

Technical Catalogue

Applications

Conventional Brick & Mortar Residential Structures

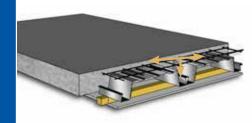
Concrete Frame Structures [Columns & Beams]

Shopping Centres; Schools; Multi-storey Residential; Commercial etc.

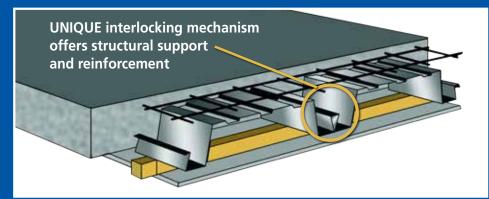
Steel Structures Composite – Non Composite; Propped – Un-propped

Light Steel Frame Structures

Surface Slabs & Raft Foundations


Product Features

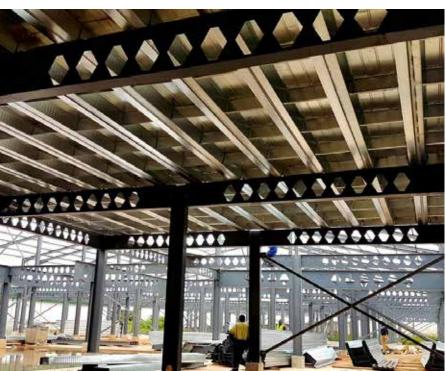
Permanent Decking



Composite Action

T-Beam Design

Not only acts as permanent shuttering but also serves as tensile reinforcement, resulting in a composite action with the concrete.



Product Benefits

- Up to 60% Concrete saving
- Highly cost-effective
- Minimal propping requirement
- Comprehensive engineering and technical support
- Ideal for complicated shaped slabs
- Ample space in voids for services (Electrical & Plumbing)
- Improved sound and temperature insulation
- Easy installation of conventional ceiling systems
- Lightweight nature of Voidcon leads to major saving on superstructures

Contents

PAGE

1 About Voidcon – "What is Voidcon"

Design Parameters

- 3 VP50
- 4 Voidpro-50 Load-Span Table
- 5 VP115
- 6 Voidpro-115 Load-Span Table
- 7 VP200
- 8 Voidpro-200 Load-Span Table
- 9 SANS 10144

Fire Design/Rating

- 11 Design Steps for Simplified Design of Voidpro Slabs in Fire
- 14 VP 50 Reinforcing Requirements for a 60 minute Fire Rating
- 15 VP 115 Reinforcing Requirements for a 60 minute Fire Rating
- 16 VP 200 Reinforcing Requirements for a 60 minute Fire Rating
- 17 SANS 10400 T: 2011

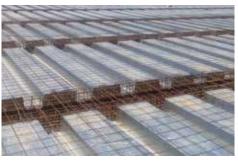
Product List

19 Product list with illustrations

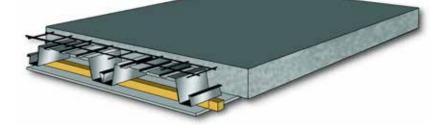
What is Voidcon?

Voidcon is a composite suspended Slab System, designed, manufactured and distributed in South Africa. The slab system entered the market in 2004 and has enjoyed steady growth since. The Voidcon Slab System is suitable for industrial, commercial as well as residential buildings. The Slab System made from galvanized steel profiles, laid in position, into which concrete is poured. The concrete provides strength with the steel providing stability. Voidcon Slab System uses substantially less concrete than conventional decking systems, resulting in a substantial cost saving for client. The additional benefit is that Voidcon Slab System uses less concrete and steel, thus making it substantially less harmful to the environment.

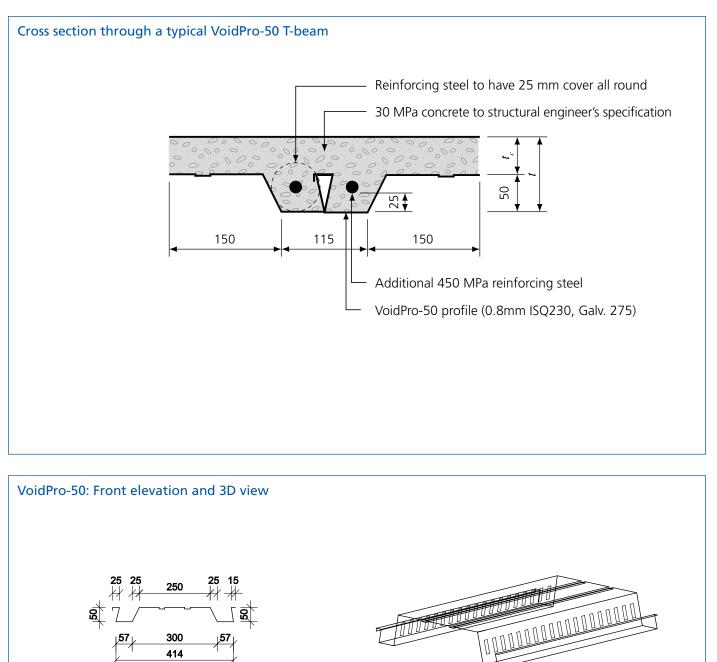
Voidcon has a strong national footprint and has been used on many other structural projects in the African Continent.


Voidpro Manufacturing (Pty) Ltd

Voidpro Manufacturing (Pty) Ltd. is a 51% black owned level 2 BBBEE manufacturing concern. The organisation was set up in 2012 with the sole purpose of Manufacturing and Distributing the Voidcon Decking Systems. The Voidcon System Slab was previously manufactured under licence by SAFINTRA between 2004 until 2011.


Benefits of the Voidcon Decking Systems

- 40% 60% Concrete saving
- Lightweight system
- Minimal propping requirement
- Saving on cranes
- Cost-effective
- Exceptional strength due to the T-Beam design
 - Composite action of the system leads to an extremely strong bond between steel and concrete.
- Comprehensive technical support
 - Voidcon's business model is based on a Franchise system, referred to as a Licensee system with presence in all the provinces.
 - An in-house Draughtsman doing Voidcon Layouts based on a drawings supplied by client – preferably drawings in a DWG format.
 - Layout drawing lends to accurate quotes, accurate materials to be ordered and aids in the installation process on site.
 - If need be client can also order that propping design be included with the layout.
- Product versatility
 - Ideal for complicated shaped slabs
 - Ample space in voids for all services (Electrical & Plumbing)
 - Multiple Application i.e. can be used on Brick and Mortar; Concrete Frame Structures [Columns & Beams]; Steel Structures; Lightsteel Frames & Surface Slabs.
- Improved sound and temperature insulation
- Easy installation of conventional ceiling systems



Design Parameters

VP-50

The VoidPro-50 profile displaces 0.0344 m³ concrete per m² floor area. When calculating additional reinforcing requirements, it was assumed that the VoidPro-50 profile has an effective tension steel area of 292 mm² and that the centroid of the deck tension steel area is located 20.55 mm from the bottom of the deck.

300

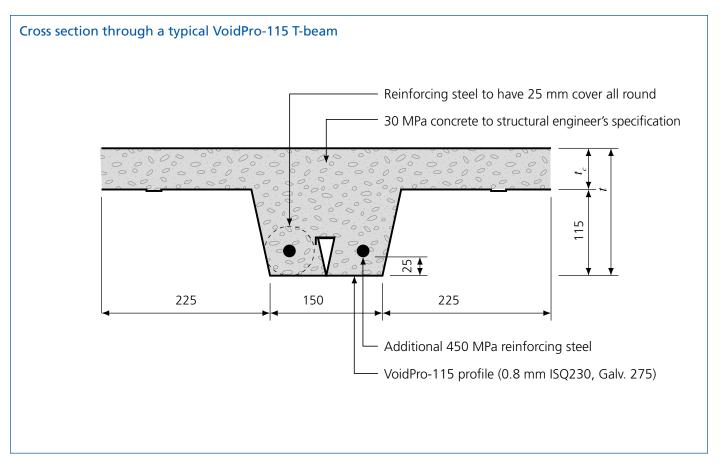
414

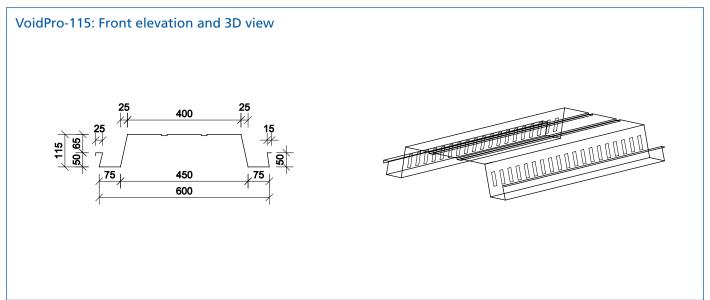
57

Voidpro-50 Load-Span Table

Additional reinforcing steel in [mm²] per beam at 415 mm spacing, for the VoidPro-50 system used in a single span simply supported configuration. Calculations are based on a characteristic concrete cube strength of 30 MPa and a characteristic deck steel yield strength of 230 MPa. Additional reinforcing should be high strength steel with a yield stress of 450 MPa. Additional reinforcing steel is limited to a maximum diameter of 20 mm. Cover of 25 mm above the deck soffit should be provided in all cases. Where values are listed as zero, no additional reinforcing is required as the VoidPro-50 profile provides sufficient tensile reinforcing. Where no value is listed, the span length is governed by either deflection considerations or the depth of the concrete compression block exceeds the limits imposed to prevent failure by concrete crushing. <u>Underlined</u>-values are for cases where serviceability considerations govern, but the allowable span can be increased by providing the indicated amount of reinforcing steel.

Reinf	forcing	g requi	ireme	nts fo	or ulti	mate	and	servi	ceabi	lity lii	mit st	ates	
Q_n^{a}	${G_n}^{b}$	TL_{f}^{c}	t^{d}				FI	oor sp	an in	[m]			
[kPa]	[kPa]	[kPa]	[mm]	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75
				Addit	ional	reinfo	rcing s	steel in	n [mm	²] per	beam	415 n	m^{c}/c
	2.065 2.065	5.96 6.76	120 120	0	0	0	0	0	0				
2.50	2.065	7.56 8.36	120 120	0	0 0	0 0	0 0	0 0					
5.00	2.065 2.065 2.065	9.96 11.56 15.56	120 120 120	0 0 0	0 0 20	0 0	0						
2.00 2.50 3.00 4.00	2.411 2.411 2.411 2.411 2.411 2.411 2.411	6.37 7.17 7.97 8.77 10.37 11.97	135 135 135 135 135 135 135	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 10	0 0 0 10 30	0 0 0 30	0 0 10	0		
	2.411	15.97	135	0	0	30	70	0	0	0	0	0	410
2.00 2.50 3.00 4.00 5.00	2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756	6.79 7.59 8.39 9.19 10.79 12.39 16.39	150 150 150 150 150 150 150	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 10	0 0 0 0 0 40	0 0 0 20 80	0 0 20 40 <u>440</u>	0 0 10 40 <u>210</u>	0 0 20 30	0 20 <u>440</u>	410
2.00 2.50 3.00 4.00	2.987 2.987 2.987 2.987 2.987 2.987 2.987 2.987	7.06 7.86 8.66 9.46 11.06 12.66 16.66	160 160 160 160 160 160 160	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 30	0 0 0 0 10 60	0 0 0 10 30 90	0 0 0 30 60 <u>390</u>	0 0 10 20 50 <u>150</u>	0 10 30 50 <u>450</u>	10 30 <u>240</u>


^a Unfactored imposed (live) load.


^b Unfactored own-weight of the slab and the VoidPro-50 profile.

^c Total factored load using the SANS10160-1 STR load combination of 1.2*Gn* + 1.6*Qn* where *Gn* is the total nominal permanent (dead) load and *Qn* is the total imposed (live) load. Note that in calculating the total factored load, an allowance was made for the additional permanent load of 0.9 kPa accounting for services and finishes. Concrete own weight was calculated based on a mass of 2350 kg/m³.

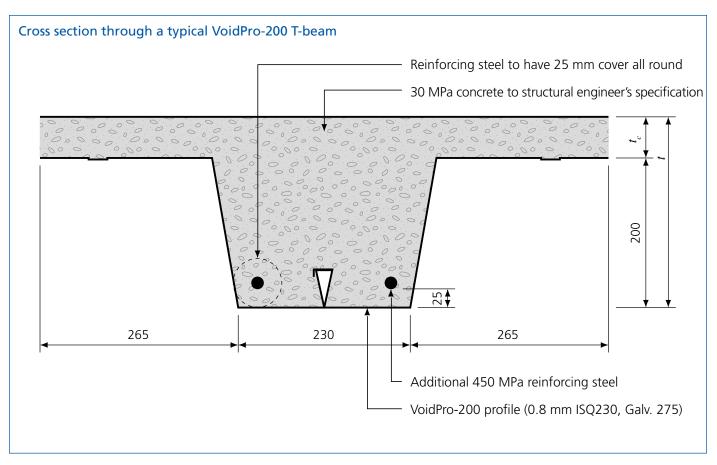
VP-115

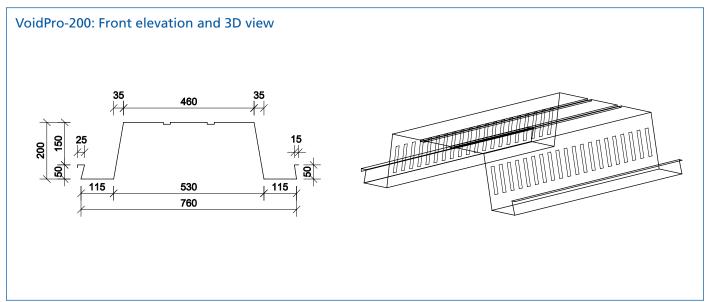
The VoidPro-115 profile displaces 0.0815 m³ concrete per m² floor area. When calculating additional reinforcing requirements, it was assumed that the VoidPro-115 profile has an effective tension steel area of 320 mm² and that the centroid of the deck tension steel area is located 18.75 mm from the bottom of the deck.

Voidpro-115 Load-Span Table

Additional reinforcing steel in [mm²] per beam at 600 mm spacing, for the VoidPro-115 system used in a single span simply supported configuration. Calculations are based on a characteristic concrete cube strength of 30 MPa and a characteristic deck steel yield strength of 230 MPa. Additional reinforcing should be high strength steel with a yield stress of 450 MPa. Additional reinforcing steel is limited to a maximum diameter of 20 mm. Cover of 25 mm above the deck soffit should be provided in all cases. Where values are listed as zero, no additional reinforcing is required as the VoidPro-115 profile provides sufficient tensile reinforcing. Where no value is listed, the span length is governed by either deflection considerations or the depth of the concrete compression block exceeds the limits imposed to prevent failure by concrete crushing. <u>Underlined</u>-values are for cases where serviceability considerations govern, but the allowable span can be increased by providing the indicated amount of reinforcing steel.

Reinf	orcing	requi	remer	nts fo	r ulti	mate	and s	ervice	abili	ty limi	it stat	tes				
Q_n^{a}	$G_n{}^{b}$	TL_{f}^{c}	t^{d}						Floo	r span	in [m]					
[kPa]	[kPa]	[kPa]	[mm]	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25	6.50	6.75	7.00	7.25	7.50
					A	dditio	nal reii	nforcir	ng ste	el in [n	nm²] p	er bea	m 600	0 mm ʻ	² /c	
2.00 2.50 3.00 4.00 5.00	2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150	11.66	170 170 170 170 170 170 170	0 20 50 70 120 170	20 50 70 100 <u>230</u> 790	40 70 100 <u>240</u>	60 100 <u>510</u>	<u>270</u> <u>860</u>								
2.00 2.50 3.00 4.00 5.00	2.611 2.611 2.611 2.611 2.611 2.611 2.611	12.21	190 190 190 190 190 190 190	0 10 30 50 100 140 240	10 40 60 80 130 170 <u>470</u>	30 60 80 110 160 210 <u>1200</u>	50 80 110 140 <u>250</u> 650	80 110 140 <u>230</u> 750	100 130 <u>400</u> 730	220 <u>560</u> 1090	<u>720</u>					
2.00 2.50 3.00 4.00 5.00	2.842 2.842 2.842 2.842 2.842 2.842 2.842 2.842	12.49	200 200 200 200 200 200 200	0 10 30 50 90 130 220	10 30 50 70 120 160 270	30 50 80 100 150 200 <u>500</u>	50 80 100 130 180 240 <u>1140</u>	70 100 130 160 <u>270</u> 630	100 130 160 <u>250</u> 700	120 150 <u>380</u> <u>670</u>	220 520 930	<u>630</u> <u>1230</u>				
2.00 2.50 3.00 4.00 5.00	3.418 3.418 3.418 3.418 3.418 3.418 3.418 3.418	13.18	225 225 225 225 225 225 225 225	0 20 40 70 100 190	0 20 40 60 100 130 230	20 40 60 130 170 270	40 70 90 110 160 200 320	60 90 110 140 190 240 <u>430</u>	90 110 140 170 220 280 <u>810</u>	$110 \\ 140 \\ 170 \\ 200 \\ 260 \\ 470 \\ 1550 \\ 1550 \\ 110 \\ 10$	130 170 200 230 <u>490</u> 890	160 190 <u>270</u> <u>450</u> 920	180 <u>350</u> <u>570</u> 850		770 1310	1520
2.00 2.50 3.00 4.00 5.00	3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995	12.27 13.87	250 250 250 250 250 250 250	0 10 30 60 90 160	0 20 30 50 80 110 200	20 40 50 70 110 150 240	40 60 80 100 140 180 280	60 80 100 120 170 210 330	80 100 130 150 200 250 380	100 130 150 180 230 290 430	120 150 210 270 330 <u>710</u>	150 180 210 240 310 <u>430</u> <u>1160</u>	170 210 240 280 <u>430</u> 710	200 240 270 <u>390</u> <u>710</u> <u>1170</u>	230 <u>300</u> <u>460</u> <u>650</u> <u>1170</u>	340 530 770 1080


^a Unfactored imposed (live) load.


^b Unfactored own-weight of the slab and the VoidPro-115 profile.

^c Total factored load using the SANS10160-1 STR load combination of 1.2Gn + 1.6Qn where Gn is the total nominal permanent (dead) load and Qn is the total imposed (live) load. Note that in calculating the total factored load, an allowance was made for the additional permanent load of 0.9 kPa accounting for services and finishes. Concrete own weight was calculated based on a mass of 2350 kg/m³.

VP-200

The VoidPro-200 profile displaces 0.130 m³ concrete per m² floor area. When calculating additional reinforcing requirements, it was assumed that the VoidPro-200 profile has an effective tension steel area of 384 mm² and that the centroid of the deck tension steel area is located 15.20 mm from the bottom of the deck.

Voidpro-200 Load-Span Table

Additional reinforcing steel in [mm²] per beam at 760 mm spacing, for the VoidPro-200 system used in a single span simply supported configuration. Calculations are based on a characteristic concrete cube strength of 30 MPa and a characteristic deck steel yield strength of 230 MPa. Additional reinforcing should be high strength steel with a yield stress of 450 MPa. Additional reinforcing steel is limited to a maximum diameter of 20 mm. Cover of 25 mm above the deck soffit should be provided in all cases. Where values are listed as zero, no additional reinforcing is required as the VoidPro-200 profile provides sufficient tensile reinforcing. Where no value is listed, the span length is governed by either deflection considerations or the depth of the concrete compression block exceeds the limits imposed to prevent failure by concrete crushing. <u>Underlined</u>-values are for cases where serviceability considerations govern, but the allowable span can be increased by providing the indicated amount of reinforcing steel.

Reinf	orcing	requi	remei	nts fo	r ulti	mate	and	servio	eabil	ity lin	nit sta	ates			
Q_n^{a}	$G_n{}^{b}$	TL _f ^c	t^{d}					F	loor s	pan in	[m]				
[kPa]	[kPa]	[kPa]	[mm]	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50
					Addi	tional	reinfo	rcing	steel i	in [mn	n²] per	beam	760 m	$m^{c}/_{c}$	
	2.962	7.03	255	0	0	0	30	80	130	180	240		1080		
	2.962 2.962	7.83 8.63	255 255	0	0 0	10 40	60 90	110 140	170 200	230 270	290 370	<u>670</u>			
	2.902	9.43	255	0 0	10	60	110	140	200	320	580	<u>1030</u>			
	2.962		255	0	40	100	170	240	320		1130				
	2.962		255	20	80	150	220	310	400	<u>760</u>					
7.50	2.962	16.63	255	90	170	260	360	480	<u>860</u>						
	3.423	7.59	275	0	0	0	30	80	130	180	240	300		1110	
	3.423 3.423	8.39 9.19	275 275	0 0	0 0	10 30	60 80	110 140	160 200	220 260	280 330	350 470	<u>740</u> 1070	<u>1690</u>	
	3.423	9.99	275	0	0	50	110	170	230	300	380		1500		
	3.423		275	0	40	90	160	230	300	380	520	1180			
	3.423		275	10	70	130	210	290	370	470	<u>860</u>				
7.50	3.423	17.19	275	80	150	240	330	440	560	<u>990</u>					
	3.999	8.28	300	0	0	0	30	70	120	180	230	290	360		1000
	3.999 3.999	9.08 9.88	300 300	0 0	0 0	10 30	50 80	100 130	160 190	210 250	280 320	340 390	410 490		<u>1420</u> 1980
	3.999		300	0	0	50	100	160	220	290	360	440	<u>490</u> 660		1900
	3.999		300	0	30	80	140	210	280	360	450		1080		
	3.999		300	0	60	120	190	270	350	440	540		<u>1650</u>		
7.50	3.999	17.88	300	60	130	220	300	400	510	630	<u>980</u>	<u>1940</u>			
	4.460	8.83	320	0	0	0	30	70	120	170	230	290	360	420	<u>610</u>
	4.460	9.63	320	0	0	10	50	100	150	210	270	340	410	480	820
	4.460 4.460		320 320	0 0	0 0	20 40	70 90	120 150	180 210	240 280	310 350	380 430	460 510		<u>1080</u> 1380
	4.460		320	Ő	20	80	130	200	270	350	430	520		1180	
5.00	4.460	14.43	320	0	50	110	180	250	330	420	510	610	<u>950</u>	1740	
7.50	4.460	18.43	320	50	120	200	280	380	480	590	720	<u>1120</u>	<u>2070</u>		
	4.921	9.39	340	0	0	0	30	70	120	170	230	290	350	420	490
	4.921		340	0	0	0	50	100	150	210	270	330	400	480	550
	4.921 4.921		340 340	0 0	0 0	20 40	70 90	120 140	180 200	240 270	300 340	370 420	450 500	530 580	<u>700</u> 880
	4.921		340	0	20	70	130	190	260	340	420	500	590		1300
5.00	4.921	14.99	340	0	40	100	170	240	320	400	490	590		1080	
7.50	4.921	18.99	340	40	110	180	270	360	460	560	680	810	<u>1270</u>	<u>2220</u>	

^a Unfactored imposed (live) load.

^b Unfactored own-weight of the slab and the VoidPro-200 profile.

^c Total factored load using the SANS10160-1 STR load combination of 1.2Gn + 1.6Qn where Gn is the total nominal permanent (dead) load and Qn is the total imposed (live) load. Note that in calculating the total factored load, an allowance was made for the additional permanent load of 0.9 kPa accounting for services and finishes. Concrete own weight was calculated based on a mass of 2350 kg/m³.

SANS 10144

Tables of the area and mass of reinforcing bars

1	2	3	4	5	6	7	8	9	10	11	12	13		
		Area of steel per metre												
Bar	Bar mm ²													
diameter						Bar sp	acing							
mm		mm												
	75	100	125	150	175	200	250	300	350	400	450	500		
8 10 12	672 1 048 1 508	503 785 1 131	402 628 908	336 524 754	288 488 646	251 393 565	201 314 452	168 262 377	144 244 323	126 196 283	112 175 251	101 157 226		
16 20 25 32	2 680 4 188 6 344 10 724	2 011 3 142 4 909 8 042	1 608 2 514 3 926 6 434	1 340 2 094 3 272 5 362	1 148 1 796 2 804 4 596	1 005 1 571 2 454 4 021	804 1 257 1 963 3 217	670 1 047 1 636 2 681	574 898 1 402 2 298	503 785 1 227 2 011	447 698 1 091 1 787	402 628 982 1 608		
8 & 10 10 & 12 12 & 16	860 1 276 2 096	644 958 1 571	516 766 1 256	430 638 1 048	368 548 898	322 479 785	258 383 628	215 319 524	184 274 449	161 240 393	143 213 349	129 192 314		
16 & 20 20 & 25 25 & 32	3 436 5 368 8 636	2 576 4 025 6 476	2 060 3 220 5 180	1 718 2 684 4 318	1 472 2 300 3 700	1 288 2 013 3 238	1 030 1 610 2 590	859 1 342 2 159	736 1 150 1 850	644 1 006 1 619	572 894 1 439	515 805 1 295		

Mass and area

1	2	3	4	5	6	7	8	9	10
Bar	Mass per				Are	a			
diameter	unit length				mr	1 ²			
mm	kg/m				Number	of bars			
	Ngilli	1	2	3	4	5	6	7	8
8	0,395	50	101	151	201	251	302	352	402
10 12	0,617 0,888	79 113	157 226	236 339	314 452	393 565	471 679	550 792	628 905
16	1,58	201	402	603	804	1 005	1 206	1 407	1 608
20 25	2,47 3,85	314 491	628 982	942 1 473	1 257 1 963	1 571 2 454	1 885 2 945	2 199 3 436	2 513 3 927
32	6,31	804	1 608	2 413	3 217	4 021	2 343 4 825	5 4 5 6 3 0	6 434
49	9,86	1 257	2 513	3 770	5 027	6 283	7 540	8 796	10 052
50	15,40	1 963	3 927	5 890	7 854	9 817	11 781	13 744	15 708

Fire Design/Rating

Design Steps for Simplified Design of Voidpro Slabs in Fire

For a 30 minute fire resistance rating no additional reinforcement is required (based on EN 1994-1-2 guidelines). For 60 minute and higher resistances the capacity of floor slabs in sagging is calculated according to the 500°C lootherm Method of EN 2-1-2 (BSI 2005), or Buchanan (2001). The basis for this simplified method is that all concrete with a temperature greater than 500°C is to be ignored, while all concrete with a temperature less than 500°C is to be assumed to have its full strength. Reinforcement is designed with a reduced strength based on its temperature. Slabs are designed as simply-supported T-beams, even for continuous slabs.

The process to be followed is:

- 1. Ensure that the minimum slab thickness specified in Table 1 is satisfied. Note that if a structural screed/grout is placed on the concrete its thickness <u>may</u> be included when satisfying minimum thickness requirements. However, its thickness <u>must not</u> be included when carrying out the structural design calculations outlined in this document. For example, a 170mm thick VoidPro 115 slab with a 20mm thick screed on top (minimum thickness) will be equivalent to a 190mm slab for insulation resistance, but for structural resistance the slab must be designed as 170mm thick. However, it must be ensured that the screed is securely bonded to the slab, will not delaminate during a fire, and does not have a waterproofing layer, insulation layer or other such layer in between the concrete and screed.
- Calculate the fire limit bending moments, based on the load combinations provided in Equation 1 and Table
 The load combination to be checked is at the fire limit state (FLS) and is based upon the accidental load combination (ACC) of SANS 10160-1:

	Fire limit state load $= 1.0$	× Permanent Load + 1	h×Imnosed Load	Eq. 1
I	rire innu siule iouu = 1.0	XPermanenii Loua + i	pximposea Loaa	LY. 1

The combination factor, ψ , is taken according to SANS 10160 as specified in Table 2.

- 3. Determine the depth of the 500°C temperature isotherm for the standard fire. See Table 3 and Figure 2 for more details.
- 4. Determine the temperature of reinforcing steel at the centre of bars and calculate the reduced strength of reinforcing steelwork ($f_{\gamma T} = k_{\gamma T} f_{\gamma}$). This is provided in Table 4.
- 5. Calculate the resistance of the section according to normal concrete design methods (SANS 10100-1, SANS 51992-1-1 / EN 1992-1-1, or to Buchanan (2001)) but using the reduced rebar strength, f_{yT} . Ignore the contribution of the permanent formwork. The following equations are suggested as a simple approach:
 - (a) Depth of concrete compression block:

$$a_f = \frac{A_s f_{y,T}}{0.67 f_{cu} b}$$
 Eq. 2

Eq. 3

(b) Sagging moment capacity in fire:

$$M_f = A_s f_{y,T} \left(d - a_f / 2 \right)$$

Where:

a _f	Depth of compression block
A_s	Area of reinforcing steel in tension (per rib)
b	Width of the rib
d	Effective depth to centre of reinforcement
fcu	Characteristic strength of the concrete
$f_{y,T}$	Yield strength of reinforcing steel at temperature T, where $f_{y,T} = k_{y,T} f_y$

6. Ensure that the neutral axis (referred to as x in SANS 10100-1) of the section falls within the upper section of the beam which is cooler than 500°C. This is calculated as $\frac{a_f}{0.9}$, and is measured from the top of the slab.

Profile	Min. slab thickness for 60min fire rating	Min. thickness above flute (mm)
VoidPro 50	120	70
VoidPro 115	190	75
VoidPro 200	275	75

Table 1: Minimum thickness of VoidPro systems to satisfy a 60 minute insulation fire resistance rating

Category	Specific use	ψ – Combination factor
А	Domestic and residential areas	0.3
В	Public areas not susceptible to crowding	0.3
С	Public areas where people may congregate	0.3
D	Shopping areas	0.3
E1	Light industrial use	0.5
E2	Industrial use	0.6
E3	Storage areas	0.8
Н	Inaccessible roofs	0.0
J	Accessible flat roofs, excluding occupancy categories A to D	0.3
К	Accessible flat roofs with occupancies A to D	In accordance with Categories A to D

Table 2: Combination factor for the fire limit state (FLS)

Fire time (min)	a ₅₀₀ - 500°C Isotherm Depth (mm)
60 min	23
90 min	32
120 min	40

Table 3: Depth of 500°C isotherm for the design of slabs in sagging according to EN 1994-1-2 Table D5.

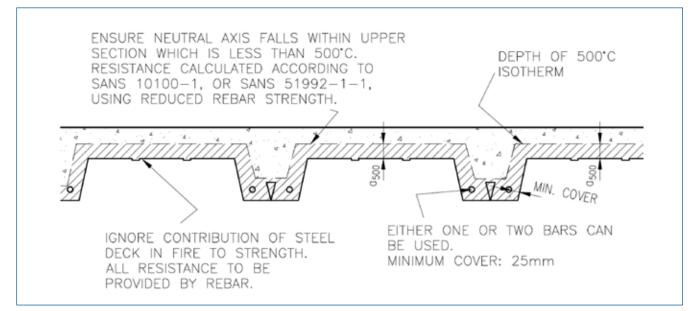


Figure 2: Fire limit state (FLS) design considerations and layout

Fire resistance time (min)	T - Steel temp (°C):	k_{yT} - Reduction factor
60 min	460	0.78
90 min	610	0.37
120 min	720	0.19

Table 4: Temperature and reduction factors for reinforcing steel at different standard fire times assuming 20mm

Design Assumptions

The following assumptions have been made to calculate fire resistance ratings of the VoidPro panels:

Concrete strength:	C25/30 (i.e. 30MPa cube strength)
Rebar properties:	Yield strength – 450 MPa. Young's modulus – 200 GPa.
Cover:	25mm
Top steel / mesh:	If required minimum top reinforcement as per EN 1994-1-1 should be added to reduce cracking for continuous beams.

The entire steel formwork profile is neglected for calculations as it rapidly loses strength in fire. Rebar detailing specifications must comply with applicable SANS requirements.

Notes

For composite steel-concrete floors in fire specialist literature should be consulted such as that of the MACS+ design software or Slab Panel Method (SPM) for designing slabs in fire. This can lead to reductions in required reinforcement and reduced passive protection requirements for steel beams. Detailing requirements associated with the aforementioned methods must be adhered to, to ensure that cracking in slabs does not occur.

The Eurocode EN documents permit using a lower partial material factor for the ACC limit state. Hence, partial material factors for concrete and steelwork may be been taken as 1.0. For continuous slabs a savings in sagging reinforcement can be made using continuity, but the literature listed above should be consulted for the calculation of hogging moment capacity.

VP-50 Reinforcing Requirements for a 60 minute Fire Rating

Additional reinforcing steel in [mm²] per beam at 415 mm spacing, for the VoidPro-50 system used in a single span simply supported configuration. The minimum slab thickness required to attain a 60 minute fire rating is 120 mm. Those values with * next to them are governed by fire requirements, whilst the remainder are governed by serviceability or ultimate limit state requirements. The steel decking has been assumed to lose all its strength in fire. Additional reinforcing steel is limited to a maximum diameter of 20 mm. Cover of 25 mm above the deck soffit should be provided in all cases. Refer to Table 1.1 for additional design assumptions. The reinforcement is suitable for the following occupancies according to SANS 10160-1: (A) Domestic and residential areas, (B) Public areas not susceptible to crowding, (C) Public areas where people may congregate, (D) Shopping areas, and (J/K) Accessible flat roofs. For other occupancy categories (industrial usage, storage etc.) refer to the Voidcon fire design guideline document.

Reinforcing requirements for a 60 minute fire rating																
Q_n^{a}	$G_n{}^{b}$	${\sf TL}_{\sf f}^{\sf c}$	t^{d}		Floor span in [m]											
[kPa]	[kPa]	[kPa]	[mm]	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75			
Additional reinforcing steel in $[mm^2]$ per beam 415 mm $^c/_c$																
	2.065		120	*37	*44	*53	*62	*72	*83							
2.00	2.065	3.57	120	*38	*46	*55	*65	*75								
2.50	2.065	3.72	120	*40 *41	*48 *50	*58	*68 *70	*79 *92								
3.00 4.00	2.065 2.065	3.87 4.17	120 120	*41	*50 *54	*60 *65	*70	*82								
5.00	2.005	4.47	120	*48	*58	*69	70									
	2.065	5.22	120	*56	*68	05										
1.50	2.411	3.76	135	*34	*42	*50	*58	*68	*78	*89	*100					
2.00	2.411	3.91	135	*36	*43	*52	*61	*70	*81	*92						
2.50	2.411	4.06	135	*37	*45	*54	*63	*73	*84	*96						
	2.411		135	*38	*47	*56	*65	*76	*87							
	2.411	4.51	135	*41	*50	*60	*70	*81	*94							
	2.411		135	*44	*53	*64	*75	*87								
7.50	2.411	5.56	135	*51	*62	*74	*87									
	2.756		150	*33	*39	*47	*55	*64	*74	*84		*107	410			
	2.756		150	*34	*41	*49	*57	*67	*77	*87	*99	*111				
	2.756		150	*35	*42	*51	*59	*69	*79	*90	*102	440				
	2.756	4.56	150	*36	*44	*52	*61	*71	*82		*106					
	2.756	4.86	150	*39 *41	*47 *50	*56 *59	*66 *70	*76	*88 *93	*100						
	2.756 2.756	5.16 5.91	150 150	*41	*50 *57	*68	*80	*81 *93	⁴⁴⁰	210						
					-											
	2.987	4.34	160	*32	*38	*46	*54	*62	*72	*82	*93	*104				
	2.987	4.49	160	*33	*40	*47	*56	*65	*74	*85		*108	*120			
	2.987	4.64	160	*34	*41	*49	*58	*67	*77	*88		*111	240			
3.00 4.00	2.987 2.987	4.79 5.09	160 160	*35 *37	*42 *45	*51 *54	*59 *63	*69 *73	*79 *84	*90 *96	*102 *109	*115 450				
	2.987	5.39	160	*37	*48	*57	*67	*73	*89	*102	150	450				
	2.987		160	*45	*54	*65	*76	*89	*102	390	150					

^a Unfactored imposed (live) load.

^b Unfactored own-weight of the slab and the VoidPro-50 profile.

^c Total factored load using the SANS10160-1 ACC load combination of 1.0Gn + 0.3Qn where Gn is the total nominal permanent (dead) load and Qn is the total imposed (live) load. Note that in calculating the total factored load, an allowance was made for the additional permanent load of 0.9 kPa accounting for services and finishes.

VP-115 Reinforcing Requirements for a 60 minute Fire Rating

Additional reinforcing steel in [mm²] per beam at 600 mm spacing, for the VoidPro-115 system used in a single span simply supported configuration. The minimum slab thickness required to attain a 60 minute fire rating is 190 mm. Those values with * next to them are governed by fire requirements, whilst the remainder are governed by serviceability or ultimate limit state requirements. The steel decking has been assumed to lose all its strength in fire. Additional reinforcing steel is limited to a maximum diameter of 20 mm. Cover of 25 mm above the deck soffit should be provided in all cases. Refer to Table 2.1 for additional design assumptions. The reinforcement is suitable for the following occupancies according to SANS 10160-1: (A) Domestic and residential areas, (B) Public areas not susceptible to crowding, (C) Public areas where people may congregate, (D) Shopping areas, and (J/K) Accessible flat roofs. For other occupancy categories (industrial usage, storage etc.) refer to the Voidcon fire design guideline document.

Reinforcing requirements for a 60 minute fire rating																
Q_n^{a}	${G_n}^{b}$	${\sf TL}_{\sf f}^{\sf c}$	t^{d}	t ^d Floor span in [m]												
[kPa]	[kPa]	[kPa]	[mm]	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25	6.50	6.75	7.00	7.25	7.50
						Additic	nal rei	nforcir	ng stee	el in [m	m²] pe	er bear	n 600 i	mm^{c}/a	;	
1.50	2.15	3.50	(170)	*112	*125	*138	*153	270								
2.00			(170)				*159	860								
2.50			(170)				510									
3.00			(170)			240										
4.00			(170)		230											
5.00 7.50			(170) (170)	170	790											
				rood of	20 mm	minim	um thic	knocc r	oquirod	l on ton	of 170	mm th	ick clab	to obta	in 60 m	ninuto
	NOTE: (170) – Structural screed of 20 mm minimum thickness required on top of 170 mm thick slab to obtain 60 minute fire rating. No insulation/waterproofing layer may be installed between screed and concrete.											mute				
	2.611							*165		220	720					
	2.611							*172		560						
	2.611				*132					1090						
	2.611				*137			230	730							
	2.611 2.611		190	140	*147 170	210	250 650	750								
	2.611		190	240		1200	050									
	2.842						*150	*164	*180	*196	220	630				
	2.842	-						*170				1230				
	2.842							*176		380	930					
3.00	2.842	4.64	200	*121	*136	*150	*166	*182	250	670						
4.00	2.842	4.94	200	*129	*144	*160	180	270	700							
	2.842	-	200	*137	160	200	240	630								
7.50	2.842	5.99	200	220	270	500	1140									
	3.418					-				-	*210			400		1520
	3.418										*217		350		1310	
	3.418							*173				270		1070		
	3.418							*178				450	850			
	3.418			-	*140			190	220	260	490	920				
	3.418 3.418		225	*132 190	^{≁148} 230	170 270	200 320	240 430	280 810	470 1550	890					
	3.995													*262		340
	3.995										*214				300	530
	3.995										*220				460	770
	3.995 3.995							*175 *184		^{≁208} 230	*226 270	*245 310	280 430	390	650 1170	1080
	3.995				*143		180	210	250	230	330	430		1170	11/0	
	3.995		250	160	200	240	280	330	380	430		1160	/10	11/0		
,	5.555	/.15	250	100	200	2.10	200	550	500	100	, 10	1100				

^a Unfactored imposed (live) load.

^b Unfactored own-weight of the slab and the VoidPro-115 profile.

^c Total factored load using the SANS10160-1 ACC load combination of 1.0Gn + 0.3Qn where Gn is the total nominal permanent (dead) load and Qn is the total imposed (live) load. Note that in calculating the total factored load, an allowance was made for the additional permanent load of 0.9 kPa accounting for services and finishes.

VP-200 Reinforcing Requirements for a 60 minute Fire Rating

Additional reinforcing steel in [mm²] per beam at 760 mm spacing, for the VoidPro-200 system used in a single span simply supported configuration. The minimum slab thickness required to attain a 60 minute fire rating is 275 mm. Those values with * next to them are governed by fire requirements, whilst the remainder are governed by serviceability or ultimate limit state requirements. The steel decking has been assumed to lose all its strength in fire. Additional reinforcing steel is limited to a maximum diameter of 20 mm. Cover of 25 mm above the deck soffit should be provided in all cases. Refer to Table 3.1 for additional design assumptions. The reinforcement is suitable for the following occupancies according to SANS 10160-1: (A) Domestic and residential areas, (B) Public areas not susceptible to crowding, (C) Public areas where people may congregate, (D) Shopping areas, and (J/K) Accessible flat roofs. For other occupancy categories (industrial usage, storage etc.) refer to the Voidcon fire design guideline document.

Reinforcing requirements for a 60 minute fire rating															
Q_n^{a}	$G_n{}^{b}$	${\sf TL}_{\sf f}^{\sf c}$	t^{d}	Floor span in [m]											
[kPa]	[kPa]	[kPa]	[mm]	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50
					Add	litional	reinfo	rcing s	steel in	[mm ²] per b	eam 7	60 mm	c/c	
	2.962					*132							1080		
	2.962					*137						670			
	2.962				-	*142				-	370	1030			
	2.962		• •			*146				320	580				
	2.962		· ·			*155		240	320		1130				
	2.962		. ,		*133		220	310	400	760					
	2.962		. ,	*120	170	260	360	480	860						
NOTE: (255) – Structural screed of 20 mm minimum thickness required on top of 255 mm thick slab to obtain 60 minute fire rating. No insulation/waterproofing layer may be installed between screed and concrete.															
1.50	3.423	4.77	275	*86	*109	*134	*163	*194	*228	*265	*304	*347	490	1110	
2.00	3.423	4.92	275	*88	*112	*139	*168	*200	*235	*273	*314	*358	740	1690	
2.50	3.423	5.07	275	*91	*115	*143	*173	*206	*242	*282	330	470	1070		
3.00	3.423	5.22	275	*94	*119	*147	*178	*212	*250	300	380	660	1500		
4.00	3.423	5.52	275	*99	*126	*156	*188	230	300	380	520	1180			
5.00	3.423	5.82	275	*105	*133	*164	210	290	370	470	860				
7.50	3.423	6.57	275	*118	150	240	330	440	560	990					
1.50	3.999	5.35	300	*87	*110	*136	*165	*197	*231	*269	*309	*352	*398	510	1000
2.00	3.999	5.50	300	*90	*113	*140	*170	*202	*238	*276	*318	*362	410	720	1420
	3.999		300			*144					*326	390	490	980	1980
	3.999		300			*148					360	440		1290	
	3.999		300			*156			280	360	450		1080	2200	
	3.999		300			*163		270	350	440	540		1650		
7.50	3.999	7.15	300	*117	*148	220	300	400	510	630	980	1940			
	4.460		320			*138			-			*355		-	610
	4.460		320			*141						*365		480	820
	4.460		320			*145	-					380	460		1080
	4.460		320			*148			-		350	430	510		1380
	4.460		320			*156			270	350	430	520		1180	2230
	4.460		320			*163	-	250	330	420	510	610	950	1740	
7.50	4.460	7.61	320	*115	*146	200	280	380	480	590	720	1120	2070		
1.50	4.921	6.27	340	*89	*112	*139	*168	*200	*236	*274	*314	*358	*405	*455	*508
2.00	4.921	6.42	340	*91	*115	*142	*172	*205	*241	*280	*322	*367	*415	480	550
2.50	4.921	6.57	340	*93	*118	*146	*176	*210	*247	*287	*330	*376	450	530	700
2 00		6 72	340	*95	*171	*149	*180	*215	*253	*293	340	420	500	580	880
3.00	4.921	0.72	340	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
	4.921 4.921		340			*156			*264	340	420	500	590	770	1300
4.00	-	7.02		*99	*126		*188		*264 320	340 400	420 490	500 590	590 700		

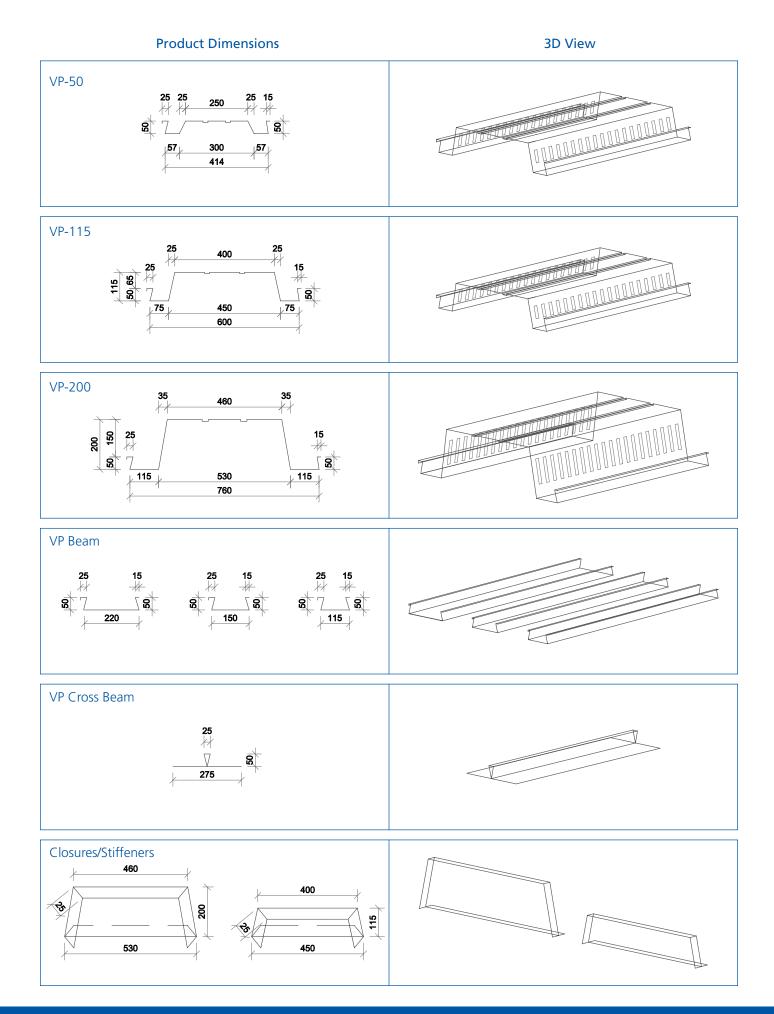
^a Unfactored imposed (live) load.

^b Unfactored own-weight of the slab and the VoidPro-200 profile.

^c Total factored load using the SANS10160-1 ACC load combination of 1.0Gn + 0.3Qn where Gn is the total nominal permanent (dead) load and Qn is the total imposed (live) load. Note that in calculating the total factored load, an allowance was made for the additional permanent load of 0.9 kPa accounting for services and finishes.

SANS 10400 – T: 2011

Stability of structural elements or components

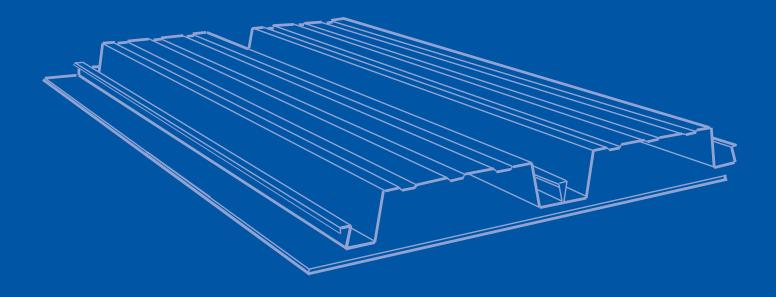

1	2	3	4	5	6	7						
1	2	5	4	Stability								
	Class of	min										
Type of occupancy	occupancy	Single-storey building	Double-storey building	3 to 10 storey building	11 storeys and more	Basement in any building						
Entertainment and public assembly	A1	30	60	120	120	120						
Theatrical and indoor sport	A2	30	60	120	120	120						
Place of instruction	A3	30	30	90	120	120						
Worship	A4	30	60	90	120	120						
Outdoor sport	A5	30	30	60	90	120						
High risk commercial service	B1	60	60	120	180	120						
Moderate risk commercial service	B2	30	60	120	120	120						
Low risk commercial service	B3	30	30	90	120	120						
Exhibition hall	C1	90	90	120	120	120						
Museum	C2	60	60	90	120	120						
High risk industrial	D1	60	90	120	180	240						
Moderate risk industrial	D2	30	60	90	120	180						
Low risk industrial	D3	30	30	60	120	120						
Plant room	D4	30	30	60	90	120						
Place of detention	E1	60	60	90	120	120						
Hospital	E2	60	90	120	180	120						
Other institutional (residential)	E3	60	60	120	180	120						
Medical facilities	E4	30	30	Not applicable	Not applicable	120						
Large shop	F1	60	90	120	180	120						
Small shop	F2	30	60	120	180	120						
Wholesalers' store	F3	60	90	120	120	120						
Office	G1	30	30	60	120	120						
Hotel	H1	30	60	90	120	120						
Dormitory	H2	30	30	60	120	120						
Domestic residence	H3	30	30	60	120	120						
Detached dwelling house	H4	30	30	60	Not applicable	120						
Hospitality	H5	30	30	Not applicable	Not applicable	120						
High risk storage	J1	60	90	120	180	240						
Moderate risk storage	J2	30	60	90	120	180						
Low risk storage	J3	30	30	90	90	120						
Parking garage	J4	30	30	30	90	120						

NOTE 1 Unprotected steel may be used in the structural system of all single-storey and certain double-storey buildings in spite of the fact that in many cases such structural members would not comply with the requirements of this table. The practice is regarded as safe for all practical cases that are likely to occur in single-storey construction, but the possible consequences of early distortion or collapse should be considered in the design of double-storey buildings in order to be certain that escape routes will be able to serve their purpose for the required period. Particular care should be exercised where thin sections are used or in "space-frame" type structures.

NOTE 2 A further problem arises in the application of the requirement of 4.2. Distortion or collapse of any structural member should not cause loss of integrity or stability in any external wall facing a site boundary or another building as this might lead to non-compliance with the safety distance requirement. Where such a situation occurs, it would be necessary either to protect the steel to the extent required to attain the stability given in this table or to regard such wall as being of type N for the purposes of 4.2.

Product List

Product List


Quick to install

Cost effective

Light and strong

+27 11 363 1235 info@voidcon.co.za www.voidcon.co.za

