
Technical Debt:Technical Debt:
Assessment and Reduction

Israel Gat

Agile 2011
Salt Lake City, UTy,
August 8, 2011

Agenda
 Part I: Technical Debt in the Overall Context of the Software

Process

 Part II: What Really is Technical Debt?

 Part III : Case Study – NotMyCompany, Inc.y y p y,

 Part IV: The Tricky Nature of Technical Debt

 Part V: Unified Governance

 Part VI: Process Control Models

 Part VII: Reducing Technical Debt

 Part VIII: Takeaways

© Cutter Consortium

 Part VIII: Takeaways

2

Part I:
Technical Debt in theTechnical Debt in the
Overall Context of the
Software Process

• A Holistic Model of the Software Process
• Two Aspects of Output
• Three Aspects of Technical Debt
• Six Aspects of Software

A Holistic Model of the Software Process

Process

Output

Outcome

Output

Outcome

© Cutter Consortium 4

Two Aspects of Outputp p

ProcessProductivity

OutputQ lit

Outcome

OutputQuality

Outcome

© Cutter Consortium 5

Three Aspects of Technical Debtp

ProcessProductivity

Output
Technical
D bt

Outcome

OutputDebt

Outcome
Assessment Prevention

© Cutter Consortium 6

Reduction

Six Aspects of Softwarep

Portfolio Governance

Product Planning

Release Management

Project Management

Release Management

Iteration Management

© Cutter Consortium 7

Technical Practices

Part II:
Wh t R ll i T h i l D bt?What Really is Technical Debt?
• What’s in a Metaphor?
• Code Analysis
• Time is Money

Moneti ing Technical Debt• Monetizing Technical Debt
• Typical Stakeholder Dialog Around Technical Debt
• Analysis of the Cassandra Codey
• Project Dashboard

What’s in a Metaphor?p
 Ward Cunningham’s Metaphor:

• “A little debt speeds development so long as it is paid back promptly p p g p p p y
with a rewrite”

 Definition for today:
• “Quality issues in the code other than function/feature completeness”

– It is about doing the system right (“Intrinsic Quality”)
– Not about doing the right system (“Extrinsic Quality”)

 Typical technical debt components:
• Complexity
• Duplication
• Rule violations
• Test coverage

© Cutter Consortium

g
• Documentation

9

Code Analysisy
 One technical debt tends to pile over another, which piles over yet

another technical debt that piles…
• To find your current level of debt, you can’t simply add the week you

borrowed last year to the two weeks you borrowed three months ago
• Rather, you need to inspect the code, y p

Code Analysis

Quality Deficits

Time to Fix per DeficitTime to Fix per Deficit

Aggregate time to Fix

© Cutter Consortium 10

Aggregate $$ to Fix

Time is Moneyy
 Think of the amount of money the borrowed time represents –

the $$ grand total required to eliminate all issues found in the code

© Cutter Consortium 11

Example I: Monetized Technical Debtp
 Accrued technical debt in the amount of $500K

O 200K li f d On 200K lines of code

 The makeup of the debt is represented in the pie chart below

© Cutter Consortium 12

Typical Stakeholders Dialog Around Technical Debtyp g
 “Technical debt of $500K over 200K lines of code”

“60% f th d bt i d t l k f it t t ” “60% of the debt is due to lack of unit test coverage”

 “‘Pay back’ 70% of unit test coverage debt prior to shipping the
software”software”

 “Other kinds of debt will be paid back during the first year after
release”release

 “Rule violation will be the #1 priority during the period after release”

 “Once we reach technical debt level of $100K we will shift back
resources from technical debt reduction to feature development”

© Cutter Consortium 13

Example II: Analysis of the Cassandra Codep y

© Cutter Consortium 14

Since the 0.4.0 release both Complexity (per class) and
Technical Debt have increased.

Example III: Project Dashboardp j

© Cutter Consortium 15Source: Chris Sterling

Part III: Case Study –y
NotMyCompany, Inc.

• NotMyCompany Highlights
• Modernizing Legacy Code
• Error Proneness

NotMyCompany Highlightsy p y g g
 Hosted eCommerce platform for small retailers:

• One stop shoppingp pp g
• White-glove service
• Three nines availability
• Business as a service (warehousing distribution)• Business as a service (warehousing, distribution)

 Challenges:
• Legacy code – 200KLOC - $500K technical debt• Legacy code – 200KLOC - $500K technical debt

• Expansion – the SoftwareAreUs acquisition
• The software process control debate

© Cutter Consortium

• Agile vis-avis ITIL

17

NotMyCompany Highlights (Cont’d)y p y g g ()
• Expansion – Acquisition of SocialAreUS
• How Often Should the Line be Stopped?
• Agile Versus ITIL

© Cutter Consortium 18

Exercise #1 – Modernizing
L C dLegacy Code

© Cutter Consortium 19

Exercise – Modernizing Legacy Codeg g y
 Read the NotMyCompany case study through the section entitled

Exercise #1 in the handout

 Discuss the following questions in your table/group:
1. Does the strategy summarized in the slide “Typical Stakeholders Dialog” make

sense as a debt reduction strategy?sense as a debt reduction strategy?
2. Which best practices would you recommend for implementing this strategy?
3. What would be a compelling argument for adopting a ‘Reduce Complexity

First’ strategy?gy

 Report back

Ti ll ti 40 i t Time allocation – 40 minutes:
• 30 minutes for reading the case study and group discussion
• 10 minutes for group reports

© Cutter Consortium 20

Continue Reading Only After
Reporting Back on the Exercise

© Cutter Consortium 21

Answer to Question #3 in Exercise #1
 Cyclomatic complexity in excess of ~30 per file for a significant

number of Java files

(Source: http://www.enerjy.com/blog/?p=198)

© Cutter Consortium 22

Part IV: The Tricky Nature of
T h i l D btTechnical Debt
• The Explicit Form of Technical Debt
• The Implicit Form of Technical Debt
• The Strategic Impact of Technical Debt

No Good Strateg Follo ing Prolonged Neglect• No Good Strategy Following Prolonged Neglect

The Explicit Form of Technical Debtp
 Resource allocation decisions:

• “Functional testing is good enough for us… no need to waste precious g g g p
resources to do unit testing…”

[Confession of a VP of development with numerous Cyclomatic complexity readings in the
hundreds…]

© Cutter Consortium 24

The Implicit Form of Technical Debtp
 Implicit forms – in the nature of things:

• Relentless function/feature pressure leads to taking technical debt and p g
neglecting measures to keep software decay in check

© Cutter Consortium 25

The Vicious Cycle of Technical Debty

(More)
Relentless
Pressure

Take
Technical

D bt
Diminished

Dev Velocity DebtDev Velocity

Fail to Pay
Debt Back

Technical
Debt

A Debt Back

Neglect
Maintenance

Accrues

© Cutter Consortium 26

Maintenance

The Strategic Effect of Technical Debtg

© Cutter Consortium 27

No Good Strategy Following Prolonged Neglectgy g g g
 “Indeed, the economic value of lagging applications is questionable

after about three to five years. The degradation of initial structure
and the increasing difficulty of making updates without ‘bad fixes’
tends towards negative returns on investment (ROI) within a few
years.”

© Cutter Consortium 28

Part V: Unified GovernancePart V: Unified Governance
• How We View Success
• Three Core Metrics
• Productivity, Affordability, Risk
• What is the Real ROI?

How We View Success: An Agile Approach to g pp
Governance

© Cutter Consortium 30
 Jim Highsmith

Three Core Metrics

Value
N t P t V l (NPV) $$Net Present Value (NPV) - $$

ConstraintsQuality
Cost - $$Technical Debt - $$

© Cutter Consortium 31 Israel Gat

Productivity, Affordability, Risky, y,
 Long-term productivity: Cost > Technical Debt

L t ff d bilit V l C t T h i l D bt Long-term affordability: Value >> Cost + Technical Debt

 Unifying equation: Value >> Cost > Technical Debt

 Risk: Imbalance(s) between the three core metrics

Value

Net Present Value (NPV) - $$

ConstraintsQuality

© Cutter Consortium 32

Constraints

Cost - $$
Quality

Technical Debt - $$
 Israel Gat

What is the Real ROI?

Is your rate of return on investment 900% or is it actually 233%?!

Expected Final Value of Investment - $10M

Cost - $1MTechnical Debt - $2M

© Cutter Consortium 33

Part VI: Process Control ModelsPart VI: Process Control Models
• A Typical Technical Debt Pattern
• Process Control View of Scrum
• Integration of Technical Debt in the Agile Process
• Using Statistical Process Control Methods

A Typical Technical Debt Patternyp

$$
NPVNPV

Key:
Z1=Get Well Zone
Z2 St bili ti Z

C

Z2=Stabilization Zone
Z3=Pay Off Zone

Z1 Z2 Z3

C

Z1

Time
TD

© Cutter Consortium 35

T1 T2 T3

 Israel Gat

Process Control View of Scrum

© Cutter Consortium 36

Source: Agile Software Development with Scrum

Integration of Technical Debt in the Agile Processg g

© Cutter Consortium 37

Using Statistical Process Control Methodsg
 Use Statistical Process Control methods on Technical Debt samples

• In the example below, Cyclomatic Complexity per Java Class can be p y p y p
used as the Quality Characteristic

© Cutter Consortium 38

Source: Wikipedia

Part VII: Reducing Technical
DebtDebt
• A Framework for Thinking about and Acting on
Technical Debt Issues
• Portfolio Governance

A Framework for the Technical Debt Initiative
 To become actionable, follow the technical debt assessment with a

technical debt reduction initiative:
• SWAT team
• Evangelism
• Agile methodsAgile methods
• Technical debt items as an integral part of the product backlog of

every team:
– If you are starting the technical debt initiative amidst converting to Agile introduceIf you are starting the technical debt initiative amidst converting to Agile, introduce

technical debt as part of the conversion to Agile

• Governance of the Technical Debt Initiative as a strategic investment
theme

© Cutter Consortium 40

Portfolio Governance
 Intentionality through Technical Debt as a Strategic Investment

Theme

Sample Strategic Allocations
N M k tNew Markets

Strategic
CustomersCustomers
Technical Debt

Maintenance

Sales
Opportunities
T ti T l

© Cutter Consortium 41

Testing Tools

Part VIII: TakeawayPart VIII: Takeaway
• Nine Simple Takeaway
• Connecting the dots

Nine Simple Takeawaysp y
 Technical debt shifts the emphasis in software development from

proficiency of the software process to the output of the process

 It enables moving on and up from Random Checks to
Continuous Inspection of the code

 It changes the playing fields from qualitative assessment to
quantitative measurement of the quality of software

 It is an effective antidote to the relentless function/feature pressure

 It is applicable to any amount of code It is applicable to any amount of code

 It can be applied at any point in time in the software life-cycle

© Cutter Consortium

 It can be used with any software method, not “just” Agile

43

Nine Simple Takeaways (Cont’d)p y ()
 It enables effective governance of the software process

It bl ff ti f th d t tf li It enables effective governance of the product portfolio

© Cutter Consortium 44

