O
ACCE‘SS to the Eﬁperts CONSORTIUM

Technical Debt:
Assessment and Reduction

Israel Gat

Agile 2011
Salt Lake City, UT
August 8, 2011

bzt

m Part |: Technical Debt in the Overall Context of the Software
Process

m Part lI: What Really is Technical Debt?

m Part lll : Case Study — NotMyCompany, Inc.
m Part IV: The Tricky Nature of Technical Debt
m Part V: Unified Governance

m Part VI: Process Control Models

m Part VII: Reducing Technical Debt

m Part VIII: Takeaways

© Cutter Consortium

Access to th

Technical Debt in the
Overall Context of the
Software Process

A Holistic Model of the Software Process
« Two Aspects of Output

- Three Aspects of Technical Debt

 Six Aspects of Software

CONSORTIUM

Access to the B m

A Holistic Model of the Software Process

© Cutter Consortium

e e i L
ACCESS 10 the

Two Aspects of Output

Productivity

Quality <

© Cutter Consortium

Three Aspects of Technical Debt

Productivity

Technical
Debt

S

Assessment Prevention

\ 4
Reduction

© Cutter Consortium

ArCcess 1o m

lteration Management

Technical Practices

© Cutter Consortium

Access to the F CONSORTIUM

PeRTETS
Part Il
What Really is Technical Debt?

- What's in a Metaphor?

- Code Analysis

« Time Is Money

- Monetizing Technical Debt

- Typical Stakeholder Dialog Around Technical Debt
- Analysis of the Cassandra Code

- Project Dashboard

What's in a Metaphor?

m \Ward Cunningham’s Metaphor:

o “Alittle debt speeds development so long as it is paid back promptly
with a rewrite”

m Definition for today:

o “Quality issues in the code other than function/feature completeness”
— It is about doing the system right (“Intrinsic Quality”)
— Not about doing the right system (“Extrinsic Quality”)

m Typical technical debt components:
o Complexity
e Duplication
* Rule violations
 Test coverage
 Documentation

© Cutter Consortium

i R H R B S S Access to m
Code Analysis

m One technical debt tends to pile over another, which piles over yet
another technical debt that piles...

« To find your current level of debt, you can’'t simply add the week you
borrowed last year to the two weeks you borrowed three months ago

* Rather, you need to inspect the code

Code Analysis
Quality Deficits

Time to Fix per Deficit
Aggregate time to Fix
Aggregate $$ to Fix

© Cutter Consortium 10

bzt

Time is Money

m Think of the amount of money the borrowed time represents —
the $$ grand total required to eliminate all issues found in the code

CATEAFILLAR

Dy la T Y, 0 shovt

© Cutter Consortium 1

Example |: Monetized Technical Debt
m Accrued technical debt in the amount of $500K
B On 200K lines of code

m The makeup of the debt is represented in the pie chart below

Breakdown of Technical Debt

W Jestcoverage
Duplication
Rule violations

Complexity

© Cutter Consortium

12

2z bt
Typical Stakeholders Dialog Around Technical Debt

B “Technical debt of $500K over 200K lines of code”
B “60% of the debt is due to lack of unit test coverage”

B “Pay back’ 70% of unit test coverage debt prior to shipping the
software”

m “Other kinds of debt will be paid back during the first year after
release’

m “Rule violation will be the #1 priority during the period after release”

B “Once we reach technical debt level of $100K we will shift back
resources from technical debt reduction to feature development”

© Cutter Consortium 13

bzt

Example Il: Analysis of the Cassandra Code
100% - — | : | 1 1]
0.2 (0.30-final [0.4.0-final 050 (051 (06DE1 (0.6
0% 1 | | | | | o Ly 240,000
I [[[[
B {1 1 | | 1 beeed 1 _
[[[[[[[A EED'DM -
TOK 1---- | | | | - | n
| | | I A o b15 3 200000 ©
BOE{ | | | | . | 7 3
[[[[[[[v mn
ol | | | || | x [180,000 &
| | | | | | -14'1 60000 o
- [[[[[[[- e
408 | | | | | I | ‘:"'_:- T
' | [[[[[—_
W1y | | oo | E
' [[f [F— | - 13
10% -
[[[[[[
- 100,000
0 [. [I. [. [

5/1/09 7{1/0% 5/1/0% 11/1/09 1/1/10 3/ 1710 5/1/10
— Coverage = Complexity /class = Technical Debt (§)

Since the 0.4.0 release both Complexity (per class) and
Technical Debt have increased.

© Cutter Consortium 14

Example lll: Project Dashboard

Source:]
© Cutter Consortium

Lines of code
162,306 £
325,036 lines &

A7 756 statements i
1,060 files

Comments

26.6%

EQ 04 linee &
LRl B L =

58.1% docu. API
5,418 undocu. API
1,164 commented LOCs

Version 6.x - Mon, 26 Jul 2010 13:58 - profie Nemo rules

Classes
1,447
103 packages

14,271 methods *
+1,262 accessors

Duplications
22,998 lines ¥
566 blocks &
174 files *

Complexity]

3.1 / method

30.9 / cass o

:cfa.lzqif_’i':a N ¢ 2 i 13 E o 12

Events All o

2010 07 23 Yersion
2000 06 07 Version
200002 15 Mlert

Koy : org.apache:toment
Language : java
Alerts feed

(") Methods () Classes

6.3
6.0.x

Orange

ALC
Rules compliance Violations
83.7% 10,072 =
Usa. A Blocker 4]
Rel. @ Crtical 0
Eif. & Major B,794 o NN
¥ Minor 65
il w Info 1213 1
M i,
A Alerts : Duplicated lines (%) > &.
51G Maintain. Model & T
(A)nalysability -
(C)hangeability 0
(S)tability - < #
(T)estability - V
C
Tags FXME—
TODD
E?ggd"tary .'r
356 optional @odo @deprecate

Technical Debt &
11.0%

§ 341,503 &

BA3 mar days &

Duplicatior— =

~—iolations
.
Complexity j—«:nmm s

Mo nformatior avaiable on coverage

Mo informatior avaiable on design

15

ACCE‘SS to the Eﬁperts CONSORTIUM

Part lll: Case Study —
NotMyCompany, Inc.

- NotMyCompany Highlights
- Modernizing Legacy Code
« Error Proneness

NotMyCompany Highlights

B Hosted eCommerce platform for small retailers:
e One stop shopping
* White-glove service
* Three nines availability
* Business as a service (warehousing, distribution)

m Challenges:
* Legacy code — 200KLOC - $500K technical debt

Breakdown of Technical Debt

m Testcoverage
Duplication
Rule violations
Complexity

© Cutter Consortium

17

NotMyCompany Highlights (Cont’d)

« Expansion — Acquisition of SocialAreUS
 How Often Should the Line be Stopped?
e Agile Versus ITIL

© Cutter Consortium

18

Exercise #1 — Modernizing
Legacy Code

bzt

Exercise — Modernizing Legacy Code

B Read the NotMyCompany case study through the section entitled
Exercise #1 in the handout

m Discuss the following questions in your table/group:

1. Does the strategy summarized in the slide “Typical Stakeholders Dialog” make
sense as a debt reduction strategy?

2. Which best practices would you recommend for implementing this strategy?

3. What would be a compelling argument for adopting a ‘Reduce Complexity
First’ strategy?

B Report back

m Time allocation — 40 minutes:
« 30 minutes for reading the case study and group discussion
e 10 minutes for group reports

20

© Cutter Consortium

Continue Reading Only After
Reporting Back on the Exercise

Answer to Question #3 In Exercise #1

bzt

B Cyclomatic complexity in excess of ~30 per file for a significant

number of Java files

Frob(Fault Prone) for Cyclomatic

86 404

B8O

B0

40 .
———

¢

DU TITTTIT AT PRI AT T AT T TR T LERIRRERRERRLE!
1 10 20 30 TEI 50 Bl 70 all 90 100

1 38 74
(Source:)

© Cutter Consortium

22

Access to the Exper

Part 1V: The Trlcky Nature of
Technical Debt

- The Explicit Form of Technical Debt

« The Implicit Form of Technical Debt

- The Strategic Impact of Technical Debt

- No Good Strategy Following Prolonged Neglect

CONSORTIUM

The Explicit Form of Technical Debt

m Resource allocation decisions:

* “Functional testing is good enough for us... no need to waste precious

resources to do unit testing...”

[Confession of a VP of development with numerous Cyclomatic complexity readings in the

hundreds...]

© Cutter Consortium

24

- GhTRR

The Implicit Form of Technical Debt

m Implicit forms — in the nature of things:

* Relentless function/feature pressure leads to taking technical debt and
neglecting measures to keep software decay in check

© Cutter Consortium 25

© Cutter Consortium

Diminished
Dev Velocity

Technical
Debt
Accrues

The Vicious Cycle of Technical D

(More)
REIEESS
Pressure

Neglect
Maintenance

Access to the B

ebt

Take
Technical
Debt

Fail to Pay
Debt Back

bzt

26

e e W
The Strategic Effect of Technical Debt

Customer « Once on far right of

Responsiveness .
curve, all choices are
hard

* [f nothing is done, it
just gets worse

* |napplications with
high technical debt,

estimating is nearly
Technical Debt impossible

>

Product
Release

Cost of Change (CoC)

- « Only 3 strategies

L. -
Optimal CoC — Do nothing, it gets

— e = > worse
1234561738 — Replace, high cost/risk

Years — Incremental refactoring,
&2008 Information Architects, Inc. Commltment tD InUESt

27

© Cutter Consortium

R W
No Good Strategy Following Prolonged Neglect

B “Indeed, the economic value of lagging applications is questionable
after about three to five years. The degradation of initial structure
and the increasing difficulty of making updates without ‘bad fixes’
tends towards negative returns on investment (ROI) within a few

years.”

Click to LDINSID

o |

Estimating
SOFTWARE
COSTS

el o e o

T. CAPERS JONES

© Cutter Consortium 28

ACCE‘SS to the Eﬁperts CONSORTIUM

Part V: Unified Governance

« How We View Success

« Three Core Metrics

- Productivity, Affordability, Risk
- What is the Real ROI?

bzt

How We View Success: An Agile Approach to
Governance

The Traditional Iron Triangle The Agile Triangle
Value
. (Extrinsic quality)

Cost Schedule Quality Constraints
(Intrinsic quality) (cost, schedule, scope)

© Jim Highsmith

© Cutter Consortium 30

Three Core Metrics

Value

Net Present Value (NPV) - $$

Quality
Technical Debt - $$

Constraints
Cost - $$

31

Productivity, Affordability, Risk
m Long-term productivity: Cost > Technical Debt
m Long-term affordability: Value >> Cost + Technical Debt
m Unifying equation: Value >> Cost > Technical Debt

m Risk: Imbalance(s) between the three core metrics

Value
Net Present Value (NPV) - $$

Quality Constraints

Technical Debt - $$ Cost - $%

32

What is the Real ROI?

Is your rate of return on investment 900% or is it actually 233%?!

Expected Final Value of Investment - $10M

Technical Debt - $2M Cost - $1M

© Cutter Consortium 33

RINEEE RIS CI | CONSORTIUM

Part VI: Process Control Models

« A Typical Technical Debt Pattern

« Process Control View of Scrum
- Integration of Technical Debt in the Agile Process

 Using Statistical Process Control Methods

A Typical Technical Debt Pattern

3

Z1 /2

Z3

NPV

Key:
Z1=Get Well Zone

Z2=Stabilization Zone
Z3=Pay Off Zone

C

TD
>Time

© Israel Gat
© Cutter Consortium

T1 T2 T3

35

Process Control View of Scrum

CC) Daily Scrum Meeting

L

(Iﬂ\‘——} The Scrum Process - O)

Legend:

I=Input=(Requirements)
C=Control Unit
O= Output=(Code increment)

Source:

© Cutter Consortium 36

bzt

Integration of Technical Debt in the Agile Process

Build failure on violation
(cﬁ\ of technical debt criteria
T - (e.g. overalllevel of debt)
W

~ Event Driven Agile Process
= ’K o

Legend:
I=Input=(Requirements)

C=Control Unit= (‘Stop the line’ & convene a team meeting)
0=0utput=(Code Increment in the build)

£ Copyright 2010 Israel Gat

© Cutter Consortium 37

Using Statistical Process Control Methods

bzt

m Use Statistical Process Control methods on Technical Debt samples

* Inthe example below, Cyclomatic Complexity per Java Class can be
used as the Quality Characteristic

11.0
— UCL = 10.860
o - ————— = -
@
: N A
§1°'°' A </ Center line = 10.058
5 / V \\/‘\/‘
O
=
e — LCL=09.256
9.0

3 6 9 12 15
Sample

Source:

© Cutter Consortium

38

ACCE‘SS to the Eﬁperts CONSORTIUM

Part VII: Reducing Technical
Debt

- A Framework for Thinking about and Acting on
Technical Debt Issues
« Portfolio Governance

bzt

A Framework for the Technical Debt Initiative

B To become actionable, follow the technical debt assessment with a
technical debt reduction initiative:
e SWAT team
 Evangelism
* Agile methods

« Technical debt items as an integral part of the product backlog of

every team:

— If you are starting the technical debt initiative amidst converting to Agile, introduce
technical debt as part of the conversion to Agile

* Governance of the Technical Debt Initiative as a strategic investment
theme

© Cutter Consortium 40

bzt

Portfolio Governance

m Intentionality through Technical Debt as a Strategic Investment
Theme

Sample Strategic Allocations
= New Markets

Strategic
Customers

B Technical Debt
B Maintenance
Sales

Opportunities
m Testing Tools

© Cutter Consortium 41

Part VIII: Takeaway

« Nine Simple Takeaway
- Connecting the dots

Access to the Experts

CONSORTIUM

bzt

Nine Simple Takeaways

© Cutter Consortium

Technical debt shifts the emphasis in software development from
proficiency of the software process to the output of the process

It enables moving on and up from Random Checks to
Continuous Inspection of the code

It changes the playing fields from qualitative assessment to
guantitative measurement of the quality of software

It is an effective antidote to the relentless function/feature pressure
It is applicable to any amount of code
It can be applied at any point in time in the software life-cycle

It can be used with any software method, not “just” Agile

43

Nine Simple Takeaways (Cont’d)
m It enables effective governance of the software process

m It enables effective governance of the product portfolio

© Cutter Consortium

44

