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Chapter 1
Wavelet Analysis

Overview

Wavelets are a versatile tool for understanding and analyzing data, with important
applications in nonparametric modeling, pattern recognition, feature identification,
data compression, and image analysis. Wavelets provide a description of your data
that localizes information at a range of scales and positions. Moreover, they can be
computed very efficiently, and there is an intuitive and elegant mathematical theory
to guide you in applying them.

Some Brief Mathematical Preliminaries

The discrete wavelet transform decomposes a function as a sum of basis functions
called wavelets. These basis functions have the property that they can be obtained by
dilating and translating two basic types of wavelets known as thescaling functionor
father wavelet�, and themother wavelet . These translates and dilations are defined
as follows:

�j;k(x) = 2j=2�(2jx� k)

 j;k(x) = 2j=2 (2jx� k)

The indexj defines the dilation orlevel while the indexk defines the translate.
Loosely speaking, sums of the�j;k(x) capture low frequencies and sums of the
 j;k(x) represent high frequencies in the data. More precisely, for any suitable func-
tion f(x) and for anyj0,

f(x) =
X
k

cj0k �j0;k(x) +
X
j�j0

X
k

djk j;k(x)

where thecjk anddjk are known as the scaling coefficients and the detail coefficients
respectively. For orthonormal wavelet families these coefficients can be computed by

cjk =

Z
f(x)�j;k(x) dx

djk =

Z
f(x) j;k(x) dx

The key to obtaining fast numerical algorithms for computing the detail and scaling
coefficients for a given functionf(x) is that there are simple recurrence relationships
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that enable you to compute the coefficients at levelj�1 from the values of the scaling
coefficients at levelj. These formulae are

cj�1k =
X
i

hi�2kc
j
i

dj�1k =
X
i

gi�2kc
j
i

The coefficientshk andgk that appear in these formulae are calledfilter coefficients.
Thehk are determined by the father wavelet and they form a low-pass filter;gk =
(�1)kh1�k and form a high-pass filter. The preceding sums are formally over the
entire (infinite) range of integers. However, for wavelets that are zero except on a
finite interval, only finitely many of the filter coefficients are non-zero and so in this
case the sums in the recurrence relationships for the detail and scaling coefficients
are finite.

Conversely, if you know the detail and scaling coefficients at levelj� 1 then you can
obtain the scaling coefficients at levelj using the relationship

cjk =
X
i

hk�2ic
j�1
i +

X
i

gk�2id
j�1
i

Suppose that you have data values

yk = f(xk); k = 0; 1; 2; � � � ; N � 1

atN = 2J equally spaced pointsxk. It turns out that the values2�J=2yk are good
approximations of the scaling coefficientscJk . Then using the recurrence formula you
can findcJ�1k anddJ�1k , k = 0; 1; 2; � � � ; N=2� 1. The discrete wavelet transform of
theyk at levelJ � 1 consists of theN=2 scaling andN=2 detail coefficients at level
J � 1. A technical point that arises is that in applying the recurrence relationships to
finite data, a few values of thecJk for k < 0 or k � N may be needed. One way to
cope with this difficulty is to extend the sequencecJk to the left and right using some
specified boundary treatment.

Continuing by replacing the scaling coefficients at any levelj by the scaling and
detail coefficients at levelj � 1 yields a sequence ofN coefficients

fc00; d
0
0; d

1
0; d

1
1; d

2
0; d

2
1; d

2
2; d

2
3; d

3
1; : : : ; d

3
7; : : : ; d

J�1
0 ; : : : ; dJ�1N=2�1g

This sequence is the finite discrete wavelet transform of the input datafykg. At any
level j0 the finite dimensional approximation of the functionf(x) is

f(x) �
X
k

cj0k �j0;k(x) +
J�1X
j=j0

X
k

djk j;k(x)



Getting Started � 5

Getting Started
Fourier Transform Infrared (FT-IR) spectroscopy is an important tool in analytic
chemistry. This example demonstrates wavelet analysis applied to an FT-IR spectrum
of quartz (Sullivan 2000). The following DATA step creates a data set containing the
spectrum, expressed as an absorbance value for each of 850 wave numbers.

data quartzInfraredSpectrum;
WaveNumber=4000.6167786 - _N_ *4.00084378;
input Absorbance @@;

datalines;
4783 4426 4419 4652 4764 4764 4621 4475 4430 4618
4735 4735 4655 4538 4431 4714 4738 4707 4627 4523
4512 4708 4802 4811 4769 4506 4642 4799 4811 4732
4583 4676 4856 4868 4796 4849 4829 4677 4962 4994
4924 4673 4737 5078 5094 4987 4632 4636 5010 5166
5166 4864 4547 4682 5161 5291 5143 4684 4662 5221
5640 5640 5244 4791 4832 5629 5766 5723 5121 4690
5513 6023 6023 5503 4675 5031 6071 6426 6426 5723
5198 5943 6961 7135 6729 5828 6511 7500 7960 7960
7299 6484 7257 8180 8542 8537 7154 7255 8262 8898
8898 8263 7319 7638 8645 8991 8991 8292 7309 8005
9024 9024 8565 7520 7858 8652 8966 8966 8323 7513
8130 8744 8879 8516 7722 8099 8602 8729 8726 8238
7885 8350 8600 8603 8487 7995 8194 8613 8613 8408
7953 8236 8696 8696 8552 8102 7852 8570 8818 8818
8339 7682 8535 9038 9038 8503 7669 7794 8864 9163
9115 8221 7275 8012 9317 9317 8512 7295 7623 9021
9409 9338 8116 6860 7873 9282 9490 9191 7012 7392
9001 9483 9457 8107 6642 7695 9269 9532 9246 7641
6547 8886 9457 9457 8089 6535 7537 9092 9406 9178
7591 6470 7838 9156 9222 7974 6506 7360 8746 9057
8877 7455 6504 7605 8698 8794 8439 7057 7202 8240
8505 8392 7287 6634 7418 8186 8229 7944 6920 6829
7499 7949 7831 7057 6866 7262 7626 7626 7403 6791
7062 7289 7397 7397 7063 6985 7221 7221 7199 6977
7088 7380 7380 7195 6957 6847 7426 7570 7508 6952
6833 7489 7721 7718 7254 6855 7132 7914 8040 7880
7198 6864 7575 8270 8229 7545 7036 7637 8470 8570
8364 7591 7413 8195 8878 8878 8115 7681 8313 9102
9185 8981 8283 8197 8932 9511 9511 9101 8510 8670
9686 9709 9504 8944 8926 9504 9964 9964 9627 9212
9366 9889 10100 9939 9540 9512 9860 10121 10121 9828
9567 9513 9782 9890 9851 9510 9385 9339 9451 9451
9181 9076 9015 8960 9014 8957 8760 8760 8602 8584
8584 8459 8469 8373 8279 8327 8282 8341 8341 8155
8260 8260 8250 8350 8245 8358 8403 8355 8490 8490
8439 8689 8689 8621 8680 8661 8897 9028 8900 8873
8873 9187 9377 9377 9078 9002 9147 9635 9687 9535
9127 9242 9824 9928 9775 9200 9047 9572 10102 10102
9631 9024 9209 10020 10271 9830 9062 9234 10154 10483

10453 9582 9011 9713 10643 10701 10372 9368 9857 10865
10936 10572 9574 9691 10820 11452 11452 10623 9903 10787
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11931 12094 11302 10604 11458 12608 12808 12589 11629 11795
12863 13575 13575 12968 12498 13268 14469 14469 13971 13727
14441 15334 15515 15410 14986 15458 16208 16722 16722 16618
17061 17661 18089 18089 18184 18617 19015 19467 19633 19830
20334 20655 20947 21347 21756 22350 22584 22736 22986 23412
24126 24498 24501 24598 24986 25729 26356 26356 26271 26754
27624 28162 28162 28028 28305 29223 30073 30219 30185 30308
31831 32699 32819 32793 33320 34466 35600 36038 36086 36518
37517 38765 39462 39681 40209 41243 42274 42772 42876 43172
43929 44842 45351 45395 45551 46035 46774 47353 47353 47362
47908 48539 48936 48978 49057 49497 50101 50670 50914 51134
51603 52276 53007 53399 53769 54281 54815 54914 55365 55874
56180 56272 56669 57076 57422 57458 57525 57681 57679 57318
57318 57181 57417 57409 57144 57047 56377 56551 56483 56098
56034 55598 55364 55364 55146 54904 54990 55501 55533 55362
54387 55340 55240 54748 53710 55346 55795 55795 55060 55945
55945 55753 56759 56859 57509 56741 56273 56961 58566 58566
58104 59275 59275 59051 59090 59461 60362 60560 61103 61272
61380 61878 62067 62237 62214 61182 61532 62173 62253 60473
61346 63143 63378 61519 61753 63078 63841 63841 62115 61227
63237 63237 61338 63951 63951 63604 63633 64625 65135 64976
63630 63494 63834 63338 63218 62324 64131 64234 65122 64551
64127 64415 64621 64621 63142 65344 65585 65476 65074 64714
63803 65085 65085 65646 65646 64851 65390 65390 64997 65541
65587 65682 65952 65952 65390 65702 65846 65734 65734 65628
65509 65571 65636 65636 65620 65487 65544 65547 65738 65758
65711 65360 65362 65362 65231 65333 65453 65473 65435 65302
65412 65412 65351 65242 65242 65170 65221 65297 65297 65202
65177 65183 65184 65179 65209 65209 65144 65134 65113 65009
64919 64945 64988 64988 64856 64686 64529 64370 64282 64233
64169 63869 63685 63480 63373 63349 63307 63131 63017 62885
62736 62736 62706 62666 62622 62671 62781 62853 62950 63106
63135 63141 63220 63263 63489 63807 63966 64132 64294 64612
64841 64985 65159 65204 65259 65540 65707 65749 65732 65719
65820 65895 65925 65925 65888 65937 66059 66109 66109 66078
66007 65897 65897 65747 65490 64947 64598 64363 64140 63801
63571 63395 63333 63442 63442 63339 63196 62911 62118 61795
61454 61456 61607 62025 62190 62190 62023 61780 61502 61482
61458 61320 61015 60852 60708 60684 60522 60488 60506 60640
60797 60995 61141 61141 61036 60664 60522 60017 59681 59129
58605 58035 57192 56137 54995 53586 52037 50283 48565 45419
43341 41111 36131 35377 34431 31679 29237 26898 24655 22417
19876 17244 15176 12575 10532 8180 6040 4059 2210 575

;

The following statements produce the line plot of these data displayed in Figure 1.1.

symbol1 c=black i=join v=none;
proc gplot data=quartzInfraredSpectrum;

plot Absorbance*WaveNumber/
hminor = 0 vminor = 0
vaxis = axis1
hreverse frame;
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axis1 label = ( r=0 a=90 );
run;

Figure 1.1. FT-IR Spectrum of Quartz

This data contains information at two distinct scales, namely a low frequency under-
lying curve superimposed with a high frequency oscillation. Notice that the oscilla-
tion is not uniform but that it occurs in several distinct bands. Wavelet analysis is
an appropriate tool for providing insight into this type of data as it enables you to
identify the frequencies present in the absorbance data as the wave number changes.
This property of wavelets is known as “time frequency localization”; in this case
the role of time is played byWaveNumber. Also note that the dependent vari-
ableAbsorbance is measured at equally spaced values of the independent variable
WaveNumber. This condition is necessary for the direct use of the discrete wavelet
transform that is implemented in the SAS/IML wavelet functions.

Creating the Wavelet Decomposition

The following SAS code starts the wavelet analysis:

%wavginit;
proc iml;

%wavinit;

Notice that the previous code segment includes two SAS macro calls. You can use
the IML wavelet functions without using the WAVGINIT and WAVINIT macros. The
macros are called to initialize and load IML modules that you can use to produce sev-
eral standard wavelet diagnostic plots. These macros have been provided as autocall
macros that you can invoke directly in your SAS code.
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The WAVGINIT macro must be called prior to invoking PROC IML. This macro
defines several macro variables that are used to adjust the size, aspect ratio, and font
size for the plots produced by the wavelet plot modules. This macro can also take
several optional arguments that control the positioning and and size of the wavelet
diagnostic plots. See “Obtaining Help for Wavelet Modules and Macros” on page 32
for details on getting help about this macro call.

The WAVINIT macro must be called from within PROC IML. It loads the IML mod-
ules that you can use to produce wavelet diagnostic plots. This macro also defines
symbolic macro variables that you can use to improve the readability of your code.

The following statements read the absorbance variable into an IML vector:

use quartzInfraredSpectrum;
read all var{Absorbance} into absorbance;

You are now in a position to begin the wavelet analysis. The first step is to set up the
options vector that specifies which wavelet and what boundary handling you want to
use. You do this as follows:

optn = &waveSpec; /* optn=j(1,4,.); */
optn[&family] = &daubechies; /* optn[3] = 1; */
optn[&member] = 3; /* optn[4] = 3; */
optn[&boundary] = &polynomial; /* optn[1] = 3; */
optn[&degree] = &linear; /* optn[2] = 1; */

These statements use macro variables that are defined in the WAVINIT macro. The
equivalent code without using these macro variables is given in the adjacent com-
ments. As indicated by the suggestive macro variable names, this options vector
specifies that the wavelet to be used is the third member of the Daubechies wavelet
family and that boundaries are to be handled by extending the signal as a linear poly-
nomial at each endpoint.

The next step is to create the wavelet decomposition with the following call:

call wavft(decomp,absorbance,optn);

This call computes the wavelet transform specified by the vectoroptn of the input
vectorabsorbance. The specified transform is encapsulated in the vectordecomp.
This vector is not intended to be used directly. Rather you use this vector as an
argument to other IML wavelet subroutines and plot modules. For example, you
use the WAVPRINT subroutine to print the information encapsulated in a wavelet
decomposition. The following code produces output in Figure 1.2.

call wavprint(decomp,&summary);
call wavprint(decomp,&detailCoeffs,1,4);
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Decomposition Summary

Decomposition Name DECOMP
Wavelet Family Daubechies Extremal Phase
Family Member 3
Boundary Treatment Recursive Linear Extension
Number of Data Points 850
Start Level 0

Wavelet Detail Coefficients for DECOMP

Translate Level 1 Level 2 Level 3 Level 4

0 -1.70985E-9 1.31649E-10 -8.6402E-12 5.10454E-11
1 1340085.30 -128245.70 191.084707 4501.36
2 62636.70 6160.27 -1358.23
3 -238445.36 -54836.56 -797.724143
4 39866.95 676.034389
5 -28836.85 -5166.59
6 223421.00 -6088.99
7 -5794.67
8 30144.74
9 -3903.53

10 638.063264
11 -10803.45
12 33616.35
13 -50790.30

Figure 1.2. Output of WAVPRINT CALLS

Usually such displayed output is of limited use. More frequently you will want to
represent the transformed data graphically or use the results in further computational
routines. As an example, you can estimate the noise level of the data using a robust
measure of the standard deviation of the highest level detail coefficients, as demon-
strated in the following statements:

call wavget(tLevel,decomp,&topLevel);
call wavget(noiseCoeffs,decomp,&detailCoeffs,tLevel-1);

noiseScale=mad(noiseCoeffs,"nmad");
print "Noise scale = " noiseScale;

The result is shown in Figure 1.3;

NOISESCALE

Noise scale = 169.18717

Figure 1.3. Scale of Noise in the Absorbance Data

The first WAVGET call is used to obtain the top level number in the wavelet decom-
position decomp. The highest level of detail coefficients are defined at one level
below the top level in the decomposition. The second WAVGET call returns these
coefficients in the vectornoiseCoeffs. Finally, the MAD function computes a robust
estimate of the standard deviation of these coefficients.
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Wavelet Coefficient Plots

Diagnostic plots greatly facilitate the interpretation of a wavelet decomposition. One
standard plot is the detail coefficients arranged by level. Using a module included by
the WAVINIT macro call, you can produce the plot shown in Figure 1.5 as follows:

call coefficientPlot(decomp, , , , ,"Quartz Spectrum");

The first argument specifies the wavelet decomposition and is required. All other
arguments are optional and need not be specified. You can use the WAVHELP macro
to obtain a description of the arguments of this and other wavelet plot modules. The
WAVHELP macro is defined in autocall the WAVINIT macro. For example, invoking
the WAVHELP macro as follows writes the calling information shown in Figure 1.4
to the SAS log.

%wavhelp(coefficientPlot);

coefficientPlot Module

Function: Plots wavelet detail coefficients

Usage: call coefficientPlot(decomposition,
threshopt,
startLevel,
endLevel,
howScaled,
header);

Arguments:
decomposition - (required) valid wavelet decompostion produced

by the IML subroutine WAVFT
threshopt - (optional) numeric vector of 4 elements

specifying thresholding to be used
Default: no thresholding

startLevel - (optional) numeric scalar specifying the lowest
level to be displayed in the plot
Default: start level of decomposition

endLevel - (optional) numeric scalar specifying the highest
level to be displayed in the plot
Default: end level of decomposition

howScaled - (optional) character: ’absolute’ or ’uniform’
specifies coefficients are scaled uniformly
Default: independent level scaling

header - (optional) character string specifying a header
Default: no header

Figure 1.4. Log Output Produced by %wavhelp(coefficientPlot) Call
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Figure 1.5. Detail Coefficients Scaled by Level

In this plot the detail coefficients at each level are scaled independently. The oscil-
lations present in the absorbance data are captured in the detail coefficients at levels
7, 8, and 9. The following statement produces a coefficient plot of just these higher
level detail coefficients and shows them scaled uniformly.

call coefficientPlot(decomp, ,7, ,
’uniform’,"Quartz Spectrum");

The plot is shown in Figure 1.6.
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Figure 1.6. Uniformly Scaled Detail Coefficients

As noted earlier, noise in the data is captured in the detail coefficients, particularly in
the small coefficients at higher levels in the decomposition. By zeroing or shrinking
these coefficients, you can get smoother reconstructions of the input data. This is
done by specifying a threshold value for each level of detail coefficients and then
zeroing or shrinking all the detail coefficients below this threshold value. The IML
wavelet functions and modules support several policies for how this thresholding
is performed as well as for selecting the thresholding value at each level. See the
“WAVIFT Call” on page 26 for details.

An options vector is used to specify the desired thresholding; several standard choices
are predefined as macro variables in the WAVINIT module. The following statements
produce the detail coefficient plot with the “SureShrink” thresholding algorithm of
Donoho and Johnstone (1995).

call coefficientPlot(decomp,&SureShrink,6,, ,
"Quartz Spectrum");

The plot is shown in Figure 1.7.
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Figure 1.7. Thresholded Detail Coefficients

You can see that “SureShrink” thresholding has zeroed some of the detail coefficients
at the higher levels but the larger coefficients that capture the oscillation in the data are
still present. Consequently, reconstructions of the the input signal using the thresh-
olded detail coefficients will still capture the essential features of the data, but will be
smoother as much of the very fine scale detail has been eliminated.

Multiresolution Approximation Plots

One way of presenting reconstructions is in a multiresolution approximation plot.
In this plot reconstructions of the input data are shown by level. At any level the
reconstruction at that level uses only the detail and scaling coefficients defined below
that level.

The following statement produces such a plot, starting at level 3:

call mraApprox(decomp, ,3, ,"Quartz Spectrum");

The results are shown in Figure 1.8.
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Figure 1.8. Multiresolution Approximation

You can see that even at level 3, the basic form of the input signal has been captured.
As noted earlier, the oscillation present in the absorbance data is captured in the detail
coefficients above level 7. Thus, the reconstructions at level 7 and below are largely
free of these oscillation since they do not use any of the higher detail coefficients. You
can confirm this observation by plotting just this level in the multiresolution analysis
as follows:

call mraApprox(decomp, ,7,7,"Quartz Spectrum");

The results are shown in Figure 1.9.
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Figure 1.9. Level 7 of the Multiresolution Approximation

You can also plot the multiresolution approximations obtained with thresholded detail
coefficients. For example, the following statement plots the top level reconstruction
obtained using the “SureShrink” threshold:

call mraApprox(decomp,&SureShrink,10,10,
"Quartz Spectrum");

The results are shown in Figure 1.10.
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Figure 1.10. Top Level of Multiresolution Approximation with SureShrink Thresh-
olding Applied

Note that the high frequency oscillation is still present in the reconstruction even with
“SureShrink” thresholding applied.

Multiresolution Decomposition Plots

A related plot is the multiresolution decomposition plot, which shows the detail coef-
ficients at each level. For convenience, the starting level reconstruction at the lowest
level of the plot and the reconstruction at the highest level the plot are also included.
Adding suitably scaled versions of all the detail levels to the starting level reconstruc-
tion recovers the final reconstruction. The following statement produces such a plot,
yielding the results shown in Figure 1.11.

call mraDecomp(decomp, ,5, , ,"Quartz Spectrum");
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Figure 1.11. Multiresolution Decomposition

Wavelet Scalograms

Wavelet scalograms communicate the time frequency localization property of the dis-
crete wavelet transform. In this plot each detail coefficient is plotted as a filled rect-
angle whose color corresponds to the magnitude of the coefficient. The location and
size of the rectangle are related to the time interval and the frequency range for this
coefficient. Ccoefficients at low levels are plotted as wide and short rectangles to
indicate that they localize a wide time interval but a narrow range of frequencies in
the data. In contrast, rectangles for coefficients at high levels are plotted thin and
tall to indicate that they localize small time ranges but large frequency ranges in the
data. The heights of the rectangles grow as a power of 2 as the level increases. If
you include all levels of coefficients in such a plot, the heights of the rectangles at
the lowest levels are so small that they will not be visible. You can use an option to
plot the heights of the rectangles on a logarithmic scale. This results in rectangles
of uniform height but requires that you interpret the frequency localization of the
coefficients with care.

The following statement produces a scalogram plot of all levels with “SureShrink”
thresholding applied:

call scalogram(decomp,&SureShrink, , ,0.25,
’log’,"Quartz Spectrum");

The sixth argument specifies that the rectangle heights are to be plotted on a logarith-
mic scale. The role of the fifth argument (0:25) is to amplify the magnitude of the
small detail coefficients. This is necessary since the detail coefficients at the lower
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levels are orders of magnitude larger than those at the higher levels. The amplifi-
cation is done by first scaling the magnitudes of all detail coefficients to lie in the
interval [0; 1] and then raising these scaled magnitudes to the power0:25. Note that
smaller powers yield larger amplification of the small detail coefficient magnitudes.
The default amplification is1=3.

The results are shown in Figure 1.12.

Figure 1.12. Scalogram Showing All Levels

The bar on the left-hand side of the scalogram plot indicates the overall energy of
each level. This energy is defined as the sum of the squares of the detail coefficients
for each level. These energies are amplified using the same algorithm for amplifying
the detail coefficient magnitudes. The energy bar in Figure 1.12 shows that higher
energies occur at the lower levels whose coefficients capture the gross features of
the data. In order to interpret the finer-scale details of the data it is helpful to focus
on just the higher levels. The following statement produces a scalogram for levels 6
and above without using a logarithmic scale for the rectangle heights, and using the
default coefficient amplification.

call scalogram(decomp,&SureShrink,6, , , ,
"Quartz Spectrum");

The result is shown in Figure 1.13.
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Figure 1.13. Scalogram of Levels 6 and Above Using SureShrink Thresholding

The scalogram in Figure 1.13 reveals that most of the energy of the oscillation in
the data is captured in the detail coefficients at level 8. Also note that many of the
coefficients at the higher levels are set to zero by “SureShrink” thresholding. You can
verify this by comparing Figure 1.13 with Figure 1.14, which shows the correspond-
ing scalogram except that no thresholding is done. The following statement produces
Figure 1.14:

call scalogram(decomp, ,6, , , ,"Quartz Spectrum");
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Figure 1.14. Scalogram of Levels 6 and Above Using No Thresholding

Reconstructing the Signal from the Wavelet Decomposition

You can use the WAVIFT subroutine to invert a wavelet transformation computed
using the WAVFT subroutine. If no thresholding is specified, then up to numerical
rounding error this inversion is exact. The following statements provide an illustra-
tion of this:

call wavift(reconstructedAbsorbance,decomp);
errorSS=ssq(absorbance-reconstructedAbsorbance);
print "The reconstruction error sum of squares = " errorSS;

The output is shown in Figure 1.15.

ERRORSS

The reconstruction error sum of squares = 1.288E-16

Figure 1.15. Exact Reconstruction Property of WAVIFT

Usually you use the WAVIFT subroutine with thresholding specified. This yields a
smoothed reconstruction of the input data. You can use the following statements to
create a smoothed reconstruction ofabsorbance and add this variable to the Quartz-
InfraredSpectrum data set.

call wavift(smoothedAbsorbance,decomp,&SureShrink);
create temp from smoothedAbsorbance[colname=’smoothedAbsorbance’];

append from smoothedAbsorbance;
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close temp;
quit;

data quartzInfraredSpectrum;
set quartzInfraredSpectrum;
set temp;

run;

The following statements produce the line plot of the smoothed absorbance data
shown in Figure 1.16:

symbol1 c=black i=join v=none;
proc gplot data=quartzInfraredSpectrum;

plot smoothedAbsorbance*WaveNumber/
hminor = 0 vminor = 0
vaxis = axis1
hreverse frame;
axis1 label = ( r=0 a=90 );

run;

Figure 1.16. Smoothed FT-IR Spectrum of Quartz

You can see by comparing Figure 1.1 with Figure 1.16 that the wavelet smooth of the
absorbance data has preserved all the essential features of this data.
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Syntax

Wavelet Analysis Calls

WAVFT Call computes a specified wavelet transform of one-
dimensional data

WAVGET Call returns requested information encapsulated in a wavelet
transform

WAVIFT Call inverts a wavelet transform after applying specified thresh-
olding to the detail coefficients

WAVPRINT Call displays requested information encapsulated in a wavelet
transform

WAVTHRSH Call applies specified thresholding to the detail coefficients of
a wavelet transform

WAVFT Call

computes fast wavelet transform

CALL WAVFT( decomp, data, opt <, levels> );

The Fast Wavelet Transform (WAVFT) subroutine computes a specified discrete
wavelet transform of the input data, using the algorithm of Mallat (1989). This trans-
form decomposes the input data into sets of detail and scaling coefficients defined at
a number of scales or “levels.”

The input data are used as scaling coefficients at the top level in the decomposition.
The fast wavelet transform then recursively computes a set of detail and a set of
scaling coefficients at the next lower level by respectively applying “low pass” and
“high pass” conjugate mirror filters to the scaling coefficients at the current level. The
number of coefficients in each of these new sets is approximately half the number of
scaling coefficients at the level above them. Depending on the filters being used, a
number of additional scaling coefficients, known asboundary coefficients,may be
involved. These boundary coefficients are obtained by extending the sequence of
interior scaling coefficients using a specified method.

Details of the discrete wavelet transform and the fast wavelet transformation algo-
rithm are available in many references, including Mallat (1989), Daubechies (1992),
and Ogden (1997).

The inputs to the WAVFT subroutine are as follows:

data specifies the data to transform. This data must be either a row or column
vector.

opt refers to an options vector with the following components:

opt[1] specifies the boundary handling used in computing the wavelet
transform. At each level of the wavelet decomposition, neces-
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sary boundary scaling coefficients are obtained by extending the
interior scaling coefficients at that level as follows:

opt[1]=0 specifies extension by zero.
opt[1]=1 specifies periodic extension.
opt[1]=2 specifies polynomial extension.
opt[1]=3 specifies extension by reflection.
opt[1]=4 specifies extension by anti-symmetric reflection.

opt[2] specifies the polynomial degree that is used for polynomial ex-
tension. The value ofopt[2] is ignored ifopt[1] 6= 2.

opt[2]=0 specifies constant extension.
opt[2]=1 specifies linear extension.
opt[2]=2 specifies quadratic extension.

opt[3] specifies the wavelet family.

opt[3]=1 specifies the Daubechies Extremal phase family
(Daubechies 1992).

opt[3]=2 specifies the Daubechies Least Asymmetric family
(also known as the Symmlet family) (Daubechies
1992).

opt[4] specifies the wavelet family member. Valid values are

opt[4]=1 through 10, ifopt[3]=1
opt[4]=4 through 10, ifopt[3]=2

Some examples of wavelet specifications are

opt={1 . 1 1}; specifies the first member (more commonly known as the
Haar system) of the Daubechies extremal phase family
with periodic boundary handling.

opt={2 1 2 5}; specifies the fifth member of the Symmlet family with
linear extension boundary handling.

levels is an optional scalar argument that specifies the number of levels from the
top level to be computed in the decomposition. If you do not specify this
argument, then the decomposition terminates at level 0. Usually, you will
not need to specify this optional argument. You use this option to avoid
unneeded computations in situations where you are interested in the detail
and scaling coefficients at only higher levels.

The WAVFT subroutine returns

decomp a row vector that encapsulates the specified wavelet transform. The infor-
mation that is encoded in this vector includes:

� the options specified for computing the transform

� the number of detail coefficients at each level of the decomposition

� all detail coefficients

� the scaling coefficients at the bottom level of the decomposition
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� boundary scaling coefficients at all levels of the decomposition

Note: decompis a private representation of the specified wavelet transform and is not
intended to be interpreted in its raw form. Rather, you should use this vector as an
input argument to the WAVIFT, WAVPRINT, WAVGET, and WAVTHRSH subrou-
tines.

WAVGET Call

extracts wavelet information

CALL WAVGET( result, decomp, request <, options> );

The WAVGET subroutine is used to return information that is encoded in a wavelet
decomposition.

The required inputs are

decomp specifies a wavelet decomposition that has been computed using a call to
the WAVFT subroutine.

request specifies a scalar indicating what information is to be returned.

You can specify different optional arguments depending on the value of
request:

request=1 requests the number of points in the input data vector.

result returns as a scalar containing this number.

request=2 requests the detail coefficients at a specified level. Valid syntax
is

CALL WAVGET( result, decomp, 2, level <, opt> );

where the argument

level is the level at which the detail coefficients are re-
quested.

opt is an optional vector that specifies the thresholding to
be applied to the returned detail coefficients. See the
WAVIFT subroutine call for details. If you omit this
argument, no thresholding is applied.

result returns as a column vector containing the specified
detail coefficients.

request=3 requests the scaling coefficients at a specified level. Valid syn-
tax is

CALL WAVGET( result, decomp, 3, level <, opt> );

where the argument
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level is the level at which the scaling coefficients are re-
quested.

opt is an optional vector that specifies the thresholding
to be applied. See the WAVIFT subroutine call for a
description of this vector. The scaling coefficients at
the requested level are obtained by using the inverse
wavelet transform, after applying the specified thresh-
olding. If you omit this argument, no thresholding is
applied.

result returns as a column vector containing the specified
scaling coefficients.

request=4 requests the thresholding status of the detail coefficients inde-
comp.

result returns as a scalar whose value is

0, if the detail coefficients have not been thresh-
olded.

1, otherwise.

request=5 requests the wavelet options vector that you specified in the
WAVFT subroutine call to computedecomp.

result returns as a column vector with four elements con-
taining the specified options vector. See the WAVFT
subroutine call for the interpretation of the vector en-
tries.

request=6 requests the index of the top level indecomp.

result returns as a scalar containing this number.

request=7 requests the index of the lowest level indecomp.

result returns as a scalar containing this number.

request=8 requests a vector evaluating the father wavelet used indecomp,
at an equally spaced grid spanning the support of the father
wavelet. The number of points in the grid is specified as a power
of 2 times the support width of the father wavelet. For wavelets
in the Daubechies extremal phase and least asymmetric fami-
lies, the support width of the father wavelet is2m�1, wherem
is the family member. Valid syntax is

CALL WAVGET( result, decomp, 8 <, power> );

where the optional argument

power is the exponent of 2 determining the number of grid
points used.powerdefaults to8 if you do not specify
this argument.

result returns as a column vector containing the specified
evaluation of the father wavelet.
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WAVIFT Call

computes inverse fast wavelet transform

CALL WAVIFT( result, decomp <, opt <, level>> );

The Inverse Fast Wavelet Transform (WAVIFT) subroutine computes the inverse
wavelet transform of a wavelet decomposition computed using the WAVFT subrou-
tine. Details of this algorithm are available in many references, including Mallat
(1989), Daubechies (1992), and Ogden (1997).

The inverse transform yields an exact reconstruction of the original input data, pro-
vided that no smoothing is specified. Alternatively, a smooth reconstruction of the in-
put data can be obtained by thresholding the detail coefficients in the decomposition
prior to applying the inverse transformation. Thresholding, also known as shrinkage,

replaces the detail coefficientd(i)j at leveli by ÆTi
(d

(i)
j ), where theÆT (x) is a shrink-

age function andTi is the threshold value used at leveli. The SAS/IML wavelet
subroutines support hard and soft shrinkage functions (Donoho and Johnstone 1994)
and the non-negative garrote shrinkage function (Breiman 1995). These functions are
defined as follows:

Æhard
T (x) =

�
0 jxj � T
x jxj > T

Æsoft
T (x) =

8<
:

0 jxj � T
x� T x > T
x+ T x < �T

Æ
garrote
T (x) =

�
0 jxj � T
x� T 2=x jxj > T

You can specify several methods for choosing the threshold values. Methods in which
the thresholdTi varies with the leveli are calledadaptive.Methods where the same
threshold is used at all levels are calledglobal.

The inputs to the WAVIFT subroutine are as follows:

decomp specifies a wavelet decomposition that has been computed using a call to
the WAVFT subroutine.

opt refers to an options vector that specifies the thresholding algorithm. If this
optional argument is not specified, then no thresholding is applied.

The options vector has the following components:

opt[1] specifies the thresholding policy.

opt[1]=0 specifies that no thresholding be done. Ifopt[1]=0 then
all other entries in the options vector are ignored.
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opt[1]=1 specifies hard thresholding.
opt[1]=2 specifies soft thresholding.
opt[1]=3 specifies garrote thresholding.

opt[2] specifies the method for selecting the threshold.

opt[2]=0 specifies a global user-supplied threshold.
opt[2]=1 specifies a global threshold chosen using the minimax

criterion of Donoho and Johnstone (1994).
opt[2]=2 specifies a global threshold defined using the universal

criterion of Donoho and Johnstone (1994).
opt[2]=3 specifies an adaptive method where the thresholds at

each leveli are chosen to minimize an approximation of
theL2 risk in estimating the true data values using the
reconstruction with thresholded coefficients (Donoho
and Johnstone 1995).

opt[2]=4 specifies a hybrid method of Donoho and Johnstone
(1995). The universal threshold as specified byopt[2]=2
is used at levels where most of the detail coefficients are
essentially zero. The risk minimization method as spec-
ified by opt[2]=4 is used at all other levels.

opt[3] specifies the value of the global user-supplied threshold ifopt[2]=1.
It is ignored ifopt[2] 6= 1.

opt[4] specifies the number of levels starting at the highest detail coeffi-
cient level at which thresholding is to be applied. If this value is
negative or missing, thresholding is applied at all levels indecomp.

Some common examples of threshold options specifications are:

opt={1 3 . -1}; specifies hard thresholding with a minimax threshold ap-
plied at all levels in the decomposition. This threshold is
named “RiskShrink” in Donoho and Johnstone (1994).

opt={2 2 . -1}; specifies soft thresholding with a universal threshold ap-
plied at all levels in the decomposition. This threshold is
named “VisuShrink” in Donoho and Johnstone (1994).

opt={2 4 . -1}; specifies soft thresholding with level-dependent thresh-
olds that minimize the Stein Unbiased Estimate of
Risk (SURE). This threshold is named “SureShrink”
in Donoho and Johnstone (1995).

level is an optional scalar argument that specifies the level at which the recon-
structed data are to be returned. If this argument is not specified then the
reconstructed data are returned at the top level defined indecomp.

The WAVIFT subroutine returns

result a vector obtained by inverting, after thresholding the detail coefficients, the
discrete wavelet transform encoded indecomp. The row or column orienta-
tion of result is the same as that of the input data specified in the correspond-
ing WAVFT subroutine call. If you specify the optionallevelargument,result
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contains the reconstruction at the specified level, otherwise the reconstruction
corresponds to the top level in the decomposition.

WAVPRINT Call

displays wavelet information

CALL WAVPRINT( decomp, request <, options> );

The WAVPRINT subroutine is used to display the information that is encoded in a
wavelet decomposition.

The required inputs are

decomp specifies a wavelet decomposition that has been computed using a call to
the WAVFT subroutine.

request specifies a scalar indicating what information is to be displayed.

You can specify different optional arguments depending on the value of
request:

request=1 displays information about the wavelet family used to perform
the wavelet transform. No additional arguments need to be
specified.

request=2 displays the detail coefficients by level. Valid syntax is

CALL WAVPRINT( decomp, 2 <, lower <, upper>> );

where the argument

lower is optional and specifies the lowest level to be dis-
played. The default value oflower is the lowest level
in decomp.

upper is optional and specifies the upper level to be dis-
played. The default value ofupper is the highest de-
tail level indecomp.

request=3 displays the scaling coefficients by level. Valid syntax is

CALL WAVPRINT( decomp,3 < , lower <, upper>> );

where the argument

lower is optional and specifies the lowest level to be dis-
played. The default value oflower is the lowest level
in decomp.

upper is optional and specifies the upper level to be dis-
played. The default value ofupper is the top level
in decomp.
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request=4 displays thresholded detail coefficients by level. Valid syntax is

CALL WAVPRINT( decomp, 4, opt<, lower <, upper>> );

where the argument

opt is a required options vector that specifies the thresh-
olding algorithm used. See the WAVIFT subroutine
call for a description of this options vector.

lower is optional and specifies the lowest level to be dis-
played. The default value oflower is the lowest level
in decomp.

upper is optional and specifies the upper level to be dis-
played. The default value ofupper is the highest de-
tail level indecomp.

WAVTHRSH Call

thresholds wavelet detail coefficients

CALL WAVTHRSH( decomp, opt );

The Wavelet Threshold (WAVTHRSH) subroutine thresholds the detail coefficients
in a wavelet decomposition.

The required inputs are

decomp specifies a wavelet decomposition that has been computed using a call to
the WAVFT subroutine.

opt refers to an options vector that specifies the thresholding algorithm used.
See the WAVIFT subroutine call for a description of this options vector.

On return, the detail coefficients encoded indecompare replaced by their thresh-
olded values. Note that this action is not reversible. If you want to retain the original
detail coefficients, you should not use the WAVTHRSH subroutine to do threshold-
ing. Rather, you should supply the thresholding argument where appropriate in the
WAVIFT, WAVGET, and WAVPRINT subroutine calls.
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Details

Using Symbolic Names

Several of the wavelet subroutines take arguments that are options vectors that spec-
ify user input. For example, the third argument in a WAVFT subroutine call is an
options vector that specifies which wavelet and which boundary treatment are used
in computing the wavelet transform. Typical code that defines this options vector is

optn = j(1, 4, .);
optn[1] = 0;
optn[3] = 1;
optn[4] = 3;

A problem with such code is that it is not easily readable. By using symbolic names
readability is greatly enhanced. SAS macro variables provide a convenient mecha-
nism for creating such symbolic names. For example, the previous code could be
replaced by

optn = &waveSpec;
optn[&family] = &daubechies;
optn[&member] = 3;
optn[&boundary] = &zeroExtension;

where the symbolic macro variables (names with a preceding ampersand) resolve
to the relevant quantities. Another example where symbolic names improve code
readability is to use symbolic names for an integer argument that controls what action
a multipurpose subroutine performs. An illustration is replacing code such as

call wavget(n,decomposition,1);
call wavget(fWavelet,decompostion,8);

by

call wavget(n,decomposition,&numPoints);
call wavget(fWavelet,decompostion,&fatherWavelet);

A set of symbolic names is defined in the autocall WAVINIT macro. The following
tables list the symbolic names that are defined in this macro:
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Table 1.1. Macro Variables for Wavelet Specification

Position Admissible Values
Name Value Name Value
&boundary 1 &zeroExtension 0

&periodic 1
&polynomial 2
&reflection 3
&antisymmetricReflection 4

&degree 2 &constant 0
&linear 1
&quadratic 2

&family 3 &daubechies 1
&symmlet 2

&member 4 1 - 10

Table 1.2. Macro Variables for Threshold Specification

Position Admissible Values
Name Value Name Value
&policy 1 &none 0

&hard 1
&soft 2
&garrote 3

&method 2 &absolute 0
&minimax 1
&universal 2
&sure 3
&sureHybrid 4
&nhoodCoeffs 5

&value 3 positive real
&levels 4 &all -1

positive integer

Table 1.3. Symbolic Names for the Third Argument of WAVGET

Name Value
&numPoints 1
&detailCoeffs 2
&scalingCoeffs 3
&thresholdingStatus 4
&specification 5
&topLevel 6
&startLevel 7
&fatherWavelet 8
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Table 1.4. Macro Variables for the Second Argument of WAVPRINT

Name Value
&summary 1
&detailCoeffs 2
&scalingCoeffs 3
&thresholdedDetailCoeffs 4

Table 1.5. Macro Variables for Predefined Wavelet Specifications

Name &boundary &degree &family &member
&waveSpec { . . . . }
&haar { &periodic . &daubechies 1 }
&daubechies3 { &periodic . &daubechies 3 }
&daubechies5 { &periodic . &daubechies 5 }
&symmlet5 { &periodic . &symmlet 5 }
&symmlet8 { &periodic . &symmlet 8 }

Table 1.6. Macro Variables for Predefined Threshold Specifications

Name &policy &method &value &levels
&threshSpec { . . . . }
&RiskShrink { &hard &minimax . &all }
&VisuShrink { &soft &universal . &all }
&SureShrink { &soft &sureHybrid . &all }

Obtaining Help for the Wavelet Macros and Modules

The WAVINIT macro that you call to define symbolic macro variables and wavelet
plot modules also defines a macro WAVHELP that you can call to obtain help for the
wavelet macros and plot modules. The syntax for calling the WAVHELP macro is

%WAVHELP< ( name )>;

wherename is one of wavginit, wavinit, coefficientPlot, mraApprox, mraDecomp,
or scalogram. This macro displays usage and argument information for the specified
macro or module. If you call the WAVHELP macro with no arguments, it lists the
names of the macros and modules for which help is available. Note that you can
obtain help for the built-in IML wavelet subroutines using the SAS Online Help.
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Chapter 2
Fractionally Integrated Time Series

Analysis

Overview

This chapter describes SAS/IML subroutines related to fractionally integrated time
series analysis.

The following subroutines are supported:

FARMACOV computes the auto-covariance function for a fractionally integrated
ARMA model

FARMAFIT estimates the parameters for a fractionally integrated ARMA model

FARMALIK computes the log-likelihood function for a fractionally integrated
ARMA model

FARMASIM generates a fractionally integrated ARMA process

FDIF computes a fractionally differenced process

Getting Started

Fractionally Integrated Time Series

The fractional differencing enables the degree of differencingd to take any real value
rather than being restricted to integer values. The fractionally differenced processes
are capable of modeling long-term persistence. The process

(1�B)dyt = �t

is known as a fractional Gaussian noise process or an ARFIMA(0; d; 0) process,
whered 2 (�1; 1)nf0g, �t is a white noise process with mean zero and variance
�2� , andB is the backshift operator such thatBj

yt = yt�j . The extension of
an ARFIMA(0; d; 0) model combines fractional differencing with an ARMA(p; q)
model, known as an ARFIMA(p; d; q) model.

Consider an ARFIMA(0; 0:2; 0) represented as(1 � B)0:2yt = �t where �t �
NID(0; 1). With the following statements you can

� compute the auto-covariance function

� generate the simulated data
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� compute the log-likelihood function

� fit a fractionally integrated time series model to the data

� obtain the fractionally differenced data

d = 0.2;
call farmacov(cov, d); print cov;
call farmasim(yt, d); print yt;
call farmalik(lnl, yt, d); print lnl;
call farmafit(d, ar, ma, sigma, yt); print d sigma;
call fdif(zt, yt, d); print zt;

FARMACOV Call

computes the auto-covariance function for an ARFIMA(p; d; q) process

CALL FARMACOV( cov, d <, phi, theta, sigma, p, q, lag>);

The inputs to the FARMACOV subroutine are as follows:

d specifies a fractional differencing order. The value ofdmust be in the open
interval(�0:5; 0:5) excluding zero. This input is required.

phi specifies anmp-dimensional vector containing the autoregressive coeffi-
cients, wheremp is the number of the elements in the subset of the AR
order. The default is zero. All the roots of�(B) = 0 should be greater than
one in absolute value, where�(B) is the finite order matrix polynomial in
the backshift operatorB, such thatBjyt = yt�j .

theta specifies anmq-dimensional vector containing the moving-average coeffi-
cients, wheremq is the number of the elements in the subset of the MA
order. The default is zero.

p specifies the subset of the AR order. The quantitymp is defined as the
number of elements ofphi.

If you do not specifyp, the default subset isp= f1; 2; : : : ;mpg.

For example, considerphi=0.5.

If you specify p=1 (the default), the FARMACOV subroutine computes
the theoretical auto-covariance function of an ARFIMA(1; d; 0) process as
yt = 0:5 yt�1 + �t:

If you specify p=2, the FARMACOV subroutine computes the auto-
covariance function of an ARFIMA(2; d; 0) process asyt = 0:5 yt�2 + �t:

q specifies the subset of the MA order. The quantitymq is defined as the
number of elements oftheta.

If you do not specifyq, the default subset isq= f1; 2; : : : ;mqg.

The usage ofq is the same as that ofp.
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lag specifies the length of lags, which must be a positive number. The default
is lag = 12.

The FARMACOV subroutine returns the following value:

cov is a lag + 1 vector containing the auto-covariance function of an
ARFIMA(p; d; q) process.

To compute the auto-covariance of an ARFIMA(1; 0:3; 1) process

(1� 0:5B)(1 �B)0:3yt = (1 + 0:1B)�t

where�t � NID(0; 1:2), you can specify

d = 0.3;
phi = 0.5;
theta= -0.1;
sigma= 1.2;
call farmacov(cov, d, phi, theta, sigma) lag=5;
print cov;

For d 2 (0:5; 0:5)nf0g, the seriesyt represented as(1 � B)dyt = �t is a stationary
and invertible ARFIMA(0; d; 0) process with the auto-covariance function

k = E(ytyt�k) =
(�1)k�(�2d+ 1)

�(k � d+ 1)�(�k � d+ 1)

and the auto-correlation function

�k =
k
0

=
�(�d+ 1)�(k + d)

�(d)�(k � d+ 1)
�

�(�d+ 1)

�(d)
k2d�1; k !1

Notice that�k decays hyperbolically as the lag increases, rather than showing the ex-
ponential decay of the auto-correlation function of a stationary ARMA(p; q) process.

The FARMACOV subroutine computes the auto-covariance function of an
ARFIMA(p; d; q) process.

For d 2 (0:5; 0:5)nf0g, the seriesyt is a stationary and invertible ARFIMA(p; d; q)
process represented as

�(B)(1 �B)dyt = �(B)�t

where�(B) = 1��1B��2B
2� � � � ��pB

p and�(B) = 1� �1B� �2B
2� � � � �

�qB
q and�t is a white noise process; all the roots of the characteristic AR and MA

polynomial lie outside the unit circle.

Let xt = �(B)�1�(B)yt, so thatxt follows an ARFIMA(0; d; 0) process; letzt =
(1�B)dyt, so thatzt follows an ARMA(p; q) process; letxk be the auto-covariance
function offxtg andzk be the auto-covariance function offztg.
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Then the auto-covariance function offytg is as follows:

k =

j=1X
j=�1

zj 
x
k�j

The explicit form of the auto-covariance function offytg is given by Sowell (1992,
p. 175).

FARMAFIT Call

estimate the parameters of an ARFIMA(p; d; q) model

CALL FARMAFIT( d, phi, theta, sigma, series <, p, q, opt>);

The inputs to the FARMAFIT subroutine are as follows:

series specifies a time series (assuming mean zero).

p specifies the set or subset of the AR order. If you do not specifyp, the
default isp=0.

If you specifyp=3, the FARMAFIT subroutine estimates the coefficient of
the lagged variableyt�3.

If you specifyp=f1; 2; 3g, the FARMAFIT subroutine estimates the coeffi-
cients of lagged variablesyt�1, yt�2, andyt�3.

q specifies the subset of the MA order. If you do not specifyq, the default is
q=0.

If you specifyq=2, the FARMAFIT subroutine estimates the coefficient of
the lagged variable�t�2.

If you specify q=f1; 2g, the FARMAFIT subroutine estimates the coeffi-
cients of lagged variables�t�1 and�t�2.

opt specifies the method of computing the log-likelihood function.

opt=0 requests the conditional sum of squares function. This is the de-
fault.

opt=1 requests the exact log-likelihood function. This option requires
that the time series be stationary and invertible.

The FARMAFIT subroutine returns the following values:

d is a scalar containing a fractional differencing order.

phi is a vector containing the autoregressive coefficients.

theta is a vector containing the moving-average coefficients.

sigma is a scalar containing a variance of the innovation series.
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To estimate parameters of an ARFIMA(1; 0:3; 1) model

(1� 0:5B)(1 �B)0:3yt = (1 + 0:1B)�t

where�t � NID(0; 1), you can specify

d = 0.3;
phi = 0.5;
theta= -0.1;
call farmasim(yt, d, phi, theta);
call farmafit(d, ar, ma, sigma, yt) p=1 q=1;
print d ar ma sigma;

The FARMAFIT subroutine estimates parametersd, �(B), �(B), and �2� of an
ARFIMA(p; d; q) model. The log-likelihood function needs to be solved by itera-
tive numerical procedures such as the quasi-Newton optimization. The starting value
d is obtained by the approach of Geweke and Poter-Hudak (1983); the starting value
of the AR and MA parameters are obtained from the least squares estimates.

FARMALIK Call

computes the log-likelihood function of an ARFIMA(p; d; q) model

CALL FARMALIK( lnl, series, d <, phi, theta, sigma, p, q, opt>);

The inputs to the FARMALIK subroutine are as follows:

series specifies a time series (assuming mean zero).

d specifies a fractional differencing order. This argument is required; the
value ofd should be in the open interval(�1; 1) excluding zero.

phi specifies anmp-dimensional vector containing the autoregressive coeffi-
cients, wheremp is the number of the elements in the subset of the AR
order. The default is zero.

theta specifies anmq-dimensional vector containing the moving-average coeffi-
cients, wheremq is the number of the elements in the subset of the MA
order. The default is zero.

sigma specifies a variance of the innovation series. The default is one.

p specifies the subset of the AR order. See the FARMACOV subroutine for
additional details.

q specifies the subset of the MA order. See the FARMACOV subroutine for
additional details.

opt specifies the method of computing the log-likelihood function.

opt=0 requests the conditional sum of squares function. This is the de-
fault.
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opt=1 requests the exact log-likelihood function. This option requires
that the time series be stationary and invertible.

The FARMALIK subroutine returns the following value:

lnl is 3-dimensional vector.lnl[1] contains the log-likelihood function of the
model; lnl[2] contains the sum of the log determinant of the innovation
variance; andlnl[3] contains the weighted sum of squares of residuals. The
log-likelihood function is computed as�0:5� (lnl[2]+lnl[3]). If the opt=0
is specified, only the weighted sum of squares of residuals returns inlnl[1].

To compute the log-likelihood function of an ARFIMA(1; 0:3; 1) model

(1� 0:5B)(1 �B)0:3yt = (1 + 0:1B)�t

where�t � NID(0; 1:2), you can specify

d = 0.3;
phi = 0.5;
theta= -0.1;
sigma= 1.2;
call farmasim(yt, d, phi, theta, sigma);
call farmalik(lnl, yt, d, phi, theta, sigma);
print lnl;

The FARMALIK subroutine computes a log-likelihood function of the
ARFIMA(p; d; q) model. The exact log-likelihood function is worked by Sowell
(1992); the conditional sum of squares function is worked by Chung (1996).

The exact log-likelihood function only considers a stationary and invertible
ARFIMA(p; d; q) process withd 2 (�0:5; 0:5)nf0g represented as

�(B)(1 �B)dyt = �(B)�t

where�t � NID(0; �2).

Let YT = [y1; y2; : : : ; yT ]
0 and the log-likelihood function is as follows without a

constant term:

` = �
1

2
(log j�j+ Y 0T�

�1YT )

where� = [i�j] for i; j = 1; 2; : : : ; T .

The conditional sum of squares function does not require the normality assumption.
The initial observationsy0, y�1; : : : and�0, ��1; : : : are set to zero.

Let yt be an ARFIMA(p; d; q) process represented as

�(B)(1 �B)dyt = �(B)�t
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then the conditional sum of squares function is

` = �
T

2
log

 
1

T

TX
t=1

�2t

!

FARMASIM Call

generates an ARFIMA(p; d; q) process

CALL FARMASIM( series, d <, phi, theta, mu, sigma, n, p, q, initial,
seed>);

The inputs to the FARMASIM subroutine are as follows:

d specifies a fractional differencing order. This argument is required; the
value ofd should be in the open interval(�1; 1) excluding zero.

phi specifies anmp-dimensional vector containing the autoregressive coeffi-
cients, wheremp is the number of the elements in the subset of the AR
order. The default is zero.

theta specifies anmq-dimensional vector containing the moving-average coeffi-
cients, wheremq is the number of the elements in the subset of the MA
order. The default is zero.

mu specifies a mean value. The default is zero.

sigma specifies a variance of the innovation series. The default is one.

n specifies the length of the series. The value ofn should be greater than or
equal to the AR order. The default isn = 100 is used.

p specifies the subset of the AR order. See the FARMACOV subroutine for
additional details.

q specifies the subset of the MA order. See the FARMACOV subroutine for
additional details.

initial specifies the initial values of random variables. The initial value is used
for the nonstationary process. Ifinitial = a0, theny�p+1; : : : ; y0 take the
same valuea0. If the initial option is not specified, the initial values are set
to zero.

seed specifies the random number seed. If it is not supplied, the system clock is
used to generate the seed. If it is negative, then the absolute value is used as
the starting seed; otherwise, subsequent calls ignore the value ofseedand
use the last seed generated internally.

The FARMASIM subroutine returns the following value:

series is ann vector containing the generated ARFIMA(p; d; q) process.
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To generate an ARFIMA(1; 0:3; 1) process

(1� 0:5B)(1 �B)0:3(yt � 10) = (1 + 0:1B)�t

where�t � NID(0; 1:2), you can specify

d = 0.3;
phi = 0.5;
theta= -0.1;
mu = 10;
sigma= 1.2;
call farmasim(yt, d, phi, theta, mu, sigma, 100);
print yt;

The FARMASIM subroutine generates a time series of lengthn from an
ARFIMA(p; d; q) model. If the process is stationary and invertible, the initial values
y�p+1; : : : ; y0 are produced using covariance matrices obtained from FARMACOV.
If the process is nonstationary, the time series is recursively generated using the
user-defined initial value or the zero initial value.

To generate an ARFIMA(p; d; q) process withd 2 [0:5; 1), xt is first generated for
d0 2 (�0:5; 0), whered0 = 1� d and thenyt is generated byyt = yt�1 + xt.

To generate an ARFIMA(p; d; q) process withd 2 (�1;�0:5], a two-step approxi-
mation based on a truncation of the expansion(1 � B)d is used; the first step is to
generate an ARFIMA(0; d; 0) processxt = (1 � B)�d�t, with truncated moving-
average weights; the second step is to generateyt = �(B)�1�(B)xt.

FDIF Call

obtain a fractionally differenced process

CALL FDIF( out, series, d);

The inputs to the FDIF subroutine are as follows:

series specifies a time series withn length.

d specifies a fractional differencing order. This argument is required; the
value ofd should be in the open interval(�1; 1) excluding zero.

The FDIF subroutine returns the following value:

out is ann vector containing the fractionally differenced process.

Consider an ARFIMA(1; 0:3; 1) process

(1� 0:5B)(1 �B)0:3yt = (1 + 0:1B)�t

Let zt = (1�B)0:3yt, that is,zt follows an ARMA(1,1). To get the filtered serieszt,
you can specify
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d = 0.3;
phi = 0.5;
theta= -0.1;
call farmasim(yt, d, phi, theta) n=100;
call fdif(zt, yt, d);
print zt;
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