13 h, 30 m, and 00 s.

If you do not specify another time or clear the boxes, the current time is entered.

f. Click OK to accept the effectivity start date and time and close the calendar.

6. Set the Surrogate Effective Dates effectivity end date for the surrogate user:

a. Click the calendar button in the To box to open the popup calendar.

b. Select the month in which the surrogate user's effectivity ends.

Click the back arrow to scroll to the previous month or click the forward arrow to scroll
to the next month.

8-4 Setting Up Workflows for Product Development RS025 11.6

Chapter 8: Manage signoff behavior



Manage signoff behavior

c. Select the year in which the surrogate user's effectivity ends.

Click the back arrow to scroll to the previous year or click the forward arrow to scroll to
the next year.

d. Select the day the surrogate user's effectivity ends by clicking the appropriate square on the
calendar.

e. Type the hour, minute, and second at which the surrogate user's effectivity ends in the h,
m, and s boxes.

Use the 24-hour clock format; for example, type 1:30 p.m. as 13 h, 30 m, and 00 s.

If you do not specify another time or clear the boxes, the current time is entered.

f. Click OK to accept the effectivity end date and time and close the calendar.

Tip

To allow the surrogate user to be effective indefinitely, leave the end date unset. To
reset the effectivity dates, click Reset.

7. Click Add.

The system displays the surrogate user in the Current Surrogate Users list, the surrogate user
is notified via email, and a link is created in the surrogate user's inbox.

The link in the surrogate user's inbox allows the surrogate user to access the inbox of the user
for whom they are acting surrogate.

Note

Configure the WRKFLW_mail_surrogates to send email notifications in the Workflow
application. True sends email notifications to all active surrogate users. To prevent sending
email notifications to all active surrogate users set the value to false.

RS025 11.6 Setting Up Workflows for Product Development 8-5

Manage signoff behavior





Chapter 9: Using workflows to manage security and project data

Managing security and project data using custom forms
Developers create custom forms in the Business Modeler IDE. The workflow administrator can use
those forms to customize workflow task templates for the following purposes:

• Assigning members to projects

In the Business Modeler IDE, the developer creates a custom form with properties for members
(privileged and nonprivileged) and a property for projects. Attached to each property, a dynamic
List of Values (LOV) gathers all of the available members or projects.

• Assigning and removing projects on workflow targets

In the Business Modeler IDE, the developer creates a custom form with properties for assigning
and removing projects. Attached to each property, a dynamic List of Values (LOV) gathers
all of the available projects.

• Setting security classifications on workflow targets

In the Business Modeler IDE, the developer creates a custom form with properties for government
classification, intellectual-property (IP) classification, or both classifications. A classification
property contains a List of Values (LOV) from which the responsible party can select the
classification to set on the target.

Assign members to projects using workflow arguments
The workflow initiator can access the form properties and modify the target. Then, the workflow
administrator configures the task template to assign the members to the project, using the
PROJ-assign-members handler.

In the task, the responsible party first creates an instance of the form. The responsible party then
selects the appropriate value from each list of values (LOV).

You can add project members by using form properties attached to the workflow template.

1. From the Workflow Designer main screen, select a Process Template from the drop-down list.
Ask your Business Modeler IDE administrator if you are unsure of the template name.

Alternately, you can create a new workflow process. Go to File→New→Workflow Process.

2. In the workflow, click the task (for example, Assign Project Members). The Handlers dialog
box displays.

3. The handler displays under the Complete folder. Enter the arguments and values. For example:

• The projects to receive members are named Proj1 and Proj2.

RS025 11.6 Setting Up Workflows for Product Development 9-1



Chapter 9: Using workflows to manage security and project data

• The user named John is to be added to both projects as a nonprivileged member. This user
has the Designer role in theEngineering group.

• The user named Jane is to be added to both projects as a privileged member. This user has
the Manager role in the Engineering group.

Argument Values
-projects Proj1,Proj2
-members Engineering/Designer/john
-privileged_members Engineering/Manager/jane

4. Click Create. The members you entered into the argument are displayed in the Member
Selection list for the project.

5. Go to My Worklist and select the task from the Task to Perform folder.

6. Select Action and then Perform from the menu at the top of the screen.

7. From the LOV on the Assign Member form, select the name of the user you want to add.

8. Select Complete and click OK. The selected members are added to the project.

Assign a project to workflow targets
The responsible party can access the form properties and modify the target. Then, the workflow
administrator configures the task template to:

• Create a form instance and relate it to the task, using the EPM-create-form handler.

• Display the form, using the EPM-display-form handler.

• Copy the values from the form to the target, using the PROJ-update-assigned-projects handler.

1. For the item you want to assign, select the Item Revision.

2. Select the Process Template from the drop-down list. Ask your Business Modeler IDE
administrator if you are unsure of the template name.

Alternately, you can select the Item Revision and go to File→New→Workflow Process to
create a new process.

3. To display the form, click the name of the form (for instance, Create ProjMemberForm). The
Handlers dialog box displays.

4. Select the handler under the Perform folder. Enter the arguments and values.

5. Click Create.

6. Go to My Worklist and select the item revision. From the New Process Dialog, select Approve
Project Updates from the Complete folder.

9-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 9: Using workflows to manage security and project data



Using workflows to manage security and project data

7. Select the handler under the Perform folder. Enter the arguments and values.

8. Click Create.

9. Select Action, and then Perform from the menu at the top of the screen.

10. Select Complete and click OK in the Perform Do Task dialog box.

Setting the security classification on a workflow target
Once a form is created in Business Modeler IDE, the workflow administrator can perform any of the
following:

• Create a process template and task templates that display the custom form to the user.

• Allow the user to read and write to the objects involved with the handler.

• Set the classification on the target. Security classifications are set using the EPM-set-property
handler.

RS025 11.6 Setting Up Workflows for Product Development 9-3

Using workflows to manage security and project data





Chapter 10: Using workflow templates at multiple
Teamcenter sites

Configuring remote workflows

Caution

If you are using Global Change Management, bothWRKFLW_allow_replica_targets and
TC_disallow_release_status_on_replica must both be set to false to allow application
of release status to replicas that are not remotely checked out during a remote workflow
activity.

To enable remote workflows, install or configure the following components:

• Teamcenter 4 tier installation with these templates:

o Change Management

o Change and Schedule Management Interface

• Dispatcher/Asynchronous server

• Application Registry

• Teamcenter Integration Framework

• Teamcenter SSO (single sign-on; proxy link mechanism to communicate with the remote site)

• CMS-RPC (connect multisite remote-procedure call; set up outside Teamcenter SSO)

Distributing workflow templates using Multi-Site Collaboration

Replicate a workflow template

You can distribute your workflow templates to different Teamcenter sites by replicating templates
using Multi-Site Collaboration. You can replicate your workflow templates, including those under
construction, on several Teamcenter sites by using the data_share utility and update them with the
data_sync utility. You cannot edit the replicas, only the template at the owning site. Also, handlers
attached to the templates must exist at all sites where the templates are replicated.

1. If necessary, create the template you want to replicate.

2. Run the utility with the following arguments:

RS025 11.6 Setting Up Workflows for Product Development 10-1



Chapter 10: Using workflow templates at multiple Teamcenter sites

data_share -u=user-id -p=password -g=group -f=send
-site=remote-site-name1 -name=workspace-object-class=class-name

For example, if you want to replicate the demotemplate workflow template at the
teamcentersite2 site, run the following utility command (the required logon information is
omitted from the example):

data_share -f=send -site=teamcentersite2 -name=demotemplate
-class=EPMTaskTemplate

Note

• If you want to transfer ownership to the specified site, add the -transfer argument
to the command.

• If you want to import the template at another site to the current site, change the -f
argument to -f=remote_import.

• If you want to replicate the template at more than one site, add more -site
arguments to the command.

• If you want to replicate several templates, type the template names in a text file
and replace the -name and -class arguments with the -filename and -classoffile
arguments, respectively.

The replicate template appears at the new site with the symbol.

Synchronize replicated templates

1. Update the template at the owning site that is replicated at another site.

Note

If you want active workflow processes based on the synchronized template to be
updated at the replica site, set the WRKFLW_multisite_apply_template_changes
preference to true.

2. Run the utility with the following arguments:

data_sync -u=user-id -p=password -g=group -f=sync
-site=remote-site-name1 -class=class-name -update

For example, if you changed the demotemplate workflow template and wanted to update
the replica at the teamcentersite2 site, run the following utility command (the required logon
information is omitted from the example):

data_sync -f=sync -site=teamcentersite2 -class=EPMTaskTemplate -update

10-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 10: Using workflow templates at multiple Teamcenter sites



Using workflow templates at multiple Teamcenter sites

Note

If you want to synchronize the template at more than one site, add more -site
arguments to the command.

The replicate template is updated at the specified sites.

Distributing workflow templates using Workflow Designer

Importing and exporting workflow templates

You can distribute your workflow templates to different Teamcenter sites by importing and exporting
workflow process and task templates from the Teamcenter database in an XML format.

• You can import workflow process and task templates into the Teamcenter database from an
exported workflow template file. Importing templates is useful for transferring workflow templates
between different Teamcenter sites. The templates must first be exported from a Teamcenter
database into an export file, after which you can import the file into the Teamcenter database
at another site.

• You can export workflow process and task templates from the Teamcenter database in XML
format, storing the templates in a single export file. After exporting the templates, you can import
the file into the Teamcenter database at another site. You can also easily search the XML to
determine handler and argument usage.

Note

You can import and export workflow templates using the Workflow Designer Tools menu,
or you can use the and utilities for these tasks.

Best practice

If your enterprise encompasses more than one site, always make workflow template changes at the
master site, and then propagate the changes by exporting the workflow template from the master
site to other sites. If additional changes are required at a later date, again make the workflow
template changes at the master site, export the workflow template from the master site, and then
import it at all other sites.

This method ensures that the origin_uid value of each workflow template continues to match from
site to site. If you export/import a workflow template between nonmaster sites, its origin_uid value
eventually becomes mismatched between versions, resulting in the following error when you choose
to overwrite during import:

The origin_uid’s of the importing template(s) do not match with the origin_uid’s
of the existing template(s). The import of template(s) in overwrite mode failed.
Matching origin_uid’s are required to apply template changes to active workflow
processes. You can replace the existing template by deleting it, and then
re-importing, but this will prevent you from applying template changes to active
workflow processes.

RS025 11.6 Setting Up Workflows for Product Development 10-3

Using workflow templates at multiple Teamcenter sites



Chapter 10: Using workflow templates at multiple Teamcenter sites

If you receive this error, you can manually replace the existing template with the importing template
by first deleting the importing template, then repeating the import. However, using this method breaks
the link between origin_uid values. If you use this method, the system cannot apply template
changes to active workflow processes.

Import workflow templates

1. Choose Tools→Import.

The system displays the Import Workflow Templates dialog box.

2. Type the path to the directory containing the export file in the Import File box, or click the
Browse button to locate the directory.

3. (Optional) If you want the system to continue the transfer if one or more workflow templates fail
to transfer, select the Continue On Error check box. If one or more workflow templates fail to
transfer, the system records transfer errors in its log files, bypasses the failed workflow templates,
and transfers the remaining workflow templates.

If you do not select this option, the system stops the transfer process if one workflow template fails
to transfer and only includes in the transfer those workflow templates that transferred successfully.

4. (Optional) If you want the system to overwrite any workflow template of the same name that
already exists in the database, select the Overwrite Duplicate Templates check box. The
system does not display or log any errors.

Select this option when the imported workflow template contains changes that you want applied
to the database.

For example, you have added two custom tasks to the QuarterlyReview workflow template and
thoroughly tested the revised template in your test database. Now you are ready to import
the changes to the production database. By choosing to overwrite duplicate templates when
importing the workflow template to the production database, you are effectively editing the
QuarterlyReview workflow template. On import, the original QuarterlyReview workflow template
is overwritten by the importing workflow template; it now contains the two custom tasks.

If you do not select this option, any importing template with the same name as an existing
template is ignored and the import process continues. A message is logged that a workflow
template of the same name exists.

5. (Optional) If you chose to overwrite duplicate templates, you can also choose ignore the origin ID
of the template you are importing by selecting the Ignore origin ID check check box.

Select this option if you get the following error when attempting to import workflow templates:

The importing template(s) do not match with the existing template(s).
The import of template(s) in overwrite mode failed.

6. (Optional) If you chose to overwrite duplicate templates, you can also choose to apply the
differences in the imported templates to all active workflow processes based on the original
version of the workflow template. In other words, you can choose to apply the edits you have
made to the importing template to active workflow processes.

10-4 Setting Up Workflows for Product Development RS025 11.6

Chapter 10: Using workflow templates at multiple Teamcenter sites



Using workflow templates at multiple Teamcenter sites

To continue the example in the previous step, if you select the Apply template changes to all
active workflow processes check box while importing the QuarterlyReview workflow template
into the production database, the two custom tasks added during import are also applied to all
active workflow processes that were based on the original version of the QuarterlyReview
workflow template.

When you import templates from a Teamcenter version prior to 10.1, do not select the Apply
template changes to all active workflow processes check box. If you do, Teamcenter does
not successfully import the template.

Updates are applied as described in How process template edits are applied to active processes.

Note

• This check box is visible only if the EPM_enable_apply_template_changes
preference is set to OPTIONAL.

• This check box is not available if you selected the Ignore origin ID check check
box.

7. (Optional) If you chose to apply edits to active workflow processes, you can also choose to
process the edits in the background by selecting the Update processes in background check
box.

Your edits are applied in the background. The updates run asynchronously, and you are notified
by Teamcenter mail when the updates complete. Typically, you only want to update workflow
processes in real time when your changes impact 10–20 active workflow processes, as in testing
scenarios.

Caution

Asynchronous processing must be configured.

8. Click OK to import the templates contained within the file you selected into the Teamcenter
database.

The imported template names now exist in the database and appear in the Process Template list.

Export workflow templates

1. Choose Tools→Export.

The Export Workflow Templates dialog box appears.

2. Type the path to the directory containing the objects you want to export in the Export Directory
box, or click the Browse button to locate the directory.

3. Specify the name of the export file in the File Name box, for example, template_export.

4. In the Templates section of the dialog box, select the templates you want to export from the All
Templates list. (Use the Ctrl key to select multiple templates.)

RS025 11.6 Setting Up Workflows for Product Development 10-5

Using workflow templates at multiple Teamcenter sites



Chapter 10: Using workflow templates at multiple Teamcenter sites

5. Add the selected templates to the Selected Templates list. These are the templates the system
exports.

6. If you want the system to continue the transfer if one or more templates fail to transfer, select
Continue On Error. If one or more templates fail to transfer, the system records transfer errors in
its log files, bypasses the failed templates, and transfers the remaining templates.

If you do not choose this option, the system stops the transfer process if one template fails to
transfer and only includes in the transfer those templates that transferred successfully.

7. Click OK to export the templates in the Selected Templates list and close the dialog box.

The selected templates are exported in XML format to the file name you defined in step 3 in
the directory you defined in step 2.

10-6 Setting Up Workflows for Product Development RS025 11.6

Chapter 10: Using workflow templates at multiple Teamcenter sites



Chapter 11: Working with remote inboxes

Sending schedule tasks through workflows at remote sites
A workflow for a schedule task is created as a remote workflow when the schedule task's privileged
user or, in the absence of a privileged user, the workflow owner, is a remote user. When the
system creates the remote workflow, it links the schedule task to that workflow and attaches all
task attachments using GRM (Generic Relationship Management ) relations. It also replicates the
attachments and either checks them out remotely or transfers ownership to the remote site.

The following conditions must be met to create a workflow for a schedule task at a remote site:

• Schedule task's privileged user or, in the absence of a privileged user, the workflow owner, is
a remote user

• Schedule task's privileged user and the workflow owner are from the same remote site

• Schedule task has a workflow process template required to create the workflow on the remote site

• Only one user is assigned to the schedule task

• The WRKFLW_create_remote_workflow preference is configured to enable remote workflow
creation

Enabling remote inboxes
Remote inboxes are created when you subscribe to your account inbox at a remote site. This action
creates a link in your local site worklist. When you click the link, a new Teamcenter client session
is started that runs against the remote site. You can then see and perform tasks in your worklist
on the remote site. There is an associated Remote Checkout command that lets you place data
on your local site for work.

To enable remote inbox functionality, your site must be configured to use
the application registry and interoperability linking. Information about
configuring this functionality is currently available on the Global Technical
Access Center (GTAC) Web site. Teamcenter administrators with valid
WebKey accounts can access the Teamcenter Interoperability guide at
the following location:

http://support.ugs.com/docs/tc_eng/8/en/tss00004.pdf
Chapter 1, Introduction, see Understanding Components Required for
Interoperability, Using Application Registry.
Chapter 2, Installing Application Registry.
In chapter 3, Configuring for Basic Linking, see Linking Teamcenter
Engineering To Remote Engineering.

RS025 11.6 Setting Up Workflows for Product Development 11-1

http://support.ugs.com/docs/tc_eng/8/en/tss00004.pdf


Chapter 11: Working with remote inboxes

In chapter 4, Configuring Advanced Linking, see the following topics:

• Understanding Teamcenter for engineering process management

• Advanced Linking Terms

• System Requirements

• Configuration Overview

• Deploying Teamcenter Application Registry

• Configuring Teamcenter for engineering process management

• Setting and Verifying Advanced Linking Properties
Chapter 6, Troubleshooting

Remote inboxes let you interact with workflow tasks that originated at remote sites.

• When you have a user account at a remote site, you can subscribe to that site to access your
inbox, called your remote inbox, and access tasks assigned to you at the remote site.

• After you subscribe to your inbox at a remote site, your local site worklist displays a remote site
link you can use to launch a client to let you access the remote site inbox.

Note

The remote site link also shows the number of tasks in your worklist at the remote site.
However, this number is not refreshed automatically.

Click on the remote inbox link to launch the login to the remote site. The remote site
then displays the accurate task list.

• Remote site links in the local site worklist cannot be expanded in the local tree display.

• When you click the link to the remote site, Teamcenter launches a full, separate Teamcenter
session to display the remote inbox.

Note

The remote site link launches the client specified by the
TC_external_default_launch_ui setting.

o thin

Displays the remote site in the thin client.

This is the default setting.

o rich

Displays the remote site in the rich client.

11-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 11: Working with remote inboxes



Working with remote inboxes

o dynamic

Displays the remote site in the same type of client used to access the link to the
remote site.

• Remote inboxes contain Tasks to Perform and Tasks to Track folders.

Working with task data in remote inboxes
You can use Remote Checkout and Remote Export commands to access to data for tasks in
your remote inboxes.

• Remote Checkout lets you access modifiable replicas of the target data associated with the
tasks assigned to you.

o When a workflow task requires you to modify data located at a remote site, use Remote
Checkout to check out and send an editable copy of the data to your local Home location.

This checks out the data at the remote site and puts the data on the local site in the
checked-out state.

o When you have completed the data modification, use the standard Check-In option at the
local site to undo the checkout at the remote site, move the modified data to the remote site.

This checks in the data at the remote site.

• Remote Export lets you access read-only replicas of data. If necessary, you can also use this
command to transfer site ownership of the data required to perform your tasks.

Subscribe to a remote inbox
1. Choose Tools→Remote Inbox Subscription.

The system displays the Remote Inbox Subscription Dialog dialog box.

• Sites with remote inboxes to which you are already subscribed are listed as Selected
Inboxes.

• Sites with remote inboxes to which you are not already subscribed are listed as Available
Inboxes.

2. To subscribe to an available inboxes, select the site in the Available Inboxes list and click Add(+).

To unsubscribe from any of your subscribed inboxes, select the relevant inboxes in the Selected
Inboxes list and click Remove (–).

3. When the subscriptions are listed correctly, click OK or Apply, and the system displays the
Subscribe Remote Inbox dialog box. This dialog box shows the progress of each subscription
request.

RS025 11.6 Setting Up Workflows for Product Development 11-3

Working with remote inboxes



Chapter 11: Working with remote inboxes

Note

Configure the TC_subscription_available_subscription_handlers preference
to display the handlers available during the create or modify subscription. The
IMAN_Smpt_Mail_notify handler is the default value and cannot be deleted.

Check out data to your local site from a remote site
1. Start a client that accesses a remote site.

Note

When you subscribe to a remote inbox, your worklist displays a link that lets you launch
a client that accesses the remote site.

2. Select the object to check out from the remote site, and choose Tools→Multi-Site
Collaboration→Send→Remote Checkout.
The system displays the Remote Checkout dialog box.

3. Type the following information in the dialog box:

• Change ID
Type the change number associated with the checkout request.

• Comments
Type the reason for the checkout request.

• Target Site
From the list of available sites, choose the site to which the object should be sent.

Click Home on the right side of the Target Site box to choose sites from the list.

• OK to remote checkout?
Displays the status of objects being remotely checked out.

4. Click Yes.
The system displays the current options in the Remote Checkout Options Settings dialog box.

5. Click Yes to continue or No to cancel the checkout operation.

The system displays the status of the checkout operation. The checked-out data goes to your
home folder on the target site.

Export data to your local site from a remote site
1. Start a client that accesses a remote site.

11-4 Setting Up Workflows for Product Development RS025 11.6

Chapter 11: Working with remote inboxes



Working with remote inboxes

Note

When you subscribe to a remote inbox, your worklist displays a link that lets you launch
a client that accesses the remote site.

2. In the remote site client, select the object to export as a read-only replica.

3. Choose Tools→Multi-Site Collaboration→Send→Remote Export.

The system displays the Remote Export dialog box.

4. Enter the following information in the dialog box:

• Reason

Type the reason for the data export.

• Target Sites

From the list of available sites, select the site to which the object should be sent.

Click Home to the right of the Target Site box to select sites from the list.

• OK to remote export?

Displays the status of objects being remotely exported.

5. Click Yes.

The system displays the current options in the Remote Export Options Settings dialog box.

6. Click Yes to continue or No to cancel the export operation.

The system displays the status of the export operation. The exported data goes to your home
folder on the target site.

RS025 11.6 Setting Up Workflows for Product Development 11-5

Working with remote inboxes





Chapter 12: Workflow handlers

What are workflow handlers?
Handlers are the lowest-level building blocks in workflow. They are small ITK programs used to
extend and customize tasks. There are two kinds of handlers:

• Action handlers extend and customize task actions. They perform such actions as displaying
information, retrieving the results of previous tasks (inherit), notifying users, setting object
protections and launching applications.

• Rule handlers integrate workflow business rules into EPM workflow processes at the task level.
They attach conditions to an action. Rule handlers confirm that a defined rule has been satisfied.
If the rule is met, the handler returns the EPM_go command, allowing the task to continue. If the
rule is not met, it returns the EPM_nogo command, preventing the task from continuing. If there
are multiple targets for a single rule handler, all targets must satisfy the rule for EPM_go to be
returned (AND condition).

Many conditions defined by a rule handler are binary (that is, they are either true or false).
However, some conditions are neither true nor false. EPM allows two or more rule handlers to be
combined using logical AND/OR conditions. When several rule handlers are combined using a
logical Or condition, rule handler quorums specify the number of rule handlers that must return
EPM_go for the action to complete.

Action and rule handlers in the Handlers panel can be copied:

• From one action to another action in a task.

• From one task to another task in the same template.

• From a task in one template to a task in another template.

For the selection in the action tree, click Performs a Copy action or Performs a Paste action
as desired.

Note

For Performs a Paste action, the process template must be in Edit mode.

RS025 11.6 Setting Up Workflows for Product Development 12-1



Chapter 12: Workflow handlers

• To paste on another task in the same template, select the target task in the task hierarchy tree.

• To paste on a task in another template, select the target template from the Process Template list.

Updating your task templates to use the new handler and argument
names
Starting with Teamcenter version 10.1, many of the workflow handlers, their arguments, and accepted
argument values were changed to make them more consistent. The effect of the renaming depends
on your situation:

• If you did not have an installation of Teamcenter prior to version 10.1, the renaming has no
effect for you.

• If your installation was upgraded from a Teamcenter version prior to 10.1 to the current version,
the utility was run during the upgrade and the handlers and arguments provided by Teamcenter
were automatically renamed.

• If you are importing templates from a Teamcenter version prior to 10.1 to the current version, you
must run the utility after importing the templates to rename the handlers and arguments.

When you import templates from a Teamcenter version prior to 10.1, do not select the Apply
template changes to all active workflow processes check box in the rich client or use the
-apply_template argument in the plmxml_import utility. If you do, Teamcenter does not
successfully import the template.

• If you have custom handlers, you can use the utility and a custom mapping file to rename your
custom handlers and arguments.

Renaming your custom handlers and arguments
You can use a custom XML mapping file and the utility to rename your custom handlers and
arguments to make them consistent with the Teamcenter handlers and arguments. The elements of
the mapping file are:

12-2 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Element Attributes Usage
<Mapping> None. The <Mapping> element is the root level element

in the XML file.
<Remove> None. Removes a handler or handler argument

depending on where it is placed and its child
elements.

If <Remove> is the top level element, it may only
have a <Handler> element as a child.

If <Remove> is the child of a <Handler> element, it
may only have one or more <Argument> elements
as children. If an Argument value is specified,
the Argument is removed only if the Argument
value in the mapping file is a subset of the actual
Argument Value in the system. If an Argument
value is not specified, the Argument is removed,
ignoring whether it has any value or not.

<Replace> None. Replaces a handler with more than one handler
as specified by subsequent <Add> elements. The
<Handler> child element of the <Replace> names
the handler to be replaced. The arguments that
need to be copied over to the new handlers (for
example, see arg3 below) should be explicitly
identified. If an argument from the old handler is
not explicitly defined to be copied over, it is not
added to a new handler, unlike the update/rename
handler case.

For replacing one handler with another single
handler, use the <Update> element.

<Update> None. Changes a handler’s name and/or arguments.
<Argument> • name (optional)

The current name of an
argument.

• value (optional)

The current value of an
argument.

• newName (optional)

The new name to be
given to an argument.

• newValue (optional)

Specifies the current and possibly new names
and values for arguments of a handler.

RS025 11.6 Setting Up Workflows for Product Development 12-3

Workflow handlers



Chapter 12: Workflow handlers

Element Attributes Usage

The new value to be
given to an argument.

• index (optional)

Position of the
argument in the
handler. The index

and name attributes are
mutually exclusive.

<Handler> • name

The current name of a
handler.

• newName (optional)

The new name to be
given to a handler.

• transformAssignees=to-be-argname

(optional)

Use this attribute when
your existing handler
has any number of
users, groups, roles,
address lists, and/or
resource pools as
arguments where
they are not already
specified in the form of
a -argname=argvalue
pair (such as
-participant=Smith).

Specifies the current and possibly new name of
a handler.

<Criteria> • match (optional)

false—the result of
the criteria should be
negated.

true—default value.

Specifies restrictions on the <Handler> element in
which it is embedded. The action specified by the
<Handler> element is only applied if the criteria
evaluate to true.

<Criteria> may have two child elements:
<Template name=”template-name” />, and
<Argument name=”arg-name” value=”arg-value”

/> that may be specified alone or together. The
template-name is compared to the name of
template containing the handler. The arg-name
and arg-value are compared to the list of handler
arguments. If both <Template> and <Argument>

12-4 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Element Attributes Usage
are specified, a handler must match both of the
respective attributes.

<Template> • name=template-name

Compared to the
name of the template
containing the handler.

Restricts the <Criteria> element in which it is
embedded to the specified template. If both
<Template> and <Argument> are specified, a
handler must match both of the respective
attributes.

<Argument> • name=arg-name

Compared to the list
of handler argument
names.

• value=arg-value

Compared to the list
of handler argument
values.

Restricts the <Criteria> element in which it is
embedded to the specified argument name and
value. If both <Template> and <Argument> are
specified, a handler must match both of the
respective attributes.

<Add> None. Adds a handler or handler argument. Unlike
the <Remove> element, <Add> is never a top level
element, but is always a child of a <Handler>

element.
<Modify> None. Modifies a handler argument.
<Split> • name

An argument name.

• newName

An argument value.

• Delimiter (optional)

For splitting two
delimited values
existing only in the
handler name field.
For example, values
delimited by two colons
(::).

Splits any handler argument old-name=old-value
pair into separate arguments name1=old-name
and name2=old-value.

A wildcard may be used for the name to match
old-name.

For example, <Split name=”*”

newName=”-source,-decision” /> splits
Cond1=Checked and Cond2=true into
-source=Cond1, -decision=Checked, and
-source=Cond2, -decision=true. Because
handler arguments with the same name
are combined into a single argument, this
finally results in -source=Cond1,Cond2 and
-decision=Checked,true.

Note

For any handler matched and processed by the migrate_wf_handlers utility, arguments
having the same name are combined into a single argument with a resulting value
composed of a comma-separated list.

RS025 11.6 Setting Up Workflows for Product Development 12-5

Workflow handlers



Chapter 12: Workflow handlers

Here is a full example of a mapping file:

<Mapping>
<Remove>

<!-- Remove all instances of Handler -->
<Handler name="old-handler-name">
</Handler>

</Remove>

<Update>
<Handler name="old-handler-name" newName="new-handler-name">

<Remove>
<!-- if value is specified, remove the argument only if arg4
has value val4 -->
<Argument name="arg4" value="val4"/>

<!-- if value is not specified, remove argument irrespective
of its value -->
<Argument name="arg5" />

</Remove>
</Handler>

<Replace>
<Handler name="old-handler-name">
<Add>

<Handler name="new-handler1">
<!-- copy value from arg1 to new-arg1 -->
<Argument name="arg1" newName="new-arg1" />

<!-- if arg2 has val2 (substring match) on old handler,
add new argument new-arg2, copy over the value and
replace the substring to new-sub-value2 -->
<Argument name="arg2" value="sub-val2-1" newName="new-arg2"
newValue="new-sub-val2-1" />

<!-- The same argument can be repeated multiple times for different
substring value -->
<Argument name="arg2" value="sub-val2-2" newName="new-arg2"
newValue="new-sub-val2-2" />

<!-- if arg3 is defined on old handler, add it to new handler
and copy its value from old handler -->
<Argument name="arg3" />

<!-- add new argument with new value -->
<Argument newName="new-arg6" newValue="new-val6"/>

</Handler>

<Handler name="new-handler2">
<Argument newName="new-arg5" newValue="new-val5"/>

<!-- copy value from arg1 to new-arg1 -->
<Argument name="arg1" newName="new-arg1"/>

</Handler>
</Add>

12-6 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

</Replace>

<Update>
<!-- Rename the old handler, as well as removing, adding and modifying
its arguments. -->
<!-- If any handler argument names are not mentioned in remove/modify
sections, they are copied over to new handler. -->
<Handler name="old-handler-name" newName="new-handler-name">

<Remove>
<!-- if value is specified, remove the argument only if arg4 has
val4 -->
<Argument name="arg4" value="val4"/>

<!-- if value is not specified, remove argument irrespective of its
value -->
<Argument name="arg5"/>

</Remove>

<Add>
<Argument name="new-arg6" value="new-val6"/>

<!-- if value is not specified or is empty, set the argument value
to empty -->
<Argument name="new-arg7" value=""/>

</Add>

<Modify>
<Argument name="arg1" value="val1" newName="new-arg1"
newValue="new-val1"/>

<!-- if newValue is not specified, copy the old argument value to
new argument -->
<Argument name="arg2" value="val2" newName="new-arg2" />

</Modify>
</Handler>

</Update>

<Remove>
<!-- Remove Handler if the criteria matches (arg1 exists with value
val1 and arg2 exists) -->
<Handler name="old-handler-name">

<Criteria>
<Argument name="arg1" value="val1"/>
<Argument name="arg2"/>

</Criteria>
</Handler>

</Remove>

<Update>
<!-- Rename Handler if arg3 does not exist on the handler -->
<Handler name="old-handler-name" newName="new-handler-name">

<!—- If match set to 'false', the result of the criteria should be
negated. (!) -->
<Criteria match="false">

<Argument name="arg3"/>
</Criteria>

RS025 11.6 Setting Up Workflows for Product Development 12-7

Workflow handlers



Chapter 12: Workflow handlers

</Handler>
</Update>

<Update>
<!-- Add one or more handler arguments -->
<Handler name="old-handler-name">

<Add>
<Argument name="new-arg1" value="new-val1"/>
<Argument name="new-arg2" value="new-val2"/>

</Add>
</Handler>

</Update>

<Update>
<Handler name="old-handler-name">

<Modify>
<Argument name="arg1" value="val1" newName="new-arg1"
newValue="new-val1"/>

<!-- if newValue is not specified, copy over the old argument value to
new argument -->
<Argument name="arg2" value="val2" newName="new-arg2"/>

<!-- if newValue is empty, clear the value for new argument. If val3 is
a substring of original value, special care should be taken in
removing ',' -->
<Argument name="arg3" value="val3" newName="new-arg3" newValue=""/>

<!-- if new argument name is not specified, do not rename the argument,
but modify the argument value -->
<Argument name="arg8" value="val8" newValue="new-val8" />

<!-- Rename Handler Argument, keeping/copying-over the value -->
<Argument name="arg9" newName="new-arg9" />

<!-- Irrespective of the name of the argument, rename it to new-arg1
and copy the argument name as value of the new argument. If the new
argument name is already defined/added on the handler, append the
value to existing value of that argument with delimiter set in the
preference. -->
<Argument name="*" newName="new-arg11" newValue="$ARGNAME"/>

<!-- Replace the argument value by another value which includes the
original value. If value is a comma separated list,

the new value will be a comma separated list
with the static string (user:) added

to each value in the list. -->
<Argument name="user" newName="-assignee" newValue="user:$ARGVALUE"/>

<!-- index attribute will mention the arguments sequence in the
handler. name and index are mutually exclusive. -->

<Argument index="1" newName="year" newValue="$ARGNAME"/>
<Argument index="2" newName="week" newValue="$ARGNAME"/>
</Modify>

</Handler>
</Update>

12-8 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

<Update>
<!-- Rename Handler example. Rename "old-handler-name" handler to

"new-handler-name" for all instances of "old-handler-name" handler -->
<Handler name="old-handler-name" newName="new-handler-name">

</Update>

</Mapping>

Renaming of Teamcenter handlers, arguments, values, and keywords
Starting with Teamcenter version 10.1, many of the workflow handlers, their arguments, and accepted
argument values were changed to make them more consistent. The following handler names have
been changed as indicated:

Handler name prior to Teamcenter 10.1 New handler name beginning in Teamcenter 10.1

add-status EPM-set-status

adhoc-signoffs EPM-adhoc-signoffs

approve-service-structure SERVICEPROCESSING-approve-service-structure

ASB-attach-physical-components ASBUILT-attach-physical-components

ASM-attach-physical-components ASMAINTAINED-attach-physical-components

assert-signoffs-target-read-access EPM-assert-signoffs-target-read-access

auto-assign EPM-auto-assign

auto-assign-rest EPM-auto-assign-rest

auto-relocate-file SMP-auto-relocate-file

change-all-started-to-pending EPM-change-all-started-to-pending

check-condition EPM-check-condition

check-responsible-party EPM-check-responsible-party

check-signoff EPM-check-signoff

CR-assert-targets-checked-in EPM-assert-targets-checked-in

CR-assign-team-selector EPM-assign-team-selector

CR-change-group-owner EPM-change-group-owner

CR-change-target-group EPM-change-target-group

CR-change-target-group-owner EPM-change-target-group-owner

CR-check-item-status EPM-check-item-status

create-status EPM-create-status

CR-fill-in-reviewers EPM-fill-in-reviewers

CR-notify EPM-notify-report

debug EPM-debug

debug-rule EPM-debug-rule

demote EPM-demote

demote-on-reject EPM-demote-on-reject

disallow-adding-targets EPM-disallow-adding-targets

disallow-removing-targets EPM-disallow-removing-targets

RS025 11.6 Setting Up Workflows for Product Development 12-9

Workflow handlers



Chapter 12: Workflow handlers

Handler name prior to Teamcenter 10.1 New handler name beginning in Teamcenter 10.1

EPM-add-released-parts-queue RDV-add-released-parts-queue

EPM-assert-target-classified ICS-assert-target-classified

EPM-attach-assembly-components PS-attach-assembly-components

EPM-attach-mgcitemrev-targets MGC-attach-mgcitemrev-targets

EPM-attach-targets-AH ERP-attach-related-targets-AH

EPM-check-assembly-status-progression PS-check-assembly-status-progression

EPM-check-occ-notes PS-check-occ-notes

EPM-check-validation-result VAL-check-validation-result

EPM-check-validation-result-with-rules VAL-check-validation-result-with-rules

EPM-delete-ugcgm-markup RDV-delete-ugcgm-markup

EPM-export-AI-AH AI-export-AH

EPM-export-to-plmxmlfile PIE-export-to-plmxmlfile

EPM-generate-image RDV-generate-image

EPM-generate-ugcgm-drawing RDV-generate-ugcgm-drawing

EPM-make-mature-design-primary PS-make-mature-design-primary

EPM-mark-archive AR-mark-archive

EPM-perform-offline-export BC-perform-export

EPM-publish-target-objects PUBR-publish-target-objects

EPM-send-target-objects OBJIO-send-target-objects

EPM-set-condition-by-check-validation-result VAL-set-condition-by-check-validation-result

EPM-set-form-value-AH ERP-set-form-value-AH

EPM-tessellation-handler RDV-tessellation-handler

EPM-unpublish-target-objects PUBR-unpublish-target-objects

execute-follow-up EPM-execute-follow-up

inherit EPM-inherit

invoke-system-action EPM-invoke-system-action

invoke-system-rule EPM-invoke-system-rule

late-notification EPM-late-notification

notify EPM-notify

notify-signoffs EPM-notify-signoffs

release-asbuilt-structure ASBUILT-release-asbuilt-structure

release-asmaintained-structure ASMAINTAINED-release-asmaintained-structure

require-authentication EPM-require-authentication

schmgt-approve-timesheetentries SCHMGT-approve-timesheetentries

schmgt-revise-timesheetentries SCHMGT-revise-timesheetentries

schmgt-reject-timesheetentries SCHMGT-reject-timesheetentries

set-condition EPM-set-condition

set-duration EPM-set-duration

set-parent-result EPM-set-parent-result

set-status EPM-set-status

suspend-on-reject EPM-suspend-on-reject

12-10 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Handler name prior to Teamcenter 10.1 New handler name beginning in Teamcenter 10.1

system EPM-system

TCX-auto-approve-first-step TCRS-auto-approve-first-step

TCX-check-approver TCRS-check-approver

TCX-check-bomchild-statuslist TCRS-check-bomchild-statuslist

TCX-check-bom-precise TCRS-check-bom-precise

TCX-check-comps-against-pattern TCRS-check-comps-against-pattern

TCX-check-datasets TCRS-check-datasets

TCX-check-itemrev-status TCRS-check-itemrev-status

TCX-check-jobowner TCRS-check-jobowner

TCX-check-prev-itemrev-status TCRS-check-prev-itemrev-status

TCX-check-signoff TCRS-check-signoff

TCX-check-status TCRS-check-status

TCX-has-target-drawing TCRS-has-target-drawing

TCX-create-form TCRS-create-form

TCX-create-snapshot TCRS-create-snapshot

TCX-Create-Translation-Request TCRS-Create-Translation-Request

TCX-delete-dataset TCRS-delete-dataset

TCX-delete-log-datasets TCRS-delete-log-datasets

TCX-export-signoff-data TCRS-export-signoff-data

TCX-IRM-cleanfields TCRS-IRM-cleanfields

TCX-purge-dataset TCRS-purge-dataset

TCX-release-previous-itemrevs TCRS-release-previous-itemrevs

TCX-remove-targets-with-status TCRS-remove-targets-with-status

TCX-set-bom-precise TCRS-set-bom-precise

TCX-store-cr-data TCRS-store-review-data

TCX-trigger-approve-first-step TCRS-trigger-approve-first-step

trigger-action EPM-trigger-action

trigger-action-on-related-process-task EPM-trigger-action-on-related-process-task

validate-for-checkedout-asmaintained
-physicalpartrevision

ASMAINTAINED-validate-for-checkedout- physicalpartrevision

validate-for-checkedout-physicalpartrevision ASBUILT-validate-for-checkedout-physicalpartrevision

validate-for-class MROCORE-validate-for-class

validate-for-latest-asmphysicalpartrevision ASMAINTAINED-validate-for-latest-asmphysicalpartrevision

validate-for-physicalpartrevision ASBUILT-validate-for-physicalpartrevision

validate-for-unserviceable
-physicalpartrevision

ASMAINTAINED-validate-for-unserviceable-physicalpartrevision

validate-missing-asmaintained-structure ASMAINTAINED-validate-missing-asmaintained-structure

validate-missing-structure ASBUILT-validate-missing-structure

The following handler argument names have been changed or removed as indicated:

RS025 11.6 Setting Up Workflows for Product Development 12-11

Workflow handlers



Chapter 12: Workflow handlers

Handler name beginning in Teamcenter
10.1

Argument name prior to Teamcenter 10.1 New argument name beginning
in Teamcenter 10.1

EPM-adhoc-signoffs AUTO_COMPLETE -auto_complete

-auto_incomplete Argument removed.

-conventional-execution -ce

EPM-assign-team-selector -owner -assignee=$PROCESS_OWNER
-person -assignee=person:person-name

-resourcepool -assignee=resourcepool:pool-name

-user -assignee=user:user-name

EPM-attach-related-objects -status_allow -allowed_status

-status_disallow -disallowed_status

-att_type -attachment

-exclude_type -exclude_related_types

-type -include_related_types

EPM-auto-assign resource pool Argument removed.

-owner -assignee=$PROCESS_OWNER
-person -assignee=person:person-name

-resourcepool -assignee=resourcepool:pool-name

-user -assignee=user:user-name

subtasks -subtasks

EPM-auto-assign-rest list-of-users (legacy syntax) -assignee

EPM-auto-check-in-out -include_type -include_related_type

-user -assignee

The values can be $REVIEWERS
or $RESPONSIBLE_PARTY.

EPM-change-ownership -owner -assignee

The values can be $REVIEWERS
or $RESPONSIBLE_PARTY.

EPM-check-action-performer-role user-values -responsible

EPM-check-condition task-name -source_task

None. -decision

EPM-check-item-status -status -allowed_status

-type -include_related_type

EPM-check-object-properties -att_type -attachment

The values are now lowercase.

-props -property

-type -include_type

-values -value

EPM-check-related-objects -status -allowed_status

-target_type -include_type

EPM-check-signoff -QUORUM -quorum

EPM-check-signoff-comments -decision -decision

The values are now lowercase.

12-12 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Handler name beginning in Teamcenter
10.1

Argument name prior to Teamcenter 10.1 New argument name beginning
in Teamcenter 10.1

EPM-check-target-attachments -att_type -include_related_type

-attachtype -include_related_type

-status -allowed_status

-target -include_type

-type -include_type

EPM-check-target-object -status_allow -allowed_status

-status_disallow -disallowed_status

-status -disallowed_status

EPM-create-form -location -target_task

-default -property and -value

EPM-create-relation -primary -primary_attachment

-secondary -secondary_attachment

EPM-create-status status -status

EPM-create-sub-process -exclude_related_types -exclude_related_type

-exclude_types -exclude_type

-include_related_types -include_related_type

-include_types -include_type

-process_desc -description

EPM-debug comment -comment

EPM-debug-rule comment -comment

EPM-demote -level -target_task

EPM-display-form -form -source_task

EPM-execute-follow-up argument -command

EPM-fill-in-reviewers -level (legacy syntax) -target_task

-review_task_name -target_task

-reviewer -assignee

EPM-hold {true | false } Argument removed.

EPM-inherit PREVIOUS | CALLER | ROOT -task

The values are now $PREVIOUS
| $CALLER | $ROOT.

TARGET | REFERENCE | SIGNOFFS -attachment

The values are now lowercase.
Multiple values are separated by
commas.

EPM-invoke-system-action -signoff -comment

-system -command

EPM-invoke-system-rule debug -debug

-signoff -comment

-system -command

EPM-late-notification user -recipient

EPM-notify -comments -comment

RS025 11.6 Setting Up Workflows for Product Development 12-13

Workflow handlers



Chapter 12: Workflow handlers

Handler name beginning in Teamcenter
10.1

Argument name prior to Teamcenter 10.1 New argument name beginning
in Teamcenter 10.1

-attachment -attachment

The values are now lowercase and
the $ has been removed.

EPM-notify-report -comments -comment

EPM-notify-signoffs -comments -comment

log -log

-attachment -attachment

The values are now lowercase and
the $ has been removed.

EPM-set-condition $Query -query

All | Any | None -check_targets

The values are now lowercase.

-query_type -query_type

The values are now lowercase
and sub-process is now
sub_process.

EPM-set-duration day -day

hour -hour

minute -minute

week -week

year -year

EPM-set-parent-result true | false -value

EPM-set-property -exclude_types -exclude_type

-from_att_type -from_attach

-include_types -include_type

-props -property

-to_att_type -to_attach

-values -value

EPM-set-rule-based-protection named-ACL -acl

EPM-set-status APPEND | REPLACE | DELETE | RENAME -action

The values are now lowercase.

-f -status

RETAIN_RELEASE_DATE -retain_release_date

SET_EFFECTIVITY -set_effectivity

-t -new_status

EPM-set-task-result-to-property -target_type -include_type

-task_name -source_task

-target -target_task

EPM-system argument -command

EPM-trigger-action action -action

12-14 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Handler name beginning in Teamcenter
10.1

Argument name prior to Teamcenter 10.1 New argument name beginning
in Teamcenter 10.1

comment -comment

EPM-trigger-action-on-related
-process-task

-process_template -template

EPM-validate-target-objects -allowed_type -exclude_type

-disallowed_type -include_type

PS-attach-assembly-components -exclude_types -exclude_related_type

-include_types -include_related_type

TCRS-check-approver -A_level -a_task

-A_user -a_user

-A_jobowner -a_jobowner

-B_level -b_task

-B_user -b_user

-B_jobowner -b_jobowner

TCRS-check-signoff -level -task

TCRS-create-snapshot -RevRule -revision_rule

-SnapshotName -name

-SnapshotDescription -description

TCRS-set-bom-precise -RevRule -revision_rule

The following keyword names have been changed as indicated:

Keyword name prior to Teamcenter 10.1 New keyword name beginning in Teamcenter 10.1
$PROCESSGROUP $PROCESS_GROUP
$PROCESSOWNER $PROCESS_OWNER
$ROLEINGROUP $ROLE_IN_GROUP

For more information, see note below.
$ROOTTask $ROOT
ROOT $ROOT
$TARGETGROUP $TARGET_GROUP
$TARGETOWNER $TARGET_OWNER

Note

For the , , and handlers, use resourcepool:$GROUP::$ROLE instead of
$ROLE_IN_GROUP.

For the and handlers, use allmembers:$GROUP::$ROLE instead of $ROLE_IN_GROUP.

RS025 11.6 Setting Up Workflows for Product Development 12-15

Workflow handlers



Chapter 12: Workflow handlers

Handler argument values

Syntax for handler arguments and values

Define handler arguments and values using the Handlers dialog box.

When you select a handler name, the existing arguments and values for the selected handler populate
the argument table. You can enter additional arguments by typing argument and value data into the
table cells. To assign multiple values to a single argument, separate the values with commas or the
character specified by the EPM_ARG_target_user_group_list_separator preference. For example:

Argument Values
-relation IMAN_specification
-type UGMASTER, UGPART
-att_type target

Note

• Handler values are case sensitive and must be accurate to the letter.

• If an argument calls for the name of an object, attribute, or property defined in the
Business Modeler IDE, it must use the actual name, not its display name.

• If an argument value has a comma in its name, you must use the
EPM_ARG_target_user_group_list_separator preference to specify another
separator for multiple values.

For example, if you have an Engineering, Home Office group and use it as an
argument value, you must change the preference to use a different separator character,
such as a quotation mark (").

Keywords as argument values

What are handler keywords?

Keywords are special arguments that extract values from the system, inserting the data into the
handler's argument values in place of the keyword. Keyword syntax is the dollar sign ($) followed
by the keyword name. For example, $USER extracts the logon ID of the current user and inserts
that value into the handler argument.

Some keywords are common keywords. You can use common keywords with many
Teamcenter handlers. You can use some common keywords with custom handlers by using the
EPM_substitute_keyword and EPM_substitute_task_keyword ITK functions. Use of these
functions is illustrated within some of the sample workflow handlers delivered in the sample directory.

Other keywords are handler-specific keywords. You can handler-specific keywords only with specific
handlers. The documentation for each handler lists any handler-specific keywords that you can
use with that handler.

12-16 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Common keywords

Table The following table lists common keywords that you can use with many Teamcenter handlers
and with custom handlers by using the EPM_substitute_keyword ITK function.

Keyword Description
$USER Extracts the user ID of the current user.
$GROUP Extracts the group ID of the current user.
$ROLE Extracts the role of the current user.

The following table lists common keywords that you can use with many Teamcenter handlers and with
custom handlers by using the EPM_substitute_task_keyword ITK function.

Keyword Description
$PROCESS_OWNER Extracts the user ID of the owner of the current workflow

process.
$PROCESS_GROUP Extracts the group ID of the owner of the current workflow

process.
$TARGET_OWNER[[(Class)|
Type]]

Extracts the user ID of the owner of the current workflow
process’s target.

You can define an optional type or bracketed class in
square brackets to specify the type or class of target object
from which to extract the owner ID. If you do not define a
class or type, the system uses the class of ItemRevision
by default.

If the system finds more than one object, it returns the
owner ID from the first object.

For example, $TARGET_OWNER[(Dataset)] extracts the
owning user ID from the first dataset target found, and
$TARGET_OWNER[UGMASTER] extracts the owning
user ID from the first UGMASTER target found.

$TARGET_GROUP[[(Class)|
Type]]

Extracts the group ID of the owner of the current workflow
process’s target. Only the first owner is returned.

As with $TARGET_OWNER, you can provide a type or
bracketed class in square brackets to specify the type or
class of target object from which to extract the owning
group ID.

$TARGET_OWNERS[[(Class)|
Type1[,Type2,…]]]

Extracts the user IDs of the owners of the current workflow
process’s targets. Only the first owner is returned.

This keyword works the same as $TARGET_OWNER,
except that it returns a unique comma-separated list of the
different owning user IDs from all specified target types.

RS025 11.6 Setting Up Workflows for Product Development 12-17

Workflow handlers



Chapter 12: Workflow handlers

Keyword Description
$TARGET_GROUPS[[(Class)|
Type1[,Type2,…]]]

Extracts the group IDs of the owners of the current
workflow process’s targets.

This keyword works the same as $TARGET_OWNERS,
except it returns group IDs.

$ROLE_IN_GROUP Extracts the user’s current logged-on group ID and role in
the format of a resource string, for example, group::role.

Handler-specific keywords

The following table lists keywords that you can only use with specific handlers.

The documentation for each action handler and rule handler lists any handler-specific keywords
that you can use with that handler. You can search the handler documentation for a particular
handler-specific keyword to find all handlers that accept that keyword and to read a description of
its functionality.

Keyword Handlers
$ANALYST EPM-adhoc-signoffs

EPM-auto-assign

EPM-auto-assign-rest

EPM-assign-team-selector

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify
$CHANGE_IMPLEMENTATION_BOARD EPM-adhoc-signoffs

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify
$CHANGE_REVIEW_BOARD EPM-adhoc-signoffs

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify

12-18 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Keyword Handlers
$CHANGE_SPECIALIST1 EPM-adhoc-signoffs

EPM-auto-assign

EPM-auto-assign-rest

EPM-assign-team-selector

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify
$CHANGE_SPECIALIST2 EPM-adhoc-signoffs

EPM-auto-assign

EPM-auto-assign-rest

EPM-assign-team-selector

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify
$CHANGE_SPECIALIST3 EPM-adhoc-signoffs

EPM-auto-assign

EPM-auto-assign-rest

EPM-assign-team-selector

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify
$CURRENT_DATE EPM-set-property
$OWNER EPM-check-action-performer-role

EPM-late-notification
$PROCESS EPM-notify

EPM-notify-signoffs

RS025 11.6 Setting Up Workflows for Product Development 12-19

Workflow handlers



Chapter 12: Workflow handlers

Keyword Handlers
$PROJECT_ADMINISTRATOR EPM-adhoc-signoffs

EPM-auto-assign

EPM-auto-assign-rest

EPM-assign-team-selector

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify
$PROJECT_AUTHOR EPM-adhoc-signoffs

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify
$PROJECT_MEMBER EPM-adhoc-signoffs

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify
$PROJECT_TEAM_ADMINISTRATOR EPM-adhoc-signoffs

EPM-auto-assign

EPM-auto-assign-rest

EPM-assign-team-selector

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify
$PROPOSED_RESPONSIBLE_PARTY EPM-adhoc-signoffs

EPM-auto-assign

EPM-auto-assign-rest

EPM-assign-team-selector

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify

12-20 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Keyword Handlers
$PROPOSED_REVIEWERS EPM-adhoc-signoffs

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify
$REFERENCE EPM-attach-related-objects

EPM-create-form

EPM-create-relation

EPM-display-form

EPM-remove-objects

EPM-set-property

EPM-notify

EPM-notify-signoffs
$RELEASE_STATUS EPM-create-form

EPM-create-relation

EPM-display-form
$RESPONSIBLE_PARTY EPM-notify-report

EPM-check-action-performer-role

EPM-late-notification

EPM-notify
$REQUESTOR EPM-adhoc-signoffs

EPM-auto-assign

EPM-auto-assign-rest

EPM-assign-team-selector

EPM-fill-in-reviewers

EPM-notify-report

EPM-notify
$REVIEWERS EPM-fill-in-reviewers

EPM-notify-report

EPM-late-notification

EPM-notify

RS025 11.6 Setting Up Workflows for Product Development 12-21

Workflow handlers



Chapter 12: Workflow handlers

Keyword Handlers
$SIGNOFF EPM-create-form

EPM-create-relation

EPM-display-form
$TARGET EPM-attach-related-objects

EPM-check-target-attachments

EPM-create-form

EPM-create-relation

EPM-display-form

EPM-remove-objects

EPM-set-property

EPM-notify

EPM-notify-signoffs
$UNDECIDED EPM-notify-report

EPM-late-notification

EPM-notify

Use keywords to implement dynamic participants in handlers

You can use the following keywords to invoke dynamic participants:

$ANALYST $PROJECT_ADMINISTRATOR
$CHANGE_SPECIALIST1 $PROJECT_TEAM_ADMINISTRATOR
$CHANGE_SPECIALIST2 $PROJECT_AUTHOR
$CHANGE_SPECIALIST3 $PROJECT_MEMBER
$CHANGE_REVIEW_BOARD $REQUESTOR
$CHANGE_IMPLEMENTATION_BOARD

If you want to use your custom dynamic participants, follow these steps:

1. In Business Modeler IDE, create a child of the Participant business object.

2. For each child you create, associate a keyword in Business Modeler IDE.

3. In Workflow Designer, use the keyword you associated with a Participant business object child in
a handler.

The handler associates the keyword with the dynamic participant defined in and users with the
specified role.

12-22 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Configuring assigning participants automatically

You can configure your workflow to automatically assign participants with a set of Business Modeler
IDE constants that have conditions as values. You can also use assign participants by adding
workflow handlers that use properties that have participants as values.

Workflow constants

A set of constants is provided in the form:

<prefix><participant-name>AssignableCondition

The variable <prefix> is the Business Modeler IDE template prefix and <participant-name> is an
existing participant name.

Note

If the participant name also has a template prefix, the prefix appears twice.

For example, if the prefix is Fnd0 and the participant name is PROPOSED RESPONSIBLE PARTY,
the constant is Fnd0ProposedResponsiblePartyAssignableCondition.

The constants are for item revisions and change item revisions.

Workflow conditions

The values of the constants are conditions in the form:

is<participant-name>Assignable

For example, if the participant name is PROPOSED RESPONSIBLE PARTY, the condition is
isProposedResponsiblePartyAssignable.

This is used while assigning dynamic participants. Teamcenter gets the value of the
<prefix><participant-name>AssignableCondition constant to get the condition name to evaluate
before assigning the participant.

Search for condition names

You can search for the constant name given an object type and participant type using pattern
matching.

For example, to find a constant associated with an item revision and the Fnd0MyNewParticipant
participant, search for a constant that ends with Fnd0MyNewParticipantAssignableCondition. The
actual constant name is Fnd0Fnd0MyNewParticipantAssignableCondition.

If there are multiple matches, choose the one which has the same prefix as the prefix of the
participant name.

Creating constants and conditions

If you have your own participant types, you must create your own constants and conditions for them.

For example, if your template prefix is CUS1 and the new participant name is MyParticipant:

1. Create a participant named CUS1MyParticipant.

RS025 11.6 Setting Up Workflows for Product Development 12-23

Workflow handlers



Chapter 12: Workflow handlers

2. Create a constant named CUS1CUS1MyParticipantAssignableCondition with a value of
isMyParticipantAssignable.

The participant creation code looks up the constant and corresponding condition and evaluates it.

Assigning participants with workflow handlers

You can use the following workflow handlers when automatically assigning participants:

• EPM-assign-responsible-party-dynamic-participant

• EPM-assign-signoff-dynamic-participant

The following handlers can be used to get assignees from a property value:

• EPM-adhoc-signoffs

• EPM-assign-team-selector

• EPM-auto-assign

• EPM-auto-assign-rest

• EPM-fill-in-reviewers

You can use the user:PROP::property_name, resourcepool:PROP::property_name, or
allmembers:PROP::property_name values for the -assignee argument to get the name of the
assignee from a property of the target, reference, or schedule task.

You can find the object type with the -include_related_type, -exclude_related_type, -include_type,
-exclude_type, -from_relation, and -from_attach arguments.

For more information, see the full handler description.

Lists of values as argument values

Using lists of values (LOVs) in handler arguments

Some handlers have the ability to work on many objects, or may require many pieces of information
to fully define what it is required of them. In these cases, it is cumbersome to supply all of the
information as arguments or to add the handler several times to the same task, defining multiple
arguments each time.

In cases when a handler is placed several times in a workflow process on different tasks (or in
different workflow processes), adding many arguments to each instance of the handler is time
consuming. If arguments later need to be modified, they may need to be changed in every instance
of the handler, which is also time consuming.

Using LOVs as handler arguments is an efficient alternative. Standard LOVs supply a list of possible
values to form attributes. LOVs used in handler arguments are created in the same way, using
the Business Modeler IDE; however they do not need to be attached to any attributes. Each line
in the LOV supplies configuration information relevant to the specific handler it is used for and in
the format required by the handler.

12-24 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

LOV syntax

Any handler using an LOV accepts the -lov=lov-name argument, which specifies the LOV to be used.

The format of the data in a handler LOV is dependent on the information required by the handler,
therefore, it is not the same across all handlers that accept LOV arguments. Where similar types of
information are required, however, a consistent format is used. For example, when multiple fields of
information are required in an LOV line, the fields are separated by tildes (~). The individual handler
documentation describes the LOV line format required for that handler.

Note

The name of an LOV used with a handler can be anything, but the Business Modeler IDE
may enforce a particular naming convention, for example, an M4_ prefix. You can add the
handler name as a suffix to help identify LOVs used by handlers.

Defining multilevel object paths

With some handlers, you can specify a multilevel path for locating objects using relation type/object
type pairs, or relation type/class pairs. Typically, you use this method when working with LOVs.

The general syntax is:

relation.{type[,type]|(class)[!type]} . relation .{type[,type]|(class)[!type]}
You specify multiple types in a comma-separated list. For any relation or type field in the path, you
can use either an asterisk (*) or ALL as a wildcard to mean any relation, type, or class.

You can specify target and reference relations within a workflow process using the $TARGET and
$REFERENCE keywords.

For example, use multilevel object paths to find forms of a specific type attached to revisions within
revisions. Consider this scenario:

A change item revision is currently in a change process. The change object contains item
revisions with the Solution Items relation. Each of these solution revisions contain an Affected
Item Form type in a reference relation that needs to be attached to the change process. You can
identify these forms using this syntax:

$TARGET.(ItemRevision).CMHasSolutionItem.(ItemRevision)
.Reference.Affected Item Form

The previous example uses three relation pairs, as follows:

Pair Description
$TARGET.(ItemRevision) Finds objects of the class ItemRevision attached as

workflow process targets.
CMHasSolutionItem.(ItemRevision) For each of the revisions found by the first pair, the system

searches the CMHasSolutionItem relation to find objects
of the class ItemRevision.

Reference.Affected Item Form For each of the revisions found by the second pair, the
system searches the Reference relations to find objects of
the type Affected Item Form.

RS025 11.6 Setting Up Workflows for Product Development 12-25

Workflow handlers



Chapter 12: Workflow handlers

The individual handler documentation indicates which handlers accept this syntax.

LOV syntax example

This LOV example can be used with the EPM-attach-related-objects handler. Each line is a
separate value in the LOV.

Argument Values
-lov M4_EPM_attach_objects

The M4_EPM_attach_objects LOV contains this data:

Value Description
$TARGET.(ItemRevision).Specification.* Attach all objects in target

revision Specification relation
$TARGET.(ItemRevision).Specification.(Dataset).
Form.(Form)!UGPartAttr

Attach all forms attached to
datasets in target revision
Specification relation

$TARGET.(ItemRevision).PSBOMViewRevision.* Attach all BOM View Revisions in
target revision

$TARGET.(ItemRevision).Manifestation.(Form) Attach all forms in target revision
Manifestation relation

Differentiating between classes and types

The purpose of many handlers is to locate and/or act on specified types or classes. Specifying a
type directs the system to identify an object type. But specifying a class directs the system to identify
any of the many types within that class. Therefore, it can be difficult to distinguish between types
and classes.

For example, in the case of item revisions, some handlers perceive ItemRevision as a class of item
revisions, making it difficult to designate the ItemRevision type.

Some handlers have the ability to distinguish between a class and type definitively. These handlers
accept syntax that uses round brackets () to specify a class. For example, (ItemRevision) specifies
the class and ItemRevision specifies the type. When this bracket notation is accepted, an
exclamation point (!) can be used to exclude specific types, using this format:

(Class)[!Type1[!Type2[!…]]]

For example, given the four item types defined:

• Item
• Document
• Design
• Software

then:

(Item) Matches any object of the Item class.

12-26 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

(Item) ! Software Matches any object of the Item class except for the type
Software.

(Item) ! Document ! Item Matches any object of class Item except for the Document
and Item types.

Design Matches only the Design type.

The individual handler documentation indicates which handlers accept this syntax.

Specifying relations

Some relations for certain objects cannot be specified with standard generic relationship management
(GRM) relation types. For example, you cannot specify to select all the revisions in an item. The
following table lists available types of relations, including GRM relations and special relations.

Class Relation Description
Any GRM relation Identifies any GRM-related objects attached to

items.

For example: (Item).IMAN_reference
Revisions Identifies all revisions from items.

For example, to find all the datasets in the
IMAN_specification relation of all revisions in
any items found:

(Item).Revisions.*.IMAN_specification.
(Dataset)

Note

The type of revision is not relevant as
there is only one type of revision in
any item; therefore, an asterisk (*) is
used to specify any type.

Item

PSBOMView or BV Identifies all BOM views from items.

For example, to select all BOM views:

(Item). PSBOMView

Select only the view BOM views:

(Item).BV.BOMView Revision

RS025 11.6 Setting Up Workflows for Product Development 12-27

Workflow handlers



Chapter 12: Workflow handlers

Class Relation Description
Any GRM relation Identifies any GRM-related objects attached to

revisions.

For example, to identify all reference objects
from revisions:

(ItemRevision).IMAN_reference

Identifies all specification objects in document
revisions that are attached as requirements to
design revisions:

Design
Revision.IMAN_requirement.Document
Revision.IMAN_specification.*

Revision

PSBOMViewRevision or
BVR

Identifies all BOM view revisions from revisions.

Any GRM relation Identifies any GRM-related objects attached to
datasets.

For example:

(Dataset).IMAN_Rendering

Dataset

Any reference Identifies any objects attached as references
to datasets, such as UGPART-ATTR forms
attached to UGMASTER and UGPART datasets.

For example:

(Dataset).UGPART-ATTR
Folder * Identifies objects in folders.

For example, to identify all revisions in a folder:

(Folder).*.(ItemRevision)
Job $TARGET or Targets Identifies targets attached to a job.

For example:

(Job).$TARGET
$REFERENCE or
References

Identifies targets attached to a job.

For example:

(Job).$REFERENCE

Debugging handler data
The following handlers offer debugging functionality, enabled through the TC_HANDLERS_DEBUG
environment variable:

12-28 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• EPM-check-target-object

• EPM-validate-target-objects

• EPM-check-target-attachments

• EPM-attach-related-objects

• EPM-remove-objects

The debugging data displays in the system log file. Use the debugging information to solve small
usability issues, such as incorrect argument usage. You can also submit the data in incident reports
to customer service.

You can enable debugging functionality for all the above handlers and their subfunctions by setting
the TC_HANDLERS_DEBUG environment variable to ALL.

Alternatively, you can enable debugging functionality for specific handlers by entering one or more of
the above handler names as the value.

Action Handlers

RS025 11.6 Setting Up Workflows for Product Development 12-29

Workflow handlers



Chapter 12: Workflow handlers

AI-export-AH

DESCRIPTION
This handler has two modes of operation, depending on whether the required type
argument is used with or without additional arguments.

• When type is the only argument:

o When there already is an AIObject in the reference attachments, this handler
does nothing.

o When there is initially no AIObject in the reference attachments, this handler
creates a new AIObject of the specified type and a new CCObject of type
CCObject and name ERPObject. The handler creates a StructureContext
for each ItemRevison found in the target attachments. The Latest Working
revision rule is used in the StructureContext that is attached to the CCObject.

• When type is specified with at least one of the available optional arguments:

o Exports the objects found in target attachments to one or more AIObjects,
based on the settings of the optional arguments.

o Searches the reference attachments for an AIObject of the type specified
by the type argument.

■ When an AIObject is found, it is used. Otherwise this handler creates
an AIObject of the specified type.

The objects attached to the targets attachments can be filtered by the list
of types specified by targetTypes argument.

The types listed must be one of the following supported types:

◊ ItemRevision
◊ Item
◊ PSBOMView
◊ PSBOMViewRevision
◊ CCObject
◊ AppearanceGroup

If a targetTypes value is not provided, then all types are included.

o If the multipleAI value is equal to 1, the handler creates an AIObject for
each object in the target attachments.

o If the multipleAI value is equal to 0 and createRequests is equal to 1, the
handler creates a single AIObject with a new RequestObject for each object
in the target attachments.

o If createCC is equal to 1, the handler creates a CCObject of the type specified
by the ccType argument for non CC/SC objects in the target attachments,
and exports the CCObject.

SYNTAX
AI-export-AH -type=ai-object-type [-multipleAI= 0 |1] [-createCC= 0 |1 ]

12-30 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

[-ccType= cc-object-type] [-createRequests= 0 |1 ]
[-targetTypes= delimited list of object types by which to filter target attachments]

ARGUMENTS
-type
The type of AIObject to search for in the reference attachments or, if none are found,
the type of AIObject to be created. The created AIObject is attached to the root task.

-multipleAI
If equal to 0, creates a single AIObject. This is the default value.

If equal to 1, creates an AIObject for each object found in the target attachments.

-createCC
If set equal to 1, creates a CCObject with the type specified in the -ccType
argument. The default value is 0.

-ccType
The type of CCObject to be created.

-createRequests
If -multipleAI is equal to 0 and -createRequests is equal to 1, this handler creates
a single AIObject with a new RequestObject for each object in target attachments.
The default value is 0.

-targetTypes
Uses a delimited list of object types for filtering target attachments. The types listed
must be of the following supported types: ItemRevision, Item | PSBOMView |
PSBOMViewRevision | CCObject | AppearanceGroup.

The delimiter can be a colon (:) or a comma (,).

If no types are provided, all types are considered without filtering.

PLACEMENT
This handler can be placed on any task.

RESTRICTIONS
None.

EXAMPLES
Select an ItemRevision and submit to a workflow with this handler. This handler
creates and exports the AIObject, and then attaches it to the root task.

Argument Values
-type NX_AI
-createCC 1
-ccType CCObject

RS025 11.6 Setting Up Workflows for Product Development 12-31

Workflow handlers



Chapter 12: Workflow handlers

VAL-set-condition-result-overrides

DESCRIPTION
If there are unapproved result override requests for the workflow targets, sets the
condition to EPM_RESULT_True. If there are no unapproved result override requests,
sets the condition to EPM_RESULT_False.

SYNTAX
VAL-set-condition-result-overrides

ARGUMENTS
None.

PLACEMENT
Place on the Start action of a Condition task.

RESTRICTIONS
This handler assumes that all target objects, reference objects, and status types are
attached to the root task.

12-32 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

VAL-set-condition-by-check-validation-result

DESCRIPTION
This action handler can be configured to set the Condition task result status using
Validation Rule and Validation Object applications a from workflow process. It
can also check target NX datasets validation result status. To add this handler to a
workflow process template, the user must have a well-defined Validation Rule set file
that best describes the business process in terms of which NX datasets should run
checks at certain times and the conditions that the check must meet.

The handler sets the Condition task result based on the overall result status of the
verification (true when all target NX datasets satisfy all rules defined in the Validation
Rule set file). The handler logs validation rules and validation result checks. The
format of the log file name is First-target-name_Time-stamp. The log file is stored in
the directory specified by the TC_TMP_DIR environment variable. If TC_TMP_DIR is
not defined, it is stored in the %TEMP% directory (Windows) or /tmp directory (Linux).

When a Condition task template is configured with this action handler, no other
saved queries or handlers should be added to the task template. The logic
that this handler uses to check validation results is the same logic used by the
VAL-check-validation-result-with-rules rule handler.

SYNTAX
VAL-set-condition-by-check-validation-result
-rule_item_revision=item-revision-id [-current_event=value]
[-pass_item_revision_only] [-ref_log]

ARGUMENTS
-rule_item_revision
The item revision ID that the validation rule set dataset is attached under.

-current_event
A value that is used to select validation rules from the rule file by comparing with the
event values list of each rule. When this argument is not provided, all rules from the
rule file are selected at the first step. When a rule is defined without the event values
list, then the rule is selected at the first step. The event values list of a rule can contain
an asterisk (*) as a wildcard. The event values list also can be marked as exclusive (it
is inclusive by default).

-pass_item_revision_only
When this argument is added to the input list, only item revision targets are passed to
the handler. NX datasets are searched from each item revision and verified according
to rules.

-ref_log
If this argument is present and the validation fails, the validation results log is created
and the log is attached, but no warning is displayed.

If this argument is not present and the validation fails, the validation results log is
created, the log is not attached, and no warning message is displayed.

If the validation passes, the validation results log is not created and no message
is displayed.

RS025 11.6 Setting Up Workflows for Product Development 12-33

Workflow handlers



Chapter 12: Workflow handlers

PLACEMENT
Place under the Complete action.

RESTRICTIONS
• -rule_item_revision cannot be NULL.

• You cannot customize the path names that branch from the Condition task. They
must be either T or F.

12-34 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

VAL-reject-result-overrides

DESCRIPTION
Sets all requested result overrides to the Rejected state for the workflow targets when
the perform-signoffs task is approved.

SYNTAX
VAL-reject-result-overrides

ARGUMENTS
None.

PLACEMENT
Place on the Perform action of the perform-signoffs subtask of a Review task.

RESTRICTIONS
This handler should be used with the perform-signoffs task of the
OverrideReviewTask template. This handler assumes that all target objects,
reference objects, and status types are attached to the root task.

RS025 11.6 Setting Up Workflows for Product Development 12-35

Workflow handlers



Chapter 12: Workflow handlers

VAL-approve-result-overrides

DESCRIPTION
Sets all requested result overrides to the Approved state for the workflow targets
when the perform-signoffs task is approved.

SYNTAX
VAL-approve-result-overrides

ARGUMENTS
None.

PLACEMENT
Place on the Perform action of the perform-signoffs subtask of a Review task.

RESTRICTIONS
This handler should be used with the perform-signoffs task of the
OverrideReviewTask template. This handler assumes that all target objects,
reference objects, and status types are attached to the root task.

12-36 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TSTK-CreateTranslationRequest

DESCRIPTION
Creates a new translation request for all datasets matching the type specified using
the translator specified with the provider and service name. If more than one dataset
exists in the item revision, multiple translation requests are created.

This handler does not create translation requests for custom types.

Note

NX datasets containing drawing sheets must be pasted into the Target
folder for nxtocgmdirect to create CGM files.

The target of the handler must be an item revision. The handler traverses
the item revision to look for the dataset that was specified in the handler
definition.

SYNTAX
TSTK-CreateTranslationRequest -ProviderName= UGS -ServiceName=
nxtopvdirect -Priority=1 -DatasetTypeName=UGPART

ARGUMENTS
-ProviderName
Creates a new translation request for all datasets with the specified translator provider
name.

-ServiceName
Creates a new translation request for all datasets with the specified service name.

-Priority
Defines the priority assigned to the new translation request.

-DatasetTypeName
Specifies the dataset name for the selected workflow and item revision. Custom types
cannot be specified.

PLACEMENT
The Start or Complete action.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-37

Workflow handlers



Chapter 12: Workflow handlers

TCRS-trigger-approve-first-step

DESCRIPTION
Initiates the approval after an auto-approve-first step is done, so that it is done only
when the workflow is started (not after a reject).

SYNTAX
TCRS-trigger-approve-first-step

ARGUMENTS
None.

PLACEMENT
Place on the Start action of the root task.

RESTRICTIONS
None.

12-38 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-store-review-data

DESCRIPTION
Stores the workflow approver’s information (logon ID) and the approval date of the
workflow task into the item revision master form or the UGPartAttribute form.

SYNTAX
TCRS-store-review-data -name=attribute-name -date=attribute-name-date
[-mode=signoff | owner | modifier | delete] [-dest=IRM | UGPartAttr] [-person]

ARGUMENTS

Parameter Description Required
-name Stores the approver’s logon name.

This attribute should be of type
string and should have sufficient
length.

Yes

-date Stores the approval date of the
task. This attribute should be
of type string and should have
sufficient length.

Yes

-mode Valid values are:

• signoff: Approver and date
approved of the current level.
This is the default value.

• owner: Owners and date
created.

• modifier: Last modified user
and modification date.

• delete: Previous attribute
contents will be deleted.

No

-dest Defines the destination form type.
Valid values are IRM (item revision
master form) and UGPartAttr
(UGPartAttribute form). IRM is the
default value.

No

-person If this parameter is used, the actual
person name of the signoff person
is used instead of the user ID.

The values for the argument are
any of the person’s attributes, such
as address, city, state, zip code,
or country.

No

RS025 11.6 Setting Up Workflows for Product Development 12-39

Workflow handlers



Chapter 12: Workflow handlers

PLACEMENT
Set in the Complete action. If -mode=signoff, set in the Complete action of the
perform-signoffs task.

Set in the Undo or Start action. If -mode=delete , set in the Undoor Start action of
the perform-signoffs task. Placement on the Undo action is done on a Review task.

Note

The workflow can be designed so when a task is demoted on the
Reject action, this handler is called. This can be achieved by
placing EPM-demote-on-reject handler on the Perform action of the
perform-signoffs task. A Reject action causes a demotion to the previous
task, invoking the Undo action.

RESTRICTIONS
All item revisions must have write privileges at the level that the handler is used.

EXAMPLES
This example shows how to store the workflow approver's information into the item
revision master form.

Argument Values
-name user_data_1
-date user_data_3
-mode signoff

12-40 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-setstatus-EngOrder-folder

DESCRIPTION
For Teamcenter Rapid Start, releases the contents of a specific engineering order
folder. It is commonly used to assign the obsolete status to an obsolete item revision
during an engineering order process.

For information for applying a status to other objects, see the EPM-set-status handler.
SYNTAX

TCRS-setstatus-EO-folder [-eo_folder=relation-name] -status=status-name
-type=EO-revision-type

ARGUMENTS

Parameter Description Default Required
-eo_folder Relation name of

the engineering
order pseudofolder.
For example, the
relation name of the
New Parts folder is
TCX_New_Parts.

TCX_Obsolete_Parts No

-status Status for the
engineering order.

90 Yes

-type Type of the engineering
order revision (for
example, Eng_Order
Revisions).

Revision Yes

PLACEMENT
Before setting the status on the engineering order.

RESTRICTIONS
None.

EXAMPLES
This example sets a release status of 90 to the item revisions in the obsolete folder.

Argument Values
-eo_folder TCX_Obsolete_Parts
-status 90
-ype Eng_Order Revisions

RS025 11.6 Setting Up Workflows for Product Development 12-41

Workflow handlers



Chapter 12: Workflow handlers

TCRS-set-bom-precise

DESCRIPTION
Switches all target BOM view revisions to precise or imprecise.

SYNTAX
TCRS-set-bom-precise [-revision_rule=config-rule] [-precise=true|false]

ARGUMENTS

Parameter Description Default Required
-revision_rule Name of the configuration rule.

Examples:

• Latest Released

• Latest by Creation Date

• Precise; Working

Default
configuration
rule of the
user.

No

-precise Set to true for precise BOM view
revisions or false for imprecise
BOM view revisions

true No

PLACEMENT
Must be set in the Start or Finish action.

RESTRICTIONS
All BOM view revisions must have write privileges at the level that the handler is used.

EXAMPLES
This example sets the target BOM view revisions to -precise with a revision rule of
Latest Released.

Argument Values
-revision_rule Latest Released
-precise true

12-42 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-remove-targets-with-status

DESCRIPTION
Allows you to remove target objects with specified status from the workflow process.

SYNTAX
TCRS-remove-targets-with-status -status= status-name

ARGUMENTS

Parameter Value Required
-status Status of objects to remove. Yes

PLACEMENT
Place on the Start action of the root task.

RESTRICTIONS
None.

EXAMPLES
This example removes all objects with a status of 60 from the workflow process.

Argument Values
-status 60

RS025 11.6 Setting Up Workflows for Product Development 12-43

Workflow handlers



Chapter 12: Workflow handlers

TCRS-release-previous-itemrevs

DESCRIPTION
Sets a status on the current revision's preceding item revisions, dependent on their
current status. Subsequently, the specified item revisions can optionally be sent into a
workflow.

SYNTAX
TCRS-release-previous-itemrevs -status= status-name
-rev_status=status-name[, status-name] [-latest]
[-proc_name=workflow-process-name] [-job_name=workflow-job-name]
[-job_desc=workflow-job-description]

ARGUMENTS

Parameter Description Default Required
-status Assigns a release status. If this

parameter is set to $NONE,
you can start a workflow on
the previous revision without
assigning a status.

None Yes

-rev_status Use commas or the
character specified by the
EPM_ARG_target_user_group_list_separator
preference to separate the list
of valid status names. Use
any to use all status names or
none to leave all item revisions
without a status.

None No

-latest If this parameter is used, the
rev_status parameter applies
to the last valid status. If it is not
used, the rev_status parameter
applies to all statuses.

None No

-proc_name Name of the workflow that
will start according to the item
revisions.

None No

-job_name Job name for this workflow. job_timestamp No

-job_desc Job description for this workflow. Empty string No

PLACEMENT
Place before the ADD status (preferably in the Start action of the Add Status task).

RESTRICTIONS
None

12-44 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EXAMPLES
This example releases all previous item revision with a status of 60.

Argument Values
-status 60

This example releases the previous item revision which has a latest status of 30,
with a status of 60.

Argument Values
-status 60
-rev_status 30
-latest

This example releases the previous item revision which has a latest status of 30,
with a status of 60.

Argument Values
-status 60
-proc_name New Process 1

RS025 11.6 Setting Up Workflows for Product Development 12-45

Workflow handlers



Chapter 12: Workflow handlers

TCRS-purge-dataset

DESCRIPTION
Allows you to purge all previous versions of a dataset. All datasets that are a target of
the EPM task are purged.

SYNTAX
TCRS-purge-dataset

ARGUMENTS
None.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
All datasets that require purging must be a target to the EPM task.

12-46 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-IRM-cleanfields

DESCRIPTION
Allows you to delete the values of item revision master form attributes.

The attribute names must be defined as a Teamcenter preference. Create
a Teamcenter preference called EXPRESS_IRM_cleanfieldsrelease, where
release is the value defined in the -block parameter. For example, define the
EXPRESS_IRM_cleanfieldsrelease preference values as follows:

• TCX_Rel_No

• TCX_Rel_Txt

The field names must match the real attribute name, not the display names.

When the handler is run, the values stored in the Release No and Release text fields
of the item revision master form are deleted.

SYNTAX
TCRS-IRM-cleanfields -block=blockname

ARGUMENTS

Parameter Value Default Required
-block Any value. Yes

PLACEMENT
Requires no specific placement.

RESTRICTIONS
All item revisions must have write privileges at the level that the handler is used.

EXAMPLES

Argument Values
-block release

RS025 11.6 Setting Up Workflows for Product Development 12-47

Workflow handlers



Chapter 12: Workflow handlers

TCRS-export-to-tcxmlfile

DESCRIPTION
Exports targets and references to a TC XML file.

SYNTAX
TCRS-export-to-tcxmlfile -option_set=export-option-set -filename=export-file-name
[-attach= target | reference | both]

ARGUMENTS

Parameter Description Required
-option_set Specify the name of the transfer

option set when when exporting
the objects.

Yes

-filename TC XML file name for the
exported objects.

Yes

-attach Object attachments to be
exported from the process
target and/or reference folder.

target | reference | both

No

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
This example shows how to export targets of the workflow to TC XML file with name of
"ExportFileName", using the TIEConfiguredExportDefault transfer option set.

Argument Values
-option_set TIEConfiguredExportDefault
-filename ExportFileName
-attach target

12-48 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-export-signoff-data

DESCRIPTION
Maps the workflow signoff information, such as the approver's name and the approval
date, in the title block of a 2D drawing dataset. Once the signoff information is mapped
on the 2D CAD file, this handler converts the native CAD file into a PDF dataset using
a conversion utility. The PDF dataset is an exact copy of the 2D CAD drawing file.

Note

Currently, this handler only supports Solid Edge draft files. This handler is
dependent on a Solid Edge conversion utility, which can be downloaded
from GTAC at the following location:

https://download.industrysoftware.automation.siemens.com/solid_edge/
SEEC_Workflow_PDF_Generation/

Use the short path convention in the values of SE_TO_PDF_WORKING_DIR
and SE_TO_PDF_EXECUTABLE_DIR.

This workflow handler can be used in both Teamcenter and Teamcenter
Rapid Start workflows.

SYNTAX
TCRS-export-signoff-data [-person] [-tif] [-replace]

ARGUMENTS

Parameter Description Required
-person Prints the person name on the

PDF file instead of the user
name.

No

-tif Generates a TIF dataset
instead of a PDF dataset.

No

-replace Replaces any existing PDF
dataset that may have been
created by a previous execution
of this handler.

No

PLACEMENT
This handler must be placed after a Release task template. The item revision must
be released before this handler can be run. This is necessary to gather all the signoff
information for the workflow.

RESTRICTIONS
• All item revisions must have a release status before this handler can be run.

• Create the following preferences before using this handler:

o SE_TO_PDF_WORKING_DIR

Specifies the staging location where the PDF-generation utility is run.

RS025 11.6 Setting Up Workflows for Product Development 12-49

Workflow handlers



Chapter 12: Workflow handlers

For example:

SE_TO_PDF_EXECUTABLE_DIR=C:\Progra~1\Solide~1\Program\
SEEC_WorkFlow_PDF_Generation.exe

o SE_TO_PDF_EXECUTABLE_DIR

Specifies the location of the SEEC_WorkFlow_PDF_Generation conversion
utility.

For example:

SE_TO_PDF_EXECUTABLE_DIR=C:\Progra~1\Solide~1\Program\
SEEC_WorkFlow_PDF_Generation.exe

Note

Use the short path convention in the
values of SE_TO_PDF_WORKING_DIR and
SE_TO_PDF_EXECUTABLE_DIR.

o SE_PDF_GEN_WAITING_PERIOD

Specifies the number of seconds the handler should wait for the PDF file
to be generated.

For example:

SE_PDF_GEN_WAITING_PERIOD=20

• Set the following preferences to the indicated values:

o TC_audit_manager=ON

o TC_audit_manager_version=3

EXAMPLES
In following example -person and -replace arguments are specified. This converts the
attached 2D draft dataset into PDF. It also retrieves the workflow signoff information,
such as the signoff user name, signoff date, and so on. The signoff user name is
replaced by the person name of signoff user and the generated PDF has the person
name in the title block.

Argument
-person
-replace

12-50 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-delete-log-datasets

DESCRIPTION
Deletes all datasets with a given name and/or description attached to the root task
as references. This handler is mainly used for deleting unnecessary log datasets
previously created by other rule handlers.

SYNTAX
TCRS-delete-log-datasets [-name=name] [-desc=description]

ARGUMENTS

Parameter Value Required
-name Name of the dataset. Yes, if -desc is not

provided.
-desc Description of the dataset. Yes, if -name is not

provided.

PLACEMENT
Place the handler on an action of the root task that occurs after the datasets are
created.

RESTRICTIONS
None.

EXAMPLES

Syntax Description
TCRS-delete-log-datasets
-name=CheckBomChildStatus

This example shows how to delete
all log datasets with the name
CheckBomChildStatus.

TCRS-delete-log-datasets -desc=
HANDLER_LOG

This example shows how to delete
all log datasets with the description
HANDLER_LOG.

TCRS-delete-log-datasets
-name=CheckBomChildStatus
-desc= HANDLER_LOG

This example shows how to delete
all log datasets with the name
CheckBomChildStatus and the
description HANDLER_LOG.

RS025 11.6 Setting Up Workflows for Product Development 12-51

Workflow handlers



Chapter 12: Workflow handlers

TCRS-delete-dataset

DESCRIPTION
Allows you to delete a dataset attached to an item revision. You can also delete the
named reference of any target dataset.

SYNTAX
TCRS
-delete-dataset -dataset_type=dataset-type
-relation=relation-type
[-reference=named-reference-type]

ARGUMENTS

Parameter Value Required
-dataset_type Defines dataset type to be deleted. Yes
-relation Defines relation between target object

and specified dataset type.
Yes

-reference Defines named reference type of the
dataset to be deleted.

No

To delete the dataset and the attached named reference, use the -dataset_type and
-relation arguments only.

To delete only the named reference, use all three arguments.

Note

If you delete a dataset, it should be added as a workflow target.

If you delete a named reference, the dataset containing the reference
should be added as a workflow target.

PLACEMENT
Must be set in the Start or Complete action.

RESTRICTIONS
All item revisions must have write privileges at the level that the handler is used.

EXAMPLES
This example shows how to delete Text named reference of Text dataset with
IMAN_reference relation to target object.

Argument Values
-dataset_type Text
-relation IMAN_reference
-reference Text

12-52 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-Create-Translation-Request

DESCRIPTION
For Teamcenter Rapid Start, creates a translation request. All datasets attached to the
item revision are translated into a printer-friendly format (PDF, HPGL, or TIFF). The
translated datasets are then attached to the item revision.

SYNTAX
TCRS-Create-Translation-Request -pr [-tr=ONDEMAND | CHECKIN | IMPORT]
[-MS=msoffice-translation] [-UG=nx-translation] [-SE=solid-edge-translation]

ARGUMENTS

Parameter Value Default Required
-pr The value can be 1

to 5. The greater the
number, the higher the
priority in the translation
schedule.

3 No

-tr [ONDEMAND
| CHECKIN
| IMPORT]

Categorizes the reason
for the translation
request.

ONDEMAND No

-MS Defines Microsoft
Office translations.
For example, to convert
Microsoft Office to PDF,
the value should be pdf.

pdf No

-UG Defines NX translations.
For example, to convert
NX to PDF, the value
should be pdf. Valid
values are:

• cgm

• hpg

• jt

• pdf

• tif

hpg No

RS025 11.6 Setting Up Workflows for Product Development 12-53

Workflow handlers



Chapter 12: Workflow handlers

Parameter Value Default Required
-SE Used to define Solid

Edge translations. For
example, to convert
Solid Edge to PDF, the
value should be pdf.
Valid values are:

• bmp

• dwg

• dxf

• emf

• igs

• jpg

• jt

• pdf

• plmxml

• sat

• step

• stl

• tif

• xgl

• xt

jt No

PLACEMENT
Place on the Start action of the root task.

RESTRICTIONS
None.

EXAMPLES
This example shows how to create a translation request for all the Solid Edge datasets
attached to the item revision to PDF file.

Argument Values
-SE pdf

12-54 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-create-snapshot

DESCRIPTION
Creates a snapshot of the target BOM view revision. It adds a folder as a reference
under the job and as a reference under the item revision.

SYNTAX
TCRS-create-snapshot -revision_rule=rule-name -name=snapshot-name
[-description=snapshot-description]

ARGUMENTS

Parameter Value Default Required
-revision_rule Defines the name of the revision

rule to be applied for BOM
traversal.

Value

-name Defines the name of snapshot. "Snapshot"+Object
name

Yes

-description Defines the description of
snapshot.

No

PLACEMENT
Requires no specific placement.

RESTRICTIONS
All item revisions must have write privileges at the level that the handler is used.

EXAMPLES
This example shows how to create snapshot with name 'MySnapshot', using Precise
or Latest Working revision rule.

Argument Values
-revision_rule Precise; Latest Working
-name MySnapshot

RS025 11.6 Setting Up Workflows for Product Development 12-55

Workflow handlers



Chapter 12: Workflow handlers

TCRS-Create-Print-Requests

DESCRIPTION
For Teamcenter Rapid Start, prints datasets at the server installation. It can be used on
items, item revisions, or datasets. When used on items or item revisions, it prints all the
datasets that are attached to them. This handler comes with the Server Print feature.

SYNTAX
TCRS-Create-Print-Requests [-printername] [-watermark]

ARGUMENTS

Parameter Value Default Required
-printername Defines the name and

path to the printer.
The default printer
name from the
TcX_Server_
Printers
preference.

No

-watermark Specifies the watermark
text for the printed
output.

No

PLACEMENT
Place on the Complete action.

RESTRICTIONS
None.

EXAMPLES
This example shows how to print the datasets that are attached to target object of
workflow with the watermark "My water mark."

Argument Values
-printername My printer
-watermark My water mark

12-56 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-create-form

DESCRIPTION
Creates a new form and attaches it to the item revision for all the target revisions. You
can specify the form type and the type of relation that is used to attach the form to
the item revision.

SYNTAX
TCRS-create-form -form_type=form [-rev_type=item_rev_type]
[-description=description] [-name=name] [-relation]
[-separator=separator]

ARGUMENTS

Parameter Description Default Required
-form_type Valid type of form. None Yes
-rev_type Determines the item revision

type under which the form is to
be created. This item revision
type must relate to one of the
defined item types.

ItemRevision No

-description Description of the form. Empty string No
-name Name of the form to be created.

If this parameter is not specified,
the default form name is used.

Item_id + separator
+ Rev_ID

No

-relation Relation used to attach the form
to the item revision. This must
be a valid relation type between
a form and a revision.

IMAN_reference No

-separator Separator between the item ID
and revision ID if the parameter
name was not indicated.

Minus sign (-) No

PLACEMENT
Must be set in the Start or Complete action.

RESTRICTIONS
All item revisions must have write privileges at the level that the handler is used.

Only one form of a form_type can be created and attached to the target revision by
this handler. If the item revision already a form of the specified form_type attached, a
new form of that form_type cannot be added.

EXAMPLE
This example shows how to create a form of My Form Type, form name MyForm, and
attach the form to target item revision using EPM_reference relation.

Argument Values
-form_type My Form Type
-name MyForm

RS025 11.6 Setting Up Workflows for Product Development 12-57

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-rev_type ItemRevision
-relation IMAN_reference

12-58 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-auto-approve-first-step

DESCRIPTION
Automatically approves the first task with this handler attached. Use this handler only
when the TCRS-trigger-approve-first-step handler is placed on the root task. This
handler only works the first time. If the task starts again, Teamcenter Rapid Start does
not auto approve the first task.

SYNTAX
TCRS-auto-approve-first-step

ARGUMENTS
None.

PLACEMENT
Place on the Start action of the perform-signoffs task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-59

Workflow handlers



Chapter 12: Workflow handlers

SMP-auto-relocate-file

DESCRIPTION
Relocates all released datasets of a job to a specified directory. Teamcenter does not
automatically register this handler. Users have to register and modify the handler code
to suit their requirements, using the sample code provided. For more information about
using this handler and to reference the sample code, see the Server Customization.

12-60 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

SERVICEPROCESSING-approve-service-structure

DESCRIPTION
Runs an approval process for SLM service structures.

SYNTAX
SERVICEPROCESSING-approve-service-structure

ARGUMENTS
None.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
Use only for approval of SLM service structures inheriting from a transaction element.

RS025 11.6 Setting Up Workflows for Product Development 12-61

Workflow handlers



Chapter 12: Workflow handlers

SERVICEFORECASTING-approve-ma-extension

DESCRIPTION
Approves a change in a maintenance action due date in Service Scheduler.

SYNTAX
SERVICEFORECASTING-approve-ma-extension
-prop=ssf0ExtensionApproval -value=Approved

ARGUMENTS
-prop
Specifies the property to be updated. The only valid property for this handler is
ssf0ExtensionApproval.

-value
Specifies the value for the property. The only valid value for this handler is Approved.

PLACEMENT
Place on the Start action of a task that follows the approval path of a Review task.

RESTRICTIONS
None.

EXAMPLES
• Approves the request to change a maintenance action due date.

Argument Values
-prop ssf0ExtensionApproval
-value Approved

12-62 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

SCHMGT-sync-schedule-attachments

DESCRIPTION
Synchronizes the change attachments of the parent schedule task with the workflow’s
change attachments. The change attachments of the schedule tasks are the same
as that of the workflow after executing this handler if no error is encountered during
the operation.

This handler works with remote schedule tasks only. The workflow does not inherit the
change relations for local schedule tasks.

SYNTAX
SCHMGT-sync-schedule-attachments [-attachment= attachment-types ]

ARGUMENTS
-attachment
(Optional) Specify one or more of the following change attachment types to
synchronize.

• problem_item

• solution_item

• impacted_item

Separate multiple attachment types with commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

If this argument is not specified, all three change attachments types are synchronized.

PLACEMENT
Place on the Start or Complete action of any task. Do not place on the Perform action.

Because this handler invokes Multi-Site operations, Siemens PLM Software
recommends that you place this handler on a task marked for background processing.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-63

Workflow handlers



Chapter 12: Workflow handlers

SCHMGT-revise-timesheetentries

DESCRIPTION
Retrieves the target objects, the scheduled task, and the corresponding schedule, for
the TimeSheetRevise workflow process. The minutes from the time sheet entry are
updated in the scheduled task.

The TimeSheetRevise workflow is run from Schedule Manager. This handler can only
be used within the TimeSheetRevise workflow process template. Do not add this
handler to any other workflow process template.

SYNTAX
SCHMGT-revise-timesheetentries

ARGUMENTS
None.

PLACEMENT
By default, this handler is placed in the correct location of the TimeSheetRevise
workflow process template. Do not change the placement.

RESTRICTIONS
This handler can only be used within the TimeSheetRevise workflow process
template. Adding this handler to any other workflow process template causes the
workflow process to fail.

12-64 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

SCHMGT-reject-timesheetentries

DESCRIPTION
Retrieves the target objects, the scheduled task, and the corresponding schedule, in
the reject branch of the TimeSheetApproval workflow process. The minutes from the
time sheet entry are updated in the scheduled task.

The TimeSheetApproval workflow is run from Schedule Manager. This handler can
only be used within the TimeSheetApproval workflow process template. Do not add
this handler to any other workflow process template.

SYNTAX
SCHMGT-reject-timesheetentries

ARGUMENTS
None.

PLACEMENT
By default, this handler is placed in the correct location of the TimeSheetApproval
workflow process template. Do not change the placement.

RESTRICTIONS
This handler can only be used within the TimeSheetApproval workflow process
template along the reject path. Adding this handler to any other workflow process
template causes the workflow process to fail.

RS025 11.6 Setting Up Workflows for Product Development 12-65

Workflow handlers



Chapter 12: Workflow handlers

SCHMGT-approve-timesheetentries

DESCRIPTION
Retrieves the target objects, the scheduled task, and the corresponding schedule, in
the approve branch of the TimeSheetApproval workflow process. The minutes from
the time sheet entry are updated in the scheduled task.

The TimeSheetApproval workflow is run from Schedule Manager. This handler can
only be used within the TimeSheetApproval workflow process template. Do not add
this handler to any other workflow process template.

SYNTAX
SCHMGT-approve-timesheetentries

ARGUMENTS
None.

PLACEMENT
By default, this handler is placed in the correct location of the TimeSheetApproval
workflow process template. Do not change the placement.

RESTRICTIONS
This handler can only be used within the TimeSheetApproval workflow process
template along the approval path. Adding this handler to any other workflow process
template causes the workflow process to fail.

12-66 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

SAP-upload-AH

DESCRIPTION
Calls the script defined in the Transfer_script global setting. This script calls a
third-party upload program to update the ERP system.

This action handler depends on the Send_file_format global setting.

The upload program reads the data from the transfer file and updates the ERP
database. The action handler passes the following arguments to the upload program:

• Transfer file path/name

Set by the Send_file_path global setting.

• Response file path/name

Set by the Response_file_path global setting.

Note

This handler invokes the upload program and exits with success status,
regardless of the success or otherwise of the upload itself. Success or failure
of upload is logged in the ERP logfile dataset. The ERP-post-upload-AH
handler must then be called to process the outcome of the upload.

SYNTAX
SAP-upload-AH

ARGUMENTS
None.

PLACEMENT
Place on the Perform Signoff task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-67

Workflow handlers



Chapter 12: Workflow handlers

SAP-set-valid-date-AH

DESCRIPTION
Copies the Effect In date from the release status object attached to the process and
adds it to the valid_from box of all BOMHeader forms attached to the process using
transfer folders. This handler is only required if you want to store the Effect In date
persistently on the form. Use the special effect_in_date keyword to obtain the value
for the transfer.

If the date is not set or there is no release status attached to the process, today's
date is used.

Note

This handler requires the valid_from attribute to exist in the form type with
erp_object ="BOMHeader".

SYNTAX
SAP-set-valid-date-AH

ARGUMENTS
None.

PLACEMENT
Place on the Perform Signoff task.

RESTRICTIONS
None.

12-68 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

RM-attach-tracelink-requirement

DESCRIPTION
Sends requirements tracelinked to Teamcenter objects in the Targets folder to the
specified folder in the workflow assignee’s worklist.

SYNTAX
RM-attach-tracelink-requirement
[-defining_complying_type=defining | complying]
[-folder_type=target | reference] [-tracelink_subtype=subtype]

ARGUMENTS
-defining_complying_type
Specifies if the defining or complying requirement is sent.

-folder_type
Specifies if the requirement is placed in the task’s target or reference folder in the
worklist.

-tracelink_subtype
Sends only the specified subtype of the tracelink object.

PLACEMENT
Place on the Start action of the root task of the workflow process.

RESTRICTIONS
None.

EXAMPLES
• This example sends the defining requirement linked to Teamcenter objects in the

Targets folder with a tracelink to the Targets folder of the Tasks to Perform
folder of the assignee’s worklist.

Argument Values
-defining_complying_typedefining
-folder_type target

• This example sends the defining requirement linked to Teamcenter objects in the
Targets folder with a tracelink to the References folder of the Tasks to Perform
folder of the assignee’s worklist.

Argument Values
-defining_complying_typecomplying
-folder_type reference

RS025 11.6 Setting Up Workflows for Product Development 12-69

Workflow handlers



Chapter 12: Workflow handlers

RM-attach-SM-tracelink-requirement

DESCRIPTION
Sends requirements tracelinked to Schedule Manager tasks to the specified folder
in the task assignee’s worklist.

This action handler is implemented to attach defining or complying objects using the
trace links on predecessor tasks.

SYNTAX
RM-attach-SM-tracelink-requirement
[-defining_complying_type=defining | complying]
[-folder_type=target | reference] [-tracelink_subtype=subtype]

ARGUMENTS
-defining_complying_type
Specifies if the defining or complying requirement is sent. If this argument is not
specified, defining is the default.

-folder_type
Specifies if the requirement is placed in the task’s target or reference folder in the
worklist. If this argument is not specified, target is the default.

-tracelink_subtype
Sends only the specified subtype of the tracelink object.

PLACEMENT
Place on the Start action of the root task of the workflow process.

RESTRICTIONS
This handler is implemented only for RequirementRevision, ParagraphRevison, and
RequirementSpecRevision and its subtypes.

EXAMPLES
• This example sends a Schedule Manager task linked to a requirement with a

tracelink to the Tasks to Perform folder of the assignee’s worklist and places the
defining requirement object in the task’s Targets folder.

Argument Values
-defining_complying_type defining
-folder_type target

• This example sends a Schedule Manager task linked to a requirement with a
tracelink to the Tasks to Perform folder of the assignee’s worklist and places the
complying requirement object in the task’s References folder.

Argument Values
-defining_complying_type complying
-folder_type reference

12-70 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

RDV-tessellation-handler

DESCRIPTION
Tessellates NX datasets. It identifies which datasets to tessellate by reading the
targets set in the EPM_tessellation_target_type preference and comparing them
against the targets identified for the workflow process. Datasets identified as targets in
both the workflow process and the preferences are tessellated. Targets are objects
such as UGMASTER and UGALTREP datasets.

This handler can be run in the background or foreground. The background mode can
be configured to act in:

• Synchronous mode

The workflow process waits for the tessellation to complete.

• Asynchronous mode

The workflow process continues after the tessellation is initiated.

SYNTAX
RDV-tessellation-handler -continue | {-signoff | -background |
-status=status-type}

ARGUMENTS
-continue
Continues the review process, even when tessellation is unsuccessful. Use for
noncritical tessellation processes.

-signoff
Completes the perform-signoffs task if the handler was placed on the Complete
action of the perform-signoffs task. Completes the process if the handler was placed
on the Complete action of the root task.

-background
Runs tessellation in the background.

-status
Status type to be applied to a rendered child.

PLACEMENT
• In the foreground mode, it requires no specific placement.

• For background tesselation, do the following:

o For asynchronous background tessellation, use the -background argument
and place on the Complete action of the root task after the EPM-set-status
handler.

o For synchronous background tessellation, use the -signoff argument and
place on the Complete action of the perform-signoffs task.

RESTRICTIONS
NX datasets must be included as targets of the process.

RS025 11.6 Setting Up Workflows for Product Development 12-71

Workflow handlers



Chapter 12: Workflow handlers

PREFERENCES
You must set the following preferences before running the tessellation process with
this action handler:

• EPM_tessellation_target_type

Defines the NX dataset types requiring tessellation. Only targets matching these
types are tessellated.

• EPM_tessellation_servers=hostname:port-number

Defines the host name and port number of the tessellation server. The value None
indicates that the tessellation is performed on the client side only.

ENVIRONMENT
VARIABLES

You must set the following environment variables before running the tessellation
process with this action handler:

• UGII_ROOT_DIR
•

EXAMPLES
If a business process required that UGMASTER and UGALTREP datasets are
tessellated when they are released, the tessellation can be performed in the modes:

• Foreground mode

Include the handler in the workflow process template.

• Background/Synchronous mode

Set the -background and -signoff arguments for the handler, and place the
handler in the Complete action of the perform-signoffs task of the Review task.
The workflow process waits for tessellation to complete before continuing.

• Background/Asynchronous mode

Set the -background argument for the handler, and place the handler in the
Complete action of the root task.

Define the tessellation server by setting this preference in the preference XML file:

EPM_tessellation_server=hostname:port

Define the NX datasets that can be tessellated by listing the required NX datasets as
values in the following preference in the preference XML file:

EPM_tessellation_target_type=
UGMASTER
UGALTREP

12-72 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

RDV-generate-ugcgm-drawing

DESCRIPTION
Generates drawing sheet datasets (CGM images) of NX drawings for display in
Lifecycle Visualization. You must add this handler to a release procedure as an action
handler. You should initiate the release procedure containing this action handler by
selecting the UGPART/UGMASTER dataset. The UGMGR_DELIMITER preference
must be added as a preference. This handler calls an external NX UFUNC program to
generate the CGM images of the drawing sheets in the part. The generated images
are stored as named references to the DrawingSheet dataset that is attached to the
UGMASTER/UGPART dataset with an IMAN_Drawing relationship.

This handler requires NX to be installed on all systems on which the handler runs. In a
2-tier environment, NX must be installed on all clients that run this workflow handler.
In a four-tier environment, handlers run in the tcserver process, so NX must also be
installed onto the enterprise tier servers (pool servers). The environment variables
UGII_BASE_DIR and UGII_ROOT_DIR (normally set by the NX installation) are
used to determine the location of the NX software. This example depicts the two
environment variables set to NX on a Windows platform.

set UGII_BASE_DIR = c:\apps\nx75

set UGII_ROOT_DIR = c:\apps\nx75\ugii\

SYNTAX
RDV-generate-ugcgm-drawing [-type=valid-dataset-type] [-text= text|polylines]

ARGUMENTS
-type
The valid dataset types for this handler are UGMASTER and UGPART. You can
specify more than one dataset type separated by a comma or the character specified
by the EPM_ARG_target_user_group_list_separator preference. If you do not
specify any dataset type, this handler assumes UGPART as the dataset type.

-text
Specifies whether the text in your file is converted into searchable, standard font text or
records text as CGM polyline elements, each of which is a collection of line segments.
The valid values are text or polylines.

PLACEMENT
Place on the Start action of the root task.

RESTRICTIONS
If you are using Teamcenter Integration for NX, this handler may require the external
NX program export_ugdwgimages to be copied from $TC_BIN\ugcgm_images to
$TC_BIN or UGII_BASE_DIR\ugmanager directory.

The release procedure script start_ugdwgimages looks for the UFUNC program in
the UGII_BASE_DIR\ugmanager directory first, then in the $TC_BIN directory.

EXAMPLES

Argument Values
-type UGMASTER, UGPART

RS025 11.6 Setting Up Workflows for Product Development 12-73

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-text text

12-74 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

RDV-generate-image

DESCRIPTION
Generates NX part images for display by Web Reviewer. This handler calls an external
NX UFUNC (no license required) to accomplish this. The generated images are stored
as named references to the UGMASTER dataset; image types and sizes are specified
in the preference XML file.

SYNTAX
RDV-generate-image [-stop] [-continue]

ARGUMENTS
-stop
Halts the process if image generation is unsuccessful.

-continue
For noncritical image generation, continues the process regardless of unsuccessful
image generation.

PLACEMENT
Place at a point in the workflow process where the initiator has write and copy access
to the UGMASTER dataset (that is, before object protections are locked down).
Siemens PLM Software recommends that this handler have its own Review task at
the beginning of the workflow process.

RESTRICTIONS
• Parts requiring images must be UGMASTER dataset targets of the workflow

process.

• The ugimg executable must be located in the $UGII_BASEDIR/ugmanager
directory.

Note

Part files are automatically updated to the current NX version.

RS025 11.6 Setting Up Workflows for Product Development 12-75

Workflow handlers



Chapter 12: Workflow handlers

RDV-delete-ugcgm-markup

DESCRIPTION
Attaches all the drawing sheets as a target object for a UGMASTER/UGPART dataset
in the selected workflow process, so the DrawingSheet dataset also attains a release
status once the workflow process is approved. If the DrawingSheet dataset names
are the same as for the previous item revisions, all DirectModelMarkup datasets
are deleted if the UGMASTER/UGPART dataset names are also the same as in the
previous revision.

SYNTAX
RDV-delete-ugcgm-markup [-type=valid-dataset-type, [valid-dataset-type]]

ARGUMENTS
-type
The valid dataset types for this handler are UGMASTER and UGPART. A user can
specify more than one dataset type separated by a comma or the character specified
by the EPM_ARG_target_user_group_list_separator preference. If the user does
not specify any dataset type, this handler assumes UGPART as the dataset type.

PLACEMENT
Place on the Start action of the root task.

RESTRICTIONS
None.

EXAMPLES

Argument Values
-type UGMASTER, UGPART

12-76 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

PUBR-unpublish-target-objects

DESCRIPTION
Unpublishes target objects (removes them) from the ODS.

SYNTAX
PUBR-unpublish-target-objects [-class=classname] [-site=site-ID]

ARGUMENTS
-class
Teamcenter classname of the target objects being unpublished. This argument can
be supplied more than once to unpublish multiple classes of target objects. If not
supplied, all target objects are unpublished.

-site
Teamcenter ODS site-IDs that unpublishes the objects. This argument can be supplied
more than once to unpublish the objects to multiple ODS sites. If not supplied, the
default ODS is used.

PLACEMENT
Place on any task where a demotion or cancellation is performed.

RESTRICTIONS
Do not place this handler on the Perform action, or any other action that is called
multiple times. Place on an action that is only called once, such as Start, Complete,
or Undo.

EXAMPLES
This example shows how to unpublish all item and dataset target objects from the
default ODS:

Argument Values
-class Item, Dataset

RS025 11.6 Setting Up Workflows for Product Development 12-77

Workflow handlers



Chapter 12: Workflow handlers

PUBR-publish-target-objects

DESCRIPTION
Publishes target objects (that is, enters them) in the Object Directory Services (ODS)
database.

SYNTAX
PUBR-publish-target-objects [-class=classname] [-site=site-ID]

ARGUMENTS
-class
Class of the target objects being published. This argument can be supplied more than
once to publish multiple classes of target objects. If not supplied, all target objects are
published. See the second item in the Restrictions section.

-site
ODS sites that publishes the objects. This argument can be supplied more than once
to publish the objects to multiple ODS sites. If not supplied, the default ODS is used.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
• Requires Multi-Site Collaboration to be configured at your site.

• The class must be defined by the TC_publishable_classes preference or it
cannot be published.

• You can control the publication behavior of item revision objects by changing the
setting of the TC_publish_item_or_itemrev preference. You can publish only the
item revision object, only its parent item object, or both.

EXAMPLES
This example shows how to publish all item revision target objects to Detroit and
Tokyo ODSs:

Argument Values
-class ItemRevision
-site Detroit, Tokyo

12-78 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

PS-make-mature-design-primary

DESCRIPTION
Sets the item revision as the primary representation of the associated part revision.
This handler checks if the input item revision is mature. If it is, all part revisions for the
design revision are found and the item revision is set as the primary representation.

SYNTAX
PS-make-mature-design-primary

ARGUMENTS
None.

PLACEMENT
Preferably placed on the Complete action.

RESTRICTIONS
Considers only item revisions or a subclass of them.

RS025 11.6 Setting Up Workflows for Product Development 12-79

Workflow handlers



Chapter 12: Workflow handlers

PS-attach-assembly-components

DESCRIPTION
Attaches all the components of the target assembly as the targets of the same
workflow process. This handler is intended for use only with item revisions.

When a workflow process is initiated for an item revision, this handler derives the
components of the targeted item revision by traversing item revisions attached BOM.

By default, the handler traverses only one level deep. Set the -depth argument to all
to traverse all levels. In this case, if any of the derived objects are subassemblies, they
are also traversed and their component item revisions are also added as targets to the
workflow process. If any remote item revisions are encountered, a warning is displayed
and the remote item revisions are attached as references to the workflow process.

By default, all component item revisions currently in workflow process are ignored.
If the EPM_multiple_processes_targets preference is set to ON, you can use the
-include_in_process_targets argument to attach components that are currently in
workflow process.

Note

If theWRKFLW_allow_replica_targets preference is set to true and if any
replica object qualifies to be attached as a workflow target, that object is
attached as a Replica Proposed Target to the workflow process.

If the preference is set to false or is undefined, the handler attaches replica
objects as references instead of targets.

Note

If the target item revision contains attachments such as BOM view
revisions, datasets should be released along with the assembly, the
EPM-attach-related-objects handler should be used in conjunction with
this handler.

SYNTAX
PS-attach-assembly-components [-depth=depth-of-traversal]
[-owned_by_initiator][-owned_by_initiator_group] [-initiator_has_write_prev]
[[-exclude_released [-traverse_released_component]]] [-rev_rule=revision-rule]
[-saved_var_rule=saved-variant-rule ]
[[-exclude_related_type=types-to-be-excluded] |
[-include_related_type=types-to-be-included]] [-add_excluded_as_ref]
[-include_in_process_targets]

ARGUMENTS
-depth
Defines the depth to which the traversal should take place. Specify 1 to traverse one
level deep. Specify all to traverse all levels.

If not specified, traverses one level deep.

12-80 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-owned_by_initiator
Adds all the component item revisions owned by the initiator as targets to the workflow
process.

-owned_by_initiator_group
Adds all the component item revisions owned by the initiator's group as targets to the
workflow process.

-initiator_has_write_prev
Adds all the component item revisions to which the initiator has write access as targets
to the workflow process.

-exclude_released [-traverse_released_component]
Excludes released component item revisions from being added as targets. If the
released component is a subassembly, the handler does not traverse the components
of the released component unless traverse_released_component is also specified.
The traverse_released_component argument can only be used in conjunction with
the exclude_released argument.

The -traverse_released_component argument can only be used in conjunction with
the -exclude_released argument.

If the -traverse_released_component is used, the handler traverses the structure of
the released component, and adds the components as targets to the workflow process.

If the -depth argument is set to 1, -traverse_released_component only traverses
one level deep.

If the -depth argument is set to all, the -traverse_released_component traverses
all levels of the subassembly.

-rev_rule
Defines the name of the revision rule to be applied for BOM traversal. If not supplied,
the default revision rule is used.

-saved_var_rule
Defines the name of the saved variant rule to be applied on BOM window for BOM
traversal.

-exclude_related_type
Defines the types to be excluded from being added as targets.

The -exclude_related_type and -include_related_type arguments are mutually
exclusive. Only one of these can be specified as arguments to the handler. If both
arguments are specified, an error is displayed when running a workflow process
using this handler.

-include_related_type
Defines the types to be included as targets.

The -exclude_related_type and -include_related_type arguments are mutually
exclusive. Only one of these can be specified as arguments to the handler. If both
arguments are specified, an error is displayed when running workflow process using
this handler.

RS025 11.6 Setting Up Workflows for Product Development 12-81

Workflow handlers



Chapter 12: Workflow handlers

-add_excluded_as_ref
Adds components that are not included as targets as reference to the workflow
process.

-include_in_process_targets
Can be used only if the preference EPM_multiple_processes_targets is set to ON. In
this case, this argument attaches components that are currently in process as targets.

PLACEMENT
Can place on any action. Typically placed on the Start action of the root task so that
the initial list is expanded at the start of the workflow process.

RESTRICTIONS
Do not place the disallow_adding_targets handler before this handler or it fails. The
disallow_adding_targets handler can be used after the placement of this handler.

EXAMPLES
• This example releases an assembly when only one level of traversal is required.

Only the components of the top-level assembly are released, not the components
of any subassemblies:

Argument Values
-depth 1

• This example releases an assembly using a specific revision rule and a saved
variant rule. For this example, the Working revision rule and the GMC 300 Rule
variant rule are used:

Argument Values
-rev_rule Working
-saved_var_rule GMC 300 Rule

• This example releases an assembly using the default revision rule and the default
saved variant rule, releasing only the components owned by the workflow process
initiator:

Argument Values
-owned_by_initiator

• This example releases an assembly using the default revision rule and the default
saved variant rule, releasing only the components owned by the group to which
the workflow process initiator belongs:

Argument Values
-owned_by_initiator_group

• This example releases an assembly using the default revision rule and the default
saved variant rule, releasing only the components to which the workflow process
initiator has write access:

12-82 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-initiator_has_write_prev

• This example releases an assembly, including all components traversed to all
depths, using the Latest Released revision rule, excluding released components
from the assembly but attaching them as references:

Argument Values
-depth all
-rev_rule Latest Released
-exclude_released
-add_excluded_as_ref

• This example releases an assembly, including all components traversed to all
depths using the Latest Released revision rule, excluding released components
from the assembly but attaching them as references, yet traversing the excluded
released components to all depths for subcomponents to be added as targets:

Argument Values
-depth all
-rev_rule Latest Released
-exclude_released
-traverse_released_component
-add_excluded_as_ref

• In this example, consider an assembly containing these revisions:
CORP_Part, CORP_Tool, CORP_Vehicle, CORP_Product, CORP_Analysis,
CORP_Proc_Plan, CORP_Facility, and CORP_Build.

To release the top-level assembly, excluding all the CORP_Build revisions, define
the arguments:

Argument Values
-exclude_related_type CORP_Build

• In this example, consider an assembly containing the revisions: CORP_Part,
CORP_Tool, CORP_Vehicle, CORP_Product, CORP_Analysis,
CORP_Proc_Plan, CORP_Facility, and CORP_Build.

To release the top-level assembly, including only the CORP_Build revisions,
define the arguments:

Argument Values
-include_related_type CORP_Build

RS025 11.6 Setting Up Workflows for Product Development 12-83

Workflow handlers



Chapter 12: Workflow handlers

• This example releases an assembly containing targets already in process. This
argument can only be used if the EPM_multiple_processes_targets preference
is set to ON.

Argument Values
-include_in_process_targets

• This example releases an assembly, including all components traversed to all
depths using the Latest Released revision rule, excluding released components
from the assembly but attaching them as references, yet traversing the excluded
released components to all depths for subcomponents to be added as targets, and
all CORP_Build item revisions must be excluded:

Argument Values
-depth all

-rev_rule Latest Released
-exclude_released
-traverse_released_component
-add_excluded_as_ref
-exclude_related_type CORP_Build

ADDITIONAL
INFORMATION

This handler attaches component item revisions of the assembly to the workflow
process. Therefore, you should not place the EPM-disallow-adding-targets handler
before this handler.

Care should be taken when using this handler in conjunction with the
EPM-check-status-progression and PS-check-assembly-status-progression
handlers; possible placement conflicts could arise, including:

• If you place the above rule handlers in a Task action ahead of this handler, there is
a possibility that the assembly may never be released, as some business rules
may fail, and the rule handlers may return an EPM_nogo.

• If you place this handler in a Task action ahead of the above rule handlers, there is
a possibility that the assembly may be released, but may not follow the business
rules. For example, the assembly may have a status which may not follow the
progression path.

Teamcenter provides another method of releasing an entire assembly. You can use
the Advanced Paste button to compile a list of objects to be pasted into the assembly.
These objects can be appended to the list from multiple sources, including query
results, active rich client applications, and BOM views.

12-84 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

PROJ-update-assigned-projects

DESCRIPTION
Updates the list of projects to which the workflow target objects are assigned. The
handler arguments determine project names to be assigned to and removed from the
targets. You can assign and remove projects using handler arguments only, using
properties on a form attached to the workflow template, and using a combination of
handler arguments and form properties.

Note

The ability to assign or remove a project is controlled by the
TC_project_validate_conditions preference, the Access Manager
privileges Assign to Project and Remove from Project, and whether you
are a privileged or non-privileged member of the project.

SYNTAX
PROJ-update-assigned-projects [-source_task=task-name.attachment-type]
[-type=form_type_name]
[-assign_property=property_name] [-remove_property=property_name]
[-assign_projects=comma_separated_project_list]
[-remove_projects=comma_separated_project_list]
[-bypass]

ARGUMENTS
-source_task
Specifies the task-name and attachment-type combination that associates a source
form with the EPM task. The default reference attachments are those that are attached
to the current task and are of the type specified by the -type argument.

task-name Use one of the following values:

• The name of the current task (the default value)

• The $ROOT reserved keyword (the root task)

attachment-type Use one of the following reserved keywords:

• $REFERENCE for reference attachments

• $TARGET for target attachments

-type
Specifies the type name of a form that contains project names to assign or remove
from the target objects.

-assign_property
Specifies the name of a source-form property that designates projects to assign to
the target objects.

If you use this argument, you must use the -type argument also.

RS025 11.6 Setting Up Workflows for Product Development 12-85

Workflow handlers



Chapter 12: Workflow handlers

-remove_property
Specifies the name of a source-form property that designates projects to remove
from the target objects .

If you use this argument, you must use the -type argument also.

-assign_projects
Specifies a list of projects to assign to the target objects. Projects already assigned
to a particular target remain assigned.

Separate multiple entries with commas.

-remove_projects
Specifies a list of projects to remove from the target objects. Projects not already
assigned to a particular target remain unassigned.

Separate multiple entries with commas.

-bypass
Specifies that Access Manager access checks are bypassed for reading the source
form and for writing the target objects. Otherwise, you must have both read access to
the source form and write access to the target objects.

Note

If you use this argument, you must have the Access Manager privileges
Assign to Project and Remove from Project for each project assigned to
or removed from the target objects.

PLACEMENT
Place on any task action.

RESTRICTIONS
None

EXAMPLES
• This example assigns and removes projects from the target objects using handler

arguments only. In this example, assume that the projects to be assigned are
Proj1 and Proj2, and that the projects to be removed are Proj3 and Proj4.

Argument Values
-assign_projects Proj1,Proj2
-remove_projects Proj3,Proj4

• This example assigns and removes projects from the target objects using
properties of a form attached to the workflow template. In this example, assume
the following:

o The source form is associated with the root task as a reference attachment.

o The form type is Pwf0AssignProjForm.

12-86 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

o The projects to be assigned are listed in the value of the pwf0AssignProjects
form property.

o The projects to be removed are listed in the value of the pwf0RemoveProjects
form property.

Argument Values
-source_task $ROOT.$REFERENCE
-type Pwf0AssignProjForm
-assign_property pwf0AssignProjects
-remove_property pwf0RemoveProjects

• This example assigns and removes projects from the target objects using a
combination of handler arguments and form properties. In this example, assume
the following:

o The source form is associated with the root task as a reference attachment.

o The form type is Pwf0AssignProjForm.

o The projects to be assigned are Proj2 and those that are listed in the value of
the pwf0AssignProjects form property.

o The projects to be removed are Proj4 and those projects that are listed in the
value of the pwf0RemoveProjects form property.

Argument Values
-source_task $ROOT.$REFERENCE
-type Pwf0AssignProjForm
-assign_projects Proj2
-remove_projects Proj4
-assign_property pwf0AssignProjects
-remove_property pwf0RemoveProjects

RS025 11.6 Setting Up Workflows for Product Development 12-87

Workflow handlers



Chapter 12: Workflow handlers

PROJ-assign-members

DESCRIPTION
Adds members to projects. You can specify the projects and the members using
handler arguments only, using properties on a form attached to the workflow template,
and using a combination of handler arguments and form properties.

• The list of projects to receive new members is specified directly by projects and
indirectly by the projects_property argument.

• The list of nonprivileged members to be added to the projects is specified directly
by members and indirectly by the members_property argument.

• The list of privileged members to be added to the projects is specified directly
by privileged_members and indirectly by the privileged_members_property
argument.

Note

To run this handler, you must be either the project administrator, or the
project team administrator of each project receiving new members.

SYNTAX
PROJ-assign-members [-source_task=task-name.attachment-type]
[-type=form_type_name]
[-projects=comma_separated_project_list]
[-members=comma_separated_member_list]
[-privileged_members=comma_separated_member_list]
[-projects_property=property_name]
[-members_property=property_name]
[-privileged_members_property=property_name]
[-bypass]

ARGUMENTS
-source_task
Specifies the task-name and attachment-type combination that associates a source
form with the EPM task. The default reference attachments are those that are attached
to the current task and are of the type specified by the -type argument.

task-name Use one of the following values:

• The name of the current task (the default value)

• The $ROOT reserved keyword (the root task)

attachment-type Use one of the following reserved keywords:

• $REFERENCE for reference attachments

• $TARGET for target attachments

12-88 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-type
Specifies the form type that designates properties to be used as the source of project
names and member references.

-projects
Specifies a list of project names to receive new members. The privileged and
non-privileged members are added to each project. Members already assigned to a
particular project remain assigned.

Separate multiple entries with commas.

-members
Specifies a list of members to be added to the projects as non-privileged members.
Each member is of the form group/role/user. An empty value can be specified for
group, role, or user when necessary.

Separate multiple members with commas. Separate sub-groups with a period.

-privileged_members
Specifies a list of members to be added to the projects as privileged members. Each
member is of the form group/role/user. An empty value can be specified for group,
role, or user when necessary.

Separate multiple members with commas.

-projects_property
Specifies the name of a source-form property that designates project names to receive
new members. The privileged and non-privileged members are added to each project.
Members already assigned to a particular project remain assigned.

If you use this argument, you must use the -type argument also.

-members_property
Specifies the name of a source-form property that designates member references to
be added to the projects as non-privileged members.

If you use this argument, you must use the -type argument also.

-privileged_members_property
Specifies the name of a source-form property that designates member references to
be added to the projects as privileged members.

If you use this argument, you must use the -type argument also.

-bypass
Specifies that Access Manager access checks are bypassed for reading the project
name and member references from the source form. Otherwise, you must have
access to read properties from the source form.

PLACEMENT
Place on any task action.

RESTRICTIONS
None

RS025 11.6 Setting Up Workflows for Product Development 12-89

Workflow handlers



Chapter 12: Workflow handlers

EXAMPLES
• This example adds members to projects using handler arguments only. In this

example, assume the following:

o The projects to receive members are named Proj1 and Proj2.

o The user named john is to be added to both projects as a non-privileged
member. This user has the Designer role in the Engineering group.

o The user named jane is to be added to both projects as a privileged member.
This user has the Manager role in the Engineering group.

Argument Values
-projects Proj1,Proj2
-members Engineering/Designer/john
-privileged_members Engineering/Manager/jane

• This example adds members to projects using properties of a form attached to the
workflow template. In this example, assume the following:

o The source form is associated with the root task as a reference attachment.

o The form type is Pwf0ProjMemberForm.

o The projects to receive members are listed in the value of the pwf0Projects
form property.

o The non-privileged members to be added are listed in the value of the
pwf0NonPrivilegedMembers form property.

o The privileged members to be added are listed in the value of the
pwf0PrivilegedMembers form property.

Argument Values
-source_task $ROOT.$REFERENCE
-type Pwf0ProjMemberForm
-projects_property pwf0Projects
-members_property pwf0NonPrivilegedMembers
-privileged_members_
property

pwf0PrivilegedMembers

• This example adds members to a project using a combination of handler
arguments and form properties. In this example, assume the following:

o The source form is associated with the root task as a reference attachment.

o The form type is Pwf0ProjMemberForm.

o The projects to receive members are Proj1 and those that are listed in the
value of the pwf0Projects form property.

12-90 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

o The non-privileged members to be added are john, with the Designer role
in the Engineering group, and those users that are listed in the value of the
pwf0NonPrivilegedMembers form property.

o The privileged members to be added are jane, with the Manager role in
the Engineering group, and those users that are listed in the value of the
pwf0PrivilegedMembers form property.

Argument Values
-source_task $ROOT.$REFERENCE
-type Pwf0ProjMemberForm
-projects Proj1
-members Engineering/Designer/john
-privileged_members Engineering/Manager/jane
-projects_property pwf0Projects
-members_property pwf0NonPrivilegedMembers
-privileged_members_
property

pwf0PrivilegedMembers

RS025 11.6 Setting Up Workflows for Product Development 12-91

Workflow handlers



Chapter 12: Workflow handlers

PIE-export-to-plmxmlfile

DESCRIPTION
Exports targets, references, and/or workflow process information to a PLM XML file.
Use this handler to export targets and references data to a PLM XML file during a
workflow process. You can also export operation and plant objects or the state of
the workflow tasks to the PLM XML file. See Workflow task actions and states for
more information.

SYNTAX
PIE-export-to-plmxmlfile [-context=context-string]
[-attach={target|reference|both}] [-file=filename]
[-include_process_info] [-revrule]

ARGUMENTS
-context
Defines the context string, which specifies the transfer mode used for export. If not
specified, it uses the default transfer mode.

-attach
Specifies which workflow process attachments are exported. If not specified, only
targets are exported.

-file
Specifies the path and file name to which the data is exported. The export file is saved
to the server machine.

If the path is not specified, the file is placed in the TC_TMP_DIR directory on the
server. If this argument is not defined, the workflow process name is used as the file
name, and the file is placed in the TC_TMP_DIR directory.

-include_process_info
Includes the workflow process information in the PLM XML file.

-revrule
Specifies the revision rule to be applied for the BOM lines while exporting the structure.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

Note

Exporting this information may take some time, depending on the export
content. Siemens PLM Software recommends using the -context and -file
arguments, which provide better control over the XML file's content and
location, respectively.

EXAMPLES
This example releases an item revision, exporting the item revision information along
with the BOM to a PLM XML file and sending the file to a third-party application. In this

12-92 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

example, it is assumed that there is a transfer mode context named MyApplication
that has a tool attached that connects to the third-party application and process the
PLM XML file. Place this handler immediately after you add a release status.

Argument Values
-context MyApplication
-attach target
-file tceng2myap.xml
-revrule Latest Working

RS025 11.6 Setting Up Workflows for Product Development 12-93

Workflow handlers



Chapter 12: Workflow handlers

PARTITION-activate-or-inactivate

DESCRIPTION
Marks a partition as active or inactive.

SYNTAX
PARTITION-activate-or-inactivate -activate={true | false}

ARGUMENTS
-activate
Marks the partition as active (-activate=true) or inactive (-activate=false).

PLACEMENT
Place in a new workflow specifically designed to activate or inactivate
partitions. The ability to activate partitions must be enabled first by setting the
Ptn0EnableActivationBehavior business object constant to true.

RESTRICTIONS
None.

12-94 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

OBJIO-send-target-objects

DESCRIPTION
Sends objects to other Multi-Site Collaboration sites.

Sends to or synchronizes objects at other Multi-Site Collaboration sites. If the object is
not present at the remote site, the object is replicated; otherwise, it is synchronized.

SYNTAX
OBJIO-send-target-objects [-class=classname] {-target_site=site-name |
ALL | $SCHEDULE_SITE | -owning_site=site-name | $SCHEDULE_SITE}
[-target_revision_only=YES] [-reason=string]

ARGUMENTS
-class
Sends target objects of the specified class to the specified site. You can specify this
argument more than once to send different classes of target objects. If this argument
is not used, all target objects are sent.

-target_site
Sends the target objects to the specified site, but does not transfer ownership. You
can specify multiple sites, separated by a comma or the character specified by the
EPM_ARG_target_user_group_list_separator preference. Use ALL to send the
specified target objects to all sites.

Use the $SCHEDULE_SITE keyword to define the target site as the owning site of
the schedule task or schedule task proxy link attached to the workflow process as
schedule_task.

This argument is mutually exclusive with the -owning_site argument. One or the other
of these two arguments must be specified for the handler to run.

-owning_site
Transfers site ownership of the target objects to the specified site. All target objects
are converted to reference objects before the data transfer.

Use the $SCHEDULE_SITE keyword to define the owning site as the owning site
of the schedule task or schedule task proxy link attached to the workflow process
as schedule_task.

This argument is mutually exclusive with the -target_site argument. One or the other
of these two arguments must be specified for the handler to run.

-target_revision_only
Exports only the released item revision to the remote site. When this argument is
not used, all item revisions are exported.

Do not use this argument with the -owning_site argument; all revisions must be
transferred when transferring site ownership.

-reason
Allows you to enter a string (up to 240 characters) explaining why these objects were
sent.

PLACEMENT
Requires no specific placement.

RS025 11.6 Setting Up Workflows for Product Development 12-95

Workflow handlers



Chapter 12: Workflow handlers

RESTRICTIONS
• Requires Multi-Site Collaboration to be configured at your site.

• The sending site must own all objects to be sent to other sites.

• When using the -target_revision_only argument, the -class argument must
be set to ItemRevision.

This argument cannot be used with the -owning_site argument; all revisions must
be transferred when transferring site ownership.

EXAMPLES
• This example shows how to send all item target objects to the Detroit and Tokyo

sites without transferring ownership:

Argument Values
-class Item
-target_site Detroit, Tokyo

• This example shows how to send item and dataset target objects to all sites
without transferring ownership:

Argument Values
-class Item, Dataset
-target_site ALL

• This example shows how to transfer site ownership of item and dataset target
objects to the Tokyo site:

Argument Values
-class Item, Dataset
-owning_site Tokyo

12-96 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

OBJIO-release-and-replicate

DESCRIPTION
Supports (SCOs). An SCO represents a virtual product configuration. The assembly
for such a configuration might spread across multiple sites. To make the information
available as quickly as possible to all sites participating on the assembly, Multi-Site
provides controlled replication. This functionality replicates these objects to
participating sites when the assembly is released.

Note

A is a specific configuration of structure representation. A structure context
is similar to an occurrence group but contains a configuration context. The
configuration context is a persistent object that stores the configuration
specified by revision and variant rules. The structure context also contains
the root item.

You can use this handler to:

• Configure the target assembly with a specified revision rule or variant rule.

• Perform specified checks against the first level of the target assembly and apply a
Release status to the target assembly when the checks are successful. You can
check that all levels are precise, that no components are stubs, and/or that all
components have a Release status.

If any check fails, an error appears.

• Initiate additional validation by the CreateAssemblyPLMXML Dispatcher task,
performed asynchronously.

If the validation fails, a Release_check_failed status is applied to the target
assembly and an e-mail notification sent to the process initiator

SYNTAX
OBJIO-release-and-replicate [-revision_rule=revision-rule-to-configure-assembly]
[-variant_rule=variant-rule-to-configure-assembly]
[-check_precise] [-check_no_stubs] [-check_all_released]

ARGUMENTS
-revision_rule
Specifies the revision rule used to configure the target assembly. If not specified, the
Latest Released revision rule is used for the BOM configuration.

-variant_rule
Specifies the variant rule used to configure the target assembly. If not specified, the
default variant rule is used for the BOM configuration.

-check_precise
Checks that all levels of the assembly are precise. If this check fails, Release status
is not applied to the assembly.

RS025 11.6 Setting Up Workflows for Product Development 12-97

Workflow handlers



Chapter 12: Workflow handlers

-check_no_stubs
Checks that no component of the assembly is a stub. If this check fails, Release status
is not applied to the assembly.

-check_all_released
Checks that each component of the assembly have a Release status. If this check
fails, Release status is not applied to the assembly.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
Use in workflow processes with SCOs as targets.

12-98 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

OBJIO-archive-target-objects

DESCRIPTION
Archives objects from the master site to the archive site.

The user executing OBJIO-archive-target-objects must be a system administrator
with DBA privileges. (The user cannot be infodba.)

SYNTAX
OBJIO-archive-target-objects [-include_bom]

ARGUMENTS
-include_bom
Specifies to include assembly components of the BOM at all levels for processing.
Caution must be exercised in using this option as all children components of BOM gets
archived. This option cannot be used with 4GD target objects.

PLACEMENT
No restrictions.

RESTRICTIONS
Use in workflow processes with objects belonging to either class or subclass of Item
or Mdl0ApplicationModel as targets.

RS025 11.6 Setting Up Workflows for Product Development 12-99

Workflow handlers



Chapter 12: Workflow handlers

OBJIO-acquire-site-ownership

DESCRIPTION
Sets the owning site of the workflow’s Replica Proposed Targets attachments to the
current site. Once the site ownership has been transferred, the objects are moved
from the Replica Proposed Targets folder to Target attachment folder.

Note

Even if the ownership is successfully transferred, the objects might fail to
be added as targets, possibly because of rule handler failures that govern
target additions. Because these objects are no longer replicas due to site
ownership transfer, they are not retained as Replica Proposed Targets.
Such objects are moved to the Reference attachment folder of the workflow,
and a corresponding message is sent to the user.

SYNTAX
OBJIO-acquire-site-ownership

ARGUMENTS
None.

PLACEMENT
Place on the Start or Complete action of any task. Do not place on the Perform action.

Because this handler invokes Multi-Site operations, Siemens PLM Software
recommends that you place this handler on a task marked for background processing.

RESTRICTIONS
None.

12-100 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

MES-Update3DPDFReports

DESCRIPTION
Updates all 3DPDF reports attached to selected lines (processes and/or operations),
according to the settings on the report creation. If a report update fails, the process
continues until all update processes are complete.

The handler creates a dataset with a summary log, detailing for each report whether it
successfully updated or not. Also, for each report that has failed to update, the handler
creates a dataset with its log.

By default, the datasets are created in the Newstuff folder. You can define a
different folder with the MES_3DPDF_UPDATE_WORKFLOW_LOG_FOLDER
preference. If the handler does not complete in 10 minutes, a timeout error
message is issued and the task fails. You can change the timeout wait time with the
MES_3DPDF_UPDATE_WORKFLOW_WAIT_TIME preference.

SYNTAX
MES-Update3DPDFReports

ARGUMENTS
None.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
Use only on process revision and operation revision business objects.

RS025 11.6 Setting Up Workflows for Product Development 12-101

Workflow handlers



Chapter 12: Workflow handlers

ME-update-mirror-mbom-AH

DESCRIPTION
Updates a manufacturing bill of materials (MBOM) based on an engineering bill of
materials (EBOM). It allows different item types in the MBOM than were in the EBOM
for certain nodes based on custom logic. By default, the MEMBOM_* preferences
listed below set the item type to be created.

• MEMBOM_Mirror_MakeRules

• MEMBOM_Mirror_RemoveLineWithIDIC

• MEMBOM_Mirror_ReplaceMakeOnChange

• MEMBOM_Mirror_TypePrefixSuffix

You can also customize the item type to be created using the
USER_create_or_ref_item exposed in the Business Modeler IDE through
BMF_ITEM_create_or_ref_id on the item.

The target must be an item or item revision or a structure context object. The top line
of the structure is where the update is started. If you need to start at a lower line, use
the-scopeid or -scopeidincontext arguments.

.
SYNTAX

ME-update-mirror-mbom-AH
[-revrule=revision-rule]
[-mbomrevrule=mbom-revision-rule]
[-depth=depth]
[-clientdata=data]
[-actiononrelease= {1 | 2 | 3 | 4}]
[-mscuid=UID]
[-mbomroot=root-itemid]
[-usemfk= {0 | 1}]
[-log=log-file]

ARGUMENTS
-revrule
Specifies the revision rule of the EBOM structure used to traverse. This argument is
mandatory only if the target is an item or item revision. Do not use this argument if
the target is a structure context object.

-mbomrevrule
Specifies the revision rule for the MBOM structure. This argument is mandatory only if
the target is a structure context object. This argument is required if the target is an
item revision.

-depth
(Optional) Specifies the depth up to which to create the MBOM nodes.

If you do not specify this value, Teamcenter creates all of the MBOM nodes.

12-102 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-clientdata
(Optional) Data to be passed to any custom-registered user exit functions defined on
the item.

-actiononrelease
(Optional) A value indicating the action to be taken if an MBOM node already exists
(has a computed ID) and is released. Possible values are:

1 – Skip (the default).

2 – Revise and modify,

3 – Update properties on the released item.

4 – Update properties on the MBOM and its children.

-mscuid
The UID of the structure context object for the MBOM structure if the mobmrevrule
is not suitable (for example, it is a private revision rule). Either this argument or the
mbomroot argument is mandatory.

-mbomroot
(Optional) The ID of the root of the MBOM structure. Either this argument or the
mscuid argument is mandatory.

-scopeid
(Optional) Specifies the item ID in the EBOM from which to begin the traversal. This
argument cannot be used with scopeidincontext.

If you do not specify this value, Teamcenter begins the traversal at the top line in
the EBOM.

-scopeidincontext
(Optional) Specifies the IDIC of the line in the EBOM from which to begin the traversal.
This argument cannot be used with scopeid.

If you do not specify this value, Teamcenter begins the traversal at the top line in
the EBOM.

-log
(Optional) Specifies the absolute path and name of the log file to capture details about
the nodes created.

-usemfk
(Optional) Specifies whether to include the MEMBOM_Mirror_TypePrefixSuffix
preference value with the EBOM item identifier as a multifield key that updates the
existing MBOM item identifier. Values are:

0 Do not include the preference value in the multifield key. This value
is the default.

RS025 11.6 Setting Up Workflows for Product Development 12-103

Workflow handlers



Chapter 12: Workflow handlers

1 If the preference defines an item type without a prefix or a suffix,
include the value in the multifield key. This value is ignored if the
preference also defines a prefix or a suffix.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
In the following EBOM and MBOM, M_000229/A;1–M_rear_drive_asm is released
and then the make/buy property on its child, 000230/A;2–rear_axle, is changed from
Buy to Make.

You revise the MBOM part so you have write access and run the update workflow
using the following arguments on ME-update-mirror-mbom-A action handler for
the target MBOM:

Argument Values
-revrule= "Latest Working"
-mbomrevrule= "Latest Working"
-actiononrelease= 2

The results are the following:

12-104 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

RS025 11.6 Setting Up Workflows for Product Development 12-105

Workflow handlers



Chapter 12: Workflow handlers

ME-stamp-ids-AH

DESCRIPTION
Traverses a structure according to a closure rule and automatically assigns a
value to a specific property based on a recipe determined by the value of the
MEIdGenerationPropertySetting preference. The workflow targets must be items,
item revision, or structure context objects.

The target item or item revision is used as the top line of the BOM window. Normally,
the top line of the structure is where the transverse is started. If you need to start at a
lower line, use the-scopeid or -scopeidincontext arguments.

SYNTAX
ME-stamp-ids-AH
[-revrule=revision-rule]
[-scopeid=scope-ID|-scopeidincontext=scope-in-context-ID]
[-closurerule=closure-rule-name]
[-preference=preference-name]
[-forceupdate=1]

ARGUMENTS
-revrule
Specifies the revision rule. This argument is mandatory only if the target is an item or
item revision to set up the BOM window. Do not use this argument if the target is a
structure context object.

-scopeid
(Optional) Specifies the item ID in the manufacturing BOM from which to begin the
traversal. This argument cannot be used with scopeidincontext.

If you do not specify this value, Teamcenter begins the traversal at the top line in
the manufacturing BOM.

-scopeidincontext
(Optional) Specifies the IDIC of the line in the manufacturing BOM from which to begin
the traversal. This argument cannot be used with scopeid.

If you do not specify this value, Teamcenter begins the traversal at the top line in
the manufacturing BOM.

-closurerule
(Optional) Specifies the closure rule that determines which lines in the structure
Teamcenter stamps when it traverses the manufacturing BOM structure below the
scope line.

If you do not specify a closure rule, every line in the structure below the given scope
line is stamped.

-preference
(Optional) Specifies the preference name containing the rules for setting the BOM line
property. The default preference is MEIdGenerationPropertySetting.

12-106 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-forceupdate=1
(Optional) Specifies that an existing ID in a Context string should be ignored and that
a new value is generated. By default, the old value is not overridden.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
• This example creates in-context IDs that are based on the Usage Address

property based on the constituent properties of item ID and item type. To do this:

1. Define the recipe for the IDIC value by setting the
MEIdGenerationPropertySetting to:

type:Item,key: bl_usage_address,prop:bl_item_item_id,
prop:bl_item_object_type

2. Do one of the following:

o Create the usage address property on each line under the top line.

Argument Values
-revrule Latest Working

o Create the usage address on selected lines specified in a closure rule
under a scope line determined by the specified IDIC (top level) value.
In other words, the handler begins with a line that you specify by IDIC,
traverses the structure from the IDIC line downward using the given
closure rule, and stamps the resulting lines with the usage address string.

Argument Values
-revrule Latest Working

-scopeidincontext kJBtMh0hAAbaaA

-closurerule AccountabilityAll

RS025 11.6 Setting Up Workflows for Product Development 12-107

Workflow handlers



Chapter 12: Workflow handlers

ME-mbom-resolve-AH

DESCRIPTION
Searches the specified engineering bill of materials (EBOM) for parts that resolve the
search recipes defined in the target (root) manufacturing bill of materials (MBOM)
and assigns them to the MBOM.

You can choose the scope of the resolution and whether to recursively resolve all
nodes underneath the selected scope (-recurse) and remove previously assigned
parts. Because you most often define the root of the EBOM as the target, be sure to
set the -recurse argument to 1 to resolve the entire structure.

.
SYNTAX

ME-mbom-resolve-AH
[-itemid=UID | -scuid=in-context-ID | -key=multi-field-key-of-structure-root ]
[-revrule=revision-rule]
[-mbomrevrule=revision-rule]
[-log=log-file]
[-scopeid=scope-ID | -scopeidincontext=scope-in-context-ID |

-scopekey=multi-field-key-of-structure-root]
[-mscopeid=UID | -mscopeidincontext=scope-in-context ID |

-mscopekey=multi-field-key-of-structure-root]
[-recurse=1 | 0]
[-removepreviousresolvednodes=1 | 0]

ARGUMENTS
-itemid
(Optional) Specifies the root of the EBOM structure to be searched.

One of the -itemid, scuid, or key arguments is mandatory. Therefore, do not use if
you define a structure context or a key.

-scuid
(Optional) Specifies the structure context capturing the root of the EBOM structure and
configuration to be searched.

One of the -itemid, -scuid, or -key arguments is mandatory. Therefore, do not use if
you define an item or item revision or a key.

-key
(Optional) Specifies the key of the top line of the root EBOM structure to be searched
when multiple attributes are used to form the unique item ID. Use the following format:

[keyAttr1=keyVal1] [,keyAttr2=keyVal2]…[,keyAttrN=keyValN]

One of the -itemid, -scuid, or -key arguments is mandatory. Therefore, do not use if
you define an item or item revision or structure context.

-revrule
(Optional) Specifies the revision rule of the EBOM structure to be searched. This
argument is mandatory only if the EBOM is an item or item revision or key. Do not use
if the target is a structure context object.

12-108 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-mbomrevrule
(Optional) Specifies the revision rule for the MBOM structure where the recipes are
defined. This argument is mandatory only if the target is not a structure context object.

-log
(Optional) Specifies the absolute path and name of the log file to capture details.

-scopeid
(Optional) Specifies the item ID in the EBOM from which to begin the search. This
argument cannot be used with scopeidincontext or scopekey.

If you do not specify this value, Teamcenter begins searching at the top line of the
EBOM.

Select one of the -scopeid, -scopeidincontext, or -scopekey arguments. Do not use
if you define a structure context or a key.

-scopeidincontext
(Optional) Specifies the ID in top level context in the EBOM from which to begin the
search. This argument cannot be used with scopeid.

If you do not specify this value, Teamcenter begins searching at the top line of the
EBOM.

Select one of the -scopeid, -scopeidincontext, or -scopekey arguments. Do not use
if you define an item or item revision or a key.

-scopekey
(Optional) Specifies the IDIC of the line in the EBOM from which to begin the search.
This argument cannot be used with scopeid.

If you do not specify this value, Teamcenter begins searching at the top line of the
EBOM.

Select one of the -scopeid, -scopeidincontext, or -scopekey arguments. Do not use
if you define an item or item revision or structure context.

-mscopeid
(Optional) Specifies the item ID in the MBOM to resolve, for example, if you want
to resolve for a particular phantom node. This argument cannot be used with
mscopeidincontext.

If you do not specify this value, Teamcenter resolves at the top line of the MBOM.

Select one of the -mscopeid, -mscopeidincontext, or -mscopekey arguments. Do
not use if you define a structure context or a key.

-mscopeidincontext
(Optional) Specifies the ID in top level context in the MBOM to resolve, for example, if
you want to resolve for a particular phantom node.

If you do not specify this value, Teamcenter resolves the recipes starting at the top
line of the MBOM.

Select one of the -mscopeid, -mscopeidincontext, or -mscopekey arguments. Do
not use if you define an item or item revision or a key.

RS025 11.6 Setting Up Workflows for Product Development 12-109

Workflow handlers



Chapter 12: Workflow handlers

-mscopekey
(Optional) Specifies the IDIC of the line in the MBOM to resolve, for example, if you
want to resolve for a particular phantom node. This argument cannot be used with
mscopeid.

If you do not specify this value, Teamcenter resolves the recipes starting at the top
line of the MBOM.

Select one of the -mscopeid, -mscopeidincontext, or -mscopekey arguments. Do
not use if you define an item or item revision or structure context.

-recurse
(Optional) Specifies whether to resolve all nodes under the specified scope node.
Valid values are 1 and 0. The default value is 0 meaning Teamcenter only resolves
the recipes at the specified scope node.

-removepreviousresolvednodes
(Optional) Specifies whether to remove the previously assigned parts. Valid values
are 1 and 0. The default value is 0 meaning Teamcenter does not remove parts that
have already been resolved in the MBOM.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
The following arguments search the EBOM (000202/A;1–CAR_EBOM) for
parts that resolve the recipes defined at node 000224/A of the target MBOM
(M_000202–M_CAR_MBOM) and assigns them to the MBOM:

Argument Values
-itemid= 000202
-revrule= "Latest Working"
-mbomrevrule= "Latest Working"
-mscopeid= 000224
-recurse 1

12-110 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

RS025 11.6 Setting Up Workflows for Product Development 12-111

Workflow handlers



Chapter 12: Workflow handlers

ME-create-revision-change-XML-AH

DESCRIPTION
Creates a revision change delta XML file. The manufacturing change notice (MCN)
revision contains the item revisions to find revision changes. The configuration context
object supplies the current configuration, and the MCN can optionally have a was
configuration set on it. The generated XML file is attached to the request object.

SYNTAX
ME-create-revision-change-XML-AH
[-filename=file-name]

ARGUMENTS
(Optional) -filename=file-name

When you specify the -filename= argument, the system uses it as a base name;
however, the actual filename is RevisionChangeXMLbasename-randomstring.xml

REFERENCES
• (Required) MCN revision object.

• (Required) Configuration context (execution plan type) object.

TARGETS
(Required) Request object.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

12-112 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ME-create-mirror-mbom-AH

DESCRIPTION
Creates a manufacturing bill of materials (MBOM) based on an engineering bill of
materials (EBOM). It allows different item types in the MBOM than were in the EBOM
for certain nodes based on custom logic. By default, the MEBOM_* preferences listed
set the item type to be created.

• MEMBOM_Mirror_MakeRules

• MEMBOM_Mirror_RemoveLineWithIDIC

• MEMBOM_Mirror_ReplaceMakeOnChange

• MEMBOM_Mirror_TypePrefixSuffix

You can also customize the item type to be created using the
USER_create_or_ref_item exposed in the Business Modeler IDE through
BMF_ITEM_create_or_ref_id on the item.

Attachments that are associated with item revisions in the EBOM structure are carried
forward. A user exit operation (USER_sync_item) must also be available on the item
to align any additional attachment information or non-occurrence properties. The user
exit is exposed in the Business Modeler IDE through BMF_ITEM_sync on the item.

The target must be an item or item revision or a structure context object. The top line
of the structure is where the create starts.

.
SYNTAX

ME-create-mirror-AH
[-revrule=revision-rule]
[-mbomrevrule=mbom-revision-rule]
[-depth=depth]
[-clientdata=data]
[-actiononrelease= {1 | 2 | 3 | 4}]
[-mscuid=UID]
[-usemfk= {0 | 1}]
[-log=log-file]

ARGUMENTS
-revrule
Specifies the revision rule of the EBOM structure used to traverse. This argument is
mandatory only if the target is an item or item revision. Do not use this argument if
the target is a structure context object.

-mbomrevrule
Specifies the revision rule for the MBOM structure. This argument is mandatory only
if the target is a an item or item revision. Do not use this argument if the target is a
structure context object.

-depth
(Optional) Specifies the depth up to which to create the MBOM nodes.

RS025 11.6 Setting Up Workflows for Product Development 12-113

Workflow handlers



Chapter 12: Workflow handlers

If you do not specify this value, Teamcenter creates all of the MBOM nodes.

-clientdata
(Optional) Data to be passed to any custom-registered user exit functions defined on
the item.

-actiononrelease
(Optional) Specifies a value indicating the action to be taken if an MBOM node already
exists (has a computed ID linked to the EBOM) and is released. Possible values are:

1 – Skip (the default).

2 – Revise and modify,

3 – Update properties on the released item.

4 – Update properties on the MBOM and its children.

-mscuid
Specifies the UID of the structure context object for the MBOM structure if the
mobmrevrule is not suitable (for example, it is a private revision rule).

-log
(Optional) Specifies the absolute path and name of the log file to capture details about
the nodes created.

-usemfk
(Optional) Specifies whether to include the MEMBOM_Mirror_TypePrefixSuffix
preference value with the EBOM item identifier as a multifield key that becomes the
new MBOM item identifier. Values are:

0 Do not include the preference value in the multifield key. This value
is the default.

1 If the preference defines an item type without a prefix or a suffix,
include the value in the multifield key. This value is ignored if the
preference also defines a prefix or a suffix.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
The following examples of specifying arguments for the ME-create-mirror-mbom-AH
action handler demonstrate its use and the differences in output caused by changing
the arguments. The initial values of the preferences are as follows.

• MEMBOM_Mirror_MakeRules=KEY:Usage_MakeOrPurchase,VALUE:Make
|VALUE:Phantom

• MEMBOM_Mirror_RemoveLineWithIDIC=false

• MEMBOM_Mirror_TypePrefixSuffix=Company,M_

12-114 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• MEMBOM_Mirror_ReplaceMakeOnChange=false

• Create an MBOM

For the following EBOM, which is the target of the workflow:

The following arguments on ME-create-mirror-mbom-AH:

Argument Values
-revrule= "Latest Working"
-mbomrevrule= "Latest Working"

Produce the following MBOM:

• Create the MBOM to a specific level

RS025 11.6 Setting Up Workflows for Product Development 12-115

Workflow handlers



Chapter 12: Workflow handlers

For the following EBOM, which is the target of the workflow:

The following arguments:

Argument Values
-revrule= "Latest Working"
-mbomrevrule= "Latest Working"
-depth= 2

Produce a new MBOM, which contains only two levels of structure. The remaining
levels in the EBOM are ignored.

12-116 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

MDL-snapshot-baseline-revisions

DESCRIPTION
Sets the snapshot date and closure state for all baseline revisions that are targets of
the root task.

Deleting and re-adding the baseline snapshot date is an alternative to revising a
baseline. It avoids creating additional objects, but does not allow a record to be kept of
the failed baseline attempt. The choice between a re-open versus a revise step is a
business decision, and it is expected to be formally designed as a workflow.

Siemens PLM Software recommends that you use a workflow action handler to close
a baseline before performing signoffs. Once signoffs are complete, we recommend
using another workflow action handler to assign a status to the baseline.

SYNTAX
MDL-snapshot-baseline-revisions -snapshot = add | replace
| delete -closure=name ]

ARGUMENTS
-snapshot
Sets the baseline revision snapshot date. The value can be one of the following:

• add

Ensure the baseline revision has a snapshot date.

If the baseline revision does not have a snapshot date, it is set to the current date.

If the baseline revision already has a snapshot date, the snapshot date is
unchanged.

• replace

Sets the baseline revision snapshot date to the current date.

• delete

Sets the baseline revision snapshot date to null.

-closure
Sets the baseline revision closure property to the specified value.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-117

Workflow handlers



Chapter 12: Workflow handlers

MDL-promote-objects-to-history

DESCRIPTION
Promotes all targets and any related objects to history. For non-revisable targets, this
handler checks the maturity status for object stability.

If the target object is revisable, the logical object is copied to POM history and its
references are checked for stability.

If the target object is not revisable, it is checked for stability
SYNTAX

MDL-promote-objects-to-history
ARGUMENTS

None.
PLACEMENT

Requires no specific placement.
RESTRICTIONS

None.

12-118 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

MDL-attach-subset-definition-changes

DESCRIPTION
Compares the mdl0HistorySyncStatus property for the content of all target subset
definitions. Where content is out of synchronization, the handler adds the content to
the workflow as a target.

An Mdl0ModelElement business object is in sync whenever the
mdl0HistorySyncStatus property value is empty (" ").

Examine both the latest-history and latest configurations for both content and
partitions. This is required to get the correct promote-to-history of obsoleted or
configured-out content.

SYNTAX
MDL-attach-subset-definition-changes [-partition=[scheme1,
[scheme2, ...] | [* | all | any]

ARGUMENTS
-partition
(Optional) Attaches the required partitions from the subset definition content up to the
root partitions. You can specify multiple partition schemes by name, all partitions, or
any partition.

If the -partition argument is used, partitions in the specified partition schemes are
also attached if the partition is:

• Configured by the subset definition.

• Itself is out of sync.

• Lies on the path from the subset definition content to the root partitions.

PLACEMENT
Place before the MDL-promote-objects-to-history handler to synchronize the subset
definition content with the history.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-119

Workflow handlers



Chapter 12: Workflow handlers

MDL-attach-changes-to-baselines

DESCRIPTION
For all change item revisions that are targets of the root task, this handler finds any
baseline revisions in the Reference Items folder and attaches the change item
revision as a reference to the baseline.

If the attachment fails for any reason, an error is returned.
SYNTAX

MDL-attach-changes-to-baselines
ARGUMENTS

None.
PLACEMENT

Requires no specific placement.
RESTRICTIONS

None.

12-120 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

LDF-set-task-result-to-property

DESCRIPTION
LDF-set-task-result-to-property reads the specified property from the remote object.
LDF-set-task-result-to-property uses that property value to set the result string
attribute of the task where this handler is located, or on the task specified by the
-target_task argument. A common use for this handler is to control Condition task
branching instead of using a scheme that requires a custom handler. Using this
handler to set the result attribute of a Condition task branches the workflow process
based on a remote property of the target source object.

SYNTAX

-property
-source
[-attachment_relation]
[ -include_type ]
[ -target_task ]
[ -remote_user_name ]

ARGUMENTS
-property Specifies the property to be read from the identified remote

object attached to the target with specified relation.

The values specified for this argument require a fully qualified
property name with a prefix URL prepended to every property
in a workflow argument value. The OSLC namespace
prefix URL must be contained in angle brackets in the
<oslc-namespace-prefix-url > -property-name format as
shown in the Examples section below.

This is a mandatory argument.

-source Determines which source object identifies the remote object
property. Source object values are either target or reference.
The remote object property is identified in the -property
argument.

• target

Declares that the remote object property is read from a
target object. The -include_type argument specifies the
target object type to use.

• reference

Declares that the remote object property is from a reference
object. The -include_type argument specifies the reference
object type to use.

RS025 11.6 Setting Up Workflows for Product Development 12-121

Workflow handlers



Chapter 12: Workflow handlers

-attachment_relationSpecifies the relation name to expand to get a linked object
from a workflow attachment. Linked objects, attached to
targets and references in a workflow with the relation specified
by -attachment_relation, are searched. Linked objects not
matching the specified relation criteria are ignored.

This is an optional argument.

-include_type Identifies the source type to read the specified property of the
remote object. The property name is defined in the -property
argument. If more than one target object of a given type exists,
the first target on the list is used. If a valid -include_type
argument is absent, the property is read from the first target
on the list.

-target_task Identifies where the result string attribute is set. If not specified,
then the task result attribute is set for the task containing this
handler.

This is an optional argument.

• $ROOT_TASK—Sets the result string attribute on the root
task of the process.

• $DEPENDENT_TASK—Sets the result string attribute
on the parent process task which is dependent on
this subprocess. The parent process task should be a
Condition task.

-remote_user_name Used by the handler to connect to a remote system, like
Polarion, for sending HTTP requests.

The Restrictions section below describes separate actions
required to generate an encrypted password file.

Note

This argument is optional with SSO.

PLACEMENT
Typically placed on the Start action of the specified Condition task.

Note

You can apply the LDF-set-task-result-to-property handler to any task, but
it sets the result on either a root or Condition task.

The Condition task can contain the handler or be a parent of another
dependent task that contains the handler.

RESTRICTIONS
• Do not place this handler on the Perform action.

12-122 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• Do not use this handler in conjunction with other handlers that set the result
attribute, such as EPM-set-condition, EPM-set-parent-result, or a custom
handler.

• You can use this handler on the Complete action only if a change occurred on
the Perform action.

• This handler allows you to set the result attribute on the root task or any other
Condition task.

• Use if you are using the Linked Data Framework for application integrations and
you want Teamcenter workflows to create an object in a remote system. You
must generate an encrypted password file in a Teamcenter command shell. To
create an encrypted password:

1. Run this command: mkdir %TC_DATA%\polarionconnector.

2. Run this command: %TC_ROOT%\bin\install -encryptpwf
-f=%TC_DATA%\polarionconnector\<user name>.

Where <user name> is the user name of a remote system such as Polarion
ALM. Configure this user name as a value of the –remote_user_name
handler.

EXAMPLES
This LDF_set_task_result_to_property handler configuration branches a Condition
task based on the remote object property Priority, which is attached to a target change
request revision with the relation Lcm0RelatedChangeRequest.

Argument Values
-property <http://polarion.plm.automation.siemens.com/oslc#>.priority
-source target
-include_type ChangeRequestRevision
-attachment_relation Lcm0RelatedChangeRequest
-remote_user_name admin

RS025 11.6 Setting Up Workflows for Product Development 12-123

Workflow handlers



Chapter 12: Workflow handlers

LDF-create-object

DESCRIPTION
Creates an object in the remote system and relates it to the workflow attachment.

SYNTAX
LDF-create-object
service_provider
-object_type
[ -property::<oslc-namespace-prefix-url>.property-name]
[-from_attach]
-attachment_relation
[-remote_user_name]

ARGUMENTS
-service_provider

Service provider represents the services published by the
external application.

Example

Polarion is registered in Teamcenter as a site and
service provider under which my objects will be
created.

This is a mandatory argument.

The values specified for this argument can be dynamic.
Users can configure the handler argument to read
the property values from workflow attachments and
substitute them as the argument values. For example,
-service_provider=PROP::owning_project where
owning_project is the property of the Teamcenter workflow
attachment. If corresponding service_provider is not found,
this handler returns an error.

-object_type

This argument specifies the type of object created in the remote
system.

This is a mandatory argument.

12-124 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-property::<oslc-namespace-prefix-url>.property-name

Specifies the property name for the remote object to be created.

Requires a fully qualified property name with a prefix URL
prepended to every property in a workflow argument, which
is prepended by -property::. The OSLC namespace prefix
URL must be contained in angle brackets, < and >, in the
<oslc-namespace-prefix-url >.property-name format as shown
in the examples section.

The values specified for this argument can be dynamic. User
can configure the handler argument to read the property values
from workflow attachments and substitute it as the argument
value.

For example, -property::<http://purl.org/dc/terms/>.title
=PROP::object_name where object_name is the property of
the Teamcenter workflow attachment. User can also configure
prefix or suffix.

The dynamic property values can also have prefix or suffix.
For example, -property::<http://purl.org/dc/terms/>.title
=ABC PROP::object_name XYZ ABC is the prefix,
PROP::object_name is the dynamic value from Teamcenter
object, and XYZ is the suffix.

-from_attach

target | reference

(Optional) Specifies which type of attachment
(target or reference) to get the property value
from when a property is specified in the
-property::<oslc-namespace-prefix-url>.property-name
argument. For example,
-property::<http://purl.org/dc/terms/>.title=PROP::object_name
where object_name is the property of the Teamcenter workflow
attachment.

You can use this argument only when you get the property value
from a property of the attachment object.

-attachment_relation

Specifies the relation name linking the remote object with
the target. This relation name should match a relation name
configured in Linked Data Framework. Refer to .

This is a mandatory argument.

RS025 11.6 Setting Up Workflows for Product Development 12-125

Workflow handlers



Chapter 12: Workflow handlers

-remote_user_name

Used by the handler to connect to a remote system like Polarion
for sending HTTP requests.

The Restrictions section below describes separate actions
required to generate an encrypted password file.

Note

This argument is optional with SSO.

PLACEMENT
Place on the Start or Complete action.

Note

Do not place on a Perform action requiring specific user interaction.
Placement on the Perform action may cause the handler to be triggered
multiple times.

RESTRICTIONS
Use if you are using the Linked Data Framework for application integrations, and you
want Teamcenter workflows to create an object in a remote system.

You must generate an encrypted password file by following these steps in a
Teamcenter command shell:

1. Run this command:

mkdir %TC_DATA%\polarionconnector

2. Run this command:

%TC_ROOT%\bin\install -encryptpwf -f=%TC_DATA%\polarionconnector\
<user name>

Where <user name> is user name of remote system such as Polarion ALM. This
user name should be configured as a value of the –remote_user_name handler.

EXAMPLES
• This example shows the LDF-create-object handler configuration to create an

object in the remote system of type changerequest , and attaching the remote link
of this object with target by Lcm0RelatedChangeRequest relation. Uses service
provider and title values from target object properties object_desc, object_name,
respectively.

Argument Values
-service_provider PROP::object_desc
-object_type changerequest
-property::
<http://purl.org/dc/terms/>.title

PROP::object_name

12-126 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-from_attach target
-attachment_relation Lcm0RelatedChangeRequest
-remote_user_name admin

• This example shows the LDF-create-object handler configuration to create an
object in the remote system of type issue, and attaching the remote link of this
object with target by Lcm0AffectedByDefect relation. Uses title and description
values from target object properties object_name, object_desc respectively.

Argument Values
-service_provider Drive Pilot
-object_type issue
-property::
<http://purl.org/dc/terms/>.title

PROP::object_name

-property::
<http://purl.org/dc/terms/>.description

PROP::object_desc

-from_attach target
-attachment_relation Lcm0AffectedByDefect
-remote_user_name admin

RS025 11.6 Setting Up Workflows for Product Development 12-127

Workflow handlers



Chapter 12: Workflow handlers

ISSUEMGT-update-issue-status

DESCRIPTION
Counts the issue review decisions from all reviewers and updates the issue status.
It takes inputs such as decision type, passing threshold, and the list of issue
attribute/value pairs to update when a review decision passes. If you use the
-force_set_properties argument, the review decision does not need to be passed
to update the issue status. You can optionally clean up review records after they
are counted and issue status is updated. It sets a condition when configured with
a Condition task.

SYNTAX
ISSUEMGT-update-issue-status
-review_decision=decision-string -threshold=percentage-passes -set_condition
[-force_set_properties] [-attribute-name=attribute-value]
[-clean_up_review_records]

ARGUMENTS
-review_decision
Specifies the issue review decision. It accepts one of the following values:

• defer

• reject

• approveFix

• close

• reopen

• approveIssue

-threshold
Sets the percentage required to approve the review decision.

For example, -threshold=51 means that the review decision passes with a 51 percent
majority.

-set_condition
Sets the Condition task to TRUE if the review decision passes.

-force_set_properties
Forces the issue attributes to be set regardless if review decisions are counted or if
review decision passes.

-attribute-name
Updates the specified attribute with the specified value when the review decision
passes. You can specify more than one attribute and value pair.

-clean_up_review_records
Cleans up review records after they are counted and the issue status is updated.

12-128 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

PLACEMENT
Place in any workflow task.

RESTRICTIONS
If the -review_decision argument is set for this handler and the
-force_set_properties is not set, Siemens PLM Software recommends placing the
ISSUEMGT-check-review-decision action handler on a previous perform-signoffs
task to ensure that review decisions are logged from all reviewers.

RS025 11.6 Setting Up Workflows for Product Development 12-129

Workflow handlers



Chapter 12: Workflow handlers

ISSUEMGT-check-review-decision

DESCRIPTION
Checks issue review records for a target issue report revision when the specified
review decision is made. If no issue review record is found for the issue report revision
contained as a target of the workflow, the signoff decision is reset to No Decision. The
user is prompted to choose Tools→Review Issue to review the issue and record a
decision.

SYNTAX
ISSUEMGT-check-review-decision=review-decision-type

ARGUMENTS
review-decision-type
Specifies which type of signoff decision prompts the system to check the issue review
record for the issue report revision. It accepts one of the following values:

-Approve Issue review records are checked for a target issue report
revision when the user approves the signoff.

-Reject Issue review records are checked for a target issue report
revision when the user rejects the signoff.

PLACEMENT
Place on the Perform action of the perform-signoffs task.

RESTRICTIONS
None.

EXAMPLES
• In this example, issue review records are checked for a target issue report revision

when the user approves the signoff. If no issue report revision is found for the
target, the signoff is reset to No Decision. The user is prompted to choose
Tools→Review Issue to review the issue and record a decision.

Argument Values
-Approve

• In this example, issue review records are checked for a target issue report revision
when the user rejects the signoff. If no issue report record is found for the target
issue report revision, the signoff is reset to No Decision. The user is prompted to
choose Tools→Review Issue to review the issue and record a decision.

Argument Values
-Reject

• In this example where no argument is given, issue review records are checked for
a target issue report revision when the user performs the signoff, either approving
or rejecting it. If no issue report record is found for the target, the signoff is reset to
No Decision. The user is prompted to choose Tools→Review Issue to review
the issue and record a decision.

12-130 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

GMIMAN-invoke-subscription-event-on-item

DESCRIPTION
Notifies the subscribed user about an event by checking the release status of the
item revision with the specified argument.

SYNTAX
GMIMAN-invoke-subscription-event-on-item -event=event-type-release-status

ARGUMENTS
-event
Valid event-type release status.

PLACEMENT
Add this handler after the EPM-set-status handler in the Complete action of the
release workflow.

RESTRICTIONS
This handler can only be used when the GM Overlay is installed. The valid event-type
release statuses are limited to the event types that are installed for the Subscription
Administration.

RS025 11.6 Setting Up Workflows for Product Development 12-131

Workflow handlers



Chapter 12: Workflow handlers

ERP-transform-AI-contents-AH

DESCRIPTION
Reads the PLM XML contents of an AI object attached as reference to the process.
It then applies the XSLT transform specified in an input parameter and writes the
resulting .xml file to the to the export directory.

SYNTAX
ERP-transform-AI-contents-AH

ARGUMENTS
None.

PLACEMENT
Place on the Complete action of any task. Apply after the AI-export-AH handler.

RESTRICTIONS
None.

12-132 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ERP-set-pathnames-in-logds-AH

DESCRIPTION
Reads the configuration file and sets the path names of the transfer file and response
file (listed in the configuration file), in a log dataset property.

SYNTAX
ERP-set-pathnames-in-logds-AH

ARGUMENTS
None.

PLACEMENT
Place on the Complete action of any task. Apply after the
EPM-set-pathnames-in-logds-AH handler.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-133

Workflow handlers



Chapter 12: Workflow handlers

ERP-post-upload-AH

DESCRIPTION
Runs after the upload and reads the contents of the ERP logfile dataset. The handler
looks in the directory defined in the Response_file_path global setting for the
Response file, with the name defined in the Description box of the ERP_Logfile
dataset. It imports the Response file into the latest version of the ERP logfile dataset.

The handler parses the ERP logfile according to the Send_file_format global setting
as follows:

• If the status is CREATED or CHANGED and the set_transfer argument is set to
YES, set the Sent to ERP box of the respective forms to user_id/upload_date.

• At the end of the logfile, there is a single UPLOAD_STATUS parameter. If set to
FAILURE, the handler returns an error code other than ITK_ok, which displays an
error message and stalls the process. If set to SUCCESS, the handler:

o Removes transfer folders from the process and delete them.

o Returns ITK_ok, indicating the process/review level is complete.

• The handler parses the ERP logfile for the single overall status of the upload
according to the success/error message defined in the Error_success_message
global setting.

SYNTAX
ERP-post-upload-AH -set_transfer={YES|NO}

ARGUMENTS
-set_transfer
Value must be YES or NO (case insensitive). If YES, the Sent_to_ERP fields are set
upon successful transfer.

Note

Siemens PLM Software recommends you set the value to YES, so it is clear
the data is uploaded. If this is only working data, the you can remove the
value in the set_transfer field to allow data to be resent.

PLACEMENT
Place this rule after the SAP-upload-AH handler on the perform-signoff task.

RESTRICTIONS
None.

12-134 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ERP-download-AH

DESCRIPTION
Extracts attribute values from the Teamcenter database and writes these out to an
operating system transfer file. The transfer file is placed in the directory specified by
the Send_file_format global setting with the name defined by the Send_file_name
global setting.

The behavior of this handler depends on the Send_file_format global setting.

The format of the transfer file can be configured by the mapping file. This is a key
feature of the Teamcenter/ERP Connect Toolkit.

This handler also writes the names of the Send file and Response file paths to the
Description box of the ERP_Logfile dataset, which are required.

SYNTAX
ERP-download-AH

ARGUMENTS
None.

PLACEMENT
Place on the Perform Signoff task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-135

Workflow handlers



Chapter 12: Workflow handlers

ERP-delete-log-dataset-AH

DESCRIPTION
Cleans up the database by deleting the ERP logfile once the process has successfully
completed.

SYNTAX
ERP-delete-log-dataset-AH

ARGUMENTS
None.

PLACEMENT
Place this handler on the Complete action of the root task.

RESTRICTIONS
None.

12-136 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ERP-attach-targets-AH

DESCRIPTION
Attaches all ERP forms as targets of the process and then creates a transfer folder
(of type ERP_transfer_folder_type) for each target item revision, which is attached
as references to the process. All ERP forms with the relations specified in the
reln_names argument are pasted into the corresponding transfer folder.

ERP forms are those that are defined in the mapping schema.
SYNTAX

ERP-attach-targets-AH -reln_names = reln1,reln2,...

ARGUMENTS
-reln_names
A list of the relation types used to relate ERP forms to item revisions.

Separate multiple types with commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

Note

Relation names are case sensitive and should be named, for example,
tc_specification not TC_Specification.

ERP_Data is the special relation supplied for attaching ERP forms, if
these are to be distinguished from other relations. The semantics are as
for manifestation:

• The advantage is that ERP forms can be added later in the life cycle
without forcing a new revision of the item.

• The disadvantage is that the ERP data is less secure and the forms can
be removed or replaced.

Access to the forms is controlled using the Access Manager.

PLACEMENT
Place on the Review task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-137

Workflow handlers



Chapter 12: Workflow handlers

ERP-att-logfile-as-dataset-RH

DESCRIPTION
Creates the ERP_Log_Dataset text dataset and attaches it as a reference to the
process. Through the lifetime of the process, this dataset logs the progress of the
ERP-related parts of the process. On completion of the process, the log file is exported
to the directory specified by the Tc_ERP_rellog_file_path preference.

SYNTAX
ERP-att-logfile-as-dataset-RH

ARGUMENTS
None.

PLACEMENT
Place on the Review task. Call this handler before any other ERP handler, as other
handlers work on the assumption that the ERP logfile dataset exists.

Note

Although not a rule handler, this was made a rule handler that can be placed
and run before any other handler.

RESTRICTIONS
None.

12-138 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-trigger-action-on-related-process-task

DESCRIPTION
Triggers an action on a task within a related workflow process.

Workflow processes can be related and/or coupled using reference attachments.
Triggered workflow processes can be coupled with the triggering workflow process by:

• Adding triggering workflow process target attachments as reference attachments
to the triggered workflow process. For example, the triggering workflow process
could be the workflow process for a change object. Each workflow process for the
affected item, the problem item, and so on, are then triggered workflow processes.
Pasting the change object as a reference attachment to each workflow process for
the affected item, the problem item, and so on, establishes a coupling. The change
object process can now trigger task actions (such as Suspend and Resume) in
each triggered workflow process.

• Adding triggered workflow process target objects as reference attachments to the
triggering workflow process. This example is similar to the previous example. It
also uses a coupling, but in the opposite direction: the triggering workflow process
could be a review process for a part that is affected by a change. The change
object process is then the triggered workflow process. Pasting the change object
as a reference attachment to each workflow process for the affected item, the
problem item, and so on, establishes a coupling. The part review process can now
trigger task actions (such as Suspend and Resume) in the change object process.

• Adding the triggering workflow process object as a reference to the triggered
workflow process. This example uses a coupling achieved by pasting the workflow
process object itself, not a target or reference attachment. The triggering workflow
process could be the process for a change object. Each process for the affected
item, the problem item, and so on, are then triggered processes. Pasting the
change process object as a reference attachment to each process for the affected
item, the problem item, and so on, establishes a coupling. The change object
process can now trigger task actions (such as Suspend and Resume) in each
triggered process.

This handler helps to identify sibling workflow processes (processes that have
reference to a higher-level process) and to trigger an action on a task within those
processes. For example, you can control the appearance of workflow processes in
your inbox by suspending and resuming the workflow processes depending on the
reference workflow processes they have.

SYNTAX
EPM-trigger-action-on-related-process-task
-task=task-name
-action=action-name
[-active=ACTION
[-active=OTHER-ACTION]]
[-comment=comment]
[-process_type=Processes_Referencing_Target_Objects |
Processes_Referencing_This_Process | Reference_Object_Processes]

RS025 11.6 Setting Up Workflows for Product Development 12-139

Workflow handlers



Chapter 12: Workflow handlers

[-template=process-template-name]
[-depth=level]
[-debug]

ARGUMENTS
-task
Name of the task in which the given action needs to be triggered. If the task name is
ambiguous (such as perform-signoffs), Siemens PLM Software recommends that the
task name is qualified with its parent task name (for example, level2.perform-signoffs
or conditional branch 2.level2.perform-signoffs).

-action
Name of the action that needs to be triggered. The following are valid action names:
ASSIGN, START, PERFORM, COMPLETE, SUSPEND, RESUME, SKIP, ABORT,
and UNDO.

Note

The action cannot succeed if the task is not in the correct state when the
action is triggered. For example, the COMPLETE action cannot succeed if
a Condition task result is something other than Unset. Therefore, you must
set the value before triggering the action. To set the value, write a custom
handler that is triggered before this action.

-active
Name of the action for which this handler is valid.

If this argument is used, and the handler is called as part of a trigger to a nonlisted
action, the handler silently returns immediately. For more information about valid
action names, see the -action argument.

This argument can be useful when the handler is used in Perform actions. The
following actions also automatically run the Perform action handlers, raising the
potential for infinite loops or unnecessary processing:

• EPM_add_attachment_action

• EPM_remove_attachment_action

• EPM_approve_action

• EPM_reject_action

• EPM_promote_action

• EPM_demote_action

• EPM_refuse_action

• EPM_assign_approver_action

12-140 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• EPM_notify_action

This argument is optional.

-comment
The comment to be incorporated when the action is triggered.

If this argument is not specified, it defaults to the name of this handler:
EPM-trigger-action-on-related-process-task.

This argument is optional.

-process_type
The workflow processes to find. It can have one of the following values:

• Processes_Referencing_Target_Objects

Finds workflow processes that reference one or more of the target attachments
belonging to the current workflow process. The action is initiated for each matching
attachment found. For example, if a workflow process references two target
attachments belonging to the current workflow process, the action is initiated twice.

This is the default value for this argument

• Reference_Object_Processes

Finds workflow processes with target attachments that match reference
attachments belonging to the current workflow processes. The action is initiated
for each matching attachment found. For example, if the current workflow process
reference two target objects of a workflow process, the action is initiated twice.

• Processes_Referencing_This_Process

Finds workflow processes that reference the current workflow process.

This argument is optional.

-template
The name of the workflow process template of the workflow process(es) to be triggered.

This argument is useful to save processing time and/or improve robustness. Use this
argument to configure this handler to trigger actions on specific workflow processes of
a particular workflow process template. This name may contain wildcard characters.

This argument is optional.

-depth
This argument controls the recursion depth.

This argument is useful when the triggering of an action results in another action being
triggered (due to the configuration of the EPM-trigger-action-on-related-process-task
handler, or any other handler placed in that action) and so on.

The recursion depth defaults to 1. If the recursion depth is required, set the depth
carefully to avoid infinite loops. If set to zero, make sure that the algorithm converges
to a definite end of the recursion.

RS025 11.6 Setting Up Workflows for Product Development 12-141

Workflow handlers



Chapter 12: Workflow handlers

-debug
This argument writes debug messages to the log file.

This argument is optional.

PLACEMENT
Requires no specific placement. Depending on the purpose, may be placed at various
tasks and actions. If placed on the Start action of the root task, controls whether or
not a workflow process can be initiated.

RESTRICTIONS
Do not use this handler in a subprocess.

EXAMPLES
The following example has two workflow process templates: Initiate Item Revision
and Initiate Dataset. The EPM-trigger-action-on-related-process-task handler
in the Initiate Item Revision process triggers the Complete action on the
ApproveDesignWork task in the Initiate Dataset process.

This example uses the following item revision with a UGMASTER dataset:

Process Template
Tasks Steps to follow

Initiate Item Revision Start→

ApproveItemRevision
(Review task)→

Finish

In the root task in the
Start action, add the
EPM-trigger-action-on-related-
process-task handler with
the following arguments:

• -task=ApproveDesignWork

• -action=COMPLETE

• -comment=approved

12-142 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Process Template
Tasks Steps to follow

Initiate Dataset Start→

CreateDesignWork
(Review task)→

ApproveDesignWork
(Review task) →

Finish

Create an Initiate Dataset
workflow process for the
ABC123/001-UGMASTER
dataset and paste
the ABC123/001 item
revision as the reference
attachment.

Sign off the
CreateDesignWork
task, which starts the
ApproveDesignWork
task.

Then, create an
Initiate Item Revision
workflow process for the
ABC123/001 item revision.

Since -process_type=Processes_Referencing_Target_Objects is the default
setting, and the ABC123/001 item revision is a reference attachment of the Initiate
Dataset process, the Complete action of the ApproveDesignWork task is triggered.

Note that the Complete action is successful only if all conditions for the completing a
Review task are already met.

RS025 11.6 Setting Up Workflows for Product Development 12-143

Workflow handlers



Chapter 12: Workflow handlers

EPM-trigger-action

DESCRIPTION
Triggers the specified action on the task to which this handler is attached.

SYNTAX
EPM-trigger-action -action=action -comment=comment

ARGUMENTS
-action
Performs the designated task. Accepts one of these task actions:

• EPM_assign_action

• EPM_start_action

• EPM_complete_action

• EPM_skip_action

• EPM_suspend_action

• EPM_resume_action

• EPM_undo_action

• EPM_abort_action

• EPM_perform_action

-comment
Associates comment with the task action when the action is logged in the workflow
audit log file.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
This example performs the Complete action, displaying the text Triggering the
Complete action from the EPM-trigger-action handler when the Complete action
is logged in the workflow audit log file.

Argument Values
-action EPM_complete_action
-comment Triggering the Complete action from the

EPM-trigger-action handler

12-144 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-system

DESCRIPTION
Runs the first operating system argument passed to it.

The EPM-system handler cannot handle run-time command line arguments. For
information about addressing such issues, see the EPM-execute-follow-up action
handler. The EPM-system handler does not accept return values.

SYNTAX
EPM-system -command= argument

ARGUMENTS
-command
Operating system command to be run. Define with a standalone program or command.
The length is determined by your local system's command line length settings.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
• This example sends an e-mail to smith with a body from the

/tmp/approval_note.txt file and the subject Notification: Task has been
approved:

Argument Values
-command mailx -s "Notification: Task has been

approved" smith /tmp/approval_note.txt

RS025 11.6 Setting Up Workflows for Product Development 12-145

Workflow handlers



Chapter 12: Workflow handlers

EPM-suspend-on-reject

DESCRIPTION
Suspends the task when the approval quorum cannot be met.

SYNTAX
EPM-suspend-on-reject

ARGUMENTS
None.

PLACEMENT
Place on the Perform action of the perform-signoffs task.

RESTRICTIONS
Place only on the perform-signoffs task.

12-146 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-set-task-result-to-property

DESCRIPTION
Reads the specified property from the identified task or target object, and uses that
property value to set the result string attribute of the task where this handler is located
or on the task specified by the -target_task argument. A common use for this handler
is to control Condition task branching instead of using a more involved scheme that
requires a custom handler. Using this handler to set a Condition task’s result attribute
allows the workflow process to branch based on a property of the identified task or
target source object.

SYNTAX
EPM-set-task-result-to-property -source=task | target [-source_task=task-name]
[-include_type=target-object-type] [-target_task= $ROOT_TASK |
$DEPENDENT_TASK] -property=property-name

ARGUMENTS
-source
Indicates from which source object (task or target) the identified property should be
read. The property is identified by the -property argument.

• task

Indicates the property should be read from a task. The -task_name argument
specifies the task to use.

• target

Indicates the property should be read from a target object. The -target_type
argument specifies the target object type to use.

-source_task
Identifies the name of a task from which to read the specified property (the -property
argument specifies the property). This argument is valid only if -source=task. If a
valid -source_task argument is absent, the property is read from the task where
the handler is located.

-include_type
Identifies the target type from which to read the specified property (the -property
argument specifies the property). This argument is valid only if -source=target. If
there are more than one target objects of the given type, the first target on the list is
used. If a valid -include_type argument is absent, the property is read from the first
target on the list.

-target_task
Identifies where the result string attribute is set.

This is an optional argument. If -target_task is not specified, then the task result
attribute will be set for the task containing the EPM-set-task-result-to-property
handler.

• $ROOT_TASK

Sets the result string attribute on the root task of the process.

RS025 11.6 Setting Up Workflows for Product Development 12-147

Workflow handlers



Chapter 12: Workflow handlers

• $DEPENDENT_TASK

Sets the result string attribute on the parent process task which is dependent on
this subprocess. The parent process task should be a Condition task.

-property
Specifies the property to be read from the identified source object (task or target).

PLACEMENT
Typically placed on the Start action of the specified Condition task.

However, this handler can be placed on any task but can set the result only on either
the root task or a Condition task. The Condition task can be the task where the
handler is placed or a parent task that is dependent on the task where the handler
is placed.

RESTRICTIONS
• Do not place this handler on the Perform action.

• Do not use this handler in conjunction with other handlers that also set the result
attribute, such as EPM-set-condition, EPM-set-parent-result, or a custom
handler.

• You can use this handler on the Complete action only if a change occurred on
the Perform action.

• This handler allows you to set the result attribute on the root task or any other
Condition task.

EXAMPLES
• This example branches a Condition task based on the item revision’s revision if a

workflow process has an item revision as a target object. The handler is placed on
the Task01 Condition task.

Argument Values
-source target
-include_type ItemRevision
-property item_revision_id

You then draw paths from the Condition task and assign custom flow path values
by right-clicking the path and choosing Custom.

• This example branches a Condition task based on a task’s responsible party.
The handler is placed on the Task02 Condition task, and the responsible party
is read from the Task01 task.

Argument Values
-source task
-source_task Task01
-property resp_party

12-148 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• This example branches a Condition task based on a task’s responsible party. The
handler is placed on the Task02 Condition task, but it is not configured with the
-source_task argument and therefore defaults to reading the responsible party
attribute from the Task02 Condition task.

Argument Values
-source task
-property resp_party

RS025 11.6 Setting Up Workflows for Product Development 12-149

Workflow handlers



Chapter 12: Workflow handlers

EPM-set-status

DESCRIPTION
Applies the appropriate release status to the workflow process targets. This handler
gets the release status type that the EPM-create-status handler attaches to the root
task.

Note

The EPM-set-status workflow handler is designed to work on release status
effectivity, which is commonly used to express effectivity for item revisions
used in a BOMView revision in Structure Manager.

Release status effectivity is not applicable for Product Configurator
or 4th Generation Design objects. However, you can use the
CONFMGMT-cut-back-effectivity workflow handler to propagate the
release status effectivity of an engineering change object to configurator
and 4GD objects that are attached to the change object as solution items.
This translates the release status effectivity to the effectivity model used in
Product Configurator and 4th Generation Design.

Note

The EPM_skip_dataset_purge preference determines if dataset versions
are purged when the EPM-set-status workflow handler adds a status.

Note

Configure the WRKFLW_change_target_lmu preference to indicate if the
last_mod_user attribute of a workflow target is changed when the status is
applied. Set the preference value to TRUE to indicate the attribute value is
changed to the user who completes the task, or set the preference value to
FALSE indicating the attribute value is not changed.

SYNTAX
EPM-set-status -action=append | rename | replace | delete
[-status=name]
[-new_status=new_name]
[-retain_release_date]
[-set_effectivity]
[-status_not_shared]

ARGUMENTS
-action
• append

Attaches the root-task release status to the targets. Any previous statuses for the
same targets are not affected.

12-150 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• rename

Renames the release status from name to new_name.

If the name release status is not found, the handler renames the last status
attached to the targets.

• replace

Removes all release statuses attached to the targets, and attaches the root task
release status to the targets.

Note

If more than one status object exists on the root task, apply the –status
argument variable =status_name. If the –status argument is not
specified then replacement status is not guaranteed.

• delete

Removes the release status specified by the -status argument from the targets.

o If the -status argument is not used, all release statuses are removed from
the targets.

o This handler does not remove root-task release statuses that were created in
the same workflow as the root task.

This value can also be used to remove release statuses that were applied in
other workflows.

-status
Specifies the name of the release status. When used with the -action argument, offers
additional options to define the status.

Note

Enter the name as defined in the Business Modeler IDE, not the display
name.

-action argument value -status argument result
append If the specified release status is not attached to the root

task, the handler:

• Creates a new status with the specified name.

• Attaches the new status to the root task.
rename The handler renames the release status to the value

specified in -new_status.

RS025 11.6 Setting Up Workflows for Product Development 12-151

Workflow handlers



Chapter 12: Workflow handlers

-action argument value -status argument result
replace If the specified release status is not attached to the root

task, the handler:

• Creates a new status with the specified name.

• Attaches the new status to the root task.
delete The handler removes the release status from the

targets, but does not remove the status from the root
task.

-new_status
Specifies the new name for the release status. Use this argument only if you use
the -action argument's rename value.

Enter the name as defined in the Business Modeler IDE, not the display name.

Caution

If the release status type is not defined, effectivity and configuration may be
unavailable for the release status.

-retain_release_date
Retains the original release date on the target if it had previously been released. Not
valid for replace.

-set_effectivity
If used, the handler creates the open-ended date effectivity with release date as start
date.

-status_not_shared
Places on each target an individual copy of the root-task release status. By default, all
targets share a reference to the release status.

PLACEMENT
Place on any action. Typically attached to the Complete action.

RESTRICTIONS
• By default, the -action argument and its append value are assumed if no argument

is specified, or if an argument other than those specified is supplied to the handler.

• If the root task bears two or more statuses, and if the -action argument value is
replace, the latest status on the root task replaces the status on the targets.

EXAMPLES
• This example adds the status object of the root task to the target object:

Argument Values
-action append

12-152 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• This example adds the status object of the root task to the target object and retains
the original released date of the target object:

Argument Values
-action append
-retain_release_date

• This example replaces all existing status objects with the status object of the
root task:

Argument Values
-action replace

• This example replaces existing status objects with the status object of the root
task. It also sets an open-ended effectivity with release date as the start date on
the new status object:

Argument Values
-action replace
-set_effectivity

• This example renames all the status objects named pre-released to the name of
the new status object, released:

Argument Values
-action rename
-status pre-released
-new_status released

• This example deletes all status objects from the target object but does not delete it
from the root task:

Argument Values
-action delete

• This example deletes a status called released from the target object, but does
not delete it from the root task:

Argument Values
-action delete
-status released

• This example attaches a release status named released to the root task:

Argument Values
-action append

RS025 11.6 Setting Up Workflows for Product Development 12-153

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-status released

• This example places on each target an individual copy of the root-task release
status.

Argument Values
-action append
-status_not_shared

• This example creates a new release status named released, attaches that status
to the root task. and places an individual copy on each target.

Argument Values
-action append
-status_not_shared
-status released

12-154 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-set-rule-based-protection

DESCRIPTION
Passes information to Access Manager to determine which named ACL to use while
the associated task handler is current or started. "Started" indicates that the start
action is completed. If the handler is placed in the start action, other handlers placed
in the same action will not consider the workflow ACL.

Example

If this handler is placed on the Start action of a Review task, when the task
starts, the named ACL specified in the handler's argument is the ACL used
by Access Manager to determine access rights for the target objects of
the workflow process.

The ACL is applied to the task and all subsequent tasks in the workflow process unless
it is changed by another instance of the EPM-set-rule-based-protection handler or
the process completes.

You can also set workflow ACLs by editing the Named ACL attribute, which
automatically updates this handler.

Note

• This handler affects the behavior of the tasks as well the targets. For
example, the ACL can grant permission to promote or demote the tasks.

• Accessors, such as approvers or the responsible party, are retrieved
from the currently active tasks. So even if the named ACL is the same
for two separate tasks, the actual user who gets access for each task
could be different. For example, waynej is the responsible party for task
1, bjorn is the responsible party for task 2, and the ACL grants write
access to the responsible party for both tasks. In this case, waynej
gets write access for duration of task 1 and bjorn gets write access
for duration of task 2.

• If you have multiple workflow processes in effect at the same time for
the same target object, and each process sets its own ACL, a user gets
access if any of the ACLs grants that access. To deny access in that
situation, all ACLs must deny that access.

Select Show Task in Process Stage List to enable the template staging functionality.

• The named ACL defined in this handler becomes the ACL Name value in the Task
Attributes Panel for the task.

• When this handler is applied to a task, the Show Task in Process Stage List
property on the Tasks Attributes Panel is automatically selected. The Show
Task in Process Stage List displays the task in the Process Stage List property

RS025 11.6 Setting Up Workflows for Product Development 12-155

Workflow handlers



Chapter 12: Workflow handlers

for the target object. Tasks in the Process Stage List determine the ACL for
target objects.

SYNTAX
EPM-set-rule-based-protection -acl=named-ACL

ARGUMENTS
-acl
The name of an existing named ACL to be used when the task becomes the current
task.

PLACEMENT
Place on the Start action of any task.

RESTRICTIONS
None.

EXAMPLES
• This example tells Access Manager to use the engineering_release_start0 ACL.

Argument Values
-acl engineering_release_start0

• This example tells Access Manager to give write access to the responsible
party only for the second task in a four-task workflow. The other three tasks are
read-only.

o Task 1—read-only access for all users.

The Vault ACL gives read and copy access to users, but not write access.

Argument Values
-acl Vault

o Task 2—write access for the responsible party.

The Grant-Write-to-RP ACL gives write access only to the responsible party.

Argument Values
-acl Grant-Write-to-RP

o Task 3—read-only access for all users.

The Vault ACL revokes write access starting with this task.

Argument Values
-acl Vault

o Task 4—read-only access for all users.

12-156 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

No handler is needed because the ACL in Task 3 still applies.

• This example, when placed on the Review Specification task, tells Access
Manager to give demote access to only the task’s responsible party. Promote
access is denied to everybody, including the responsible party.

Argument Values
-acl DemoteReviewTask

RS025 11.6 Setting Up Workflows for Product Development 12-157

Workflow handlers



Chapter 12: Workflow handlers

EPM-set-property

DESCRIPTION
Accepts a list of properties and a list of associated values, and uses those values to
set the properties on the specified objects. The properties to be updated are listed
in the -property argument, and the values are listed in the -value argument. There
should be a one-to-one correspondence between the properties on the -property
list and the values on the -value list. The value types must be compatible with their
associated property types. You can specify the values or obtain them from attachment
objects or derived objects.

Note

• This handler overwrites the existing property values with the specified
values. For example, in the case of array properties, all existing values
are removed from the array and only the new values are added to the
property.

• Workflow handlers such as EPM-set-property cannot recognize
run-time or compound properties. These handlers only set properties
that have a persistent attribute on some object, and they cannot
influence the setting of run-time or compound properties.

SYNTAX
EPM-set-property -property=list-of-properties -value=[
comma-separated-value-list] [[[-to_attach=attachment-type ]
[-to_relation=relation-type]] | -to_lov=lov-name]]
[[[-from_attach=attachment-type ] [-from_relation=relation-type]] |
-from_lov=lov-name]] [-include_type=comma-separated-type-list |
-exclude_type=comma-separated-type-list] -bypass

ARGUMENTS
-property
Specifies one or more properties to be updated on the specified objects. Arguments
with a to_ prefix are used to determine the objects to be updated. There should be
a one-to-one correspondence between the properties indicated on the -property
argument and the values indicated on the -value argument. The value types should
be compatible with the property types. If a property listed on the -property argument
does not exist for a specified update object, the update for the property is skipped.

Separate multiple properties with commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

-value
Specifies zero or more values to be used to set the associated properties in the
-property list. You can specify the values, or they may be configured as a property
name with a preceding PROP:: qualifier. If a property name appears on the list, the
value is read from an attachment object or a derived object. Arguments with a from_
prefix are used to identify attachment objects and derived objects. Property types
updated using specified values can be integer, Boolean, string, or date types (the

12-158 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

date type supports the $CURRENT_DATE keyword, which dynamically obtains the
current date). Other property types, such as a tag or tag list, can be updated only if
the updating value is obtained from a compatible property type on an attachment
object or a derived object.

To reset a property value, set an empty value in the handler for the property.

For more information about using empty values, see the Examples section.

Acceptable date values are:

• A date in the following format: yyyy-mm-dd.

• $CURRENT_DATE keyword, which sets the property value to the current date at
the time that the handler is run.

Separate multiple values with commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

-to_attach
When used by itself, this argument specifies the attachment type objects to be
updated. When used in conjunction with the -to_relation argument, this argument
specifies the attachment type objects to be used as a starting point when locating
derived objects to be updated; only the derived objects are updated.

Value
-to_att_type is used
by itself -to_att_type is used with -to_relation

TARGET Updates target
attachments.

Uses target attachments as a starting
point when searching for derived objects.
Updates only the derived objects.

REFERENCE Updates reference
attachments.

Uses reference attachments as a starting
point when searching for derived objects.
Updates only the derived objects.

BOTH Updates both target
and reference
attachments.

Uses both target attachments and
reference attachments as a starting point
when searching for derived objects.
Updates only the derived objects.

Note

Lower case values are also valid.

To update properties on both attachment objects and derived objects, you must
configure two instances of the EPM-set-property handler. Configure one instance to
update attachments and configure a second instance to update derived objects.

If a handler instance is configured to update attachment objects and multiple
attachment objects exist, all attachment objects are updated. If a handler instance is
configured to update derived objects and the handler locates multiple objects, all
objects found for all specified attachment objects are updated.

RS025 11.6 Setting Up Workflows for Product Development 12-159

Workflow handlers



Chapter 12: Workflow handlers

-to_relation
Updates objects with the specified relation to the identified attachment type objects.

• For manifestations, use IMAN_manifestation.

• For specifications, use IMAN_specification.

• For requirements, use IMAN_requirement.

• For references, use IMAN_reference.

• For BOM views, use PSBOMViewRevision.

This argument must be used with the -to_attach argument, which identifies attachment
types.

-to_attach value -to_relation behavior
TARGET Updates objects with the specified relation to the target

attachments.
REFERENCE Updates objects with the specified relation to the reference

attachments.
BOTH Updates objects with the specified relation to both the target

and reference attachments.

-to_lov
Specifies an LOV to define which objects are to be updated.

For an overview of using LOVs in handlers, see Lists of values as argument values.

-from_attach
When used by itself, this argument specifies the attachment object used to obtain
property values. These values are used to perform updates on the specified update
objects (identified by the -to_attach and optionally the -to_relation arguments). When
used in conjunction with the -from_relation argument, this argument specifies the
attachment objects to be used as a starting point when locating derived objects (the
-from_relation argument specifies the relationship used to identify derived objects).
Property values are obtained from the derived object properties. Only a single object
is used to obtain property values. If more than one object is identified, only the first
object found is used.

Value
-from_attach is used
by itself

-from_attach is used with
-from_relation

TARGET Reads property values
from the first target
attachment object.

Locates the first object with the specified
relation to a target attachment object and
reads property values from the related
object.

12-160 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Value
-from_attach is used
by itself

-from_attach is used with
-from_relation

REFERENCE Reads property values
from the first reference
attachment object.

Locates the first object with the specified
relation to a reference attachment object
and reads property values from the related
object.

BOTH Reads property values
from the first target
attachment object. If
target attachments do
not exist, then reads
property values from
the first reference
attachment object if
reference attachments
exist.

Locates the first object with the specified
relation to a target attachment object and
reads property values from the related
object. If target attachments do not exist
or if no object with the specified relation
is found, it locates the first object with
the specified relation to a reference
attachment object and reads property
values from the related object.

Note

Lower case values are also valid.

-from_relation
Specifies the relation used to locate a derived object. The identified derived object is
used to obtain property values, which are then used to perform the update.

• For manifestations, use IMAN_manifestation.

• For specifications, use IMAN_specification.

• For requirements, use IMAN_requirement.

• For references, use IMAN_reference.

• For BOM views, use PSBOMViewRevision.

This argument must be used with the -from_attach argument. A derived object is
identified by starting with objects of the specified attachment type indicated by the
-from_attach argument and then locating the first secondary object with the specified
relation indicated by the -relation argument.

-from_lov
Specifies an LOV to obtain an object. Values are read from this object and used to
set the properties on the -property list.

For an overview of using LOVs in handlers, see Lists of values as argument values.

-include_type
Updates specified objects only if their type matches one of the types on the list. Do not
use this argument with the -exclude_type argument.

RS025 11.6 Setting Up Workflows for Product Development 12-161

Workflow handlers



Chapter 12: Workflow handlers

-exclude_type
Updates all specified objects unless their type is one of the types that appears on the
-exclude_type list. Do not use this argument with the -include_type argument.

-bypass
Specifies that the user has bypass privileges and allows the property to be set.

LOV
For an overview of using LOVs in handlers, see Lists of values as argument values.

The LOV can contain multiple optional lines containing filter options followed by
multiple lines containing multilevel object paths.

Note

For an overview and examples of multilevel object paths in handlers, see
Defining multilevel object paths.

Each multilevel object path line can optionally have a filter option added as a second
field after a tilde (~).

OPTION=value

{$TARGET|$REFERENCE}.multi.level.object.path[~ OPTION=value]

OPTION=value
Defines a configurable option to filter object selection.

If you supply an option on an LOV line on its own, it applies to all subsequent
lines containing multilevel object paths. The option does not affect any multilevel
object paths listed before the option.

If you supply an option on the same line as a multiple level object path, as a
second field after a tilde (~) character, it only applies to that line.

Valid values are:

• RULE={LATEST|Rule}

Specifies the revision rule used to select the revision attached to the workflow
process if initiated on an item. Use the keyword LATEST to select only the
latest revision.

• INCLUDE PARENTS=YES

Specifies that all objects found by traversing a multilevel path are attached to
the workflow process, not just the last set of objects in a path. For example,
when a multilevel path is used to first find items in a workflow process, then
find revisions in the item, and then find datasets in the revisions, it is only the
datasets that are attached by default. Setting this argument to YES causes
both the revisions and the datasets to be attached.

This argument reduces the number of lines required in the LOV and improves
performance.

12-162 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

$TARGET|$REFERENCE
Defines the starting point from which to look for objects. Valid values are:

• $TARGET
Defines the starting point as the workflow process target attachments.

• $REFERENCE
Defines the starting point as the workflow process reference attachments.

multi.level.object.path
Defines a multilevel object path to traverse to find the required objects to attach to
the workflow process. For an overview of using multilevel object paths in handlers,
see Defining multilevel object paths.

(ItemRevision).IMAN_specification.(Dataset)

Attaches any datasets attached to the specification relation to any revisions found.

For more examples, see the Examples section.

PLACEMENT
Requires no specific placement. Proper placement depends on the desired behavior
of the workflow process and may require coordination with the placement of other
handlers, especially in cases where other handlers depend on the results of
EPM-set-property. Typical placement might be on the Start action or Complete
action.

RESTRICTIONS
• The -to_relation argument must be used in conjunction with the -to_attach

handler.

• The -from_relation argument must be used in conjunction with the -from_attach
handler.

• The -to_lov argument is mutually exclusive of the -to_attach and -to_relation
arguments.

For an overview of using LOVs in handlers, see Lists of values as argument values.

• The -from_lov argument is mutually exclusive of the -from_attach and
-from_relation arguments.

• Do not use the -include_type argument and the -exclude_type argument
together.

• A single instance of this handler cannot update both attachment objects and
derived objects. Separate handler instances must be used, where one handler
instance updates attachments, and a second instance updates derived objects.

• Due to a potential conflict of interest, you may not want to use this handler with
other handlers that also set the same property.

RS025 11.6 Setting Up Workflows for Product Development 12-163

Workflow handlers



Chapter 12: Workflow handlers

EXAMPLES
• Sets the target object's object_desc string property to a value of Component

Template.

Argument Values
-property object_desc
-value Component Template
-to_attach TARGET
-bypass

• Sets the target object's backup_date date property to a value of 2009-03-01.

Argument Values
-property backup_date
-value 2009-03-01
-to_attach TARGET
-bypass

• Sets the target object's archive_date date property, archive_info string property,
and has_variant_module Boolean property to the values specified in the example.

Argument Values
-property archive_date,archive_info,has_variant_module
-value $CURRENT_DATE,Archiving completed

process,False
-to_attach TARGET

-bypass

• Uses values from an object with a specifications relation to the reference
attachment to set the target objects’ properties.

Argument Values
-property object_desc
-value PROP::object_desc
-from_attach REFERENCE
-from_relation IMAN_specification
-to_attach TARGET
-bypass

• Uses values from an object with a specifications relation to the reference
attachment to set properties on objects with a specifications relation to the target
attachment.

12-164 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-property object_desc
-value PROP::object_desc
-from_attach REFERENCE
-from_relation IMAN_specification
-to_attach TARGET
-to_relation IMAN_specification
-bypass

• Uses values from an object with a specifications relation to the reference
attachment to set properties on UGMASTER type objects with a manifestation
relation to the target attachments.

Argument Values
-property object_desc
-value PROP::object_desc
-from_attach REFERENCE
-from_relation IMAN_specification
-to_attach TARGET
-to_relation IMAN_manifestation
-include_type UGMASTER
-bypass

• Uses values from an object with a specifications relation to the reference
attachment to set properties on both objects with a specifications relation to the
target attachments and objects with a specifications relation to the reference
attachments.

Argument Values
-property object_desc
-value PROP::object_desc
-from_attach REFERENCE
-from_relation IMAN_specification
-to_attach BOTH
-to_relation IMAN_specification
-include_type UGMASTER
-bypass

• Uses an LOV to obtain values that are used to update target property values.

Argument Values
-property object_desc

RS025 11.6 Setting Up Workflows for Product Development 12-165

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-value PROP::object_desc
-from_lov SYS_EPM_main_objects
-to_attach TARGET
-bypass

• Uses an empty string to reset a property on a TARGET object. In this example,
the object_desc property is reset to “”.

Argument Values
-property object_desc
-value
-to_attach TARGET
-bypass

• Uses an empty string to reset a property on a TARGET object and also sets
another property value. In this example, the object_desc property is reset to “”
and the sequence_limit property is set to 6.

Argument Values
-property object_desc,sequence_limit
-value ,6
-to_attach TARGET
-bypass

• Uses empty strings to reset three properties on a TARGET object. In this example,
the object_desc property is reset to “”, the sequence_limit property is reset to
0, and the CUST_text_field property is reset to “”.

Argument Values
-property object_desc,sequence_limit,CUST_text_field
-value ,,
-to_attach TARGET
-bypass

• Adds a property from a target item business object to a target form that is
attached to the item revision with a specification relation. To do this, you must
omit the -bypass argument. This example maps the item_id item property to
the prop_soln CMII CR form property. Both objects have been added to the
process as TARGET objects.

Argument Values
-property prop_soln

12-166 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-value PROP::item_id
-from_attach TARGET
-to_attach TARGET
-include_type CMII CR Form
-to_relation IMAN_specification

RS025 11.6 Setting Up Workflows for Product Development 12-167

Workflow handlers



Chapter 12: Workflow handlers

EPM-set-parent-result

DESCRIPTION
Sets the Boolean condition of its parent task. It is only used when complex
compound subtasks are collectively needed to set the parent tasks. This allows for
compound/complex combinations of Condition tasks.

SYNTAX
EPM-set-parent-result -value= true | false

ARGUMENTS
-value
Set to true or false.

PLACEMENT
Place on the Start or Complete action.

RESTRICTIONS
None.

Note

Placing this handler in a location other than the subtask of a Condition task
may result in unpredictable behavior.

12-168 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-set-owning-project-to-task

DESCRIPTION
This handler takes the owning project (or program) from the first target object of the
workflow and sets it for all Workflow objects (for example, EPMTask, and EPMJob).
The system can restrict access to workflow objects properly since the project is
set at the workflow object level. The Access Manager rule tree is also modified to
deny general access, but can grant access based on project teams for the workflow
(EPMTask) objects by adding a new named ACL for tasks (EPMTask) in projects.
Once the workflow processes are created with these changes, the users from the
owning project team of the first target object can access the workflow tasks, whereas
other users cannot access them. The process initiator, responsible parties, and
reviewers of the workflow are required to be members of the owning project to proceed
with the workflow tasks.

SYNTAX
EPM-set-owning-project-to-task

ARGUMENTS
None.

PLACEMENT
Place on the Start action of a root task.

RESTRICTIONS
Uses only the owning project of first target to set it on workflow objects. It does not
consider other assigned projects or the owning project of other targets. If the owning
project is not set on first target object, this handler fails to operate.

RS025 11.6 Setting Up Workflows for Product Development 12-169

Workflow handlers



Chapter 12: Workflow handlers

EPM-set-job-protection

DESCRIPTION
Denies the world:delete and world:write process object protections, allowing an
object ACL to be applied to an instance of an EPMJob object. This protection prevents
the workflow process from being deleted when it completes.

To implement, add the Has Object ACL (true)→Job rule under Has Class
(EPMJob)→ Jobin Access Manager. For example, the rules needed for this handler
should look like the following (for clarity, the other rules are not shown).

Has Class (POM_object)
Has Class (POM_object) → System Objects

Has Class (EPMJob) → Job
Has Object ACL (true) → Job

SYNTAX
EPM-set-job-protection

ARGUMENTS
None.

PLACEMENT
Place on the Complete action of a task.

RESTRICTIONS
None.

12-170 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ERP-set-form-value-AH

DESCRIPTION
Sets a particular field to a given value for all forms of the given type attached as targets
of the process, and saves the forms. Use this handler to set a value that depends
on the workflow process being used to transfer the data to ERP (for example, for a
preproduction transfer process, the BOM usage may be set to 1 = Engineering/Design
and for a production transfer process, it would be set to 2 = Production).

Note

• This handler overwrites any existing value.

• The user performing the signoff must have write access to the forms
whose value is being set.

SYNTAX
ERP-set-form-value-AH -form_type = type_name, -field_name=field_name,
-field_value=value

ARGUMENTS
-form_type
Updates any forms of this type attached as targets.

-field_name
Specifies the name of the field to be set.

-field_value
Specifies the value to which to set the field.

Note

These values are all case sensitive. Update the values if the mapping
schema changes (for example, new form types or attributes created). The
-field_value argument should use the whole string defined for the LOV in
the mapping file (for example, 1 = Engineering/Design, 2 = Production).

PLACEMENT
Place on the Perform Signoff task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-171

Workflow handlers



Chapter 12: Workflow handlers

EPM-set-duration

DESCRIPTION
Defines time dependence during process design. The handler is triggered when the
task is started. The five handler arguments are the number of years, weeks, days,
hours, and minutes of the duration. These arguments are used at execution time to
initialize the tasks' duration value and generate the due date when the task is created.
The addition of all five arguments determine the total duration time.

Due date calculations based on the duration setting in this handler consider the user's
calendar and the value of the Default_Base_Calendar_Preference preference.

SYNTAX
EPM-set-duration -year=year-value -week=week-value -day=day-value
-hour=hour-value -minuteminute-value

ARGUMENTS
-year
Defines the number of years of the duration.

-week
Defines the number of weeks of the duration.

-day
Defines the number of days of the duration.

-hour
Defines the number of hours of the duration.

-minute
Defines the number of minutes of the duration.

PLACEMENT
Place on the Start action.

RESTRICTIONS
Argument values are limited to positive integers. The Task Manager daemon must be
running or the application shuts down.

The EPM-set-duration handler, along with the following calendars and preferences, all
work together, and are dependent on each other to define and control time parameters.

• The working time setting in the organization calendar.

• SiteTimeZone

• Default_Base_Calendar_Preference

• Schedule Manager preferences: SM_Hours_Per_Day_Preference,
SM_Hours_Per_Week_Preference, and SM_Hours_Per_Year_Preference

12-172 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Example

The end date is calculated as the sum of duration of the user input multiplied
by the preference value.

To calculate time: Year (SM_Hours_Per_Year_Preference) + Week

(SM_Hours_Per_Week_Preference) + Day (SM_Hours_Per_Day_Preference) +

Hours + Minutes.

For example, the preference settings for a 24-hour duration calendar
schedule are:

Year

SM_Hours_Per_Year_Preference=8760 (365 days x 24 hours)

Week

SM_Hours_Per_Week_Preference=168 (7 days x 24 hours)

Day

SM_Hours_Per_Day_Preference=24

EXAMPLES
• This example sets the task to be due 5 years, 4 weeks, 3 days, 2 hours, and 1

minute after it is started:

Argument Values
-year 5
-week 4
-day 3
-hour 2
-minute 1

RS025 11.6 Setting Up Workflows for Product Development 12-173

Workflow handlers



Chapter 12: Workflow handlers

EPM-set-condition

DESCRIPTION
Condition tasks have a result attribute that you can set to one of these values: True,
False, or Unset. The initial setting of the Condition task is Unset, until it is either
automatically or manually set to True or False. Successor tasks require the Condition
task to be set to either True or False before they can start.

This handler is used to set a Condition task result automatically, without user
interaction. Using Business Modeler IDE conditions, the task can evaluate the
condition criteria against target objects and user session information.

When queries are used for condition evaluation with this handler, one of the following
queries is performed:

• Target query

Performed on workflow process attachments.

• Task query

Performed on the task to which this handler is added.

• Subprocesses query

Performed on the subprocesses that the Condition task depends on.

Use All | Any | None to determine whether all, any, or none of the target attachments
or subprocesses must meet the query criteria to set the result to True; these values
apply only to target and subprocess queries.

The -include_replica argument queries the Replica Proposed Targets along with the
targets if the -query_type argument is target.

SYNTAX
EPM-set-condition
{-condition_name=condition-name | { -query=query-name
[-query_type=task | target | sub_process] [-log] }}
[-check_targets=all | any | none] [-log] [-reference][-include_replica]

ARGUMENTS
-condition_name
Defines the BMIDE condition to be evaluated against target objects. The condition
signature accepts a WorkspaceObject and UserSession in that sequence . The
BMIDE condition in the handler argument is evaluated against the target objects based
on the value of the check_targets argument. The handler decides the true or false
path based on the evaluation result of BMIDE condition.

Note

The -condition_name and -query arguments are mutually exclusive.

-query
Defines the query to be run.

12-174 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Note

The -condition_name and -query arguments are mutually exclusive.

-query_type
Determines the type of query run.

• task

Performs a query on the task to which this handler is added.

• target

Performs a query on the workflow process attachments.

• sub_process

Performs a query on the subprocesses that the Condition task depends on.

-check_targets
This argument determines the target objects against which to evaluate the BMIDE
condition or query.

It determines whether all, any, or none of the target attachments or subprocesses
must meet the query criteria to set the result to True. This argument applies only to
Target and Sub-Processes queries for the -query argument.

When used in conjunction with -condition_name argument, the BMIDE condition is
evaluated against targets to determine whether all, any or none of the targets meet
the condition.

If this argument is not specified and used in conjunction with -condition_name
argument, the value for this is considered as all by default.

-log
If a Condition task fails, it creates a log file reporting which objects caused the task's
query to fail. The header in the log file contains:

• Task name
• Query name
• Date/time stamp

The log file is saved as a dataset and added to the workflow process as a reference
attachment. The dataset is stored in the task attachments references folder.

If the Condition task does not fail, no log file is created.

-reference
Moves target objects not satisfying a Condition task's query criteria or BMIDE
condition to the task attachments references list.

-include_replica
(Optional) Queries the Replica Proposed Targets as well as the target objects if
the -query_type is set to target.

RS025 11.6 Setting Up Workflows for Product Development 12-175

Workflow handlers



Chapter 12: Workflow handlers

PLACEMENT
• If the -query_type argument is set to task or target, place on the Start action.

• If the -query_type argument is set to sub_process, place on the Complete action.

RESTRICTIONS
Typically used for Condition tasks only. This handler can also be used with a custom
task.

Note

This handler exists as part of the workflow conditional branching
functionality. This handler is automatically added to a Condition task while
creating the workflow process template in Workflow Designer by using the
Query tab in the Task Properties dialog box. Siemens PLM Software
recommends that you use this method to configure a Condition task, rather
than manually configuring and adding this handler to the task using the
Handler dialog box.

No user interface support is provided to add this handler while using BMIDE
conditions with the -condition_name argument. The handler must be
added manually from the Handler dialog box.

Note

Workflow Designer provides a number of prepackaged task templates, such
as the Review task, Route task, and Acknowledge task templates. Adding
subtasks below any of these specific tasks for the purpose of implementing a
branching condition is not recommended, as this may jeopardize the integrity
of the task's structure, and doing so may result in unpredictable behavior.

EXAMPLES
• In this example, a query is performed on the workflow process attachments. If any

of the workflow process attachments meet the criteria defined by the CM II CN
Type query, the task result on the Condition task is set to True.

Argument Values
-query CM II CN Type
-query_type target
-check_targets any

• In this example, an EPMTask query, BM - Has Multiple Targets, uses the run-time
property num_targets to count the workflow target objects. If the query result is
more than one, the result on the Condition task is set to True.

12-176 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Note

The BM - Has Multiple Targets query is created using the search class
EPMTask and is not included in the Teamcenter install.

Argument Values
-query BM - Has Multiple Targets
-query_type task

• In this example, the BMIDE Fnd0DocRevSubTypes condition is evaluated
against all target attachments one-by-one. The condition evaluation returns TRUE
if any of the target attachments is a subtype of Document Revision, and the
workflow takes the TRUE path.

Argument Values
-condition_name Fnd0DocRevSubTypes
-check_targets any

Note

The condition used in the handler example above:

Fnd0DocRevSubTypes (WorkspaceObject o ,
UserSession u) = ((o != null) AND
u.fnd0ConditionHelper.fnd0isSubTypeOf
(o, "DocumentRevision"))

RS025 11.6 Setting Up Workflows for Product Development 12-177

Workflow handlers



Chapter 12: Workflow handlers

EPM-run-external-command

DESCRIPTION
Runs external system commands. The external command can be sent a variety of
information that includes configurable arguments, a configuration file, a list of data
and a list of target and attachment details. If dataset details are required there is
also an optional export feature to export specified files from the specified datasets to
a specified export directory. All options are configured using a list of values (LOV),
hence there is only one argument. Nearly all options can be specified in the LOV using
specially formatted lines to extract object properties.

Note

Enable debugging functionality for this handler with the environment
variable.

SYNTAX
EPM-run-external-command -lov=lov-name

ARGUMENTS
-lov
Specifies the List of Values (LOV) used to configure all options.

LOV
For an overview of using LOVs in handlers, see Lists of values as argument values.

lov-name can contain several lines in the following format:

<KEYWORD>~<OPTION>=<Value>
<KEYWORD>~<OPTION>=<%formatted string%>
<KEYWORD>~<%formatted string%>

• KEYWORD

Specifies a keyword to indicate the type of information to extract and send to the
external command. Keywords are described below:

o INPUT

Specifies options to configure the handler.

INPUT~OPTION=Value

OPTION can contain any of the following values:

■ Target

Indicates the main workflow process objects to extract data. The following
example sets all item revision targets of the workflow process as the main
objects:

INPUT~Target=$TARGET.(ItemRevision)

The following example uses references of the workflow process. These
objects the main objects that %property% fields relate to in %formatted
strings%.

12-178 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

INPUT~Target=$REF.(ItemRevision)

■ Application

Indicates the system application to run.

INPUT~Application=${TC_ROOT}\local\tools\run_ext_app

■ CallPerTarget

Controls the application execution, once or per target found from
INPUT~Target.

INPUT~CallPerTarget=YES | NO

YES calls the application separately for each target from INPUT~Target.
This is the default behavior if this option is not provided. If one of the
applications detects an error, processing terminates.

NO calls the application once and sends its data about all targets found
from INPUT~Target.

■ ErrorMsg1

Custom error message to be displayed to the user upon a fail code
being returned from the external application. A return status of zero,
(0), indicates the application terminated successfully; any other value
indicates a failure.

In scripts, this is typically achieved using an exit command, for example,
exit 0 for success, exit 1 for failure.

A %formatted string% can be used with this option, including the
$SYSTEM_ERROR variable to display the error code returned by the
application. For example:

INPUT~ErrorMsg1=BOM checks failed on target
%object_string% with error %$SYSTEM_ERROR%

You can use this error message to reflect the type of application, or
external checking, that was being performed. If not provided then a
default, non-localized, message is returned.

■ ErrorMsg2

Optional custom error message to be displayed to the user upon a fail
code being returned from the external application. You can use this
message to provide the user a help message, that is, where to look for
more information on the problem. For example:

INPUT~ErrorMsg2=Please see your e-mail for details.

Note

Because error messages are displayed in reverse order this
message appear before ErrorMsg1.

RS025 11.6 Setting Up Workflows for Product Development 12-179

Workflow handlers



Chapter 12: Workflow handlers

■ ExportPath

Defines a directory to export files in datasets. The presence of this option
enables the export feature. If the option is not provided, then no files
are exported. This option works with the DATA~DATASETS[=options]
described below which creates a data file listing all required datasets.
The options argument describe the relations, dataset types, and named
references required. If ExportPath is also defined, then the files from the
required name references are exported. For example:

INPUT~ExportPath=${TC_TMP_DIR}\WF\Exports

The handler does not remove any remaining files from the export path
when the external application has terminated. It is the responsibility of the
application to remove any remaining files from this directory. If any files
being exported already exist in the export directory, then the export fails
and the existing file is not overwritten. If this occurs, an error is written to
the syslog but not displayed to the user and the handler continues.

■ ExportOrigFile

Exports files with original file name. If this option is not defined, the
handler exports files with the name stored in the volume. This option
controls the name used for any exported files from datasets when
ExportPath and DATA~DATASETS are defined. This option requires a
YES value. For example:

INPUT~ExportOrigFile=YES

■ DataPath

Defines a directory to write data files. This option defines where the
configuration file, defined using the CFG keyword, and the data files,
defined using the DATA keyword, are written. For example:

INPUT~DataPath=${TC_TMP_DIR}\WF\Data

o CFG

Specifies information to be written to an optional configuration file that can be
passed to the external command as an argument. The format is:

CFG~%formatted string%

This file name can be extracted in a %formatted strings% using the
$CONFIG_FILE variable. For example:

CFG~JobTag=%$PROCESS.TAG%
CFG~JobName=%$PROCESS .object_name%
CFG~RevID=%$TARGET.item_revision_id%
CFG~ItemID=%$TARGET.item.item_id%
CFG~Project=%$TARGET.IMAN_master_form.project_id%
CFG~OwningUser=%$TARGET.owning_user%
CFG~OwningGroup=%$TARGET.owning_group%

The following example writes the following string:

12-180 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

JobTag=QmBJ0uKNh9KRfCAAAAAAAAAAAAA

to the configuration file for 000001/A the workflow process with the 000001/A
target revision owned by tim and Designers group:

JobName=000001/A RevID=A ItemID=000001 Project=Project X
OwningUser=Tim (tim) OwningGroup=Designers

o ARG

Specifies optional arguments to be sent to the external command. The format
is:

ARG~%formatted string%

For example:

ARG~-cfg=%$CONFIG_FILE%
ARG~-files=%$DATASET_FILE%
ARG~-data=%$DATA_FILE%

o DATA

Specifies information to be extracted from targets, references, and their
related objects. The possible formats are:

■ DATASETS

DATA~DATASETS[=options]

writes a fixed format data file containing information about attached
datasets that can optionally be exported with INPUT ExportPath.

This option is used to extract details about datasets attached to the objects
specified by INPUT~Target. If INPUT~ExportPath is defined, then the
required files are exported from the required datasets to the export path
specified. The properties extracted from the datasets are written to a
file with the name process_tag_datasets.txt in the current directory or
in the directory specified using INPUT~DataPath. This file name can be
extracted in a %formatted strings% using $DATASET_FILE.

Optional filters for relation types, dataset types, and reference types can
be supplied. For each filter, an asterisk (*) can be supplied as a wild card
to indicate any type. If dataset types are supplied and no reference types,
then all references are listed in the data file. If no filters are supplied,
then all datasets in all relations and all of their references are listed.
Any reference files that are exported have their absolute file path listed
in the data file. This provides the ability for the external application
to perform operations on these files. For example, running checks,
printing, converting or to get information about UGPART references in
UGMASTERand UGPART datasets in the IMAN_specification relation.

DATA~DATASETS=IMAN_specification~UGMASTER,UGPART~UGPART

The datasets data file is written in a fixed format as follows:

item_id~rev_id~relation type~dataset type~dataset

RS025 11.6 Setting Up Workflows for Product Development 12-181

Workflow handlers



Chapter 12: Workflow handlers

name~dataset_tag~reference type~file name

■ LOV

For an overview of using LOVs in handlers, see Lists of values as
argument values.

DATA~LOV=lov-name

writes a data file containing information about the targets, references and
their related objects. A second LOV is used to define all of the objects
and properties to extract.

Specifies a separate LOV containing a list of alternating lines containing
either:

OBJECT:multi-level.object.path

or

PROP:%formatted string%

The lines beginning with OBJECT: are used to find objects using multilevel
object paths; lines beginning with PROP: specify the properties to extract
from these objects and write out to the data file.

The first line in the LOV can be a PROP: line, for example, without a
preceding OBJECT: line, in which case properties are extracted from the
main objects found from INPUT~Target.

For example:

INPUT~LOV=SYS_EXT_CMD_object_data

where LOV SYS_EXT_CMD_object_data can contain:
PROP:%item.item_id%~%item_revision_id%~%object_name%~%object_type%
OBJECT:*.IMAN_reference
PROP:REF~%object_string%~%object_type%
OBJECT:*.IMAN_specification.

UGMASTER,UGPART PROP:UG-HDR~Name~Material
PROP:UG~%object_string%~%*.
UGPART-ATTR.material%

This example begins by extracting properties from the main objects, then
from reference objects attached to the main objects, and finally from the
UGMASTER and UGPART datasets. Notice that there are two PROP:
lines for the UGMASTER and UGPART datasets, the first line just has
fixed text acting like a header line and the second defines the properties
to extract (which includes the material attribute from the UGPART-ATTR
named reference form).

In the OBJECT: lines, a type is required at the start of the multilevel
object path to provide more flexibility. An asterisk indicates any type
or an asterisk is automatically added within any %formatted string%
for convenience when starting with a $keyword such as $TARGET,
otherwise an asterisk, or type, is still required, as in the example for the
*.UGPART-ATTR.material . The output from this example:

000001~A~000001~ItemRevision REF~000003/A~ItemRevision
UG-HDR~Name~Material UG~UGMASTER-000001/A~Steel

12-182 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• OPTION

Some keywords have options which can be defined.

• Value

You can use any text as a value. However, it is possible to extract values from
environment variables within the text using the format:

text${ENV_VAR}text${ENV_VAR}text

• %formatted string%

A %formatted string% is a string containing alternating fixed text, and object
properties defined within a pair of percent characters (%), similar to a batch file
statement containing environment variables.

The format is:

text%property%text%property%text

where each property is defined within two percent characters (%) with fixed text
between each property.

A property to extract relates to a previously defined object, to the workflow process
targets or to the current workflow process, depending on the current context where
the formatted string is being used and some optional variables. The property can
be specified as a single Teamcenter property, for an already specified object, or
a multilevel object path and property to extract information from another object
related to the already defined object target or workflow process.

If a multilevel object path is used within a property field and returns more then
one object, then a comma-separated list of the values for the property from each
object is given.

A special keyword tag can be used instead of a property name to extract a string
representation of an object PUID.

o If the defined object is an item revision, then the following example extracts
ItemID/RevID.

%item.item_id%/%item_revision_id%

where %item.item_id% extracts the item_id from the revision‘s item. The / is
the fixed text and %item_revision_id% extracts the revision’s id.

o The following example writes the project ID from a target revision’s master
form as a line in the configuration file.

CFG~Project=%$TARGET.IMAN_master_form.project_id%

If the project is Project X, the configuration file contains the following line:

Project=Project X

This example uses the $TARGET variable to specify which object the
multilevel path starts.

RS025 11.6 Setting Up Workflows for Product Development 12-183

Workflow handlers



Chapter 12: Workflow handlers

VARIABLES
Values from environment variables can also be extracted within a %formatted string%
using the same format as described for Value. The ${ENV_VAR} does not have to be
included within the pair of % characters.

There are also some internal variables which can be specified with some options.
These are indicated with a $ character, but without the curly brackets used for
environment variables. Also, unlike the environment variables, these must be defined
within a pair of percent % characters. For example:

ARG~-cfg_file=%$CONFIG_FILE%

This example specifies an argument to be sent to the external command. It specifies a
%formatted string% of cfg_file=%$CONFIG_FILE%, so the fixed text is cfg_file= ,
and %$CONFIG_FILE% (between two % signs) extract the name of the configuration
file generated by the handler. This option is explained in full detail below under the
section for ARG, along with other variable.

The following handler variables are available:

$TARGET Specifies that a multi level object path should start searching
for objects from the current target, as specified with
INPUT~Target=target.path.

In the main LOV, this is taken as default and so does not have
to be specified (except when using DATA~LOV), so

%$TARGET.item.item_id%

is the same as

%item.item_id%

$PROCESS Specifies that a multilevel object path should start searching for
objects from the current workflow process.

For example:

%$PROCESS.object_name%

extracts the workflow process’s name.

This option also provides a path to extract details about objects
attached to the workflow process as targets or references.

For example:

%$PROCESS.$REF.object_string%

returns a comma-separated list of the object_string property
from all references attached to the workflow process, and:

%$PROCESS.$TARGET.object_string%

returns a list of all targets.

12-184 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

$USER Can be used to extract information about the current logged
in user.

Used on its own will give the full user format person (user_id).
Or a path can be used to get other user, person, or group
information.

For example:
CFG~Person=%$USER.person%
CFG~UserID=%$USER.userid%
CFG~LoginGroup=%$USER.login_group%
CFG~Group=%$USER.group.name%
CFG~Email=%$USER.Person.PA9%

$CONFIG_FILE Gets the name of the configuration file generated by the handler.
The format of the name is:

DataPath\process_tag_config.txt
or, if CallPerTarget is set to YES:
DataPath\process_tag_x_config.txt
x is an incrementing number per target.

$DATA_FILE Gets the name of the data file generated by the handler for
DATA~LOV. The format of the name is:
DataPath\process_tag_data.txt
or, if CallPerTarget is set to YES
DataPath\process_tag_x_data.txt
Where x is an incrementing number per target.

$DATASET_FILE Gets the name of the datasets information file generated by the
handler for DATA~DATASETS. The format of the name is:
DataPath\process_tag_datasets.txt
or, if CallPerTarget is set to YES
DataPath\process_tag_x_datasets.txt
Where x is an incrementing number per target.

$SYSTEM_ERROR Gets the error code number returned by the external application.
Can be used in the ErrorMsg1 and ErrorMsg2 error messages.

PLACEMENT
Requires no specific placement, however, do not place on the Perform action of
the root task.

RESTRICTIONS
This handler does not extract data in PLM XML format. The format of the extracted
data is defined completely in the LOV using percent (%) formatted strings, except for
the file listing the export dataset, which is in a fixed format.

This handler does not have an import feature; however, dataset tags are written to
the exported datasets data file and so could be used by a standalone ITK program

RS025 11.6 Setting Up Workflows for Product Development 12-185

Workflow handlers



Chapter 12: Workflow handlers

to import files. Do not use this handler to run an external application that takes a
long time to run. It may appear that Teamcenter is unresponsive. If the success or
failure of the application is required for process control, it is necessary to wait for the
application. In this case, ensure that the workings of the application is visible in a new
window to show the user some feedback. Any files exported by the handler are not
deleted by the handler after the external application finishes. It is the responsibility of
the external application to clean up the export directory.

EXAMPLES
• Example 1

The following example calls an application, specified by an environment variable,
to perform checks on CAD files. This application requires a configuration file to
define various parameters. One of these is the an e-mail address so that it can
send the user a report. The name of the configuration file is sent to the application
as an argument, as is the file name of the data file containing information about
the exported dataset files.

Argument Values
-lov SYS_EPM_run_cad_checks

The SYS_EPM_run_cad_checks LOV contains the following data:

LOV usage

Value Description
INPUT~Target=$TARGET.(ItemRevision) Specifies that the main objects from

which data is to be extracted is the job
targets which is of class ItemRevision.

If multiple targets are found then the
application will either be called separately
for each target or once with all of the
data from all targets, depending on the
setting CallPerTarget which is defined
just below.

INPUT~ErrorMsg1=Cad checks errors (Error
%$SYSTEM_ERROR%)

Defines an error message which is
displayed to the user if the application
returns an error status.

INPUT~ErrorMsg2=Please see your e-mail for details Defines an optional second error
message which is displayed to the user
as well as ErrorMsg1.

INPUT~Application=
${CUST_CAD_CHECK_APPLICATION}

Defines the external application
which is to be run. This application
is defined by a system environment
variable, which in this example is
CUST_CAD_CHECK_APPLICATION.

INPUT~CallPerTarget=YES Calls the application for each target.
INPUT~DataPath=C:\WF\Data Sets a path for data files.

12-186 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

LOV usage

Value Description
INPUT~ExportPath=C:\WF\Exports Sets a path for exported dataset files
CFG~JobTag=%$PROCESS.object_tag% Writes the process tag (PUID) to the

configuration file as JobTag=Job Tag.
CFG~JobName=%$PROCESS .object_name% Writes the workflow process name to

the configuration file as JobName=Job
Name.

CFG~RevID=%$TARGET.item_revision_id% Writes the target object revision ID to the
configuration file as RevID=RevID.

CFG~ItemID=%$TARGET.item.item_id% Writes the target object item ID to the
configuration file as ItemID=ItemID.

CFG~Project=
%$TARGET.IMAN_master_form.project_id%

Writes the target object Project ID,
from the revision master form, to the
configuration file as Project=ProjectID.

CFG~CadProc=${CUST_CAD_CHECK_PROC} Writes the environment variable
value to the configuration file as
CadProc=cad_proc.

CFG~OwningUser=%$TARGET.owning_user% Writes the target object owning user to the
configuration file as OwningUser=user.

CFG~OwningGroup=%$TARGET.owning_group% Writes the target object owning
group to the configuration file as
OwningGroup=group.

CFG~Email=%$USER.E_Mail% Writes the current user’s e-mail to the
configuration file, where E_Mail is the
label from the person form.

CFG~SMTPServer=
${CUST_RELEASE_SMTP_SERVER}

Writes the environment variable value to
the configuration file.

CFG~FunctionsFile=
${CUST_RELEASE_FUNC_FILE}

Writes the environment variable value to
the configuration file.

CFG~SysAdminEmail=
${CUST_RELEASE_SA_MAIL}

Writes the environment variable value to
the configuration file.

CFG~AppsArray=Apps1 Writes the value AppsArray=Apps1 to
the configuration file.

CFG~WarningDir=
${CUSTOMER_RELEASE_WARNING_DIR}

Writes the environment variable value to
the configuration file.

CFG~UPG=${UPG} Writes the environment variable value to
the configuration file.

CFG~Desc=%$TARGET.object_desc% Writes the target object description to the
configuration file.

RS025 11.6 Setting Up Workflows for Product Development 12-187

Workflow handlers



Chapter 12: Workflow handlers

LOV usage

Value Description
DATA~DATASETS=
IMAN_specification~UGMASTER~UGPART

Extracts information about UGPART
references in UGMASTER datasets
attached to the target revision.

ARG~cfg=%$CONFIG_FILE% Sends the configuration file name as an
argument.

ARG~files=%$DATASET_FILE% Sends the dataset data file name as an
argument.

• Example 2

The following example shows the use of DATA~LOV=lov-name to extract various
details.

Argument Values
-lov SYS_EPM_send_ecr_relation_data

when the SYS_EPM_send_ecr_relation_data LOV contains the following data:

DATA~LOV=lov-name

Value Description
INPUT~Target=(ItemRevision) Specifies that the main object from which

data is to be extracted is the job target which
is of the ItemRevision class.

INPUT~Application=

${CUST_ECR_EXT_APPLICATION}

Defines the external application that is run.
This application is defined by a system
environment variable.

ARG~-item=%$TARGET.item.item_id % Sends the target object’s item ID as an
argument to the application.

ARG~-rev=%$TARGET.item_revision_id % Send the target object’s revision ID as an
argument to the application.

ARG~-dest=${CUST_RELEASE_DEST} Send the environment variable’s value as an
argument to the application.

ARG~-type=ECR Sends the value as an argument to the
application.

ARG~-data=%$DATA_FILE% Sends the name of the data file, to be
produced by DATA~LOV, as an argument
to the application.

12-188 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

DATA~LOV=lov-name

Value Description
DATA~LOV=lov-name Specifies an LOV containing a list of

alternating lines starting with OBJECT:, to
specify an object, and then PROP:, to specify
the properties to extract from the object to
write out to a data file.

DATA~LOV=SYS_EPM_get_ecr_relation_data This LOV extracts details from the affected
item revisions attached to the Mini, Minor,
and Major relations in an ECR revision
target.

The objects are specified using multiple
level paths and start from the target objects.
The property strings use the %formatting%
notation.

• Output in the data file, if the target has two minor relations and one major relation:

item-00001~A~Mini
item-00002~B~Mini
item-00005~A~Major

LOV SYS_EPM_get_ecr_relation_data
Value Description

PROP:%item.id%~ECR
Started~%creation_date%~%owning_user%
~%IMAN_master_form.ecr_prty%

Extract properties from the target revision.

OBJECT:(ItemRevision).Mini.(ItemRevision)!Buy
Revision!Customer Revision!RawMaterial Revision

From any ItemRevision targets, find any ItemRevision objects
attached to the Mini relation, except for specific types, for
example, Buy Revision.

PROP:%item.item_id%~%item_revision_id%~Mini Extract properties from any Mini relation revisions.

OBJECT:(ItemRevision).Major.(ItemRevision)!Buy
Revision!Customer Revision!RawMaterial Revision

From any ItemRevision targets, find any ItemRevision objects
attached to the Major relation, except for specific types, for
example, Buy Revision.

PROP:% item.item_id %~% item_revision_id %~Major Extract properties from any Major relation revisions.

OBJECT:(ItemRevision).Minor.(ItemRevision)!Buy
Revision!Customer Revision!RawMaterial Revision

From any ItemRevision targets, find any ItemRevision objects
attached to the Minor relation, except for specific types, for
example, Buy Revision.

PROP:% item.item_id %~% item_revision_id %~Minor Extract properties from any Minor relation revisions.

RS025 11.6 Setting Up Workflows for Product Development 12-189

Workflow handlers



Chapter 12: Workflow handlers

EPM-require-authentication

DESCRIPTION
Displays a password box in the Perform dialog box or panel of the task within which it
has been placed. Users must type their logon password in the password box. The
password and username are authenticated before the task can be completed.

SYNTAX
EPM-require-authentication

ARGUMENTS
None.

PLACEMENT
Place on the Perform action of the following tasks:

• Do task
• perform-signoffs task
• Condition task

When working with a Route task, place on the Perform action of the perform-signoffs
subtask of either the Review or Acknowledge tasks.

RESTRICTIONS
• Place on the Perform action of these tasks.

• Do not use this handler when the user logs on with PKI authentication. Use the
EPM-request-PKI-authentication handler to prompt for the PKI PIN.

12-190 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-request-PKI-authentication

DESCRIPTION
Displays a PKI authentication box in the Perform dialog box or panel of the task
within which it has been placed. Users must type their PKI PIN in the box before the
task can be completed.

Note

This handler requires an environment configured with PKI enabled
Teamcenter client communication system (TCCS) security services
to use the PKI serial number as userid, with the value of the
WRKFLW_PKI_user_validation_fieldname preference set to
SERIALNUMBER.

SYNTAX
EPM-request-PKI-authentication

ARGUMENTS
None.

PLACEMENT
Place either on the Perform action of the perform-signoffs task or the Complete
action of the following tasks:

• Do task

• Condition task

• select-signoff-team task

On a Route task, place on the Complete action of the select-signoff-team subtask of
the Review task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-191

Workflow handlers



Chapter 12: Workflow handlers

EPM-remove-objects

DESCRIPTION
Removes the specified target or reference objects from the workflow process. This
handler can use either a set of arguments to define which objects to remove or keep,
or a list of values (LOV) to define a list of object types to remove.

The -include_replica argument keeps or removes the Replica Proposed Targets
along with the targets specified by the -keep_targets or -remove_targets argument.

This handler can be used effectively with the EPM-attach-related-objects handler.
For example, consider a task where users can manually add objects to any target
revisions, such as new datasets through a specification relation. Users can also attach
objects directly as targets to the workflow process. To ensure only allowable objects
are attached as targets on approval, remove all objects except for the revisions using
the EPM-remove-objects handler with the -keep_targets=(ItemRevision) argument.
Then re-add the revision’s attachments using the EPM-attach-related-objects
handler.

Note

Enable debugging functionality for this handler with the
TC_HANDLERS_DEBUG environment variable.

For more information about implementing this environment variable, see
the .

SYNTAX
EPM-remove-objects {[{-remove_targets=types | -keep_targets=types}]
[{-remove_refs=types | -keep_refs=types}] | -lov=lov-name}
[-include_replica]

ARGUMENTS
-remove_targets
Defines the classes and/or types of target objects to remove from the workflow process.

Accepts a comma-separated list of classes and/or types in the format:

[(Class)[!Type1][,(Class2)[,Type1[,…]]]]| Type1[,Type2][,…]

For example, to specify datasets and forms:

(Dataset),(Form)

For an overview and examples of multilevel object paths in handlers, see Defining
multilevel object paths.

Note

The -keep_targets and -remove_targets arguments are mutually exclusive.

12-192 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-keep_targets
Defines the classes and/or types of target objects to be kept. All other target objects
are removed from the workflow process.

Accepts a comma-separated list of classes and/or types in the format:

[(Class)[!Type1][,(Class2)[,Type1[,…]]]]| Type1[,Type2][,…]

For example, to specify datasets and forms:

(Dataset),(Form)

For an overview of using multilevel object paths in handlers, see Defining multilevel
object paths.

Note

The -keep_targets and -remove_targets arguments are mutually exclusive.

The keep_targets argument removes all targets of types that do not match
the types specified by the keep_targets argument.

-remove_refs
Defines the classes and/or types of reference objects to remove from the workflow
process.

Accepts a comma-separated list of classes and/or types in the format:

[(Class)[!Type1][,(Class2)[,Type1[,…]]]]| Type1[,Type2][,…]

For example, to specify datasets and forms:

(Dataset),(Form)

For an overview of using multilevel object paths in handlers, see Defining multilevel
object paths.

Note

The -keep_refs and -remove_refs arguments are mutually exclusive.

-keep_refs
Defines the classes and/or types of reference objects to be kept in the workflow
process.

Accepts a comma-separated list of classes and/or types in the format:

[(Class)[!Type1][,(Class2)[,Type1[,…]]]]| Type1[,Type2][,…]

For example, to specify datasets and forms:

(Dataset),(Form)

For an overview of using multilevel object paths in handlers, see Defining multilevel
object paths.

RS025 11.6 Setting Up Workflows for Product Development 12-193

Workflow handlers



Chapter 12: Workflow handlers

Note

The -keep_refs and -remove_refs arguments are mutually exclusive.

The keep_refs argument removes all reference objects of types that do not
match the types specified by the keep_refs argument.

-lov
Specifies a LOV to use to define which objects to remove. This argument is mutually
exclusive of all other arguments.

For an overview of using LOVs in handlers, see Lists of values as argument values.
See the LOV row, next, for required LOV format.

-include_replica
(Optional) Keeps or removes the Replica Proposed Targets as well as the target
objects specified by the -keep_targets or -remove_targets argument.

LOV
{$TARGET|$REFERENCE}.types
{$TARGET|$REFERENCE}.types
...
{$TARGET|$REFERENCE}
Specifies whether to remove targets, or to remove references.

Accepts a comma-separated list of classes and/or types in the format:

[(Class)[!Type1][,(Class2)[,Type1[,…]]]]| Type1[,Type2][,…]

For example, to specify datasets and forms:

(Dataset),(Form)

For an overview of using multilevel object paths in handlers, see Defining multilevel
object paths.

PLACEMENT
Place on the Start or Complete action of any task.

To allow the removal of targets, ensure that the EPM-disallow-removing-targets
handler is not placed on the root task of the respective workflow process template
and the affected users have change access to the workflow target objects. You may
use the EPM-set-rule-based-protection handler to ensure that the required change
access to target objects is asserted.

12-194 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Note

If EPM-remove-objects and EPM-set-rule-based-protection are both
used at the start of the same task, the workflow ACL is not active yet
and cannot support EPM-remove-objects. The rule tree does not
consider workflow ACLs before the entire task start action is completed,
which is after the successful execution of all the handlers on the start
action. In such a case, the EPM-remove-objects handler may need
placing on the complete action to realize access changes asserted by the
EPM-set-rule-based-protection handler on the start action.

RESTRICTIONS
When using a LOV, you can only define objects to be removed. You cannot define
objects to be kept.

EXAMPLES
• This example removes any folders or items attached as targets:

Argument Values
-remove_targets (Folder), (Item)

Alternatively, you can use these LOV settings:

Argument Values
-lov SYS_EPM_remove_folders_items

where the SYS_EPM_remove_folders_items LOV contains the data:

$TARGET.(Folder),(Item)

• This example retains only item revisions, removing all other targets:

Argument Values
-keep_targets (ItemRevision)

RS025 11.6 Setting Up Workflows for Product Development 12-195

Workflow handlers



Chapter 12: Workflow handlers

EPM-notify-signoffs

DESCRIPTION
Informs users of a Route task's status through operating system e-mail. Any
surrogates for the specified users are also notified. If the -attachment argument
is included in the definition of the EPM-notify-signoffs handler, the recipients also
receive program mail. The recipients list is filled dynamically when running the Review
task with the Route task. Links to the workflow process in the rich client, thin client,
and Active Workspace are added based on the value of the EPM_notify_url_format
preference.

Note

Use the Mail_OS_from_address preference to specify the From address
displayed in the notification e-mail. The preference value must be a valid
e-mail address.

SYNTAX
EPM-notify-signoffs
[-subject=string | $TARGET | string $TARGET string]
[-comment=string]
[-url={rich|dhtml|activeworkspace|none}]
[-attachment= {target | process | reference }]
[-log]

ARGUMENTS
-subject
Displays the string identified by this argument in the subject line of the OS e-mail. The
-subject argument supplies value options, such as “-subject=$TARGET.” Variants of
the -subject argument values allow for a prefix or suffix string to the target name.

Note

If the “-subject$TARGET” produces zero targets then the default subject
line is used.

When no subject argument is provided, the default subject line for OS e-mail is Review
of “<Process_name (Parent Task_name)>” is in progress.

-comment
User-defined comment that is embedded in the body of the e-mail.

-url
Inserts URLs into the notification e-mail that links to the workflow process in either the
rich client (rich), thin client (dhtml), Active Workspace (activeworkspace), or all (no
value). The URL is generated only when theWEB_default_site_server preference is
set to the thin client server node name. Rich client URL functionality must be enabled
for links to rich client workflow processes to launch the rich client.

12-196 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• If the argument is specified with no value, rich client, thin client, and Active
Workspace links are added to the notification e-mail.

• If the argument is not specified, the notification e-mail contains links depending
on the value of the EPM_notify_url_format preference, which can be one or
more of the following:

o rich

o dhtml

o activeworkspace

Note

One of the two following preferences must be defined:

■ ActiveWorkspaceHosting.URL

■ ActiveWorkspaceHosting.WorkflowEmail.URL

o none

No links are inserted into the notification e-mail.

• If the argument is not specified and the EPM_notify_url_format preference is not
set, rich client, thin client, and Active Workspace are added.

-attachment
Adds an attachment to Teamcenter mail and adds table(s) containing information on
the specified attachments to the operating system e-mail. Accept a comma separated
or single value from following:

• target

Attaches the target to the program mail.

• process

Attaches the workflow process to the program mail.

• reference

The task attachments reference list is included in the mail.

-log
Records notification activity in the workflow audit file.

PLACEMENT
Place on the Complete action of the Notify task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-197

Workflow handlers



Chapter 12: Workflow handlers

EPM-notify-report

DESCRIPTION
Sends a report through the operating system (OS) mail to all task reviewers.
EPM-notify-report does not notify users through Teamcenter e-mail. If you want to
send the report using Teamcenter e-mail, use the EPM-notify handler.

The -report argument differentiates EPM-notify-report handler from the EPM-notify
handler. In notification e-mail, the -report argument appends a report describing
the signoff data associated with the perform-signoffs task. EPM-notify-report is
designated for use on the perform-signoffs task. The EPM-notify handler is used
on any type of task.

Note

• Use the Mail_OS_from_address preference to specify the From
address displayed in the notification e-mail. The preference value must
be a valid e-mail address.

• When placed on the Start action of perform-signoffs task, the
EPM-notify or EPM-notify-report handlers are automatically
re-executed when a signoff is delegated.

SYNTAX
EPM-notify-report
-report={review|rejection|progress|level}
[-recipient=

{OS:user-name| user:user| person:person| addresslist:value

| resourcepool:group::role

| allmembers:group::role

| $USER | $REVIEWERS | $PROPOSED_REVIEWERS

| $RESPONSIBLE_PARTY| $PROPOSED_RESPONSIBLE_PARTY

| $PROCESS_OWNER | $TARGET_OWNER [type]

| $UNDECIDED | $RESOURCE_POOL_ALL

| $RESOURCE_POOL_NONE | $RESOURCE_POOL_SUBSCRIBED

| $PROJECT_ADMINISTRATOR | $PROJECT_MEMBER

| $PROJECT_TEAM_ADMINISTRATOR

| $PROJECT_AUTHOR}
| $REQUESTOR | $ANALYST

12-198 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

| $CHANGE_SPECIALIST1 | $CHANGE_SPECIALIST2 | $CHANGE_SPECIALIST3

| $CHANGE_REVIEW_BOARD | $CHANGE_IMPLEMENTATION_BOARD} ]

[-subject=string | $TARGET | string $TARGET string]
[-comment=string]

[-url={rich|dhtml|activeworkspace|none}]
[-attachment= {target | process | reference }]

ARGUMENTS
-report
Indicates the report type sent to recipients. Accepts one of these values:

• review

Notifies all recipients when they must review target objects. The report lists target
and reference object IDs and types.

• rejection

Notifies recipients that the Review task has been rejected. The report lists target
and reference object IDs, as well as the Review task reviewers, decisions, dates,
and comments for each Review task. Do not use this value unless you want the
workflow process to always send a rejection notice.

• progress

Notifies recipients of the current state of the workflow process. The report lists
the target and reference object names, object IDs (if applicable for the object), as
well as the Review task reviewers, decisions, dates, and comments for each
Review task.

• level

Notifies recipients when the Review task completes. The report lists the target
and reference object IDs, as well as the current Review task reviewers, decisions,
dates, and comments.

-recipient
(Optional) Specifies the task reviewers to receive notification. Any surrogates for the
specified users are also notified. Accepts one of these values:

• OS:user-name

Sends a notification to the OS user name specified.

user-name is a single valid OS user name.

• user:user

Sends notification to the user specified.

user is a single valid Teamcenter user ID.

• person:person

RS025 11.6 Setting Up Workflows for Product Development 12-199

Workflow handlers



Chapter 12: Workflow handlers

Sends a notification to user whose name is specified.

person is a single valid Teamcenter person.

Note

If the person’s name includes a comma, you must include an escape
character (\) to add the correct person. For example, to use wayne,
joan:

-recipient=person:wayne\, joan

• addresslist:list

Adds all members of the address list specified to the signoff member list. Sends
notification to all members of a group/role combination.

list is a valid Teamcenter address list.

• resourcepool:group::role

Sends notification to members of a group/role combination. Notification
is sent to all members, subscribed members, or none based on the
EPM_resource_pool_recipients preference.

The preference value can be overridden with:

o $RESOURCE_POOL_ALL

o $RESOURCE_POOL_SUBSCRIBED

o $RESOURCE_POOL_NONE

You can define role in groups in the form of group::, group::role, or role.

Accepts valid Teamcenter resource pool names and these keywords:

o $GROUP

The current user’s current group.

o $ROLE

The current user’s current role.

o $TARGET_GROUP [type]

The owning group of the first target object of the specified type. The type value
is optional. If not specified, the first target is used.

o $PROCESS_GROUP

The owning group of the workflow process.

• allmembers:group::role

Sends notification to all members of a group/role combination.

12-200 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

You can define role in groups in the form of group::, group::role, or role.

Accepts valid Teamcenter group and role names and these keywords:

o $GROUP

The current user’s current group.

o $ROLE

The current user’s current role.

o $TARGET_GROUP [type]

The owning group of the first target object of the specified type. The type value
is optional. If not specified, the first target is used.

o $PROCESS_GROUP

The owning group of the workflow process.

Note

The $ROLE_IN_GROUP keyword (formerly $ROLEINGROUP) cannot
be used. Use allmembers:$GROUP::$ROLE instead.

• $USER

Send notification to the current user.

• $REVIEWERS

Builds a list of all users who are reviewers in the same task level as the current
reviewer, and sends e-mail to them all.

• $PROPOSED_REVIEWERS

Builds a list of all users who are reviewers in the same task level as the current
reviewer, and sends notification to all of them.

• $RESPONSIBLE_PARTY

Sends the notification to the designated responsible party for the task.

• $PROPOSED_RESPONSIBLE_PARTY

Sends the notification to the designated responsible party for the task.

• $PROCESS_OWNER

Sends notification to the workflow process owner.

• $TARGET_OWNER [type]

Adds the owner of the first target of specified type to the signoff member list. The
type value is optional. If not specified, the first target is used.

RS025 11.6 Setting Up Workflows for Product Development 12-201

Workflow handlers



Chapter 12: Workflow handlers

• $UNDECIDED

Sends notification to the users who have not set the decision for the task.

• $RESOURCE_POOL_ALL

Identifies all members of the resource pool.

This argument has an affect only when it is used along with resourcepool,
$REVIEWERS, $PROPOSED_REVIEWERS , $UNDECIDED,
$RESPONSIBLE_PARTY, or $PROPOSED_RESPONSIBLE_PARTY.

When this argument is used along with resourcepool>, e-mail is sent to all the
members of the resource pool.

When this argument is used along with $REVIEWERS or
$PROPOSED_REVIEWERS, and if a resource pool is assigned as a
reviewer, e-mail is sent to all the members of that resource pool.

When this argument is used with $UNDECIDED, and if a resource pool is assigned
as a reviewer, and no signoff decision has been made for this resource pool
assignment, all members of that resource pool are notified.

When this argument is used along with $RESPONSIBLE_PARTY or
$PROPOSED_RESPONSIBLE_PARTY, and if a resource pool is assigned as
responsible party, e-mail is sent to all members of that resource pool.

• $RESOURCE_POOL_NONE

This argument has an effect only when it is used along with resourcepool,
$REVIEWERS, $PROPOSED_REVIEWERS , $UNDECIDED,
$RESPONSIBLE_PARTY, or $PROPOSED_RESPONSIBLE_PARTY.

When this is used along with resourcepool, e-mail is not sent to members of the
resource pool. (This combination is allowed, but of no value.)

When this argument is used along with $REVIEWERS,
$PROPOSED_REVIEWERS, or $UNDECIDED, and if a resource pool is assigned
as a reviewer, e-mail is not sent to members or subscribers of the resource pool.

When this argument is used along with $RESPONSIBLE_PARTY or
$PROPOSED_RESPONSIBLE_PARTY, and if a resource pool is assigned as a
responsible party, e-mail is not sent to members or subscribers of resource pool.

• $RESOURCE_POOL_SUBSCRIBED

Identifies the users who have subscribed to resource pool.

This argument has an effect only when it is used along with resourcepool,
$REVIEWERS, $PROPOSED_REVIEWERS , $UNDECIDED,
$RESPONSIBLE_PARTY, or $PROPOSED_RESPONSIBLE_PARTY.

When this is used along with resourcepool, e-mail is sent to users who are
subscribed to the resource pool.

When this argument is used with $REVIEWERS or $PROPOSED_REVIEWERS,
and if a resource pool is assigned as a reviewer, e-mail is sent to users who are
subscribed to the resource pool.

12-202 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

When this argument is used with $UNDECIDED, and if a resource pool is assigned
as a reviewer and no signoff decision has been made for this resource pool
assignment, e-mail is sent to users who subscribed to the resource pool.

When this argument is used with $RESPONSIBLE_PARTY or
$PROPOSED_RESPONSIBLE_PARTY, and if a resource pool is assigned as a
responsible party, e-mail is sent to users who subscribed to the resource pool.

• $PROJECT_ADMINISTRATOR
$PROJECT_MEMBER
$PROJECT_TEAM_ADMINISTRATOR
$PROJECT_AUTHOR

Dynamically evaluates project team members belonging to the role specified in the
argument value and sends notification to them. The project team is determined
by the project team associated with the target object.

• $REQUESTOR
$ANALYST
$CHANGE_SPECIALIST1
$CHANGE_SPECIALIST2
$CHANGE_SPECIALIST3
$CHANGE_REVIEW_BOARD
$CHANGE_IMPLEMENTATION_BOARD

Dynamically resolves to the user or resource pool associated with the first change
target object in the process. The particular user or resource pool is determined by
the role specified in the argument value.

Note

Change-related keywords apply only to change objects. If the process
does not contain a change object as a target, the argument resolves
to null.

Change Manager does not need to be enabled before these keywords
take effect, but during installation, Change Management must be
selected under Extensions→Enterprise Knowledge Foundation in
Teamcenter Environment Manager.

RS025 11.6 Setting Up Workflows for Product Development 12-203

Workflow handlers



Chapter 12: Workflow handlers

Note

If the $RESOURCE_POOL_XXXXX argument is not defined and the
$REVIEWERS, $UNDECIDED, or $RESPONSIBLE_PARTY arguments
are used for a case where assignments are made to resource pools, the
e-mail is sent using the EPM_resource_pool_recipients preference.

The EPM_resource_pool_recipients preference can have one of the
following values:

• all

Sends e-mail to all members of resource pool.

• none

Does not send an e-mail to members or subscribers of resource pool.

• subscribed

Sends e-mail to Teamcenter users who have subscribed to resource
pool.

If the $RESOURCE_POOL_XXXXX argument is defined, the argument
takes precedence over the preference value. If this argument is not defined
and the EPM_resource_pool_recipients preference is not set, then
subscribed is the default preference.

The -recipient argument can have multiple values by using a delimiter
specified by the EPM_ARG_target_user_group_list_separator
preference. The default value for this preference is a comma.

-subject
Displays the string identified by this argument in the subject line of the OS e-mail. The
-subject argument supplies value options, such as “-subject=$TARGET.” Variants of
the -subject argument values allow for a prefix or suffix string to the target name.

Note

If the “-subject$TARGET” produces zero targets then the default subject
line is used.

Reports are formatted by type and e-mailed with a default subject line.

• The progress report (report=progress) default subject line is: Review of
“Process_name (Task_name)” is in progress.

• The level report (report=level) default subject line is: “Process_name
(Task_name)” is being <upcoming state>.

12-204 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• The rejection report (report=rejection) default subject line is: “Process_name
(Task_name)” is in rejected.

-comment
(Optional.) Inserts the specified string in the body of the e-mail.

-url
(Optional.) Inserts a link to the workflow process into the notification e-mail, based on
the value for -url. If no value is specified for -url, the rich client, thin client, and Active
Workspace links are added into the notification e-mail.

If the -url argument is not defined, the notification e-mail contains links depending on
the values set in the EPM_notify_url_format preference.

If the -url argument is not defined and the EPM_notify_url_format preference is
not set in the preference file, rich client, thin client, and Active Workspace links are
added to the notification e-mail by default.

This argument and the EPM_notify_url_format preference can take the following
values:

• rich

Inserts a rich client link to the workflow process into the notification e-mail.

Note

Rich client URL functionality must be enabled for links to rich client
workflow processes to launch the rich client.

• dhtml

Inserts a thin client (DHTML) link to the workflow process into the notification
e-mail.

Note

The URL is generated only when the WEB_default_site_server
preference is set to the thin client server node name.

• activeworkspace

Inserts an Active Workspace link to the workflow process into the notification
e-mail.

Note

One of the two following preferences must be defined:

o ActiveWorkspaceHosting.URL

o ActiveWorkspaceHosting.WorkflowEmail.URL

RS025 11.6 Setting Up Workflows for Product Development 12-205

Workflow handlers



Chapter 12: Workflow handlers

• none

No links are inserted into the notification e-mail.

-attachment
Adds an attachment to Teamcenter mail and adds table(s) containing information on
the specified attachments to the operating system e-mail. Accept a comma separated
or single value from following options.

Warning

Hide target names from users without read access rights by using the -url
argument.

• target

The workflow target attachments are included in the mail.

• process

The workflow process is included in the mail.

• reference

The task attachments reference list is included in the mail.

PLACEMENT
review
Place on the Start action of the perform-signoffs task when using this argument.

rejection
Place on the Perform or Undo actions of the perform-signoffs task when using
this argument.

When placed on a Perform action, an e-mail is sent on a Reject action.

Only place on an Undo action when the next task is a Review task, and the design
of the workflow process requires that the task is demoted on a Reject action. This
is achieved by placing the EPM-demote-on-reject handler on the Perform action
of the perform-signoffs task. A Reject action causes a demotion to the previous
task, which invokes the Undo action, and the EPM-notify-report handler sends out
the required notification.

progress
The recommended placement when using this argument is attached to the Start or
Complete actions of a perform-signoffs task.

level
The recommended placement when using this argument is attached to the Complete
action of a perform-signoffs task.

RESTRICTIONS
Use only on the perform-signoffs task.

12-206 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EXAMPLES
• This example designates the user smith, members of the manufacturing group,

the OS users peters and john, users with the manager role, members of the
VendorList address list, and project members as recipients of a progress report
with the subject Manufacturing Release Process Completed.

The EPM-notify-report handler should be placed on Complete action of
perform-signoffs task.

Argument Values
-report progress
-subject Manufacturing Release Process Completed
-recipient user:smith, os:peters, os:john,

allmembers:manufacturing,
allmembers:::manager,
addresslist:VendorList,
$PROJECT_MEMBER

• This example designates the workflow process owner as the recipient of a
progress report with the subject Manufacturing Release Process Completed.

The EPM-notify-report handler should be placed on Complete action of
perform-signoffs task.

Argument Values
-report progress
-subject Manufacturing Release Process Completed

-recipient $PROCESS_OWNER

• This example builds a list of all users assigned as reviewers for the
perform-signoffs task.

The EPM-notify-report handler should be placed on Start action of
perform-signoffs task.

Argument Values
-report progress

-recipient $PROPOSED_REVIEWERS

• This example designates the task owner and task reviewers as recipients of a
review report with the subject TASK REVIEW NOTIFICATION.

If any resource pool is assigned as a reviewer, then all users who have subscribed
to that resource pool receive notification e-mail.

Place the EPM-notify-report handler on the Start action of the perform-signoffs
task.

RS025 11.6 Setting Up Workflows for Product Development 12-207

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-report review
-subject TASK REVIEW NOTIFICATION

-comment Please review the task

-recipient $PROCESS_OWNER,
$PROPOSED_REVIEWERS,
$RESOURCE_POOL_SUBSCRIBED

• This example illustrates creating a workflow process template with a Review task.
Add the EPM-notify-report handler in the Undo action of the perform-signoffs
task. Place an EPM-demote-on-reject handler on the Perform action of the
perform-signoffs task.

The notification is sent to task owner, responsible party, and reviewers. If any
resource pool is assigned as a responsible party and/or as a reviewer, then
notification is sent to all group members of that resource pool.

Argument Values
-report rejection
-subject TASK REJECTION & DEMOTE

NOTIFICATION
-recipient $RESOURCE_POOL_ALL,

$PROCESS_OWNER,
$PROPOSED_RESPONSIBLE_PARTY,
$PROPOSED_REVIEWERS

• This example designates the REQUESTOR of the first change target object the
recipient of a progress report with the subject Manufacturing Release Process
Completed.

Place the EPM-notify-report handler on the Complete action of the
perform-signoffs task.

Argument Values
-report Progress
-subject Manufacturing Release Process

Completed
-recipient $REQUESTOR

• This example builds a list of all users in the current task level where the handler
has been placed and sends mail to all of them.

Argument Values

-report Progress

12-208 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-notify

DESCRIPTION
Informs users of a task's status through e-mail.

The EPM-notify handler can send notifications to users through Teamcenter mail only
if the Mail_internal_mail_activated preference is set to True.

The -report argument on the EPM-notify-report handler differentiates the
EPM-notify-report handler from the EPM-notify handler. In notification e-mail, the
-report argument appends a report describing the signoff data associated with the
perform-signoffs task. Therefore, you should use the EPM-notify-report handler
on the perform-signoffs task, whereas the EPM-notify handler is more generic and
can be used on any type of task.

If you place the EPM-notify handler on the Perform action (EPM_perform_action),
an email notification is sent each time a Perform sub-action is triggered. These
multiple notifications can cause unnecessary processing.

For example, a handler on the Perform action is executed three times by the
Add Attachment sub-action (EPM_add_attachment_action). If the handler is
EPM-notify, reviewers receive the same notification at three different intervals.

In addition to Add Attachment, the Perform action can include the following
sub-actions:

• Remove Attachment (EPM_remove_attachment_action)

• Approve (EPM_approve_action)

• Reject (EPM_reject_action)

• Promote (EPM_promote_action)

• Demote (EPM_demote_action)

• Assign Approver (EPM_assign_approver_action)

Use the Mail_OS_from_address preference to specify the From address displayed in
the notification e-mail. The preference value must be a valid e-mail address.

When placed on the Start action of perform-signoffs task, the EPM-notify or
EPM-notify-report handlers are automatically re-executed when a signoff is delegated.

Note

Use caution when entering special characters into argument fields of mail
notification handlers. Depending on your configuration and mail client, using
special characters and character entities in argument values may not display
correctly in email notifications. These characters can interfere with the mail
notification utility tc_mail_smtp, and should be tested before deployment.

SYNTAX
EPM-notify

RS025 11.6 Setting Up Workflows for Product Development 12-209

Workflow handlers



Chapter 12: Workflow handlers

-recipient=
{OS:user-name
| user:user
| person:person| addresslist:value

| resourcepool:group::role

| allmembers:group::role
| $USER
| $REVIEWERS | $PROPOSED_REVIEWERS

| $RESPONSIBLE_PARTY
| $PROPOSED_RESPONSIBLE_PARTY
| $UNDECIDED
| $PROJECT_ADMINISTRATOR |
| $PROJECT_TEAM_ADMINISTRATOR
$PROJECT_AUTHOR | $PROJECT_MEMBER
| $TARGET_OWNER | $PROCESS_OWNER
| $RESOURCE_POOL_ALL | $RESOURCE_POOL_NONE
| $RESOURCE_POOL_SUBSCRIBED
| $REQUESTOR
| $ANALYST
| $CHANGE_SPECIALIST1
| $CHANGE_SPECIALIST2
| $CHANGE_SPECIALIST3
| $CHANGE_REVIEW_BOARD
| $CHANGE_IMPLEMENTATION_BOARD
[-subject=string | $TARGET | string $TARGET string]
[-comment=string]
[-url = {rich | dhtml | activeworkspace | none}]

[-attachment={target | process | reference}]
ARGUMENTS

Adds an attachment to Teamcenter mail and adds attachment information for operating
system e-mail. The value can be any of the following:

-recipient
Specifies the task reviewers receiving notification. Any surrogates for the specified
users are also notified. Accepts one of the following values:

• OS

Sends a notification to the OS user name specified.

user-name is a single valid user name.

• user

Sends notification to the user specified.

user is a single valid Teamcenter user ID.

• person

12-210 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Sends a notification to user whose name is specified.

person is a single valid Teamcenter person.

Note

If the person’s name includes a comma, you must include an
escape character (\) to add the correct person. For example, to
use wayne, joan:

-recipient=person:wayne\, joan

• addresslist

Sends a notification to all members of the address list.

value is a valid Teamcenter address list.

• resourcepool

Sends notification to members of a group/role combination. Notification
is sent to all members, subscribed members, or none based on the
EPM_resource_pool_recipients preference.

The preference value can be overridden with:

$RESOURCE_POOL_ALL
$RESOURCE_POOL_SUBSCRIBED
$RESOURCE_POOL_NONE

You can define role in groups in the form of group::, group::role or role.

value is a valid Teamcenter resource pool and these keywords:

$GROUP Current user’s current group.
$ROLE Current user’s current role.

$TARGET_GROUP[type] Owning group of the first target object of the
specified type. The type value is optional. If
not specified, the first target is used.

$PROCESS_GROUP Owning group of the workflow process.

• allmembers

Sends notification to all members of a group/role combination.

value is all members of a Teamcenter group and role.

You can define role in groups in the form of group::, group::role or role.

Accepts valid Teamcenter resource pool names and these keywords:
$GROUP, $ROLE, $TARGET_GROUP and $PROCESS_GROUP.

RS025 11.6 Setting Up Workflows for Product Development 12-211

Workflow handlers



Chapter 12: Workflow handlers

Note

The $ROLE_IN_GROUP keyword (formerly $ROLEINGROUP)
cannot be used. Use allmembers:$GROUP::$ROLE instead.

• $USER

Sends e-mail to the current user.

• $REVIEWERS

Builds a list of all users who are reviewers in the same task level as the current
reviewer and sends e-mail to all of them.

• $PROPOSED_REVIEWERS

Sends e-mail to all members assigned as the proposed reviewers of the first
target object in the workflow process.

• $RESPONSIBLE_PARTY

Sends e-mail to the designated responsible party for the task.

If you use $RESPONSIBLE_PARTY, add the handler to the Start action of
the task, not the Assign action.

• $PROPOSED_RESPONSIBLE_PARTY

Sends e-mail to the member assigned as the proposed responsible party of
the first target object in the workflow process.

• $PROCESS_OWNER

Sends e-mail to the workflow process owner.

• $TARGET_OWNER [type]

Sends e-mail to the target owner of the first target of the specified type. The
type value is optional. If it is not specified, the first target is used.

• $UNDECIDED

Sends e-mail to the users who have not set the decision for the task.

• $PROJECT_ADMINISTRATOR
$PROJECT_TEAM_ADMINISTRATOR
$PROJECT_AUTHOR
$PROJECT_MEMBER

These values dynamically evaluate project team members belonging to the
role specified in the argument value and send a notification to them. The
project team is determined by the project team associated with the first target
object.

12-212 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• $REQUESTOR, $ANALYST, $CHANGE_SPECIALIST1,
$CHANGE_SPECIALIST2, $CHANGE_SPECIALIST3
$CHANGE_REVIEW_BOARD, $CHANGE_IMPLEMENTATION_BOARD
Dynamically resolves to the user or resource pool associated with the first
Change target object in the process. The particular user or resource pool is
determined by the role specified in the argument value.

Note

Change-related keywords apply only to change objects. If the
process does not contain a change object as a target, the argument
resolves to null.

Change Manager does not need to be enabled before these
keywords take effect, but during installation, Change Management
must be selected under Extensions→Enterprise Knowledge
Foundation in Teamcenter Environment Manager.

• $RESOURCE_POOL_ALL
Identifies all members of the resource pool.

This argument has an effect only when it is used along with $REVIEWERS,
$UNDECIDED, or $RESPONSIBLE_PARTY.
When this argument is used along with $REVIEWERS, and if a resource pool
is assigned as a reviewer, e-mail is sent to all the members of that resource
pool.

When this argument is used along with $UNDECIDED, and if a resource pool
is assigned as a reviewer, and no signoff decision has been made for this
resource pool assignment, all members of that resource pool are notified.

When this argument is used along with $RESPONSIBLE_PARTY, and if
a resource pool is assigned as responsible party, the e-mail is sent to all
members of that resource pool.

• $RESOURCE_POOL_NONE
Identifies all members of the resource pool.

This argument has an effect only when it is used along with $REVIEWERS,
$UNDECIDED, or $RESPONSIBLE_PARTY.
When this argument is used along with $REVIEWERS or $UNDECIDED, and
if a resource pool is assigned as a reviewer, e-mail is not sent to members
or subscribers of the resource pool.

When this argument is used along with $RESPONSIBLE_PARTY, and if
a resource pool is assigned as responsible party, the e-mail is not sent to
members or subscribers of resource pool.

• $RESOURCE_POOL_SUBSCRIBED
Identifies the users who have subscribed to resource pool.

RS025 11.6 Setting Up Workflows for Product Development 12-213

Workflow handlers



Chapter 12: Workflow handlers

This argument has an effect only when it is used along with $REVIEWERS,
$UNDECIDED, or $RESPONSIBLE_PARTY.
When this argument is used along with $REVIEWERS, and if a resource pool
is assigned as a reviewer, the e-mail is sent to users who have subscribed
to the resource pool.

When this argument is used along with $UNDECIDED, and if a resource
pool is assigned as a reviewer and no signoff decision has been made for
this resource pool assignment, e-mail is sent to users who have subscribed
to the resource pool.

When this argument is used along with $RESPONSIBLE_PARTY, and if a
resource pool is assigned as a responsible party, the e-mail is sent to users
who have subscribed to the resource pool.

Note

If the $RESOURCE_POOL_XXXXX argument is not defined and
the $REVIEWERS, $UNDECIDED, or $RESPONSIBLE_PARTY
arguments are used for a case where assignments are
made to resource pools, the e-mail is sent using the
EPM_resource_pool_recipients preference.

EPM_resource_pool_recipients can take one of the following
values:

o all

Sends mail to all members of resource pool.

o none

Does not send a mail to members or subscribers of resource
pool.

o subscribed

Sends mail to Teamcenter users who have subscribed to
resource pool.

If the $RESOURCE_POOL_XXXXX argument is defined, the
argument takes precedence over preference value.

If this argument is not defined and the
EPM_resource_pool_recipients preference is not set,
subscribed is considered the default value.

-subject
Displays the string identified by this argument in the subject line of the OS e-mail.
The -subject argument supplies value options, such as “-subject=$TARGET.”
Variants of the -subject argument values allow for a prefix or suffix string to the
target name.

12-214 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Note

If the “-subject$TARGET” produces zero targets then the default
subject line is used.

When no subject argument is provided, the default subject line for OS e-mail is
"Process_name (Task_name)” is being <upcoming state>.

-comment
Embeds user-defined comments in the body of the e-mail.

-url
Insert links to the workflow process into the notification e-mail, based on values
for -url. If no value is specified for -url, the rich client, thin client, and Active
Workspace links are added into the notification e-mail.

If the -url argument is not defined, the notification e-mail contains links depending
on the values set in the EPM_notify_url_format preference.

If the -url argument is not defined and the EPM_notify_url_format preference is
not set in the preference file, rich client, thin client, and Active Workspace links are
added to the notification e-mail by default.

This argument and the EPM_notify_url_format preference can take the following
values:

• rich

Inserts a rich client link to the workflow process into the notification e-mail.

Note

Rich client URL functionality must be enabled for links to rich client
workflow processes to launch the rich client.

• dhtml

Inserts a thin client (DHTML) link to the workflow process into the notification
e-mail.

Note

The URL is generated only when the WEB_default_site_server
preference is set to the thin client server node name.

• activeworkspace

Inserts an Active Workspace link to the workflow process into the notification
e-mail.

RS025 11.6 Setting Up Workflows for Product Development 12-215

Workflow handlers



Chapter 12: Workflow handlers

Note

One of the two following preferences must be defined:

o ActiveWorkspaceHosting.URL

o ActiveWorkspaceHosting.WorkflowEmail.URL

• none

No links are inserted into the notification e-mail.

-attachment
Adds an attachment to Teamcenter mail and adds table(s) containing information
on the specified attachments to the operating system e-mail. Accept a comma
separated or single value from the following options.

Warning

Hide target names from users without read access rights by using the
-url argument.

• target

The workflow target attachments are included in the mail.

• process

The workflow process is included in the mail.

• reference

The task attachments reference list is included in the mail.

PLACEMENT
There are no specific restrictions on placement for this handler except the following:

• When $REVIEWERS or $UNDECIDED is used as the keyword, place on the Start
or Complete action of the perform-signoffs task.

• When $RESPONSIBLE_PARTY is used as the keyword, place on the Start action
of the task, not the Assign action.

RESTRICTIONS
None.

EXAMPLES
• This example sends an e-mail with the subject Lower Right Subassembly

Review to all users on the design and qualityControl address lists. The comment
described in the example appears in the body of the e-mail text. In addition to
the e-mail, the recipients also receive a Teamcenter mail that contains both the
workflow target attachments and the current workflow process.

12-216 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-subject Lower Right Subassembly Review
-recipient DistributionList:design,

DistributionList:qualityControl
-comment Please review new subassembly and report any

concerns directly to the Product Manager
-attachment target, process

• This example sends an e-mail and Teamcenter mail to the designated responsible
party for the task. If the responsible party is a resource pool, no e-mail is sent.

Argument Values
-recipient $RESPONSIBLE_PARTY,

$RESOURCE_POOL_NONE

• This example designates OS users peters and john, user Smith, members of the
group manufacturing, and members of the address list purchasing as recipients
of an e-mail with the subject Manufacturing Release Procedure Completed.

Argument Values
-subject Manufacturing Release Procedure Completed
-recipient OS:peters, OS:john, User:smith,

Group:manufacturing, Role:manager,
DistributionList:purchasing

• This example designates OS users peters and john, user Smith, all members
of the group manufacturing, and members of the CHANGE_REVIEW_BOARD
of the first change target object as recipients of an e-mail with the subject
Manufacturing Release Procedure Completed.

Argument Values
-subject Manufacturing Release Procedure Completed
-recipient OS:peters, OS:john, User:smith,

allmembers:manufacturing::,
$CHANGE_REVIEW_BOARD

• This example designates the recipient PROCESS_OWNER of an email with the
subject "Process Notification for Design_item” when Design_item is the first
target object of the workflow process.

Argument Values
-subject Process Notification for $TARGET

RS025 11.6 Setting Up Workflows for Product Development 12-217

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-recipient $PROCESS_OWNER

12-218 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-move-attached-objects

DESCRIPTION
Changes or copies workflow attachments from one attachment type to another. If the
handler requires attaching replica objects as workflow targets, the handler attaches
them as Replica Proposed Targets.

SYNTAX
EPM-move-attached-objects
-from_attach=attachment-type -to_attach=attachment-type
[-include_type=comma-separated-type-list |
-exclude_type=comma-separated-type-list]
[-copy]

ARGUMENTS
-from_attach
Specify one of the following attachment types from which the attached objects should
be selected. This is a mandatory argument.

• target

• reference

• problem_item

• solution_item

• impacted_item

-to_attach
Specifies one of the following new attachment types for the attached objects. This is
a mandatory argument.

• target

• reference

• problem_item

• solution_item

• impacted_item

-include_type
(Optional) Specifies the object types whose attachment type is to be changed. The
handler changes the attachment type defined in the -from_attach argument of objects
that are the types or their subtypes specified in this argument. Do not use this
argument with the -exclude_type argument.

Separate multiple types with commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

RS025 11.6 Setting Up Workflows for Product Development 12-219

Workflow handlers



Chapter 12: Workflow handlers

-exclude_type
(Optional) Ignores the object types specified by this argument. Attachments to
these objects are not changed by this handler. Do not use this argument with the
-include_type argument.

Separate multiple types with commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

-copy
(Optional) Adds the attachments with the new relation defined by the -to_attach
argument and leaves the attachments with the original relation. If this argument is
not specified, the objects are removed from the attachment type specified by the
-from_attach argument.

PLACEMENT
Place on the Start or Complete action of any task. Do not place on the Perform action.

RESTRICTIONS
None.

12-220 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-late-notification

DESCRIPTION
Serves as an initializer to store the specified members of the default recipient's list.
Notification of a late task is triggered when the Task Manager daemon identifies
the late task in a worklist. An e-mail is then sent to the task's specified recipients,
notifying the recipients that the task is late. The Task Manager daemon must have
been installed using Teamcenter Environment Manager.

SYNTAX
EPM-late-notification -recipient=user | group | $OWNER
| $REVIEWERS | $PROPOSED_REVIEWERS
| $RESPONSIBLE_PARTY | $PROPOSED_RESPONSIBLE_PARTY
| $UNDECIDED
| $PROJECT_ADMINISTRATOR
| $PROJECT_TEAM_ADMINISTRATOR
| $PROJECT_AUTHOR | $PROJECT_MEMBER
| $TARGET_OWNER | $PROCESS_OWNER
| $RESOURCE_POOL_ALL | $RESOURCE_POOL_NONE
| $RESOURCE_POOL_SUBSCRIBED
| $REQUESTOR
| $ANALYST
| $CHANGE_SPECIALIST1
| $CHANGE_SPECIALIST2
| $CHANGE_SPECIALIST3
| $CHANGE_REVIEW_BOARD
| $CHANGE_IMPLEMENTATION_BOARD | distribution-list

ARGUMENTS
-recipient
• user

Specifies a specific user. It must be the name of a valid Teamcenter user.

• group

Specifies a specific group. It must be the name of a valid Teamcenter group.

• $OWNER

Specifies the task owner.

• $REVIEWERS

Specifies all users who are reviewers in the same task level as the current reviewer.

• $PROPOSED_REVIEWERS

Sends e-mail to all members assigned as the proposed reviewers of the first target
object in the workflow process.

• $RESPONSIBLE_PARTY

Specifies the responsible party of the task.

RS025 11.6 Setting Up Workflows for Product Development 12-221

Workflow handlers



Chapter 12: Workflow handlers

• $PROPOSED_RESPONSIBLE_PARTY

Sends e-mail to the member assigned as the proposed responsible party of the
first target object in the workflow process.

• $UNDECIDED

Specifies the users who have not set the decision for the task.

•

$PROJECT_ADMINISTRATOR
$PROJECT_TEAM_ADMINISTRATOR
$PROJECT_AUTHOR
$PROJECT_MEMBER

These values dynamically evaluate project team members belonging to the role
specified in the argument value and send notifications to those members. The
project team is determined by the project team associated with the first target
object.

• $TARGET_OWNER

Sends e-mail to the target owner of the first target of the specified type.

The type value is optional. If it is not specified, the first target is used.

• $PROCESS_OWNER

Sends e-mail to the workflow process owner.

• $RESOURCE_POOL_ALL

Specifies all the members of the resource pool.

This argument has an effect only when it is used along with $REVIEWERS,
$UNDECIDED, or $RESPONSIBLE_PARTY.

When this argument is used along with $REVIEWERS, and if a resource pool is
assigned as a reviewer, then e-mail is sent to all the members of that resource pool.

When this argument is used along with $UNDECIDED, and if a resource pool is
assigned as a reviewer, and no signoff decision has been made for this resource
pool assignment, then all members of that resource pool are notified.

When this argument is used along with $RESPONSIBLE_PARTY, and if a
resource pool is assigned as responsible party, then the e-mail is sent to all
members of that resource pool.

• $RESOURCE_POOL_NONE

This argument has an effect only when it is used along with $REVIEWERS,
$UNDECIDED, or $RESPONSIBLE_PARTY.

When this argument is used along with $REVIEWERS or $UNDECIDED, and if a
resource pool is assigned as a reviewer, then the e-mail is not sent to members or
subscribers of the resource pool.

12-222 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

When this argument is used along with $RESPONSIBLE_PARTY, and if a
resource pool is assigned as a responsible party, then the e-mail is not sent to
members or subscribers of resource pool.

• $RESOURCE_POOL_SUBSCRIBED

Specifies the users who have subscribed to resource pool.

This argument has an effect only when it is used along with $REVIEWERS,
$UNDECIDED, or $RESPONSIBLE_PARTY.

When this argument is used along with $REVIEWERS, and if a resource pool is
assigned as a reviewer, then the e-mail is sent to users are subscribed to the
resource pool.

When this argument is used along with $UNDECIDED, and if a resource pool is
assigned as a reviewer and no signoff decision has been made for this resource
pool assignment, then e-mail is sent to users who are subscribed to the resource
pool.

When this argument is used along with $RESPONSIBLE_PARTY, and if a
resource pool is assigned as a responsible party, then, the e-mail is sent to users
who are subscribed to the resource pool.

•

$REQUESTOR, $ANALYST, $CHANGE_SPECIALIST1,
$CHANGE_SPECIALIST2, $CHANGE_SPECIALIST3, $CHANGE_REVIEW_BOARD,
$CHANGE_IMPLEMENTATION_BOARD

Dynamically resolves to the user or resource pool associated with the first Change
target object in the process. The particular user or resource pool is determined by
the role specified in the argument value.

Note

Change-related keywords apply only to change objects. If the process
does not contain a change object as a target, the argument resolves
to null.

Change Manager does not need to be enabled before these keywords
take effect, but during installation, Change Management must be
selected under Extensions→Enterprise Knowledge Foundation in
Teamcenter Environment Manager.

• distribution-list

Specifies all members of the specified distribution list. This entry can either be
the name of a valid address list, or any one of several keywords that represent
a distribution list.

PLACEMENT
Place on the Start action.

RS025 11.6 Setting Up Workflows for Product Development 12-223

Workflow handlers



Chapter 12: Workflow handlers

When $REVIEWERS or $UNDECIDED is used as the key word, place on the Start
action of the perform-signoffs task.

To add the EPM-late-notification handler to the task, select the task and the Display
the Task Attributes Panel. Insert the duration and recipients.

RESTRICTIONS
None.

EXAMPLES
• This example builds a list of all users assigned as reviewers for the

perform-signoffs task, along with the owner of the task, and sends e-mail to them.

Argument Values
-recipient $REVIEWERS, $OWNER

• This example sends e-mail to reviewers of the task who have not performed the
signoff.

Argument Values

-recipient $UNDECIDED

• This example sends e-mail to user Smith, a distribution list (VendorList), and
members of the Purchase group.

Argument Values
-recipient Smith,VendorList, Purchase

Note

The Task Attributes shortcut menu in Workflow Designer populates the
arguments to handler. However, you can insert the keywords argument
using the Task Handlers Panel.

12-224 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-invoke-system-action

DESCRIPTION
Runs an external command (specified with the -command argument) such as Perl
scripts, shell scripts, or external ITK programs, then continues or halts the workflow
process based on the return code of the external command.

Use this handler for increased control of the workflow process. For example, to
synchronize NX attributes and structure with Teamcenter, or to generate JT tessellation
from CAD files.

This handler writes workflow process-related information to an XML file. The file is
passed to the external script/program as -f XML-file-name. APIs are provided (in the
form of Perl modules) to read the XML file and perform functions on its data objects.
The APIs are located in theWorkflow.pm file in the TC_ROOT/bin/tc directory.

Write Perl scripts (for example, TC_ROOT/bin/tc_check_renderings_pl for
background tessellation of CAD data) using the provided APIs to read the XML file
and perform required functions on its data objects. Then use the Perl script as the
value of the -command argument (for example, -command=perl-script-name) in
the workflow process template.

Note

Siemens PLM Software recommends you place the Perl scripts in the
TC_ROOT/bin folder.

Alternatively, you can place the script in an alternate location and provide
an absolute path to the location (for example, c:\temp\test.bat). However,
using an absolute path requires that you update the template if there are
any changes. In the previous example, c:\temp\test.bat is a path on a
Windows platform. If you were to change to a UNIX platform, the template
would need to be updated. This second method is not recommended.

The handler returns a code that is mapped to:

• ITK_ok when the external script returns 0 and no other errors are returned

• CR_error_in_handler in all other cases

SYNTAX
EPM-invoke-system-action -command=name-of-the-external-program
[-trigger_on_go= [TASK:]ACTION] [-trigger_on_nogo= [TASK:]ACTION]
[-trigger_on_undecided= [TASK:]ACTION] [-skip_unreadable_objs]
[-change_status_on_go=[[old-status-name]:[new-status-name]]]
[-change_status_on_nogo=[[old-status-name]:[new-status-name]]]
[-change_status_on_undecided=[[old-status-name]:[new-status-name]]]
[-add_occurrence_notes] [-comment=comment]
[-responsible_party= User:responsible-party[; Task:task-name]]
[-reviewer=User:user-id] [; Group:group] [; Role:role] [; Level:level]]
[-send_mail=user-ids] [-initiate_process]
[-where_used=itemrevtype] [-expand=itemrevtype]

RS025 11.6 Setting Up Workflows for Product Development 12-225

Workflow handlers



Chapter 12: Workflow handlers

[-list_sibling_processes=wildcarded-procname]
[-depth=maximum-recursion-depth] [-debug]

ARGUMENTS
-command=name-of-the-external-program
Name of the external executable. This executable can be an external Perl script that
reads and modifies the XML file written by this handler, or an ITK program to perform
specific functionality.

This argument is required.

-trigger_on_go= [TASK:]ACTION
Triggers an action in the same workflow process when EPM_go is returned.

Trigger an action in another task by specifying an action and task name. If another
task name is unspecified, the specified action in the current task is triggered.

The system supports the following actions:

ASSIGN, START, PERFORM, COMPLETE, SUSPEND, RESUME, SKIP, ABORT,
REFUSE, UNDO, REJECT, APPROVE, PROMOTE, DEMOTE.

Action names are not case sensitive.

Task names cannot contain a colon or a period. If the task name is ambiguous (for
example, select-signoff-team), hierarchical notation is required.

This argument is optional.

-trigger_on_nogo= [TASK:]ACTION
Triggers an action in the same workflow process when EPM_nogo is returned.

Trigger an action in another task by specifying an action and task name. If another
task name is unspecified, the specified action in the current task is triggered.

The system supports the following actions:

ASSIGN, START, PERFORM, COMPLETE, SUSPEND, RESUME, SKIP, ABORT,
REFUSE, UNDO, REJECT, APPROVE, PROMOTE, DEMOTE.

Action names are not case sensitive.

Task names cannot contain a color or period. If the task name is ambiguous (for
example, select-signoff-team), hierarchical notation is required.

This argument is optional.

-trigger_on_undecided= [TASK:]ACTION
Triggers an action in the same workflow process when EPM_undecided is returned.

Trigger an action in another task by specifying an action and task name. If another
task name is unspecified, the specified action in the current task is triggered.

The system supports the following actions:

ASSIGN, START, PERFORM, COMPLETE, SUSPEND, RESUME, SKIP, ABORT,
REFUSE, UNDO, REJECT, APPROVE, PROMOTE, DEMOTE.

Action names are not case sensitive.

12-226 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Task names cannot contain a color or period. If the task name is ambiguous (for
example, select-signoff-team), hierarchical notation is required.

This argument is optional.

-skip_unreadable_objs
Unreadable objects are not processed. The handler does not attempt to write
information about unreadable objects into the XML file; the objects are skipped.

If this argument is not specified, the handler displays an error when a failure occurs
when there is no read access.

-change_status_on_go=[[old-status-name]:[new-status-name]]
Adds, removes or changes the status of attachments when EPM_go is returned.

Both the old and new status names are optional.

• If both status names are specified, the new status name replaces the old status
name.

• If only the new status name is specified, the corresponding status is added.

• If only the old status name is specified, the corresponding status name is removed.

• If neither status name is specified, no action is taken.

If a value is not provided for this argument, the value set by the external Perl script is
read.

-change_status_on_nogo=[[old-status-name]:[new-status-name]]
Adds, removes, or changes the status of attachments when EPM_nogo is returned.

Both the old and new status names are optional.

• If both status names are specified, the new status name replaces the old status
name.

• If only the new status name is specified, the corresponding status is added.

• If only the old status name is specified, the corresponding status name is removed.

• If neither status name is specified, no action is taken.

If a value is not provided for this argument, the value set by the external Perl script is
read.

-change_status_on_undecided=[[old-status-name]:[new-status-name]]
Adds, removes or changes the status of attachments when EPM_undecided is
returned.

Both the old and new status names are optional.

• If both status names are specified, the new status name replaces the old status
name.

• If only the new status name is specified, the corresponding status is added.

RS025 11.6 Setting Up Workflows for Product Development 12-227

Workflow handlers



Chapter 12: Workflow handlers

• If only the old status name is specified, the corresponding status name is removed.

• If neither status name is specified, no action is taken.

If a value is not provided for this argument, the value set by the external Perl script is
read.

-add_occurrence_notes
Sets occurrence notes of target assemblies. Can be used in combination with the
-expand argument to set OccurrenceNotes for components of assembly structures.

This argument is optional.

-comment=comment
The signoff decision is set depending on the return code of the external program:

• 0=Approve
• 1=Reject
• 2=No Decision

If a value is not provided for this argument, the value set by the external Perl script is
read.

This argument is optional.

-responsible_party= User:responsible-party[; Task:task-name]
Assigns a responsible party. If no user ID is specified for this argument, the value set
by the external Perl script is read.

This argument is optional.

-reviewer=[User:user-id] [; Group:group] [; Role:role] [; Level:level]
Assigns a reviewer for a release level. If no reviewer is specified for this argument, the
value set by the external Perl script is read.

This argument is optional.

-send_mail=user-id[,user-id,...]
Sends target, reference, or sibling objects through the program mail. If one or more
user IDs are defined for this argument, the workflow process is sent to the specified
users through the program mail.

Separate multiple user IDs with a space, a comma, or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

If no user IDs are defined for this argument, the recipients and the contents of the
envelope set by the external Perl script are read.

This argument is optional.

-initiate_process
Initiates a workflow process for another object. Target objects are defined by the
values set by the external Perl script.

This argument is optional.

12-228 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-where_used=itemrevtype
Reports the where-used of item and item revision target attachments by writing the
hierarchy of all parent and grandparent assemblies of item and item revision target
attachments into the XML file to allow the external Perl script to perform required
functions.

If an item revision type is specified, the type argument is compared to the
corresponding item revision type. For example, ItemRevision matches objects of
the type Item.

If an item revision type is specified, the parent assemblies of only those target
attachments that match this type are listed.

This argument is optional.

-expand=itemrevtype
Reports the assembly of item and item revision target attachments by writing the
hierarchy of all child and grandchild components of item and item revision target
attachments into the XML file to allow the external Perl script to perform required
functions.

If an item revision type is specified, the type argument is compared to the
corresponding item revision type. For example, ItemRevision matches objects of the
type Item. The assembly structure is expanded for all item revisions of all matching
item target attachments.

If an item revision is specified, the child components of only those target attachments
are listed that match this type.

This argument is optional.

-list_sibling_processes=wildcarded-procname
Writes information regarding processes that belong to the same change item into the
XML file to allow the external Perl script to perform required functions. The information
concerns processes sharing the same change item as reference attachment.

If a process template name is specified in the procedure definition, only the processes
that match the procedure name are included.

This argument is optional.

-depth=maximum-recursion-depth
Increases the maximum incursion depth. The -trigger_on_go or -initiate_process
arguments could cause the triggered action to use the same handler in a deeper level
of recursion. If this is what you intend, you must set the maximum level of recursion to
the desired number. If necessary, it can be disabled by setting it to 0. The default is
set to 1, to avoid infinite loops.
This argument is optional.

-debug
Enables debugging. Each occurrence of this argument increases the debug level by
one. Debug messages are written to the Teamcenter error stack for display in the rich
client user interface, as well as written to the syslog file.

This argument is optional.

RS025 11.6 Setting Up Workflows for Product Development 12-229

Workflow handlers



Chapter 12: Workflow handlers

PLACEMENT
Place on the Start or Complete action of any task. If this handler is configured to
set the signoff decisions on a perform-signoffs task (for example, if the -comment
argument is specified), then place on the Complete action of the perform-signoffs
task.

RESTRICTIONS
• Do not add to a workflow process containing any handler using resource pools.

• You cannot use the -trigger_on_go argument to start a task if any of the tasks
previous to it in the workflow process are not complete.

EXAMPLES
• This example shows how to run the tc_check_renderings_pl script using the

-command argument. Do not list the file extension in the value. This value runs
either the tc_check_renderings_pl.bat (Windows) or tc_check_renderings_pl
(UNIX) script, depending on which platform the server is running.

Note

The script should be placed in the TC_ROOT/bin directory.

Argument Values

-command tc_check_renderings_pl

• This example shows how to run the test_action.bat script in a Windows system.
The script is the following:

set rc=2
echo %rc% >> c:\temp\test.log
exit 0

It is used in the following workflow process:

Create one signoff profile for the Review task and place the
EPM-invoke-system-action handler on the Complete action of the Review task
with the following arguments:

Argument Values

-command c:\temp\test_action.bat
-expand
-debug

• This example shows how to run the test_action script in an UNIX system. The
script is the following:

12-230 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

#!/bin/sh
rc=2
export rc
echo $rc > /tmp/test.log
exit $rc

It is used in the following workflow process:

Create one signoff profile for the Review task and place the
EPM-invoke-system-action handler on the Complete action of the Review task
with the following arguments:

Argument Values

-command /tmp/test_action
-expand
-debug

• This example, placed on the Complete action of the perform-signoffs task, runs
the tc_check_install_assembly_pl script using the -command argument. The
script looks at a vehicle structure and checks to ensure each component has:

o A valid release status for the structure development stage and not In Process.

o All occurrences are precise and have an occurrence note indicating its usage
at this stage.

o Every target attachment is a component of only one multilevel product item.

If the target of the original workflow process is a component of only one multilevel
product item, the -initiate_process argument starts the Initiate VPPS workflow
process specified in the Perl script and attaches the vehicle as a target and
its work orders as references.

Note

The script is in the sample\task_handlers directory and should be
placed in the TC_ROOT/bin directory.

Argument Values

-command tc_check_install_assembly_pl
-initiate_process

RS025 11.6 Setting Up Workflows for Product Development 12-231

Workflow handlers



Chapter 12: Workflow handlers

EPM-inherit

DESCRIPTION
Inherits specified attachment types from a specified task.

SYNTAX
EPM-inherit -task=$PREVIOUS | $CALLER | $ROOT
-attachment=target | reference | signoffs

ARGUMENTS
-task
Task that contains the attachments to be inherited. Choices are the $PREVIOUS
task, the parent task ($CALLER) or the $ROOT task. You can use multiple
values by separating them with commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

-attachment
Attachment types that are inherited from the tasks specified in the -task
argument. Choices are target, reference, or signoffs. You can use multiple
values by separating them with commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
• This example copies the reference attachments from the parent task to the current

task.

Argument Values
-task $CALLER
-attachment reference

• This example copies the signoffs from the previous task and the targets from the
root task to the current task. The handler is placed on the perform-signoffs
subtask of the second Review task.

Argument Values
-task $PREVIOUS, $ROOT
-attachment signoffs, target

12-232 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-fill-in-reviewers

DESCRIPTION
Automatically assigns signoff reviewers that meet specified user, group, or role criteria
for the specified Review task. This criteria populates the signoff profiles.

This handler compares the assigned user with the profile definition in the corresponding
select-signoff-team task. If the assigned user does not match the profile definition,
automatic assignment does not occur and the select-signoff-team task must be
performed manually.

If the –required argument is specified; the signoffs will be added as required signoffs
which cannot be altered by users.

If the –condition_name argument is specified; the handler will add the reviewers only
if the condition is met.

Note

A user is added to select-signoff-team task as a reviewer only once.
If the same user participates in multiple signoff profiles, use the value
resourcepool:group::role with the -assignee argument.

SYNTAX
EPM-fill-in-reviewers
-assignee= [user:user | person:person | addresslist:list
| resourcepool:group::role | allmembers:group::role
| user:PROP::property_name
| resourcepool:PROP::property_name
| allmembers:PROP::property_name
| $PROPOSED_RESPONSIBLE_PARTY | $PROPOSED_REVIEWERS | $USER
| $PROCESS_OWNER | $TARGET_OWNER [type]
| $PROJECT_ADMINISTRATOR
| $PROJECT_TEAM_ADMINISTRATOR
| $PROJECT_AUTHOR | $PROJECT_MEMBER[group::role]
| $REQUESTOR | $ANALYST
| $CHANGE_SPECIALIST1 | $CHANGE_SPECIALIST2 | $CHANGE_SPECIALIST3
| $CHANGE_REVIEW_BOARD | $CHANGE_IMPLEMENTATION_BOARD]
[-from_include_type=object-type1[,object-type2,...]|
[-from_exclude_type=object-type1[,object-type2,...]]
[-from_attach= target | reference | schedule_task]
[-from_relation=relation-type]
[-from_include_related_type=object-type1[,object-type2,...] |
-from_exclude_related_type=object-type1[,object-type2,...]]
[-add_excess_as_adhoc]
[-target_task=review-task-name | multilevel-task-path]
[-required]
[-project_scope=all | owning_project]
[-check_first_object_only=true | false]
[-condition_name=condition1]
[-condition_scope=all | any | none]

RS025 11.6 Setting Up Workflows for Product Development 12-233

Workflow handlers



Chapter 12: Workflow handlers

ARGUMENTS
-assignee
Assigns the specified users, role members, group members, and/or resource pool
members to the signoff team.

• user:user

Adds the user specified to the signoff member list for the task to which it is
attached. Accepts a valid Teamcenter user ID.

• person:person

Adds the user whose name is specified to the signoff member list for the task to
which it is attached. Accepts a valid Teamcenter person name.

Note

If the person’s name includes a comma, you must include an escape
character (\) to add the correct person. For example, to use wayne,
joan:

-assignee=person:wayne\, joan

• addresslist:list

Adds all members of the address list specified to the signoff member list.

• resourcepool:group::role

Results in a single assignment which can be performed by any single member
of this group/role.

You can define resource pools in the form of group::, group::role, or role. Accepts
valid Teamcenter resource pool names and these keywords:

o $GROUP

Current user’s current group.

o $ROLE

Current user’s current role.

o $TARGET_GROUP[type]

Owning group of the first target object of the specified type. The type value is
optional. If not specified, the first target is used.

o $PROCESS_GROUP

Owning group of the workflow process.

12-234 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Note

The $ROLE_IN_GROUP keyword (formerly $ROLEINGROUP) cannot
be used. Use resourcepool:$GROUP::$ROLE instead.

• allmembers:group::role
Adds all members of a group/role combination to the signoff member list. You can
define role in groups in the form of group::, group::role, or role. Accepts valid
Teamcenter resource pool names and these keywords:

o $GROUP
Current user’s current group.

o $ROLE
Current user’s current role.

o $TARGET_GROUP[type]
Owning group of the first target object of the specified type. The type value is
optional. If not specified, the first target is used.

o $PROCESS_GROUP
Owning group of the workflow process.

• user:PROP::property_name
Adds the user specified by the property name to the signoff member list for the
task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• resourcepool:PROP::property_name
Adds the resource pool specified by the property name to the signoff member
list for the task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• allmembers:PROP::property_name
Adds all members of a group/role combination that is specified by the property
name to the signoff member list.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• $PROPOSED_RESPONSIBLE_PARTY

RS025 11.6 Setting Up Workflows for Product Development 12-235

Workflow handlers



Chapter 12: Workflow handlers

Affects assignments based on the user assigned as the responsible party for
the first target object.

• $PROPOSED_REVIEWERS

Affects assignments based on members assigned as reviewers for the first target
object.

• $USER

Adds the current user to the signoff member list.

If $USER is used, and the current user belongs to several groups and
roles, the behavior of the $USER keyword depends on the value of the
SIGNOFF_fill_in_reviewers preference, as follows:

o 1

Attempts to match the current user's group/role values with the profile first,
default values second, then any other groups/roles of which the current user is
a member. This is the default setting.

o 2

Attempts to match the current user's group/role values first, default values of
which the current user is a member second.

o 3

Attempts to match the current user's group/role values.

• $PROCESS_OWNER

Adds the workflow process owner to the signoff member list.

• $TARGET_OWNER [type]

Adds the owner of the first target of specified type to the signoff member list. The
type value is optional. If not specified, the first target is used.

• $PROJECT_ADMINISTRATOR, $PROJECT_TEAM_ADMINISTRATOR,
$PROJECT_AUTHOR, $PROJECT_MEMBER[group::role]

Dynamically adds the project team members belonging to the role specified in the
argument value. The project team is determined by the project team associated
with the first target object.

If the $PROJECT_MEMBER[group::role] argument is specified, only the project
members of the qualifying projects which belong to the specified group and role
are selected for assignment. If the group and role are not specified, all the project
members from qualifying projects are selected.

You can specify a sub-group with the syntax group++sub-group::role.

• $REQUESTOR, $ANALYST, $CHANGE_SPECIALIST1,
$CHANGE_SPECIALIST2, $CHANGE_SPECIALIST3
$CHANGE_REVIEW_BOARD, $CHANGE_IMPLEMENTATION_BOARD

12-236 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Dynamically resolves to the user or resource pool associated with the first Change
target object in the process. The particular user or resource pool is determined by
the role specified in the argument value.

Note

Change-related keywords apply only to change objects. If the process
does not contain a change object as a target, the argument resolves
to null.

Change Manager does not need to be enabled before these keywords
take effect, but during installation, Change Management must be
selected under Extensions→Enterprise Knowledge Foundation in
Teamcenter Environment Manager.

-from_include_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_exclude_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_attach= target | reference | schedule_task
(Optional) Specifies which type of attachment (target, reference, or schedule_task)
to get the property value from when a property is specified in the -assignee argument
(for example, -assignee=user:PROP::property_name). If this argument is not
specified, the default is target.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_relation
(Optional) Specifies the relation of the objects to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). It must be a valid relation.

• For manifestations, use IMAN_manifestation.

• For specifications, use IMAN_specification.

• For requirements, use IMAN_requirement.

• For references, use IMAN_reference.

RS025 11.6 Setting Up Workflows for Product Development 12-237

Workflow handlers



Chapter 12: Workflow handlers

• For BOM views, use PSBOMViewRevision.

This argument must be used with the -from_attach argument. A derived object is
identified by starting with objects of the specified attachment type indicated by the
-from_attach argument and then locating the first secondary object with the specified
relation indicated by the -relation argument.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_include_related_type=object-type1[,object-type2]
(Optional) Specifies the related object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an object
(user:PROP:: or resourcepool:PROP::)) and you use the -from_relation argument.

This argument should not be used with the -from_exclude_related_type argument.

-from_exclude_related_type=object-type1[,object-type2]
(Optional) Specifies related object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an object
(user:PROP:: or resourcepool:PROP::)) and you use the -from_relation argument.

This argument should not be used with the -from_include_related_type argument.

-add_excess_as_adhoc
(Optional.) Adds the rest of the assignees as ad hoc users if the profile is satisfied.

-target_task
(Optional) Specifies either the single Review task name or multilevel task path to which
the reviewers are added. The path is from the root task to the select-signoff-team
subtask with the path levels separated with colons (:). For example: Change Request
Review:QA Review:select-signoff-team

-required
(Optional) If specified, all signoffs added through this handler instance are marked
as mandatory.

-project_scope
(Optional) Specifies which projects are used to resolve project-based assignments.
The all value specifies all projects in the list of projects. The owning_project value
specifies the owning project only.

If this argument is not specified, the default value is the first project in the project list.

-check_first_object_only
(Optional) The true value specifies that only the first object is checked. If the value
is false, all objects are checked. If this argument is not specified, or if it is specified
without a value, only the first object is checked.

12-238 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

If the –include_type, -exclude_type, -include_related_type, or
–exclude_related_type arguments are specified, they determine the types of objects
that are checked.

-condition_name
(Optional) The name of the condition to evaluate against the objects identified for
assigning reviewers from. The condition signature should accept aWorkspaceObject
& UserSession. The handler assigns the reviewers only if the condition results are
successful, based on the –condition_scope argument.

-condition_scope
(Optional) The criteria for evaluating condition results against workflow objects. Values
are the following:

all All objects should meet the condition. This is the default behavior
if this argument is not supplied with the –condition_name
argument.

any Any object should meet the condition.

none No object should meet the condition.
PLACEMENT

Place either on the Start action of the relevant select-signoff-team task or on the root
task with the -review_task_name argument.

RESTRICTIONS
Use only with the select-signoff-team task or on the root task.

EXAMPLES
• This example designates the user tom and all members of the engineering group

as reviewers for the Review task called Review Task 1.

Argument Values
-assignee user:tom, allmembers:engineering::
-target_task $ROOT.Review Task 1

• This example shows the current user added as a reviewer.

Argument Values
-assignee user:$USER
-target_task Review Task 1

• This example designates members assigned as reviewers for the first target object
as reviewers for the Review task called Review Task 1.

Argument Values
-assignee $PROPOSED_REVIEWERS
-target_task Review Task 1

RS025 11.6 Setting Up Workflows for Product Development 12-239

Workflow handlers



Chapter 12: Workflow handlers

• This example designates user tom, all the members of the Engineering group,
and the REQUESTOR associated with the first change target object as reviewers
for the Review task named Review Task 1.

Argument Values
-assignee user:tom, allmembers:engineering::,$REQUESTOR
-target_task Review Task 1

If the handler with these arguments is specified on the Notify task under the
Route task, the signoff attachments are added to the Notify task and used for
sending notifications.

• This example assigns all members of the Engineering group and Designer role
of the first project team associated with the first target found by the system to
the signoff team as optional signoffs.

Argument Values
-assignee $PROJECT_MEMBER[Engineering::Designer]

• This example assigns all members of the Engineering group and Designer role
of the owning project team associated with the first target found by the system to
the signoff team as optional signoffs.

Argument Values
-assignee $PROJECT_MEMBER[Engineering::Designer]
-project_scope owning_project
-check_first_object_only

• This example assigns all members of the Engineering group and Designer role
of all project teams associated with the first target found by the system to the
signoff team as required signoffs.

Argument Values
-assignee $PROJECT_MEMBER[Engineering::Designer]
-project_scope all
-check_first_object_only true
-required

• This example assigns all members of the Engineering group and Designer role
of the first project team associated with each target found by the system to the
signoff team as optional signoffs.

Argument Values
-assignee $PROJECT_MEMBER[Engineering::Designer]
-check_first_object_only false

12-240 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-execute-follow-up

DESCRIPTION
Runs a specified ITK program. During the ITK execution the parameter internally
passed to the executable is -zo=object, where object is the tag of the workflow process
in string format.

You can use the process tag in the ITK program by retrieving the -zo argument as
shown in the sample program below. You can then use the POM tag to obtain process
attachments, references, signoffs, and so on, using ITK functions.

Note

The ITK executable must be placed in the TC_ROOT/bin folder of the
Teamcenter installation.

By default, this handler is placed on the Complete action of the Review task. If left
unset, no action is taken.

Note

The user is already authenticated in the instance of the same Teamcenter
server. For this reason, the code does not perform the login process again
and auto login flags are not checked.

SYNTAX
EPM-execute-follow-up -command=argument

ARGUMENTS
-command
A valid ITK program name.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
The ITK executable must be placed in the TC_ROOT/bin folder of the Teamcenter
installation.

EXAMPLES
This sample code converts the argument output -zo=process_tag from a string to a
POM tag. Use the POM tag to obtain process attachments, references, signoffs,
and so on, using ITK functions.

/* Sample code; file: test_itk_main.c */
#include tc.h
#include pom.h
int ITK_user_main(

int argc, /* I number of command line arguments */
char* argv[] /* I list of command line arguments */
)

/*
* Description: This program is a follow-up action.
*/

RS025 11.6 Setting Up Workflows for Product Development 12-241

Workflow handlers



Chapter 12: Workflow handlers

{
int ifail = ITK_ok;
tag_t job_tag = NULLTAG;
char* job_tag_string = 0;
ITK_initialize_text_services (ITK_BATCH_TEXT_MODE);
if ( (ifail = ITK_auto_login ()) != ITK_ok)
{

printf ("ERROR: login failed - error code = %d\n",ifail);
return ( ifail );

}
printf("Get process tag string ...\n"); fflush(stdout);
job_tag_string = ITK_ask_cli_argument("-zo=");
if (!job_tag_string)
{

printf ("ERROR: no process tag string passed\n");
ITK_exit_module(TRUE);
return 1;

}
printf("process tag string = %s\n", job_tag_string);
fflush(stdout);
printf("Convert process tag string to process tag ...\n");
fflush(stdout);
if ( (ifail = POM_string_to_tag(job_tag_string, &job_tag))

!= ITK_ok)
{

printf ("ERROR: POM_string_to_tag failed - error code
= %d\n",ifail);

return ( ifail );
}

/* start required code here */
/* Use the process tag to get attachments, references,

signoffs etc */
/* …. */
/* end required code here */

}

12-242 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-display-form

DESCRIPTION
Displays specified forms attached to a specified custom task , which is an instance
of the EPMTaskTemplate. By default, all attachments of the FormType object
attached to the current task are displayed.

The custom task template is used to define custom forms and other site-specific tasks
for the user to complete and is designed to accept customization. This template
contains no innate customized interface behavior.

Note

Do not use this handler on other task templates, such as Do, Review, and
Route. Other task templates have their own user interface that overrides
any attached forms. The task templates either are not meant to display a
customized interface (such as the Add Status task template) or already
have customized interface behavior assigned (such as the Review and
Route task templates).

For example, the Do task template already has customized interface
behavior assigned. While form handlers can be added to the Do task
template, the template's original interface behavior is displayed, not the
forms. If the default display required is a customized form, use an instance
of the custom task template.

The default Perform action for any template can be overridden using the .properties
file. It is more effective, however, to use the task template when the required default
Perform action is the display of forms.

Configuring a task to display forms using EPM-display-form, EPM-hold, and
EPM-create-form

To configure a task to display a form when a user performs a specified action, use
the EPM-hold handler. This handler pauses the task, requiring the user to perform
an action on the task before the task can complete. If this handler is not used, a task
completes automatically once started.

To create an instance of a specified form and attach the form to the specified task, use
the EPM-create-form handler.

The EPM-create-form handler creates the form when the Start action is initiated, the
EPM-display-form handler displays the form when the Perform action is initiated, and
the EPM-hold handler prevents the task from automatically completing, allowing the
form to be completed by the user.

Variations on the above example may be required for a more sophisticated interaction
when it is required that the task not complete until required fields are entered in the
form. This type of configuration requires the creation of customized rule handlers.

SYNTAX
EPM-display-form -type=form-type [-source_task=task-name.attachment-type]

RS025 11.6 Setting Up Workflows for Product Development 12-243

Workflow handlers



Chapter 12: Workflow handlers

ARGUMENTS
-type
Valid FormType object.

-source_task
Form to be displayed. The default values for this optional argument are reference
attachments of the FormType attached to the current task_name.

attachment-type
Accepts one of the following reserved keywords:

• $REFERENCE
Reference attachments

• $TARGET
Target object attachments

• $SIGNOFF
Signoff attachments

• $RELEASE_STATUS
Release status attachments

PLACEMENT
Requires no specific placement. Typically placed on the Perform action of a task. If
this task has no other perform user interface, the form is used as its Perform action
user interface.

RESTRICTIONS
None.

EXAMPLES
This example lists handler definitions to be entered on a task template to display
customized forms:

• On the Start action: EPM-create-form

Argument Values
-type ItemRevision Master

-name MyForm
-description My item revision form
-target_task $ROOT.$REFERENCE

• On the Perform action: EPM-display-form

Argument Values
-type ItemRevision Master
-source_task $ROOT.$REFERENCE

• On the Complete action: EPM-hold

12-244 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
true

RS025 11.6 Setting Up Workflows for Product Development 12-245

Workflow handlers



Chapter 12: Workflow handlers

EPM-demote-on-reject

DESCRIPTION
Demotes the current task to the previous task, or to the task specified on the
-target_task argument of the EPM-demote handler placed on the Undo action of the
current task.

By default, the handler checks the approval quorum requirements at each rejection and
demotes the task when the quorum limit cannot be met. Consider a perform-signoffs
task assigned to seven reviewers with an approval quorum of three. The first four
rejections do not demote the task. The fifth rejection, which would prevent the approval
quorum of three from being met, demotes the task.

You can override the default behavior and specify the number of rejections required to
demote the workflow process using the -num_rejections argument. Using the above
example, override the quorum requirement by setting this argument to 2. The task
demotes on the second rejection, instead of the fifth.

To set the number of rejections needed to the number where the quorum cannot be
met, set -num_rejections to -1. Using the above example of seven reviewers with a
quorum of three, the -1 value sets the required number of rejections to five. When five
rejections are recorded, the task is demoted.

Note

This handler takes precedence if success and failure paths exist.

SYNTAX
EPM-demote-on-reject [-num_rejections=number-of-rejections]

ARGUMENTS
-num_rejections
Number of rejections required to demote the task.

Specifying -1 reads the approval quorum value and demotes the task when the number
of rejections recorded makes it no longer possible to meet the quorum.

This argument is optional.

PLACEMENT
Place on the Perform action of the perform-signoffs subtask of a Review task.

RESTRICTIONS
This handler assumes that all target objects, reference objects, and status types are
attached to the root task.

EXAMPLES
• This example demotes a process when the number of rejections exceed the

quorum limit:

EPM-demote-on-reject

• This example demotes a process when the second rejection is received:

12-246 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-num_rejections 2

• This example demotes a process when the number of rejections recorded prevents
the quorum from being met. For example:

o If there are two reviewers and a quorum of one, both reviewers would have to
reject the signoff.

o If there are three reviewers and a quorum of two, two reviewers would have to
reject the signoff.

o If there are four reviewers and a quorum of two, three reviewers would have to
reject the signoff.

Argument Values
-num_rejections -1

RS025 11.6 Setting Up Workflows for Product Development 12-247

Workflow handlers



Chapter 12: Workflow handlers

EPM-demote

DESCRIPTION
Clears all signoff decisions from the current and previous Review tasks. An optional
argument allows the user to specify the task name that the workflow process is
demoted to.

Caution

Do not use this handler on any tasks other than Review tasks.

SYNTAX
EPM-demote [-target_task=task-name]

ARGUMENTS
-target_task
Specifies to which previous task the workflow process is demoted. Must specify a
valid task in the current workflow process.

If this argument is not specified, the workflow process is demoted to the previous task.

PLACEMENT
None.

RESTRICTIONS
None.

EXAMPLES
This example shows how to demote the workflow process to the task named design.

Argument Values
-target_task design

12-248 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-debug

DESCRIPTION
Allows you to print information (for example, state, action, and arguments) about the
last action triggered. Typically used for debugging.

SYNTAX
EPM-debug -comment=string

ARGUMENTS
-comment
Additional descriptive string appended to the action name.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
This example notifies the user when the Complete action runs by printing Complete,
action is executing to the standard output device.

Argument Values
-comment action is executing

Note

This example assumes you have attached this handler to a Complete
action.

RS025 11.6 Setting Up Workflows for Product Development 12-249

Workflow handlers



Chapter 12: Workflow handlers

EPM-create-sub-process

DESCRIPTION
This handler starts subprocesses from a workflow process. The new subprocess can
take on attachments of the parent process, and those attachments can be grouped by
property.

This action handler creates subprocesses and attaches the specified target/reference
objects of the parent process as target/reference attachments to the new
subprocesses. This handler goes through all of the target/reference objects of the
parent process, finds the corresponding object type, and adds them as target/reference
attachments of the new subprocess. This handler allows you to launch one or multiple
workflow processes from within a parent process. You can use this handler to set a
dependency between the parent process and subprocess in a way that causes the
parent process to wait for the subprocess’s (task) completion. The action handler can
be added multiple times to a task action to provide abilities such as using different
workflow process templates per target object type or other combinations.

If you want the progress of the parent process to be dependent on the subprocess
completing, use the -dependency argument with this handler and place the handler
on the Start action of the parent task to start the subprocess correctly. However, the
parent task checks if the dependent subprocess is complete only when the parent task
reaches the Complete action.

For example, if you place this handler with the -dependency argument on a Review
task, it starts the subprocess, allows users to select a signoff team and perform
signoffs, then checks the subprocess for its completion status. If the subprocess is not
complete when the signoffs are completed, an error is displayed.

The -include_replica argument adds the parent’s Replica Proposed Targets to
the newly created subprocesses.

Note

When this handler creates a subprocess, the process owner and responsible
parties for the new subprocess are defined as the current session's user.
It may not match the responsible party of the workflow task having this
handler, particularly when the task is automated and its actions are triggered
after completing a previous task.

If the process owner and responsible parties should be different than the
currently logged-in user, use or in the subprocess template.

SYNTAX
EPM-create-sub-process
-template=process-template-name
[-from_attach=Target | Reference | ALL]
[-to_attach=Target | Reference | ALL]
[-include_type=object-type]
[-exclude_type=object-type]
[-process_name=name-for-process]
[-description=string]

12-250 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

[-multiple_processes]
[-dependency=multilevel-parent-process-task-path::multilevel-sub-process-task-path]
[-transfer]
[-process_assembly]
-depth=depth-of-traversal
-rev_rule=revision-rule-to-apply
-relation=relation-type-to-look
[-include_related_type=type-of-related-components-to-be-included]
[-exclude_related_type=type-of-related-components-to-be-excluded]
[-include_replica]
[-group_by_property=property-to-be-used-for-grouping]

ARGUMENTS
-template=process-template-name
The workflow process template name that is used to start a new workflow process.

This argument is required.

-from_attach=Target | Reference | ALL
The following are the objects attachments to be inherited from the parent process
target and/or reference folder:

• Target

Takes the attachments from the target folder of the parent process.

• Reference

Takes the attachments from the reference folder of the parent process

• ALL

Takes targets and reference attachments.

The -from_attach and -to_attach arguments must be used together. If you use one
argument, you must use the other.

This argument is optional.

The preference to enable for multiple workflow processes for the same objects
needs to be set if -from_attach is used with either the Target or ALL option.
The EPM_multiple_processes_targets preference attaches components that are
currently in process as targets if it is set to ON.

-to_attach=Target | Reference | ALL
The following are the objects to attach with the new workflow process:

• Target

Attaches to target folder of new workflow process.

• Reference

Attaches to reference folder of new workflow process

• ALL

RS025 11.6 Setting Up Workflows for Product Development 12-251

Workflow handlers



Chapter 12: Workflow handlers

Attached from target folder of the parent process to the target folder of a new
workflow process and reference folder of the parent process to the reference
folder of a new process.

The -from_attach and -to_attach arguments must be used together. If you use one
argument, you must use the other.

This argument is optional.

-include_type=object-type
Defines the types to be included as targets and/or references.

• Must be valid workspace object types. For example: ItemRevision and ITEM.

• If this argument is specified as Dataset, any type of dataset (UGMASTER,
UGPART, Text, and so on) is considered.

• If this argument is specified as ItemRevision, any type of item revision
(DocumentRevision and any custom item revision types) is considered.

This argument is optional. If this argument is passed to the handler, -from_attach and
-to_attach should also be passed to the handler.

-exclude_type=object-type
Defines the types to be excluded from being adding as targets/reference.

• Must be valid workspace object types. For example: ItemRevision and ITEM

• If this argument is specified as Dataset, any type of dataset (UGMASTER,
UGPART, Text, and so on) is considered.

• If this argument is specified as ItemRevision, any type of item revision
(DocumentRevision, and so on, and any custom item revision types) is
considered.

This argument is optional. If this argument is passed to the handler, -from_attach and
-to_attach should also be passed to the handler.

-process_name=name-of-process
The name used identifies the new workflow process. You can use the $TARGET
keyword, which is replaced by the target display name targetname-item-name.

When a workflow process name is given as subprocess and no -multiple_processes
arguments are used, the workflow process name alone is used as there is only one,
so the subprocess would be called subprocess. In this case, to include a number
in the name, put it in the argument name and only one is created. If the workflow
process name is not given and the -multiple_process argument is not used, the
parent process name is parentprocess; in this case, it is parentprocess:1. The same
is true for cases where there are no targets on the parent process.

If the workflow process name is not given, and the -multiple_processes
argument is used, the name assigned is in the format of
subprocesstargetdisplayname-item-name:count. In this case, that would be

12-252 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

item1/A-wheel:1, item2/B-axle:2, item3/A-bearing:3. In the case where the parent
had no targets, the name is parentprocess:1.

If the workflow process name is given with the $TARGET keyword, such as
subprocess1_$TARGET, and the -multiple_processes argument is used, the name
assigned is in the format subprocess1_subprocesstargetname-item-name:count format.
In this case, that is subprocess1_item1/A-wheel:1, subprocess1_item2/B-axle:2,
subprocess1_item3/A-bearing:3. In a case where the parent had no targets, the
name is subprocess1_:1.

This argument is optional.

-description=string
Workflow process description.

If the description is not specified, it is set to blank.

This argument is optional.

-multiple_processes
Each target object to be considered becomes a target in its own individual subprocess.
If not specified, all targets are in a single subprocess.

To learn how to use this argument, see the example section.

This argument is optional.

-dependency=multilevel-parent-process-task-path::multilevel-sub-process-task-path
Creates a dependency between a parent process task and a specified subprocess
task; the parent process’s task proceeds after the subprocess’s task completes.

You must use a multilevel path to specify the task templates. Separate path levels with
colons (:). Separate the multilevel path of the parent task from the multilevel path of
the subprocess task with a double colon (::). For example:

Change Approval:QA Review:perform-signoffs::Design Change:
Part Review:perform-signoffs

If you use a double colon (::) only without specifying either a source or target task,
a subprocess task is created, and a dependency is established between the parent
process task and the newly created subprocess task.

If a parent process task is not specified, the task containing this handler is designated
as the parent process task. If a subprocess task is not specified, or not found, the
dependency is not set.

This argument is optional.

RS025 11.6 Setting Up Workflows for Product Development 12-253

Workflow handlers



Chapter 12: Workflow handlers

Note

• If you try to complete a task that has a dependency on an uncompleted
subprocess task, you receive a warning indicating that the interprocess
task dependencies are not met for the dependent task.

• By default, if you do not use this argument, the signoff details
for the subprocess are not included in the parent process
signoff report for standard tasks. To include the details
for an independent subprocess, change the value of the
WRKFLW_signoff_report_show_sub_process preference.

-transfer
Transfers attachments of the parent process to the subprocess. The parent process
has no attachments as target/reference that exists in the subprocess.

-process_assembly
Signals the handler to traverse the assembly and start a subprocess on its
components. Multiple workflow processes can be started if the -multiple_processes
argument is specified. This argument works in conjunction with -depth, -rev_rule,
-include_related_type, and -exclude_related_type arguments. This argument can
be used together with the -relation argument. Both arguments can be specified on the
same instance of the handler.

-depth=depth of traversal
Specifies the depth of traversal for an assembly. Specify all to traverse all levels. If not
specified, the default value is 1.

-rev_rule=revision-rule-to-apply
Defines the name of the revision rule to be applied for BOM traversal. If not supplied,
the default revision rule would be used

-relation=relation-type-to-look
Finds the objects attached to the target objects with the given relation. The value
must be a valid relation.

Specifies whether a relation is used to locate secondary objects. The relation of the
objects to be attached to the target object. Must be a valid relation.

To specify manifestation, use IMAN_manifestation.

For specification use IMAN_specification.

For requirement use IMAN_requirement.

For reference use IMAN_reference.

For BOM views use PSBOMViewRevision.

This argument works in conjunction with -include_related_type, and
-exclude_related_type arguments. This argument can be used together with the
-process_assembly argument. Both arguments can be specified on the same
instance of the handler.

12-254 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-include_related_type=type-of-related-components-to-be-included
Defines the types of related component objects to be included as targets and/or
references.

• Must be valid workspace object types. For example: ItemRevision and ITEM.

• If this argument is specified as Dataset, any type of dataset (UGMASTER,
UGPART, Text, and so on) is considered.

• If this argument is specified as ItemRevision, any type of item revision
(DocumentRevision and any custom item revision types) is considered.

This argument works in conjunction with -process_assembly and -relation
arguments.

This argument is optional.

-exclude_related_type=type-of-related-components-to-be-excluded
Defines the types of related component objects to be excluded from being adding as
targets and/or reference.

• Must be valid workspace object types. For example: ItemRevision and ITEM

• If this argument is specified as Dataset, any type of dataset (UGMASTER,
UGPART, Text, and so on) is considered.

• If this argument is specified as ItemRevision, any type of item revision
(DocumentRevision, and so on, and any custom item revision types) is
considered.

This argument works in conjunction with -process_assembly and -relation
arguments.

This argument is optional.

Note

The -include_related_type and -exclude_related_type arguments
can be used in conjunction with each other. If used in conjunction,
the -include_related_type argument takes precedence; first the
objects are processed against -include_related_type, and then
-exclude_related_type.

-include_replica
(Optional) Adds the parent’s Replica Proposed Targets to the newly created
subprocesses under these conditions:

• If the -from_attach argument specifies either Target or ALL, the Replica
Proposed Targets are also attached to subprocess with the targets.

• If the -to_attach argument specifies Target and any of the qualified objects are
replicas, they are attached as Replica Proposed Targets instead of targets.

RS025 11.6 Setting Up Workflows for Product Development 12-255

Workflow handlers



Chapter 12: Workflow handlers

• If the -include_replica argument is not used, the handler does not add the
Replica Proposed Targets attachments to the subprocess.

-group_by_property
• Input attachments are grouped according to the property assigned such as

object_type and object_owner. One subprocess is spawned for each group.
Each subprocess has objects (attachments) in that group.

• When used with the-multiple_processes arguments , one subprocess is spawned
for each target object.

This argument is optional, but must be used with -from attach.
PLACEMENT

Place in the Start or Complete action of a task template.

Note

If you use the -dependency argument and the current task is dependent on
the subprocess, you must place the handler on the Start action. If you place
it on the Complete action, the -dependency argument causes an error.

The handler can be added multiple times to a task action to provide abilities such as
using different workflow process templates per target object type or other combinations.

RESTRICTIONS
• When using -relation or -process assembly, the targets/reference attachments

for the subprocess are processed based on the secondary related/assembly
components of the parent target/reference attachments.

• If a user demotes a task that already created subprocesses, when the task gets
activated again, it creates another subprocess. Depending on the user’s choice,
they should either delete the original subprocess or the new subprocess. Currently
this is a manual step for the user.

• The -depth and -rev_rule arguments are used only when the -process_assembly
argument is used. The -exclude_related_type and -include_related_type
arguments are used only when -process_assembly or -relation is used.

• For the group_by_property argument, these p are not supported:
PROP_operationinput, PROP_unknown, or properties containing multiple
values, for instance, array/list.

• For the group_by_property argument, these property value types are not
supported: PROP_external_reference, PROP_untyped.

EXAMPLES
The following examples illustrate how to configure the handler arguments. These
examples illustrate creating a parent process template containing a Do task and
adding the handler to the task to create a subprocess.

12-256 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• The examples where the current task is dependent on the subprocess and that
use the-dependency argument must be placed on the Start action.

• The examples without the -dependency argument can be placed on either the
Start or Complete action of a task.

Note

You can add this handler to any action from which you want to create the
subprocess. Use the following examples to understand how to configure the
handler arguments.

• This example launches a new process using the Change Approval template and
sets the dependency between the parent process initiating task that starts a new
subprocess and SubProcess_001. The task that initiates the new subprocess
cannot be completed until SubProcess_001 is completed. Place this handler on
the Start action.

Argument Values
-template Change Approval
-dependency ::
-process_name SubProcess_001

• The example creates a new workflow process using the Change Approval
template with no attachments. The -process_name and -process_desc are
optional.

Argument Values
-template Change Approval
-process_name 0006/A_Change Approval
-description This is a demo description text

• This example creates a new workflow process on the Change Approval template
by inheriting all the targets/reference attachments of the parent process as
target/reference attachments, respectively, of the newly created workflow process.
If the workflow process name is not defined, it generates a workflow process name
for the child process in the Parentprocess:count format. The workflow process
description is left blank.

Argument Values
-template Change Approval
-from_attach ALL
-to_attach ALL

RS025 11.6 Setting Up Workflows for Product Development 12-257

Workflow handlers



Chapter 12: Workflow handlers

• This example creates a new workflow process on the Change Approval template
by inheriting all the target attachments of the parent process as target attachments
for the subprocess.

Argument Values
-template Change Approval
-from_attach TARGET
-to_attach TARGET

• This example creates a new workflow process on the Change Approval template
by inheriting all the attachments (target and reference) of the parent process as
target attachments for the subprocess.

Argument Values
-template Change Approval
-from_attach ALL
-to_attach TARGET

• This example launches a new workflow process on the Change Approval
template. All target and reference attachments of the ItemRevision and
UGMASTER types of the parent process are attached as targets for the new
process.

Argument Values
-template Change Approval
-from_attach ALL
-to_attach TARGET
-include_type ItemRevision, UGMASTER

• This example launches a new workflow process on the Change Approval
template. All objects (both target and reference attachments) of the ItemRevision
and UGMASTER type of the parent process are attached as target and reference
attachments respectively for the new workflow process.

Argument Values
-template Change Approval
-include_type ItemRevision, UGMASTER
-from_attach TARGET
-to_attach ALL

• This example launches a new workflow process on the Change Approval
template. All objects of the ItemRevision type of the parent process are excluded
as targets for the new workflow process.

12-258 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-template Change Approval
-from_attach ALL
-to_attach TARGET
-exclude_type ItemRevision

• This example launches a new workflow process on the Change Approval
template by specifying the -include_type and -exclude_type arguments. It
specifies the list of attachment types to be included in -include_type and the list of
types to be excluded in -exclude_type. This argument launches a subprocess
with only ItemRevision.

Argument Values
-template Change Approval
-from_attach ALL
-to_attach ALL
-include_type ItemRevision
-exclude_type UGMASTER

• This example launches a new workflow process on the Change Approval template
and sets the dependency between the DoChecklist task in the DesignReview
parent process and the perform-signoffs subtask of the QA Review task of the
Change Approval_001 subprocess. The DoChecklist task of the parent process
cannot complete until the perform-signoffs task in the subprocess completes.
Place this handler on the Start action.

Argument Values
-template Change Approval
-dependency DesignReview:DoChecklist::Change

Approval_001:QA Review:perform-signoffs

• This example launches a new workflow process using the Change Approval
template. Because no path is specified for the parent process, the task containing
this handler is used as the parent process task. A dependency is created between
the task containing this handler and the perform-signoffs subtask of the QA
Review task of the Change Approval_001 subprocess. The task containing
this handler cannot complete until the perform-signoffs task in the subprocess
completes. Place this handler on the Start action.

Argument Values
-template Change Approval
-dependency ::Change Approval_001:QA

Review:perform-signoffs

RS025 11.6 Setting Up Workflows for Product Development 12-259

Workflow handlers



Chapter 12: Workflow handlers

• This example launches new workflow processes on the Change Approval
template. Each object instance of the ItemRevision type on target attachments of
the parent process launches a new workflow process with that instance as target.
For example, if the parent process has three ItemRevision objects as the target,
three different workflow processes are launched.

Argument Values
-template Change Approval
-from_attach ALL
-to_attach TARGET
-include_type ItemRevision
-multiple_processes

• The following handler configuration looks for an assembly in the targets, configures
it as per the Latest Working revision rule and starts multiple workflow processes
on all its components.

Argument Values
-template Change Approval
-from_attach TARGET

-to_attach TARGET
-multiple_processes

-process_assembly
-depth All
-rev_rule Latest Working

• The following handler configuration starts a subprocess on the UGMaster dataset
attached to the target objects with Iman_specification relation.

Argument Values
-template Change Approval
-from_attach TARGET

-to_attach TARGET
-multiple_processes

-relation Iman_specification
-include_related_type UGMaster

• The following handler configuration looks for an assembly in the targets, configures
it as per the Latest Working revision rule and starts multiple workflow processes

12-260 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

on all its components. It also starts a subprocess on the objects that are attached
to the target objects with the Iman_specification relation.

Argument Values
-template Change Approval
-from_attach TARGET

-to_attach TARGET
-multiple_processes

-process_assembly

-depth All

-rev_rule Latest Working

-relation Iman_specification

• The following handler configuration starts a subprocess using the Change
Approval template. All target objects of the Dataset type except for MSWord type
objects are attached as targets to the subprocess.

Argument Values
-template Change Approval
-from_attach TARGET
-to_attach TARGET
-include_type Dataset
-exclude_type MSWord

• The following configuration initiates the parent process on 000020/A (with
assembly components) and 001180/A (with a dataset).

Argument Values
-template SubProcess1
-from_attach ALL
-to_attach ALL
-relation IMAN_specification
-process_assembly

RS025 11.6 Setting Up Workflows for Product Development 12-261

Workflow handlers



Chapter 12: Workflow handlers

• The following handler configuration starts a subprocess using the Change
Approval template. It spawns a Change Approval subprocess for each group
formed.

Argument Values
-template Change Approval
-from_attach ALL
-to_attach ALL
-group_by_property Object_type

• The following handler configuration starts a subprocess using the Change
Approval template. It spawns one Change Approval subprocess for each target
object in each group. The subprocesses spawned are named per the value in
the -process_name argument.

Argument Values
-template Change Approval
-from_attach ALL
-group_by_property Object_type
-to_attach ALL
-multiple_processes
-process_name newSubprocess

RESTRICTIONS
ON

ARGUMENTS
These examples show how not to use this handler.

• Do not create a workflow process without specifying the -template name.

Argument Values
-process_name 0006/A_Change Approval

-from_attach TARGET

-to_attach TARGET

12-262 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• Do not create a workflow process with the -multiple_processes argument but not
providing the -from_attach and -to_attach arguments.

Argument Values
-template Change Approval
-multiple_processes

• Do not create a workflow process by only specifying either one of the arguments:
-from_attach or -to_attach.

Argument Values
-template Change Approval
-from_attach TARGET

RS025 11.6 Setting Up Workflows for Product Development 12-263

Workflow handlers



Chapter 12: Workflow handlers

EPM-create-status

DESCRIPTION
Attaches the specified status type to the root task.

SYNTAX
EPM-create-status -status=status-type

ARGUMENTS
-status
Adds the specified status type to the root task. If this argument is not supplied, the
task name where the handler is attached is used. The name provided should be the
name of a status type already defined in the , not the display name.

If the status type is not already defined, a status object is created that is not based on
a status type, which means that effectivity and configuration may not work against it.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
• This example attaches the Released status to the root task.

Argument Values
-status Released

12-264 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-create-relation

DESCRIPTION
Creates a specified relation between the target/reference objects of the workflow
process. The relation to be created must be a valid relation. The handler goes through
all the primary objects of the specified type and creates a specified relation with all the
secondary objects of the specified type.

SYNTAX
EPM-create-relation -relation=relation-name -primary_attachment=
target | reference
-primary_type=type-of-primary-object -secondary_attachment=target | reference
-secondary_type=type-of-secondary-object

ARGUMENTS
-relation
The relation type to be created.

-primary_attachment
The objects that have to be considered as primary objects (target or reference).

-primary_type
Type of object to be considered as primary object.

Considers all the target or reference attachments of this type as primary objects.
Target or reference is specified in -primary argument.

This argument checks for the exact type name and does not consider the subtypes.

-secondary_attachment
The objects that have to be considered as secondary objects (target or reference).

-secondary_type
Type of object to be considered as secondary object.

Considers all the target or reference attachments of this type as secondary objects.
Target or reference is specified in -secondary argument.

This argument checks for the exact type name and does not consider the subtypes.
PLACEMENT

Place on the Complete action of the task.
RESTRICTIONS

None.
EXAMPLES

In this example, the workflow process has two item revisions as target objects and
one UGPART object as a reference object. There is no relation between the two item
revisions and the UGPART. To create a requirements relationship between the two,
with the item revisions as primary and the UGPART as secondary:

Argument Values
-relation IMAN_requirement
-primary_attachment target

RS025 11.6 Setting Up Workflows for Product Development 12-265

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-primary_type ItemRevision
-secondary_attachment reference
-secondary_type UGPART

12-266 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-create-form

DESCRIPTION
Creates an instance of a specified form and attaches that form to the specified task.
For more information, see EPM-display-form.

Configuring a task to display forms using EPM-create-form, EPM-display-form, and
EPM-hold

To configure a task to display a form when a user performs a specified action, use the
EPM-hold handler. This handler pauses the task, requiring the user to perform an
action on the task before the task can complete. Without the use of this handler, a task
completes automatically once started.

To create an instance of a specified form and attach the form to the specified task, use
the EPM-create-form handler.

Therefore, the EPM-create-form handler creates the form when the Start action is
initiated, the EPM-display-form handler displays the form when the Perform action is
initiated, and the EPM-hold handler prevents the task from automatically completing,
allowing the form to be completed by the user.

Variations on the above example may be required for a more sophisticated interaction
when it is required that the task not complete until required fields are entered in the
form. This type of configuration requires the creation of customized rule handlers.

SYNTAX
EPM-create-form -type=formtype [-name=string] [-description=string]
[ [-property=field-name] [-value=value]] [-target_task=task-name.attachment-type]

ARGUMENTS
-type
Valid FormType object.

-name
User-defined form name. Default is the workflow process name.

-description
User-defined description of the form. Default value is null.

-property
Specifies the particular field of the form that has a default value. Users
can choose to set the default value to more than one field by adding
the field names separated by commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference. The default value for
each field is set by the -value argument. Do not use this argument for field names of
Typed_Reference and Untyped_Reference types. This argument is optional.

Note

Use this argument with the -value argument to populate the initial values in
forms created by a workflow. If you do not use this argument and instead
set the initial value in the business object definition, the workflow process
defines the value as empty until you perform an edit and save it.

RS025 11.6 Setting Up Workflows for Product Development 12-267

Workflow handlers



Chapter 12: Workflow handlers

-value
Specifies the default value for a particular field of the form specified by the -property
argument. Users can choose to set the default values for more than one field
by adding the values separated by commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference in the same order as
listed in the -property argument values. Do not use this argument for field names of
Typed_Reference and Untyped_Reference types. This argument is optional.

Note

Use this argument with the -property argument to populate the initial values
in forms created by a workflow. If you do not use this argument and instead
set the initial value in the business object definition, the workflow process
defines the value as empty until you perform an edit and save it.

-target_task
Task name and attachment type receiving the new form as an attachment. The default
value is the current task.

Accepts one of four keywords for attachment-type:

• $REFERENCE
Reference attachments

• $TARGET
Target object attachments

• $SIGNOFF
Signoff attachments

• $RELEASE_STATUS
Release status attachments

The default value is $REFERENCE.
PLACEMENT

Requires no specific placement.
RESTRICTIONS

None.
EXAMPLES

• This example shows how to create form type ECN Form, form name ECN, form
description Engineering Change Management Form, and attachment type
EPM_reference attachment. The form is attached to the root task of the workflow
process.

Argument Values

-type ECN Form
-name ECN
-description Engineering Change Management Form

12-268 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values

-target_task $ROOT.$REFERENCE

• This example attaches the form as a target attachment to the current task:

Argument Values
-target_task $ROOT.$TARGET

To attach the form as a reference attachment to the current task, do not set the
-target_task argument, because this is the default location this handler uses when
this argument is not defined.

RS025 11.6 Setting Up Workflows for Product Development 12-269

Workflow handlers



Chapter 12: Workflow handlers

EPM-check-signoff-comments

DESCRIPTION
Requires users to type a comment when making a signoff decision. You can specify
whether the comment is required for the approve decision or the reject decision. If
neither decision is specified, comments are required to complete either signoff decision.

SYNTAX
EPM-check-signoff-comments [-decision= approve | reject ]

ARGUMENTS
-decision
Specifies which signoff decision requires comments to be entered when making a
signoff decision for either a Review task or an Acknowledge task.

Use approve to require comments to be added before selecting Approve for a
Review task, or Acknowledge for an Acknowledge task.

Use reject to require comments to be added before rejecting a signoff for a Review
task.

If this argument is not used, comments are required for either decision before
completing a signoff.

PLACEMENT
Place on the Perform action of the perform-signoffs task.

RESTRICTIONS
Place on the perform-signoffs task.

EXAMPLES
• This example requires that the user type comments before rejecting a signoff:

Argument Values
-decision reject

• This example requires the user to type comments before approving a signoff:

Argument Values
-decision approve

12-270 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-change-target-group-owner

DESCRIPTION
Changes the owner and/or the owning group for the target objects.

Note

The handler does not validate if the owning user belongs to the owning
group. It makes the change even if the user does not belong to the group.

SYNTAX
EPM-change-target-group-owner [-owner=user-id][-group=group-id]

ARGUMENTS
-owner
Valid Teamcenter user_id.

-group
Valid Teamcenter group_id.

PLACEMENT
Place on the Complete action.

RESTRICTIONS
None.

EXAMPLES
• This example changes the group and owner of the targets to engineering and

jim, respectively.

Argument Values
-owner jim
-group engineering

• This example changes the only group of the targets to production.

Argument Values
-group production

• This example changes only the owner of the targets to smith.

Argument Values
-owner smith

RS025 11.6 Setting Up Workflows for Product Development 12-271

Workflow handlers



Chapter 12: Workflow handlers

EPM-change-target-group

DESCRIPTION
Changes the group ownership of the target objects to the current group_id of the
user. If the target is an item revision object, the group of its item master is set to
the current group ID of the user as well.

SYNTAX
EPM-change-target-group

ARGUMENTS
None.

PLACEMENT
Place on the Complete action.

RESTRICTIONS
None.

12-272 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-change-ownership

DESCRIPTION
Changes the ownership of all target objects to the group and user ID of the reviewer
or the responsible party.

The advantage of changing ownership is to allow a revision rule to configure WIP
(work in process) data based on owner and group settings.

If this handler is used in Review tasks, the number of reviewers should be one.

To save processing time and/or improve robustness, the handler can be configured to
be active only in one or more actions (-active=action). If the handler is called as part
of trigger to another action, the handler silently returns immediately.

SYNTAX
EPM-change-ownership -assignee=$REVIEWERS | $RESPONSIBLE_PARTY
[-active= action [-active=other-action]][-depth=level] [-debug]

ARGUMENTS
-assignee
User to whom the ownership is given.

Use $REVIEWERS if this handler is used in a Review task. Use
$RESPONSIBLE_PARTY otherwise.

[-active=action [-active=other-action]]
Name of the action for which this handler is valid.

If this argument is used, and the handler is called as part of a trigger to an unlisted
action, the handler silently returns immediately. You can use the following valid action
names as values.

EPM_add_attachment_action

EPM_remove_attachment_action

EPM_approve_action

EPM_reject_action

EPM_promote_action

EPM_demote_action

EPM_refuse_action

EPM_assign_approver_action

EPM_notify_action

This argument can be useful when the handler is placed on the Perform action. These
actions automatically run the following Perform action handlers, raising the potential
for unnecessary processing.

This argument is optional.

RS025 11.6 Setting Up Workflows for Product Development 12-273

Workflow handlers



Chapter 12: Workflow handlers

-depth
Recursion depth. This argument is optional and the default is set to 1.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
Set the number of reviewers to 1 when this handler is placed on a Review task.

EXAMPLES
This example, when placed on the Complete action of the select-signoff-team
subtask of a Review task, changes the ownership of all the target objects to reviewers
and their groups.

Argument Values
-assignee $REVIEWERS

12-274 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-change-group-owner

DESCRIPTION
Changes the owning group for the item master of any item type whose revision is
attached as target.

SYNTAX
EPM-change-group-owner -group=group-id

ARGUMENTS
-group
A valid Teamcenter group_id.

PLACEMENT
Place on the Complete action.

RESTRICTIONS
None.

EXAMPLES
• This example is used with a workflow initiated with an item revision and document

revision attached as targets. It sets the owning group of the respective master item
and master document to engineering.

Argument Values
-group engineering

RS025 11.6 Setting Up Workflows for Product Development 12-275

Workflow handlers



Chapter 12: Workflow handlers

EPM-change-all-started-to-pending

DESCRIPTION
Ensures that all tasks that are started, but not are not completed, are cleaned up at
the conclusion of the workflow process.

SYNTAX
EPM-change-all-started-to-pending

ARGUMENTS
None.

PLACEMENT
Place on the Complete action of the root task.

RESTRICTIONS
None.

12-276 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-auto-check-in-out

DESCRIPTION
Automatically checks in/out the target objects of a workflow process to the assigned
reviewer or the responsible party. This prevents other users who have write access
to the target objects from being able to modify them. Optionally, when a dataset is
checked in/out, it checks in/out the BOM view of the type specified.

SYNTAX
EPM-auto-check-in-out
-assignee=$REVIEWERS | $RESPONSIBLE_PARTY
-action=check-in | check-out
[-include_related_type=dataset-type::bom-view-type]
[-include_replica]

ARGUMENTS
-assignee

Note

The -assignee argument is optional and not required for -action=check-in.

Use $REVIEWERS for Review tasks. Use $RESPONSIBLE_PARTY otherwise.

Note

The object is checked out to the first reviewer.

-action
Action to check in (check-in) or check out (check-out) the objects.

-include_related_type
(Optional) Also check in/out the type specified in the form of
dataset-type::bom-view-type. This value works for BOM views only. A
BOM view of the specified type is checked in/out if a dataset of a specified type
is checked in/out.

-include_replica
(Optional) Remote checks-in or remote checks-out the Replica Proposed Targets
objects of the workflow along with the target objects. For remote check-outs, the
objects are checked out to the current site executing the workflow.

PLACEMENT
• For Review and Route tasks where -assignee=$REVIEWERS:

o If -action=check-out, place the handler on the Complete action of the
select-signoff-team subtask, or Start action of the perform-signoffs subtask.

o If -action=check-in, place the handler on the Complete action of the
perform-signoffs subtask.

• For all other tasks or where -assignee=$RESPONSIBLE_PARTY:

RS025 11.6 Setting Up Workflows for Product Development 12-277

Workflow handlers



Chapter 12: Workflow handlers

Requires no specific placement.

RESTRICTIONS
Placement of the EPM-auto-check-in-out handler with the -action=check-out defined
should be determined considering the placement of EPM-assert-targets-checked-in
rule handler, which displays an error if target objects are not checked in. If this handler
is used in a Review task, this should be used only when the number of reviewers
equals one.

EXAMPLES
This example, placed on a Review task, checks out the objects to the reviewer
once the task is assigned to the reviewer and checks in the objects once the
reviewer signs off. You can place this action handler in the Complete action of the
select-signoff-team subtask using the Check out action, and in the Complete action
of the perform-signoffs subtask using the Check in action.

Argument Values
-assignee $REVIEWERS
-action check-out
-include_related_type UGMASTER::view

This setting checks out all the target objects; if a UGMASTER is checked out, the BOM
view of type view is also checked out. If UGMASTER is referenced in multiple item
revisions, the BOM view of the first item revision is checked out.

This example, placed on a Review task, checks in the objects once the task is
completed and all reviewers sign off. You can place this action handler in the
Complete action of the Review task using the Check in action, or in the Complete
action of the perform-signoffs subtask using the Check in action.

Argument Values
-action check-in

12-278 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-auto-assign-rest

DESCRIPTION
Automatically makes the specified assignee the responsible party for any unassigned
subtasks of the parent task to which this handler is added.

• If this handler is attached to the root task with no argument specified, the workflow
process initiator is made the responsible party for all tasks in the workflow process.

• If this handler is attached to the root task and one or more entries are contained in
the list, the first valid user or resource pool is made the responsible party for all
tasks in the workflow process.

SYNTAX
EPM-auto-assign-rest
-assignee= [user:user | person:person | resourcepool:group::role
| user:PROP::property_name
| resourcepool:PROP::property_name
| $PROPOSED_RESPONSIBLE_PARTY | $USER
| $PROCESS_OWNER | $TARGET_OWNER [type]
| $PROJECT_ADMINISTRATOR
| $PROJECT_TEAM_ADMINISTRATOR]
| $PROJECT_AUTHOR | $PROJECT_MEMBER[group::role]
| $REQUESTOR | $ANALYST
| $CHANGE_SPECIALIST1
| $CHANGE_SPECIALIST2
| $CHANGE_SPECIALIST3
[-from_include_type=object-type1[,object-type2,...]|
[-from_exclude_type=object-type1[,object-type2,...]]
[-from_attach= target | reference | schedule_task]
[-from_relation=relation-type]
[-from_include_related_type=object-type1[,object-type2,...] |
-from_exclude_related_type=object-type1[,object-type2,...]]
[-project_scope=all | owning_project]
[-check_first_object_only=true | false]
[-condition_name=condition1]
[-condition_scope=all | any | none]

ARGUMENTS
-assignee
Makes the user or resource pool the specified keyword evaluates to the responsible
party for the task to which this handler is added.

Accepts one of the following in the format specified below:

• user:user

Adds the user specified to the signoff member list and as the responsible party for
the task to which the handler is attached. Accepts a valid Teamcenter user ID.

• person:person

RS025 11.6 Setting Up Workflows for Product Development 12-279

Workflow handlers



Chapter 12: Workflow handlers

Adds the person whose name is specified to the signoff member list and as the
responsible party for the task to which the handler is attached. Accepts a valid
Teamcenter person name.

Note

If the person’s name includes a comma, you must include an escape
character (\) to add the correct person. For example, to use wayne,
joan:

-assignee=person:wayne\, joan

• resourcepool:group::role

Results in a single assignment which can be performed by any single member
of this group/role.

You can define resource pools in the form of group::, group::role, or role. Accepts
valid Teamcenter resource pool names and these keywords:

o $GROUP

Current user’s current group.

o $ROLE

Current user’s current role.

o $TARGET_GROUP[type]

Owning group of the first target object of the specified type. The type value is
optional. If not specified, the first target is used.

o $PROCESS_GROUP

Owning group of the workflow process.

Note

The $ROLE_IN_GROUP keyword (formerly $ROLEINGROUP) cannot
be used. Use resourcepool:$GROUP::$ROLE instead.

• user:PROP::property_name

Adds the user specified by the property name to the signoff member list for the
task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• resourcepool:PROP::property_name

12-280 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Adds the resource pool specified by the property name to the signoff member
list for the task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• $PROPOSED_RESPONSIBLE_PARTY

Affects assignments based on the user assigned as the responsible party for
the first target object.

• $USER

Adds the current user to the signoff member list and as the responsible party.

• $PROCESS_OWNER

Adds the workflow process owner to the signoff member list and as the responsible
party.

• $TARGET_OWNER [type]

Adds the owner of the first target of the specified type to the signoff member list
and as the responsible party. The type value is optional. If not specified, the
first target is used.

• $PROJECT_ADMINISTRATOR, $PROJECT_TEAM_ADMINISTRATOR,
$PROJECT_AUTHOR, $PROJECT_MEMBER[group::role]

Dynamically makes the first project team member belonging to the role specified in
the argument value as the responsible party. The project team is determined by
the project team associated with the first target object.

o If the $PROJECT_MEMBER[group::role] argument is specified, only the
project members of the qualifying projects which belong to the specified group
and role are selected for assignment. If the group and role are not specified,
all the project members from qualifying projects are selected.

o If the value is specified as $PROJECT_AUTHOR or
$PROJECT_MEMBER[group::role], the relevant first project
member is selected.

o You can specify a sub-group with the syntax group++sub-group::role.

• $REQUESTOR, $ANALYST, $CHANGE_SPECIALIST1,
$CHANGE_SPECIALIST2, $CHANGE_SPECIALIST3

Dynamically resolves to the user or resource pool associated with the first change
target object in the workflow process. The particular user or resource pool is
determined by the role specified in the argument value.

RS025 11.6 Setting Up Workflows for Product Development 12-281

Workflow handlers



Chapter 12: Workflow handlers

Note

Change-related keywords apply only to change objects. If the workflow
process does not contain a change object as a target, the argument
resolves to null.

Change Manager does not need to be enabled before these keywords
take effect, but during installation, Change Management must be
selected under Extensions→Enterprise Knowledge Foundation in
Teamcenter Environment Manager.

-from_include_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

-from_exclude_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

-from_attach= target | reference | schedule_task
(Optional) Specifies which type of attachment (target, reference, or schedule_task)
to get the property value from when a property is specified in the -assignee argument
(for example, -assignee=user:PROP::property_name). If this argument is not
specified, the default is target.

-from_relation
(Optional) Specifies the relation of the objects to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). It must be a valid relation.

• For manifestations, use IMAN_manifestation.

• For specifications, use IMAN_specification.

• For requirements, use IMAN_requirement.

• For references, use IMAN_reference.

• For BOM views, use PSBOMViewRevision.

This argument must be used with the -from_attach argument. A derived object is
identified by starting with objects of the specified attachment type indicated by the
-from_attach argument and then locating the first secondary object with the specified
relation indicated by the -relation argument.

-from_include_related_type=object-type1[,object-type2]
(Optional) Specifies the related object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

12-282 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Use this argument when a property is designated and you use the -from_relation
argument.

This argument should not be used with the -from_exclude_related_type argument.

-from_exclude_related_type=object-type1[,object-type2]
(Optional) Specifies related object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

Use this argument when a property is designated and you use the -from_relation
argument.

This argument should not be used with the -from_include_related_type argument.

-project_scope
(Optional) Specifies which projects are used to resolve project-based assignments.
The all value specifies all projects in the list of projects. The owning_project value
specifies the owning project only.

If this argument is not specified, the default value is the first project in the project list.

-check_first_object_only
(Optional) The true value specifies that only the first object is checked. If the value
is false, all objects are checked. If this argument is not specified, or if it is specified
without a value, only the first object is checked.

If the –include_type, -exclude_type, -include_related_type, or
–exclude_related_type arguments are specified, they determine the types of objects
that are checked.

-condition_name
(Optional) The name of the condition to evaluate against the identified objects from
which to assign tasks. The condition signature should accept a WorkspaceObject
& UserSession. The handler assigns the reviewers only if the condition results are
successful, based on the –condition_scope argument.

-condition_scope
(Optional) The criteria for evaluating condition results against workflow objects. Values
are the following:

all All objects should meet the condition. This is the default behavior
if this argument is not supplied with the –condition_name
argument.

any Any object should meet the condition.

none No object should meet the condition.

PLACEMENT
Place on the Start action. Typically placed on the root task after the
EPM-assign-team-selector handler.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-283

Workflow handlers



Chapter 12: Workflow handlers

EXAMPLES
• In this example, a five-task workflow process containing the task templates below

is initiated by user Jones. The EPM-auto-assign-rest handler is placed on the
root task, and the EPM-auto-assign handler is placed on the fourth task, set with
the -assignee=$PROCESS_OWNER argument.

The workflow consists of a Do task, Review task, Review task, and Do task.

Because the EPM-auto-assign-rest handler is placed on the root task and
Smith is specified with the -assignee argument, Smith is the responsible party
for the first three tasks (and their subtasks). Because the EPM-auto-assign
-assignee=$PROCESS_OWNER handler is placed on the fourth task, Jones is
the responsible party for the fourth task and its subtasks. Smith is the owner of
the fifth task.

Argument Values
-assignee user:Smith

• This example assigns the user or resource pool assigned as the responsible party
for the subtasks of the task to which this handler is assigned.

Argument Values
-assignee $PROPOSED_RESPONSIBLE_PARTY

• This example assigns the user or resource pool associated as ANALYST with the
first change target object the responsible party for the subtasks of the task to
which this handler is assigned.

Argument Values
-assignee $ANALYST

• This example assigns the first member of the Engineering group and Designer
role of the first project team associated with the first target found by the system to
the remaining tasks as responsible party.

Argument Values
-assignee $PROJECT_MEMBER[Engineering::Designer]

12-284 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-auto-assign

DESCRIPTION
Makes the specified user or resource pool the responsible party for the task to which
the handler is added. Optionally, you can make the same specified user or resource
pool the responsible party for all subtasks of the parent task.

Note

If you use keyword arguments to dynamically generate this assignment,
and the system resolve the argument to a user or resource pool, then the
argument is ignored.

SYNTAX
EPM-auto-assign [-subtasks]
[-assignee= {user:user | person:person | resourcepool:group::role
| user:PROP::property_name
| resourcepool:PROP::property_name
| $PROPOSED_RESPONSIBLE_PARTY | $USER
| $PROCESS_OWNER | $TARGET_OWNER [type]
| $PROJECT_ADMINISTRATOR
| $PROJECT_TEAM_ADMINISTRATOR
| $PROJECT_AUTHOR | $PROJECT_MEMBER[group::role]
| $REQUESTOR | $ANALYST
| $CHANGE_SPECIALIST1
| $CHANGE_SPECIALIST2
| $CHANGE_SPECIALIST3}]
[-from_include_type=object-type1[,object-type2,...]|
[-from_exclude_type=object-type1[,object-type2,...]]
[-from_attach= target | reference | schedule_task]
[-from_relation=relation-type]
[-from_include_related_type=object-type1[,object-type2,...] |
-from_exclude_related_type=object-type1[,object-type2,...]]
[-target_task=multilevel-task-path]
[-project_scope=all | owning_project]
[-check_first_object_only=true | false]
[-condition_name=condition1]
[-condition_scope=all | any | none]

ARGUMENTS
-subtasks
Propagates task assignments to subtasks of the current task (nonrecursively).
Optional.

-assignee
Assigns as the responsible party for the task to which this handler is added either
the specified person, user, resource pool, or the user or resource pool the specified
keyword evaluates to.

Accepts one of the following in the format specified below:

RS025 11.6 Setting Up Workflows for Product Development 12-285

Workflow handlers



Chapter 12: Workflow handlers

• user:user

Adds the specified user to the signoff member list and as the responsible party for
the task to which the handler is attached. Accepts a valid Teamcenter user ID.

• person:person

Adds the person whose name is specified to the signoff member list and as the
responsible party for the task to which the handler is attached. Accepts a valid
Teamcenter person name.

Note

If the person’s name includes a comma, you must include an escape
character (\) to add the correct person. For example, to use wayne,
joan:

-assignee=person:wayne\, joan

• resourcepool:group::role

Results in a single assignment which can be performed by any single member
of this group/role.

You can define resource pools in the form of group::, group::role, or role.

Accepts valid Teamcenter resource pool names and these keywords:

o $GROUP

Current user’s current group.

o $ROLE

Current user’s current role.

o $TARGET_GROUP[type]

Owning group of the first target object of the specified type. The type value is
optional. If not specified, the first target is used.

o $PROCESS_GROUP

Owning group of the workflow process.

Note

The $ROLE_IN_GROUP keyword (formerly $ROLEINGROUP) cannot
be used. Use resourcepool:$GROUP::$ROLE instead.

• user:PROP::property_name

Adds the user specified by the property name to the signoff member list for the
task to which it is attached.

12-286 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• resourcepool:PROP::property_name

Adds the resource pool specified by the property name to the signoff member
list for the task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• $PROPOSED_RESPONSIBLE_PARTY

Affects assignments based on the user assigned as the responsible party for
the first target object.

• $USER

Adds the current user to the signoff member list and as the responsible party.

• $PROCESS_OWNER

Adds the workflow process owner to the signoff member list and as the responsible
party.

• $TARGET_OWNER [type]

Adds the owner of the first target of the specified type to the signoff member list
and as the responsible party. The type value is optional. If not specified, the
first target is used.

• $PROJECT_ADMINISTRATOR, $PROJECT_TEAM_ADMINISTRATOR,
$PROJECT_AUTHOR, $PROJECT_MEMBER[group::role]

Dynamically makes the first project team member belonging to the role specified in
the argument value as the responsible party. The project team is determined by
the project team associated with the first target object.

o If the $PROJECT_MEMBER[group::role] argument is specified, only the
project members of the qualifying projects which belong to the specified group
and role are selected for assignment. If the group and role are not specified,
all the project members from qualifying projects are selected.

o If the value is specified as $PROJECT_AUTHOR or
$PROJECT_MEMBER[group::role], the relevant first project
member is selected.

o You can specify a sub-group with the syntax group++sub-group::role.

• $REQUESTOR, $ANALYST, $CHANGE_SPECIALIST1,
$CHANGE_SPECIALIST2, $CHANGE_SPECIALIST3

RS025 11.6 Setting Up Workflows for Product Development 12-287

Workflow handlers



Chapter 12: Workflow handlers

Dynamically resolves to the user or resource pool associated with the first change
target object in the workflow process. The particular user or resource pool is
determined by the role specified in the argument value.

Note

Change-related keywords apply only to change objects. If the workflow
process does not contain a change object as a target, the argument
resolves to null.

Change Manager does not need to be enabled before these keywords
take effect, but during installation, Change Management must be
selected under Extensions→Enterprise Knowledge Foundation in
Teamcenter Environment Manager.

-from_include_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

-from_exclude_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

-from_attach= target | reference | schedule_task
(Optional) Specifies which type of attachment (target, reference, or schedule_task)
to get the property value from when a property is specified in the -assignee argument
(for example, -assignee=user:PROP::property_name). If this argument is not
specified, the default is target.

-from_relation
(Optional) Specifies the relation of the objects to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). It must be a valid relation.

• For manifestations, use IMAN_manifestation.

• For specifications, use IMAN_specification.

• For requirements, use IMAN_requirement.

• For references, use IMAN_reference.

• For BOM views, use PSBOMViewRevision.

This argument must be used with the -from_attach argument. A derived object is
identified by starting with objects of the specified attachment type indicated by the
-from_attach argument and then locating the first secondary object with the specified
relation indicated by the -relation argument.

12-288 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-from_include_related_type=object-type1[,object-type2]
(Optional) Specifies the related object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

Use this argument when a property is designated and you use the -from_relation
argument.

This argument should not be used with the -from_exclude_related_type argument.

-from_exclude_related_type=object-type1[,object-type2]
(Optional) Specifies related object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

Use this argument when a property is designated and you use the -from_relation
argument.

This argument should not be used with the -from_include_related_type argument.

-target_task
(Optional) Specifies the multilevel task path to which the reviewers are added. The
path is from the root task to the subtask with the path levels separated with colons (:).
For example: Change Request Review:QA Review:perform-signoff

-project_scope
(Optional) Specifies which projects are used to resolve project-based assignments.
The all value specifies all projects in the list of projects. The owning_project value
specifies the owning project only.

If this argument is not specified, the default value is the first project in the project list.

-check_first_object_only
(Optional) The true value specifies that only the first object is checked. If the value
is false, all objects are checked. If this argument is not specified, or if it is specified
without a value, only the first object is checked.

If the –include_type, -exclude_type, -include_related_type, or
–exclude_related_type arguments are specified, they determine the types of objects
that are checked.

-condition_name
(Optional) The name of the condition to evaluate against the identified objects from
which to assign tasks. The condition signature should accept a WorkspaceObject
& UserSession. The handler assigns the reviewers only if the condition results are
successful, based on the –condition_scope argument.

-condition_scope
(Optional) The criteria for evaluating condition results against workflow objects. Values
are the following:

all All objects should meet the condition. This is the default behavior
if this argument is not supplied with the –condition_name
argument.

RS025 11.6 Setting Up Workflows for Product Development 12-289

Workflow handlers



Chapter 12: Workflow handlers

any Any object should meet the condition.

none No object should meet the condition.
PLACEMENT

Place on the Start action.
RESTRICTIONS

None.
EXAMPLES

• This example makes Smith the responsible party for the task to which this handler
is assigned and all of the task’s subtasks.

Argument Values
-subtasks

-assignee user:Smith

• This example makes the workflow process owner the responsible party for the
task to which this handler is assigned.

Argument Values
-assignee $PROCESS_OWNER

• This example makes the engineer role within manufacturing group resource pool
the responsible party for the task to which this handler is assigned.

Argument Values

-assignee resourcepool:manufacturing::engineer

• This example makes the responsible party group the responsible party for the
task to which this handler is assigned.

Argument Values
-assignee $PROPOSED_RESPONSIBLE_PARTY

• This example makes the project administrator of the project associated with the
first target the responsible party for the task to which this handler is assigned.

Argument Values
-assignee $PROJECT_ADMINISTRATOR

• This example makes the user or resource pool associated as ANALYST with
the first change target the responsible party for the task to which this handler
is assigned.

Argument Values
-assignee $ANALYST

12-290 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• This example assigns the first member of the Engineering group and Designer
role of the first project team associated with the first target found by the system to
the task as responsible party.

Argument Values
-assignee $PROJECT_MEMBER[Engineering::Designer]

RS025 11.6 Setting Up Workflows for Product Development 12-291

Workflow handlers



Chapter 12: Workflow handlers

EPM-attach-related-objects

DESCRIPTION
Attaches the specified related objects of the target objects as target or reference
attachments to the workflow process. This handler searches all target objects, finds
the secondary objects with the specified relation or in the specified reference property
and type (if specified), then adds them as target or reference attachments. If a
secondary object is already part of the target list, it is ignored.

Note

If the WRKFLW_allow_replica_targets preference is set to true and if
any replica object qualifies to be attached as a workflow target, that object
is attached as a Replica Proposed Target to the workflow process. If the
intended attachment type is not a target, the replica object is attached as
the attachment type defined in -attachment argument.

If the preference is set to false or is undefined, the handler reports an error
and attaches replica objects as targets.

Further, if the -from_attach argument is set to schedule_task and if the
attached schedule task is a proxy link, the handler ignores the schedule
task proxy link for any processing.

Note

If the handler attempts to attach related objects that are checked out, the
workflow process fails. You can use a Validate task to branch to a workflow
path to have the objects checked in.

Note

To replace the obsolete EPM-attach-item-revision-targets handler, use
the following two instances of the EPM-attach-related-objects:

• EPM-attach-related-objects

Arguments Values
-relation IMAN_specification
-attachment target

• EPM-attach-related-objects

Argument Values
-relation PSBOMViewRevision
-attachment target

12-292 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Note

Enable debugging functionality for this handler with the
TC_HANDLERS_DEBUG environment variable.

SYNTAX
EPM-attach-related-objects
{-relation=relation-name | -property=property-name}
[-include_related_type=object-type1[,object-type2,...] |
| -exclude_related_type=object-type1[,object-type2,...]] ] |
[-lov=lov-name]
-attachment= target | reference
[-from_attach= target | reference | schedule_task]
[-allowed_status=status1
[,null,status2,...] | * | all | any | null | none | IN_PROCESS]
[-disallowed_status=status1
[,null,status2,...] | * | all | any | null | none | IN_PROCESS]

ARGUMENTS
-relation=relation-name | -property=property-name
Specifies the relation or the property that is used to locate and attach secondary
objects. You can use only one of these two arguments.

-relation=relation-name
Specifies the relation of the secondary objects to be attached to the target. The
relation name must be valid for the relation type.

Relation type Valid relation name
Manifestation IMAN_manifestation
Specification IMAN_specification
Requirement IMAN_requirement
Reference IMAN_reference
BOM view PSBOMViewRevision

Note

You cannot use this argument with the -property argument.

-property=property-name
Specifies the target object property whose value lists the secondary objects to be
attached to the target.

Note

You cannot use this argument with the -relation argument.

RS025 11.6 Setting Up Workflows for Product Development 12-293

Workflow handlers



Chapter 12: Workflow handlers

-include_related_type=object-type1[,object-type2]
Specifies object types to be attached.

They must be valid object types. This argument is optional.

This argument should not be used with the -exclude_related_type argument.

-exclude_related_type=object-type1[,object-type2]
Specifies object types to be excluded.

They must be valid object types. This argument is optional.

This argument should not be used with the -include_related_type argument.

-lov=lov-name
Specifies a list of values (LOV) to use to define which objects to attach.

Use only with the -attachment, -allowed_status and -disallowed_status arguments.
This argument is mutually exclusive of the -relation, -include_related_type, and
-exclude_related_type arguments.

For an overview of using LOVs in handlers, see Lists of values as argument values.

-attachment= target | reference
Attachment type with which the objects are attached to the workflow process.

-from_attach= target | reference | schedule_task
(Optional) Finds the related objects with the specified relation or property argument
from the specified types of attachments (target, reference, or schedule_task).

-allowed_status=status1[,null,status2,…] | * | all | any | null | none | IN_PROCESS
Defines allowed statuses. Only objects with a release status matching a status defined
in the list are attached.

null | NULL | none | NONE matches no status (or WIP).

* | all | ALL | any | ANY matches any status set, excluding null.

IN_PROCESS checks whether the object is currently in a workflow process.

Note

The -allowed_status and -disallowed_status arguments are mutually
exclusive. If you use one of them, you cannot use the other in the same
handler instance.

-disallowed_status=status1[,null,status2,…] | * | all | any | null | none |
IN_PROCESS
Defines statuses that are not allowed. Only objects with a release status not matching
a status defined in the list are attached.

null | NULL | none | NONE matches no status (or WIP).

* | all | ALL | any | ANY matches any status set, excluding null.

IN_PROCESS checks whether the object is currently in a workflow process.

12-294 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Note

The -allowed_status and -disallowed_status arguments are mutually
exclusive. If you use one of them, you cannot use the other in the same
handler instance.

LOV
For an overview of using LOVs in handlers, see Lists of values as argument values.

The LOV can contain multiple optional lines containing filter options followed by
multiple lines containing multilevel object paths.

Note

For an overview and examples of multilevel object paths in handlers, see
Defining multilevel object paths.

Each multilevel object path line can optionally have a filter option added as a second
field after a tilde (~).

OPTION=value

OPTION=value

{$TARGET|$REFERENCE}.multi.level.object.path[~ OPTION=value]

{$TARGET|$REFERENCE}.multi.level.object.path[~ OPTION=value]

OPTION=value
Defines a configurable option to filter object selection.

If you supply an option on an LOV line on its own, it applies to all subsequent
lines containing multilevel object paths. The option does not affect any multilevel
object paths listed before the option.

If you supply an option on the same line as a multiple level object path, as a
second field after a tilde (~) character, it only applies to that line.

Valid values are:

• REV RULE={LATEST|Rule}

Specifies the revision rule used to select the revision attached to the workflow
process if initiated on an item. Use the LATEST keyword to select only the
latest revision.

• INCLUDE PARENTS=YES

Specifies that all objects found by traversing a multilevel path are attached to
the workflow process, not just the last set of objects in a path. For example,
when a multilevel path is used to first find items in a workflow process, then
find revisions in the item, then find datasets in the revisions, it is only the
datasets that are attached by default. Setting this argument to YES causes
both the revisions and the datasets to be attached.

RS025 11.6 Setting Up Workflows for Product Development 12-295

Workflow handlers



Chapter 12: Workflow handlers

This argument reduces the number of lines required in the LOV and improves
performance.

$TARGET|$REFERENCE
Defines the starting point from which to look for objects. Valid values are:

• $TARGET
Defines the starting point as the workflow process target attachments.

• $REFERENCE
Defines the starting point as the workflow process reference attachments.

multi.level.object.path
Defines a multilevel object path to traverse to find the required objects to attach to
the workflow process. For an overview of using multilevel object paths in handlers,
see Defining multilevel object paths.

For example, (ItemRevision).IMAN_specification.(Dataset).

Attaches any datasets attached to the specification relation to any revisions found.

For more examples, see the Examples section.

PLACEMENT
Typically placed on the Start action of the root task so that the list of target attachments
is updated at workflow process initiation.

To allow targets to be added to a workflow process containing a task on
which this handler has been placed (other than the root task), verify that the
EPM-disallow-adding-targets handler does not exist on the root task of the respective
workflow process template and ensure that the affected users have change access
to the workflow process object. You may use the EPM-set-rule-based-protection
handler to ensure that the required change access is asserted.

Note

If EPM-attach-related-objects and EPM-set-rule-based-protection are
both used at the start of the same task, the workflow ACL is not active yet
and cannot support EPM-attach-related-objects. The rule tree does not
consider workflow ACLs before the entire task start action is completed,
which is after the successful execution of all the handlers on the start
action. In such a case, the EPM-attach-related-objects handler may need
placing on the complete action to realize access changes asserted by the
EPM-set-rule-based-protection handler on the start action.

RESTRICTIONS
• Requires one or more target objects to find the related objects. Placement should

allow at least one target object before the execution of this handler takes place.

• To attach both targets and references using LOVs requires two occurrences of the
handler: one to attach the targets by setting the -attachment argument to target,
and one to attach the references using the -attachment argument to reference.

12-296 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• The LOV argument cannot be used to attach objects based on properties.

EXAMPLES
• This example attaches all objects with a specification relation as target objects to

the workflow process, when a workflow process is initiated on an item revision:

Arguments Values
-relation IMAN_specification
-attachment target

Note

If an object is already attached as target, it is not added.

• In this example, all objects listed in the altid_list property value are attached to
the workflow process as target objects, when a workflow process is initiated on
an item revision:

Arguments Values
-property altid_list
-attachment target

Note

o The property named in the argument value must exist on the target.

o If an object is already attached as target, it is not added.

• To attach all objects with a reference relation as reference objects, add this handler
one more time with the syntax:

Argument Values
-relation IMAN_reference
-attachment reference

• This example attaches the BOM view revision type View as a target:

Argument Values
-relation PSBOMViewRevision
-include_related_type view
-attachment target

Alternatively, you can use these LOV settings:

Argument Values
-lov SYS_EPM_attach_view_bvr

RS025 11.6 Setting Up Workflows for Product Development 12-297

Workflow handlers



Chapter 12: Workflow handlers

where the SYS_EPM_attach_view_bvr LOV contains the value:

$TARGET.(ItemRevision).PSBOMViewRevision.BOMView Revision

• This example attaches the UGMASTER and the UGPART datasets (associated
by the IMAN_specification relation to the item revision) to the item revision as
target objects.

Argument Values
-relation IMAN_specification
-include_related_type UGMASTER, UGPART
-attachment target

Alternatively, you can use these LOV settings:

Argument Values
-lov SYS_EPM_attach_UGMASTER_UGPART

where the SYS_EPM_attach_UGMASTER_UGPART LOV contains the data:

$TARGET.(ItemRevision).IMAN_specification.UGMASTER,UGPART

• This example uses the -exclude_related_type argument to specify object types
that are not to be attached as targets to the workflow process. It attaches all
objects attached to the Specification relation in any target revisions as targets to
the workflow process, except for the dataset types UGMASTER and Text.

Argument Values
-relation IMAN_specification
-exclude_related_type UGMASTER, Text
-attachment target

Alternatively, you can use these LOV settings:

Argument Values
-lov SYS_EPM_exclude_UGMASTER

where the SYS_EPM_exclude_UGMASTER LOV contains the data:

$TARGET.(ItemRevision).IMAN_specification.(*)!UGMASTER!Text

Note

Use an * for any class, then exclude UGMASTER and Text:

• This example attaches all specification objects, all BOM view revisions, all forms
attached to datasets through a Form reference (except UGPartAttr forms), and

12-298 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

all forms attached through a manifestation relation. Only attach objects that
not released.

Argument Values
-lov SYS_EPM_attach_main_objects
-attachment target
-allowed_status null

Where the SYS_EPM_attach_main_objects LOV contains the data:

Value Description
$TARGET.(ItemRevision).Specification.* Attach all objects

in target revision
Specification relation

$TARGET.(ItemRevision).IMAN_specification.
UGMASTER.UGPART-ATTR.UGPartAttr

Attach all forms
attached to datasets
in target revision #
Specification relation as
a Form reference, but
excluding the # form type
UGPartAttr.

$TARGET.(ItemRevision).PSBOMViewRevision.* Attach all BOM View
Revisions in target
revision

$TARGET.(ItemRevision).Manifestation.(Form) Attach all forms in target
revision Manifestation
relation

• This example attaches all required revision attachments, such as specification
objects and BOM view revisions, regardless of whether the workflow process is
initiated on revisions, items or folders containing the items or revisions. If the
method of initiating workflow processes on items or folders is convenient, use
the EPM-remove-objects handler to remove the items and/or folders from the
targets after this handler.

When the targets are item revisions, attach all specification objects, all BOM view
revisions and any objects attached to specification datasets as relations and
references (only attaches workspace objects).

When the targets are items, attach all of the latest revisions and all objects
mentioned above for each revision.

When the targets are folders, attach any items in the folders and the item revisions
and the revision attachments. For any revisions in the folder, attach the revisions’
attachments.

Only attach objects not already released or with a status of Pending.

RS025 11.6 Setting Up Workflows for Product Development 12-299

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-lov SYS_EPM_attach_main_objects
-attachment target
-allowed_status null, Pending

Where the SYS_EPM_attach_main_objects LOV contains the data:

Value Description
INCLUDE PARENTS = YES Set option for all lines to

include all objects found
REV RULE = LATEST Set the revision rule for

any items
$TARGET.(ItemRevision).IMAN_specification,
PSBOMViewRevision.*.* ~

Attach required objects
from REVISION targets

$TARGET.(Item).Revisions.*.IMAN_specification,
PSBOMViewRevision.*.*

Attach required objects
from latest revisions in
ITEM targets

$TARGETS.(Folder).*.(Item).Revisions.*
.IMAN_specification, PSBOMViewRevision.*.*

Attach required objects
from FOLDER targets

$TARGETS.(Folder).*.(ItemRevision).
IMAN_specification, PSBOMViewRevision.*.*

Look for items and
revisions in the folders

ADDITIONAL
INFORMATION

With the addition of this handler, these handlers are deprecated:

EPM-attach-item-revision-target
As the EPM-attach-item-revision-target handler attaches BOM view revisions and
objects with IMAN_specification relation, this handler can be replaced using one
of the following options:

• Adding the EPM-attach-related-objects handler two times (one for specification
relation and one for BOM view revisions) with the syntax:

EPM-attach-related-objects

Argument Values
-relation IMAN_specification
-attachment target

EPM-attach-related-objects

Argument Values
-relation PSBOMViewRevision
-attachment target

• Adding the EPM-attach-related-objects handler once using an LOV:

12-300 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-attach-related-objects

Argument Values
-lov SYS_EPM_attach_default_objects
-attachment target

Where the SYS_EPM_attach_main_objects LOV contains the data:

$TARGET . (ItemRevision) . Specification, PSBOMViewRevision . *

RS025 11.6 Setting Up Workflows for Product Development 12-301

Workflow handlers



Chapter 12: Workflow handlers

EPM-assign-team-selector

DESCRIPTION
Assigns all select-signoff-team tasks in the entire workflow process to the specified
user, person, initiator (owner), or resource pool of the workflow process. Only one
argument can be defined; all arguments are mutually exclusive of each other.

SYNTAX
EPM-assign-team-selector
-assignee= [user:user | person:person | resourcepool:group::role
| user:PROP::property_name
| resourcepool:PROP::property_name
| $PROPOSED_RESPONSIBLE_PARTY | $USER
| $PROCESS_OWNER | $TARGET_OWNER [type]
| $PROJECT_ADMINISTRATOR
| $PROJECT_TEAM_ADMINISTRATOR
| $PROJECT_AUTHOR | $PROJECT_MEMBER[group::role]
| $REQUESTOR | $ANALYST
| $CHANGE_SPECIALIST1
| $CHANGE_SPECIALIST2
| $CHANGE_SPECIALIST3]
[-from_include_type=object-type1[,object-type2,...]|
[-from_exclude_type=object-type1[,object-type2,...]]
[-from_attach= target | reference | schedule_task]
[-from_relation=relation-type]
[-from_include_related_type=object-type1[,object-type2,...] |
-from_exclude_related_type=object-type1[,object-type2,...]]
[-target_task=multilevel-task-path]
[-project_scope=all | owning_project]
[-check_first_object_only=true | false]
[-condition_name=condition1]
[-condition_scope=all | any | none]

ARGUMENTS
-assignee
Makes the user or resource pool the specified keyword evaluates to the responsible
party for the task to which this handler is added. Accepts one of the following in the
format specified below:

• user:user

Adds the user specified to the signoff member list for the task to which it is
attached. Accepts a valid Teamcenter user ID.

• person:person

Adds the user whose name is specified to the signoff member list for the task to
which it is attached. Accepts a valid Teamcenter person name.

12-302 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Note

If the person’s name includes a comma, you must include an escape
character (\) to add the correct person. For example, to use wayne,
joan:

-assignee=person:wayne\, joan

• resourcepool:group::role

Results in a single assignment which can be performed by any single member
of this group/role.

You can define resource pools in the form of group::, group::role, or role. Accepts
valid Teamcenter resource pool names and these keywords:

o $GROUP

Current user’s current group.

o $ROLE

Current user’s current role.

o $TARGET_GROUP [type]

Owning group of the first target object of the specified type. The type value is
optional. If not specified, the first target is used.

o $PROCESS_GROUP

Owning group of the workflow process.

• user:PROP::property_name

Adds the user specified by the property name to the signoff member list for the
task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• resourcepool:PROP::property_name

Adds the resource pool specified by the property name to the signoff member
list for the task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• $PROPOSED_RESPONSIBLE_PARTY

Affects assignments based on the user assigned as the responsible party for
the first target object.

RS025 11.6 Setting Up Workflows for Product Development 12-303

Workflow handlers



Chapter 12: Workflow handlers

• $USER

Adds the current user to the signoff member list.

• $PROCESS_OWNER

Adds the workflow process owner to the signoff member list.

• $TARGET_OWNER [type]

Adds the owner of the first target of specified type to the signoff member list. The
type value is optional. If not specified, the first target is used.

• $PROJECT_ADMINISTRATOR, $PROJECT_TEAM_ADMINISTRATOR,
$PROJECT_AUTHOR, $PROJECT_MEMBER[group::role]

Dynamically makes the first project team member belonging to the role specified in
the argument value as the responsible party. The project team is determined by
the project team associated with the first target object.

o If the $PROJECT_MEMBER[group::role] argument is specified, only the
project members of the qualifying projects which belong to the specified group
and role are selected for assignment. If the group and role are not specified,
all the project members from qualifying projects are selected.

o If the value is specified as $PROJECT_AUTHOR or
$PROJECT_MEMBER[group::role], the relevant first project
member is selected.

o You can specify a sub-group with the syntax group++sub-group::role.

• $REQUESTOR, $ANALYST, $CHANGE_SPECIALIST1,
$CHANGE_SPECIALIST2, $CHANGE_SPECIALIST3

Dynamically resolves to the user or resource pool associated with the first change
target object in the workflow process. The particular user or resource pool is
determined by the role specified in the argument value.

Note

Change-related keywords apply only to change objects. If the workflow
process does not contain a change object as a target, the argument
resolves to null.

Change Manager does not need to be enabled before these keywords
take effect, but during installation, Change Management must be
selected under Extensions→Enterprise Knowledge Foundation in
Teamcenter Environment Manager.

-from_include_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

12-304 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_exclude_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_attach= target | reference | schedule_task
(Optional) Specifies which type of attachment (target, reference, or schedule_task)
to get the property value from when a property is specified in the -assignee argument
(for example, -assignee=user:PROP::property_name). If this argument is not
specified, the default is target.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_relation
(Optional) Specifies the relation of the objects to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). It must be a valid relation.

• For manifestations, use IMAN_manifestation.

• For specifications, use IMAN_specification.

• For requirements, use IMAN_requirement.

• For references, use IMAN_reference.

• For BOM views, use PSBOMViewRevision.

This argument must be used with the -from_attach argument. A derived object is
identified by starting with objects of the specified attachment type indicated by the
-from_attach argument and then locating the first secondary object with the specified
relation indicated by the -relation argument.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_include_related_type=object-type1[,object-type2]
(Optional) Specifies the related object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an object
(user:PROP:: or resourcepool:PROP::)) and you use the -from_relation argument.

This argument should not be used with the -from_exclude_related_type argument.

RS025 11.6 Setting Up Workflows for Product Development 12-305

Workflow handlers



Chapter 12: Workflow handlers

-from_exclude_related_type=object-type1[,object-type2]
(Optional) Specifies related object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an object
(user:PROP:: or resourcepool:PROP::)) and you use the -from_relation argument.

This argument should not be used with the -from_include_related_type argument.

-target_task
(Optional) Specifies the multilevel task path to which the reviewers are added.
The path is from the root task to the select-signoff-team subtask with the path
levels separated with colons (:). For example: Change Request Review:QA
Review:select-signoff-team

-project_scope
(Optional) Specifies which projects are used to resolve project-based assignments.
The all value specifies all projects in the list of projects. The owning_project value
specifies the owning project only.

If this argument is not specified, the default value is the first project in the project list.

-check_first_object_only
(Optional) The true value specifies that only the first object is checked. If the value
is false, all objects are checked. If this argument is not specified, or if it is specified
without a value, only the first object is checked.

If the –include_type, -exclude_type, -include_related_type, or
–exclude_related_type arguments are specified, they determine the types of objects
that are checked.

-condition_name
(Optional) The name of the condition to evaluate against the identified objects from
which to assign tasks. The condition signature should accept a WorkspaceObject
& UserSession. The handler assigns the reviewers only if the condition results are
successful, based on the –condition_scope argument.

-condition_scope
(Optional) The criteria for evaluating condition results against workflow objects. Values
are the following:

all All objects should meet the condition. This is the default behavior
if this argument is not supplied with the –condition_name
argument.

any Any object should meet the condition.

none No object should meet the condition.
PLACEMENT

Place on the Start action of the root task.
RESTRICTIONS

None.

12-306 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EXAMPLES
• This example assigns the user jim all select-signoff-team tasks in that workflow

process.

Argument Values
-assignee user:jim

• This example assigns the person Jim Smith all select-signoff-team tasks in
that workflow process.

Argument Values
-assignee person:Jim Smith

• This example assigns the owner of the workflow process all select-signoff-team
tasks in that workflow process.

Argument Values
-assignee $PROCESS_OWNER

• This example assigns the user or resource pool assigned as the responsible party
for all select-signoff-team tasks in that workflow process.

Argument Values
-assignee $PROPOSED_RESPONSIBLE_PARTY

• This example makes the project administrator of the project associated with the
first target the responsible party for all select-signoff-team tasks in that workflow
process.

Argument Values
-assignee $PROJECT_ADMINISTRATOR

• This example makes the user or resource pool associated as REQUESTOR with
the first change target the responsible party for all select-signoff-team tasks in
the workflow process.

Argument Values
-assignee $REQUESTOR

• This example assigns the first member of the Engineering group and Designer
role of the first project team associated with the first target found by the system to
the select-signoff-team task.

Argument Values
-assignee $PROJECT_MEMBER[Engineering::Designer]

RS025 11.6 Setting Up Workflows for Product Development 12-307

Workflow handlers



Chapter 12: Workflow handlers

EPM-assign-signoff-dynamic-participant

DESCRIPTION
Assigns the specified users or resource pools as the dynamic participant to the target
attachment.

If the BMIDE constant Fnd0ParticipantEligibility is defined for the dynamic
participant, the handler gets the corresponding group member which matches the
group and role criteria defined in the BMIDE constant. If the user identified through
the –assignee argument does not have the correct group and role membership, the
handler reports an error and does not assign the user to the dynamic participant.

SYNTAX
EPM-assign-signoff-dynamic-participant
-name= {PROPOSED_REVIEWERS
| CHANGE_REVIEW_BOARD
| CHANGE_IMPLEMENTATION_BOARD}
[-assignee= [user:user | person:person | resourcepool:group::role
| user:PROP::property_name
| resourcepool:PROP::property_name
| $PROPOSED_RESPONSIBLE_PARTY | $USER
| $PROCESS_OWNER | $TARGET_OWNER [type]
| $PROJECT_ADMINISTRATOR
| $PROJECT_TEAM_ADMINISTRATOR
| $PROJECT_AUTHOR | $PROJECT_MEMBER[group::role]
| $REQUESTOR | $ANALYST
| $CHANGE_SPECIALIST1
| $CHANGE_SPECIALIST2
| $CHANGE_SPECIALIST3]]
[-from_include_type=object-type1[,object-type2,...]|
[-from_exclude_type=object-type1[,object-type2,...]]
[-to_include_type=object-type1[,object-type2,...]|
[-to_exclude_type=object-type1[,object-type2,...]]
[-from_attach= target | reference | schedule_task]
[-from_relation=relation-type]
[-from_include_related_type=object-type1[,object-type2,...] |
-from_exclude_related_type=object-type1[,object-type2,...]]
[-clear] [-first_object_only]
[-bypass_condition_check]
[-project_scope=all | owning_project]
[-check_first_object_only=true | false]
[-condition_name=condition1]
[-condition_scope=all | any | none]

ARGUMENTS
-name
Specifies the keyword of the dynamic participant that you want to assign participants
to. Accepts one of the following:

• PROPOSED_REVIEWERS

• CHANGE_REVIEW_BOARD

12-308 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• CHANGE_IMPLEMENTATION_BOARD

Note

Change-related keywords apply only to change objects. If the workflow
process does not contain a change object as a target, the argument
resolves to null.

Change Manager does not need to be enabled before these keywords take
effect, but during installation, Change Management must be selected
under Extensions→Enterprise Knowledge Foundation in Teamcenter
Environment Manager.

-assignee
Makes the user or resource pool the specified keyword evaluates to the responsible
party for the task to which this handler is added. Accepts one of the following in the
format specified below:

• user:user

Adds the user specified to the signoff member list for the task to which it is
attached. Accepts a valid Teamcenter user ID.

• person:person

Adds the user whose name is specified to the signoff member list for the task to
which it is attached. Accepts a valid Teamcenter person name.

Note

If the person’s name includes a comma, you must include an escape
character (\) to add the correct person. For example, to use wayne,
joan:

-assignee=person:wayne\, joan

• resourcepool:group::role

Results in a single assignment which can be performed by any single member
of this group/role.

You can define resource pools in the form of group::, group::role, or role. Accepts
valid Teamcenter resource pool names and these keywords:

o $GROUP

Current user’s current group.

o $ROLE

Current user’s current role.

o $TARGET_GROUP [type]

RS025 11.6 Setting Up Workflows for Product Development 12-309

Workflow handlers



Chapter 12: Workflow handlers

Owning group of the first target object of the specified type. The type value is
optional. If not specified, the first target is used.

o $PROCESS_GROUP

Owning group of the workflow process.

• user:PROP::property_name

Adds the user specified by the property name to the signoff member list for the
task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• resourcepool:PROP::property_name

Adds the resource pool specified by the property name to the signoff member
list for the task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• $PROPOSED_RESPONSIBLE_PARTY

Affects assignments based on the user assigned as the responsible party for
the first target object.

• $USER

Adds the current user to the signoff member list.

• $PROCESS_OWNER

Adds the workflow process owner to the signoff member list.

• $TARGET_OWNER [type]

Adds the owner of the first target of specified type to the signoff member list. The
type value is optional. If not specified, the first target is used.

• $PROJECT_ADMINISTRATOR, $PROJECT_TEAM_ADMINISTRATOR,
$PROJECT_AUTHOR, $PROJECT_MEMBER[group::role]

Dynamically adds the project team members belonging to the role specified in the
argument value. The project team is determined by the project team associated
with the first target object.

If the $PROJECT_MEMBER[group::role] argument is specified, only the project
members of the qualifying projects which belong to the specified group and role
are selected for assignment. If the group and role are not specified, all the project
members from qualifying projects are selected.

You can specify a sub-group with the syntax group++sub-group::role.

12-310 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• $REQUESTOR, $ANALYST, $CHANGE_SPECIALIST1,
$CHANGE_SPECIALIST2, $CHANGE_SPECIALIST3

Dynamically resolves to the user or resource pool associated with the first change
target object in the workflow process. The particular user or resource pool is
determined by the role specified in the argument value.

Note

Change-related keywords apply only to change objects. If the workflow
process does not contain a change object as a target, the argument
resolves to null.

Change Manager does not need to be enabled before these keywords
take effect, but during installation, Change Management must be
selected under Extensions→Enterprise Knowledge Foundation in
Teamcenter Environment Manager.

-from_include_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_exclude_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-to_include_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be used while assigning participants on the
target attachment. They must be valid object types.

The -to_include_type and -to_exclude_type arguments are mutually exclusive. If
you use one, you cannot use the other.

-to_exclude_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be excluded while assigning participants on
the target attachment. They must be valid object types.

The -to_include_type and -to_exclude_type arguments are mutually exclusive. If
you use one, you cannot use the other.

-from_attach= target | reference | schedule_task
(Optional) Specifies which type of attachment (target, reference, or schedule_task)
to get the property value from when a property is specified in the -assignee argument
(for example, -assignee=user:PROP::property_name). If this argument is not
specified, the default is target.

RS025 11.6 Setting Up Workflows for Product Development 12-311

Workflow handlers



Chapter 12: Workflow handlers

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_relation
(Optional) Specifies the relation of the objects to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). It must be a valid relation.

• For manifestations, use IMAN_manifestation.

• For specifications, use IMAN_specification.

• For requirements, use IMAN_requirement.

• For references, use IMAN_reference.

• For BOM views, use PSBOMViewRevision.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_include_related_type=object-type1[,object-type2]
(Optional) Specifies the related object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

Use this argument when a property is designated

You can use this argument only when you get the assignee from a property on an object
(user:PROP:: or resourcepool:PROP::)) and you use the -from_relation argument.

-from_exclude_related_type=object-type1[,object-type2]
(Optional) Specifies related object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an object
(user:PROP:: or resourcepool:PROP::)) and you use the -from_relation argument.

-clear
(Optional) Removes all previously assigned participants before assigning new
participants. If this argument is not specified, new participants are appended to
existing participants list.

-first_object_only
(Optional) Sets the participants on the first target attachment matching the
-to_include_type and -to_exclude_type arguments. If this argument is not specified,
the participants are set on all target attachments matching the -to_include_type and
-to_exclude_type arguments.

-bypass_condition_check
(Optional) Bypasses the Business Modeler IDE condition check before assigning
participants. If this argument is not specified, the Business Modeler IDE conditions are
enforced before assigning participants.

12-312 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-project_scope
(Optional) Specifies which projects are used to resolve project-based assignments.
The all value specifies all projects in the list of projects. The owning_project value
specifies the owning project only.

If this argument is not specified, the default value is the first project in the project list.

-check_first_object_only
(Optional) The true value specifies that only the first object is checked. If the value
is false, all objects are checked. If this argument is not specified, or if it is specified
without a value, only the first object is checked.

If the –include_type, -exclude_type, -include_related_type, or
–exclude_related_type arguments are specified, they determine the types of objects
that are checked.

-condition_name
(Optional) The name of the condition to evaluate against the identified objects
from which to assign participants. The condition signature should accept a
WorkspaceObject & UserSession. The handler assigns the reviewers only if the
condition results are successful, based on the –condition_scope argument.

-condition_scope
(Optional) The criteria for evaluating condition results against workflow objects. Values
are the following:

all All objects should meet the condition. This is the default behavior
if this argument is not supplied with the –condition_name
argument.

any Any object should meet the condition.

none No object should meet the condition.
PLACEMENT

Place on the Start action.
RESTRICTIONS

Can only be used to assign dynamic participants that resolve to a multiple users.
For example:

PROPOSED_REVIEWERS or CHANGE_REVIEW_BOARD
EXAMPLES

• Assigns the users Smith and David as the PROPOSED_REVIEWERS participant
for all target objects in the workflow process.

Argument Values
-name PROPOSED_REVIEWERS
-assignee user:Smith,David

• Reads the owning_user and last_mod_user properties from the target and
assigns the user as the PROPOSED_REVIEWERS participant for the first target
object only.

RS025 11.6 Setting Up Workflows for Product Development 12-313

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-name PROPOSED_REVIEWERS
-assignee user:PROP::owning_user,user:PROP::last_mod_user
-first_object_only

• Reads the owning_user and last_mod_user properties from the Document
Revision type target and assigns the user as the PROPOSED_REVIEWERS
participant.

Argument Values
-name PROPOSED_REVIEWERS
-assignee user:PROP::owning_user,user:PROP::last_

mod_user
-from_include_type DocumentRevision

• Traverses the References relation from the Part Revision types of the targets
to get the Document Revision objects. It then reads the owning_user and
last_mod_user properties from the Document Revision and assigns the user as
the PROPOSED_REVIEWERS participant for all target objects.

Argument Values
-name PROPOSED_REVIEWERS
-assignee user:PROP::owning_user,user:PROP::last_

mod_user
-from_include_type Part Revision
-from_relation IMAN_reference
-from_include_related_type DocumentRevision

• This example assigns all members of the Engineering group and Designer role
of the first project team associated with the first target found by the system to
the dynamic participant.

Argument Values
-name PROPOSED_RESPONSIBLE_PARTY
-assignee $PROJECT_MEMBER[Engineering::Designer]

• This example assigns all members of the Engineering group and Designer role
of the owning project team associated with the first target found by the system to
the dynamic participant.

Argument Values
-name PROPOSED_REVIEWERS
-assignee $PROJECT_MEMBER[Engineering::Designer]

12-314 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-project_scope owning_project
-check_first_object_only

• This example assigns all members of the Engineering group and Designer role
of all project teams associated with the first target found by the system to the
dynamic participant.

Argument Values
-name PROPOSED_REVIEWERS
-assignee $PROJECT_MEMBER[Engineering::Designer]
-project_scope all
-check_first_object_only true

• This example assigns all members of the Engineering group and Designer role
of the first project team associated with each target found by the system to the
dynamic participant.

Argument Values
-name PROPOSED_REVIEWERS
-assignee $PROJECT_MEMBER[Engineering::Designer]
-check_first_object_only false

RS025 11.6 Setting Up Workflows for Product Development 12-315

Workflow handlers



Chapter 12: Workflow handlers

EPM-assign-responsible-party-dynamic-participant

DESCRIPTION
Assigns the specified user or resource pool as the dynamic participant to the target
attachment.

Note

Participants can be assigned to Item Revision subtypes only.
Non-Revision Items are removed from processing and, if no Targets are
left, may result in this warning: No attachment of the specified type can
be found.

If the BMIDE constant Fnd0ParticipantEligibility is defined for the dynamic
participant, the handler gets the corresponding group member which matches the
group and role criteria defined in the BMIDE constant. If the user identified through
the –assignee argument does not have the correct group and role membership, the
handler reports an error and does not assign the user to the dynamic participant.

If the value is specified as $PROJECT_AUTHOR or
$PROJECT_MEMBER[group::role], the relevant first project member is selected.

Note

Use the WRKFLW_display_participants preference to specify which
dynamic-participant types are displayed when assigning dynamic
participants for an object.

SYNTAX
EPM-assign-responsible-party-dynamic-participant
-name= {PROPOSED_RESPONSIBLE_PARTY
| ANALYST
| CHANGE_SPECIALIST1
| CHANGE_SPECIALIST2
| CHANGE_SPECIALIST3}
[-assignee= [user:user | person:person
| resourcepool:group::role
| user:PROP::property_name
| resourcepool:PROP::property_name
| $PROPOSED_RESPONSIBLE_PARTY | $USER
| $PROCESS_OWNER | $TARGET_OWNER [type]
| $PROJECT_ADMINISTRATOR
| $PROJECT_TEAM_ADMINISTRATOR
| $PROJECT_AUTHOR | $PROJECT_MEMBER[group::role]
| $REQUESTOR | $ANALYST
| $CHANGE_SPECIALIST1
| $CHANGE_SPECIALIST2
| $CHANGE_SPECIALIST3]]
[-from_include_type=object-type1[,object-type2,...]|

12-316 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-from_exclude_type=object-type1[,object-type2,...]]
[-to_include_type=object-type1[,object-type2,...]|
-to_exclude_type=object-type1[,object-type2,...]]
[-from_attach= target | reference | schedule_task]
[-from_relation=relation-type]
[-from_include_related_type=object-type1[,object-type2,...] |
-from_exclude_related_type=object-type1[,object-type2,...]]
[-first_object_only]
[-bypass_condition_check]
[-project_scope=all | owning_project]
[-check_first_object_only=true | false]
[-condition_name=condition1]
[-condition_scope=all | any | none]

ARGUMENTS
-name
Specifies the keyword of the dynamic participant that you want to assign participants.
Accepts one of the following:

• PROPOSED_RESPONSIBLE_PARTY

• ANALYST

• CHANGE_SPECIALIST1

• CHANGE_SPECIALIST2

• CHANGE_SPECIALIST3

Note

Change-related keywords apply only to change objects. If the workflow
process does not contain a change object as a target, the argument
resolves to null.

Change Manager does not need to be enabled before these keywords take
effect, but during installation, Change Management must be selected
under Extensions→Enterprise Knowledge Foundation in Teamcenter
Environment Manager.

-assignee
Makes the user or resource pool the specified keyword evaluates to the responsible
party for the task to which this handler is added. Accepts one of the following in the
format specified below:

• user:user

Adds the user specified to the signoff member list for the task to which it is
attached. Accepts a valid Teamcenter user ID.

• person:person

RS025 11.6 Setting Up Workflows for Product Development 12-317

Workflow handlers



Chapter 12: Workflow handlers

Adds the user whose name is specified to the signoff member list for the task to
which it is attached. Accepts a valid Teamcenter person name.

Note

If the person’s name includes a comma, you must include an escape
character (\) to add the correct person. For example, to use wayne,
joan:

-assignee=person:wayne\, joan

• resourcepool:group::role

Results in a single assignment which can be performed by any single member
of this group/role.

You can define resource pools in the form of group::, group::role, or role. Accepts
valid Teamcenter resource pool names and these keywords:

o $GROUP

Current user’s current group.

o $ROLE

Current user’s current role.

o $TARGET_GROUP [type]

Owning group of the first target object of the specified type. The type value is
optional. If not specified, the first target is used.

o $PROCESS_GROUP

Owning group of the workflow process.

• user:PROP::property_name

Adds the user specified by the property name to the signoff member list for the
task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• resourcepool:PROP::property_name

Adds the resource pool specified by the property name to the signoff member
list for the task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• $PROPOSED_RESPONSIBLE_PARTY

12-318 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Affects assignments based on the user assigned as the responsible party for
the first target object.

• $USER

Adds the current user to the signoff member list.

• $PROCESS_OWNER

Adds the workflow process owner to the signoff member list.

• $TARGET_OWNER [type]

Adds the owner of the first target of specified type to the signoff member list. The
type value is optional. If not specified, the first target is used.

• $PROJECT_ADMINISTRATOR, $PROJECT_TEAM_ADMINISTRATOR,
$PROJECT_AUTHOR, $PROJECT_MEMBER[group::role]

Dynamically adds the project team members belonging to the role specified in the
argument value. The project team is determined by the project team associated
with the first target object.

If the $PROJECT_MEMBER[group::role] argument is specified, only the project
members of the qualifying projects which belong to the specified group and role
are selected for assignment. If the group and role are not specified, all the project
members from qualifying projects are selected.

You can specify a sub-group with the syntax group++sub-group::role.

• $REQUESTOR, $ANALYST, $CHANGE_SPECIALIST1,
$CHANGE_SPECIALIST2, $CHANGE_SPECIALIST3

Dynamically resolves to the user or resource pool associated with the first change
target object in the workflow process. The particular user or resource pool is
determined by the role specified in the argument value.

Note

Change-related keywords apply only to change objects. If the workflow
process does not contain a change object as a target, the argument
resolves to null.

Change Manager does not need to be enabled before these keywords
take effect, but during installation, Change Management must be
selected under Extensions→Enterprise Knowledge Foundation in
Teamcenter Environment Manager.

-from_include_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

RS025 11.6 Setting Up Workflows for Product Development 12-319

Workflow handlers



Chapter 12: Workflow handlers

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_exclude_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-to_include_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be used while assigning participants on the
target attachment. They must be valid object types.

The -to_include_type and -to_exclude_type arguments are mutually exclusive. If
you use one, you cannot use the other.

-to_exclude_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be excluded while assigning participants on
the target attachment. They must be valid object types.

The -to_include_type and -to_exclude_type arguments are mutually exclusive. If
you use one, you cannot use the other.

-from_attach= target | reference | schedule_task
(Optional) Specifies which type of attachment (target, reference, or schedule_task)
to get the property value from when a property is specified in the -assignee argument
(for example, -assignee=user:PROP::property_name). If this argument is not
specified, the default is target.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_relation
(Optional) Specifies the relation of the objects to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). It must be a valid relation.

• For manifestations, use IMAN_manifestation.

• For specifications, use IMAN_specification.

• For requirements, use IMAN_requirement.

• For references, use IMAN_reference.

• For BOM views, use PSBOMViewRevision.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

12-320 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-from_include_related_type=object-type1[,object-type2]
(Optional) Specifies the related object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an object
(user:PROP:: or resourcepool:PROP::)) and you use the -from_relation argument.

-from_exclude_related_type=object-type1[,object-type2]
(Optional) Specifies related object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an object
(user:PROP:: or resourcepool:PROP::)) and you use the -from_relation argument.

-first_object_only
(Optional) Sets the participants on the first target attachment matching the
-to_include_type and -to_exclude_type arguments. If this argument is not specified,
the participants are set on all target attachments matching the -to_include_type and
-to_exclude_type arguments.

-bypass_condition_check
(Optional) Bypasses the Business Modeler IDE condition check before assigning
participants. If this argument is not specified, the Business Modeler IDE conditions are
checked before assigning participants.

-project_scope
(Optional) Specifies which projects are used to resolve project-based assignments.
The all value specifies all projects in the list of projects. The owning_project value
specifies the owning project only.

If this argument is not specified, the default value is the first project in the project list.

-check_first_object_only
(Optional) The true value specifies that only the first object is checked. If the value
is false, all objects are checked. If this argument is not specified, or if it is specified
without a value, only the first object is checked.

If the –include_type, -exclude_type, -include_related_type, or
–exclude_related_type arguments are specified, they determine the types of objects
that are checked.

-condition_name
(Optional) The name of the condition to evaluate against the identified objects
from which to assign participants. The condition signature should accept a
WorkspaceObject & UserSession. The handler assigns the reviewers only if the
condition results are successful, based on the –condition_scope argument.

-condition_scope
(Optional) The criteria for evaluating condition results against workflow objects. Values
are the following:

RS025 11.6 Setting Up Workflows for Product Development 12-321

Workflow handlers



Chapter 12: Workflow handlers

all All objects should meet the condition. This is the default behavior
if this argument is not supplied with the –condition_name
argument.

any Any object should meet the condition.

none No object should meet the condition.
PLACEMENT

Place on the Start action.
RESTRICTIONS

Can only be used to assign dynamic participants that resolve to a single user. For
example:

PROPOSED_RESPONSIBLE_PARTY or ANALYST
EXAMPLES

• Assigns the user Smith as the PROPOSED_RESPONSIBLE_PARTY participant
for all target objects in the workflow process.

Argument Values
-name PROPOSED_RESPONSIBLE_PARTY
-assignee user:Smith

• Reads the owning_user property from the target and assigns the user as the
PROPOSED_RESPONSIBLE_PARTY participant for the first target object only.

Argument Values
-name PROPOSED_RESPONSIBLE_PARTY
-assignee user:PROP::owning_user
-first_object_only

• Reads the owning_user property from the Document Revision type target and
assigns the user as the PROPOSED_RESPONSIBLE_PARTY participant.

Argument Values
-name PROPOSED_RESPONSIBLE_PARTY
-assignee user:PROP::owning_user
-from_include_type DocumentRevision

• Traverses the References relation from the Part Revision types of the targets
to get the Document Revision objects. It then reads the owning_user
property from the Document Revision and assigns the user as the
PROPOSED_RESPONSIBLE_PARTY participant for all target objects.

Argument Values
-name PROPOSED_RESPONSIBLE_PARTY
-assignee user:PROP::owning_user

12-322 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-from_include_type Part Revision
-from_relation IMAN_reference
-from_include_related_type DocumentRevision

• This example assigns the first member of the Engineering group and Designer
role of the first project team associated with the first target found by the system to
the dynamic participant.

Argument Values
-name PROPOSED_RESPONSIBLE_PARTY
-assignee $PROJECT_MEMBER[Engineering::Designer]

RS025 11.6 Setting Up Workflows for Product Development 12-323

Workflow handlers



Chapter 12: Workflow handlers

EPM-apply-digital-signature

DESCRIPTION
Applies the digital signature of the logged-on user to the target objects and, optionally,
the schedule task.

SYNTAX
EPM-apply-digital-signature [-include_schedule_task]

ARGUMENTS
-include_schedule_task
(Optional) Applies the digital signature to the schedule task and all target objects of the
workflow. If this argument is not provided, the digital signature is applied only on the
target objects of the workflow.

PLACEMENT
Place either on the Perform action of the perform-signoffs task or the Complete
action of the following tasks:

• Do task

• Condition task

• select-signoff-team task

On a Route task, place on the Complete action of the select-signoff-team subtask of
the Review task.

RESTRICTIONS
Do not place a workflow handler that modifies digital signature key property values
before this handler on the same action on the same workflow task. Modifying digital
signature key properties after applying a digital signature voids the signature.

12-324 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-adhoc-signoffs

DESCRIPTION

Note

The Teamcenter rich client and thin client display the Ad Hoc done
checkbox, but the Active Workspace client does not.

Determines the behavior of the Ad-hoc done check box in the select-signoff-team
task's interface, allowing the initializing user, address list members and resource pool
members to add users to the signoff team in an ad hoc manner. If the task template
contains predefined signoff profiles, the ad hoc selections add one-time-only additions
to the required signoff team. Alternatively, if the task template contains no predefined
signoff profiles, the ad hoc additions comprise the whole of the signoff team.

When this handler is attached to the select-signoff-team task, the check box is not
selected by default. You can modify this behavior using the -auto_complete argument.

Note

When this handler is not attached to the select-signoff-team task, the check
box displays by default as checked, in expectation that ad hoc additions are
not required. Users can still clear the check box, add additional signoff team
members to the signoff team, and then select the check box again.

Remember that the check box only indicates that the user has completed
any ad hoc additions to the signoff team; it does not signify that the required
profiles have been added to the signoff team. Even if the user fits into any
of the signoff profiles, it is added only as an ad hoc user and not as the
signoff profile member.

Using the -auto_complete argument with this handler allows the select-signoff-team
task to complete automatically. If the system's ad hoc done query is returned as
true and any predefined signoff profiles have been selected, the task automatically
completes without user interaction. Therefore, the select-signoff-team task template
can be configured to automatically choose a signoff team and decide whether or not to
allow users to modify this predefined signoff team at execution of the task.

This handler's arguments are listed in order of precedence, meaning that the system
attempts to find a match for the argument as a user before it tries to find a match
as an address list, and so on. When a select-signoff-team task is created, based
on a task template that uses this handler, it parses these arguments and add those
signoffs to the task.

If the –required argument is specified; the signoffs will be added as required signoffs
which cannot be removed or marked as optional by users. After that point, the ad hoc
signoff functionality allows subsequent modifications to the signoff list. Therefore, what
is specified in this handler is only used to initialize this task; during execution of the
workflow process, the ad hoc signoff functionality accepts further changes.

RS025 11.6 Setting Up Workflows for Product Development 12-325

Workflow handlers



Chapter 12: Workflow handlers

By default, this handler is run at workflow process initiation, rather than at the task
where it is assigned. It initializes the signoff lists at workflow process initiation, allowing
the workflow process initiator to view signoff assignments early in the workflow process
and set the assignments as desired. However, this also means that assignments are
based on target/assignment data as it exists at the time of initiation. For instance, if
you use the $TARGET_GROUP keyword argument with this handler and the handler
is run at workflow process initiation, it looks at the group that owns the targets when
the workflow process is initiated, not when the task using this handler is run. When you
use this method, keyword arguments always resolve to the workflow process initiator.

Alternatively, if the -ce argument is used, the handler is not run when the workflow
process is initiated. The handler is run instead when the select-signoff-team task
starts.

If the –condition_name argument is specified; the handler will add the reviewers or set
auto complete only if the condition is met. However, it will not reset the auto-complete
flag if it is already set on the select-signoff-team task.

SYNTAX
EPM-adhoc-signoffs
[-auto_complete]
[-assignee= {user:user | person:person | addresslist:list
| resourcepool:group::role
| allmembers:group::role
| user:PROP::property_name
| resourcepool:PROP::property_name
| allmembers:PROP::property_name
| $PROPOSED_RESPONSIBLE_PARTY | $PROPOSED_REVIEWERS | $USER
| $PROCESS_OWNER | $TARGET_OWNER [type]
| $PROJECT_ADMINISTRATOR
| $PROJECT_TEAM_ADMINISTRATOR
| $PROJECT_AUTHOR | $PROJECT_MEMBER[group::role]
| $REQUESTOR | $ANALYST
| $CHANGE_SPECIALIST1 | $CHANGE_SPECIALIST2 | $CHANGE_SPECIALIST3
| $CHANGE_REVIEW_BOARD | $CHANGE_IMPLEMENTATION_BOARD}]
[-from_include_type=object-type1[,object-type2,...]|
[-from_exclude_type=object-type1[,object-type2,...]]
[-from_attach=target | reference | schedule_task]
[-from_relation=relation-type]
[-from_include_related_type=object-type1[,object-type2,...] |
-from_exclude_related_type=object-type1[,object-type2,...]]
[-quorum=quorum-value]
[-ce ] [-clear_signoffs]
[-target_task=multilevel-task-path]
[-required]
[-project_scope=all | owning_project]
[-check_first_object_only=true | false]
[-condition_name=condition1]
[-condition_scope=all | any | none]

12-326 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ARGUMENTS
-auto_complete (optional)
(Optional.) Allows the task to complete without user interaction. Automatically selects
the Ad-hoc done check box in the select-signoff-team task interface. The task
is assumed to be populated; no select-signoff-team task needs to be performed
through the interface (providing at least one of the signoff profiles have been fulfilled).

When this argument is not used, the system does not automatically select the Ad-hoc
done check box, preventing the select-signoff-team task from completing until the
user manually checks it, typically after ad hoc signoffs have been added. Absence
of the EPM-adhoc-signoffs handler implies the presence of this argument, and the
Ad-hoc done check box is selected and behaves accordingly.

-assignee
(Optional.) Assigns signoff members to select-signoff-team or Notify task under
a Route task.

Separate multiple assignees with commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

The following value formats are allowed:

• user:user

Adds the user specified to the signoff member list for the task to which it is
attached. Accepts a valid Teamcenter user ID.

• user:PROP::property_name

Adds the user specified by the property name to the signoff member list for the
task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• resourcepool:PROP::property_name

Adds the resource pool specified by the property name to the signoff member
list for the task to which it is attached.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• allmembers:PROP::property_name

Adds all members of a group/role combination that is specified by the property
name to the signoff member list.

If the property is a multi-value property, only the first value is used when only a
single user is assigned in the workflow. When more than one user is assigned,
all property values are used.

• person:person

RS025 11.6 Setting Up Workflows for Product Development 12-327

Workflow handlers



Chapter 12: Workflow handlers

Adds the user whose name is specified to the signoff member list for the task to
which it is attached. Accepts a valid Teamcenter person name.

Note

If the person’s name includes a comma, you must include an escape
character (\) to add the correct person. For example, to use wayne,
joan:

-assignee=person:wayne\, joan

• addresslist:list

Adds all members of the address list specified to the signoff member list.

• resourcepool:group::role

Results in a single assignment which can be performed by any single member
of this group/role.

You can define resource pools in the form of group::, group::role, or role. Accepts
valid Teamcenter resource pool names and these keywords:

o $GROUP

Current user’s current group.

o $ROLE

Current user’s current role.

o $TARGET_GROUP[type]

Owning group of the first target object of the specified type. The type value is
optional. If not specified, the first target is used.

o $PROCESS_GROUP

Owning group of the workflow process.

• allmembers:group::role

Adds all members of a group/role combination to the signoff member list. You can
define role in groups in the form of group::, group::role, or role. Accepts valid
Teamcenter resource pool names and these keywords:

o $GROUP

Current user’s current group.

o $ROLE

Current user’s current role.

o $TARGET_GROUP[type]

12-328 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Owning group of the first target object of the specified type. The type value is
optional. If not specified, the first target is used.

o $PROCESS_GROUP

Owning group of the workflow process.

• $PROPOSED_RESPONSIBLE_PARTY

Affects assignments based on the user assigned as the responsible party for
the first target object.

• $PROPOSED_REVIEWERS

Affects assignments based on members assigned as reviewers for the first target
object.

• $USER

Adds the current user to the signoff member list.

• $PROCESS_OWNER

Adds the workflow process owner to the signoff member list.

• $TARGET_OWNER [type]

Adds the owner of the first target of specified type to the signoff member list. The
type value is optional. If not specified, the first target is used.

• $PROJECT_ADMINISTRATOR, $PROJECT_TEAM_ADMINISTRATOR,
$PROJECT_AUTHOR, $PROJECT_MEMBER[group::role]

Dynamically adds the project team members belonging to the role specified in the
argument value. The project team is determined by the project team associated
with the first target object.

If the $PROJECT_MEMBER[group::role] argument is specified, only the project
members of the qualifying projects which belong to the specified group and role
are selected for assignment. If the group and role are not specified, all the project
members from qualifying projects are selected.

You can specify a sub-group with the syntax group++sub-group::role.

• $REQUESTOR, $ANALYST, $CHANGE_SPECIALIST1,
$CHANGE_SPECIALIST2, $CHANGE_SPECIALIST3
$CHANGE_REVIEW_BOARD, $CHANGE_IMPLEMENTATION_BOARD

Dynamically resolves to the user or resource pool associated with the first Change
target object in the workflow process. The particular user or resource pool is
determined by the role specified in the argument value.

RS025 11.6 Setting Up Workflows for Product Development 12-329

Workflow handlers



Chapter 12: Workflow handlers

Note

Change-related keywords apply only to change objects. If the workflow
process does not contain a change object as a target, the argument
resolves to null.

Change Manager does not need to be enabled before these keywords
take effect, but during installation, Change Management must be
selected under Extensions→Enterprise Knowledge Foundation in
Teamcenter Environment Manager.

-from_include_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_exclude_type=object-type1[,object-type2,...]
(Optional) Specifies the object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_attach= target | reference | schedule_task
(Optional) Specifies which type of attachment (target, reference, or schedule_task)
to get the property value from when a property is specified in the -assignee argument
(for example, -assignee=user:PROP::property_name). If this argument is not
specified, the default is target.

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_relation
(Optional) Specifies the relation of the objects to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). It must be a valid relation.

• For manifestations, use IMAN_manifestation.

• For specifications, use IMAN_specification.

• For requirements, use IMAN_requirement.

• For references, use IMAN_reference.

• For BOM views, use PSBOMViewRevision.

12-330 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

You can use this argument only when you get the assignee from a property on an
object (user:PROP:: or resourcepool:PROP::)).

-from_include_related_type=object-type1[,object-type2]
(Optional) Specifies the related object types to be used to get the property value
from when a property is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an object
(user:PROP:: or resourcepool:PROP::)) and you use the -from_relation argument.

This argument should not be used with the -from_exclude_related_type argument.

-from_exclude_related_type=object-type1[,object-type2]
(Optional) Specifies related object types to be excluded when getting the
property value when it is specified in the -assignee argument (for example,
-assignee=user:PROP::property_name). They must be valid object types.

You can use this argument only when you get the assignee from a property on an object
(user:PROP:: or resourcepool:PROP::)) and you use the -from_relation argument.

This argument should not be used with the -from_include_related_type argument.

-quorum
(Optional.) Determines the approval quorum for the perform-signoffs task. The value
can either be a percentage or a number. For example, if it is set to 51% then of all the
signoff members, 51% of members need to approve for the task to move ahead. If it
is set to 5, then 5 members need to approve for the task to move ahead. The value
specified here will override the quorum specified on the select-signoff-team task
template. If no value is specified, the quorum specified on the select-signoff-team
task template is used. This argument is ignored if the handler is placed on a Notify
task.

-ce
(Optional.) Disables the default behavior of running this handler when the workflow
process is initiated. Instead, the handler is run when the select-signoff-team task is
initiated in the workflow.

If -ce is specified, the select-signoff-team task does not auto-complete even
if a process assignment list is assigned during process initiation. For the
select-signoff-team task to auto-complete, you must also use the -auto_complete
handler argument.

-clear_signoffs
(Optional.) If specified, all existing signoffs are removed from the select-signoff-team
subtask before the new signoffs are added. If you specify this argument, you must also
use the -ce argument before it.

-target_task
(Optional) Specifies the multilevel task path to which the reviewers are added.
The path is from the root task to the select-signoff-team subtask with the path
levels separated with colons (:). For example: Change Request Review:QA
Review:select-signoff-team

RS025 11.6 Setting Up Workflows for Product Development 12-331

Workflow handlers



Chapter 12: Workflow handlers

-required
(Optional) If specified, all signoffs added through this handler instance are marked
as mandatory.

-project_scope
(Optional) Specifies which projects are used to resolve project-based assignments.
The all value specifies all projects in the list of projects. The owning_project value
specifies the owning project only.

If this argument is not specified, the default value is the first project in the project list.

-check_first_object_only
(Optional) The true value specifies that only the first object is checked. If the value
is false, all objects are checked. If this argument is not specified, or if it is specified
without a value, only the first object is checked.

If the –include_type, -exclude_type, -include_related_type, or
–exclude_related_type arguments are specified, they determine the types of objects
that are checked.

-condition_name
(Optional) The name of the condition to evaluate against the objects identified for
assigning reviewers from. The condition signature should accept aWorkspaceObject
& UserSession. The handler assigns the reviewers only if the condition results are
successful, based on the –condition_scope argument.

-condition_scope
(Optional) The criteria for evaluating condition results against workflow objects.

all All objects should meet the condition. This is the default behavior
if this argument is not supplied with the –condition_name
argument.

any Any object should meet the condition.

none No object should meet the condition.
PLACEMENT

Place on the Start action of a select-signoff-team subtask.

This handler runs at workflow process initiation if the -ce argument is not specified.
If -ce is specified, the handler runs in a conventional manner at the point of handler
placement on the task action.

Place on the Undo action of a select-signoff-team subtask and specify the -ce
argument to clear the Ad-hoc done check box when the subtask is demoted. In this
situation, the next time the subtask reaches the Start action of the select-signoff-team
subtask, the user is again prompted to select a signoff team.

RESTRICTIONS
Ignores any invalid arguments without reporting an error.

The keywords always refer to the initiating user because all instances of this handler
in a workflow process are run when the workflow process is initiated, not when tasks
are approved.

12-332 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

If the -ce argument is not specified, all instances of this handler are run when the
workflow process is initiated and in this case the keywords refer to the initiating user.

EXAMPLES
• This example places the handler on the Undo action of the select-signoff-team

subtask. If the select-signoff-team subtask is demoted, the -ce argument
clears the Ad-hoc done check box. When the workflow process returns to the
select-signoff-team subtask, the responsible party is again prompted to select
the signoff team because the Ad-hoc done check box is clear, indicating the
task is not yet complete.

Argument Values
-ce

• This example has a valid user, resource pool, address list and handler-specific
keywords as argument values. So Smith, the current logged on users group/role
resource pool, members of the List1 address list, and the members assigned as
reviewers are added as signoff attachments to the select-signoff-team task on
which this handler is added. The handler is run at the time of workflow process
initiation.

Argument Values
-assignee user:Smith, resourcepool:$GROUP::$ROLE,

addresslist:List1,
$PROPOSED_REVIEWERS

-quorum 80%

If the handler with the above arguments is specified on the Notify task under the
Route task, the signoff attachments are added to the Notify task and used for
sending notifications. The quorum is set to 80% which means that of all the signoff
members, 80% need to approve for the task to move ahead.

• This example has a valid user, resource pool, address list, and handler-specific
keywords as argument values. So Smith, the current logged on users group/role
resource pool, members of List1 address list, and the members assigned as
reviewers are added as signoff attachments to the select-signoff-team task on
which this handler is added. Because of the -ce option, the handler is run when the
task action on which it is attached is run. The quorum is set to 80% which means
that of all the signoff members, 80% need to approve for the task to move ahead.

Argument Values
-assignee user:Smith, resourcepool:$GROUP::$ROLE,

addresslist:List1,
$PROPOSED_REVIEWERS

-quorum 80%

-ce

RS025 11.6 Setting Up Workflows for Product Development 12-333

Workflow handlers



Chapter 12: Workflow handlers

If the handler with the above arguments is specified on the Notify task under the
Route task, the signoff attachments are added to the Notify task and used for
sending notifications.

• This example assigns the user whose ID is Smith to the signoff team

Argument Values
-assignee user:Smith

• This example assigns the owning user ID of the first UGMASTER target found by
the system to the signoff team.

Argument Values
-assignee user:$TARGET_OWNER[UGMASTER]

• This example assigns the project team administrator of the project team associated
with the first target found by the system to the signoff team.

Argument Values
-assignee user:$PROJECT_TEAM_ADMINISTRATOR

• This example assigns all members of the jhList address list to the signoff team.

Argument Values
-assignee addresslist:jhList

• This example assigns the manufacturing resource pool (any role within the
manufacturing group) to the signoff team.

Argument Values
-assignee resourcepool:manufacturing::

• This example assigns the $PROCESS_GROUP resource pool (any role within
the xyz group, where xyz is the owning group of the workflow process) to the
signoff team.

Argument Values
-assignee resourcepool:$PROCESS_GROUP::

• This example assigns the $TARGET_GROUP resource pool (any roles within the
abc group, where abc is the group of the first item revision target) to the signoff
team.

Argument Values
-assignee resourcepool:$TARGET_GROUP::

12-334 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• This example assigns the engineer role within the manufacturing group resource
pool to the signoff team.

Argument Values
-assignee resourcepool:manufacturing::engineer

• This example assigns the current logged on role within the current logged on
group resource pool to the signoff team.

Argument Values
-assignee resourcepool:$GROUP::$ROLE

• This example assigns the engineer role within any group resource pool to the
signoff team.

Argument Values
-assignee resourcepool:::engineer

• This example adds user smith and all reviewers of the first target item revision
object to the signoff team. The quorum is set to 51% which means that at least
more than half of the signoff members need to approve for the perform-signoffs
task to move ahead. Because of the -ce option, the handler is run when the task
action on which it is attached is run.

Argument Values
-assignee user:smith, $PROPOSED_REVIEWERS
-quorum 51%
-ce

• This example adds all members of the Engineering group and Engineer
role to the signoff team. The members are dynamically evaluated when the
select-signoff-team task completes. The quorum is set to 80% which means that
of all the signoff members, 80% need to approve for the task to move ahead.
Because of the -ce option, the handler is run when the task action on which it
is attached is run.

Argument Values
-assignee allmembers:Engineering::Engineer
-quorum 80%
-ce

• This example adds all members of the list1 address list and the
Engineering:Engineer resource pool to the signoff team. The quorum is set to
5 which mean that of all the signoff members, 5 need to approve for the task to
move ahead. Because of the -ce option, the handler is run when the task action
on which it is attached is run.

RS025 11.6 Setting Up Workflows for Product Development 12-335

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-assignee resourcepool:Engineering::Engineer,

addresslist:list1
-quorum 5
-ce

• This example has a valid user, resource pool, address list, and handler specific
keywords as argument values. So smith, the current logged on users group/role
resource pool, members of the list1 address list, and the members assigned as
reviewers are assigned to the signoff team. Because of the -ce option, the handler
is run when the task action on which it is attached is run.

Argument Values
-assignee user:smith,resourcepool:$GROUP::$ROLE,

addressList:list1,$PROPOSED_REVIEWERS
-ce

If the handler with these arguments is specified on the Notify task under the
Route task, the signoff attachments are added to the Notify task and used for
sending notifications.

• This example has a valid user, resource pool, and handler-specific keywords as
values. So smith, the current logged on users group/role resource pool, members
of the project associated with the first target object, and members assigned as
reviewers are added to the signoff team. Because of the -ce option, the handler is
run when the task action on which it is attached is run.

Argument Values
-assignee user:smith,resourcepool:$GROUP::$ROLE,

$PROJECT_MEMBER,$PROPOSED_REVIEWERS
-ce

If the handler with these arguments is specified on the Notify task under the
Route task, the signoff attachments are added to the Notify task and used for
sending notifications.

• This example has a valid user, resource pool, and handler-specific keywords
as values. So smith, the current logged-on user group/role resource pool, and
CHANGE_REVIEW_BOARD and ANALYST associated with the first change
target object are added to the signoff team. Because of the -ce option, the handler
is run when the task action on which it is attached is run.

Argument Values
-assignee user:smith,resourcepool:$GROUP::$ROLE,

$CHANGE_REVIEW_BOARD,$ANALYST
-ce

12-336 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

If the handler with these arguments is specified on the Notify task under the
Route task, the signoff attachments are added to the Notify task and used for
sending notifications.

• This example removes all existing members of the signoff team and adds
PROPOSED_RESPONSIBLE_PARTY. Because of the -ce option, the handler is
run when the task action on which it is attached is run. The -auto_complete option
allows the task to complete without user interaction by automatically selecting the
Ad-hoc done check box in the select-signoff-team subtask interface, and the
task does not need to be performed through the interface.

Argument Values
-ce
-clear_signoffs
-assignee $PROPOSED_RESPONSIBLE_PARTY
-auto_complete

If the handler with these arguments is specified on the Notify task under the
Route task, the signoff attachments are added to the Notify task and used for
sending notifications.

• This example assigns all members of the Engineering group and Designer role
of the first project team associated with the first target found by the system to
the signoff team as optional signoffs.

Argument Values
-assignee $PROJECT_MEMBER[Engineering::Designer]

• This example assigns all members of the Engineering group and Designer role
of the owning project team associated with the first target found by the system to
the signoff team as required signoffs.

Argument Values
-assignee $PROJECT_MEMBER[Engineering::Designer]
-project_scope owning_project
-check_first_object_only
-required

• This example assigns all members of the Engineering group and Designer role
of all project teams associated with the first target found by the system to the
signoff team as optional signoffs.

Argument Values
-assignee $PROJECT_MEMBER[Engineering::Designer]
-project_scope all
-check_first_object_only true

RS025 11.6 Setting Up Workflows for Product Development 12-337

Workflow handlers



Chapter 12: Workflow handlers

• This example assigns all members of the Engineering group and Designer role
of the first project team associated with each target found by the system to the
signoff team as optional signoffs.

Argument Values
-assignee $PROJECT_MEMBER[Engineering::Designer]
-check_first_object_only false

• This example places the handler on the Start action of the select-signoff-team
subtask. The -ce argument ensures that the $PROPOSED_REVIEWERS variable
is not set until the select-signoff-team subtask is initiated. Without the -ce
argument, the $PROPOSED_REVIEWERS variable is assigned the values of
$PROPOSED_REVIEWERS that existed at process initiation.

Note

These dynamic variables can change value throughout a process, so
care needs to be taken to ensure the desired functionality.

Argument Values
-ce
-assignee $PROPOSED_REVIEWERS

12-338 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

DPV-export-routine-to-ai

DESCRIPTION
Exports the routine selected from the bill of process (BOP) in Manufacturing Process
Planner to an application interface object (AIObject). This is used for exporting
Dimensional Planning and Validation (DPV) routines to application interface objects
that are then downloaded by Extract, Translate, and Load (ETL).

SYNTAX
DPV-export-routine-to-ai -type=routine-ai-type -RevisionRule=revision-rule

ARGUMENTS
-type
Sets the application interface (AI) type to use to export the selected routine objects.

-RevisionRule
Sets the revision rule to use when exporting the device routine objects.

PLACEMENT
This action handler can be configured in a DPV workflow task and must be placed on
the Complete action of the specified task.

RESTRICTIONS
None.

EXAMPLES

Argument Values
-type DPV_AIType
-RevisionRule Latest Working

RS025 11.6 Setting Up Workflows for Product Development 12-339

Workflow handlers



Chapter 12: Workflow handlers

DPV-export-plant-to-ai

DESCRIPTION
Exports the plant selected from the bill of process (BOP) in Manufacturing Process
Planner to an application interface object (AIObject). This is used for exporting
Dimensional Planning and Validation (DPV) plants to application interface objects that
are then downloaded by Extract, Translate, and Load (ETL).

SYNTAX
DPV-export-plant-to-ai -type=plant-ai-type -RevisionRule=revision-rule

ARGUMENTS
-type
Sets the application interface (AI) type to use to export the selected plant objects.

-RevisionRule
Sets the revision rule to use when exporting the device plant objects.

PLACEMENT
This action handler can be configured in a DPV workflow task and must be placed on
the Complete action of the specified task.

RESTRICTIONS
None.

EXAMPLES

Argument Values
-type DPV_PlantAIType
-RevisionRule Latest Working

12-340 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

DPV-export-device-to-ai

DESCRIPTION
Exports the device (and station) selected from the bill of resource (BOR) in
Manufacturing Process Planner to an application interface object (AIObject). This is
used for exporting Dimensional Planning and Validation (DPV) devices to application
interface objects that are then downloaded by Extract, Translate, and Load (ETL).

SYNTAX
DPV-export-device-to-ai -type=ai-type -RevisionRule=revision-rule

ARGUMENTS
-type
Sets the application interface (AI) type to use to export the selected device (and
station) objects.

-RevisionRule
Sets the revision rule to use when exporting the device (and station) objects.

PLACEMENT
This action handler can be configured in a DPV workflow task and must be placed on
the Complete action of the specified task.

RESTRICTIONS
None.

EXAMPLES

Argument Values
-type DPV_AIType
-RevisionRule Latest Working

RS025 11.6 Setting Up Workflows for Product Development 12-341

Workflow handlers



Chapter 12: Workflow handlers

DOCMGT-update-document-property

DESCRIPTION
Update the datasets (for example, MSWordX dataset with docx extension) associated
with the target item revisions with the latest attribute exchange data, if there are any
from Teamcenter to file (docx file).

Note

• This handler requires Teamcenter Dispatcher for the update.

• The RenderMgtTranslator service must be enabled.

• Use the Business Modeler IDE to set up and deploy IRDC and
dispatcher service configuration objects to the Teamcenter database.

• Target item revisions must be valid and checked in.

The update is asynchronous. The workflow continues while the update begins and
runs to completion.

Tip

You can use a Do task to wait for the update process to initiate the
Complete action before the workflow continues. The update process sets
the task state to Completed when the update is successful.

SYNTAX
DOCMGT-update-document-property

ARGUMENTS
None

PLACEMENT
Place on the Start action of a Do task.

Note

Whenever this handler is used, upon successful completion, an Active
Workspace user gets notified: either the process initiator, the task
responsible party, or the Dispatcher client user (dcproxy).

When the workflow administrator sets up the workflow:

• If there is only one Do task in the workflow to update document
properties, the handler is placed on the Start action of the Do task and
the workflow initiator gets a notification.

• If there are several tasks in the workflow, including a Do task for
updating document properties, and the handler is placed on the Start

12-342 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

action of the Do task, the notification goes to the user who completed
the predecessor task.

• If a successor task invokes this same handler or the
DOCMGT-render-document-revision handler, an administrator can
add a predecessor Do task to ensure that the user who completes the
predecessor task receives the notification. Otherwise, the Dispatcher
client user receives the notification.

Caution

Do not place this handler on the perform action of the perform-signoffs
task. Otherwise, this handler runs multiple times.

RESTRICTIONS
• Requires Dispatcher to update the dataset's files.

• Item revision with attached datasets like Microsoft WordX must be included as
targets of the workflow process.

• Do not use this handler with a workflow that is running in the background.

RS025 11.6 Setting Up Workflows for Product Development 12-343

Workflow handlers



Chapter 12: Workflow handlers

DOCMGT-update-docprop-logicalobject

DESCRIPTION
Update the datasets (for example, MSWordX dataset with docx extension) associated
with the target item revisions with the latest attribute exchange data, if there are any
from Teamcenter to file (docx file).

Note

• The generic (logical object) attribute exchange currently supports
MSWordX dataset only.

• The MSWordX dataset must be for the generic attribute exchange to
occur.

• Target items revisions must be valid and checked in.

The attribute exchange process from this workflow handler bypasses
the Fnd0TriggerLOAttrExch business object constant configuration.

The update is synchronous.
SYNTAX

DOCMGT-update-docprop-logicalobject
ARGUMENTS

None
PLACEMENT

Place on the Start action of a Task.

Caution

Do not place this handler on the perform action of the perform-signoffs
task. Otherwise, this handler runs multiple times.

RESTRICTIONS
Item revision with attached datasets like Microsoft WordX must be included as targets
of the workflow process.

12-344 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

DOCMGT-render-document-revision

DESCRIPTION
Translates datasets associated with target item revisions to derived visualization
datasets, for example, Full Text datasets to PDF. Settings from the Item Revision
Definition Configuration (IRDC) and Dispatcher Service Configuration determine
the file formats of the input and output datasets.

Note

• This handler requires Teamcenter Dispatcher for the translation.

• Target item revisions must be valid and checked in.

The translation is asynchronous; the workflow continues while translation begins and
runs to completion. The translated files are stored in Teamcenter and may be related
to the input datasets or item revisions.

Tip

You can use a Do task to wait for the update process to initiate the
Complete action before the workflow continues. The update process sets
the task state to Completed when the update is successful.

SYNTAX
DOCMGT-render-document-revision -existing_file=[replace | preserve]

ARGUMENTS
-existing_file
• replace

Replaces the existing (visualization) dataset with the new (translated) dataset.

• preserve

This is the default value.

o If the IRDC-specified output file is not yet associated with the item revision,
translates the source dataset to a new output file.

o If the IRDC-specified output file is already associated with the item revision,
translates the source dataset to a new output file without replacing the
previous one.

PLACEMENT
Place on the Start action of a Do task.

RS025 11.6 Setting Up Workflows for Product Development 12-345

Workflow handlers



Chapter 12: Workflow handlers

Note

Whenever this handler is used, upon successful completion, an Active
Workspace user gets notified: either the process initiator, the task
responsible party, or the Dispatcher client user (dcproxy).

When the workflow administrator sets up the workflow:

• If there is only one Do task in the workflow to render documents, the
handler is placed on the Start action of the Do task and the workflow
initiator gets a notification.

• If there are several tasks in the workflow, including a Do task for
rendering documents, and the handler is placed on the Start action
of the Do task, the notification goes to the user who completed the
predecessor task.

• If a successor task invokes this same handler or the
DOCMGT-update-document-property handler, an administrator can
add a predecessor Do task to ensure that the user who completes the
predecessor task receives the notification. Otherwise, the Dispatcher
client user receives the notification.

You can use a Do task to wait for the translation process to initiate the Complete
action before the workflow continues.

Caution

Do not place this handler on the perform action of the perform-signoffs
task. Otherwise, this handler runs multiple times.

RESTRICTIONS
• Requires Dispatcher for updating the dataset's file.

• Item revisions with attached datasets such as Microsoft Word and Microsoft Excel
must be included as targets of the workflow.

• Do not use this handler with a workflow that is running in the background.

12-346 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

DOCMGTAPP-insert-pdf-cover-page

DESCRIPTION
Inserts a cover page to a PDF dataset attached to the target being sent in the workflow.
The target can be an item, an item revision or its subtype, or the PDF dataset itself.
The cover page is a PDF dataset that is related to the item revision by using the
Document Page Type relation. Its Page Type relation property is set to Cover Page.

For this handler to insert a PDF cover page, the following conditions are required:

• The PDF dataset must be related to the item revision or its subtype. If it is related
using the Document Page Type related, its Page Type relation property must be
set to Base Document.

• The PDF cover page must be related to the item revision or its subtype.

SYNTAX
DOCMGTAPP-insert-pdf-cover-page [-create_new_dataset= <true|false>
[-new_dataset_suffix= <text>]]

ARGUMENTS
-create_new_dataset

(Optional) If true, creates a new PDF dataset with the cover page inserted. If false,
the original PDF file is modified.

-new_dataset_suffix

If -create_new_dataset argument is specified as true, you can enter any text string for
the dataset suffix name.

PLACEMENT
Place on the Start action or the Complete action.

RESTRICTIONS
None

RS025 11.6 Setting Up Workflows for Product Development 12-347

Workflow handlers



Chapter 12: Workflow handlers

DOCMGTAPP-apply-pdf-control

DESCRIPTION
Applies a system stamp, watermark, logo (if attached), distribution statement text
(if attached), workflow signoff table (if the target object is in a review task), and
Teamcenter attributes when the logical object is related to the attached PDF dataset. A
target object can be an item, an item revision or its subtype, or the PDF dataset itself.

The system stamp is an imprint comprising data such as a watermark and optional
boilerplate text. In Business Modeler IDE, the data model administrator creates a
system stamp configuration, associating the configuration with the XML command
file that defines the watermark and text.

For this handler to apply the stamp and watermark, the following conditions are
required:

• The PDF dataset must be related to the item revision or its subtype.

• The system stamp configuration must be enabled for the item revision or its
subtype. The Applies To attribute of the system stamp configuration must be set
to PDF_Control.

• The PDF Control access privilege must be granted.

SYNTAX
DOCMGTAPP-apply-pdf-control -user_stamp=text string

ARGUMENTS
-user_stamp

(Optional) Specifies any string for the text portion of the stamp.
PLACEMENT

Place on the Start action or the Complete action.
RESTRICTIONS

None

12-348 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

CSI-propagate-folder-contents

DESCRIPTION
Copies change objects in the change folders to the corresponding schedule task
change folders.

SYNTAX
CSI-propagate-folder-contents -relation=relation-name [-no_condition_check=
true|false][[-exclude_type=types-to-be-excluded] |
[-include_type=types-to-be-included]][[-allowed_status=status-to-be-propagated]
| [-disallowed_status=status-to-not-be-propagated]]

ARGUMENTS
-relation
Propagates the change objects with the specified relation. The value can be one of
the following:

• CMHasProblemItem

• CMHasImpactedItem

• CMHasSolutionItem

• CMReferences

To propagate objects that have different relations, add another instance of the handler
to the task. For example, to propagate objects with the CMHasProblemItem and
the CMHasImpactedItem relation, add the CSI-propagate-folder-contents handler
with the -relation=CMHasProblemItem argument and value along with another
CSI-propagate-folder-contents handler with the -relation=CMHasImpactedItem
argument and value.

-bypass_condition_check
(Optional) Specifies whether to bypass condition checking. Valid values are true and
false. If this argument is not specified, condition checking is used.

-exclude_type=object-type
(Optional) Does not propagate objects of the specified type.

The -exclude_type and -include_type arguments are mutually exclusive. Only one of
these can be specified as arguments to the handler. If both arguments are specified,
an error is displayed when running a workflow process using this handler.

-include_type=object-type
(Optional) Propagates objects of the specified type.

The -exclude_type and -include_type arguments are mutually exclusive. Only one of
these can be specified as arguments to the handler. If both arguments are specified,
an error is displayed when running a workflow process using this handler.

-allowed_status
(Optional) Propagates objects with the specified status.

RS025 11.6 Setting Up Workflows for Product Development 12-349

Workflow handlers



Chapter 12: Workflow handlers

The -allowed_status and -disallowed_status arguments are mutually exclusive.
Only one of these can be specified as arguments to the handler. If both arguments are
specified, an error is displayed when running a workflow process using this handler.

-disallowed_status
(Optional) Does not propagate objects with the specified status.

The -allowed_status and -disallowed_status arguments are mutually exclusive.
Only one of these can be specified as arguments to the handler. If both arguments are
specified, an error is displayed when running a workflow process using this handler.

PLACEMENT
Place on the Start task of the workflow process.

RESTRICTIONS
None.

EXAMPLES
• This example propagates change objects with the CMHasProblemItem relation.

Argument Values
-relation CMHasProblemItem

• This example propagates change objects with the CMHasProblemItem relation,
but does not check conditions.

Argument Values
-relation CMHasProblemItem
-bypass_condition_check true

• This example propagates change item revisions with the CMHasProblemItem
relation and Completed status, but does not check conditions.

Argument Values
-relation CMHasProblemItem
-bypass_condition_check true
-include_type ItemRevision
-allowed_status Completed

12-350 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

CPD-where-used-item-revision

DESCRIPTION
Finds all realized reuse design elements in the database for a specific revision of the
source item assembly or installation assembly provided by the target in the process.
If specified, the search scope is restricted to certain collaborative designs that are
attached as references to the process.

All found reuse design elements are added to the references.
SYNTAX

CPD-where-used-item-revision
ARGUMENTS

None.
PLACEMENT

Place on the Complete action of any task.
RESTRICTIONS

None.

RS025 11.6 Setting Up Workflows for Product Development 12-351

Workflow handlers



Chapter 12: Workflow handlers

CPD-update-item-realization

DESCRIPTION
Updates the realization of all reuse design elements attached as references, using
the source assembly item revision or installation assembly item revision provided
by the target.

If the realization update fails, this handler reports the failed subordinates and
corresponding error codes in the log file.

SYNTAX
CPD-update-item-realization

ARGUMENTS
None.

PLACEMENT
Place on the Complete action of any task.

RESTRICTIONS
None.

12-352 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

CPD-collect-related-items

DESCRIPTION
Collects objects related to design elements from a designated source pseudofolder in
a change object. For example, this handler collects the source item revision, parent
design elements (such as reuse) and their corresponding source item revisions, and
adds them to designated target pseudofolder of the change object.

SYNTAX
CPD-collect-related-items
–source_folder_relation_type=relation-name
–processing_type=parent|assembly|default
–destination_folder_relation_type=relation-name

ARGUMENTS
-source_folder_relation_type
Processes the design elements from the pseudofolder of the change object specified
by the relation type. The value can be one of the following:

• CMHasProblemItem

• CMHasImpactedItem

• CMHasSolutionItem

-processing_type
Defines how the design elements from the source folder are navigated to collect the
related objects. The following modes are supported:

• parent
The parent design element corresponding to the input design element and its
source object are retrieved and copied to the target pseudofolder of the change
object.

• assembly
Reuse design element for the input design element and the corresponding source
object that are retrieved and copied to the target pseudofolder of the change object.

• default
Reuse design element and parent design element for the input design element
and their corresponding source objects that are retrieved and copied to the target
pseudofolder of the change object.

-destination_folder_relation_type
The related objects collected for the objects in the source folder based on the
processing type are copied to the pseudofolder of the change object. Processes the
design elements from the pseudofolder of the change object specified by the relation
type. The value can be one of the following:

• CMHasProblemItem

• CMHasImpactedItem

RS025 11.6 Setting Up Workflows for Product Development 12-353

Workflow handlers



Chapter 12: Workflow handlers

• CMHasSolutionItem

PLACEMENT
Requires no specific placement.

RESTRICTIONS
This handler is specific to design elements as the source objects.

EXAMPLES
• This example collects the reuse design element for the input design element in

the Problems folder of an ECN, which would be a subordinate design element,
and the source item revision for them. It then copies them to the Impacted folder
of the ECN.

Argument Values
-source_folder_relation_type CMHasProblemItem
-processing_type assembly
-destination_folder_relation_type CMHasImpactedItem

• This example collects the immediate parent for the input design element in the
Problems folder of an ECN and the source item revision. It then copies them to
the same Problems folder of the ECN.

Argument Values
-source_folder_relation_type CMHasProblemItem
-processing_type parent
-destination_folder_relation_type CMHasProblemItem

12-354 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

CONTMGMTS1000D-setQAStatus

DESCRIPTION
Sets the Quality Assurance Status property of the data module and updates the XML
of the data module to reflect the QA status.

SYNTAX
CONTMGMTS1000D-setQAStatus -verification=status-vertype=type

ARGUMENTS
-verification
Sets the QA verification status for the data module. You can use one of the following
three values:

• unverified

• firstVerification

• secondVerification

-vertype
Sets the verification type of the QA status on the data module. You can use one of the
following three values:

• tabtop

The content was verified without the physical presence of the equipment or
system, such as with design documentation.

• onobject

The content was verified by practical demonstration of the procedure on the
product.

• ttandoo

Both table top and on object verifications have been performed.

This argument is ignored if the -verification argument is set to unverified:
PLACEMENT

Place on the Start or Perform action of a Do task.
RESTRICTIONS

This handler can be used only with Civ0DM4Revision objects.

RS025 11.6 Setting Up Workflows for Product Development 12-355

Workflow handlers



Chapter 12: Workflow handlers

CONTMGMTS1000D-increment

DESCRIPTION
Sets properties depending on whether the Civ0DM4Revision object in a workflow
is rejected or released.

• If the Civ0DM4Revision object is rejected, the inWork number is incremented.

• If the Civ0DM4Revision object is released, the following properties are set:

o The issueNum property is incremented.

o The inWork number is reset to 00.

o The issue_day, issue_month and issue_year properties are set to the
current date.

SYNTAX
CONTMGMTS1000D-increment {-incInWork | -incIssueNum}

ARGUMENTS
-incInWork
Increments only the inWork number. Use this argument for this handler on tasks
after reviewers rejections.

-incIssueNum
Increments issueNum, resets inWork to 00, and sets issue_day, issue_month and
issue_year to the current date. Use this argument for this handler on a task after the
document gets final approval.

PLACEMENT
Place on the Start or Perform action of a normal task.

RESTRICTIONS
This handler can be used only with Civ0DM4Revision objects.

12-356 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

CONFMGMT-cut-back-effectivity

DESCRIPTION
Reduces the effectivity range of problem item objects attached to a change object so
it does not overlap with the combined effectivity range of the solution items. This
facilitates the release of solution items to replace problem items for a given effectivity
range.

Note

This handler should be used only for 4th Generation Design (4GD) objects.

For example, a cast component C is a solution item for a forged component F, a
problem item with a unit effectivity of 1 through 10 in 4G Designer on 4GD data. C is
assigned the same effectivity (unit 1 through 10) because it has the same purpose.
To replace C with F with unit effectivity 3 through 10, a change notice is created that
tracks F as a problem item and C as a solution item. The change notice is assigned
an unit effectivity of 3 and up. The handler applies the change notice effectivity to the
solution item and then reduces the effectivity range of the problem item. As a result, C
has an effectivity range of 3 through 10 and F’s effectivity is reduced to 1 through 2.
For every unit in the range of 1 through 10, either C or F is effective. The effective
ranges of C and F neither overlap nor do they have a gap.

The effectivity range of the change is determined either by the release status
attachment of the workflow process or by the effectivity range on the change object
using EffectivityConfigurable behavior.

If the process does not have a release status attachment, the release statuses of the
change object are used. An error occurs if multiple release statuses with effectivity
data are found and handler arguments are used that require the definition of the
effectivity range of the change object. By default, the system uses the effectivity range
of the release statuses, unless user provides the useECNEffectivity argument.

If the useECNEffectivity argument is used, the effectivity range of the
change object is determined as the effectivity of the change object using
EffectivityConfigurable behavior. An error is returned if the change object does not
have EffectivityConfigurable behavior

EffectivityConfigurable objects with no effectivity data behave as if they had an
effectivity condition Unit=1 OR Unit!=1 (in other words, TRUE unless explicitly stated
otherwise). For more information, see the defaultSolveTypePreferenceName
argument.

The effectivity range to be subtracted from a problem item attachment is the combined
effectivity range of all EffectivityConfigurable objects in the corresponding solution
item set. You can use the designatorProperty argument to define corresponding
sets of solution and problem items. Solution item sets that do not correspond to a
problem item set do not affect problem item effectivity ranges. Problem item sets that
do not correspond to a solution item will be effected out permanently. Solution items
without EffectivityConfigurable behavior (for example, datasets) are skipped in the
computation of the effectivity range to be subtracted.

RS025 11.6 Setting Up Workflows for Product Development 12-357

Workflow handlers



Chapter 12: Workflow handlers

The handler only modifies problem item objects exposing EffectivityConfigurable
behavior, such as Cpd0DesignElement. These modifications are not subject to
access control rules.

SYNTAX
CONFMGMT-cut-back-effectivity
[ -engineeringChangeTypeName = { ChangeNoticeRevision | object-type-name} ]
[ -problemItemRelationshipName = { CMHasProblemItem | relationship-type-name } ]
[ -solutionItemRelationshipName = { CMHasSolutionItem | relationship-type-name } ]
[ -verifyEffectivity = { NoAction | Compare | Validate} ]
[ -solutionItemEffectivity = { NoAction | ApplyCMEffectivity | MergeCMEffectivity |
ResetToCMEffectivity } ]
[ -designatorProperty = { “” | property-name} ]
[ -defaultSolveTypePreferenceName = { “” | preference-name} ]
[-dropEndItemQualification ]
[-useECNEffectivity ]

ARGUMENTS
-engineeringChangeTypeName
Sets the type of the target object managing the change. Any object type name is valid
as long as there is only one such target attachment and the object type supports the
relationship types specified below. The default value is ChangeNoticeRevision.

-problemItemRelationshipName
Sets the type name of the relationship that associates objects to be replaced by the
objects specified by the -solutionItemRelationshipName argument with the change
object. The type name must be compatible with the above change object type. The
default value is CMHasProblemItem, but Siemens PLM Software recommends you
use CMHasImpactedItem as the relationship name.

-solutionItemRelationshipName
Sets the type name of the relationship that associates objects, which replace the
objects specified by the -problemItemRelationshipName argument, with the change
object. The type name must be compatible with the change object type. The default
value is CMHasSolutionItem.

-verifyEffectivity
Specifies the action to take with respect to the effectivity range of the change
object and its solution item attachments. The action skips solution items for
which no EffectivityConfigurable effectivity is saved or which do not expose
EffectivityConfigurable behavior. Possible values are:

• NoAction

Takes no action. This is the default.

• Compare

Displays a separate warning for every solution item whose effectivity range does
not equal the effectivity range of the change object. An error is returned if no
effectivity has been saved for the change object.

• Validate

12-358 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Returns an error if any solution item’s EffectivityConfigurable effectivity range
does not equal the effectivity range of the change object. An error is returned if
no effectivity has been saved for the change object.

-solutionItemEffectivity
Specifies the action to take for solution item effectivity. Possible values are:

• NoAction

Takes no action. This is the default.

• ApplyCMEffectivity

Reduces the EffectivityConfigurable effectivity range of each solution item to be
within the range of the change object (in other words, combines both with a logical
AND). An error is returned if no release status effectivity is saved for the change
object. The result is identical to action ResetToCMEffectivity for solution items,
for which no EffectivityConfigurable effectivity has been saved, or which do not
expose EffectivityConfigurable behavior.

• MergeCMEffectivity

Sets the EffectivityConfigurable effectivity range of each solution item to equal
the range of the change object for the common effectivity intent; the effectivity
range of the solution item having other intents are kept unchanged.

o If effectivity ranges of the solution item and the change object do not have a
common effectivity intent, then the solution item effectivity range is extended
with the effectivity range of the change object.

o An error is returned if no effectivity range has been saved for the change
object or the effectivity range on the solution item or the change object has
multiple effectivity intents or intent families.

Note

This mode is supported only with the –useECNEffectivity parameter.

• ResetToCMEffectivity

Sets the EffectivityConfigurable effectivity range of each solution item to equal
the range of the release status effectivity of the change object. An error is
returned if no release status effectivity has been saved for the change object. The
result is identical to action NoAction for solution items, which do not expose
EffectivityConfigurable behavior.

-designatorProperty
Specifies the property to use to group change object attachments into sets for the
purpose of replacing problems items with corresponding solution items. These sets
are formed by virtue of having a common value for the same property (for example,
a logical designator as stored on a partition membership in the preferred partition
scheme). If a property is specified, the solution item attachments of the change object

RS025 11.6 Setting Up Workflows for Product Development 12-359

Workflow handlers



Chapter 12: Workflow handlers

are grouped into sets formed by the value for this property. If the property name is
an empty string (the default) there is one set for all solution items that corresponds to
one set for all problem items.

-defaultSolveTypePreferenceName
By default, EffectivityConfigurable objects without effectivity condition behave
as if they had an effectivity condition Unit=1 OR Unit!=1, that is, equivalent to the
Boolean constant TRUE. If the value for this argument is different from the empty
string (default) it is expected to specify a preference having the same semantics as
defined for TC_Default_Solve_Type in the confmgmt module, which can be used
to define whether or not EffectivityConfigurable objects without effectivity condition
pass effectivity filter criteria. If the given preference is not found in the scope specified
by the defaultSolveTypePreferenceScope argument a default solve type of 529 is
assumed, that is solveMismatch|solveFalse|solveInvert except where explicitly
otherwise stated. The effectivity range that is assumed for EffectivityConfigurable
objects without effectivity condition can be configured to be the following:

• Unit=1 OR Unit!=1

Equivalent to the Boolean constant TRUE, if the solve type specifies that
EffectivityConfigurable objects without effectivity condition pass effectivity filters.

• Unit=1 AND Unit!=1

Equivalent to the Boolean constant FALSE, if the solve type specifies that
EffectivityConfigurable objects without effectivity condition do not pass effectivity
filters.

-dropEndItemQualification
(Optional) If provided and if an end item qualification is present, it is dropped and
changed to an effectivity condition when it is copied from

• the ReleaseStatus attachment of the workflow process.

• the ReleaseStatus of the attached change notice if the workflow process does
not have a ReleaseStatus attachment.

-useECNEffectivity
(Optional) If provided, the effectivity range of the change is determined by the
effectivity range on the change notice object. The change notice object should
carry the effectivity range using EffectivityConfigurable behavior. An error is
returned if this argument is provided and the change notice object does not have
EffectivityConfigurable behavior.

PLACEMENT
A typical placement is to precede the add-status action handler that attaches the
release status to the change object, so that the release status is not attached to the
change object if this handler errors out.

RESTRICTIONS
None.

12-360 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EXAMPLES
• This example illustrates the use of the handler with a change object type that is

available in the Teamcenter foundation template. It configures the handler to
reduce the effectivity of the solution item attachments to not be effective beyond
the effective range of the change.

Argument Values
-engineeringChangeTypeName ItemRevision
-problemItemRelationshipName IMAN_reference
-solutionItemRelationshipName IMAN_manifestation

-verifyEffectivity NoAction

-solutionItemEffectivity ApplyCMEffectivity
-designatorProperty object_desc
-defaultSolveTypePreferenceName TC_Default_Solve_Type
-dropEndItemQualification None
-useECNEffectivity None

RS025 11.6 Setting Up Workflows for Product Development 12-361

Workflow handlers



Chapter 12: Workflow handlers

CM-promote-change-notice

DESCRIPTION
Performs the following operations within a transaction and rolls back all changes if
there is a failure:

1. Applies release status to ChangeNoticeRevision workflow target objects.

2. Receives any change space data objects from the ChangeNoticeRevision POM
Space and promotes or shares them to public data objects.

Note

If specific object types contained in the POM space require pre- or
post-promote validation, this can be accomplished by overriding the
following methods on the respective types:

• fnd0ValidateBOTypePrePromote

• fnd0ValidateBOTypePostPromote

3. Applies release status to all of the solution items of the ChangeNoticeRevision
target objects and any other targets not addressed in step 1.

Note

If specific object types require pre-release validation, this can be
accomplished by overriding the following method on the respective type:

• fnd0ValidateBOTypeForRelease

Note

The arguments and their effect on the behavior are all related to how the
release status is applied to the target objects and ChangeNoticeRevision
solution objects. The handler arguments are a copy of the arguments and
processing behavior of the EPM-set-status handler.

SYNTAX
CM-promote-change-notice -action=append | replace | rename | delete [-status=old_name,]
[-new_status=new_name ]
[-retain_release_date] [-set_effectivity] [-status_not_shared] [-promote=share]

ARGUMENTS
-action

append
Attaches the status objects from the root task to the target objects, not impacting
any previous status objects applied to the same targets.

replace

12-362 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Deletes all existing status objects attached to target objects and attaches the
status objects from the root task to the target objects.

rename

Renames an existing status object attached to the target objects from old_name
to new_name.

• If a status object with the old_name status is not found, it renames the last
status object attached to the target objects.

If the target object has an existing status, the status object is renamed from
old_name to new_name.

delete

Deletes the status status_name specified by the -status argument from the
target object.

• If the delete argument is not used in combination with the -status argument,
all status objects are removed from the target objects.

• If the status objects being removed from the target objects were created in the
same workflow, they are attached to the root task upon creation and are not
removed from the root task by this handler.

-status
Used with the -action argument to define the status.

• If the action is append or replace and the status by the name given is not present
on the root task, it will create a new status with this name and attach it to the
root task.

• If the action is delete, it deletes the status objects from the target object but does
not delete it from the root task.

• If the action is rename, it renames the status objects to the new value specified
in -new_status.

The value provided should be the name of a status type already defined in the
Business Modeler IDE, not the display name.

-new_status
Specifies the new name for the status object.

• The name provided should be the name of a status type already defined in the
Business Modeler IDE, not the display name.

• This argument is only used in case of rename option for –action argument.

• If the status type is not already defined, a status object is not based on a status
type, which means that effectivity and configuration may not work against it.

RS025 11.6 Setting Up Workflows for Product Development 12-363

Workflow handlers



Chapter 12: Workflow handlers

-retain_release_date
Retains the original release date on the target object if it had previously been released.

Note

This option is not valid when -action=replace is used.

-set_effectivity
When used, the system creates the open-ended date effectivity with release date
as start date.

-status_not_shared
The default behavior is to share a single release status object reference for all target
objects. When this argument is present, it changes that behavior and an individual
copy of the release status object is added to each target object.

-promote
share

Specifies that the change space data objects from the ChangeNoticeRevision
POM Space will be shared to public.

Any value other than share promotes the change space data objects from the
ChangeNoticeRevision POM Space to public.

PLACEMENT
Place on any action. Typically attached to the Complete action.

RESTRICTIONS
If no argument is supplied or if an argument other than the one specified is supplied to
the handler, the default behavior is to treat it as an action append argument.

If replace is used and there is more than one status object attached to the root task,
the status on the target objects is replaced by the latest status on the root task.

EXAMPLES
• This example adds the status object of the root task to the target object.

Argument Values
-action append

• This example creates a new status with this name and attaches to the root task if
status by the name given is not present on the root task already.

Argument Values
-action append
-status released

• This example adds the status object of the root task to the target object and retains
the original released date of the target object.

12-364 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-action append
-retain_release_date

• This example replaces all existing status objects with the status object of the
root task.

Argument Values
-action replace

• This example replaces existing status objects with the status object of the root
task. It also sets an open-ended effectivity with release date as the start date on
the new status object.

Argument Values
-action replace
-set_effectivity

• This example renames all the status objects named pre-released to the name of
the new status object, released.

Argument Values
-action rename
-status pre-released
-new_status released

• This example deletes all status objects from the target object but does not delete it
from the root task.

Argument Values
-action delete

• This example deletes a released status from the target object but does not delete
it from the root task.

Argument Values
-action delete
-status released

• This example takes the release status attached to root task and creates an
individual copy of the release status object for each target object.

Argument Values
-action append
-status_not_shared

RS025 11.6 Setting Up Workflows for Product Development 12-365

Workflow handlers



Chapter 12: Workflow handlers

• This example creates a new status with name released and attaches it to the root
task if status by the name given is not present on the root task already. Also it
creates an individual copy of the release status object for each target object.

Argument Values
-action append
-status_not_shared
-status released

• This example shares the change space contents to public and attaches shared
status to the root task. Each time the shared operation is performed, the shared
status is replaced and a copy of the release status object for each target object is
created.

Argument Values
-action replace
-status_not_shared
-status Cm0TC Shared
-promote share

12-366 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

CM-inactivate-edit-context

DESCRIPTION
Deactivates the change space associated with the change notice revision of the target.

SYNTAX
CM-inactivate-edit-context

ARGUMENTS
None.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-367

Workflow handlers



Chapter 12: Workflow handlers

CM-baseline-solution-item-revisions-on-change-notice

DESCRIPTION
Performs a smart baseline on the assemblies of any item revisions listed as Solution
Items on target ChangeNoticeRevisions.

SYNTAX
CM-baseline-solution-item-revisions-on-change-notice
[-baseline_rev_rule=<revision rule name>]
[-baseline_process=<workflow process name>]

ARGUMENTS
-baseline_rev_rule
Defines the name of the revision rule used to configure the item revision's assembly
structure for baselining.

Will use the default Structure Manager revision rule if omitted.

-baseline_process
Defines the name of the workflow process used to release the baseline revisions.

Will use the default baseline process TC Default Baseline Process if omitted.
PLACEMENT

Place on any action. Typically attached to the Complete action.
RESTRICTIONS

None.

12-368 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

CFG0-attach-rule-variability

DESCRIPTION
Attaches variant option values and families that are referenced by a constraint rule.
Such constraint rules may be located in the target attachment or reference attachment
folder. The -configuration argument specifies whether to attach the Latest Working
or Latest Released revisions of the values, families, and family groups.

Note

A configurator constraint rule references the option family if the family has
free-form values. Otherwise, it references the option value directly.

SYNTAX
CFG0-attach-rule-variability
[attachment = {target | reference }]
[-configuration = {Latest Working | Latest Released }]
[-attachConfiguratorContext = {false | true }]
[-debug = { false | true }]

ARGUMENTS
-attachment
Attachment type with which the objects are attached to the workflow process. Possible
values are:

• target

Variant option families and values are attached as target objects. This is the
default value.

• reference

Variant option families and values are attached as reference objects.

Note

If another revision of the same configurator object thread is already attached
to this workflow (either as target or reference), the handler silently skips the
object. That is, the handler does not attach a second revision of the same
thread.

-configuration

Specifies whether to attach the Latest Working or Latest Released revisions.
Possible values are:

• Latest Working

The most recently created revision that has no release status is attached. This is
the default value.

• Latest Released

RS025 11.6 Setting Up Workflows for Product Development 12-369

Workflow handlers



Chapter 12: Workflow handlers

The most recently released revision is attached.

-attachConfiguratorContext
Specifies whether Configurator Context items that are referenced by the constraint
rules in this workflow process should be attached as reference attachments.

Note

The Configurator Context items are always added as reference
attachments. This behavior is not affected by the -attachment parameter
value.

Options are:

• true
Configurator Context items that are referenced by the constraint rules in this
workflow process are attached as reference attachments. This is the default value.

• false
No additional Configurator Context items are attached.

-debug
Whether or not to log status information to the syslog file. Possible values are:

• false
No status information is written to the syslog file. This is the default value.

• true
Status information is written to the syslog file for debugging purposes.

PLACEMENT
A typical placement is below the EPM-create-status action handler that
creates and adds the release status to the workflow process. In many cases,
it is useful to add the CFG0-attach-rule-variability action handler between a
CFG0-attach-constraint-rules handler and a CFG0-attach-families handler.

RESTRICTIONS
None

EXAMPLES
• This example illustrates the use of the handler that attaches Latest Working

revisions of variant option values and families that are used in the constraint rules
in this workflow process as target attachments so that they are processed along
with the constraint rules that are already attached to the workflow. The list of
Configurator Context items to which the constraint rules apply are added as a
reference attachments to this workflow.

Argument Values
-attachment target
-configuration Latest Working

12-370 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-attachConfiguratorContext true

RS025 11.6 Setting Up Workflows for Product Development 12-371

Workflow handlers



Chapter 12: Workflow handlers

CFG0-attach-familygroups

DESCRIPTION
Attaches to the workflow process variant option family groups that reference
variant option families in the target attachment or reference attachment folder. The
-configuration argument specifies whether to attach the Latest Working or Latest
Released revisions of the variant option families.

SYNTAX
CFG0-attach-familygroups
[-attachment = {target | reference}]
[-configuration = {Latest Working | Latest Released}]
[-debug = {false | true}]

ARGUMENTS
-attachment
Attachment type with which the objects are attached to the workflow process. Possible
values are:

• target

Variant option family groups are attached as target objects. This is the default
value.

• reference

Variant option family groups are attached as reference objects.

Note

If another revision of the same configurator object thread is already attached
to this workflow (either as target or reference), the handler silently skips the
object. That is, the handler does not attach a second revision of the same
thread.

-configuration
Specifies whether to attach the Latest Working or Latest Released revisions.
Possible values are:

• Latest Working

The most recently created revision that doesn’t have any release status is
attached. This is the default value.

• Latest Released

The most recently released revision is attached.

-debug
Whether or not to log status information to the syslog file. Possible values are:

• false

No status information is written to the syslog file. This is the default value.

12-372 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• true

Status information is written to the syslog file for debugging purposes.

PLACEMENT
A typical placement is below the EPM-create-status action handler that creates and
adds the release status to the workflow process. In many cases, it is useful to add the
CFG0-attach-familygroups action handler between a CFG0-attach-families handler
and a CFG0-attach-allocations handler.

RESTRICTIONS
None

EXAMPLES
• This example illustrates the use of the handler that attaches Latest Released

revisions of variant option family groups for the variant option families in this
workflow process as reference attachments so that they are processed along with
the variant option families that are already attached to the workflow.

Argument Values
-attachment reference
-configuration Latest Released

RS025 11.6 Setting Up Workflows for Product Development 12-373

Workflow handlers



Chapter 12: Workflow handlers

CFG0-attach-families

DESCRIPTION
Attaches to the workflow process variant option families that are referenced by
variant option values in the target attachment or reference attachment folder. The
-configuration argument specifies whether to attach the Latest Working or Latest
Released revisions of the variant option families.

SYNTAX
CFG0-attach-families
[-attachment = {target | reference}]
[-configuration = { Latest Working | Latest Released}]
[-debug = {false | true}]

ARGUMENTS
-attachment
Attachment type with which the objects are attached to the workflow process. Possible
values are:

• target
Variant option families are attached as target objects. This is the default value.

• reference
Variant option families are attached as reference objects.

Note

If another revision of the same configurator object thread is already attached
to this workflow (either as target or reference), the handler silently skips the
object. That is, the handler does not attach a second revision of the same
thread.

-configuration
Specifies whether to attach the Latest Working or Latest Released revisions. Possible
values are:

• Latest Working
The most recently created revision that doesn’t have any release status is
attached. This is the default value.

• Latest Released
The most recently released revision is attached.

-debug
Whether or not to log status information to the syslog file. Possible values are:

• false
No status information is written to the syslog file. This is the default value.

• true

12-374 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Status information is written to the syslog file for debugging purposes.

PLACEMENT
A typical placement is below the EPM-create-status action handler that creates and
adds the release status to the workflow process. In many cases, it is useful to add
the CFG0-attach-families action handler between a CFG0-attach-rule-variability
handler and a CFG0-attach-familygroups handler.

RESTRICTIONS
None

EXAMPLES
• This example illustrates the use of the handler that attaches Latest Released

revisions of variant option families for the variant option values in this workflow
process as reference attachments so that they are processed along with the
variant option values that are already attached to the workflow.

Argument Values
-attachment reference
-configuration Latest Released

RS025 11.6 Setting Up Workflows for Product Development 12-375

Workflow handlers



Chapter 12: Workflow handlers

CFG0-attach-constraint-rules

DESCRIPTION
Attaches configurator constraint rules that reference a variant option value or variant
option family. Such objects may be located in the target attachment or referenced
attachment folder. The -configuration argument specifies whether to attach the
Latest Working or Latest Released revision of the constraint rules.

Note

A configurator constraint rule references the option family if the family has
free-form values. Otherwise, it references the option value directly.

SYNTAX
CFG0-attach-constraint-rules
[-attachment = {target | reference}]
[-attachedConfiguratorContext = {false | true}]
[-debug = {false | true}]

ARGUMENTS
-attachment
Attachment type with which the objects are attached to the workflow process. Possible
values are:

• target

Constraint rules are attached as target objects. This is the default value.

• reference

Constraint rules are attached as reference objects.

Note

If another revision of the same configurator object thread is already attached
to this workflow (either as target or reference), the handler silently skips the
object. That is, the handler does not attach a second revision of the same
thread.

-configuration
Specifies whether to attach the Latest Working or Latest Released revisions.
Possible values are:

• Latest Working

The most recently created revision that does not have any release status is
attached. This is the default value.

• Latest Released

The most recently released revision is attached. Use this setting with care as there
could be a large number of released constraint rules to attach.

12-376 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-attachedConfiguratorContext
Specifies whether Configurator Context items that are attached to the workflow
process should be used to filter constraint rules. Possible values are:

• false

The configured revision of all constraint rules are attached, irrespective of their
Configurator Context item scope. This is the default.

• true

The configured revision of constraint rules are attached that reference a
Configurator Context item that is attached to this workflow, for example, as a
reference attachment.

-debug
Whether or not to log status information to the syslog file. Possible values are:

• false

No status information is written to the syslog file. This is the default value.

• true

Status information is written to the syslog file for debugging purposes.

PLACEMENT
A typical placement is below the EPM-create-status action handler that creates
and adds the release status to the workflow process. In many cases it is
useful to add the CFG0-attach-constraint-rules action handler followed by a
CFG0-attach-rule-variability action handler.

RESTRICTIONS
None

EXAMPLES
• This example illustrates the use of the handler that attaches Latest Working

revisions of constraint rules as target attachments so that they are processed
along with the values and families that are already attached to the workflow. The
list of constraint rules to attach is not filtered by Configurator Context.

Argument Values
-attachment target
-configuration Latest Working
-attachedConfiguratorContext false

RS025 11.6 Setting Up Workflows for Product Development 12-377

Workflow handlers



Chapter 12: Workflow handlers

CFG0-attach-allocations

DESCRIPTION
Attaches allocation objects that reference variant option values, families, or family
groups. Such objects may be located in the target attachment or reference attachment
folder. The -configuration argument specifies whether to attach the allocation's
Latest Working or Latest Released revision.

SYNTAX
CFG0-attach-allocations
[-attachment = {target | reference}]
[-configuration = {Latest Working | Latest Released}]
[-attachedConfiguratorContext = {false | true}]
[-debug = {false | true}]

ARGUMENTS
-attachment
Attachment type with which the objects are attached to the workflow process. Possible
values are:

• target

Allocation revisions are attached as target objects. This is the default value.

• reference

Allocation revisions are attached as reference objects.

Note

If another revision of the same configurator object thread is already attached
to this workflow (either as target or reference), the handler silently skips the
object. That is, the handler does not attach a second revision of the same
thread.

-configuration
Specifies whether to attach the Latest Working or Latest Released revision. Possible
values are:

• Latest Working

The most recently created revision with no release status is attached. This is
the default value.

• Latest Released

The most recently released revision is attached.

-attachedConfiguratorContext
Specifies whether relevant Configurator Context items for which allocation objects
are to be added are attached to this workflow process. Possible values are:

• false

12-378 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Configured revisions for allocations to all Configurator Context items will be
attached. This is the default value.

• true

The configured allocation revisions to attach are filtered by the Configurator
Context items attached to this workflow.

-debug
Whether or not to log status information to the syslog file. Possible values are:

• false

No status information is written to the syslog file. This is the default value.

• true

Status information is written to the syslog file for debugging purposes.

PLACEMENT
A typical placement is below the EPM-create-status action handler that creates and
adds the release status to the workflow process. In many cases, it is useful to add the
CFG0-attach-allocations handler below a CFG0-attach-familygroups handler.

RESTRICTIONS
None

EXAMPLES
• This example illustrates the use of the handler that attaches Latest Working

revisions of variant option value, family, and family group allocations for
variant option values, families, and family groups in this workflow process as
target attachments so that they are processed along with the variability that is
already attached to the workflow. The list of allocations to add is filtered by the
Configurator Context items attached to this workflow.

Argument Values
-attachment target
-configuration Latest Working
-attachedConfiguratorContext true

RS025 11.6 Setting Up Workflows for Product Development 12-379

Workflow handlers



Chapter 12: Workflow handlers

CAE-simulation-process-launch-handler

DESCRIPTION
Launches the specified simulation tool.

SYNTAX
CAE-simulation-process-launch-handler -tool=tool_ID
-launch=LOCAL_OR_SERVER_OR_REMOTE -nosync -continue -noref -param::

ARGUMENTS
-tool
The ID of the simulation tool to launch.

Note

The simulation tool ID you specify here must match the simulation tool ID
defined in the Simulation Tool Configuration dialog box in CAE Manager.

The –tool argument is mandatory and requires the simulation tool ID value. The rest
of the arguments are optional and can be specified without any values.

Tool names and revisions are no longer supported. The tool is now launched with the
latest released revision. If you have an existing action handler with a tool name and
revision values, you must modify them and use only the tool ID value.

-launch
This argument is mandatory if you select the Remote Launch option in the Simulation
Tool Configuration dialog box in CAE Manager.

Note

If this value is not specified, the handler assumes the launch type to be
local, this is, the machine on which Teamcenter server is running.

-nosync
If specified, a synchronous process running in the background does not inform the
task about its completion. As a result, the control from the current task goes to the
next task (if any) as soon as the current task starts.

If not specified, the task waits for the execution of the process to complete before
moving to the next task.

Note

This argument is valid for local launch only. Remote launch is always run
in non-synchronous mode.

-continue
If specified, the current task moves to the next task after completion even if the current
task fails.

12-380 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

If not specified, the task stops on failure.

Note

This argument is valid for local launch only. Remote launch is always run
in nonsynchronous mode.

This argument is not valid if you specify the -nosync argument.

-noref
If specified, the handler does not add output objects as reference attachments.

If not specified, the handler adds output objects as reference attachments in the
Reference folder.

Note

This argument is valid for local launch only. Remote launch is always run in
nonsynchronous mode and output objects are never added as reference
attachments.

This argument is not valid if you specify the -nosync argument.

-param::paramName
Used to assign run-time parameter values for any parameters already defined as
part of the tool configuration in the Simulation Tool Configuration dialog box in
CAE Manager.

Launches the tool with the paramValue value for the paramName parameter as
defined in the tool configuration. The specified parameters are processed according to
the defined configuration.

Note

The paramName value must be defined as a run-time parameter for the
tool configuration in the Simulation Tool Configuration dialog box. Any
run-time parameters defined in the tool configuration that are not indicated
as action handler arguments get the default values defined in the tool
configuration. The paramValue value can be an empty string, in which case
the default value of the corresponding paramName is overridden with an
empty value.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-381

Workflow handlers



Chapter 12: Workflow handlers

CAE-batch-meshing-handler

DESCRIPTION
Launches the specified batch meshing tool from a workflow.

SYNTAX
CAE-batch-meshing-handler -tool=toolname

ARGUMENTS
-tool
The name of the batch meshing tool to launch. The name must match the batch
meshing tool name defined in the Meshing Tools list in the Options dialog box
(Edit→Options→CAE Tools→Batch Meshing). The -tool argument is required.

RESTRICTIONS
None.

12-382 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

BC-perform-export

DESCRIPTION
Performs a Briefcase/PDX export using a workflow process.

SYNTAX
BC-perform-export -site=site-name [-optionset=transfer-option-set ]
[-usegs=True | False] [-revisionrule=revision-rule-name] [-bomlevel=depth]
[-vendors=vendor-names] [-reason=export-reason-string] [-immediate=True
| False] [-notify=True|False] [-emailaddrs=email-ids]

ARGUMENTS
-site
Specifies the destination site where the Briefcase or PDX package is to be exported.

-optionset
Specifies the transfer option set to be used during export. If none is specified,
the system uses either TIEPDXOptionSetDefault (for a PDX export) or
TIEUnconfiguredExportDefault (for a Briefcase export) based on availability of the
set.

-usegs
Specifies whether the transaction should go through Global Services or not. Valid
values are True and False. The default value is False, which is a non-Global
Services-based transaction.

-revisionrule
Specifies the revision rule to be used to perform the BOM configuration.

-bomlevel
Specifies the depth to which the BOM must be traversed for export.

-vendors
Specifies the list of vendor names whose manufacturer parts are to be exported. Only
parts from these vendors get exported.

-reason
Specifies the reason for the export (up to 240 characters).

-immediate
Specifies whether the transaction should be performed immediately or not. This
argument is applicable only when -usegs=True. Valid values are True and False. The
default value is False.

-notify
Specifies whether the users listed in the -emailaddrs argument are notified when the
transaction is completed. This argument is applicable only when -usegs=True. Valid
values are True and False. The default value is False.

-emailaddrs
Lists the email IDs of users to be notified when the transaction is completed. This
argument is applicable only when -usegs=True and when the -notify=True.

RS025 11.6 Setting Up Workflows for Product Development 12-383

Workflow handlers



Chapter 12: Workflow handlers

Separate the email IDs with commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
This example exports a package to Supplier-site-1 using a custom option set without
using Global Services.

Argument Values
-site Supplier-site-1
-optionset CustomOptionSet1
-usegs False

12-384 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ASMAINTAINED-release-asmaintained-structure

DESCRIPTION
Releases or freezes the as-maintained physical structures. Given a top or root
physical part revision, this handler navigates the as-maintained structure relationships
and releases each of the physical part revision objects in the structure by attaching a
release status object. Target objects are officially released after this handler runs.

SYNTAX
ASMAINTAINED-release-asmaintained-structure -release status [-depth=level |
all] [-owned_by_initiator] [-owned_by_initiator_group] [-initiator_has_write_prev]
{[-exclude_released] [-traverse_released_component]} [-exclude_types=types
] [-add_excluded_as_ref] [-include_missing]

ARGUMENTS
-release status
Applies the specified release status to each of the physical parts.

-depth
Defines the depth to which the traversal should take place.

For example, specify 1 to traverse one level deep or all to traverse all levels.

If not specified, the handler traverses all levels.

-owned_by_initiator
Adds the components owned by the initiator as targets to the workflow process.

-owned_by_initiator_group
Adds all components owned by the initiator's group as targets to the workflow process.

-initiator_has_write_prev
Adds all component item revisions where the initiator has write access as targets
to the workflow process.

-exclude_released
Excludes released components from being added as targets.

If the released component is a subassembly, the handler does not traverse the
components of the released component unless -traverse_released_component is
also specified.

-traverse_released_component
Traverses the structure of the released component and adds the components as
targets to the workflow process.

This argument can only be used in conjunction with the -exclude_released argument.

If the -depth argument is set to 1, -traverse_released_component only traverses
one level deep. If the -depth argument is set to all, -traverse_released_component
traverses all levels of the subassembly.

-exclude_types
Defines the types to be excluded from being added as targets.

RS025 11.6 Setting Up Workflows for Product Development 12-385

Workflow handlers



Chapter 12: Workflow handlers

-add_excluded_as_ref
Adds components that are not included as targets to the workflow process as
references.

-include_missing
Includes missing components as targets.

If this is not specified, an error is displayed for structures that contain missing
components.

PLACEMENT
Requires no specific placement, but preferably after review/approval completion, if any.

RESTRICTIONS
None.

12-386 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ASMAINTAINED-attach-physical-components

DESCRIPTION
Traverses the as-maintained structure and attaches as-built physical parts as targets
to the workflow.

SYNTAX
ASMAINTAINED-attach-physical-components [-depth=level | all]
[-owned_by_initiator] [-owned_by_initiator_group]
[initiator_has_write_prev]
{[-exclude_released] [-traverse_released_component]}
[-exclude_types=types]
[-add_excluded_as_ref][-include_missing]

ARGUMENTS
-depth
Defines the depth to which the traversal should take place.

• For example, specify 1 to traverse one level deep or all to traverse all levels.

• If not specified, the handler traverses all levels.

-owned_by_initiator
Adds the components owned by the initiator as targets to the workflow process.

-owned_by_initiator_group
Adds all components owned by the initiator's group as targets to the workflow process.

-initiator_has_write_prev
Adds all component item revisions where the initiator has write access as targets
to the workflow process.

-exclude_released
Excludes released components from being added as targets.

If the released component is a subassembly, the handler does not traverse the
components of the released component unless -traverse_released_component is
also specified.

-traverse_released_component

Note

This argument can only be used in conjunction with the -exclude_released
argument.

Traverses the structure of the released component and adds the components as
targets to the workflow process.

• If the -depth argument is set to 1, -traverse_released_component only traverses
one level deep.

RS025 11.6 Setting Up Workflows for Product Development 12-387

Workflow handlers



Chapter 12: Workflow handlers

• If the -depth argument is set to all, -traverse_released_component traverses
all levels of the subassembly.

-exclude_types
Defines the types to be excluded from being added as targets.

-add_excluded_as_ref
Adds components that are not included as targets to the workflow process as
references.

-include_missing
Includes missing components as targets.

If this is not specified, an error is displayed for structures that contain missing
components.

PLACEMENT
Requires no specific placement, but preferably after review/approval completion, if any.

RESTRICTIONS
None.

12-388 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ASBUILT-release-asbuilt-structure

DESCRIPTION
Releases or freezes the as-built physical structures. Given a top or root physical part
revision, this handler navigates the as-built structure relationships and releases each
of the physical part revision objects in the structure by attaching a release status
object. Target objects are officially released after this handler runs.

SYNTAX
ASBUILT-release-asbuilt-structure -release status [-depth=level | all]
[-owned_by_initiator] [-owned_by_initiator_group] [-initiator_has_write_prev]
{[-exclude_released] [-traverse_released_component]} [-exclude_types=types
] [-add_excluded_as_ref] [-include_missing]

ARGUMENTS
-release status
Applies the specified release status to each of the physical parts.

-depth
Defines the depth to which the traversal should take place.

For example, specify 1 to traverse one level deep or all to traverse all levels.

If not specified, the handler traverses all levels.

-owned_by_initiator
Adds the components owned by the initiator as targets to the workflow process.

-owned_by_initiator_group
Adds all components owned by the initiator's group as targets to the workflow process.

-initiator_has_write_prev
Adds all component item revisions where the initiator has write access as targets
to the workflow process.

-exclude_released
Excludes released components from being added as targets.

If the released component is a subassembly, the handler does not traverse the
components of the released component unless -traverse_released_component is
also specified.

-traverse_released_component
Traverses the structure of the released component and adds the components as
targets to the workflow process.

This argument can only be used in conjunction with the -exclude_released argument.

If the -depth argument is set to 1, -traverse_released_component only traverses
one level deep. If the -depth argument is set to all, -traverse_released_component
traverses all levels of the subassembly.

-exclude_types
Defines the types to be excluded from being added as targets.

RS025 11.6 Setting Up Workflows for Product Development 12-389

Workflow handlers



Chapter 12: Workflow handlers

-add_excluded_as_ref
Adds components that are not included as targets to the workflow process as
references.

-include_missing
Includes missing components as targets.

If this is not specified, an error is displayed for structures that contain missing
components.

PLACEMENT
Requires no specific placement, but preferably after review/approval completion, if any.

RESTRICTIONS
None.

12-390 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ASBUILT-attach-physical-components

DESCRIPTION
Traverses the as-built structure and attaches as-built physical parts as targets to
the workflow.

SYNTAX
ASBUILT-attach-physical-components [-depth=level | all]
[-owned_by_initiator] [-owned_by_initiator_group]
[initiator_has_write_prev]
{[-exclude_released] [-traverse_released_component]}
[-exclude_types=types]
[-add_excluded_as_ref][-include_missing]

ARGUMENTS
-depth
Defines the depth to which the traversal should take place.

• For example, specify 1 to traverse one level deep or all to traverse all levels.

• If not specified, the handler traverses all levels.

-owned_by_initiator
Adds the components owned by the initiator as targets to the workflow process.

-owned_by_initiator_group
Adds all components owned by the initiator's group as targets to the workflow process.

-initiator_has_write_prev
Adds all component item revisions where the initiator has write access as targets
to the workflow process.

-exclude_released
Excludes released components from being added as targets.

If the released component is a subassembly, the handler does not traverse the
components of the released component unless -traverse_released_component is
also specified.

-traverse_released_component

Note

This argument can only be used in conjunction with the -exclude_released
argument.

Traverses the structure of the released component and adds the components as
targets to the workflow process.

• If the -depth argument is set to 1, -traverse_released_component only traverses
one level deep.

RS025 11.6 Setting Up Workflows for Product Development 12-391

Workflow handlers



Chapter 12: Workflow handlers

• If the -depth argument is set to all, -traverse_released_component traverses
all levels of the subassembly.

-exclude_types
Defines the types to be excluded from being added as targets.

-add_excluded_as_ref
Adds components that are not included as targets to the workflow process as
references.

-include_missing
Includes missing components as targets.

If this is not specified, an error is displayed for structures that contain missing
components.

PLACEMENT
Requires no specific placement, but preferably after review/approval completion, if any.

RESTRICTIONS
None.

12-392 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

AR-mark-archive

DESCRIPTION

Note

This handler is deprecated and will be obsolete in a future release. Do not
add this handler to new workflow processes.

Generates archive requests for datasets of item revisions with the specified status.
This handler should be used only when the targets of a workflow process are item
revisions. This handler is very useful in archiving the experimental, prototype data
and keeping only the real data.

SYNTAX
AR-mark-archive [-exclude_related=relation::type
[, relation::type..] ],-status_to_keep=status::number-of-item-revs-to-keep
[, status::number-of-item-revs-to-keep..]

ARGUMENTS
-exclude_related
Excludes the specified relation or type or type in relation from having an archive
request being generated. This argument is optional. If this argument is used, either
a relation or type should be specified. If only a relation is specified, :: need not be
appended (for example: -exclude_related=IMAN_specification). If only a type is
used, prepend the type with :: (for example: -exclude_related=::UGPART).

-status_to_keep
Release status names::number of item revisions to keep.

This means not to mark for archive the datasets of a specified number of item revisions
with the specified release status.

Siemens PLM Software recommends that the number of revisions to keep should be 1
or more. This way, at least one item revisions per release status is not archived. This
assures that there are no product structure configuration problems.

PLACEMENT
Requires no specific placement. Typically placed on the Complete action of the
root task so that the objects are marked for archive at the end of completion of the
workflow process.

RESTRICTIONS
Target objects must be item revisions.

EXAMPLES
In this example, consider the scenario:

An item has 20 item revisions out of which item revisions 1-4 have no release status,
item revisions 5-9 have release status Released, item revisions 10-14 have release
status R, and item revisions 15-19 have release status X set.

The AR-mark-archive handler with the following arguments is added to the Complete
action of the root task.

RS025 11.6 Setting Up Workflows for Product Development 12-393

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-exclude_related IMAN_manifestation::UGPART
-status_to_keep R::3, X::2

The previously created item revision workflow process template is initiated on the
20th item revision. After the workflow process is completed, the following results
are expected.

All datasets except those:

• With manifestation relation
• Of type UGPART

of the item revisions, 10-11 and 15-17, are marked for archive.

12-394 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

AI-process-export

DESCRIPTION
Creates a new RequestObject object under the target ApplicationInterface (AI)
object without changing the base references of the AI object.

An AI object is a persistent workspace object that is the repository for the import and
export transactions between Teamcenter and an external application for a predefined
and configured structure. It contains:

• An ordered list of request objects.

• The transfer mode (import or export).

• The root or top-level object of the structures to exchange. This can be any object
that is valid to export from Teamcenter using PLM XML, for example, a structure
context, item, or BOM view revision.

• Tracking information to allow updates of changed data (deltas).

Use this handler in workflows containing at least one AI object as a target, and
containing reference attachments such as StructureContext or CollaborationContext
objects, or objects accepted by PLM XML export (such as BOM views, BOM view
revisions, items, and item revisions).

Note

Without a StructureContext or CollaborationContext object, the PLM
XML cannot export a structure, because there is no configuration; only
the workspaceObject is exported. Typically, a StructureContext or
CollaborationContext object is used as a reference attachment.

SYNTAX
AI-process-export

ARGUMENTS
None.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
The attachments must be placed under the root task.

EXAMPLES
To share an existing CollaborationContext object with another application using
PLM XML format, use a workflow template containing this handler. Initiate the
workflow against an AI object, selecting the AI object as the target attachment and the
CollaborationContext object as the reference attachment. The workflow creates a
new RequestObject object. The AI can now be shared with another application.

RS025 11.6 Setting Up Workflows for Product Development 12-395

Workflow handlers



Chapter 12: Workflow handlers

AI-process-import

DESCRIPTION
Imports the PLM XML associated with the target RequestObject objects.

RequestObject objects are contained within ApplicationInterface (AI) objects.
SYNTAX

AI-process-import
ARGUMENTS

None.
PLACEMENT

Requires no specific placement.
RESTRICTIONS

The attachments must be placed under the root task.
EXAMPLES

To import the PLM XML associated with a new RequestObject object created by any
client application under an existing AI object, use a workflow template containing this
handler. Initiate the workflow against the AI and select one or more RequestObject
objects as target attachments, including the new RequestObject. Optionally, also
select an ICRevision object as a reference attachment. The structure is updated with
the contents of the PLM XML contained within the RequestObject object.

Rule handlers

12-396 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ASBUILT-validate-for-checkedout-physicalpartrevision

DESCRIPTION
Validates that the as-built structure does not contain any checked-out physical parts by
any user other than the one submitting the physical part to a workflow.

SYNTAX
ASBUILT-validate-for-checkedout-physicalpartrevision

ARGUMENTS
None.

PLACEMENT
Place at the entry of the workflow to validate that the target structure does not
contained any checked out physical part revisions.

RESTRICTIONS
This handler is available only when Teamcenter service lifecycle management Service
Manager or As-Built Manager is licensed and installed.

RS025 11.6 Setting Up Workflows for Product Development 12-397

Workflow handlers



Chapter 12: Workflow handlers

VAL-check-validation-result-with-rules

DESCRIPTION
Leverages validation rule and validation object applications from the workflow process
and checks target NX datasets validation result status. To add this handler to a
workflow process template, the user must have a well-defined validation rule set file
that best describes the user’s business process in terms of what NX datasets should
run what checks at what time and what conditions that the check must meet. The
handler returns a EPM_go or EPM_nogo decision based on overall result status of
the verification (EPM_go is returned only when all target NX datasets satisfy all rules
defined in validation rule set file).

The handler logs validation rules and validation result checks. The format of the log file
name is First-target-name_Time-stamp. The log file is stored in the directory specified
by the TC_TMP_DIR environment variable. If TC_TMP_DIR is not defined, it is stored
in the %TEMP% directory (Windows) or /tmp directory (Linux).

Note

The system will not process a log file name longer than 32 characters
when the TC_Allow_Longer_ID_Name preference is set to false. In this
situation, if the log file name is longer than 32 characters, the log file name
is automatically truncated.

SYNTAX
VAL-check-validation-result-with-rules
-rule_item_revision=item-rev-id [-current_event=event-value]
[-pass_item_revision_only] [-ref_log]

ARGUMENTS
-rule_item_revision
The item revision ID that the validation rule set dataset is attached under.

-current_event
A value that is used to select validation rules from the rule file by comparing with
the event values list of each rule. When -current_event is not provided, all rules
from the rule file are selected at the first step. When a rule is defined without the
event values list, the rule is also selected at the first step. The event values list can
contain a wildcard (* only). The event values list also can be marked as exclusive
(inclusive by default).

-pass_item_revision_only
When this argument is added to an input list, only item revision targets are passed to
the handler. NX datasets are searched from each item revision and verified according
to rules.

-ref_log
If this argument is present and the validation fails, the validation results log is created,
a warning message is displayed, and the log is attached.

If this argument is not present and the validation fails, the validation results log is
created, a warning message is displayed, but the log is not attached.

12-398 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

If the validation passes, the validation results log is not created and no message
is displayed.

PLACEMENT
Do not place this handler on the root task. Place it on the Start action of a subsequent
task after a target is attached.

Note

If the handler is placed on the root task, and the handler fails to complete,
the workflow process itself is not created. No log file under the Newstuff
folder is created.

RESTRICTIONS
-rule_item_revision cannot be NULL.

RS025 11.6 Setting Up Workflows for Product Development 12-399

Workflow handlers



Chapter 12: Workflow handlers

VAL-check-validation-result

DESCRIPTION
Evaluates the validation result of each target before releasing the object. The handler
first looks for all results relative to all targets. If no validation result is found, or all
results are outdated or failed, the handler reports the corresponding error message and
returns an EPM_nogo and the workflow is cancelled. If at least one validation result is
successful and current, the handler returns an EPM_go and the workflow proceeds.

There are five situations in which validation results are checked:

• If the target object is an item revision, the handler finds all the validation targets by
the closure rule specified in the NX Agent and then finds all the results relative to
these validation targets.

• If the target object is an item, the handler runs on the latest revision, searching
for validation results as specified in the previous situation. You may also supply
a handler specifying the item revisions. After the first handler runs, the second
handler runs on the specified item revisions as specified in the previous situation.

• If the target object is a dataset, the handler finds the validation results relative to
the dataset.

• If the target object is a folder, the handler includes all secondary objects under the
folder in its search for validation results.

• If there are multiple objects as targets, (for example, if multiple item revisions
are selected as targets of a workflow), the handler finds all the validation results
relative to all the validation targets by closure rule.

SYNTAX
VAL-check-validation-result [-each_validation_target]

ARGUMENTS
-each_validation_target
(Optional) At least one validation result must exist for each NX dataset for the workflow
to proceed.

If this argument is not used, the workflow proceeds if there is a successful result
on one NX dataset.

PLACEMENT
Place on the Start action of the root task. The workflow process is aborted if a target is
not validated, or if its validation result is not Pass.

An alternative is to place on the Complete action of the root task. The release status
is not added to a target if it is not validated, or if its validation result is not Pass.

RESTRICTIONS
None.

12-400 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-has-target-drawing

DESCRIPTION
Checks that the target item revisions have a CAD dataset associated with it. If the item
revisions do not have an attached dataset, the handler returns an error.

SYNTAX
TCRS-has-target-drawing

ARGUMENTS
None.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-401

Workflow handlers



Chapter 12: Workflow handlers

TCRS-check-status

DESCRIPTION
Initiates a workflow process if the current and the previous revisions have a valid
release status.

SYNTAX
TCRS-check-status [-previous_status={any|none|Statuslist}]
[-previous_check=all|last] [-current_status={any|none|status-list}]
[-stop={Y|N}] [-current_check=all|last]

ARGUMENTS

Parameter Description
-previous_status Status on the predecessor revision to be tested

(last release status of the predecessor revision).
-previous_check For the previous revision, check either the last

release status or the entire list for valid status.

-current_status Status on the target revision to be checked.
-current_check For the target revision, check either the last

release status or the entire list for valid status.
-stop Set to Y to stop the process or N to continue with

warning.

PLACEMENT
Place on the Start action of a root task.

RESTRICTIONS
None.

EXAMPLES
• In this example, the handler ensures that previous revisions of the target item

revision have any status type. If not, the handler stops and an error message
is displayed.

Argument Values
-previous_status any
-stop Y

• In this example, the handler ensures that previous revisions of the target item
revision have no status type. If any status type is found, the handler stops and
an error message is displayed.

Argument Values
-previous_status none
-stop Y

12-402 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• In this example, the handler ensures that previous revisions of the target item
revision have TCM Released as their last status type. If not, the handler stops and
an error message is displayed.

Argument Values
-previous_status TCM Released
-previous_check last
-stop Y

• In this example, the handler ensures that previous revisions of the target item
revision have had TCM Released as their status type at any time. If not, the
handler stops and an error message is displayed.

Argument Values
-previous_status TCM Released
-previous_check all
-stop Y

• In this example, the handler ensures that target item revisions have any status
type. If not, the handler stops and an error message is displayed.

Argument Values
-current_status any
-stop Y

• In this example, the handler ensures that target item revisions have no status type.
If any status type is found, the handler stops and an error message is displayed.

Argument Values
-current_status none
-stop Y

• In this example, the handler ensures that target item revisions have TCM
Released as their last status type. If not, the handler stops and an error message
is displayed.

Argument Values
-current_status TCM Released
-current_check last
-stop Y

RS025 11.6 Setting Up Workflows for Product Development 12-403

Workflow handlers



Chapter 12: Workflow handlers

TCRS-check-signoff

DESCRIPTION
Checks the signoff users against signoffs from other task.

SYNTAX
TCRS-check-signoff -task=$PREVIOUS|$NEXT

ARGUMENTS
-task =$PREVIOUS | $NEXT

When the argument is set to $PREVIOUS, the handler checks the task before the
current task. If set to $NEXT, the handler checks the task after the current task. The
default is $PREVIOUS.

PLACEMENT
Place on the Complete action of the select-signoff-team task.

RESTRICTIONS
None.

EXAMPLES
In this example:

• The workflow uses two Review tasks, Task 1 and Task 2.

• The TCRS-check-signoff handler is placed on the Complete action of the
select-signoff-team task for Task 2, with the following argument:

Argument Values
-task $PREVIOUS

The handler compares the Task 2 signoff team with that of Task 1, and displays an
error message if it finds a reviewer who is a member of both teams.

12-404 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-check-prev-itemrev-status

DESCRIPTION
This handler checks whether a release process is valid for an item revision, based
on its current status, and checks whether the target item revisions are released with
specified status. You can also check whether the target item revision is unreleased
and whether it currently has no status.

SYNTAX
TCRS-check-prev-itemrev-status -status=status_name | -unreleased | -latest

ARGUMENTS
-status
A valid status name to be checked.

-unreleased
Ensures that all target item revisions have no status.

-latest
• When this parameter is specified, the handler validates the most current status

of the target item revision and ensures the latest status on target item revision is
same as status specified in -status parameter.

• When this parameter is not specified, the handler validates all statuses attached
to target item revisions.

PLACEMENT
Place on the Start action of the root task of a release process. If an error occurs, this
rule handler prevents the start of the release process.

RESTRICTIONS
The latest, unreleased and targetstatus parameters are mutually exclusive.

EXAMPLES
• In this example the handler ensures that target item revisions are released with

status Approved.

Argument Value
-status Approved

• Use the -unreleased argument to ensure that all target item revisions are not yet
released and have no attached status.

Argument Value
-unreleased

• In this example, the handler ensures that all target item revisions have 90 as
their last status.

Argument Value
-status 90
-latest

RS025 11.6 Setting Up Workflows for Product Development 12-405

Workflow handlers



Chapter 12: Workflow handlers

• In this example, the workflow stops if any of the target item revisions are already
released with status 60.

Argument Value
-status 60
-targetstatus

12-406 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-check-jobowner

DESCRIPTION
Checks that the owner of a certain stage (task) of a release process cannot delegate
approval.

SYNTAX
TCRS-check-jobowner [-who=jobowner] [-task=this]

ARGUMENTS

Parameter Description
-who User ID to examine.

Currently, jobowner is the only valid value.
This parameter is reserved for possible
future extensions.

-task Task to examine.

Currently, this is the only valid value. This
parameter is reserved for possible future
extensions.

PLACEMENT
Must be set in the Finish action of the select-signoff-team task.

RESTRICTIONS
The current default behavior allows the user to delegate their approval after the
select-signoff-team task completes. The Finish action of the select-signoff-team
task does not get called again; therefore, the newly assigned user is not validated. To
allow this validation, Siemens PLM Software recommends that you include this check
in the Finish action of the select-signoff-team task. Because the handler reports an
error only after the user has approved, and a delegation at this point is not possible,
the release process must be deleted and restarted.

RS025 11.6 Setting Up Workflows for Product Development 12-407

Workflow handlers



Chapter 12: Workflow handlers

TCRS-check-itemrev-status

DESCRIPTION
Checks the status of target item revisions.

SYNTAX
TCRS-check-itemrev-status [-status=status-type [-unreleased]
[-latest] [-targetstatus]

ARGUMENTS

Parameter Description Required
-status All target objects must be released

with this status type.
No

-unreleased All target objects should be without
a release status.

No

-latest Validates that the target item
revision is the latest released item
revision.

No

-targetstatus Stops the handler if any of the
target objects are released

No

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

12-408 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-check-datasets

DESCRIPTION
Checks that datasets attached to the target item revision are of the specified type. This
handler also checks that the dataset name matches the specified pattern.

SYNTAX
TCRS-check-datasets
-type=[dataset-type -search_dataset_name=|Pattern1;Pattern2|
-check_include_dataset_name=name-of-dataset [-stop=y|n]
[-dataset_to=target|job|item]

ARGUMENTS

Parameter Description Default Required
-type The type of dataset for

the item revision.
Yes

-search_dataset_name The names of the
datasets to be
searched. Separate
multiple names with a
semicolon (;).

Yes

-check_include_dataset_name Identifies the dataset.
This argument accepts
a single value only.

Yes

-stop Determines whether or
not to stop the workflow
when the attached
dataset names do not
match the name in the
-search_dataset_name
argument.

y No

-dataset_to Defines the location of
the text dataset which
contains the errors in
case of failure. This
text dataset is stored at
the location specified
in this argument. Valid
values are target object
(target), an attachment
to the item revision
(item), or an attachment
to the job (\).

target No

PLACEMENT
Requires no specific placement.

RESTRICTIONS
All item revisions must have write privileges at the level that the handler is used.

RS025 11.6 Setting Up Workflows for Product Development 12-409

Workflow handlers



Chapter 12: Workflow handlers

EXAMPLES
• The following example checks all UGPART datasets with an EZ or GZ prefix in

their names and ANT as postfix.

Argument Values

-type UGPART
-search_dataset_name EZ;GZ
-check_include_dataset_name EZ
-dataset_to item

• In the following example, the handler checks whether a PDF dataset named
testDoc is attached to the target item revision. Also, the error log is attached
to the item if the dataset is not found.

Argument Values

-type PDF
-search_dataset_name testDoc
-check_include_dataset_name testDoc
-stop y
-dataset_to item

12-410 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-check-comps-against-pattern

DESCRIPTION
Checks the components against a specified pattern, where components include
Item, ItemRevision, Dataset, BOMView, and BOMViewRevision. The pattern is as
follows: the item ID should be eight characters and all characters should be digits. In
addition, all of the target components should not have a status attached to it.

SYNTAX
TCRS-check-comps-against-pattern -mode=[list|check_only] -file=dataset-name

ARGUMENTS

Parameter Description
-mode Defines how the check should be performed. Valid values

are:

• list

Lists all the components in the newly created dataset
defined by the file argument. The dataset is attached as
a reference to the workflow process.

• check_only

The dataset named reference is replaced with the latest
information.

-file Specifies the name of the dataset that should be attached as
a reference to the workflow process.

PLACEMENT
Must be set in the Start action.

RESTRICTIONS
Handler should not be put after the Complete action.

RS025 11.6 Setting Up Workflows for Product Development 12-411

Workflow handlers



Chapter 12: Workflow handlers

TCRS-check-bomchild-statuslist

DESCRIPTION
Checks all components of a target assembly in a BOM view revision for a valid status.

SYNTAX
TCRS-check-bomchild-statuslist -rule=configurationrule

-statelist=status[,status] [-check_job=[y|n]]. [-log=[error<all]]
[-stop=[y|n]] [-maxdepth=depth]

ARGUMENTS

Parameter Description Value
-rule Configuration rule.
-statelist List of valid status names.

Separate multiple names with commas
or the character specified by the
EPM_ARG_target_user_group_list_separator
preference.

-check_job Defines the terms of the component status. • n = All components
must possess a
correct status or be
target objects in the
same workflow.

• y = All components
must possess a
correct status and
be target objects in
the same or another
workflow.

-log Log data record. • error = Record
incorrect
components only.

• all = Record
all component
examinations.

-stop Warning in the event of an error (=n) or
Workflow with error stop (=y)

Warning in the event
of an error (=n) or
Workflow with error stop
(=y)

-maxdepth Level in the assembly to be checked. • 1 = First level

• 2 = Second level

• 0 = All levels

12-412 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

PLACEMENT
Must be set in the Complete action of the perform-signoffs task. After this handler is
used, no changes should be made to the BOM view revisions.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-413

Workflow handlers



Chapter 12: Workflow handlers

TCRS-check-bom-precise

DESCRIPTION
Checks whether all BOM view revisions are precise.

SYNTAX
TCRS-check-bom-precise [-stop=[y|n]] [-maxdepth=depth]

ARGUMENTS

Parameter Description
-stop Valid type of form.
-maxdepth Levels to be checked. The value 0 corresponds to all levels.

PLACEMENT
Must be set in the Complete action of the perform-signoffs task.

RESTRICTIONS
None.

12-414 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

TCRS-check-approver

DESCRIPTION
Compares the lists of assigned users for two specified tasks. If the same user is
assigned to both tasks, the handler displays a warning message or stops the task,
depending on the value you enter for the -stop argument. You specify the tasks with
the -a_task and -b_task arguments, and the user with the -a_user and -b_user
arguments.

SYNTAX
TCRS-check-approver -a_task =[task-name|$PREVIOUS|$NEXT]
-a_user=[userid|$USER] -a_jobowner -b_task =[task-name|$PREVIOUS|
$NEXT] -b_user=[userid|$USER] -b_jobowner -stop=[Y|N]

ARGUMENTS

Arguments Values Definition
-a_task [task-name|

$PREVIOUS|$NEXT]
All signoffs of this task
are assigned to set A.

-a_user [userid|$USER] The user specified or the
current user is assigned
to set A.

-a_jobowner n/a The owner of the job is
added the quantity of A.

-b_task [task-name|
$PREVIOUS|$NEXT]

All signoffs of this task
are assigned to set B.

-b_user [userid|$USER] The user specified or the
current user is assigned
to set B.

-b_jobowner n/a The owner of the job is
added the quantity of B.

-stop [Y|N] The job stops if a signoff
is found. Default is Y.

PLACEMENT
Place on the Complete action of the select-signoff-team task.

Tip

You can also place the handler on the Complete action of the
perform-signoffs task.

RESTRICTIONS
None

EXAMPLES
• If the same user is assigned to task R1 and task R2, the handler returns

EPM_nogo and stops the task.

RS025 11.6 Setting Up Workflows for Product Development 12-415

Workflow handlers



Chapter 12: Workflow handlers

Argument Value

-a_task R1
-b_task R2
-stop Y

• If the user who is currently logged on is assigned to the R2 task, the handler
displays a warning message but does not stop the task.

Argument Value

-a_user $USER
-b_task R2
-stop N

• If the same user is assigned to both task R1 and task R2, or if the R2 signoff list
includes the job owner, the handler returns EPM_nogo and stops the task.

Argument Value

-a_task R1
-a_jobowner n/a
-b_task R2
-stop Y

TCRS-generate-pdf

Description

Converts the attached dataset of a specified type and relation to the PDF format and reattaches the
generated PDF as a dataset with a specified relation.

Syntax

TCRS-generate-pdf-exe=PDF convertor tool executable path-input_key
=Input parameter name -output_key
=Output parameter name -additional_args=Additional parameters which are expected
by the tool-input_dataset_relation=Relation of Dataset which is to be converted to PDF
-output_relation=Relation with which the newly generated PDF will be attached

Arguments

Arguments Values Required
-exe Defines the revision rule to be applied for

BOM traversal.
Value

12-416 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Arguments Values Required
-input_key Specifies the input parameter name that

accepts the input file path of the PDF
converter tool. If the tool does not accept the
input key, this will be an optional argument.
For example, –in_file.

No

-output_key Specifies the output parameter name which
accepts the output file path of the PDF
converter tool where the new file will be
placed. If the tool does not accept the
output file path then this will be an optional
argument. For example,–out_file

No

-additional_args Specifies any additional parameters
expected by the tool with the name value
pair. If the tool does not accept any additional
parameters then this will be an optional
argument.

No

-input_dataset_type Specifies the type of dataset that must be
converted to PDF. You can specify multiple
dataset types using comma-separated
values.

Value

-input_dataset_relationSpecifies the relation of dataset that must be
converted to PDF. You can specify multiple
dataset types using comma-separated
values.

Value

-output_relation Specifies the relation with which the newly
generated PDF is attached.

Value

Placement

Requires no specific placement.

Restrictions

User must install a third party PDF convertor tool on the server as a prerequisite for this handler. All
item revisions must have write privileges at the level that the handler is used.

Notes

This handler accepts comma separated input dataset types and
relations. For exmaple, -input_dataset_type=MSWord,Bitmap, or
-input_dataset_relation=IMAN_specification,IMAN_reference. Consider that the above
parameters are provided with comma-separated values to the handler and an item revision has 6
datasets of following types and relations attached:

• MSWord Dataset1 (IMAN_specification)

• MSWord Dataset2 (IMAN_ reference)

RS025 11.6 Setting Up Workflows for Product Development 12-417

Workflow handlers



Chapter 12: Workflow handlers

• Bitmap Dataset3 (IMAN_specification)

• Bitmap Dataset4 (IMAN_ reference)

• MSWord dataset5 (IMAN_rendering)

• Text Dataset6 (IMAN_specification)

In this case, the handler converts the datasets that are matched with the specified types and relations.
Therefore only Dataset1, Dataset2, Dataset3 and Dataset4 will be converted to PDF. These four
new PDF datasets will be attached as a datasets to the item revision while retaining the old ones
as they are.

Therefore, Dataset5 and Dataset6 are not converted to the PDF format (as the IMAN_rendering
relation and Text type are not specified as an input).

Example

Consider that PDF Editor, a third-party PDF generation tool is installed on the server at C:\Program
Files (x86)\PlotSoft\PDFill\PDFill.exe.To convert an image file of the type Bitmap (.bmp) to PDF and
save it at C:\out.pdf, enter the following command:

C:\Program Files (x86)\PlotSoft\PDFill\PDFill.exe OCRC:\image.bmp C:\out.pdf

In this example, the tool accepts OCR as an input parameter key. The following table lists the
arguments that you must provide.

Argument Value

-exe C:\Program Files
(x86)\PlotSoft\PDFill\PDFill.exe

-input_key OCR
-input_dataset_type bitmap
-input_dataset_relation IMAN_specificaiton
-output_relation IMAN_Rendering

The input_key, output_key, and additional_args parameters vary depending on the PDF
generation tool. In this example, the output_key and additional_args parameters are not provided
as these are not required by the PDF Editor tool.

Once the handler with the above parameters is executed, the input dataset of type Bitmap with the
relation Specifications is converted to PDF. This generated PDF is reattached as a dataset with the
Rendering relation.

TCRS-bom-plmxml-export

Description

Exports targets and references information to an XML file. Use this handler to export targets and
references data to an XML file.

12-418 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Syntax

TCRS-bom-plmxml-export-context=transfer-mode
-viewtype=view-type-to-export-attach=[target|
reference]-revrule=revision-rule-path=data-export-path-prefix=filename-prefix-postfix=filename-prefix

Arguments

Arguments Definition Optional/
Mandatory

Value/Default
Value

-context Defines the context string,
which specifies the transfer
mode used for export.

Mandatory transfer_mode

-viewtype Specifies the view type that
you want to export.

Optional view

-attach Specifies which workflow
process attachments are
exported. If not specified,
only targets are exported.

Optional target

-revrule Specifies the revision rule to
be applied for the BOM lines
while exporting the structure.
If you do not specify a value,
the latest revision is used.

Optional Latest Working

-path Specifies the path where
you want to export the data.
The exported file is saved to
the server machine. If not
defined, the data is exported
to TC_TMP_DIR.

Optional TC_TMP_DIR

-prefix Specifies the prefix text for
the exported file name. Optional None

-postfix Specifies the post-fix text for
the exported file name. Optional None

Placement

Requires no specific placement.

Restrictions

None.

Example

This example shows how to export the targets in the workflow to an XML file using the
ConfiguredDataExportDefault transfer mode and the Latest Working revision rule.

RS025 11.6 Setting Up Workflows for Product Development 12-419

Workflow handlers



Chapter 12: Workflow handlers

Argument Value

-context ConfiguredDataExportDefault
-attach target
-revrule Latest Working

12-420 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

SAP-check-forms-to-download-RH

DESCRIPTION
Checks to make certain all form sets in transfer folders are valid, with the
same rules as the SAP-check-forms-attached-RH rule handler. However, the
SAP-check-forms-to-download-RH handler is intended for final checking of the form
sets to be sent, rather than an initial input validation set.

SYNTAX
SAP-check-forms-to-download-RH

ARGUMENTS
None.

PLACEMENT
Call this handler after data is attached using the ERP-attach-targets-AH handler.
Place this handler on the Perform Signoff task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-421

Workflow handlers



Chapter 12: Workflow handlers

SAP-check-forms-attached-RH

DESCRIPTION
Makes the following checks:

• For each BOM, check that the master data for each component and the assembly
itself is created in ERP at the plant specified in the associated BOMHeader form
or is a target of the current process. This prevents the upload failing, which it
would if the component data did not already exist. This handler does not make any
calls to ERP; it simply checks the Sent to ERP box.

Note

If the process has both component and assembly item revisions, the
material data is created first, and then the BOMs.

• For each BOMHeader form, there must be a corresponding BOM view revision
with the view type specified by the TC_view_type attribute in the form.

• Complete sets of ERP forms are attached to each item revision as a target of
the process. The mapping schema allows data for an erp_object, typically
plant-specific, to be split across several form types. As the upload is expecting
a complete set of attribute values for an erp_object, a complete set of forms
must be transferred (for example, an instance of each form type defined for the
erp_object).

• For a BOM, check that the parent and all components have had their master data
Sent to ERP for the plant in which the BOM is created or are part of the process.

Note

If the erp_object defines a key field with the is_key_fld parameter, the
value in this field is used to distinguish between different instances of data
for the same erp_object. For example, all forms having value 1000 in the
plant field for form types with erp_object PlantSpecific constitute the set
of forms defining the plant-specific data for plant 1000.

This handler only searches for ERP forms defined in the mapping schema attached by
the relation types listed by the -reln_names argument. This list should be consistent
with that used in the ERP-attach-targets-AH. Only those forms whose state has not
yet been transferred to ERP (for example, those for which the Sent_to_ERP field
is empty) are checked.

SYNTAX
SAP-check-forms-attached-RH -reln_names = reln1,reln2,...

ARGUMENTS
-reln_names
A list of the relation types used to relate ERP forms to item revisions.

12-422 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Separate multiple types with commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

Note

Relation names are case sensitive and should be named, for example,
tc_specification not TC_Specification.

ERP_Data is the special relation supplied for attaching ERP forms.

PLACEMENT
Place this handler on the Review task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-423

Workflow handlers



Chapter 12: Workflow handlers

PS-check-occ-notes

DESCRIPTION
Checks whether a value has been entered for the specified occurrence note types
on the occurrences of a given assembly.

SYNTAX
PS-check-occ-notes -note_types=occurrence-note-type-names

ARGUMENTS
-note_types
Defines the occurrence note types to be validated.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
This example checks if the given assembly has the Torque and Power occurrence
note types defined in all its BOM lines:

Argument Values
-note_types Torque,Power

12-424 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

PS-check-assembly-status-progression

DESCRIPTION
Enforces status value progression for BOM assemblies. When an assembly is
selected for release to a specific status, this handler checks if all its components are
at or above the status of the assembly.

An item revision is required as the target of the workflow process. Additional targets
are derived by traversing the BOM attached to the target item revision. The handler
then compares the targeted release status to the release status of its components.
The latest release status of the components must be the same or later in the status
progress, in relationship to the targeted release status of the assembly.

This handler traverses only one level. If every subassembly of the target were
previously released by this handler, all subassemblies would have been forced to
align to the progression path.

Note

If the target release status of the assembly must be checked against
the latest release status of its own preceding revisions, use the
EPM-check-status-progression handler before using this handler.

If the workflow process contains several Condition tasks that apply different release
statuses at different levels, the value provided in the -status argument can be used.
If this argument is not used in this situation, the status applied to the target object
is applied to the object. There is no validation ensuring the value provided by this
argument is a valid status being applied by the current release procedure.

You can check the BOM components for a specific status, rather than for any status.
In this case, the handler traverses the BOM, checking for the specific release status of
each individual component, rather than any status; the progression path is not read.

SYNTAX
PS-check-assembly-status-progression [-rev_rule=revision-rule]
[-saved_var_rule=saved-variant-rule] [-status=
status-being-applied-to-the-target-object][-check_component_status=
component-status-to-be-checked-against] [-check_unconfigured]

ARGUMENTS
-rev_rule
Specifies the name of the revision rule to be applied for BOM traversal. If not supplied,
the default revision rule is used.

-saved_var_rule
Specifies the name of the saved variant rule to be applied on BOM window for BOM
traversal.

-status
Defines the status being applied to the target object.

-check_component_status
Checks if all the components have this status.

RS025 11.6 Setting Up Workflows for Product Development 12-425

Workflow handlers



Chapter 12: Workflow handlers

-check_unconfigured
Returns NO-GO in case the applied revision rule on the assembly results in
unconfigured children.

PLACEMENT
Place on any task action. However, if the target assembly is very large, placing it on
the Start action of the root task could affect performance. With this placement, the
Create Process dialog box does not close until the entire assembly is traversed.

RESTRICTIONS
If there are separate release progression tables for assemblies and for components,
there must be common statuses between these two tables. If there are no common
statuses between these two tables, this handler returns an EPM_nogo and aborts
the release process of the assembly when the workflow process is initiated. See
the fourth example below.

EXAMPLES
• In this example, assume that the revision rule is Working and the variant rule

is GMC 300 Rule.

If an assembly target object has to be checked against the status of its
components, using a specific revision rule and saved variant rule to configure
the assembly, define the arguments:

Argument Values
-rev_rule Working
-saved_var_rule GMC 300 Rule

• In this example, if the assembly target object being released has to check if each
of its components are at Design status, rather than any status, define the following
argument. In this case, the progression path is not read:

Argument Values
-check_component_status Design

• In this example, assume a workflow process contains several Condition tasks,
which apply different release statuses at different levels, and Design is a status
at one of the levels. To check the status of Design against the progression
path, rather than deriving the status being applied to the target object, define
the following argument:

Argument Values
-status Design

• In this example, consider the scenario:

o Assy1/A is a CORP_Product item revision, at Design status

o 002/A is a CORP_Part item revision, at Design status

o 003/A is a CORP_Part item revision, at Design status

12-426 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

o CORP_Product progression path: Assembly Quote, Experimental,
Development, Design, Prototype, Manufacturing, Production

o CORP_Part progression path: Quote, Experimental, Development, Design,
Manufacturing, Production

If Assy1/A is now being released to Prototype status, the handler returns an
EPM_nogo because the component's progression path (and therefore the
component progression table) does not contain the Prototype status. The
assembly process would be aborted.

ADDITIONAL
INFORMATION

• If the target release status of the assembly has to be checked against the latest
release status of its own preceding revisions, the best practice is to use the
EPM-check-status-progression handler before this handler.

• The progression path must be manually defined in the ProgressionPath.plmxml
file before the handler can reference the path. The file is stored in the TC_DATA
directory. Create a backup copy of this file before editing it.

All target types that you want to follow the progression path must be set in this file.
A UserData block must be created for each type that follows a progression path.
For example, to define the progression path for the ItemRevision, PSBOMView,
and MSWord types, the UserData blocks can be defined as follows:

<UserData id="id1">
<UserValue title="Type" value="ItemRevision"/>
<UserValue title="ReleaseProgressionList"

value="Quote,Development,Prototype,Production">
</UserValue>

</UserData>
<UserData id="id2">

<UserValue title="Type" value="PSBOMView"/>
<UserValue title="ReleaseProgressionList"

value="Quote1,Development1,Prototype1,Production1">
</UserValue>

</UserData>
<UserData id="id3">

<UserValue title="Type" value="MSWord"/>
<UserValue title="ReleaseProgressionList"

value="Quote2,Development2,Prototype2,Production2">
</UserValue>

</UserData>

RS025 11.6 Setting Up Workflows for Product Development 12-427

Workflow handlers



Chapter 12: Workflow handlers

Note

o Add the UserData blocks between the <PLMXML> and
</PLMXML> tags.

o Ensure you increment the UserData id value when you add a new
entry.

o After adding a new UserData block, change the value for Type to
a type you are defining.

o You can modify the value of the release status to meet your
requirements.

12-428 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

MROCORE-validate-for-class

DESCRIPTION
Validates that the item revision submitted to the workflow is a physical part revision.
If it is a physical part revision, the handlers returns EPM_go. If it is not a physical
part revision, the handler displays an error, returns the decision as EPM_nogo, and
stops further processing.

SYNTAX
MROCORE-validate-for-class -class name=class-name

ARGUMENTS
-class name
Specifies the class name to validate.

PLACEMENT
Place at the entry of the workflow to validate that the target object is the physical part
revision for the as-built structure traversal.

RESTRICTIONS
This handler is available only when Teamcenter service lifecycle management Service
Manager or As-Built Manager is licensed and installed.

RS025 11.6 Setting Up Workflows for Product Development 12-429

Workflow handlers



Chapter 12: Workflow handlers

MFG-invoke-customized-validations

DESCRIPTION
Performs customized validation checks for Manufacturing Execution System
Integration. This handler does the following:

• Takes the CC object and create BOP windows.

• Configure all windows with the configuration rule.

• Calls the validation checks for any BOP window.

If a validation check fails or there is an error or warning, it is returned within the
validationError structure and added to the log in the handler or in the user interface.

SYNTAX
MFG-invoke-customized-validations -Type = callback-type-1, callback-type-2,
... -Name =callback-name-1, callback-name-2, ... [-ContinueOnFail
= True|False, True|False, ...]

ARGUMENTS
-Type
The callback type; for example, MFG_ValidationChecksCallback or
MESINTEG_ValidationChecksCallback. Each -Type value is paired with
the -Name value, separated by commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference. You can have more
than one type/name pair.

-Name
The callback name; for example, ValidationCheck1. Each -Type value is paired
with the -Name value, separated by commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference. You can have more
than one type/name pair.

-ContinueOnFail
(Optional) Whether or not to continue checking if the previous check failed. The
default is False. You can use multiple values, separated by commas or the character
specified by the EPM_ARG_target_user_group_list_separator preference. There
should be one less value than the number of type/name pairs, because if the last
check fails, there is not another check to continue to.

PLACEMENT
Place this handler on any workflow that transfers a CC object to a BOP window.

RESTRICTIONS
None.

EXAMPLES
• This example runs three different validation checks, ValidationCheck1,

ValidationCheck2, and ValidationCheck3. If ValidationCheck1 fails, the handler
runs ValidationCheck2 anyway. If ValidationCheck2 fails, the handler does not
run ValidationCheck3.

12-430 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-Type MFG_ValidationChecksCallback,

MFG_ValidationChecksCallback,
MFG_ValidationChecksCallback

-Name ValidationCheck1, ValidationCheck2,
ValidationCheck3

-ContinueOnFail True, False

RS025 11.6 Setting Up Workflows for Product Development 12-431

Workflow handlers



Chapter 12: Workflow handlers

MESINTEG_ValidateReleaseAndExport

DESCRIPTION
Performs customized validation checks for Manufacturing Execution System
Integration. This handler does the following:

• Takes the CC object and creates BOP windows.

• Configures all windows with the configuration rule.

• Calls the validation checks for any BOP window.

If a validation check fails or there is an error or warning, it is returned within the
validationError structure and added to the log in the handler or in the user interface.

SYNTAX
MESINTEG_ValidateReleaseAndExport -Type = callback-type-1, callback-type-2, ...

ARGUMENTS
-Type
Specifies the callback type, for example, MFG_ValidationChecksCallback
or MESINTEG_ValidationChecksCallback. Each -Type value is paired with
the -Name value, separated by commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference. You can have more
than one type/name pair.

-Name
Specifies the callback name, for example, ValidationCheck1.

Each -Type value is paired with the -Name value, separated by commas or the
character specified in the EPM_ARG_target_user_group_list_separator preference.
You can have more than one type/name pair.

-perform
Specifies the list of operations to be performed by the action handler.

Values include Validate, Release, GenerateMESWIRep, Export, and modifyscope.

Note

Specify these values without spaces and separated by commas or the
character specified in the EPM_ARG_target_user_group_list_separator
preference

-fullexport
Indicates whether it is a full export or a delta export.

-ContinueOnFail
(Optional) Specifies whether to continue checking if the previous check fails. The
default value is False. You can use multiple values, separated by commas or
the character specified by the EPM_ARG_target_user_group_list_separator
preference. Specify one value less than the number of type/name pairs, because if the
last check fails, there is no check to continue.

12-432 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-export_as_fai
Specifies whether to consider the work package as part of the the Send to MES
command.

If set to True, the work package is considered as a part of the Send to MES command.

PLACEMENT
Place this handler on any workflow that eventually creates a BOP window from the
VisStructureContext, exports the data, and updates the release status.

RESTRICTIONS
None.

EXAMPLES
Arguments used in the ReleaseToMES, Send, and ReleaseUpdateToMES workflows.

Note

Specify values without spaces and separated by commas or the character
specified in the EPM_ARG_target_user_group_list_separator preference

Argument Values
-Type MFG_ValidationChecksCallback,

MFG_ValidationChecksCallback,
MFG_ValidationChecksCallback

-callback_name Release Status Validation, Workarea Assigned
Validation, Process Hierarchy Validation, Workarea
Name Validation

-perform Validate, Release, GenerateMESWIRep, Export
-fullexport True
-ContinueOnFail True or False
-export_as_fai True, False

If this property is set to True, the work package is
considered as a part of the Send to MES command.

Arguments used in the ReleaseToProduction workflow.

Note

Specify values without spaces and separated by commas or the character
specified in the EPM_ARG_target_user_group_list_separator preference

Argument Values
-Type MFG_ValidationChecksCallback
-callback_name Change Object Validation
-target production

RS025 11.6 Setting Up Workflows for Product Development 12-433

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-perform Validate, Pending,Export, exportdelta, Release,

modifyscope

The modifyscope value is specific to
ReleaseToProduction workflow. If you want to
use this value, you must register this callback using the
following command:

install_callback -u=infodba -p=password -g=dba
-mode=create -type=MFG_ModifyScopeCallback
-library=library -function=function -name=Modify
Export Scope

Note

Do not use modifyscope, Pending, or
exportdelta values for MES Integration.

-fullexport TRUE
-ContinueOnFail TRUE
-export_as_fai True, False

If this property is set to True, the work package is
considered as a part of the Send to MES command.

12-434 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

LDF-sync-ldf-status

DESCRIPTION
Queries the remote Linked Data Framework (LDF) integrated systems, such as
Polarion, for properties, and checks their values against the expected values
configured.

• If the values match, the handler applies the configured status to the target(s) and
allows the task to continue processing.

• If the expected values do not match, the handler does not allow a task to continue
processing.

Querying a remote system like Polarion is accomplished through APIs against LDF
objects attached to the root task by target or reference relations, or attached to a target
or reference by a specified relation or property.

Note

Arguments specific to applying release status are the same as the
EPM-set-status handler. Any added, modified, or deleted EPM-set-status
handler arguments apply to the LDF-sync-ldf-status handler arguments.

SYNTAX
LDF-sync-ldf-status –property=<oslc-namespace-prefix-url>.property-name
[-remote_user_name=user_name]
[-attachment={target / reference / both}] [-attachment_property=property-name]
[-attachment_relation=relation-name
] [-include_type=include-type]

[-include_related_type=include_related_type] [-check_first_object_only]
[-[action={append/rename/replace/delete}]
[-status=name]
[-new_status=new-status]
[-retain_release_date] [-set_effectivity]

ARGUMENTS

Parameter Description Default Req.
-property::
<oslc-namespace-prefix-url>
. property-name

Specifies the remote property or
properties check.

Requires a fully qualified
property name with a prefix URL
prepended to every property
in a workflow argument, which
is prepended by –property::.
The OSLC namespace prefix
URL must be contained in
angle brackets, < and >, in
the <oslc-namespace-prefix-url

Yes

RS025 11.6 Setting Up Workflows for Product Development 12-435

Workflow handlers



Chapter 12: Workflow handlers

Parameter Description Default Req.
>.property-name format as
shown in the Examples section.

Enter a list separated
by commas or the
character specified by the
EPM_ARG_target_user_group_list_separator
preference.

-remote_user_name Used by the handler to connect
to a remote system like Polarion
for sending HTTP requests.

The Restrictions section
describes separate actions
required to generate an
encrypted password file.

No

-attachment Specifies the type of attachment
to be checked:

target

Checks the target attachments

reference

Checks the reference attachment

both

Checks target and reference
types of attachments.

target No

-attachment_property Property of the attachment to
derive the linked object.

No

-attachment_relation Specifies the relation name
to expand to get the
linked object from workflow
attachment. Linked objects
attached to targets and
references of a workflow
with the relation specified
by attachment_relation are
searched. Linked objects not
matching the specified relation
are not checked.

Lcm0Affected
ByDefect

No

12-436 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Parameter Description Default Req.
-include_type Specifies the type of

workflow target and reference
attachments to be checked.
Workflow attachments not
matching the specified type are
not checked.

target No

-include_related_type Specifies the type of linked
object to retrieve that is related
to the workflow attachment
using the attachment_relation
value. This argument should
be used in conjunction with
the attachment_relation
or attachment_property
arguments.

target No

-check_first_object_onlyIf specified, only the first
object of the type specified by
include_type is considered.
This argument is optional.

true No

-status When the check is satisfied, a
new milestone with the name
specified by this argument is
added to targets and references
of the workflow.

task-name No

-action Specifies an action:

append

Attaches the status objects
from the root task to the target
objects, with no impact to any
previous status objects applied
to the same targets.

replace

Deletes all existing status objects
attached to target objects and
attaches the status objects
from the root task to the target
objects.

rename

Renames an existing status
object attached to the target
objects from old_name to
new_name.

append No

RS025 11.6 Setting Up Workflows for Product Development 12-437

Workflow handlers



Chapter 12: Workflow handlers

Parameter Description Default Req.

If a status object with the
old_name status is not found, it
renames the last status object
attached to the target objects.

If the target object has an
existing status, the status object
is renamed from old_name to
new_name.

delete

Deletes the status status_name
specified by the status argument
from the target object.

If the delete argument is not used
in combination with the status
argument, all status objects are
removed from the target objects.

If the status objects being
removed from the target objects
were created in the same
workflow, they are attached to
the root task upon creation and
are not removed from the root
task by this handler.

-new_status Specifies the new name for the
status object.

Use in conjunction with rename
and replace actions.

No

-retain_release_status Retains the original release date
on the target object if it had
previously been released. Not
valid for replace.

false No

-set_effectivity If used, the system creates the
open-ended date effectivity with
the release date as the start
date.

false No

PLACEMENT
Because this is a rule handler with some action handler behavior, place it as the last
rule handler in the rule handler list for the task Complete action.

RESTRICTIONS
Use if you are using the LDF framework for application integrations and you want
Teamcenter workflows to apply status based on LDF linked property values.

12-438 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

You must generate an encrypted password file by following these steps in a
Teamcenter command shell:

1. Run this command:

mkdir %TC_DATA%\polarionconnector

2. Run this command:

%TC_ROOT%\bin\install -encryptpwf
-f=%TC_DATA%\polarionconnector\<user name>

Where <user name> is user name of remote system such as Polarion ALM. This
user name should be configured as a value of the –remote_user_name handler.

EXAMPLES
• The following example checks the status property of linked objects on the remote

system.

Argument Values

-property::
<http://polarion.plm.automation.
siemens.com/oslc#> .priority

Low, Medium

-attachment target
-attachment_relation Lcm0RelatedChangeRequest
-include_type ChangeRequestRevision
-status Synced
-action append
-remote_user_name admin

RS025 11.6 Setting Up Workflows for Product Development 12-439

Workflow handlers



Chapter 12: Workflow handlers

ICS-assert-target-classified

DESCRIPTION
Checks whether an item is classified by verifying that target objects of the specified
types in this workflow process are classified. If the item is classified, the rule handler
returns EPM_go. If the item is not classified, it returns EPM_nogo. The user then
has the option of associating this rule handler with the selected workflow completion
process, therefore, preventing the state transition if the item does not comply with the
classified business rule.

SYNTAX
ICS-assert-target-classified -allowed_type =type-of-workspace-object
[, type-of-workspace-object2,..]

ARGUMENTS
-allowed_type
Must be valid workspace object types. For example: ItemRevision and ITEM

If this argument is specified as Dataset, any type of dataset (UGMASTER, UGPART,
Text, and so on) is considered.

If this argument is specified as ItemRevision, any type of item revision
(DocumentRevison, and so on, and any custom item revision types) is considered.

PLACEMENT
Place on any action and on any task.

RESTRICTIONS
None.

EXAMPLES
This example checks item revisions as targets:

Argument Values
-allowed_type ItemRevision

This handler is very useful in restricting unclassified items and item revisions from
being released.

12-440 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ERP-validate-data-RH

DESCRIPTION
Applies the validation criteria specified in the mapping schema on all forms attached
to the process's transfer folders and related BOMComponent data. The following
validations are performed:

• For each attribute:

o If the attribute parameter is required, the field must have a value.

o If the attribute definition has an LOV, the value in the field must match one
in the list. Although this is checked at entry time, this allows for LOVs that
changed in the mapping since the data was originally entered.

For an overview of using LOVs in handlers, see Lists of values as argument
values.

o For string attributes, the length of string entered must be no more than that
defined in the schema.

o If there is a custom validation function defined using the custom_check
attribute parameter, call the function.

• For each BOMHeader to be sent to ERP:

o Check a corresponding BOMView revision of the correct type exists, as
described for the SAP-check-forms-attached-RH handler.

o Check all components with the same item ID have the same attribute values
(for those attributes specified in the mapping schema, except quantity).

o Check component attribute values conform to parameters in the mapping
schema (mandatory, LOV, length). Although LOVs cannot be presented to
the user for Structure Manager notes, values can still be validated with this
handler.

SYNTAX
ERP-validate-data-RH

ARGUMENTS
None.

PLACEMENT
Call this handler after you attach data with ERP-attach-targets-AH. Place this handler
on the perform-signoff task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-441

Workflow handlers



Chapter 12: Workflow handlers

ERP-check-target-status-RH

DESCRIPTION
Checks that the release status for target item revisions is specified.

SYNTAX
ERP-check-target-status-RH -status_name=name

ARGUMENTS
-status_name
Specifies the name of the release status.

RESTRICTIONS
None.

12-442 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ERP-check-effective-date-RH

DESCRIPTION
Checks the Effect In date on the release status attached to the process does not have
a value before the current date.

SYNTAX
ERP-check-effective-date-RH

ARGUMENTS
None.

PLACEMENT
Place on the perform-signoff task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-443

Workflow handlers



Chapter 12: Workflow handlers

EPM-verify-digital-signature

DESCRIPTION
Verifies if the target objects and, optionally, the schedule task have a valid digital
signature.

SYNTAX
EPM-verify-digital-signature [-include_schedule_task] [-quorum=size] [-no_void]

ARGUMENTS
-include_schedule_task
(Optional) Verifies the digital signature on the schedule task and all target objects of
the workflow. If this argument is not provided, the digital signature is verified only on
the target objects of the workflow.

-quorum
(Optional) Specifies the minimum number of valid digital signatures each target must
have, where size is a positive integer specifying the quorum. If this argument is not
specified, all digital signatures on all targets must be valid.

-no_void
(Optional) Checks each target object in the workflow for a void digital signature. If the
target object has one or more void digital signatures, the handler fails with an error
indicating the failure, even if the quorum in the -quorum argument for valid digital
signatures is met.

PLACEMENT
Place on any action on any task.

RESTRICTIONS
None.

12-444 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-validate-target-objects

DESCRIPTION
Restricts the types of objects that can be added as target objects. It always prevents
the Home, Newstuff, and MailBox folders from being added as target objects.

Note

Enable debugging functionality for this handler with the
TC_HANDLERS_DEBUG environment variable.

SYNTAX
EPM-validate-target-objects
[-include_type =type-of-workspace-object[, type-of-workspace-object2,..]]
[-exclude_type =type-of-workspace-object[, type-of-workspace-object2,..]]
[-latest_rev]

ARGUMENTS
-include_type
Defines the type of objects that can be added as target objects to a workflow process.
You can define more than one type by using commas or the character specified by
the EPM_ARG_target_user_group_list_separator preference between the types.
This argument is optional.

Accepts valid Teamcenter object types, such as ItemRevision, UGMASTER, and
UGPART.

When you add any object type or class as a target, all its subtypes are also included.
To explicitly exclude any subtypes, use the -exclude_type argument.

For example, if this argument is specified as ItemRevision, any type of item revision
(for example, DocumentRevison, and so on, and any custom item revision types) is
allowed.

Does not accept bracketed () class notation to distinguish between classes and types.

-exclude_type
Defines the type of objects that cannot be added as target objects to a workflow
process. You can define more than one type by using commas or the character
specified by the EPM_ARG_target_user_group_list_separator preference between
the types.

Accepts valid Teamcenter object types, such as ItemRevision, UGMASTER, and
UGPART.

If this argument is specified as ItemRevision, any type of item revision (for example,
DocumentRevison, and so on, and any custom item revision types) is disallowed.

-latest_rev
Ensures any revisions added to the workflow process are the latest revision within their
owning item. This argument is optional.

PLACEMENT
Place on any action in any task.

RS025 11.6 Setting Up Workflows for Product Development 12-445

Workflow handlers



Chapter 12: Workflow handlers

RESTRICTIONS
None.

EXAMPLES
• This example allows only item revisions as targets:

Argument Values
-include_type ItemRevision

• This example allows MEOPRevision objects as the targets and disallows
MENCMachining Revision and METurningRevision objects:

Argument Values
-include_type MEOPRevision

-exclude_type MENCMachining Revision,
METurningRevision

Note

MEOPRevision is the parent type (class) for MENCMachining
Revision andMETurningRevision. In this example, allMEOPRevision
subtypes are allowed as targets except for MENCMachining Revision
and METurningRevision.

• This example allows only the latest item revisions as targets:

Argument Values
-include_type ItemRevision

-latest_rev

12-446 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-signoff-team-validation

DESCRIPTION
Checks to ensure the minimum number of reviewers specified by the -num_reviewers
argument is assigned to the select-signoff-team task. If no argument is provided, the
handler checks for at least one reviewer.

If the number of reviewers assigned to the select-signoff-team task is less than the
minimum reviewers required, then EPM_nogo is returned.

SYNTAX
EPM-signoff-team-validation [-num_reviewers= minimum-number]

ARGUMENTS
-num_reviewers
(Optional) Minimum number of reviewers required for the select-signoff-team task.

PLACEMENT
Place only on the Complete action of the select-signoff-team task.

RESTRICTIONS
None.

EXAMPLES
This example checks to see if at least 2 reviewers are assigned to the
select-signoff-team task.

Argument Values
-num_reviewers 2

RS025 11.6 Setting Up Workflows for Product Development 12-447

Workflow handlers



Chapter 12: Workflow handlers

EPM-invoke-system-rule

DESCRIPTION
Runs an external command (specified with the -command argument) such as Perl
scripts, shell scripts, or external ITK programs, then continues or halts the workflow
process based on the return code of the external command.

Use this handler for increased control of the workflow process. For example, to
synchronize NX attributes and structure with Teamcenter, or to generate JT tessellation
from CAD files.

This handler writes process-related information to an XML file. The file is passed to the
external script or program as -f XML-file-name. APIs are provided (in the form of Perl
modules) to read the XML file and perform functions on its data objects. The APIs are
located in the Workflow.pm file in the TC_ROOT/bin/tc directory.

Write Perl scripts (for example, TC_ROOT/bin/iman_check_renderings_pl for
background tessellation of CAD data) using the provided APIs to read the XML file and
perform required functions on its data objects. Then use the Perl script as the value of
the -command argument in the workflow process template.

Note

Siemens PLM Software recommends you place the Perl scripts in the
TC_ROOT/bin folder.

Alternatively, you can place the script in an alternate location and provide
an absolute path to the location (for example, c:\temp\test.bat). However,
using an absolute path requires that you update the template if there are
any changes. In the previous example, c:\temp\test.bat is a path on a
Windows platform. If you were to change to a UNIX platform, the template
would need to be updated. This second method is not recommended.

The handler returns a code that is mapped to:

• EPM_go when the external script returns 0 or EPM_go and no other errors are
returned

• EPM_nogo when the external script/program returns error or EPM_nogo

• EPM_undecided when the external script/program returns EPM_undecided

SYNTAX
EPM-invoke-system-rule -command=name-of-the-external-program
[-trigger_on_go= [task:]action]
[-trigger_on_nogo= [task:]action]
[-trigger_on_undecided= [task:]action] [-skip_unreadable_objs]
[-change_status_on_go= [old-status-name:][new-status-name]]
[-change_status_on_nogo= [old-status-name:][new-status-name]]
[-change_status_on_undecided= [ old-status-name:][new-status-name]]
[-add_occurrence_notes] [-comment=signoff-comment]
[-responsible_party= [User:responsible-party[; Task:task-name]]

12-448 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

[-reviewer= [User:user-id] [; Group:group] [; Role:role] [; Level:level]]
[-send_mail=user-ids] [-initiate_process] [-where_used=item-revision-type]
[-expand=item-revision-type] [-list_sibling_processes=wildcarded-procname]
[-depth=maximum-recursion-depth] [-debug]

ARGUMENTS
-command
Name of the external executable. This executable can be an external Perl script that
reads and modifies the XML file that this handler writes, or an ITK program to perform
specific functionality.

This argument is required.

-trigger_on_go
Triggers an action in the same workflow process when EPM_go is returned.

Trigger an action in another task by specifying an action and task name. If another
task name is unspecified, the specified action in the current task is triggered.

The system supports the following actions:

ASSIGN, START, PERFORM, COMPLETE, SUSPEND, RESUME, SKIP, ABORT,
REFUSE, UNDO, REJECT, APPROVE, PROMOTE, DEMOTE.

Action names are not case sensitive.

Task names cannot contain a colon or a period. If the task name is ambiguous (for
example, select-signoff-team), hierarchical notation is required.

This argument is optional.

-trigger_on_nogo
Triggers an action in the same workflow process when EPM_nogo is returned. Trigger
an action in another task by specifying an action and task name. If another task name
is unspecified, the specified action in the current task is triggered.

The system supports the following actions:

ASSIGN, START, PERFORM, COMPLETE, SUSPEND, RESUME, SKIP, ABORT,
REFUSE, UNDO, REJECT, APPROVE, PROMOTE, DEMOTE.

Action names are not case sensitive.

Task names cannot contain a colon or period. If the task name is ambiguous (for
example, select-signoff-team), hierarchical notation is required.

This argument is optional.

-trigger_on_undecided
Triggers an action in the same workflow process when EPM_undecided is returned.

Trigger an action in another task by specifying an action and task name. If another
task name is unspecified, the specified action in the current task is triggered.

The system supports the following actions:

ASSIGN, START, PERFORM, COMPLETE, SUSPEND, RESUME, SKIP, ABORT,
REFUSE, UNDO, REJECT, APPROVE, PROMOTE, DEMOTE.

RS025 11.6 Setting Up Workflows for Product Development 12-449

Workflow handlers



Chapter 12: Workflow handlers

Action names are not case sensitive.

Task names cannot contain a colon or period. If the task name is ambiguous (for
example, select-signoff-team), hierarchical notation is required.

This argument is optional.

-skip_unreadable_objs
Unreadable objects are not processed. The handler does not attempt to write
information about unreadable objects into the XML file; the objects are skipped.

If this argument is not specified, the handler displays an error when a failure occurs
when there is no read access.

-change_status_on_go
Adds, removes, or changes the status of attachments when EPM_go is returned.

Both the old and new status names are optional.

• If both status names are specified, the new status name replaces the old status
name.

• If only the new status name is specified, the corresponding status is added.

• If only the old status name is specified, the corresponding status name is removed.

• If neither status name is specified, no action is taken.

If a value is not provided for this argument, the value set by the external Perl script is
read.

-change_status_on_nogo
Adds, removes, or changes the status of attachments when EPM_nogo is returned.

Both the old and new status names are optional.

• If both status names are specified, the new status name replaces the old status
name.

• If only the new status name is specified, the corresponding status is added.

• If only the old status name is specified, the corresponding status name is removed.

• If neither status name is specified, no action is taken.

If a value is not provided for this argument, the value set by the external Perl script is
read.

-change_status_on_undecided
Adds, removes, or changes the status of attachments when EPM_undecided is
returned.

Both the old and new status names are optional.

• If both status names are specified, the new status name replaces the old status
name.

12-450 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• If only the new status name is specified, the corresponding status is added.

• If only the old status name is specified, the corresponding status name is removed.

• If neither status name is specified, no action is taken.

If a value is not provided for this argument, the value set by the external Perl script is
read.

-add_occurrence_notes
Sets occurrence notes of target assemblies. Can be used in combination with the
-expand argument to set OccurrenceNotes for components of assembly structures.

This argument is optional.

-comment
The signoff decision is set depending on the return code of the external program:

• 0=Approve
• 1=Reject
• 2=No Decision

If a value is not provided for this argument, the value set by the external Perl script is
read.

This argument is optional.

-responsible_party
Assigns a responsible party. If no user ID is specified for this argument, the value set
by the external Perl script is read.

This argument is optional.

-reviewer
Assigns a reviewer for a release level. If no reviewer is specified for this argument, the
value set by the external Perl script is read.

This argument is optional.

-send_mail
Sends target, reference, or sibling objects through program mail. If one or more user
IDs are defined for this argument, the workflow process is sent to the specified users
through program mail.

Separate multiple user IDs with a space, a comma, or the character specified by the
EPM_ARG_target_user_group_list_separator preference.

If no user IDs are defined for this argument, the recipients and the contents of the
envelope set by the external Perl script is read.

This argument is optional.

-initiate_process
Initiates a workflow process for another object. Target objects are defined by the
values set by the external Perl script.

RS025 11.6 Setting Up Workflows for Product Development 12-451

Workflow handlers



Chapter 12: Workflow handlers

This argument is optional.

-where_used
Reports the where-used of item and item revision target attachments by writing the
hierarchy of all parent and grandparent assemblies of item and item revision target
attachments into the XML file to allow the external Perl script to perform required
functions. If an ItemRevision type is specified, the type argument is compared to the
corresponding item revision type. For example, ItemRevision matches objects of the
Item type. If an item revision type is specified, the parent assemblies of only those
target attachments that match this type are listed.

This argument is optional.

-expand
Reports the assembly of item and item revision target attachments by writing the
hierarchy of all child and grandchild components of item and item revision target
attachments into the XML file to allow the external Perl script to perform required
functions.

If an ItemRevision type is specified, the type argument is compared to the
corresponding item revision type. For example, ItemRevision matches objects of the
Item type. The assembly structure is expanded for all item revision of all matching
item target attachments.

If an item revision is specified, the child components of only those target attachments
are listed that match this type.

This argument is optional.

-list_sibling_processes
Writes information regarding processes that belong to the same Change item into the
XML file to allow the external Perl script to perform required functions. The information
concerns processes sharing the same Change item as a reference attachment.

If a process template name is specified in the procedure definition, only the processes
that match the procedure name are included.

This argument is optional.

-depth
Increases the maximum incursion depth. The -trigger_on_go or -initiate_process
arguments could cause the triggered action to use the same handler in a deeper
level of recursion. If this is intended, the maximum level of recursion must be set to
the desired number. If necessary, it can be disabled by setting it to 0. The default is
set to 1, to avoid infinite loops.

This argument is optional.

-debug
Enables debugging. Each occurrence of this argument increases the debug level by
one. Debug messages are written to the Teamcenter error stack for display in the rich
client user interface, as well as written to the syslog file.

This argument is optional.

12-452 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

PLACEMENT
Place on the Start or Complete action of any task. If this handler is configured to
set the signoff decisions on a perform-signoffs task (for example, if the -comment
argument is specified), then place on the Complete action of the perform-signoffs
task.

RESTRICTIONS
Do not add to a workflow process containing any handler using resource pools.

EXAMPLES
This example shows how to run the iman_check_renderings_pl script using the
-command argument. Do not list the file extension in the value. This value runs either
the iman_check_renderings_pl.bat (Windows) or iman_check_renderings_pl
(UNIX) script, depending on which platform the server is running.

Note

The script should be placed in the TC_ROOT/bin directory.

Argument Values
-command iman_check_renderings_pl

RS025 11.6 Setting Up Workflows for Product Development 12-453

Workflow handlers



Chapter 12: Workflow handlers

EPM-hold

DESCRIPTION
Pauses the task, requiring the user to perform an action on the task before the task
can complete. Typically, a task completes automatically once started. EPM-hold
prevents this automatic completion.

Use this rule handler with custom tasks that require customized Perform actions, or to
require the user to manually perform a Complete action to complete the task.

This handler checks the task_result property of the task to which it is attached. If this
property is not set to Completed, this handler pauses the task. If the value is set to
Completed, the task progresses normally.

In addition, in case of Notify tasks that are sub-tasks of Route tasks, this handler
checks whether the reviewers are completely assigned to the Route task. If the
reviewers’ assignment is complete, then it allows the Notify task to proceed even if the
value of task_result property of the Notify task is not set to Completed.

Configuring a task to display forms using EPM-display-form, EPM-hold, and
EPM-create-form

To configure a task to display a form when a user performs a specified action, use the
EPM-hold handler. This handler pauses the task, requiring the user to perform an
action on the task before the task can complete. Without the use of this handler, a task
completes automatically once started.

To create an instance of a specified form and attach the form to the specified task, use
the EPM-create-form handler.

Therefore, the EPM-create-form handler creates the form when the Start action is
initiated, the EPM-display-form handler displays the form when the Perform action is
initiated, and the EPM-hold handler prevents the task from automatically completing,
allowing the form to be completed by the user.

Variations on the above example may be required for a more sophisticated interaction
when it is required that the task not complete until required fields are entered in the
form. This type of configuration requires the creation of customized rule handlers.

SYNTAX
EPM-hold

ARGUMENTS
None.

PLACEMENT
Place on the Complete action of any task with which you want the user to interact
before the task completes.

RESTRICTIONS
None.

ADDITIONAL
INFORMATION

• By default, this handler is placed in the Do task template, pausing the task to
allow the Do Task dialog box to display when the user performs the Perform
action on a selected Do task.

12-454 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• Use this handler with custom tasks that present custom forms when the user
performs the Perform action.

For information about configuring custom tasks to present custom forms when the
Perform action is invoked, see the description of the EPM-display-form handler.

RS025 11.6 Setting Up Workflows for Product Development 12-455

Workflow handlers



Chapter 12: Workflow handlers

EPM-disallow-reviewers

DESCRIPTION
Prevents specified users, the workflow process owner, reviewers for a specified task,
reviewers from all tasks, or a combination of them from being added to a signoff team
in a Review task.

SYNTAX
EPM-disallow-reviewers -assignee=user:[user-name-1] [,user:user-name-2,...] |
[user:$PROCESS_OWNER] -task=[parent-task-name:sub-task-name | ALL]

ARGUMENTS
-assignee
Specifies the user IDs and/or the workflow process owner that are not allowed as
reviewers.

Any Teamcenter users or $PROCESS_OWNER are specified in the following format:

user:user-name-1, user:user-name-2, ...

You must use either the -assignee or the -task argument. You can optionally use both.

-task
Specifies the parent task and subtask names, separated by a colon (:), for an existing
select-signoff-team task in the workflow process. Reviewers for this task are not
allowed as reviewers for the task with this handler. You can specify all tasks in the
workflow process with the ALL keyword.

You must use either the -assignee or the -task argument. You can optionally use both.
PLACEMENT

Place only on the Complete action of the select-signoff-team task.
RESTRICTIONS

None.
EXAMPLES

• This example prevents the user Smith from being a reviewer:

Argument Values
-assignee user:Smith

• This example prevents the workflow process owner and user Smith from being
reviewers:

Argument Values
-assignee user:$PROCESS_OWNER, user:Smith

• This example prevents the existing reviewers on the Review1:SST1 task from
being reviewers:

Argument Values
-task Review1:SST1

12-456 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• This example prevents the existing reviewers on all other select-signoff-team
tasks within the workflow process from being the reviewers:

Argument Values
-task ALL

• This example prevents the process owner and existing reviewers on the
Review1:SST1 task from being reviewers:

Argument Values
-assignee user:$PROCESS_OWNER

-task Review1:SST1

RS025 11.6 Setting Up Workflows for Product Development 12-457

Workflow handlers



Chapter 12: Workflow handlers

EPM-disallow-removing-targets

DESCRIPTION
Prevents targets from being removed from a workflow process after the workflow
process has been started.

It is good practice to add this handler to the root task of the Perform action. This
prevents target objects from being removed from a workflow process once it is started.
To allow the removal of targets, verify that this handler has been removed from the
respective workflow process template (if it has not been removed, do so) and ensure
that the desired users have change access to the workflow process object. You may
need to use the EPM-set-job-protection handler to ensure that the required change
access is asserted.

Note

The named ACL must have change access to provide the proper protection.

SYNTAX
EPM-disallow-removing-targets

ARGUMENTS
None.

PLACEMENT
Place on the Perform action of the root task.

RESTRICTIONS
None.

12-458 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-disallow-adding-targets

DESCRIPTION
Disallows adding targets interactively after a workflow process is initiated. A switch can
be used to specify the types of objects to be excluded. If you configure other handlers
to add targets programmatically, they are added during the workflow process even
if this handler is used.

Note

The EPM-attach-related-objects and PS-attach-assembly-components
handlers are dependent on this handler.

SYNTAX
EPM-disallow-adding-targets [-exclude_type=type-of-object [, type-of-object2 ]]

ARGUMENTS
-exclude_type=type-of-object [, type-of-object2 ]
Types of objects that are allowed to be added as targets after the workflow process is
initiated.

This argument is optional.

PLACEMENT
Place on the Perform action of the root task.

RESTRICTIONS
Use the EPM-set-job-protection handler to ensure that the required change access is
asserted.

EXAMPLES

Note

It is good practice to add this handler to the root task Perform action to
ensure that target objects are not added from a workflow process once
it is started. If you want to allow the addition of objects of all types as
targets, this handler should be removed from the respective workflow
process template, and you must ensure that the desired users have change
access to the workflow process (job) object. You may need to use the
EPM-set-job-protection handler to ensure that the required change access
is asserted.

This example allows only BOM view revisions to be added interactively as targets
after the workflow process is initiated.

Argument Values
-exclude_type BOMView Revision

RS025 11.6 Setting Up Workflows for Product Development 12-459

Workflow handlers



Chapter 12: Workflow handlers

EPM-debug-rule

DESCRIPTION
Notifies a user that an action is executing. Attaching EPM-debug-rule to any EPM
action notifies the user when that task action runs by printing that action name to the
standard output device.

SYNTAX
EPM-debug-rule -comment=string

ARGUMENTS
-comment
Additional descriptive string appended to the action name.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
This example notifies the user when the Complete action runs by printing Complete,
action is executing to the standard output device.

Argument Values
-comment action is executing

Note

This example assumes you have attached this handler to a Complete
action.

12-460 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-check-target-object

DESCRIPTION
Checks the status of the object to determine whether to allow the action.

Note

Enable debugging functionality for this handler with the
TC_HANDLERS_DEBUG environment variable.

SYNTAX
EPM-check-target-object -allowed_status=
status-name| -disallowed_status=status-name

ARGUMENTS
-allowed_status
Defines statuses to check against target objects. If a potential target matches any of
the statuses defined with this argument, paste is available.

Accepts one or more valid Teamcenter status names.

Indicate any status with one of the following:

*|all|ALL|any|ANY

Indicate no status with one of the following:

null|NULL|none|NONE

Indicate in process status:

IN_PROCESS

-disallowed_status
Defines statuses to check against target objects. If a potential target matches any of
the statuses defined with this argument, paste is unavailable. Can use in place of
-status for clarity. A warning message is displayed indicating noncompliance to the
business rule when you click OK. Additionally, if the argument passed to the handler is
incorrect, this warning message is also displayed when you click OK.

Accepts one or more valid Teamcenter status names.

Indicate any status with one of the following:

*|all|ALL|any|ANY

Indicate no status with one of the following:

null|NULL|none|NONE

Indicate in process status:

IN_PROCESS
PLACEMENT

Place on the Perform action of the root task.
RESTRICTIONS

None.

RS025 11.6 Setting Up Workflows for Product Development 12-461

Workflow handlers



Chapter 12: Workflow handlers

EXAMPLES
• This example allows any target to be attached with a status of Pending or with

no status (work in progress):

Argument Values
-allowed_status Pending, NONE

• This example disallows any targets from being attached with a status of Released
or Obsolete:

Argument Values
-disallowed_status Released,Obsolete

12-462 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-check-target-attachments

DESCRIPTION
Checks that the specified target object contains the required attachment with the
required status or statuses. You can provide the target object type, relation type,
attached object type, and valid statuses as handler arguments.

This handler can be used with an LOV to specify different types of targets and
attachments to be checked, requiring just one occurrence of the handler. For an
overview of using LOVs in handlers, see Lists of values as argument values.

Note

Enable debugging functionality for this handler with the
TC_HANDLERS_DEBUG environment variable.

SYNTAX
EPM-check-target-attachments { {-include_type=target-object-type
-include_related_type=attached-object-type
-relation=relation-type} | -lov=lov-name}
[-allowed_status=valid-status-names | ANY | NONE]

ARGUMENTS
-include_type
Defines the type of target object to be checked.

-include_related_type
Defines the type of attachment to be checked.

-relation
Specifies the relation between the target object and the attachment:

• Specify a manifestation relationship with IMAN_manifestation.

• Specify a specification relationship with IMAN_specification.

• Specify a requirement relationship with IMAN_requirement.

• Specify a reference relationship with IMAN_reference.

• Specify a BOM view attachment with PSBOMViewRevision.

• Specify an impacted item of a change object with CMHasImpactedItem.

• Specify a solution item of a change object with CMHasSolutionItem.

• Specify a problem item of a change object with CMHasProblemItem.

• Specify a reference item of a change object with CMReferences.

• Specify a change object that implements another change object with
CMImplements.

RS025 11.6 Setting Up Workflows for Product Development 12-463

Workflow handlers



Chapter 12: Workflow handlers

-allowed_status
Specifies the required status of the attachment. Multiple statuses can be checked by
listing valid Teamcenter statuses separated by commas or the character specified by
the EPM_ARG_target_user_group_list_separator preference.

ANY checks for any status. NONE checks for working status.

-lov
Specifies the list of values (LOVs) used to define which objects are attached to which
target objects.

This argument is mutually exclusive of the -include_type, -include_related_type,
and -relation arguments. It can be used with the -allowed_status argument to check
relation status.

See the LOV row, for the required LOV format.
LOV

For an overview of using LOVs in handlers, see Lists of values as argument values.

The LOV can contain multiple optional lines: a line for each type of target to check,
followed by one or more multilevel object path lines specifying the relations required
for that target type.

For an overview of using multilevel object paths in handlers, see Defining multilevel
object paths.

If the system does not find any targets for one of the target types, it checks the next
target type line.

When a target exists for the specified type, then each relation listed must exist. An
error is reported for each relation type missing.

[$TARGET.]target-(class)-or-type-1

relation1.sec-obj-(class)-or-type-in-target-1

relation2.sec-obj-(class)-or-type-in-target-1

[$TARGET.]target-(class)-or-type-2

relation1.sec-obj-(class)-or-type-in-target-2

relation2.sec-obj-(class)-or-type-in-target-2

…

Note

When using a LOV with this handler, you can improve readability and clarity
by indenting the relation lines with spaces. You can also add line numbers
in square brackets.

[$TARGET.]target-(class)-or-type-1
Defines the type/class of target to check, using a comma-separated list of
types/classes in the format shown next.

12-464 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Target lines are prefixed with $TARGET or identified by their lack of dots (.).

[(Class)[!Type1][,(Class2)[,Type1[,…]]]]

For example, to specify that all item revisions are checked except software
revision:

(ItemRevision)!Software Revision

relation1.sec-obj-(class)-of-type-in-target-1
A multilevel object path that must start with a relation (such as
IMAN_specification). Defines a secondary object that must exist in the specified
relation for the target line.

Relation lines always contain a dot (.).

For example, to check that a UGMASTER and UGPART dataset exist in all
revision targets of the design revision type:

$TARGET.Design Revision

IMAN_specification.UGMASTER

IMAN_specification.UGPART

PLACEMENT
Requires no specific placement.

RESTRICTIONS
If checking multiple statuses through LOVs, this handler must be used once for each
status.

EXAMPLES
• This example checks the targeted change revision for an item revision with any

status in the Problem Items folder:

Argument Values
-include_type ChangeItemRevision
-include_related_type ItemRevision
-relation CMHasProblemItem
-allowed_status ANY

• This example checks the targeted change revision for an item revision with no
status in the Impacted Items folder:

Argument Values
-include_type ChangeItemRevision
-include_related_type ItemRevision
-relation CMHasImpactedItem
-allowed_status NONE

• This example checks the targeted change revision for the CORP_Part revision
with a released status in the Solution Items folder:

RS025 11.6 Setting Up Workflows for Product Development 12-465

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-include_type ChangeItemRevision
-include_related_type CORP_PartRevision
-relation CMHasSolutionItem
-allowed_status Released

Alternatively, you can use these LOV settings:

Argument Values
-lov SYS_EPM_check_target_attachments

-allowed_status Released

where the SYS_EPM_check_target_attachments LOV contains this data:

$TARGET.ChangeItemRevision
CMHasSolutionItem.CORP_PartRevision

• This example checks the targeted change revision for an item revision for any
status of the following statuses (Concept Approval, Funding Approval, Design
Approval) in the Solution Items folder:

Argument Values
-include_type ChangeItemRevision
-include_related_type ItemRevision
-relation CMHasSolutionItem
-allowed_status Concept Approval,FundingApproval,Design

Approval

• This example checks the targeted change revision for an item revision in the
Solution Items folder, irrespective of status:

Argument Values
-include_type ChangeItemRevision
-include_related_type ItemRevision
-relation CMHasSolutionItem

• This example performs specific relation checks for particular revision type targets
and other relation checks for the remaining revision types all with no status:

Argument Values
-lov SYS_EPM_check_target_attachments
-allowed_status NONE

where the SYS_EPM_check_target_attachments LOV contains this data:

12-466 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Value Description
Software Revision,
DocumentRevision

IMAN_specification.Text

Check that any software and
document revision targets have
a text dataset attached in the
IMAN_specification relation.

DocumentRevision

IMAN_specification.Word, Excel,
PowerPoint

Check that any DocumentRevision
targets also have a Word, Excel OR
PowerPoint dataset attached in the
IMAN_specification relation.

(ItemRevision)!Software Revision!
DocumentRevision

IMAN_specification.UGMASTER

IMAN_specification.UGPART

Check that any other targets of
class ItemRevision, (in other words,
that are not SoftwareRevision
or DocumentRevision) have a
UGMASTER and UGPART attached
in the IMAN_specification relation.

(ItemRevision)

Proj.Project

Check that any revision targets also
have a project item attached to the
custom Proj relation.

Note

The relation lines are indented for clarity.

RS025 11.6 Setting Up Workflows for Product Development 12-467

Workflow handlers



Chapter 12: Workflow handlers

EPM-check-status-progression

DESCRIPTION
Checks the complete release status progression of a specific object. For example,
this handler identifies the last status added on any item revision because the handler
considers that the latest status for that item revision.

• This handler can also check whether the object follows a nonlinear progression.
A nonlinear progression does not require every subsequent release status of an
object to follow the progression path in the same order, though the latest release
status must always be greater than the previous release status. For example, if the
progression path is Experimental, Quote, Design, Manufacture, Production,
the object can achieve Experimental, Quote, and then Production release
statuses, skipping Design and Manufacture.

• If the workflow process contains several Condition tasks that apply different
release statuses at different levels, the value provided in the -status argument
can be used. If this argument is not used in this situation, the status applied to the
target object is applied to the object.

SYNTAX
EPM-check-status-progression
[-status=status-being-applied-to-the-target-object]
[-rev=current_rev|previous_rev|latest_rev|greatest_released_rev]

ARGUMENTS
-status
Derives the status being applied to the target object.

-rev
Checks for one of the following:

• Only the current revision, use current_rev. Even if the previous revision is
released to a production status, the current revision is released to a lesser status
than production.

• The latest release status of the immediately previous revision, use previous_rev.

• The greatest release status of all the revisions of the target, use latest_rev.

For example: An object has revisions A, B, and C. Revision A is released later
than revision B, and C is not released. The latest_rev option returns A.

• The latest release status of the greatest release status of the target object, use
greatest_released_rev.

For example: An object has revisions A, B, and C. Revision A is released later than
revision B, and C is not released. The greatest_released_rev option returns B.

12-468 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Note

The EPM-check-status-progression rule handler first identifies the last
status added on an item revision. The handler considers that the latest
status for that item revision. Then this handler looks at the various -rev
arguments to determine which revision to use.

When checking the last status added to each revision, status maturity is
established by the release status order in the ProgressionPath.plmxml file.

PLACEMENT
Place on any task action. Typically placed on the Complete action of the
perform-signoffs task.

RESTRICTIONS
None.

EXAMPLES
• This example checks the status of design against the progression path when the

workflow process contains several Condition tasks, which apply different release
statuses at different levels:

Argument Values
-status Design

• In this example, consider the scenario:

o Progression path: Quote, Experimental, Development, Design,
Manufacturing, Production

o IR ABC123

o IR ABC123/001 has Experimental status

o IR ABC123/002 in Working state

o IR ABC123/003 status not yet applied

To release IR ABC123/003 based on the current revision status only, define the
following arguments. Previous revision statuses are not checked. Even if the
previous revision was released to a Production status the current revision can be
released to a lesser status than Production. In this scenario, IR ABC123/003 can
be released to Quote status or upward, even though IR ABC123/001 is released
to Experimental status.

Argument Values
-rev current_rev

• In this example, consider the previous scenario. To release IR ABC123/003 based
on the latest release status of its immediate previous revision, define the following
arguments. The previous revision is IR ABC123/002, which is in Working state

RS025 11.6 Setting Up Workflows for Product Development 12-469

Workflow handlers



Chapter 12: Workflow handlers

and does not have a status applied. In this case, IR ABC123/003 can be released
to Quote status or upward.

Argument Values
-rev previous_rev

• In this example, consider the previous scenario. To release IR ABC123/003 based
on the last status of the latest released revision, define the following arguments.
The latest released revision is IR ABC123/001, its last status was Experimental.
In this case, IR ABC123/003 can be released only to Experimental status or
upward.

Argument Values
-rev latest_rev

• In this example, consider the progression path and values:

o Progression path: Quote, Experimental, Development, Design,
Manufacturing, Production.

o IR XYZ123

o IR XYZ123/001 has Design status

o IR XYZ123/002 has Experimental status

o IR XYZ123/003 has Development status

o IR XYZ123/004 status not yet applied

To release IR XYZ123/004 based on the greatest release status among all the
revisions of the target object, define the following arguments. IR XYZ123/004
releases as Design.

Argument Values
-rev greatest_released_rev

ADDITIONAL
INFORMATION

The progression path must be manually defined in the ProgressionPath.plmxml file
before the handler can reference the path. The file is stored in the TC_DATA directory.
Create a backup copy of this file before editing it.

All target types that you want to follow the progression path must be set in this file. A
UserData block must be created for each type that follows a progression path. For
example, to define the progression path for the ItemRevision, PSBOMView, and
MSWord types, the UserData blocks can be defined as follows:

<UserData id="id1">
<UserValue title="Type" value="ItemRevision"/>
<UserValue title="ReleaseProgressionList"

value="Quote,Development,Prototype,Production">

12-470 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

</UserValue>
</UserData>
<UserData id="id2">

<UserValue title="Type" value="PSBOMView"/>
<UserValue title="ReleaseProgressionList"

value="Quote1,Development1,Prototype1,Production1">
</UserValue>

</UserData>
<UserData id="id3">

<UserValue title="Type" value="MSWord"/>
<UserValue title="ReleaseProgressionList"

value="Quote2,Development2,Prototype2,Production2">
</UserValue>

</UserData>

Note

• Add the UserData blocks between the <PLMXML> and </PLMXML>
tags.

• Ensure you increment the UserData id value when you add a new entry.

• After adding a new UserData block, change the value for Type to a
type you are defining.

• You can modify the value of the release status to meet your
requirements.

RS025 11.6 Setting Up Workflows for Product Development 12-471

Workflow handlers



Chapter 12: Workflow handlers

EPM-check-signoff

DESCRIPTION
Checks decisions of all the signoffs attached to this task. If the number of approvals
is greater than, or equal to, the quorum, then EPM_go is returned. If it is possible to
obtain enough approvals from those signoffs without a decision, EPM_undecided is
returned. Otherwise, there are too many rejections and the function EPM_nogo is
returned.

SYNTAX
EPM-check-signoff -quorum=n

ARGUMENTS
-quorum
Specifies the approval quorum, where n is an integer specifying the quorum. A
value of -1 sets the quorum equal to the total number of signoffs; in other words, a
unanimous decision is required.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

12-472 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-check-responsible-party

DESCRIPTION
Verifies that the current user is the responsible party for the task (every task has a
default responsible party). If not, it verifies whether the current user meets the criteria
specified in the argument of the handler.

SYNTAX
EPM-check-responsible-party [-responsible={User|Group|Role}:value]

ARGUMENTS
-responsible
(Optional) Defines an additional responsible party.

PLACEMENT
Place on the Perform action of the task.

RESTRICTIONS
This handler cannot be placed on the Perform action of the root task.

EXAMPLES
This example shows user george, members of group dba, and the responsible party
being allowed to perform the action associated with this handler.

Argument Values
-responsible User:george, Group:dba

RS025 11.6 Setting Up Workflows for Product Development 12-473

Workflow handlers



Chapter 12: Workflow handlers

EPM-check-related-objects

DESCRIPTION
Checks whether the specified target object contains the required secondary related
objects, and whether those objects are in process or have achieved a valid status.
You can check only one type of target object per handler. You can check for either
a primary or secondary attachment type; the validation confirms the attachment is
the specified type and specified relation.

Note

If this handler is checking multiple objects, all objects must meet the criteria
to satisfy this handler.

SYNTAX
EPM-check-related-objects [-include_type=type-of-target-object]
{-primary_type=type-of-target-object| -secondary_type=secondary-object-type}
-relation=relation-type [-allowed_status=status-names | ANY | NONE |
IN_PROCESS]
[-check_first_object_only]

ARGUMENTS
-include_type
Specifies the type of the target object.

-primary_type
Specifies the type of the primary attachment.

This argument is mutually exclusive of the -secondary_type argument. You may
specify only one of these arguments.

-secondary_type
Specifies the type of the secondary attachment. This argument is mutually exclusive of
the -primary_type argument. You may specify only one of these arguments.

-relation
Specifies the relation to be checked. The relation is between the specified target
object and the specified attachment (either the primary attachment or the secondary
attachment).

• Specify verification of a manifestation relationship with IMAN_manifestation.

• Specify verification of a specification relationship with IMAN_specification.

• Specify verification of a requirement relationship with IMAN_requirement.

• Specify verification of a reference relationship with IMAN_reference.

• Specify verification of a BOM view attachment with PSBOMViewRevision.

• Specify verification of an impacted item of a change object with
CMHasImpactedItem.

12-474 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

• Specify verification of a solution item of a change object with CMHasSolutionItem.

• Specify verification of a problem item of a change object with CMHasProblemItem.

• Specify verification of a reference item of a change object with CMReferences.

• Specify verification of a change object that implements another change object
with CMImplements.

-allowed_status
Specifies the target object status to be verified:

• Specify any Teamcenter status with ANY.

• Specify no status, or working status, with NONE.

• Specify in process with IN_PROCESS.

This argument is optional.

-check_first_object_only
If specified, only the first object of type specified by -include_type is considered.

This argument is optional.
PLACEMENT

Requires no specific placement.
RESTRICTIONS

None.
EXAMPLES

• This example checks for a secondary attachment of type xyz, with a release status
of Released, with an IMAN_specification relation to the target item revision:

Argument Values
-include_type ItemRevision
-secondary_type xyz
-relation IMAN_specification
-allowed_status Released

• This example checks for a primary attachment that is a ChangeItemRevision,
currently in process, and attached to the target item revision with a
CMHasImpactedItem relation:

Argument Values
-include_type ItemRevision
-primary_type ChangeItemRevision
-relation CMHasImpactedItem
-allowed_status IN_PROCESS

RS025 11.6 Setting Up Workflows for Product Development 12-475

Workflow handlers



Chapter 12: Workflow handlers

• This example checks for a primary ChangeItemRevision attachment that is
either a change request (ECR) or change notification (ECN), that is in process,
and attached to the target item revision with a CMHasImpactedItem relation.
This checks for both ChangeRequestRevision and ChangeNoticeRevision
ChangeItemRevisions, whether in process or not:

Argument Values
-include_type ItemRevision
-primary_type ChangeItemRevision::

ChangeRequestRevision~
ChangeNoticeRevision

-relation CMHasImpactedItem

-allowed_status IN_PROCESS

• This example checks for any released secondary xyz attachment with an
IMAN_specification relation to the type1 target object:

Argument Values
-include_type type1
-secondary_type xyz
-relation IMAN_specification
-allowed_status ANY

• This example checks for a secondary xyz attachment with no status in the
Impacted Items folder of the target change object revision:

Argument Values

-include_type ChangeItemRevision
-secondary_type xyz
-relation CMHasImpactedItem
-allowed_status NONE

• This example checks for a secondary dataset attachment with a working status
attached to the target item revision. Defining the secondary_type as Dataset
checks for all dataset types of the defined relation:

Argument Values
-include_type ItemRevision
-secondary_type Dataset
-relation IMAN_specification
-allowed_status NONE

• This example checks for a secondary attachment of type xyz, with a release status
of Released, with an IMAN_specification relation to the target item revision only:

12-476 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Argument Values
-include_type ItemRevision
-secondary_type xyz
-relation IMAN_specification
-allowed_status Released
-check_first_object_only

RS025 11.6 Setting Up Workflows for Product Development 12-477

Workflow handlers



Chapter 12: Workflow handlers

EPM-check-object-properties

DESCRIPTION
Checks that a required or non-null value has been entered for the specified properties
of the specified object type that is attached to the current workflow process. If any
specified properties do not have the required values, an error message lists those
properties.

If the specified object type is a form, this handler also checks for form attributes. If the
-check_first_object_only argument is specified, it only checks the property on the
first attached target type. You can use this handler to ensure that you are not releasing
the form without defining the mandatory attributes.

SYNTAX
EPM-check-object-properties -include_type=object-type
-property=property-names
[-value=required-values]
[-attachment=attachment-type]
[-check_first_object_only] [-include_replica]

ARGUMENTS

Note

To check for a single property value that is not null, omit the -value
argument.

-include_type
Specifies the type of the workflow target/reference attachments to be checked.
Workflow attachments not matching the specified type are not checked.

Caution

This argument is required.

This argument is used in cases where the check is used only on a specific type subset
of workflow attachments, particularly if that property is specific to that type and not
found on others.

Note

Multiple values can be added to -include_type by using a comma-separated
list.

Note

An error does not occur if target/reference objects do not match the
-include_type value.

12-478 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

-property
Specifies the properties to be checked. Enter a list separated by commas or
the character specified by the EPM_ARG_target_user_group_list_separator
preference.

Note

If the handler uses a property that references a group member and its value
is being checked, then the value should be specified as: group/role/person
name (user id).

Caution

If you specify a property of the Reference type, the handler checks the
referenced object, not the workflow attachment.

-value
Specifies the required real values to be checked. Enter real values as defined in
Business Modeler IDE.

Caution

Do not enter localized values.

Enter a list separated by commas or the character specified by the
EPM_ARG_target_user_group_list_separator preference. The order of these
values must match the order of properties listed in the -property argument.

This argument is optional.

Note

If -value is not specified, then any populated value will be accepted.

-attachment
Specifies the type of attachment to be checked.

• target
Checks the targets attachment.

• reference
Checks the reference attachment.

• schedule_task
Checks the schedule task attachment.

• both
Checks target and reference types of attachments.

RS025 11.6 Setting Up Workflows for Product Development 12-479

Workflow handlers



Chapter 12: Workflow handlers

If this argument is not used, the target attachment is checked.

This argument is optional.

-check_first_object_only
If specified, only the first object of type specified by type is considered. This argument
is optional.

-include_replica
(Optional) Checks the Replica Proposed Targets as well as the target objects if the
-attachment=target argument is also specified.

If the -attachment=schedule_task argument is specified with this argument, it ignores
the attached schedule object if it is a proxy link of schedule task.

PLACEMENT
Place on any action except the Perform action.

RESTRICTIONS
None. Both empty and null values are treated as null values.

EXAMPLES
• This example checks the target CMII CR Form for nonempty values for cr_priority

and prop_soln properties:

Argument Values
-include_type CMII CR Form
-property cr_priority,prop_soln
-attachment target

• This example checks the target CMII CR Form for the specific value 1 = High
for the cr_priority property, and the specific value Corrective Action for the
cr_type property:

Argument Values
-include_type CMII CR Form
-property cr_priority,cr_type
-value 1 = High,Corrective Action
-attachment target

• This example checks the target CMII CR Form for the specific value 1 = High for
the cr_priority property, and the specific value Corrective Action for the cr_type
property, and any nonempty value for the prop_soln property:

Argument Values
-property cr_priority,prop_soln,cr_type
-value 1 = High,,Corrective Action
-include_type CMII CR Form
-attachment target

12-480 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

Note

Not placing a value between two commas instructs the system to
check for any non-null values for the corresponding property. In the
previous example, the second of the three properties to be checked, the
prop_soln property, corresponds to the empty value. Therefore, any
non-null values for this property are checked.

• This example checks the target CMII CR Form for the specific value 1 = High for
the cr_priority property, and the specific value Corrective Action for the cr_type
property, and any nonempty value for the prop_soln property:

Argument Values
-include_type CMII CR Form
-property cr_priority,cr_type,prop_soln
-value 1 = High,Corrective Action
-attachment target

Note

An alternative method of checking for nonvalues as illustrated in
example 3 is to place the property that needs to be checked for
nonvalues at the end of the properties list, as in the previous example.
This also instructs the system to check for any non-null values for the
corresponding property.

• This example checks the target and reference CMII CR Form for the specific value
1 = High for the cr_priority property, and the specific value Corrective Action for
the cr_type property and any nonempty value for the prop_soln property:

Argument Values

-include_type CMII CR Form, CMII CN Form
-property cr_priority,prop_soln,cr_type
-value 1 = High,,Corrective Action
-attachment both
-check_first_object_only

RS025 11.6 Setting Up Workflows for Product Development 12-481

Workflow handlers



Chapter 12: Workflow handlers

EPM-check-item-status

DESCRIPTION
Verifies that all secondary relations connected by ImanRelations of a target item or
item revision have been released or that these secondary objects are also target
objects in this workflow process. If the target object is an item, this handler checks
the item's Requirements folder; if the target object is an item revision, this handler
checks the item revision's Specification folder. All objects in these folders must satisfy
these requirements for the handler to return EPM_go. The relation, type, and status
arguments verify their relation, type, and status, respectively.

SYNTAX
EPM-check-item-status [-relation=relation-name]
[-include_related_type=object-type]
[-allowed_status=status-name-to-check]

ARGUMENTS
-relation
Relation name.

-include_related_type
Object type.

-allowed_status
Status to check.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

EXAMPLES
• This example verifies the text datasets in the Requirements folder of a target

object have the status of X:

Argument Values
-relation IMAN_requirement
-include_related_type Text
-allowed_status X

• This example verifies all the UGPART datasets of a target object have been
assigned status. For example, that the datasets are released, or are the target
object of the present job:

Argument Values
-include_related_type UGPART

12-482 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-check-condition

DESCRIPTION
By default, this handler is placed on the Complete action of the Condition task,
and on the successor tasks of the Validate task. When placed on these tasks, no
arguments should be used. When placed on the Complete action of the Condition
task, the handler confirms the result of the Condition task is either true or false or the
specified custom result. The handler prevents the Condition task from completing
until the default setting of unset has been modified to true or false. When placed on
the successor tasks of the Validate task, the handler confirms whether errors occurred
(either any error, or the specified errors.)

This handler can also be placed on the Start action of all tasks immediately succeeding
the Condition task. Use the -source_task argument to specify the name of the
preceding Condition task and the-decision argument to specify the result (true,
false, or specified custom result) that must be met. (This value is defined during
the workflow process template design, when the two or more flow paths that branch
from the Condition task are created.) The handler returns EPM_go when the value
matches or EPM_nogo when the value does not match. The immediately succeeding
tasks only start if they match the required value, resulting in the conditional branching
of the workflow process flow.

This handler exists as part of the workflow conditional branching functionality.
Manually adding this handler to a task other than a Condition task, a task succeeding
a Condition task, or the successor task of a Validate task has no advantage and is
not recommended.

SYNTAX
EPM-check-condition -source_task= task-name-decision= {true |
false |custom-result | ANY | error-code}

ARGUMENTS
-source_task
Specifies the name of the preceding Condition task. This argument is required if you
place the handler on the Start action of a task succeeding a Condition task.

You must omit this argument if you place the handler on the Complete action of
a Condition task.

-decision
Specifies the result that must be met. Use this argument in conjunction with a
Condition task, placing this handler on a successor task. Valid values are the
following:

• custom-result

Valid values are any string. When the Condition task's task results return a value
matching the value defined for this argument, the successor task starts when the
Condition task completes. Multiple values are accepted, separated by commas or
the character specified by the EPM_ARG_target_user_group_list_separator
preference.

RS025 11.6 Setting Up Workflows for Product Development 12-483

Workflow handlers



Chapter 12: Workflow handlers

Note

This value is automatically set when you use the Set Custom Result
option to configure the flow path from the Condition task to the
successor task.

• ANY

Use this value in conjunction with a Validate task, placing this handler on a
successor task. Indicates that if any error occurs on the Validate task, the
workflow process starts the successor task.

Note

This value is automatically set when you use the Set to Error Path
option to configure a failure path from the Validate task to the successor
task.

• error-code

Use this value in conjunction with a Validate task, placing this handler on a
successor task. Indicates that if the specified error codes occur on the Validate
task, the workflow process starts the successor task.

Note

This value is automatically set when you use the Set Error Codes option
to configure a failure path from the Validate task to the successor task.

PLACEMENT
Place on the Complete action of a Condition task, the Start action of any successor
tasks of a Condition task, or the successor tasks of a Validate task.

RESTRICTIONS
None.

Note

Workflow Designer provides a number of prepackaged task templates, such
as the Review task, Route task, and Acknowledge task templates. Adding
subtasks below any of these tasks to implement a branching condition is not
recommended as this may jeopardize the integrity of the task's structure,
and doing so may result in unpredictable behavior.

12-484 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-check-action-performer-role

DESCRIPTION
Checks whether the user performing this action matches the criteria specified in the
handler arguments.

SYNTAX
EPM-check-action-performer-role -responsible=[owner|$OWNER] |
[group|$GROUP] | [$RESPONSIBLE_PARTY] | [privileged | $PRIVILEGED] |
[group::{*|role}] | [role]

ARGUMENTS
-responsible
Checks if the user matches the specified value. Valid values are:

• owner | $OWNER

Specifies the owner of the task.

• group | $GROUP

Specifies that the current user’s logged-on group be the same as one of the
groups of the task’s responsible party.

• $RESPONSIBLE_PARTY

Specifies the responsible party of the task.

• privileged | $PRIVILEGED

Specifies the responsible party of the task and the owner of the workflow process.
If the task does not have a responsible party, the handler ascends the hierarchy
of tasks to find the first assigned responsible party.

• group::{*|role}

Specifies a group name and role name to match.

• role

Specifies a role name to match.

PLACEMENT
Requires no specific placement. Typically place on the Assign, Skip, or Undo actions
to control access to those actions.

RESTRICTIONS
There must be no role in the database with the name privileged.

EXAMPLES
• This example allows the owner of the workflow process and the responsible party

to trigger the action.

Argument Values
-responsible privileged

• This example allows any member of the engineering group to trigger the action.

RS025 11.6 Setting Up Workflows for Product Development 12-485

Workflow handlers



Chapter 12: Workflow handlers

Argument Values
-responsible engineering::*

• This example allows any user with the role of manager to trigger the action.

Argument Values
-responsible manager

• This example allows any user with the role of designer in the engineering group
or the Project Administrator role in the Project Administration to trigger the
action.

Argument Values
-responsible Project Administration::Project

Administrator, engineering::designer

• This example allows any user with the role of designer in the structure subgroup
of the engineering group to trigger the action.

Argument Values
-responsible structure.engineering::designer

12-486 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

EPM-assert-targets-checked-in

DESCRIPTION
Verifies that all target objects in this workflow process are checked in.

SYNTAX
EPM-assert-targets-checked-in

ARGUMENTS
None.

PLACEMENT
Requires no specific placement.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-487

Workflow handlers



Chapter 12: Workflow handlers

EPM-assert-signoffs-target-read-access

DESCRIPTION
Checks if all the selected reviewers have read access to the attached target
attachments.

SYNTAX
EPM-assert-signoffs-target-read-access [-check_assignee=$RESOURCE_
POOL_ALL]

ARGUMENTS
-check_assignee
If the selected reviewer is a resource pool, checks if all members of the resource pool
have read access to the attached targets.

The only valid value is $RESOURCE_POOL_ALL.
PLACEMENT

Place on the Complete action of a select-signoff-team task.
RESTRICTIONS

None.

12-488 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

AUTOSCHEDULING-person-reassign-validate

DESCRIPTION
Verifies that when a workflow task with an attached job card or job task is reassigned
to another user, that user has the discipline (skill) and qualifications specified on the
job card or job task.

SYNTAX
AUTOSCHEDULING-person-reassign-validate

ARGUMENTS
None.

PLACEMENT
Place on the Start action of the perform-signoffs task.

RESTRICTIONS
None.

RS025 11.6 Setting Up Workflows for Product Development 12-489

Workflow handlers



Chapter 12: Workflow handlers

ASMAINTAINED-validate-missing-asmaintained-structure

DESCRIPTION
Validates the as-maintained structure does not contain any missing or unidentified
physical parts.

SYNTAX
ASMAINTAINED-validate-missing-asmaintained-structure

ARGUMENTS
None.

PLACEMENT
Place at the entry of the workflow to validate that the target structure does not contain
any missing physical parts.

RESTRICTIONS
This handler is available only when Teamcenter service lifecycle management Service
Manager is licensed and installed.

12-490 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ASMAINTAINED-validate-for-unserviceable-physicalpartrevision

DESCRIPTION
Checks the as-maintained structure for any unserviceable physical parts.

SYNTAX
ASMAINTAINED-validate-for-unserviceable-physicalpartrevision

ARGUMENTS
None.

PLACEMENT
Place at the entry of the workflow to validate that the target structure does not contain
any unserviceable physical parts.

RESTRICTIONS
This handler is available only when Teamcenter service lifecycle management Service
Manager is licensed and installed.

RS025 11.6 Setting Up Workflows for Product Development 12-491

Workflow handlers



Chapter 12: Workflow handlers

ASMAINTAINED-validate-for-latest-asmphysicalpartrevision

DESCRIPTION
Checks if the target physical part revision is the latest revision.

SYNTAX
ASMAINTAINED-validate-for-latest-asmphysicalpartrevision

ARGUMENTS
None.

PLACEMENT
Place at the entry of the workflow to validate that the target physical part revision is
the latest one.

RESTRICTIONS
This handler is available only when Teamcenter service lifecycle management Service
Manager is licensed and installed.

12-492 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ASMAINTAINED-validate-for-checkedout-physicalpartrevision

DESCRIPTION
Checks if any physical parts are checked out in the as-maintained structure by a user
other than the creator or submitter of the workflow process.

SYNTAX
ASMAINTAINED-validate-for-checkedout-physicalpartrevision

ARGUMENTS
None.

PLACEMENT
Place at the entry of the workflow to validate that the target structure does not
contained any checked out physical parts.

RESTRICTIONS
This handler is available only when Teamcenter service lifecycle management Service
Manager is licensed and installed.

RS025 11.6 Setting Up Workflows for Product Development 12-493

Workflow handlers



Chapter 12: Workflow handlers

ASBUILT-validate-missing-structure

DESCRIPTION
Validates the as-built structure does not contain any missing or unidentified physical
parts.

SYNTAX
ASBUILT-validate-missing-structure

ARGUMENTS
None.

PLACEMENT
Place at the entry of the workflow to validate that the target structure does not contain
any missing physical parts.

RESTRICTIONS
This handler is available only when Teamcenter service lifecycle management Service
Manager or As-Built Manager is licensed and installed.

12-494 Setting Up Workflows for Product Development RS025 11.6

Chapter 12: Workflow handlers



Workflow handlers

ASBUILT-validate-for-physicalpartrevision

DESCRIPTION
Validates that the submitted object is a physical part revision before traversing the
as-built structure and releasing each of the physical part revisions.

SYNTAX
ASBUILT-validate-for-physicalpartrevision

ARGUMENTS
None.

PLACEMENT
Place at the entry of the workflow to validate that the target object is a physical part
revision for as-built structure traversal.

RESTRICTIONS
This handler is available only when Teamcenter service lifecycle management Service
Manager or As-Built Manager is licensed and installed.

RS025 11.6 Setting Up Workflows for Product Development 12-495

Workflow handlers



Siemens Industry Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Suites 4301-4302, 43/F
AIA Kowloon Tower, Landmark East
100 How Ming Street
Kwun Tong, Kowloon
Hong Kong
+852 2230 3308

About Siemens PLM Software

Siemens PLM Software, a business unit of the Siemens
Industry Automation Division, is a leading global provider
of product lifecycle management (PLM) software and
services with 7 million licensed seats and 71,000 customers
worldwide. Headquartered in Plano, Texas, Siemens
PLM Software works collaboratively with companies
to deliver open solutions that help them turn more
ideas into successful products. For more information
on Siemens PLM Software products and services, visit
www.siemens.com/plm.

© 2018 Siemens Product Lifecycle Management
Software Inc. Siemens and the Siemens logo are
registered trademarks of Siemens AG. D-Cubed,
Femap, Geolus, GO PLM, I-deas, Insight, JT, NX,
Parasolid, Solid Edge, Teamcenter, Tecnomatix and
Velocity Series are trademarks or registered trademarks
of Siemens Product Lifecycle Management Software
Inc. or its subsidiaries in the United States and in other
countries. All other trademarks, registered trademarks
or service marks belong to their respective holders.


	Contents
	Contents
	1. What is Workflow Designer?
	What is Workflow Designer?
	Before you begin
	Syntax definitions
	What is a workflow?
	Workflow elements
	Workflow process template
	Workflow task template
	Workflow privileged user
	Workflow Designer interface
	Workflow Designer view
	Workflow Designer menus
	File menu
	Edit menu
	View menu
	Tools menu
	Go menu

	Workflow Designer buttons
	Workflow Designer panes
	Task attributes
	Task handlers
	Task signoffs

	Migrating workflow attachments
	Editing active workflow processes
	Background processing for processes and tasks
	Requirements for background processing
	Configure tasks for background processing

	Refreshing Workflow Designer
	Delete key removes workflow objects and backspace key removes text
	Save time when creating multiple tasks of the same type
	Move and resize the Handler dialog box
	Workflow errors
	Teamcenter rich client perspectives and views


	2. Creating workflow process templates
	Structuring a workflow process
	Example of building a workflow process template
	Create workflow process templates
	Creating baseline workflow process templates
	Create a quick-release workflow process template
	Creating Custom Templates
	Creating subprocesses
	What are workflow subprocesses?
	Creating subprocesses from a workflow template
	Creating subprocesses for multiple targets
	Creating subprocesses for assemblies
	Creating subprocesses for related objects
	Creating ad hoc subprocesses

	Associate templates with a target object type and a user groupSelect a default process template
	Core templates
	Delete workflow process templates
	Workflow examples
	Change Manager workflow example
	Add Status task example: Replace status of target objects
	ACMERP workflow process
	Start task
	ACMERP (Add Status task)



	3. Editing workflow process templates
	Determining which editing options to use
	Editing offline versus online
	How process template edits are applied to active processes
	Enable template edits for active processes
	Edit a workflow process template
	Apply process template edits to active processes

	4. Viewing workflow process templates
	Viewing templates in the task hierarchy tree or process flow pane
	View a subtask
	View a parent task
	View the root task
	Viewing a subprocess
	View task attributes
	Set Duration
	Set Recipients list
	View task handlers

	5. Adding tasks to workflow process templates
	Workflow task actions and states
	Task templates
	Task template definitions
	Custom tasks
	Do tasks
	Review tasks
	Add Status tasks
	Or tasks
	Acknowledge tasks
	Condition tasks
	Route tasks
	Validate tasks

	Adding tasks to a process template
	Create your own specific workflow requirements with a Custom task
	Specify user actions with a Do task
	Require users to look at targets with a Review task
	Attach a status to targets with an Add Status task
	Continue the workflow with an Or task
	Inform users of a workflow's progress with an Acknowledge task
	Branching a workflow with a Condition task
	Creating manual Condition tasks
	Creating automatic Condition tasks
	Configuring Condition tasks
	Add a Condition task to a process template
	Set Condition task paths

	Distribute targets to users with a Route task
	Check for errors with a Validate task
	Find error codes
	Add error codes
	Insert and configure a Validate task
	Validate task example: Close gaps in your workflow
	Validate task example: Improve user response time
	Validate task example: Track errors from custom handlers
	Validate task behavior

	Automatically reassign tasks for inactive users

	Insert a task into a template
	Drag and drop a task
	Cut and paste a task
	Delete a task
	Localize task names

	6. Linking tasks in a workflow process template
	Explicit and assumed links
	Link tasks manually
	Delete links
	Creating failure paths
	Developing workflow process templates with backwards branches
	Converting legacy backwards branching templates to the new behavior
	Moving to a previous task after Review or Route task is rejected

	7. Modifying task behavior
	Using attributes and handlers to modify tasks
	Edit task attributes
	What are task handlers?
	View task handlers
	Create task handlers based on existing handlers
	Create new task handlers
	Edit task handlers
	Configuring rule quorums
	Delete task handlers
	Create an ACL and recipients for a task
	Requiring a PKI digital signature during a workflow
	Requiring PKI authentication to perform a workflow task
	Adding schedule tasks and attachments to a workflow process

	8. Manage signoff behavior
	Signoff profile creation
	Quorum and required signoff behavior
	Workflow task assignment options
	Create a signoff profile
	Define a surrogate for another user (requires administrative privileges)

	9. Using workflows to manage security and project data
	Managing security and project data using custom forms
	Assign members to projects using workflow arguments
	Assign a project to workflow targets
	Setting the security classification on a workflow target

	10. Using workflow templates at multiple Teamcenter sites
	Configuring remote workflows
	Distributing workflow templates using Multi-Site Collaboration
	Replicate a workflow template
	Synchronize replicated templates

	Distributing workflow templates using Workflow Designer
	Importing and exporting workflow templates
	Import workflow templates
	Export workflow templates


	11. Working with remote inboxes
	Sending schedule tasks through workflows at remote sites
	Enabling remote inboxes
	Working with task data in remote inboxes
	Subscribe to a remote inbox
	Check out data to your local site from a remote site
	Export data to your local site from a remote site

	12. Workflow handlers
	What are workflow handlers?
	Updating your task templates to use the new handler and argument names
	Renaming your custom handlers and arguments
	Renaming of Teamcenter handlers, arguments, values, and keywords
	Handler argument values
	Syntax for handler arguments and values
	Keywords as argument values
	What are handler keywords?
	Common keywords
	Handler-specific keywords
	Use keywords to implement dynamic participants in handlers
	Configuring assigning participants automatically

	Lists of values as argument values
	Using lists of values (LOVs) in handler arguments
	LOV syntax
	Defining multilevel object paths
	LOV syntax example

	Differentiating between classes and types
	Specifying relations

	Debugging handler data
	Action Handlers
	AI-export-AH
	VAL-set-condition-result-overrides
	VAL-set-condition-by-check-validation-result
	VAL-reject-result-overrides
	VAL-approve-result-overrides
	TSTK-CreateTranslationRequest
	TCRS-trigger-approve-first-step
	TCRS-store-review-data
	TCRS-setstatus-EngOrder-folder
	TCRS-set-bom-precise
	TCRS-remove-targets-with-status
	TCRS-release-previous-itemrevs
	TCRS-purge-dataset
	TCRS-IRM-cleanfields
	TCRS-export-to-tcxmlfile
	TCRS-export-signoff-data
	TCRS-delete-log-datasets
	TCRS-delete-dataset
	TCRS-Create-Translation-Request
	TCRS-create-snapshot
	TCRS-Create-Print-Requests
	TCRS-create-form
	TCRS-auto-approve-first-step
	SMP-auto-relocate-file
	SERVICEPROCESSING-approve-service-structure
	SERVICEFORECASTING-approve-ma-extension
	SCHMGT-sync-schedule-attachments
	SCHMGT-revise-timesheetentries
	SCHMGT-reject-timesheetentries
	SCHMGT-approve-timesheetentries
	SAP-upload-AH
	SAP-set-valid-date-AH
	RM-attach-tracelink-requirement
	RM-attach-SM-tracelink-requirement
	RDV-tessellation-handler
	RDV-generate-ugcgm-drawing
	RDV-generate-image
	RDV-delete-ugcgm-markup
	PUBR-unpublish-target-objects
	PUBR-publish-target-objects
	PS-make-mature-design-primary
	PS-attach-assembly-components
	PROJ-update-assigned-projects
	PROJ-assign-members
	PIE-export-to-plmxmlfile
	PARTITION-activate-or-inactivate
	OBJIO-send-target-objects
	OBJIO-release-and-replicate
	OBJIO-archive-target-objects
	OBJIO-acquire-site-ownership
	MES-Update3DPDFReports
	ME-update-mirror-mbom-AH
	ME-stamp-ids-AH
	ME-mbom-resolve-AH
	ME-create-revision-change-XML-AH
	ME-create-mirror-mbom-AH
	MDL-snapshot-baseline-revisions
	MDL-promote-objects-to-history
	MDL-attach-subset-definition-changes
	MDL-attach-changes-to-baselines
	LDF-set-task-result-to-property
	LDF-create-object
	ISSUEMGT-update-issue-status
	ISSUEMGT-check-review-decision
	GMIMAN-invoke-subscription-event-on-item
	ERP-transform-AI-contents-AH
	ERP-set-pathnames-in-logds-AH
	ERP-post-upload-AH
	ERP-download-AH
	ERP-delete-log-dataset-AH
	ERP-attach-targets-AH
	ERP-att-logfile-as-dataset-RH
	EPM-trigger-action-on-related-process-task
	EPM-trigger-action
	EPM-system
	EPM-suspend-on-reject
	EPM-set-task-result-to-property
	EPM-set-status
	EPM-set-rule-based-protection
	EPM-set-property
	EPM-set-parent-result
	EPM-set-owning-project-to-task
	EPM-set-job-protection
	ERP-set-form-value-AH
	EPM-set-duration
	EPM-set-condition
	EPM-run-external-command
	EPM-require-authentication
	EPM-request-PKI-authentication
	EPM-remove-objects
	EPM-notify-signoffs
	EPM-notify-report
	EPM-notify
	EPM-move-attached-objects
	EPM-late-notification
	EPM-invoke-system-action
	EPM-inherit
	EPM-fill-in-reviewers
	EPM-execute-follow-up
	EPM-display-form
	EPM-demote-on-reject
	EPM-demote
	EPM-debug
	EPM-create-sub-process
	EPM-create-status
	EPM-create-relation
	EPM-create-form
	EPM-check-signoff-comments
	EPM-change-target-group-owner
	EPM-change-target-group
	EPM-change-ownership
	EPM-change-group-owner
	EPM-change-all-started-to-pending
	EPM-auto-check-in-out
	EPM-auto-assign-rest
	EPM-auto-assign
	EPM-attach-related-objects
	EPM-assign-team-selector
	EPM-assign-signoff-dynamic-participant
	EPM-assign-responsible-party-dynamic-participant
	EPM-apply-digital-signature
	EPM-adhoc-signoffs
	DPV-export-routine-to-ai
	DPV-export-plant-to-ai
	DPV-export-device-to-ai
	DOCMGT-update-document-property
	DOCMGT-update-docprop-logicalobject
	DOCMGT-render-document-revision
	DOCMGTAPP-insert-pdf-cover-page
	DOCMGTAPP-apply-pdf-control
	CSI-propagate-folder-contents
	CPD-where-used-item-revision
	CPD-update-item-realization
	CPD-collect-related-items
	CONTMGMTS1000D-setQAStatus
	CONTMGMTS1000D-increment
	CONFMGMT-cut-back-effectivity
	CM-promote-change-notice
	CM-inactivate-edit-context
	CM-baseline-solution-item-revisions-on-change-notice
	CFG0-attach-rule-variability
	CFG0-attach-familygroups
	CFG0-attach-families
	CFG0-attach-constraint-rules
	CFG0-attach-allocations
	CAE-simulation-process-launch-handler
	CAE-batch-meshing-handler
	BC-perform-export
	ASMAINTAINED-release-asmaintained-structure
	ASMAINTAINED-attach-physical-components 
	ASBUILT-release-asbuilt-structure
	ASBUILT-attach-physical-components 
	AR-mark-archive
	AI-process-export
	AI-process-import

	Rule handlers
	ASBUILT-validate-for-checkedout-physicalpartrevision
	VAL-check-validation-result-with-rules
	VAL-check-validation-result
	TCRS-has-target-drawing
	TCRS-check-status
	TCRS-check-signoff
	TCRS-check-prev-itemrev-status
	TCRS-check-jobowner
	TCRS-check-itemrev-status
	TCRS-check-datasets
	TCRS-check-comps-against-pattern
	TCRS-check-bomchild-statuslist
	TCRS-check-bom-precise
	TCRS-check-approver
	TCRS-generate-pdf
	TCRS-bom-plmxml-export
	SAP-check-forms-to-download-RH
	SAP-check-forms-attached-RH
	PS-check-occ-notes
	PS-check-assembly-status-progression
	MROCORE-validate-for-class
	MFG-invoke-customized-validations
	MESINTEG_ValidateReleaseAndExport
	LDF-sync-ldf-status
	ICS-assert-target-classified
	ERP-validate-data-RH
	ERP-check-target-status-RH
	ERP-check-effective-date-RH
	EPM-verify-digital-signature
	EPM-validate-target-objects
	EPM-signoff-team-validation
	EPM-invoke-system-rule
	EPM-hold
	EPM-disallow-reviewers
	EPM-disallow-removing-targets
	EPM-disallow-adding-targets
	EPM-debug-rule
	EPM-check-target-object
	EPM-check-target-attachments
	EPM-check-status-progression
	EPM-check-signoff
	EPM-check-responsible-party
	EPM-check-related-objects
	EPM-check-object-properties
	EPM-check-item-status
	EPM-check-condition
	EPM-check-action-performer-role
	EPM-assert-targets-checked-in
	EPM-assert-signoffs-target-read-access
	AUTOSCHEDULING-person-reassign-validate
	ASMAINTAINED-validate-missing-asmaintained-structure
	ASMAINTAINED-validate-for-unserviceable-physicalpartrevision
	ASMAINTAINED-validate-for-latest-asmphysicalpartrevision
	ASMAINTAINED-validate-for-checkedout-physicalpartrevision
	ASBUILT-validate-missing-structure
	ASBUILT-validate-for-physicalpartrevision




