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ABSTRACT
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associated with treatment times are jointly analyzed. We examine the implicit assumptions of the

dynamic treatment model using the structural model as a benchmark. For the structural model we

show the gains from using cross equation restrictions connecting choices to associated

measurements and outcomes. In the dynamic discrete choice model, we identify both subjective

and objective outcomes, distinguishing ex post and ex ante outcomes. We show how to identify

agent information sets.
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1 Introduction

This paper presents econometric models for analyzing time to treatment and the conse-

quences of the choice of a particular treatment time. Treatment may be a medical interven-

tion, stopping schooling, opening a store, conducting an advertising campaign at a given date

or renewing a patent. Associated with each treatment time, there can be multiple outcomes.

They can include a vector of health status indicators and biomarkers; lifetime employment

and earnings consequences of stopping at a particular grade of schooling; the sales revenue

and proÞt generated from opening a store at a certain time; the revenues generated and mar-

ket penetration gained from an advertising campaign; or the value of exercising an option

at a given time. Our paper unites and contributes to the literatures on dynamic discrete

choice and dynamic treatment effects. For both classes of models, we present semiparametric

identiÞcation analyses.

The conventional treatment effect literature is static.1 It ignores choice equations and

only focuses on outcome equations.2 We extend the literature on treatment effects to model

choices of treatment times and the consequences of choice. We link the literature on treat-

ment effects to the literature on precisely formulated structural dynamic discrete choice

models generated from index models crossing thresholds. We show the value of precisely

formulated economic models in extracting the information sets of agents, in providing model

identiÞcation, in generating the standard treatment effects and in ruling out hard-to-interpret

counterfactuals that can be generated from reduced formmodels.3 With an articulated choice

model in hand, it is possible to interpret, and relax, recent assumptions made in the treat-

ment effect literature.

Our analysis of identiÞcation in dynamic discrete choice models is of interest in its own

1Robins (1989, 1997), Gill and Robins (2001) and Abbring and Van Den Berg (2003) are important
contributions to the dynamic treatment effects literature.

2See Heckman (2006) and Heckman and Vytlacil (2006a).
3Aakvik, Heckman, and Vytlacil (2005), Heckman, Tobias, and Vytlacil (2001, 2003), Carneiro, Hansen,

and Heckman (2001, 2003) and Heckman and Vytlacil (2005) show how standard treatment effects can be
generated from structural models.
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right. Rust (1994) provides a comprehensive survey of models in the Þeld up to a decade ago

and the Þeld is burgeoning.4 He shows that without additional restrictions, a class of inÞnite

horizon dynamic discrete choice models for stationary environments is nonparametrically

nonidentiÞed.5 His paper has fostered the widespread belief that dynamic discrete choice

models are identiÞed only by using arbitrary functional form and exclusion restrictions.6 The

entire dynamic discrete choice project thus appears to be without empirical content and the

evidence from it at the whim of investigator choices about functional forms of estimating

equations and application of ad hoc exclusion restrictions.

This paper establishes the semiparametric identiÞability of a class of dynamic discrete

choice models for stopping times and associated outcomes in which agents sequentially update

the information on which they act. We also establish identiÞability of a new class of reduced

form duration models that generalize conventional discrete time duration models to produce

frameworks with much richer time series properties for unobservables and general time-

varying observables and patterns of duration dependence than conventional duration models.

Our analysis of identiÞcation of discrete time duration models does not require conventional

period-by-period exclusion restrictions. Instead, we rely on curvature restrictions across

the index functions generating the durations that can be motivated by dynamic economic

theory.7

The key to our ability to identify the structural model is that we supplement infor-

mation on stopping times or time to treatment with additional information on measured

consequences of choices of time to treatment as well as measurements. The current dy-

namic discrete choice literature focuses exclusively on the discrete choices. Economic theory

generally imposes restrictions across transition and outcome equations. This information

4See Taber (2000); Magnac and Thesmar (2002) and Aguirregabiria (2004), among other important recent
contributions.

5However, Rust�s proof is for a stationary environment, inÞnite horizon, dynamic programming problem
with recurrent states and does not use any information about concavity of utility functions or information
connecting outcomes and choices.

6See for example the discussion in Magnac and Thesmar (2002).
7See Heckman and Honoré (1989, 1990) for examples of such an identiÞcation strategy in duration models

and Roy models. See also Cameron and Heckman (1998).
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provides identifying power only in fully articulated dynamic discrete choice models where

choice equations are clearly delineated and are related to outcome equations, and not in

reduced form analyses where the choice equation is left implicit. Our analysis demonstrates

the power of economic theory in analyzing and interpreting models of treatment effects.

With our structural framework, we can distinguish objective outcomes from subjective out-

comes (valuations by the decision maker). Applying our analysis to health economics, we

can identify the causal effects on health of a medical treatment as well as the associated

subjective pain and suffering of a treatment regime for the patient. Attrition decisions also

convey information about agent preferences about treatment.8

We do not rely on the assumption of conditional independence of unobservables, given

observables, that is used throughout much of the dynamic discrete choice literature.9 Similar

assumptions underlie recent work on reduced form dynamic treatment effects in matching.10

Our semiparametric analysis generalizes matching. In this paper, some of the variables that

would produce conditional independence and would justify matching if they were observed

are treated as unobserved match variables. They are integrated out and their distributions

are identiÞed.11

For speciÞcity, throughout this paper we take as our principle example the choice of

schooling and its consequences. Persons who start life in school may stop at different grades

with consequences for their earnings, employment and other aspects of their socioeconomic

trajectories. If each grade takes one period to complete, we can think of this model as

a time to treatment model where the �treatment� is the grade at which a person �stops

treatment� or drops out of school. Persons with different �treatment times� (attained levels

of schooling) may have different lifetime employment and earnings outcomes while in school

and afterward. Associated with each schooling attainment level (treatment time), may be

8See Heckman and Smith (1998). Use of participation data to infer preferences about outcomes is devel-
oped in Heckman (1974).

9See, e.g. Rust (1987), Manski (1993), Hotz and Miller (1993) and the papers cited in Rust (1994).
10See, e.g. Gill and Robins (2001) and Lechner and Miquel (2002).
11For estimates based on this idea see Carneiro, Hansen, and Heckman (2003), Aakvik, Heckman, and

Vytlacil (2005), Cunha, Heckman, and Navarro (2005a,b,c,e), and Heckman and Navarro (2006).
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measurements on IQ, genetic biomarkers and the like that may be used to proxy unobserved

traits of the individuals being studied.

This paper proceeds in the following way. Section 2 presents our basic framework and

establishes identiÞcation theorems for reduced form single spell duration models with general

forms of duration dependence and heterogeneity. It is difficult to make some important eco-

nomic distinctions within this model and the unrestricted model has some peculiar features

that are difficult to interpret within a well posed economic model. Section 3 builds on the

framework of Section 2 and develops identiÞcation conditions for a model of dynamic discrete

choice and associated counterfactual outcomes with information updating and option values.

Section 4 relates our analysis to previous work. Section 5 concludes. In a companion paper,

Heckman and Navarro (2006), we apply our analysis to panel data on schooling choices and

lifetime earnings to estimate both reduced form and structural models.

2 Semiparametric Duration Models and Counterfactu-

als

A basic building block for the analysis of this paper, of interest in its own right, is a semi-

parametric index model for dynamic discrete choices that extends conventional discrete time

duration analysis. This framework can be used to approximate dynamic discrete choice

models. The exact nature of the approximation is usually obscure, as is true of many mod-

els of treatment effects in economics and statistics. We allow for nonparametric duration

dependence that can be generated by duration-speciÞc regressors. We make explicit the un-

observables that drive reduced form duration and heterogeneity dynamics. We separate out

duration dependence from heterogeneity in a semiparametric framework more general than

conventional discrete time duration models. We produce a new class of reduced form mod-

els for dynamic treatment effects by adjoining time-to-treatment outcomes to our duration

model.
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We Þrst develop the time to treatment equation. In terms of our running example,

the treatment time is the grade (age) at which a person stops schooling. The models we

analyze throughout this paper are based on a latent variable for choice at time t by per-

son i, Ii(t) = μt (Zi(t), ηi(t)), where the Zi(t) are observables and ηi(t) are unobservables

from the point of view of the econometrician. In Section 3, we derive Ii(t) from a speciÞc

economic model. Treatments at different times may have different outcome consequences

which we model after analyzing the time to treatment equation. DeÞne Di(t) as an indi-

cator of receipt of treatment at date t for individual i. Treatment is taken the Þrst time

Ii(t) becomes positive. Thus Di(t) = 1 [Ii(t) > 0, Ii(t− 1) ≤ 0, Ii(t− 2) ≤ 0, . . .] where the
indicator function 1 [·] takes the value of 1 if the term inside the braces is true.12 We derive
conditions for identifying a model with general forms of duration dependence in the time to

treatment equation. To simplify notation, we drop the �i� subscript throughout the paper.

In discussing identiÞcation, we assume access to panel data on individuals with observations

statistically independent across persons, but potentially dependent across time for the same

person.

2.1 Single Spell Duration Model

Individuals are assumed to start spells in a given (exogenously determined) state and to exit

the state at the beginning of time period T = t.13 In our schooling example, an individual

starts school and drops out in period T . T is thus a random variable representing total

completed spell length. It can also be interpreted as time to treatment (i.e., the agent waits

in the no treatment state t− 1 periods and exits into treatment at the beginning of period
T = t).14 Let D(t) = 1 if the individual exits at time t and D(t) = 0 otherwise. In our

12This framework captures the essential feature of any stopping time model. For example, in a search
model with one wage offer per period, Ii(t) is the gap between market wages and reservation wages at time
t. See, e.g. Flinn and Heckman (1982). This framework can also approximate the explicit dynamic discrete
choice model analyzed in Section 3.
13Thus we abstract from the initial-conditions problem discussed in Heckman (1981b).
14T = t designates either completion of a treatment regime at t or else the date at which treatment is

received.
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schooling example where each year of school takes one period to complete, t is the number

of years of completed schooling for people who start in school.15 Treatment at t consists

of dropping out at the beginning of period t. The event D(t − 1) = 0 signiÞes that an

individual remains in the no treatment state at t− 1. We impose an exogenously speciÞed
initial condition D(0) = 0. In a schooling example, T̄ is the highest possible grade that can

be completed and D (0) = 0 means that everyone starts with zero years of schooling.

In an analysis of drug treatments, T = t is the discrete time period in the course of an

illness at the beginning of which the drug is administered. There may be a maximum duration

of the illness T̄ beyond which treatment cannot be administered. It is possible in this example

that D(0) = 0, . . . ,D(T̄ ) = 0, so that a patient never receives treatment. In the schooling

example, �treatment� is not schooling, but rather dropping out of schooling. In this case, if

there is an upper limit T̄ to the number of years of schooling, if D(0) = 0, . . . ,D(T̄ −1) = 0,
then D(T̄ ) = 1. Our analysis applies to both cases, but we focus on the schooling example

because it links the analysis of this section to the analysis of Section 3.

In the context of this model, there is no meaningful event corresponding to the outcome

D(t) = 0 and D(t−1) = 1, so the D(t) have a natural sequential structure: (D(0), D(1), . . . ,
D(t)) = (0, 0, . . . , 1). For a given stopping time t, we denote by Dt the truncated sequence

consisting of the Þrst t + 1 elements (from 0 to t) of D. In the course of our discussion,

we will make use of the random variables D(t) and Dt for Þxed t, t = 1, . . . , T̄ . By abuse

of notation, we will designate by d(t) and dt values that these two random variables can

assume. Thus, d(t) can be zero or one and dt is a sequence of t+ 1 elements consisting of a

nonempty subsequence of zeros followed by a (possibly empty) subsequence of ones. For a

sequence of all zeros, we will write Dt = (0) and dt = (0) regardless of the length of these

subsequences. Let Z(t) = z(t) denote regressors determining transitions from time t− 1 to
time t. Let T̄ (<∞) be the upper limit on the time the agent being studied can be at risk
for a treatment.
15We assume that once out of school a person does not attend again. Alternatively, we use years attended

rather than grade completed as the measure of schooling.
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Our duration model arises from the threshold-crossing behavior of a sequence of under-

lying latent indices:

D(t) = 1 [I(t) ≥ 0]
I(t) = Z(t)γt − η(t)

⎫⎪⎬⎪⎭ if Dt−1 = (0), t = 1, . . . , T̄ , (1)

where μt (Z(t), η(t)) = Z(t)γt − η(t). The D(t) outcome is observed only if D(t − 1) = 0,
which is equivalent to Dt−1 = (0). The Z(t) are regressors that enter the index at period

t. The Z(t) can include expectations of future outcomes given current information in the

case of models with forward-looking behavior. To identify period t parameters from period

t outcomes, one must condition on all past outcomes and control for any selection effects.

The assumption of linearity of the index in Z(t) is not critical to our analysis, and this

assumption can be relaxed following arguments in Matzkin (1992, 1993, 1994). Appendix B

presents the class of nonparametric functions identiÞed by Matzkin. We call them Matzkin

functions. Using Matzkin (2003), we can also relax the separability assumption, but we do

not do so in this paper.

Let Z =
¡
Z(1), . . . , Z(T̄ )

¢
, and let η = (η(1), . . . , η(T̄ )).16 We assume that Z is statis-

tically independent of η. Let γ = (γ1, . . . , γT̄ ). Depending on the values assumed by γt, we

can generate very general forms of duration dependence that depend on the values assumed

by the Z(t). We thus allow for period-speciÞc effects of regressors on the latent indices

generating choices.

This model is the reduced form of a general dynamic discrete choice model. Like many

reduced formmodels, the link to choice theory is not clearly speciÞed. It is not a conventional

multinomial choice model in a static (perfect certainty) setting with associated outcomes. As

16A special case of the general model arises when η (t) has a factor model representation,

η(t) = αtθ + ε(t), t = 1, . . . , T̄ where α1 = 1,

where we assume that ε(t) ⊥⊥ ε(t0), for t 6= t0, that ε(t) ⊥⊥ θ, where �⊥⊥� denotes statistical independence,
and that (θ, ε(1), . . . , ε(T̄ )) is jointly independent of Z. Setting αt = 1 for all t generates the conventional
permanent-transitory model.
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a point of reference, we present such a model in Appendix C and consider its identiÞability.

We analyze the model based on equation (1) because it extends conventional discrete time

duration analysis and because our analysis of identiÞcation in this simple setting produces

results that are useful for securing identiÞcation in the more explicit structural model of

Section 3.

2.2 IdentiÞcation of Duration Models with General Error Struc-

tures and Duration Dependence

We Þrst establish semiparametric identiÞcation of the model of equation (1). We assume

access to a large sample of i.i.d. (D,Z) observations. Let Zt = (Z(1), . . . , Z(t)), γt =

(γ1, . . . , γt). We can nonparametrically identify the conditional probability Pr(D(t) =

d (t) |Zt, Dt−1 = dt−1) a.e. FZt|Dt−1=dt−1 where FZt|Dt−1=dt−1 is the distribution of Z con-

ditional on previous choices. We assume that (γ, Fη) ∈ Γ × H, where Γ × H is the pa-

rameter space. Our goal is to establish conditions under which knowledge of Pr(D(t) =

d(t)|Z,Dt−1 = dt−1) a.e. FZ|Dt−1=dt−1 allows us to identify a unique element of Γ ×H. We
deÞne identiÞcation in a standard way.

DeÞnition 1. Let Pγt,Fηt (D(t) = 1|Zt = zt, Dt−1 = dt−1) be the probability of observing

the choice D(t) = 1 conditional on observables Zt = zt and past choices Dt−1 = dt−1

under model (1) when the parameter values are given by (γt, Fηt). Let Γ×H be the space of

permissible parameter values. We say that (γt, Fηt) ∈ Γ×H is identiÞed iff for all
³
γ∗t, F ∗ηt

´
∈

Γ×H\(γt, Fηt), there exists a sequence of past choices, dt−1, Pr(Dt−1 = dt−1) > 0, such that

Pr Zt|Dt−1=dt−1
n
Pγt,Fηt (D(t) = 1|Zt, Dt−1 = dt−1) 6= Pγ∗t,F∗

ηt
(D(t) = 1|Zt,Dt−1 = dt−1)

o
> 0.17

To secure identiÞcation of all of the models in this paper, we follow an identiÞcation-in-

17Alternatively, we could deÞne identiÞcation in terms of the joint distribution of D(t) and Z given
Dt−1 = dt−1 rather than in terms of the conditional distribution of D(t).

8



the-limit strategy that allows us to recover the (γt, Fηt) by conditioning on large values of the

indices of the preceding choices. This identiÞcation strategy is widely used in the analysis

of discrete choice.18

We now establish sufficient conditions for the identiÞcation of model (1).

Theorem 1. For the model deÞned by equation (1), assume the following conditions:

(i) ηt ≡ (η(1), . . . , η(t)) is statistically independent of Zt = (Z(1), . . . , Z(t)), t = 1, . . . , T̄ ,

(ii) ηt is a continuous random variable19 on Rt with support
tQ
j=1

¡
η(j), η̄(j)

¢
, where −∞ ≤

η(j) < η̄(j) ≤ +∞ for all j = 1, . . . , T̄ , and the joint distribution does not depend

on γt,

(iii) (Full Rank of Z(t)) For all j = 1, . . . , t, Z(t) is a Kt-dimensional random variable.

There exists no proper linear subspace of RKt having probability 1 under FZ(t). There ex-

ists a ÿgt = (ÿg1, . . . , ÿgt−1) such that for almost every gt = (g1, . . . , gt−1) ∈
t−1Q
j=1

¡
η(j), η̄(j)

¢
with gt ≥ ÿgt (componentwise), there exists no proper linear subspace of RKt having

probability 1 under FZ(t)|Z(1)γ1≥g1,...,Z(t−1)γt−1≥gt−1.

(iv) (Inclusion of Supports) Supp
¡
Z(t)γt|Z(1)γ1 = g1, . . . , Z(t− 1)γt−1 = gt−1

¢ ⊇ ¡η(t), η̄(t)¢
for almost every (g1, . . . , gt−1) ∈

t−1Q
i=1

¡
η(t), η̄(t)

¢
, for t = 1, . . . , T̄ , where the boundary

points
©
η(t), η̄(t) : t = 1, . . . , T̄

ª
are not functions of γt for t = 1, . . . , T̄ , where �Supp�

means support. The supports can be unbounded.

Then Fηt and (γt) are identiÞed given location and scale normalizations, t = 1, . . . , T̄ .

Proof. See Appendix C. ¥
18See, e.g.Manski (1988), Heckman (1990), Heckman and Honoré (1989, 1990), Matzkin (1992, 1993),

Taber (2000), and Carneiro, Hansen, and Heckman (2003). A version of the strategy of this proof was Þrst
used in psychology where agent choice sets are eliminated by experimenter manipulation. The limit set
argument effectively uses regressors to reduce the choice set confronting agents. See Falmagne (1985) or
Thurstone (1959).
19We say a random variable is �continuous� if it is absolutely continuous with respect to Lebesgue measure.
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Assumption (iii) is used to guarantee full rank of the model in limit sets where the probability

of events becomes arbitrarily small. In place of assumption (iv), one can work with a more

general indexΨ (t, Z (t)) to replace Z(t)γt and identify it over the relevant support, which can

be bounded if Ψ (t, Z (t)) belongs to the Matzkin class of functions presented in Appendix A.

We use this more general nonseparable model in Theorems 2 and 3 and Corollary 2, and a

fully nonseparable choice model in Section 3 below. Independence assumption (i) is strong.

A more general version of Theorem 1 can be proved using the analysis of Lewbel (2000).20

The assumptions of Theorem 1 will be satisÞed if there are transition-speciÞc exclusion

restrictions for Z with the required properties. In models with many periods, this may be a

demanding requirement. Very often, the Z variables are time invariant and so cannot be used

as exclusion restrictions. The following corollary tells us that the model can be identiÞed

even if there are no conventional exclusion restrictions and the Z(t) are the same across

all time periods if sufficient structure is placed on how the γt vary with t. Variations in

the values of γt across time periods arise naturally in Þnite horizon dynamic discrete choice

models where a shrinking horizon produces different effects of the same variable in different

periods. For example, in the analysis of a search model by Wolpin (1987), the value function

depends on time and the derived decision rules weight the same invariant characteristics

differently in different periods. In a schooling model, parental background and resources

may affect education continuation decisions differently at different stages of the schooling

decision. The model generating equation (1) can be semiparametrically identiÞed without

transition-speciÞc exclusions if the duration dependence is sufficiently general.

Corollary 1. For the model deÞned by equation (1), suppose in addition to the conditions

(i)�(iv) of Theorem 1 that

(v) In condition (iii), Z(t) = Z for all t where Z is a K-dimensional random variable.

20Magnac and Maurin (2005) show how to use the Lewbel regressor to bypass identiÞcation at inÞnity
arguments. The conditions required for application of Lewbel�s theorem and its extensions are not easily
satisÞed. See Theorem 10 and its proof at our website, http://jenni.uchicago.edu/dyn-trmt-eff, where an
extension of Theorem 1 using the Lewbel special regressor is presented.

10



Thus the same regressors are assumed to appear in all transitions. We deÞne Z so that

the Þrst T ∗ coordinates of Z are continuous random variables (T ∗ ≤ K). The support
of the Þrst T ∗ coordinates of Z is

T∗Q
i=1

(−∞,∞).

(vi) γ1, . . . , γT∗, the coefficients associated with the Z for the Þrst T
∗ periods of the spell,

are linearly independent. Denote the ith component of t by γit, (i = 1, . . . ,K). The

Þrst T ∗ coordinates of the γt, are non-zero for all t = 1, . . . , T
∗.

Under these conditions, assumptions (iii) and (iv) of Theorem 1 are satisÞed with η(i) =

−∞, η̄(i) =∞. Given assumptions (i) and (ii) of Theorem 1 and assumptions (v)�(vi) just

given, Fηt where ηt and γt, t = 1, . . . , T̄ ∗ are identiÞed up to scale and location normalizations,

where γt = (γ1, . . . , γt) is to be distinguished from the ith component of γt denoted γ
i
t.

Proof. See Appendix C. ¥

If T ∗ < T̄ , full identiÞcation of the model is not possible without additional information.

Observe that the number of periods where the γt are identiÞed and joint distribution of the

η(1), . . . , η(t) is identiÞed depends crucially on the number of continuous regressors. If there

are fewer continuous regressors (T ∗) than time periods, (T̄ ), the most we can identify are

the parameters γ1, . . . , γt and the joint distribution Fηt for t = T
∗.

Conditions (v) and (vi) are sufficient conditions for producing measurable separability

or �variation freeness� among the indices.21 Using the Matzkin class of functions described

in Appendix B, we can extend this analysis to a general model that is nonseparable in

(Z, t) but separable in η (t). In Section 3 we prove a result analogous to Corollary 1 for a

structural model using the general representation for a more general choice function that is

fully nonseparable in all of its arguments. Theorem 1 and its Corollary provide a speciÞc

example of functions that satisfy the more general, �measurable separability� condition that

is the fundamental principle underlying identiÞcation in this class of models.22

21See Florens, Mouchart, and Rolin (1990, pp. 189�200) for a precise deÞnition of measurable separability.
This concept clariÞes the notion of �variation free� variables.
22See Theorems 5 and 7 in Section 3.
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Theorem 1 and Corollary 1 have important consequences. The Z(t)γt, t = 1, . . . , T̄ (or

more generally the Ψ (t, Z)) can be interpreted as duration dependence parameters that are

modiÞed by the Z(t) and that vary across the spell in a more general way than is permitted

in mixed proportional hazards (MPH ), generalized accelerated failure time (GAFT) models

or standard discrete time hazard models.23 Duration dependence in conventional speciÞca-

tions of duration models is usually generated by variation in model intercepts. We allow

the regressors to interact with the duration dependence parameters. The �heterogeneity�

distribution Fη is identiÞed for a general model. No special �permanent-transitory� struc-

ture is required for the unobservables although that speciÞcation is traditional in duration

analysis. Our explicit treatment of the stochastic structure of the duration model is what

allows us to link in a general way the unobservables generating the duration model to the

unobservables generating the outcome equations that are introduced in the next section.

Such an explicit link is not currently available in the literature on continuous time duration

models for treatment effects, and is useful for modelling selection effects in outcomes across

different treatment times. Our outcomes can be both discrete and continuous and are not

restricted to be durations.

Under the rank condition on the γt, no period-speciÞc exclusion conditions are required

on the Z. Abbring and Van Den Berg (2003) note that period-speciÞc exclusions are not

natural in reduced form duration models designed to approximate forward-looking life cycle

models. Agents make current decisions in light of their forecasts of future constraints and

opportunities, and if they forecast some components well, and they affect current decisions,

then they are in Z (t) in period t. The rank condition of Corollary 1 and its extension in

Section 3 are of great value in establishing identiÞcation without such exclusions. We now

adjoin a system of counterfactual outcomes to our model of time to treatment to produce a

model for dynamic counterfactuals.

23See Ridder (1990) for a discussion of these models.
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2.3 Reduced Form Dynamic Treatment Effects

This section develops a reduced form approach to generating dynamic counterfactuals. We

apply and extend the analysis of Carneiro, Hansen, and Heckman (2003), henceforth CHH,

to generate ex post potential outcomes and their relationship with the time to treatment

indices I(t) analyzed in the preceding subsection. With reduced form models, it is difficult

to impose restrictions from economic theory or to make distinctions between ex ante and ex

post outcomes. In the structural model developed in Section 3, these and other distinctions

can be made easily.

Associated with each treatment time t is a vector of outcomes Y (t,X, U (t)) , t = 1, . . . , T̄ .

Elements of this vector are outcome states associated with stopping (receiving treatment)

at the beginning of period t. For stopping times t0 different from t, Y (t0, X, U (t0)) , t0 6= t,
t0 = 1, . . . , T̄ are counterfactuals. They depend on observables, X, and unobservables, U (t),

where the observability distinction is made from the point of view of the econometrician. The

X may be t speciÞc but for the sake of notational simplicity we use the simple X notation.

The outcome variables are not necessarily what the agent thinks will happen when he or

she stops at any particular date t, but rather what actually happens. The reduced form

approach presented in this section is not sufficiently rich to precisely capture the notion that

agents revise their anticipations of Y (t,X, U (t)) , t = 1, . . . , T̄ as they acquire information

over time. This notion is systematically developed using the structural model of Section 3.

The treatment �times� may be stages that are not necessarily connected with real times.

Thus in the analysis of section 3, �t� is a schooling level. The correspondence between

stages and times is exact if each stage takes one period to complete. Our notation is more

ßexible, and time and periods can be deÞned more generally. Our notation in this section

accommodates both cases.

It is possible to think of Y (t,X, U(t)) as a vector of outcomes with components revealed

13



at each age, a = 1, . . . , Ā:

Y (t,X,U (t)) =
¡
Y (1, t,X,U (1, t)) , . . . , Y (a, t,X, U (a, t)) , . . . , Y

¡
Ā, t,X,U

¡
Ā, t

¢¢¢
,

where we deÞne U (t) = (U (1, t) , . . . , U (a, t) , . . . , U(Ā, t)). The X may also have age and

t speciÞc subvectors
¡
a = 1, . . . , Ā; t = 1, . . . , T̄

¢
. Henceforth, whenever we have random

variables with multiple arguments R0(t,Q0, . . . ) or R1(a, t,Q0, . . . ) where the argument list

begins with time t or both age a and time t (perhaps followed by other argumentsQ0, . . . ), we

will make use of several condensed notations: (a) dropping the Þrst argument as we collect

the components into vectors R0(Q0, . . . ) or R1(t, Q0, . . . ) of length T̄ or Ā, respectively,

and (b) going further in the case of R1, dropping the t argument as we collect the vectors

R1(t,Q0, . . . ) into a single T̄ × Ā array R1(Q0, . . . ).
This notation is sufficiently rich to represent the life cycle of outcomes for persons who

receive treatment at t. Thus, in a schooling example, the components of this vector may

include life cycle earnings, employment, and the like associated with a person with charac-

teristics X, U (t) , t = 1, . . . , T̄ , who completes t years of schooling and then forever ceases

schooling. It could include earnings while in school at some level for persons who will even-

tually attain further schooling as well as post school earnings. Measuring a and t in the

same units, we initialize the process by assuming that t = 0 and a = 0.

The Y (a, t,X,U (a, t)) for a < t are outcomes realized while the person is in school at

age a (t is the time the person will leave school; a is the current age) and before �treatment�

(stopping schooling) has occurred. When a ≥ t, these are post-school outcomes for treatment
with t years of schooling. In this case, a− t is years of post-school experience. In the case
of a drug trial, the Y (a, t,X,U (a, t)) for a < t are measurements observed before the drug

is taken at t and if a ≥ t, they are the post-treatment measurements.
Following CHH, the variables in Y (a, t,X, U (a, t)) may include discrete, continuous or

mixed discrete-continuous components. For the discrete or mixed discrete-continuous cases,
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we assume that latent continuous variables cross thresholds to generate the discrete com-

ponents. Durations can be generated by latent index models associated with each outcome

crossing thresholds analogous to the model presented in equation (1). In this framework,

we can model the effect of attaining t years of schooling on durations of unemployment or

durations of employment.

Each treatment time can have its own age path of ex post outcomes even after correcting

for selection effects by controlling for observed and unobserved determinants of outcomes

apart from treatment time, and thus controlling for selection effects. In addition, paths prior

to treatment may be different for different treatment times. Thus we can allow earnings at

age a for people who receive treatment at some future time t0 to differ from earnings at

age a for people who receive treatment at some future time t00, min (t0, t00) > a even after

controlling for U (t) and X.24

In a model with uncertainty, agents act on and value ex ante outcomes. The model

developed in Section 3 distinguishes ex ante from ex post outcomes. The model developed in

this section cannot because, within it, it is difficult to specify the information sets on which

agents act or the mechanism by which agents forecast and act on Y (t,X,U (t)) when they

are making choices.

One justiÞcation for not making an ex ante � ex post distinction is that the agents being

modeled operate under perfect foresight even though econometricians do not observe all of

the information available to the agents. In this framework, the U (t) , t = 1, . . . , T̄ , are an

ingredient of the econometric model that accounts for the asymmetry of information between

the agent and the econometrician studying the agent.

Without imposing assumptions about the functional structure of the outcome equations,

we cannot nonparametrically identify counterfactual outcome states Y (t,X, U (t)) that have

never been observed. Thus, in the schooling example, we assume that we observe life cycle

24Thus we do not need to impose the �no anticipations� assumption of Abbring and Van Den Berg (2003).
However, it arises naturally in a fully speciÞed structural model as we note in Section 3 and in Abbring and
Heckman (2006).
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outcomes for some persons for each stopping time (level of Þnal grade completion) and our

notation reßects this.25 However, we do not observe Y (t,X,U (t)) for all t for anyone. A

person can have only one stopping time (one completed schooling level). This observational

limitation creates the �fundamental problem of causal inference.�26

In addition to this problem, there is the standard selection problem that the Y (t,X,U (t))

are only observed for persons who stop at t and not for a random sample of the population.

The selected distribution may not accurately characterize the population distribution of

Y (t,X, U (t)) for persons selected at random. Note also that without further structure, we

can only identify treatment responses within a given policy environment. In another policy

environment where the rules governing selection into treatment and/or the outcomes from

treatment may be different, the same time to treatment may be associated with entirely

different responses.27 We now turn to an analysis of identiÞcation.

2.4 IdentiÞcation of Outcome and Treatment Time Distributions

We assume access to data on (T, Y (T,X,U (T )) , X, Z) for persons for whom T = t, X = x,

Z = z where T is the stopping time, X are the variables determining outcomes and Z

are the variables determining choices. We also assume that we know Pr(T = t | Z = z)

for t = 1, . . . , T̄ . We assume independence of all outcomes across persons. Appendix D

presents a general analysis of identiÞcation for vector valued Y (T,X,U (T )). In the text,

we consider three special cases: (a) outcomes are scalar continuous variables (e.g. present

value of earnings for a schooling example), (b) outcomes are discrete but vector valued (e.g.

employment at each age) and (c) outcomes are durations (e.g. spells of unemployment). The

Þrst case is developed further in Section 3. The third case is a discrete time analogue of

the model for counterfactual duration distributions analyzed by Abbring and Van Den Berg
25In practice we can only observe a portion of the life cycle after treatment. See the discussion on pooling

data in Cunha, Heckman, and Navarro (2005e) to replace missing life cycle data. See Heckman and Vytlacil
(2005) for analyses of how to construct never-observed counterfactuals.
26See Holland (1986) or Gill and Robins (2001).
27This is the problem of general equilibrium effects. See Heckman, Lochner, and Taber (1998), Heckman,

LaLonde, and Smith (1999) or Abbring and Van Den Berg (2003) for discussion of this problem.
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(2003).

We Þrst consider the analysis of continuous outcomes. Our results generalize the analysis

of Heckman and Honoré (1990), Heckman (1990) and CHH by considering choices generated

by a stopping time model. To simplify the notation in this section, we assume that the

scalar outcome associated with stopping at time t can be written as Y (t) = μ (t,X)+U (t),

where Y (t) is shorthand for Y (t,X,U (t)). We observe Y (t) only if Dt−1 = (0), D (t) = 1

where the D (t) are generated by a more general version of the index for time to treatment

than was used in the analysis of Theorem 1 and Corollary 1. We replace Ztγt by Ψ(t, Z)

and write I(t) = Ψ (t, Z) − η(t). We assume that the Ψ (t, Z) belong to the Matzkin class
of functions described in Appendix B. In the following, we will make use of the condensed

representations I, Ψ (Z), η, Y , μ (X) and U as described in Section 2.3.

We permit general stochastic dependence within the components of U , within the com-

ponents of η and across the two vectors. We assume that (X,Z) are independent of (U, η).

Each component of (U, η) has a zero mean. The joint distribution of (U, η) is assumed to be

absolutely continuous. Recall that we allow the X (t) to vary period by period. To simplify

notation, we simply condition on the entire vector of the X.

With �sufficient variation� in the components of Ψ (Z), we can identify μ(t,X),

[Ψ(1, Z (1)), . . . ,Ψ(t, Z (t))] and the joint distribution of U(t) and ηt. This enables us to iden-

tify average treatment effects across all stopping times, since we can extractE (Y (t)− Y (t0) | X = x)

from the marginal distributions of Y (t), t = 1, . . . , T̄ .

Theorem 2. Assume data on (Y (t), X, Z) given T = t from a random sample across per-

sons. We also observe (T, Z) from a random sample and we assume that the T are not

censored. Write ηt = (η(1), . . . , η(t)) and Ψt(Z) = (Ψ(1, Z (1)), . . . ,Ψ(t, Z (t))). The Ψt (Z)

are elements of the Matzkin class of functions. Assume that

(i) (U(t), ηt) are continuous random variables with zero means, Þnite variances and with

support Supp (U(t)) × Supp (ηt) with upper and lower limits ¡Ū(t), η̄t¢ and ¡U(t), ηt¢
respectively, t = 1, . . . , T̄ . These conditions hold for each component of each subvector.
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The joint system is thus measurably separable for each component with respect to every

other component.

(ii) (U(t), ηt) ⊥⊥ (X,Z), t = 1, . . . , T̄ (independence).

(iii) Supp (μ (t,X) ,Ψt (Z)) = Supp (μ (t,X))×
tQ
j=1

Supp (Ψ(j, Z (j))), t = 1, . . . , T̄ .

(iv) Supp (Ψt (Z)) ⊇ Supp (ηt)

Then we can identify μ (t,X) ,Ψt (Z) , Fηt,U(t), t = 1, . . . , T̄ , up to scale if the Matzkin class

is speciÞed up to scale, and are exactly identiÞed if a speciÞc normalization is used.

Proof. From data on Y (t), X and Z for D (t) = 1, Dt−1 = (0), and from data on stopping

times for the entire sample, we can identify for each X = x and Z = z the left hand side of

the equation

Pr
¡
Y (t) < y (t) | D (t) = 1, Dt−1 = (0) ,X = x,Z = z

¢
×Pr ¡D (t) = 1,Dt−1 = (0) | X = x,Z = z

¢

=

y(t)−μ(t,x)Z
U(t)

Ψ(t,z)Z
η(t)

η̄(t−1)Z
Ψ(t−1,z(t−1))

. . .

η̄(1)Z
Ψ(1,z(1))

fU(t),ηt (u, η(1), . . . , η(t)) dη(1) · · · dη(t) du. (2)

D (0) = 0 is Þxed exogenously outside of the model.

Under assumption (iv), for all x ∈ Supp (X) we can vary the values of Z and obtain

a limit set Z such that lim
Z→Z

Pr (D (t) = 1,Dt−1 = (0) | X = x,Z = z) = 1. Thus we can

identify the distribution of U (t), t = 1, . . . , T̄ , free of selection bias. From this argument, we

can identify the μ (t,X). (We recover the intercepts through the assumption E (U(t)) = 0.)

Condition (iv) allows us to generalize Theorem 1 by allowing for a more general speciÞcation

of the index functions belonging to the Matzkin class. Using her analysis we can recover

the Ψ (t, Z). From knowledge of y (t) and μ (t,X), Ψt(Z), and from condition (iii), we can

vary y (t) − μ (t,X), Ψt(Z) freely and trace out the joint distribution of (U (t) , ηt). Under
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the assumptions of the theorem, we can do this for all t = 1, . . . , T̄ . If we use the Matzkin

conditions for functions up to scale, we identify the Ψt (Z) up to scale and the distributions

of the unobservables up to scale Fηt,U(t), t = 1, . . . , T̄ . ¥

Theorem 2 does not identify the joint distribution of Y (1) , . . . , Y
¡
T̄
¢
because we ob-

serve only one of these outcomes for any person. Observe that we do not require exclusion

restrictions in the arguments of the choice of treatment equation to identify the counter-

factuals. We require independent variation of arguments (�measurable separability�) which

might be achieved by exclusion conditions but can be obtained by other functional restric-

tions as in the proof of Corollary 1. Observe further that we can identify the μ (t,X) (up to

constants) without the limit set argument. From the expression for (2), for each Þxed Z = z

and Pr (D (t) = 1,Dt−1 = (0) | X = x, Z = z) = p, we can vary y (t) and trace out μ (t,X)

within each p set (see Heckman, 1990; Heckman and Smith, 1998, and CHH). Thus we can

identify certain features of the model without using the limit set argument.

The proof of Theorem 2 can easily be extended to cover the case of vector Y (t,X,U (t))

where each component is a continuous random variable. See Theorem D.1 in Appendix D.

There we allow for age-speciÞc outcomes Y (a, t,X, U (a, t)) , a = 1, . . . , Ā where Y can be a

vector of outcomes. In particular, we can identify age-speciÞc earnings ßows associated with

multiple sources of income. We use this result in Section 3 of this paper.

As a by-product of Theorem 2, we can construct the distributions of Y (t) for a variety

of counterfactual histories leading up to t. DeÞne a process based on the index crossing

property for I (t) without any requirement on the positivity or negativity of I (t− j), j > 0.
Let B(t) = 1 [I(t) ≥ 0] where B(t) ∈ {0, 1}. Let Bt = (B(1), . . . , B(t)) where bt is deÞned
as the vector of possible values of B (t). D(t) was deÞned as B(t) given Dt = (0). B (t) is

deÞned without this restriction.

With the B(t) it is possible to contemplate many alternative histories ruled out in the
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construction of D(t). From Theorem 2, we can construct

Pr
¡
Y (t) ≤ y (t) | Bt = bt,X = x, Z = z

¢
for all of the 2t possible sequences of Bt outcomes up to t including sequences that were ruled

out in the deÞnition of the model for D(t) in equation (1) such as bt = (0, 1, 0, 1, . . . ). We

obtain these probabilities by reversing the Ψ (t, Z) limits associated with the η(1), . . . , η(t)

arguments of equation (2).28

These counterfactuals are difficult to interpret if we take stopping time model (1) liter-

ally. They allow for the possibility of persons starting and stopping treatment on multiple

occasions leading up to t. We can also identify the distribution of Y (t) for persons who stop

at some time after t (T > t).29 There are two ways to interpret these features of our model:

(a) as a symptom of incomplete speciÞcation of the statistical model because it allows for

reentry even though the economic model does not; or (b) as a desirable feature because it

allows for richer speciÞcations of the economic model that permit reentry.

Note further that the counterfactuals that are identiÞed by Þxing different D (j) at differ-

ent values have an asymmetric aspect. We can generate Y (t) distributions for persons who

are treated at t or before. Without further structure, we cannot generate the distributions

of these random variables for people who receive treatment at times after t.

The source of this asymmetry is the generality of duration model (1). At each stopping

time t, we acquire a new random variable η(t) which can have arbitrary dependence with

Y (t) and Y (t0) for all t and t0. From Theorem 2, we can identify this dependence between

η(t) and Y (t0) if t0 ≤ t. We cannot identify the dependence between η(t) and Y (t0) for

t0 > t without imposing further structure on the unobservables.30. Thus we can identify the

distribution of college outcomes for high school graduates who do not go on to college and

28Cunha, Heckman, and Navarro (2005d) develop a semiparametric ordered choice model with stochastic
thresholds that rules out these extraneous sequences but at the price of eliminating option values from the
dynamic discrete choice model.
29This is the event associated with Bt = (0).
30One possible structure is a factor model which we apply to this problem in the next section.
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can compare these to outcomes for high school graduates, so we can identify the parameter

�treatment on the untreated.� However, we cannot identify the distribution of high school

outcomes for college graduates (e.g. treatment on the treated parameters) without imposing

further structure.31 Since we can identify the marginal distributions under the conditions of

Theorem 2, we can identify pairwise average treatment effects for all t, t0.

Appendix C contrasts the model identiÞed by Theorem 2 with a conventional static

multinomial discrete choice model with an associated system of counterfactuals. In that Ap-

pendix, we prove semiparametric identiÞcation of the conventional static model of discrete

choice joined with counterfactuals and show how to identify all of the standard counterfactu-

als. For that model there is a Þxed set of unobservables governing all stopping times. Thus

we do not acquire new unobservables associated with each stopping time. With suitable

normalizations, we can identify the joint distributions of choices and associated outcomes

without the difficulties, just noted, that appear in the reduced form dynamic model.

A Model for Discrete Outcome Counterfactuals

We next develop a discrete outcome analog to the results just presented for continuous

outcomes. In this subsection, we suppose that associated with each stopping time at age a is

a binary variable e (a, t,X) , denoting, for example, employment at age a for a person with

stopping time (treatment time) T = t with regressors X. For speciÞcity, in the schooling

example, treatment time t is the age at which a person drops out of school. We assume that

e (a, t,X) = 1 [e∗ (a, t,X) ≥ 0] , t = 1, . . . , T̄ , a = 1, . . . , Ā where e∗ (a, t,X) = μe (a, t,X)−
Ue (a, t) and each Ue(a, t) has zero mean and Þnite variance. In the schooling example

we can think of the e (a, t,X) as employment indicators before schooling is Þnished and

after, for people who have exactly t years of schooling. In the following, we will make use

of the condensed forms e(t,X), e (X), e∗ (t,X), e∗ (X), μe (t,X), μe (X), Ue(t) and Ue as

31In the schooling example, we can identify treatment on the treated for the Þnal category T̄ since DT̄−1 =
(0) implies D

¡
T̄
¢
= 1. Thus at stage T̄ − 1, we can identify the distribution of Y ¡T̄ − 1¢ for persons for

whom D (0) = 0, . . . ,D
¡
T̄ − 1¢ = 0,D ¡T̄¢ = 1. Hence if college is the terminal state and high school the

state preceding college, we can identify the distribution of high school outcomes for college graduates.
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described in Section 2.3. We assume Ue (t) ⊥⊥ X,Z. The e (t, x) are factuals for T = t and
counterfactuals for stopping times other than t. Instead of analyzing only the outcome at t,

we analyze the entire path of outcomes associated with stopping time t.

Ignoring the selection problem, identiÞcation of μe (X) (up to scale) is a standard ap-

plication of known results in the semiparametric discrete choice literature. The scales are

arbitrary because the inequality that generates e (a, t,X) remains valid if the arguments are

scaled by any positive constant. Let Ψt(Z) = (Ψ (1, Z(1) , . . . ,Ψ (t, Z(t)) and recall that

ηt = (η (1) , . . . , η (t)). We prove the following theorem.

Theorem 3. Assume data on e (t,X) , X, Z given T = t. Assume data on stopping times T

and Z from a random sample across observations and that the T are not censored. Further

assume that Ψt (Z) and μe (t,X) are members of the Matzkin class of functions and that

(i) (Ue(t), ηt) are continuous random variables with zero means, Þnite variances and with

support Supp (U e(t))×Supp (ηt) with upper and lower limits ¡Ūe(t), η̄t¢ and ¡U e(t), ηt)¢
respectively. These conditions hold for each subcomponent of each subvector. The joint

system is thus measurably separable for each component with respect to every other

component.

(ii) (Ue(t), ηt) ⊥⊥ (X,Z), t = 1, . . . , T̄ ,

(iii) Supp (μe (t,X) ,Ψt (Z)) = Supp (μe (t,X)) ×
tQ
j=1

Supp (Ψ (j, Z (j))), t = 1, . . . , T̄ , and

this holds for each component of each vector,

(iv) Supp (μe (t,X) ,Ψt (Z)) ⊇ Supp (U e(t), ηt), t = 1, . . . , T̄ ,

(v) Supp (U e(t), ηt) = Supp (Ue(t))×
tQ
j=1

Supp (η(j)), t = 1, . . . , T̄ , and this holds for each

component of each vector,

Then we can identify Ψt (Z), μe (t,X) and the joint distributions of (U e(t), ηt) under the

Matzkin conditions applied to each component of μe (a, t,X), Ue(a, t) and to each component
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of Ψt (Z) and the corresponding component of ηt. Applying the Matzkin conditions for the

functions and random variables up to scale, we obtain the functions and the distributions of

the random variables up to scale.

Proof. The proof for this case parallels that of Theorem 2 with two exceptions. Since we do

not observe e∗ (t,X) , but just its dichotomization, we cannot use its variation to trace out

the distribution of Ue (t) , as we did with y (t) in Theorem 2 to produce the desired variation

with condition (iv) of Theorem 3. To substitute for this variation, we invoke condition (iv).

See Appendix D for the proof for the general case. We analyze the entire lifecycle path of

the e (a, t,X) instead of just the period t outcome. ¥

In this setup, we can analyze strings of binary outcome sequences associated with each

treatment time. Theorem 3 can be modiÞed to cover the case of counterfactual durations

and we sketch this extension in Corollary 2 below. Note that Theorem 3 is more general

than Theorem 2 in the sense that we identify the model generating vector e (t,X) and not

just a scalar outcome like Y (t). Theorem D.1 in Appendix D extends Theorems 2 and 3

to consider both cases and a vector version of Y (t), as well as an associated measurement

system.

To produce a result on semiparametric identiÞcation of a discrete time analogue of the

Abbring and Van Den Berg (2003) model of counterfactuals for durations, we assemble

ingredients from Theorems 1, 2 and 3. Let ∆ (a, t,X) be an indicator of whether a person

at age a, treatment time t and characteristics X is in a spell of the outcome being studied

(e.g. of employment or unemployment). Individuals receive at most one treatment. Assume

that ∆ (0, t,X) = 0 for all t > 0. A person starting in �0� exits to �1�. We normalize the

initial age to zero so the scales for measuring age and time of treatment are the same. The

age where ∆ Þrst becomes 1 is the length of the initial spell and the treatment time is t.32

Let ∆∗ (a, t,X) = χ (a, t,X) − ν (a, t) denote a latent variable where ν (a, t) has a zero
mean and Þnite variance and ν (a, t) ⊥⊥ (X,Z) for all a, t. We use the condensed form

32Recall that exit events in period t occur instantaneously at the beginning of the period.
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notation introduced in Section 2.3. In particular, we let ν (t) =
¡
ν (1, t) , . . . , ν

¡
Ā, t

¢¢
, and

χ (t,X) =
¡
χ (1, t,X) , . . . , χ

¡
Ā, t,X

¢¢
. We deÞne the indicator of remaining in the initial

state at age a for treatment time t as

∆ (a, t,X) = 1 [∆∗ (a, t,X) ≥ 0] for ∆a−1 (X) = (0)

where ∆a−1 (X) is the history of the process up through age a− 1. To parallel the analysis
of Abbring and Van Den Berg (2003), we consider ßow sampling of new spells. Thus in an

analysis of unemployment, individuals start unemployed and are unemployed at least through

treatment, are treated at age a0 (or time t = a0), and then are followed after treatment at

least until they leave the initial state. Treatment time (or age) a0 is the age in the spell at

which training is administered.

Implicit in the treatment time decision rule is the requirement that an individual be

in the starting state (0) in order to receive treatment. Thus for T = t, it is required

that ∆ (a, t,X) = 0 for all a ≤ t. Treatment is assumed to be instantaneous but under

a nonanticipation assumption any effects of treatment are found in periods a > t. We can

prove the following Corollary of Theorem 3.

Corollary 2. Assume data on ∆ (t,X) ,X,Z given T = t. Assume data on stopping times

T and Z from an initial random sample of persons in the state �0�. Further assume that

Ψt (Z) and χ (t,X) are members of the Matzkin class of functions and that

(i) (ν(t), ηt) are continuous random variables with zero means, Þnite variances and support

Supp (ν(t))×Supp (ηt) with upper and lower limits (ν̄(t), η̄t) and ¡ν(t), ηt¢ respectively,
for all t = 1, . . . , T̄ . These conditions hold for each subcomponent of each subvector.

The joint system is thus measurably separable for each component with respect to every

other component.

(ii) (ν(t), ηt) ⊥⊥ (X,Z), for all t = 1, . . . , T̄ .

24



(iii) Supp (χ (t,X) ,Ψt (Z)) = Supp (χ (t,X)) ×
tQ
7=1

Supp (Ψ (I, Z(I)), for all t = 1, . . . , T̄ ,

and this holds for each component of each vector.

(iv) Supp (χ (t,X) ,Ψt (Z)) ⊇ Supp (ν(t), ηt), for all t = 1, . . . , T̄ .

(v) Supp (ν(t), ηt) = Supp (ν (t))×
tQ
7=1

Supp (η (I)), for all t = 1, . . . , T̄ , and this holds for

each component.

Then, under the Matzkin conditions, we can identify Ψt (Z) and χ (t,X) and the joint dis-

tributions of (ν (t) , ηt) for t = 1, . . . , T̄ . If we weaken these conditions so that the class of the

functions is only known up to scale, we identify these functions up to scale and distributions

of the random variables up to scale.

Proof. The proof uses the ingredients of Theorem 3 and for the sake of brevity is deleted.

¥

The basic idea underlying the proof is that with sufficient variation in (X,Z), we can

identify subsets of persons who survive in the initial state of unemployment untreated to any

given age a with a high probability. Some of the previously untreated survivors are treated

at a and followed at least until they leave �0�. The model is intrinsically complex, requiring

that the analyst correct for selection into various pre-treatment survivorship statuses. The

analyst must also correct for the effect of survival up to a on the possibility of treatment

at a. We do not develop the full model of treatment times for the reduced form duration

analysis in this paper.33

Theorem 3 and Corollary 2 reverse the order of theB-D conditioning discussion presented

in the previous subsection. Both exploit the properties of index models. The duration models

for time to treatment or for time to exiting unemployment place restrictions on the order in

which thresholds are permitted to cross zero and their dependence on survival times.

In the reduced form models for Y (t) , e (a, t) or ∆ (a, t), the pre-treatment outcomes

at each age can differ depending on the time of treatment even after controlling for the
33The model of treatment times in Abbring and Van Den Berg is also implicit.
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X, the Zt, the U (t) and the ηt. Thus we do not have to impose the �no anticipations�

assumption invoked by Abbring and Van Den Berg (2003) which requires that controlling

for the variables in their model analogous to our X,Zt, ηt and U (t), the age a outcomes

(a < t) be the same for all treatment times after a. This requirement rules out that the

future can cause the past and is an intuitive requirement of a causal model.34 As we discuss

in Section 3, this is an artifact of the incompleteness of the speciÞcation of reduced form

models. This possibility arises because the framework in this section, like the framework of

many reduced form models, is not sufficiently rich to model or identify the information sets

of agents. Conditioning on the same information set, the outcomes at pretreatment age a

(a < t) are the same for persons with different treatment times as we show in the structural

models of Section 3.35

The models for binary strings and durations also share the property with the model

produced by Theorem 2 that counterfactuals for impossible strings of treatment time histories

can be generated. This is a consequence of the index function structure. Recall our discussion

of the B-D conditioning in the preceding subsection.

We now turn to the development of factor models that allow us to construct the joint

distributions of outcomes across stopping times.

2.5 Using Factor Models to Identify Joint Distributions of Coun-

terfactuals

From Theorem 2 and Theorem 3 or their generalization, Theorem D.1 in Appendix D,

we can identify joint distributions of outcomes for each treatment time t and the index

34The requirement is imposed by requiring either that Y (a, t) = Y (a, t0) [e (a, t) = e (a, t0) ;∆ (a, t) =
∆ (a, t0)] for all min (t0, t) > a, or the weaker requirement that the pretreatment distributions be the
same. We note that in quantum electrodynamics, Feynman�s equations explicitly predict that the fu-
ture causes the past so a �common sense� notion of causality is violated in this branch of physics. See
www.qedcorp.com/pcr/pcr/m13.html.
35In a perfectly certain environment, the �no anticipations� condition is meaningless since the treatment

time is in the agent�s information set and it is not possible to standardize information sets across people
with different treatment times.
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generating treatment times. We cannot identify the joint distributions of outcomes across

treatment times. As a consequence, we cannot, in general, identify treatment on the treated

parameters.36

Aakvik, Heckman, and Vytlacil (2005) and CHH show how to use factor models to identify

the joint distributions across treatment times and recover the standard treatment parameters.

We can use their approach to identify the joint distribution of Y = (Y (1), . . . , Y (T̄ )).

The basic idea underlying this approach is to use distributions for outcomes measured

at each treatment time t and on the choice index to construct the joint distribution of out-

comes across treatment choices. To illustrate how the idea works, suppose that we augment

Theorem 2 by appealing to Theorem D.1 in Appendix D to identify the joint distribution

of the vector of outcomes at each stopping time along with It = (I (1) , . . . , I (t)) for each t.

For each t, we may write

Y (a, t,X,U (a, t)) = μ (a, t,X) + U (a, t) a = 1, . . . , Ā

I(t) = Ψ (t, Z) + η(t).

From the Matzkin conditions, the scale is determined. If we specify the Matzkin func-

tions only up to scale, we determine the functions up to scale and make a normalization.

From Theorem 2 and Theorem D.1, we can identify the joint distribution of (η(1), . . . , η(t),

U(1, t), . . . , U(Ā, t)).

Suppose that we adopt a one factor model where θ is the factor. It has mean zero and

we can represent the errors by

η(t) = ϕtθ + εη(t)

U (a, t) = αa,tθ + εa,t, a = 1, . . . , Ā, t = 1, . . . , T̄ .

The θ are independent of all of the εη(t), εa,t and the ε�s are mutually independent mean

36In the schooling model, we can identify these parameters at terminal treatment time T̄ .
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zero disturbances. The ϕt and αa,t are called factor loadings. Since θ is an unobservable, its

scale is unknown. We can set the scale of θ by normalizing one factor loading, say αĀ,T̄ = 1.

From the joint distribution of
¡
η, U

¡
T̄
¢¢
, we can form the covariances

Cov
¡
U
¡
a, T̄

¢
, U
¡
a0, T̄

¢¢
= αa,T̄αa0,T̄σ

2
θ a 6= a0.

Cov
¡
U
¡
a, T̄

¢
, η(t)

¢
= αa,T̄ϕtσ

2
θ.

For Ā ≥ 3, we can identify σ2θ, αa,t, ϕt, a = 1, . . . , Ā for t = 1, . . . , T̄ .37 From this information
we can form for a 6= a0 or t 6= t00 or both,

Cov (U (a, t) , U (a0, t00)) = αa,tαa0,t00σ2θ,

even though we do not observe outcomes for the same person at two different stopping times.

Thus we can construct the joint distribution of (U, η) = (U (1) , . . . , U
¡
T̄
¢
, η). From this

joint distribution we can recover the standard mean treatment effects as well as the joint

distributions of the potential outcomes. We can determine the percentage of participants

at treatment time t who beneÞt from participation compared to what their outcomes would

be at other treatment times. We can perform a parallel analysis for the index functions

e∗(a, t,X) used to generate e(a, t,X) in Section 2.4 as well as for the ∆∗ (a, t,X). Con-

ventional factor analysis assumes that the unobservables are normally distributed. CHH

establish nonparametric identiÞability of the θ�s and the ε�s and their analysis of nonpara-

metric identiÞability applies here.

37Proof. Assume that the factor loadings and variances are nonzero. From the normalization it follows
that

Cov
¡
U
¡
a, T̄

¢
, U
¡
a0, T̄

¢¢
Cov

¡
U
¡
a, T̄

¢
, U
¡
Ā, T̄

¢¢ = αa0,T̄ , a0 = 1, 2, . . . , Ā; Ā ≥ 3.
Cov

¡
U
¡
Ā, T̄

¢
, U
¡
a0, T̄

¢¢
= αa0,T̄σ

2
θ

Since we know αa0,T̄ , we can identify σ
2
θ. We can identify ϕt, t = 1, . . . , T̄ from

Cov (U (a, t) , η(t)) = αa,tϕtσ
2
θ.

¥
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In the schooling example discussed in the previous subsection, having access to these

distributions means that we can form not only the potential earnings in college of a high

school graduate as we could without invoking the factor structure assumption, but we are also

able to generate the distribution of potential earnings in high school of a college graduate.

Thus, in addition to the pairwise average treatment effects that can be formed using the

output of Theorem 2, we can form treatment on the treated, as well as all of the distributional

treatment effects discussed in CHH, Heckman and Smith (1998) and Heckman and Vytlacil

(2006a). As noted by CHH and Cunha, Heckman, and Navarro (2005a,b,c,e), we can also

form the joint distribution of college and high school earnings for college graduates.

Theorem 2, strictly applied, actually produces only one scalar outcome for each stopping

time. We need three or more measurements for each stopping time to use factor analysis.

Theorem D.1 in Appendix D extends the analysis of Theorem 2 to a vector outcome case.

If vector outcomes are not available, access to a measurement system M that assumes the

same values for each stopping time can substitute for the need for vector outcomes for Y .

Let Mj be the jth component of this measurement system. Write

Mj = μj,M(X) + Uj,M , j = 1, . . . , J,

where Uj,M are mean zero and independent of X.

Suppose that the Uj,M have a one-factor structure so Uj,M = αj,Mθ + εj,M , j = 1, . . . , J,

where the εj,M are mean zero, mutually independent random variables, independent of the

θ. Adjoining these measurements to the one outcome measure Y (t) with a factor structure

joined with two or more measurements (J ≥ 2) can substitute for the measurements of

Y (a, t) used in the previous example. In an analysis of schooling, the Mj can be test scores

that depend on ability θ. Ability is assumed to affect outcomes Y (t) and the choice of

treatment times indices arrayed in I.

These examples illustrate the wealth of counterfactual within�and across�stopping time
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t distributions that can be produced from the factor models developed in Aakvik, Heckman,

and Vytlacil (2005) and in CHH. The factor models are convenient vehicles for generating

low-dimensional representations of unobservables. Alternative methods for generating low

dimensional representations of unobservables that can be used to construct counterfactual

distributions across treatment times are pursued in Urzua (2005).

Factor models generalize the method of matching. Conditional on θ,X,Z, all of the

potential outcomes are independent of D (l): Y (t) ⊥⊥ D (l) | X,Z, θ for all t, l = 1, . . . , T̄ .
Our analysis allows for the possibility that θ is unobserved by the economist. The price of

allowing for this is assuming that θ ⊥⊥ (X,Z). This assumption is not required in matching,
if we observe the θ.38

A limitation of the reduced form approach pursued in this section is that, because the

underlying model of choice is not clearly speciÞed, it is not possible without further structure

to form, or even deÞne, the marginal treatment effect analyzed in Heckman and Vytlacil

(1999, 2001, 2005, 2006a,b) or Heckman, Urzua, and Vytlacil (2005). The absence of well

deÞned choice equations is problematic for the model we have analyzed thus far, although

it is typical of many statistical treatment effect analyses.39 ,40 In this framework, it is not

possible to distinguish objective outcomes from subjective evaluations of outcomes, and to

distinguish ex ante from ex post outcomes. It is also possible to identify counterfactuals that

can depend on future treatment times, contrary to intuitions that the future cannot cause

the past. We can rule out such models by assumption as is the practice in the statistical

treatment effect literature (see e.g. Robins, 1997; Gill and Robins, 2001; Lok, 2001) but the

assumptions on the underlying economic model required to do this are not clearly articulated

38Conditioning on observables to produce conditional independence models between counterfactuals and
assignment is discussed in Rosenbaum and Rubin (1983), Gill and Robins (2001), Lechner and Miquel (2002),
Heckman and Navarro (2004), and CHH.
39Heckman (2006) and Heckman and Vytlacil (2006a,b) point out that one distinctive feature of the

economic approach to program evaluation is the use of choice theory to deÞne parameters and evaluate
alternative estimators.
40This contrasts with the semiparametric model for treatment effects in a multinomial choice model in

Appendix B, where a well deÞned choice criterion exists. This appendix deÞnes EOTM, the effect of treatment
for people at the margin, for a classical multinomial choice model with associated outcomes. See also CHH.
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in the reduced form approach.

We now develop an explicit economic model for dynamic treatment effects that allows

us to make these and other distinctions and to eliminate hard-to-interpret features of the

statistical model. We extend the analysis presented in this section to a more precisely

formulated economic model. We explicitly allow for agent updating of information sets. A

well posed economic model rules out the possibility that the future causes the past as part

of the model speciÞcation. It also enables us to evaluate policies in one environment and

accurately project them to new environments as well as accurately forecast new policies never

previously experienced. See Heckman (2006) and Heckman and Vytlacil (2005, 2006a,b).

3 A Sequential Structural Model with Option Values

This section analyzes the identiÞability of a structural sequential optimal stopping time

model. We use ingredients assembled in the previous sections to build an economically

interpretable framework for analyzing dynamic treatment effects. We focus on a schooling

model with associated earnings outcomes that is motivated by the work of Keane and Wolpin

(1997) and Eckstein and Wolpin (1999). We explicitly model costs and allow for work while

in school. We allow for the arrival of serially correlated shocks in information more general

than those entertained by Pakes (1986), Rust (1987), Hotz and Miller (1993), Manski (1993),

Keane and Wolpin (1997) or Eckstein and Wolpin (1999).

In the model of this section it is possible to interpret the literature on dynamic treatment

effects within the context of an economic model; to allow for earnings while in school as well

as grade-speciÞc tuition costs; to separately identify returns and costs; to distinguish private

evaluations from �objective� ex ante and ex post outcomes and to identify persons at various

margins of choice. In the context of medical economics, we consider how to identify the pain

and suffering associated with a treatment as well as the distribution of beneÞts from the

intervention. We also model how anticipations about potential future outcomes associated
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with various choices evolve over the life cycle as sequential treatment choices are made.

In contrast to the analysis of Section 2, the identiÞcation proof for our dynamic choice

model works in reverse starting from the last period and sequentially proceeding backward.

This approach is required by the forward-looking nature of dynamic choice analysis and

makes an interesting contrast with our reduced form analyses which proceed forward from

initial period values.

We use limit set arguments to identify the parameters of outcome and measurement

systems for each stopping time t = 1, . . . , T̄ , including means and joint distributions of un-

observables. These systems are identiÞed without invoking any special assumptions about

the structure of model unobservables. If we invoke factor structure assumptions for the un-

observables, we identify the factor loadings associated with the measurements (as deÞned

in Section 2.5) and outcomes. We also nonparametrically identify the distributions of the

factors and the distributions of the innovations to the factors. With the joint distributions

of outcomes and measurements in hand for each treatment time, we can identify cost (and

preference) information from choice equations that depend on outcomes and costs (prefer-

ences). We can also identify joint distributions of outcomes across stopping times. Thus we

can identify the proportion of people who beneÞt from treatment. Our analysis generalizes

the one shot decision models of Cunha, Heckman, and Navarro (2005a,b,c,e) to a sequential

setting.

Because our model makes many new distinctions that are not possible in the analysis of

Section 2, we have to introduce some new notation. Agents make decisions about schooling

at each age in their life cycle, and we are explicit about their decision rule.

Agents sequentially select schooling levels. New information arrives at each stage. One

of the beneÞts of continuing on in a process is the arrival of new information. Let t(a) ∈
{1, . . . , T̄} index the schooling level that an individual has attained at age a ∈ {1, . . . , Ā}.
The person may go on to attain more years of schooling. Each year of schooling takes one

year of age to complete. We assume that there is no grade repetition and we assume that
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once persons stop schooling, they never return. It would be better to derive such stopping

behavior as a feature of a more general model with possible recurrence of states but we do

not do so here.41

As a consequence of these assumptions, t(a) = a up to the time the person drops out

of school. Aging continues but schooling does not. We set D (a) = 0 if the individual

decides to continue to the next level of schooling (i.e., does not receive �treatment� at age

a) and D (a) = 1 if the individual stops at a. In our notation, Þnal schooling level (time

at treatment) T = t(a) is the Þrst age a (grade t(a)) at which D (a) = 1. Equivalently,

we could denote this event by D(t(a)) = 1, because up to the time of dropout from the

schooling process a = t(a). Individuals start life in the schooling state D (0) = 0. DeÞne

δ(a) = 1−1
hPa−1

j=0 D (j) = 0
i
to be an indicator of whether the individual stopped (received

treatment) by age a (so δ(a) = 1) or whether the individual is still a student entering age a

(so δ(a) = 0).42 Figure 1 shows the evolution of age and grades, and clariÞes the notation.

Let individual earnings at age a for a person with current schooling level t(a) be written

as

Y (a, t(a), δ(a),X) = μ (a, t(a), δ(a), X) + U (a, t(a), δ(a)) , (3)

so Y (a, t(a), 0,X) denotes the earnings of an individual with characteristics X who is still

enrolled in school and goes on to complete at least t(a)+1 years of schooling. U (a, t (a) , δ (a))

is a mean zero shock that is unobserved by the econometrician but may, or may not, be

observed by the agent. It is the earnings of the person as a student at age a. Y (a, t(a), 1, X)

denotes the earnings at age a of an agent who has decided to stop schooling at or before

age a. When δ(a) = 1, Y (a, t(a), δ(a),X) is meaningfully deÞned only if a ≥ t(a). We

impose this restriction throughout, and deÞne all counterfactuals invoking this assumption

to produce interpretable models.

41See Heckman, Urzua, and Yates (2005) for the derivation identiÞcation and estimation of such a model.
42Recall that treatment is instantaneous and occurs at the start of the period.
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The direct cost of remaining enrolled in school at age a is

C (t(a),X,Z (t(a))) = Φ (t(a),X,Z (t(a))) +W (t(a))

where X and Z (t (a)) are vectors of observed characteristics (from the point of view of the

econometrician) that affect costs at schooling level t(a), and W (t(a)) are mean zero shocks

that are unobserved by the econometrician that may or may not be observed by the agent.

Costs are paid in the period before schooling is undertaken. The agent is assumed to know

the costs of making schooling decisions at each transition. The agent is also assumed to

know the X and the Z(t(a)) for all periods.43

Once an agent decides to stop at schooling level T = t, she never returns to school. Under

these assumptions, the expected reward at age a of stopping (i.e., receiving treatment) at

T = t is given by the expected present value of her remaining lifetime earnings:

R (a, t,X) = E

Ã
Ā−tX
j=0

µ
1

1 + r

¶j
Y (a+ j, t, 1,X)

¯̄̄̄
¯ Ia

!
, (4)

where Ia is the age-speciÞc information set which includes the schooling level attained at age
a as well as all state variables known to the agent including conditional distributions of future

variables that are forecast by the agent. A more accurate notation would write R (a, t,Ia)
but it is convenient in the proofs to use R (a, t,X) and we do so in this paper. We assume a

Þxed, nonstochastic, interest rate r.44 Because agents are forward looking, we deÞne the cost

shifters for schooling levels t (a) and beyond as Zt(a) =
¡
Z (t (a)) , Z (t (a) + 1) , . . . , Z

¡
T̄ − 1¢¢,

and deÞne the entire vector of cost shifters as Z = Z1. Agents are assumed to know these

cost shifters and they are in the information set Ia. The continuation value at age a and
schooling level t (a) given X and Zt(a) is denoted K (a, t (a) ,Ia).
At T̄ − 1, when an individual decides whether to stop or continue on to T̄ , the expected

43These assumptions can be relaxed and are made for convenience. See Cunha, Heckman, and Navarro
(2005e) for a discussion of selecting variables in the agent�s information set.
44This assumption can be relaxed but we do not do so in this paper.
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reward from remaining enrolled and continuing to T̄ (i.e., the continuation value) is the

earnings while in school less costs plus the expected discounted future return that arises

from completing T̄ years of schooling:

K
¡
T̄ − 1, T̄ − 1, IT̄−1

¢
= Y

¡
T̄ − 1, T̄ − 1, 0,X¢− C ¡T̄ − 1,X,Z ¡T̄ − 1¢¢

+
1

1 + r
E
¡
R
¡
T̄ , T̄ ,X

¢ | IT̄−1¢
where C

¡
T̄ − 1,X,Z ¡T̄ − 1¢¢ is the direct cost of schooling for the transition to T̄ . This ex-

pression embodies our assumption that each year of school takes one year of age. IT̄−1incorporates
all of the information known to the agent.

The value function at T̄ − 1 is the larger of the two expected rewards that arise from
stopping at T̄ − 1 or continuing one more period to T̄ :

V
¡
a, T̄ − 1, IT̄−1

¢
= max

©
R
¡
T̄ − 1, T̄ − 1, X¢ ,K ¡T̄ − 1, T̄ − 1, IT̄−1¢ª .

More generally, at age a and schooling level t (a) , the value function is

V
¡
a, t (a) ,It(a)

¢
= max

©
R (a, t (a) ,X) ,K

¡
a, t (a) ,It(a)

¢ª
= max

⎧⎪⎨⎪⎩R (a, t (a) , X) ,
⎛⎜⎝ Y (a, t (a) , 0,X)− C (t (a) , X, Z (t (a)))
+

1

1 + r
E
¡
V
¡
a+ 1, t (a) + 1,It(a)+1

¢ | It(a)¢
⎞⎟⎠
⎫⎪⎬⎪⎭ .

The option value at age a of continuing schooling further than t (a) is given by the difference

between the reward an individual expects to obtain by going to one more year of school,

taking into consideration that he might go even further, and the reward he expects to obtain
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by stopping the next year,

O (a, t (a)) = Y (a, t (a) , 0,X)− C (t (a) , X, Z (t (a)))

+
1

1 + r
E
¡
V
¡
a+ 1, t (a) + 1,It(a)+1

¢ | It(a)¢
−

⎧⎪⎨⎪⎩ Y (a, t (a) , 0, X)− C (t (a) ,X,Z (t (a)))
+

1

1 + r
E
¡
R (a+ 1, t (a) + 1, X) | It(a)

¢
⎫⎪⎬⎪⎭ .

There is no option value for persons who have completed schooling. Collecting terms, for

a = t (a),

O (a, t (a)) =
1

1 + r
E
¡
V
¡
a+ 1, t (a) + 1, It(a)+1

¢−R (a+ 1, t (a) + 1, X) | It(a)¢
=

1

1 + r
E
¡
max

©
R (a+ 1, t (a) + 1,X) ,K

¡
a+ 1, t (a) + 1, It(a)+1

¢ª | It(a)¢
− 1

1 + r
E
¡
R (a+ 1, t (a) + 1,X) | It(a)

¢
.45

In the notation for index functions introduced in Section 2, we deÞne the decision rule

using I(a, t (a) ,It(a)) = R(a, t (a) ,X)−K(a, t (a) ,It(a)) where

D (a) = 1
£
I
¡
a, t (a) ,It(a)

¢
> 0, I(a− 1, t(a)− 1,It(a)−1) ≤ 0, . . . , I(1, 1, I1) ≤ 0

¤
.

For proving identiÞcation, it is useful to separate out the component of the cost function

based on observables (from the point of view of the econometrician), Φ(t (a) , X, Z(t (a))),

45Our model allows no recall and is clearly a simpliÞcation of a more general model of schooling with
option values. Instead of imposing the requirement that once a student drops out the student never returns,
it would be useful to derive this property as a feature of the economic environment and the characteristics of
individuals. In a more general model, different persons could drop out and return to school at different times
as information sets are revised. This would create further option value beyond the option value developed in
the text that arises from the possibility that persons who attain a given schooling level can attend the next
schooling level in any future period. Implicit in our analysis of option values is the additional assumption
that persons must work at the highest level of education for which they are trained. An alternative model
allows individuals to work each period at the highest wage across all levels of schooling that they have
attained. Such a model may be too extreme because it ignores the costs of switching jobs, especially at the
higher educational levels where there may be a lot of job-speciÞc human capital for each schooling level. A
model with these additional features is presented in Heckman, Urzua, and Yates (2005).
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from the rest of the index which include the unobservable W (t (a)) as well as other ingredi-

ents. We deÞne a subindex of I(a, t(a),It(a)) as following:

Υ
¡
t (a) , X, Zt(a)+1

¢
= R (a, t (a) , X)− [Y (a, t (a) , 0, X)−W (t (a))

+
1

1 + r
E
¡
V
¡
a+ 1, t (a) + 1,It(a)+1

¢ | It(a)¢].
Thus,

I
¡
a, t (a) , It(a)

¢
= Φ (t (a) ,X,Z (t (a))) +Υ

¡
t (a) , X, Zt(a)+1

¢
,

where Υ(t (a) ,X,Zt(a)+1) is the �error term� of the index function generating the model.

We use the notation Υ
¡
t (a) ,X,Zt(a)+1

¢
because it is helpful to understand the argument

of the proofs presented in the next section. However, a more accurate notation would be

Υ
¡
t (a) , It(a)

¢
where It(a) is the information set of the agent at stage t (a) which may include

Zt(a) and X.

An individual stops at the schooling level at the Þrst age where this index becomes

positive.46 From data on stopping times, we can nonparametrically identify the conditional

probability of stopping at a,

Pr (T = t(a) | X,Z) = Pr

⎛⎜⎜⎜⎜⎝
I
¡
a, t (a) ,It(a)

¢
> 0,

I
¡
a− 1, t (a)− 1,It(a)−1

¢ ≤ 0, . . . ,
I (1, t (1) ,I1) ≤ 0

¯̄̄̄
¯̄̄̄
¯̄ X = x,Z = z

⎞⎟⎟⎟⎟⎠ ,

where a = t (a) until the age where a person stops schooling, and δ (a) = 1.

In order to identify the sequential revelation of information and to identify the cost

functions, we represent the unobservables (from the point of view of the econometrician)

46This makes implicit assumptions about the economic environment facing agents. Stationarity of the
environment would produce this outcome but it is only a sufficient condition. We leave development of more
precise conditions for later work.
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using a factor structure tailored to the notation of this section,

U (a, t (a) , δ (a)) = θαa,t(a),δ(a) + ε(a, t(a), δ (a))

W (t (a)) = θλt(a) + ξ (t (a))

⎫⎪⎬⎪⎭ a = 1, . . . , Ā, t(a) ≤ a for δ(a) = 1,

where the subscript on the factor loading is the argument of the variable being given a

factor representation. We assume that the measurement equations (the M of Section 2.5)

can also be factor analyzed using θ, an L-dimensional vector of factors (θ1, . . . , θL) and that

Uj,M = θαj,M + εj,M , j = 1, . . . , J . We also assume that the ε and ξ have zero means and

Þnite variances and are component-wise independent and independent of the θ which are

also component-wise independent: θi ⊥⊥ θj, for all i 6= j, i, j = 1, . . . , L.47

The agent is assumed to make choices using rational expectations. By this we mean that

the agent whose choice behavior is being analyzed knows the distributions of θ, {ε(a, t(a),
δ (a))}Āa=1, ξ (t (a)) for all a and t (a) = a, . . . , T̄ − 1, and {εj,M}Jj=1 and uses them in making
choices. We assume that the parameters of the model as well as X, Z, {ξ (t (a))}T̄−1t(a)=1,

{εj,M}Jj=1 are known by the agent and are in the information set Ia but the values of ε(a+
k, t(a+ k), δ (a+ k)), k > 0 are not. Agents may or may not know θ.

One possible speciÞcation of the information structure of the model regarding θ is the

following.

(I-1) At age a, each element of θ is either known to the agent or it is not known. Thus,

when revelation about θ occurs, it is instantaneous.

This assumption rules out gradual learning, such as standard Bayesian updating. We further

assume that
47Thus we assume that

θj ⊥⊥ ε(a, t(a), δ (a)) for all j, a, t (a) , δ (a) ; ε(a, t(a), δ (a)) ⊥⊥ ε(a0, t00(a0), δ000 (a0)), for all a0, t00(a0), δ000 (a0) ;

except if a = a00, t00(a0) = t (a) and δ (a) = δ000 (a0) ; ε(a, t(a), δ (a)) ⊥⊥ ξ (t (a)) for all a, t (a) , δ (a) ;
θj ⊥⊥ ξ (t (a)) for all j, a; θ( ⊥⊥ εj,M for all < = 1, . . . , L; j = 1, . . . , J.
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(I-2) Information arrives about the elements of θ sequentially ( e.g., in the Þrst a1 periods

of earnings only the Þrst element of θ enters, in the next a2 periods the Þrst two elements of

θ enter, and so on). If the lth element of θ affects earnings at a7 ≤ a, then it is known by
the agent at a7 and ever after.

These assumptions allow for the possibility that agents may know some or all the elements

of θ at a given age a regardless of whether or not they determine earnings at or before age

a. Once known, they are not forgotten. As agents accumulate information, they revise their

forecasts of their future earnings prospects at subsequent stages of the decision process. This

affects their decision rules and subsequent choices. Thus we allow for learning which can

affect both pretreatment outcomes and posttreatment outcomes.48 We use this speciÞcation

in the empirical work reported in Heckman (2006). Other speciÞcations of the updating of

the information sets of agents are possible.49 All dynamic discrete choice models make some

assumptions about the updating of information and any rigorous identiÞcation analysis must

test among competing speciÞcations of information updating.

Variables unknown to the agent are integrated out by the agent in forming value functions.

Variables known to the agent are treated as constants by the agents. They are integrated

out by the econometrician. In general, the econometrician knows less than what the agent

knows. The econometrician seeks to identify the distributions in the agent information sets

that are used by the agents to form their expectations as well as the distributions of variables

known to the agent and treated as certain quantities by the agent but not known by the

econometrician. Determining which elements belong in the agent�s information set can be

done using the methods exposited in Cunha, Heckman, and Navarro (2005e) and Navarro

(2004b) who consider testing what components of X,Z, ξ, ε as well as θ are in the agent�s

48This type of learning about unobservables is ruled out in the Abbring � Van den Berg model (2003).
However, in our model, conditioning on the same information set Ia, the distributions of pretreatment costs
and earnings are the same for all persons irrespective of their treatment times.
49It is fruitful to distinguish models with exogenous arrival of information (so that information arrives at

each age a independent of any actions taken by the agent) from information that arrives as a result of choices
by the agent. Our model is in the Þrst class. The model of Miller (1984) or Pakes (1986) are in the second
class.
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information set. We brießy discuss this issue at the end of the next section.50 We now

establish semiparametric identiÞcation of the model assuming a given information structure.

Determining the appropriate information structure facing the agent and its evolution is an

essential aspect of identifying any dynamic discrete choice model.

Observe that agents with the same information sets at age a, Ia, have the same expecta-
tions of future returns, and the same value functions. Persons with the same ex ante reward,

state and preference variables have the same ex ante distributions of stopping times. Ex post,

stopping times may differ among agents with identical ex ante information sets. Controlling

for Ia, future realizations of stopping times do not affect past rewards.

3.1 Semiparametric identiÞcation of dynamic sequential discrete

choice models

Establishing semiparametric identiÞability of our model is a nontrivial task because of its

intrinsic nonlinearity. Our strategy is as follows. Using limit set arguments which we specify

below, we can identify the joint distributions of earnings (for each treatment time t across a)

and any associated measurements that do not depend on the stopping time chosen. For each

stopping time, we can construct the means of earnings outcomes at each age and of the mea-

surements and the joint distributions of the unobservables for earnings and measurements.

Factor analyzing the joint distributions of the unobservables, under conditions speciÞed in

CHH and Navarro (2004a), we identify the factor loadings, and nonparametrically identify

the distributions of the factors and the independent components of the error terms in the

earnings and measurement equations. Armed with this knowledge, we can use choice data

to identify the distribution of the components of the cost functions that are not directly

observed. We can also construct the joint distributions of outcomes across stopping times.

To simplify the notation in our proofs, we use the condensed forms for the variables

50Our model of learning is clearly very barebones. Information arrives exogenously across ages. In the
factor model, all agents who advance to a stage get information about additional factors at that stage of their
life cycles but the realizations of the factors may differ across persons. Urzua (2005) extends this analysis.
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U (t, 0), U (t, 1), U (0), U (1), U , Y (t, 0,X) , Y (t, 1, X), Y (0, X), Y (1, X), Y (X), μ (t, 0,X) ,

μ (t, 1,X), μ (0, X), μ (1, X), μ (X), W , Φ (X,Z) and Υ (X,Z) that were introduced in

Section 2.3. We also deÞne M = (M1, . . . ,MJ), UM = (U1,M , . . . , UJ,M) and μM(X) =

(μ1,M(X), . . . , μJ,M(X)). The X may have subvectors depending on time but to simplify the

analysis we suppress the individual elements. We embed the restriction that when δ(a) = 1,

a ≥ t(a) and restrict ourselves to counterfactuals and factuals with arguments that satisfy
this property.

Using this notation, we can state our identiÞcation strategy more precisely. Using limit

sets that make the probability of each stopping time, t = 1, . . . , T̄ , arbitrarily close to 1, we

construct the joint distribution of (Y (t, 0,X), Y (t, 1,X),M) including the joint distribution

of U(0, t), U(1, t) and UM . Using factor analysis, we determine the factor loadings, and

identify the joint distribution of θ, ε, ξ nonparametrically. With the factor loadings and these

distributions in hand, we can use choice data to identify the mean of the cost function in the

terminal schooling choice (Φ(T̄ − 1, X, Z)) and the distribution of unobservable components
of costsW (T̄−1). Backward inducting, we can identify the Φ(t,X, Z) and the distribution of
W (t) for the remaining transitions. Using our factor structure, we can identify the full joint

distributions of ex post outcomes and measurements (Y (1, X), Y (0,X), M) across stopping

times. We Þrst establish identiÞcation of the joint distribution of (Y (t, 0,X), Y (t, 1,X), M)

for each t.

Theorem 4. Assume that

(i) U,UM and W are continuous random variables with mean zero, Þnite variance and

support Supp (U) × Supp (UM) × Supp (W ) with upper and lower limits Ū , ŪM , W̄
and U,UM ,W , respectively, which may be bounded or inÞnite. We assume that this

condition applies to each component of U , UM , and W , and all possible combinations

of components. The cumulative distribution function of W (t (a)) , t (a) = 1, . . . , T̄

is assumed to be strictly increasing over its full support (W (t (a)) , W̄ (t (a))), for all

t(a) = 1, . . . , T̄ .
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(ii) (X,Z) ⊥⊥ (U,UM ,W ).

(iii) Supp (μ (X) , μM(X),Φ (X,Z)) = Supp (μ (X))×Supp(μM(X))×Supp (Φ (X,Z)) and
this holds element by element.

(iv) Supp (Φ (X,Z)) ⊇ Supp (−Υ (X,Z)) and this holds element by element within each
vector.

Then, μ (a, t (a) , δ (a) , X) , μM(X), the joint distribution of (U (a, t (a) , δ (a)) , UM) are iden-

tiÞed.51

Proof. Assumptions (iii) and (iv) are sufficient conditions for limit sets Z1 and Z0 to exist
such that limX,Z→Z1 P (T = t (a) | X,Z) = 1, i.e., there is a limit set in which the indi-

viduals are observed to stop at a, T = t (a) and hence δ (a) = 1 with probability one, and

limX,Z→Z0 P (T = t (a) | X,Z) = 0, so that there is a limit set of individuals who remain in
school at a = t (a) so δ (a) = 0 with probability one in that limit set. One way to satisfy this

condition is through exclusion restrictions: having an element in each Z(j), call it Z∗(j),

that is not in X or Z(j0), j 6= j0, assuming that the Φ (j,X, Z(j)) is monotonic in Z∗(j), and
assuming that the Z∗(j) can be independently varied, conditional on all of the remaining Z

and the X. Since future costs enter this probability, we can potentially use any argument

of Φ (t (a0) , X, Z (t (a0))) , a0 > a to obtain these limits. Furthermore, with time varying

components of X, some elements of future X might be available to achieve the required vari-

ation, provided support conditions are met. Under the limit set assumption, identiÞcation of

μ (a, t (a) , δ (a) , X), μM(X) and the marginal distribution of (U (a, t (a) , δ (a)) , UM) follows

immediately.

IdentiÞcation of the joint distribution of (UM , U) follows from the fact that, in the limit

set, we can form the left hand side of

Pr (UM < m− μM (X) , U < y − μ (X) | X = x) = FUM ,U (m− μM (x) , y − μ (x)) .
51Recall that we restrict the admissible counterfactuals to have arguments that satisfy a > t(a) when

δ(a) = 1.
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We can trace out this distribution by Þnding vectors q1 and q2 deÞned so q1 = m− μM (X)
and q2 = y−μ (X) and by independently varying the points of evaluation of the components
of q1 and q2. ¥

This theorem applies to any known transformation of the Y and M that satisÞes the

property of separability of the errors. Notice that we do not need conventional exclusion

restrictions to identify the objects produced from Theorem 4. Notice further that we do not

need to invoke the Matzkin conditions or the linearity-in-parameters conditions for the cost

function to secure identiÞcation of the joint distribution of outcomes and measurements for

each stopping time.

From this theorem, we can produce average treatment effects for outcomes for any pair

of stopping times.52 To produce the joint distribution of outcomes across stopping times, we

can use factor analysis applied to the joint distribution as described in Section 2.5. Under

conditions on the unobservables speciÞed in CHH and Navarro (2004a), we can nonparamet-

rically identify the distribution of the factors and the uniquenesses (the ε and ξ) associated

with outcomes and measurements for each stopping time. CHH only use information on

the covariances to identify the factor loadings.53 In place of the information from the index

generating choices that was used in the analysis of Section 2.5, in this section, because we are

using limit sets that Þx treatment times, it is necessary to use measurements to produce the

52The average treatment effects are identiÞed using only the marginal distributions.
53They also assume a �triangular� structure on the matrix of factor loadings for their principal results.

This structure assumes that there are two (or more) measurements or outcomes that depend only on θ1;
two (or more) measurements or outcomes that depend only on θ1 and θ2 and so forth. Use of covariance
information limits the number of factors that can be nonparametrically identiÞed. Thus for an outcome and
measurement vector J of length N , N > 2L+ 1

J =

⎛⎜⎜⎜⎜⎜⎝
α11 0 0 · · · 0
α21 0 0 · · · 0
α31 α32 0 · · · 0
...

...
...

...
αN1 αN2 αN3 · · · αNL

⎞⎟⎟⎟⎟⎟⎠
| {z }

N×L

⎛⎜⎜⎜⎜⎜⎝
θ1
θ2
θ3
...
θL

⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝

ξ1
ξ2
ξ3
...
ξN

⎞⎟⎟⎟⎟⎟⎠

where the last block must have three or more elements and each of the N − 3 preceding rows has at least
a block of two rows with the same pattern of zeros, the column vector of the ξi has mutually independent
elements and is independent of the θi, and the θi are mutually independent. See Anderson and Rubin (1956).
CHH also establish identiÞcation of a nontriangular structure.
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factor loadings generating outcomes across treatment times.54 Navarro (2004a) shows that if

the distribution of the factors is not symmetric, we can uniquely identify the factor structure

without any measurements if we gain additional information from the higher order moments

beyond the covariances used in section 2.5. See also Bonhomme and Robin (2004).55

Notice that measurements, M , are not needed to prove Theorem 4. Notice further that,

54Without the measurements, using only covariance information on outcomes it is not possible to identify
the sign of the factor loadings across systems of outcomes associated with different stopping times unless the
conditions speciÞed in Navarro (2004a) are satisÞed. See Cunha, Heckman, and Navarro (2005e) or Carneiro,
Hansen, and Heckman (2001) for intuitive discussions of these conditions. See also the survey in Heckman,
Lochner, and Todd (2006).
55The following example that builds on the analysis of Section 2.5 illustrates Navarro�s results and the

related results by Bonhomme and Robin (2004). Assume a one factor model and two systems associated
with two stopping times identiÞed in limit sets. We use three outcomes. The Þrst subscript deÞnes the
system used:

Y0,1 = α0,1θ + ε0,1 Y1,1 = α1,1θ + ε1,1

Y0,2 = α0,2θ + ε0,2 Y1,2 = α1,2θ + ε1,2

Y0,3 = α0,3θ + ε0,3 Y1,3 = α1,3θ + ε1,3

where θ ⊥⊥ (ε0,1, ε0,2, ε0,3, ε1,1, ε1,2, ε1,3) and the εi,j are mutually independent and mean zero with Þnite
variances. θ has mean zero and a Þnite variance. We observe data on the (Y0,1, Y0,2, Y0,3) system or the
(Y1,1, Y1,2, Y1,3) system but not both.
Suppose we normalize α0,1 = 1. Using the analysis of Section 2.5, we can identify α0,2, α0,3 and the

distributions of θ, ε0,1, ε0,2, ε0,3 nonparametrically, from the Þrst system. From the second system, we can
identify

Cov(Y1,1, Y1,2) = α1,1α1,2σ
2
θ

Cov(Y1,1, Y1,3) = α1,1α1,3σ
2
θ

Cov(Y1,2, Y1,3) = α1,2α1,3σ
2
θ

Then, assuming α1,1 6= 0, α1,2 6= 0, α1,3 6= 0 and σ2θ > 0, we can identify Cov(Y1,1,Y1,2)
Cov(Y1,1,Y1,3)

=
α1,2
α1,3

so α1,2 =
Cov(Y1,1,Y1,2)
Cov(Y1,1,Y1,3)

α1,3. We also can obtain Cov(Y1,2, Y1,3) =
Cov(Y1,1,Y1,2)
Cov(Y1,1,Y1,3)

α21,3σ
2
θ. Thus we obtain

α21,3 =
Cov(Y1,2, Y1,3)Cov(Y1,1Y1,3)

Cov(Y1,1, Y1,2)σ2θ
.

The sign of α1,3 is not determined.
If, however, we use the assumption that θ is non-normal and E(θ3) 6= 0, we can form

E(Y1,1Y
2
1,3) = α1,1α

2
1,3E(θ

3)

and hence we can solve for α1,1 from

α1,1 =
E(Y1,1Y

2
1,3)

α21,3E(θ
3)

where we know all of the ingredients on the right hand side. Thus we can identify α1,2, α1,3 and hence
can form the joint distribution of (Y0,1, Y0,2, Y0,3, Y1,1, Y1,2, Y1,3). Navarro shows that we need only one
measurement per factor so one can relax the bound N > 2L+ 1. There is related work by Bonhomme and
Robin (2004).
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while there are formal similarities to the duration model for time to treatment developed

in Section 2, there are important differences that arise because the model of this section is

forward-looking. For example, the index I
¡
a, t (a) , It(a)

¢
is a function of expected future

outcomes. The proof strategy used in Section 2 is applied in reverse order.

We now establish identiÞability of the parameters of the last choice index, including the

parameters of the cost function. We then proceed to identify the next to last index and

proceed backward to the initial stage choice index. We start by analyzing the last transition

(from T̄ − 1 to T̄ ). Notice that once an individual is at T̄ , his remaining lifetime value is no
longer a function of cost (and hence Z) since no further transitions are possible. The temporal

structure of the Þnite horizon decision problem produces natural exclusion restrictions and

we exploit it. We now prove the following theorem which demonstrates this point.

Theorem 5. Assume that conditions (i)�(iv) of Theorem 4 hold. In particular, one impli-

cation of condition (iv) of Theorem 4 is especially important in this proof:

(*) Supp
¡
Φ
¡
T̄ − 1,X,Z ¡T̄ − 1¢¢¢ ⊇ Supp ¡−Υ ¡T̄ − 1,X¢¢ .

We assume that Φ
¡
T̄ − 1,X,Z ¡T̄ − 1¢¢ belongs to the class of Matzkin functions, and that

r is known. Then, the mean cost function Φ(T̄ − 1,X,Z ¡T̄ − 1¢), the marginal distribution
of Υ

¡
T̄ − 1,X¢, the factor loadings λT̄−1 and the distribution of ξ(T̄ − 1) are identiÞed for

all X. If we specify the Φ
¡
T̄ − 1, X, Z ¡T̄ − 1¢¢ only up to scale, we identify the cost function

and the marginal distribution of Υ
¡
T̄ − 1,X¢ up to the scale as well as the distribution of

ξ(T̄ − 1).

Proof. As a consequence of assumptions (iii) and (iv) of Theorem 4, a limit set �Z exists

such that limX,Z→ �Z Pr(T > T̄ − 2 | X,Z) = 1. One way to obtain the limit set is to assume
that for all t (a) there is at least one continuous variable Zj (t (a)) that is not contained

in any other Z (t (a0)) (a0 6= a) (where subscripts denote components of Z(t(a))) or in X,

that Φ (t (a) ,X,Z (t (a))) is monotonic in Zj (t (a)), that there are no restrictions on the

supports, and that variation in Zj(t(a)) traces out the full support of Υ(X,Z) to satisfy
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(iv) of Theorem 4. However, we can satisfy this requirement without having a conventional

exclusion.

Recall that an individual, conditional on having reached T̄ − 1 with probability one in
the limit set �Z and conditional on X = �x and Z(T̄ − 1) = z(T̄ − 1), will stop at stage T̄ − 1
if Φ

¡
T̄ − 1, �x, z ¡T̄ − 1¢¢+Υ ¡T̄ − 1, �x¢ > 0. Under assumption (iii) of Theorem 4, we can

freely vary Φ(T̄ − 1, �x, z ¡T̄ − 1¢) by varying z(T̄ − 1) while keeping X = �x Þxed. Alterna-

tively, we could Þx μ (X) = k and still be able to vary Φ without having to Þx the entire X

vector since Υ
¡
T̄ − 1, �x¢ only depends onX through the effect of mean earnings on the value

functions. In this way we would not require that some elements of Z be different from ele-

ments of X. Observe that Υ
¡
T̄ − 1, �x¢ is a random variable that is statistically independent

of Z(T̄ − 1) given X = �x (or μ (X) = k). Since we can freely vary Φ
¡
T̄ − 1, �x, z ¡T̄ − 1¢¢

in the limit set, conditional on X = �x, we can use standard proofs for identiÞcation in

a binary choice model. If Φ(T̄ − 1,X,Z ¡T̄ − 1¢) is in the Matzkin class, we can identify
Φ
¡
T̄ − 1, �x, z ¡T̄ − 1¢¢ over its support for X = �x and the distribution of Υ

¡
T̄ − 1, �x¢ for a

given X = �x.

In the limit set, and conditional on X = �x, Z(T̄ − 1) = z(T̄ − 1), from the data, we can

form

Pr
¡
M < m(�x), Y (T̄ ) < y

¡
T̄ , �x

¢ | T = T̄ , X = �x,Z
¡
T̄ − 1¢ = z ¡T̄ − 1¢¢

×Pr ¡T = T̄ | X = �x,Z
¡
T̄ − 1¢ = z ¡T̄ − 1¢¢ .

Varying y(T̄ , �x), m(�x) and −Φ ¡T̄ − 1, �x, z ¡T̄ − 1¢¢, and adjusting for μM(�x) and μ(�x) we
can identify the distribution of the unobservables

¡
UM , U

¡
T̄
¢
,Υ
¡
T̄ − 1, �x¢¢ at known points

of evaluation:

FUM ,U(T̄ ),Υ(T̄−1,�x)

⎛⎜⎝ m− μM (�x) , y − μ
¡
T̄ , �x

¢
,

−Φ ¡T̄ − 1, �x, z ¡T̄ − 1¢¢
¯̄̄̄
¯̄̄ X = �x, Z

¡
T̄ − 1¢ = z ¡T̄ − 1¢

⎞⎟⎠ .
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Notice that we require that both Y (T̄ ) and M be continuous random variables so that we

can trace the distribution conditional on X = �x by varying y(T̄ , �x) and m(�x).56

Up to this point in the proof we have not invoked a factor structure and it is not needed.

If we invoke a factor structure from the distribution of
¡
UM , U

¡
T̄
¢
,Υ
¡
T̄ − 1, �x¢¢ we can

identify the factor loadings on the θ in the cost functions. To show this, suppose that the

unobservables associated with measurements M1, a subvector of M , only depend on θ1 and

not the other factors generating the model. Since we have identiÞed the joint distribution

of
¡
UM , U

¡
T̄
¢
,Υ
¡
T̄ − 1, �x¢¢ conditional on X = �x, Z(T̄ − 1) = z(T̄ − 1), we can construct

the left hand side of

Cov
¡
U1,M ,Υ

¡
T̄ − 1, �x¢ | X = �x,Z(T̄ − 1) = z(T̄ − 1)¢ =

Cov

⎛⎜⎝U1,M ,
⎡⎢⎣ R ¡T̄ − 1, T̄ − 1, �x¢− Y ¡T̄ − 1, T̄ − 1, 0, �x¢

− 1

1 + r
E
¡
R
¡
T̄ , T̄ , �x

¢ | IT̄−1¢
⎤⎥⎦
¯̄̄̄
¯̄̄ X = �x,

Z(T̄ − 1) = z(T̄ − 1)

⎞⎟⎠
+α1,1,Mλ1,T̄−1σ

2
θ1
,

where on the right hand side of the equation λ1,T̄−1 is the coefficient on θ1 in the (T̄ − 1)st

cost function. The left hand side of this expression, the Þrst term on the right hand side,

α1,1,M and σ2θ1 are known from Theorem 4 after applying factor analysis to outcomes and

measurements. (This assumes that either the conditions in CHH or Navarro, 2004a, are

met.) We can use this covariance to identify λ1,T̄−1, since we know α1,1,M and σ2θ1 from a

factor analysis of the measurement system. Proceeding sequentially, taking covariances of

the choice index with equations that depend on additional elements of θ, we identify all of the

loadings λT̄−1 associated with the cost function under the conditions on the factors speciÞed

in CHH or Navarro (2004a). This requires additional measurements M that depend on the

factors in the cost function. In addition, this analysis assumes a triangular factor loading

56We only need some components of M to be continuous. See CHH or the analysis in Appendix D.
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matrix as previously discussed.57 Once knowledge of the λT̄−1 is secured, we can identify the

distribution of ξ
¡
T̄ − 1¢ by using deconvolution applied to the distribution of Υ ¡T̄ − 1, �x¢,

which is nonparametrically identiÞed. Υ
¡
T̄ − 1,X¢ can be represented as

Υ
¡
T̄ − 1, X¢ = ξ

¡
T̄ − 1¢+ θλT̄−1 +R ¡T̄ − 1, T̄ − 1,X¢ (5)

−Y ¡T̄ − 1, T̄ − 1, 0,X¢− 1

1 + r
E
¡
R
¡
T̄ , T̄ , X

¢ | IT̄−1¢ ,
whereX = �x, Z(T̄−1) = z(T̄−1) are contained in the agent�s information set at T̄−1, IT̄−1.
We identify the Y functions and their distribution for all ages for each t as a consequence of

Theorem 4. Thus we can construct the R functions and their distribution which only depend

on the Y functions and their distribution. We know the factor loadings and the distribution

of the factors (θ). Hence we know the distribution of R(T̄ − 1, T̄ − 1, �x) − Y (T̄ − 1, T̄ −
1, 0, �x) − 1

1+r
E
¡
R
¡
T̄ , T̄ ,X

¢ | IT̄−1¢. Therefore we know the distribution of the sum of the

terms on the right hand side after ξ
¡
T̄ − 1¢ in the expression Υ ¡T̄ − 1, X¢. By assumption,

ξ
¡
T̄ − 1¢ is independent of the remaining terms on the right hand side. Finally, we can vary

X = x to identify the Φ
¡
T̄ − 1, x, z ¡T̄ − 1¢¢ for all X = x up to the scale of Υ

¡
T̄ − 1, x¢.

We can construct all of the components of the distribution of Υ
¡
T̄ − 1, x¢ and the joint

distribution of any subcomponent. Hence we also know the scale of Υ
¡
T̄ − 1,X¢ for all

X = x. ¥

Observe that we do not need any measurements M to identify the joint distribution of

U
¡
T̄
¢
,Υ
¡
T̄ − 1, x̄¢ or the mean of the cost function Φ ¡T̄ − 1, �x, z ¡T̄ − 1¢¢ . The measure-

ments are only used to recover the distribution of the unobservables in the cost function

and the associated factor loadings. Thus we can identify the discrete choice model and the

associated outcome without using any measurements.

Theorem 5 establishes conditions under which we can identify all of the elements of the

cost function for the last transition. We can determine the scale if one element of cost is
57This proof can be modiÞed to accommodate other factor structure assumptions but we do not do so

here.
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known to the econometrician (e.g. tuition). This corresponds to a special case of the Matzkin

functions. This analysis is predicated on a particular information set. A component of the

information set used in the proof of Theorem 5 is that θ1 is known to the agent at T̄ −1. If it
is not, then λ1,T̄−1 = 0 and our proof simpliÞes. Alternative speciÞcations of the information

set produce different distributions of Υ
¡
T̄ − 1, X¢ and more generally Υ (X) .

The proof assumes a known interest rate r. This assumption simpliÞes the proof but is not

essential to it. To see how r is identiÞed, note that under assumption (ii) of Theorem 5, the

terminal values R
¡
T̄ − 1, T̄ − 1,X¢ and R ¡T̄ , T̄ , X¢ depend on X only through the means

of the Y (t, 1,X) equations. See equation (3) for the explicit representation and equation (4)

for the deÞnition of the R terms. Under our assumptions about the information known to the

agent, (including assumptions (I-1) and (I-2)), and because of the independence produced

from assumption (ii), E
¡
R
¡
T̄ , T̄ ,X

¢ | IT̄−1¢ also depends on X only through the mean

functions μ (a, t (a) , 1, X) in equation (3).58

If we adjoin to the assumptions invoked in Theorem 5, the assumption that

Supplementary Assumption (**) to Theorem 5: μ
¡
T̄ − 1, T̄ − 1, 1,X¢ and μ ¡T̄ , T̄ , 1,X¢

are continuous and differentiable in at least one argument of X,

we can use the index property of the choice model to compute

∂ Pr
¡
T = T̄ | X,Z¢

∂μ
¡
T̄ − 1, T̄ − 1, 1,X¢

∂ Pr
¡
T = T̄ | X,Z¢

∂μ
¡
T̄ , T̄ , 1,X

¢ = 1 + r (6)

because we can freely vary the mean functions generatingR
¡
T̄ − 1, T̄ − 1,X¢ andR ¡T̄ , T̄ ,X¢

under assumption (iii) of Theorem 4, and the derivatives exist because we assume that the

random variables generating the unobservables in (5) are absolutely continuous with respect

to Lebesgue measure. Clearly we can use other combinations of the mean functions gener-

ating R
¡
T̄ − 1, T̄ − 1, X¢ and R ¡T̄ , T̄ , X¢ to identify r, provided a version of assumption

58We know μ (a, t (a) , 1,X) as a result of Theorem 4.
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(**) holds for the selected mean functions. Observe that the choice of a scale function for

the Matzkin class is irrelevant since the scale cancels. Formula (6) for the Matzkin class is

a version of Powell, Stock, and Stoker (1989) or Horowitz (1998).

If we only specify the Matzkin class of functions up to scale, this theorem is not strong

enough to identify the cost functions for the preceding transitions even up to scale. In the

transitions before T̄ − 1, costs appear in the Þnal reward functions. Thus the choice index
for transition T̄ − 2 is

I
¡
T̄ − 2, T̄ − 2,IT̄−2

¢
= R

¡
T̄ − 2, T̄ − 2,X¢−K ¡T̄ − 2, T̄ − 2,IT̄−2¢

= R
¡
T̄ − 2, T̄ − 2,X¢− Y ¡T̄ − 2, T̄ − 2, 0,X¢

+C
¡
T̄ − 2, X, Z ¡T̄ − 2¢¢

− 1

1 + r
E
¡
V
¡
T̄ − 1, T̄ − 1, IT̄−1

¢ | IT̄−2¢
and

V
¡
T̄ − 1, T̄ − 1,IT̄−1

¢
= max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩R
¡
T̄ − 1, T̄ − 1,X¢ ,

⎛⎜⎜⎜⎜⎝
Y
¡
T̄ − 1, T̄ − 1, 0, X¢

−C ¡T̄ − 1,X,Z ¡T̄ − 1¢¢
+ 1
1+r
E
¡
R
¡
T̄ , T̄ ,X

¢ | IT̄¢
⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Knowledge of C
¡
T̄ − 1,X,Z ¡T̄ − 1¢¢ measured in the same scale as R ¡T̄ − 2, T̄ − 2,X¢ is

required to form V
¡
T̄ − 1, T̄ − 1,IT̄−1

¢
. The following theorem, which draws on Matzkin

(1994), gives two conditions under which the unknown scale on the cost function can be

determined, if it is not speciÞed by assuming that Φ
¡
T̄ − 1,X,Z ¡T̄ − 1¢¢ is in the Matzkin

class.

Theorem 6. Assume either that:

(i) It is possible to partition X =
³
�X, �X

´
so that the elements of �X do not enter

Φ
¡
T̄ − 1,X,Z ¡T̄ − 1¢¢. Furthermore, assume additive separability of the mean out-
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come function for Y (T̄ − 1, T̄ − 1, j,X) in terms of the two components:

μ
¡
T̄ − 1, T̄ − 1, j,X¢ = n∗ ³T̄ − 1, T̄ − 1, j, �X´+ n³T̄ − 1, T̄ − 1, j, �X´ , j = 0, 1.

Alternatively, assume that

(ii) It is possible to partition Z
¡
T̄ − 1¢ = ³ �Z ¡T̄ − 1¢ , �Z ¡T̄ − 1¢´ and that the cost func-

tion has an additively separable component with a known coefficient:

Φ
¡
T̄ − 1, X, Z ¡T̄ − 1¢¢ = φ³T̄ − 1,X, �Z ¡T̄ − 1¢´+ �Z

¡
T̄ − 1¢

so that �Z
¡
T̄ − 1¢ is measured in the same units as R ¡T̄ − 2, T̄ − 2,X¢. This would

be the case if, for example, �Z
¡
T̄ − 1¢ measured direct costs of schooling ( e.g. tuition

in our schooling example).

Then, if either (i) or (ii), or both hold, the scale of Υ
¡
T̄ − 1, X¢ in Theorem 5 is identiÞed.

Proof. Part (ii) is immediate, because we set the scale of one coefficient and can use its

identiÞed coefficient in the choice equation to identify the scale ofΥ
¡
T̄ − 1,X¢. (See Matzkin

(1994)). Part (i) is also straightforward because we can determine n∗
¡
T̄ − 1, T̄ − 1, 1, �x¢

from the limit sets of the outcome equations and it also enters the choice equation and

identiÞes the scale. ¥

We next consider identiÞcation of the cost function for transition T̄−2 under the assump-
tion that we can identify the scale at T̄ −1. The distribution of Υ ¡T̄ − 2,X,Z T̄−1¢ depends
on X and Z

¡
T̄ − 1¢ because all future returns and costs are in the value function. The

key insight in our theorem is to note that the dependence on Z
¡
T̄ − 1¢ is not general but

operates through the function Φ
¡
T̄ − 1, X, Z ¡T̄ − 1¢¢ which was identiÞed by the preceding

argument.

Theorem 7. Assume conditions (i)�(iv) of Theorem 4. Assume that Φ
¡
T̄ − 1,X,Z ¡T̄ − 1¢¢

is in the Matzkin class of functions. In particular, we assume that
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(*) Supp
¡
Φ
¡
T̄ − 2,X,Z ¡T̄ − 2¢¢¢ ⊇ Supp ¡−Υ ¡T̄ − 2,X,Z T̄−1¢¢ which follows from (iv)

of Theorem 4

and

(**) Supp
¡
Φ
¡
T̄ − 2,X,Z ¡T̄ − 2¢¢ ,Φ ¡T̄ − 1, X, Z ¡T̄ − 1¢¢¢ =

Supp
¡
Φ
¡
T̄ − 2,X,Z ¡T̄ − 2¢¢¢ × Supp(Φ(T̄ − 1,X,Z ¡T̄ − 1¢)) which follows from

condition (iii) of Theorem 4 applied element by element.

In addition to assumptions (i)-(iv) of Theorem 4, assume that

(***) The conditions of Theorem 6 apply so that we can identify the scale of the cost function

in the last transition, T̄ − 1.

Then, Φ
¡
T̄ − 2, X, Z ¡T̄ − 2¢¢ , the marginal distribution of Υ ¡T̄ − 2, X, Z T̄−1¢, the factor

loadings λT̄−2, and the distribution of ξ(T̄ − 2) are identiÞed for all X,Z T̄−2. Alternatively
if we specify the Matzkin class of functions up to scale we identify Φ

¡
T̄ − 2,X,Z ¡T̄ − 2¢¢

and the distribution of Υ
¡
T̄ − 2, X, Z T̄−1¢ up to scale.

Proof. From Theorem 4, a limit set exists such that Pr(T > T̄ − 3 | X = x,Z = z) = 1.

Consider, in this limit set,

Pr
¡
T = T̄ − 2 | X = x, Z(T̄ − 1) = z(T̄ − 1), Z(T̄ − 2) = z(T̄ − 2)¢

= Pr
¡
Φ(T̄ − 2, x, z(T̄ − 2)) +Υ ¡T̄ − 2, x, z(T̄ − 1)¢ ≥ 0¢ .

Observe that Υ
¡
T̄ − 2, x, z(T̄ − 1)¢ depends on z(T̄ −1) only through Φ(T̄ −1, x, z(T̄ −1)).

As a consequence, we can express the preceding probability as

Pr(Φ(T̄ − 2, x, z(T̄ − 2)) +Υ∗ ¡T̄ − 1,X,Φ(T̄ − 1, x, z(T̄ − 1))¢) > 0
whereΥ∗

¡
T̄ − 1, x,Φ(T̄ − 1, x, z(T̄ − 1))¢ shows the explicit dependence ofΥ ¡T̄ − 2, x, z(T̄ − 1)¢

on the mean cost function Φ(T̄ − 1, x, z(T̄ − 1)). From assumption (iii) of Theorem 4, we
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can condition on Φ(T̄ − 1, x, z(T̄ − 1)) = ϕ and still be able to vary Φ(T̄ − 2, x, z(T̄ − 2))
freely. Therefore we can trace out the distribution of Υ

¡
T̄ − 2, x, z(T̄ − 1)¢ analogous to

the way we traced out the distribution of Υ
¡
T̄ − 1, x¢ in the proof of Theorem 5, and we

can construct the joint distribution of UM , U(T̄ − 2), Υ
¡
T̄ − 2, x, z(T̄ − 1)¢. We can mimic

the proof of Theorem 5 and identify λT̄−2 and the distribution of ξ(T̄ − 2). We can do this
for all Z(T̄ − 2) = z(T̄ − 2), Z(T̄ − 1) = z(T̄ − 1) and X = x. As in the proof of Theorem

5, instead of conditioning on X we can also condition on μ (X) = k and we can still vary

for Φ
¡
T̄ − 2, x, Z ¡T̄ − 1¢¢ without having to Þx the entire X vector. In this way we do not

require some elements of Z to be different from X.If we specify the Matzkin class only up to

scale the proof only goes through for Φ
¡
T̄ − 2, x, Z ¡T̄ − 1¢¢ up to the unknown scale and

the distribution of the unobservables up to scale. ¥

The easiest way to satisfy the conditions of Theorem 7 is to assume access to Z(t),

t = 1, . . . , T̄−1, that are mutually statistically independent of each other. This is far stronger
than what is required to secure identiÞcation. We can allow the Z(t) to be dependent but

we need to rule out any degeneracy in the joint distribution of Z(t), t = 1, . . . , T̄ . Z(t)

variables with these properties would arise if there are stopping-time-speciÞc cost variables

(e.g. college tuition for college; school fees for secondary levels, etc.). However, Theorem 7

would still apply if the same Z variables appear in each stopping-time-speciÞc cost function,

provided that we satisfy the generalization of condition (iii) of Theorem 4. Theorem 7 is a

generalization of Corollary 1 of Section 2 that applies to an explicitly formulated, forward-

looking model.59 When the same Z appears in each cost function, it is required that the

curvature of the mean cost functions differ across stopping times in order to satisfy the

condition. It is necessary that Z be a vector. If Z is scalar, condition (iii) of Theorem 4

fails. We need to modify Theorem 6 to identify the absolute scale of the cost function at

stage T − 2.
59Corollary 1 applies only to the index functions as they enter the limits of the integrals generating the

expressions. Theorem 7 generalizes this result to include dependence of the distributions of the generated
random variables on the index functions of the model.
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Proceeding sequentially across stopping times with suitably modiÞed conditions (i)�(iv)

in Theorem 4, enables us to identify all of the cost functions at all stages of the process

provided that we modify Theorem 6 appropriately. This allows us, for each stopping time,

to identify private valuations (costs) and separate them from objective outcomes. Thus, in

the context of models of health economics, we can separate outcomes of a treatment from

the psychic costs of taking it at a particular time.60

In this model, analysts can distinguish period by period ex ante expected returns from

ex post realizations by applying the analysis of Cunha, Heckman, and Navarro (2005e) and

Navarro (2004b). Because we can link choices to outcomes through the factor structure

assumption, we can also distinguish ex ante preference or cost parameters from their ex post

realizations. Ex ante, agents may not know θ. Ex post, they do. All of the information

about future rewards and returns is embodied in the information set Ia. Unless the time of
treatment is known with perfect certainty, it cannot cause outcomes prior to its realization.

Thus in an environment of uncertainty we rule out the possibility that the future can cause

the past�a possibility that is not ruled out in the reduced form models of Section 2, except

by imposing it directly onto the parameters of the model.

Our analysis is predicated on speciÞcation of the agent�s information sets which should

be carefully distinguished from the econometrician�s. Cunha, Heckman, and Navarro (2005e)

and Navarro (2004b) present methods for determining which components of future outcomes

are in the information sets of agents at each age, Ia. If they are unknown to the agent at age a,
under rational expectations, agents form their value functions used to make schooling choices

by integrating out the unknown components using the distributions in their information

sets. Components that are known to the agent are treated as constants by the individual

in forming the value function but as unknown variables by the econometrician and their

distribution is estimated. The true information set of the agent is determined from the set of

possible speciÞcations of the information sets of agents by picking the speciÞcation that best

60In the analysis of CHH and Cunha, Heckman, and Navarro (2005a,b,c,e), psychic costs of schooling are
distinguished from monetary returns.

54



Þts the data on choices and outcomes penalizing for parameter estimation. Heuristically,

if neither the agent nor the econometrician knows a variable, the econometrician identiÞes

the determinants of the distribution of the unknown variables that is used by the agent to

form expectations. If the agent knows some variables, but the econometrician does not, the

econometrician seeks to identify the distribution of the variables, but the agent treats the

variables as known constants.

We can identify all of the treatment parameters including pairwise ATE, the marginal

treatment effectMTE for each transition (obtained by Þnding mean outcomes for individuals

indifferent between transitions), all of the treatment on the treated and treatment on the

untreated parameters and the population distribution of treatment effects by applying the

analysis of CHH and Cunha, Heckman, and Navarro (2005e) to this model. See also the

discussion in appendix B. Our analysis can easily be generalized to cover the case where

there are vectors of contemporaneous outcome measures for different stopping times and

ages, building on the analysis of Appendix D modiÞed to suit this more precisely formulated

choice model. We next discuss how to implement the limit set strategy.

3.2 Implementing the limit set strategy and checking for identiÞ-

cation

Under our assumptions, the limit sets used in the theorems in this paper are obtained by

Þnding subsets of the data that make the probabilities of each stopping time T arbitrarily

close to 1. In any sample, we can check whether such subsets exist or are very thin, since we

can nonparametrically compute Pr (T = t | Z = z,X = x) . Figure 2, taken from the research

of Heckman, Stixrud, and Urzua (2004), shows the result of such an analysis.61 It plots the

sample distribution of probabilities of Þnal schooling attainment (at age 30) for males over

all subsets of (X,Z) in the data. In the sample, one cannot Þnd any subset with mass in the

probabilities near 1 for any Þnal schooling choice. Thus in their sample, the required limit

61See also analysis of Heckman and Navarro (2006).
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sets.

One can argue that this problem will vanish in large samples. That is an assumption

that cannot be checked with data. Alternatively, one can argue that we obtain identiÞcation

of the distributions over a subset and develop bounds on the model (see Manski, 2003).

Another alternative is to assume that the partially identiÞed distributions are real analytic

and continue them over the missing support using analytic continuation.62

Our limit set arguments identify outcome distributions for values of choice probabilities

that become big or small. They have a close resemblance to the assumption used in the recent

nonparametric structural literature (see Matzkin, 1994, 2003) that the econometrician knows

the function sought to be identiÞed at some point, or points, of evaluation. In our context,

the function is an outcome distribution. That literature is unclear about how to select the

points of evaluation whereas our analysis provides guidance in terms of large or small values

of the probability of selection into states. We next turn to a comparison of the reduced form

and structural models analyzed in this paper.

3.3 Comparing Reduced Form and Structural Models

The reduced form model analyzed in Section 2 is typical of many reduced form statistical

approaches within which it is difficult to make important conceptual distinctions. Because

the choice equation is not modeled explicitly, it is hard to use such frameworks to analyze

the decision makers� expectations, costs of treatment, the arrival of information, the content

of agent information sets and the consequences of the arrival of information for decisions

regarding time to treatment as well as outcomes. In particular, it is difficult to distin-

guish ex post from ex ante valuations of outcomes. Cunha, Heckman, and Navarro (2005e),

Navarro (2004b) and Heckman and Navarro (2006) present analyses that distinguish ex ante

anticipations from ex post realizations.63 In reduced form models, it is difficult to make

the distinction between private evaluations and preferences (e.g. �costs� as deÞned in this
62Heckman and Singer (1984) discuss this strategy.
63See the summary of this literature in Heckman, Lochner, and Todd (2006).
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section) from objective outcomes (the Y variables).

Statistical and reduced form econometric approaches to analyzing dynamic counterfac-

tuals appeal to uncertainty to motivate the stochastic structure of models. They do not

explicitly characterize how agents respond to uncertainty or make treatment choices based

on the arrival of new information (see Robins, 1989, 1997, Lok, 2001, Gill and Robins, 2001,

Abbring and Van Den Berg, 2003, and Van der Laan and Robins, 2003). In addition, as

noted in section 2, in the reduced form models it is in principle possible to identify treat-

ment effects where the future treatment time causes the past. Abbring and Van Den Berg

(2003), Gill and Robins (2001) and Lok (2001) rule this out by imposing restrictions on the

statistical treatment effect model.64 The structural approach presented in this paper allows

for a clear treatment of the arrival of information, agent expectations, and the effects of new

information on choice and its consequences. In an environment of imperfect certainty about

the future, it rules out the future causing the past once the effects of agent information sets

are controlled for.

The structural model developed in this paper allows agents to learn about new factors

(components of θ) as they proceed sequentially through their life cycles. It also allows agents

to learn about other components of the model (see Cunha, Heckman, and Navarro, 2005e).

Agent anticipations of when they will stop and the consequences of alternative stopping times

can be revised sequentially. Their anticipated payoffs and stopping times are sequentially

revised as new information becomes available. The mechanism by which agents revise their

anticipations is modeled and identiÞed. See Cunha, Heckman, and Navarro (2005a,b,c,e)

for further discussion of these issues and Heckman, Lochner, and Todd (2006) for a partial

survey of recent developments in the literature.

The clearest interpretation of the models in the statistical literature on dynamic treat-

ment effects is as ex post selection-corrected analyses of distributions of events that have

occurred. In a model of perfect certainty, where ex post and ex ante choices and outcomes

64This is the �nonanticipating� assumption of Abbring and Van Den Berg (2003).
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are identical, the reduced form approach can be interpreted as a good approximation to

a clearly speciÞed choice model. In a more general analysis with information arrival and

agent updating of information sets, the nature of the reduced form approximation is less

clear cut. Thus it is unclear what agent decision-making processes and information arrival

assumptions justify the conditional sequential randomization assumptions widely used in the

dynamic treatment effect literature (see, e.g. Robins, 1989, 1997; Gill and Robins, 2001; Lok,

2001; Van der Laan and Robins, 2003; Lechner and Miquel, 2002) which are also used in

branches of the dynamic discrete choice literature (see both Rust, 1987, and the survey in

Rust, 1994). Reduced form approaches are not clear about the source of the unobservables

and their relationship with conditioning variables. In reduced form analyses, the speciÞcation

of the stochastic structure of the unobservables and the relationship of the unobservables to

the observables is ad hoc. In the structural analysis, this speciÞcation emerges as part of the

analysis, as our discussion of the stochastic properties of the unobservables presented in the

preceding section makes clear.

The incompleteness intrinsic to reduced form models is illustrated in the analysis of

Abbring and Van Den Berg (2003). They present an innovative and technically rigorous

reduced form continuous time model of time to treatment where the treatment outcome is

itself a continuous time duration. As Corollary 2 in Section 2.4 demonstrates, we can produce

a discrete time counterpart to their model where the unobservables generating outcomes and

the time to treatment equation and the relationship between the two sets of unobservables

can be clearly modeled.

In their model, and in the reduced form models of Section 2, it is difficult to specify or

determine what is in the agent�s information set, how information is revised and the conse-

quences of information revision for choices. They obtain their intuitively plausible �nonantic-

ipation condition��that the time of treatment does not affect pretreatment outcomes�by

assuming that, conditional on time-invariant variables (both observed and unobserved by the

econometrician), the pretreatment outcomes associated with two different treatment times
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are the same up to and prior to the realization of the smaller of the two treatment times.

Their condition rules out the possibility that the future can cause the past but at the price of

assuming no learning about variables (observable and unobservable) that affect expectations

of future outcomes and the choice of time to treatment after the process begins.

In our model, their assumption translates into the requirement that, conditional on initial

observables and unobservables, the distribution of earnings while in high school is the same

for those who become college graduates as it is for high school graduates who stop at that

level of schooling. This assumption rules out any learning about ability, tuition costs, and

the like, that can occur after the start of the process. We specify and identify different

Y (t, 0,X) processes for each information set. Agents with different expectations and agents

with information sets that are revised over the courses of their life cycles may have different

pre-treatment earnings and other outcome distributions. Using a well-posed economic model,

we do not need to rule out learning in the structural model of Section 3 and we can still rule

out the possibility that the future can cause the past. At each age a = t (a) in the schooling

process, agents update their information sets Ia = It(a) and form new expectations about

future outcomes. The mechanism for doing so is speciÞed in the Þrst part of this section.

The reduced form treatment approach is incomplete in the sense of not providing a formal

updating mechanism. Such updating is implicit in the conditioning sets that are sequentially

updated (see, e.g. Gill and Robins, 2001; Lok, 2001).

Our analysis of both structural and reduced form models relies heavily on limit set argu-

ments. They enable us to solve the selection problem in limit sets. The dynamic matching

models of Gill and Robins (2001) and Lok (2001) solve the selection problem by invoking

recursive conditional independence assumptions. In the context of our models, they assume

that the econometrician knows the θ or can eliminate the θ by conditioning on a suitable

set of variables. Our analysis entertains the possibility that analysts know substantially less

than the agents they study. It allows for some of the variables that would make matching

valid to be unobservable. Versions of recursive conditional independence assumptions are
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also used in the dynamic discrete choice literature (see the survey in Rust, 1994). Our factor

models allow us to construct the joint distribution of outcomes across stopping times. This

feature is missing from the statistical treatment effect literature.

Both the structural and reduced form models share the property that it is possible to

generate counterfactual treatment histories that are ruled out by a stopping time model.

The index structure used to generate the model allows limits to be switched in the integrals

based on latent variables � what we called the B −D problem in Section 2.4. This feature

is a consequence of the incomplete speciÞcation of both classes of models. We have not

derived either reduced form or structural stopping models from a more basic model with

the possibility of return from dropout states but which nonetheless exhibit the stopping

time property. Our identiÞcation strategy in this paper relies on the nonrecurrent nature of

treatment. We leave the task of formulating and identifying a general recurrent state version

of the model for another occasion.65

4 Relationship of Our Work to Previous Work

Rust (1994) presents a widely cited nonparametric nonidentiÞcation theorem for dynamic

discrete choice models. It is important to note the restrictive nature of his results. He

analyzes a recurrent state inÞnite horizon model in a stationary environment. He does not

exploit choice-speciÞc outcome information nor does he use any exclusion restrictions or cross

outcome-choice restrictions. He places no restrictions on period-speciÞc utility functions such

as concavity or linearity.

Magnac and Thesmar (2002) present an extended comment on Rust�s analysis including

positive results for identiÞcation when the econometrician knows the distributions of unob-

servables, assumes that unobservables enter period-speciÞc utility functions in an additively

separable way and is willing to specify functional forms of utility functions or other ingredi-
65Our identiÞcation strategy of using limit sets can be applied to the nonrecurrent model provided that

we conÞned subsets of (X,Z) such that in those subsets the probability of recurrence is zero. See Heckman,
Urzua, and Yates (2005).
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ents of the model, as do Pakes (1986), Keane andWolpin (1997), Eckstein andWolpin (1999),

and Hotz and Miller (1988, 1993). Magnac and Thesmar (2002) also consider the case where

one state (choice) is absorbing (as do Hotz and Miller (1993)) and where the value functions

are known at the terminal age (Ā) (as do Keane and Wolpin (1997) and Belzil and Hansen

(2002)). In our paper, each treatment time is an absorbing state. In a separate analysis,

Magnac and Thesmar consider the case where unobservables from the point of view of the

econometrician are correlated over time (or age a) and choices (t) under the assumption that

the distribution of the unobservables is known. They also consider the case where exclusion

restrictions are available. Throughout their analysis, they maintain that the distribution of

the unobservables is known both by the agent and the econometrician.

Our analysis provides semiparametric identiÞcation of a Þnite-horizon Þnite-state model

with an absorbing state with semiparametric speciÞcations of reward and cost functions.66

Given that rewards are in value units, our utility function cannot be subjected to arbitrary

affine transformations so that one source of nonidentiÞability in Rust�s analysis is eliminated.

We can identify the error distributions nonparametrically given our factor structure. We do

not have to assume either the functional form of the unobservables or knowledge of the entire

distribution of unobservables.

We present a fully speciÞed structural model of choices and outcomes motivated by, but

not identical to, the analyses of Keane and Wolpin (1994, 1997) and Eckstein and Wolpin

(1999). In their setups, outcome and cost functions are parametrically speciÞed. Their states

are recurrent while ours are absorbing. In our model, once an agent drops out of school,

the agent does not return. In their model,an agent who drops out can return. They do not

establish identiÞcation of their model whereas we establish semiparametric identiÞcation of

our model. We analyze models with more general times series processes for unobservables.

In our framework and theirs, agents learn about unobservables. In their framework, such

learning is about temporally independent shocks that do not affect agent expectations about

66Although our main theorems are for additively separable reward and cost functions, additive separability
can be relaxed using the analysis of Matzkin (2003).
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returns relevant to possible future choices. The information just affects the opportunity

costs of current choices. In our framework, learning affects agent expectations about future

returns as well as opportunity costs.

Our model extends previous work by CHH and Cunha, Heckman, and Navarro (2005a,b,c,e)

by considering explicit multiperiod dynamic models with information updating. They con-

sider one-shot decision models with information updating and associated outcomes.

Our analysis is related to that of Taber (2000). Like Cameron and Heckman (1998),

both our study and Taber�s use identiÞcation-in-the-limit arguments.67 Taber considers

identiÞcation of a two period model with a general utility function whereas in Section 3 we

consider identiÞcation of a speciÞc form of the utility function (an earnings function) for a

multiperiod maximization problem. As in this paper, Taber allows for the sequential arrival

of information. His analysis is based on conventional exclusion restrictions, but we do not, as

demonstrated in appendix Theorem D.1, text Corollary 1 and in extensions of these results

in Section 3. We use outcome data in conjunction with the discrete dynamic choice data to

exploit cross equation restrictions, whereas he does not.

Our treatment of unobservables is more general than any discussion that appears in the

current dynamic discrete choice and dynamic treatment effect literature. We do not invoke

the strong sequential conditional independence assumptions used in the dynamic treatment

effect literature in statistics (Robins, 1989, 1997; Gill and Robins, 2001; Lok, 2001; Lechner

and Miquel, 2002), nor the closely related conditional temporal independence of unobserved

state variables given observed state variables invoked by Rust (1987), Hotz and Miller (1988,

1993), Manski (1993) and Magnac and Thesmar (2002) (in the Þrst part of their paper)

or the independence assumptions invoked by Wolpin (1984).68 We allow for more general

67Pakes and Simpson (1989) sketch a proof of identiÞcation of a model of the option values of patents that
is based on limit sets for an option model.
68Manski (1993) and Hotz and Miller (1993) use a synthetic cohort effect approach that assumes that young

agents will follow the transitions of contemporaneous older agents in making their lifecycle decisions. The
synthetic cohort approach has been widely used in labor economics at least since Mincer (1974). Manski
and Hotz and Miller exclude any temporally dependent unobservables from their models. See MaCurdy
(1981) and Mincer (1974) for application of the synthetic cohort approach. For empirical evidence against
the assumption that the earnings of older workers are a reliable guide to the earnings of younger workers
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time series dependence in the unobservables than is entertained by Pakes (1986), Keane and

Wolpin (1997) or Eckstein and Wolpin (1999).69

Like Miller (1984) and Pakes (1986), we explicitly model, identify and estimate agent

learning that affects expected future returns.70 Pakes and Miller assume functional forms for

the distributions of the error process and for the serial correlation pattern about information

updating and time series dependence. Our analysis of the unobservables is nonparametric

and we estimate, rather than impose, the stochastic structure of the information updating

process.

Virtually all papers in the literature, including our own, invoke rational expectations.

An exception is the analysis of Manski (1993) who replaces rational expectations with a

synthetic cohort assumption that choices and outcomes of one group can be observed (and

acted on) by a younger group. This assumption is more plausible in stationary environments

and excludes any temporal dependence in unobservables.71 In recent work, Manski (2004)

advocates use of elicited expectations as an alternative to the synthetic cohort approach.

While we use rational expectations, we estimate, rather than impose the structure of agent

information sets. Miller (1984), Pakes (1986), Keane and Wolpin (1997), and Eckstein and

Wolpin (1999) assume that they know the law governing the evolution of agent information

sets up to unknown parameters.72 Following the procedure presented in Cunha, Heckman,

and Navarro (2005a,b,c,e) and Navarro (2004b) we can test for what factors (θ) appear in

agent information sets at different stages of the life cycle and we identify the distributions

of the unobservables nonparametrically.

Our analysis of dynamic treatment effects is comparable, in some aspects, to the re-

in models of earnings and schooling choices for recent cohorts of workers, see Heckman, Lochner, and Todd
(2006).
69Rust (1994) provides a clear statement of the stochastic assumptions underlying the dynamic discrete

choice literature up to the date of his survey.
70As previously noted, the previous literature assumes learning only about current costs.
71See Heckman, Lochner, and Todd (2006) for evidence against stationarity assumptions in the analysis

of schooling choices for recent cohorts.
72They specify a priori particular processes of information arrival as well as which components of the

unobservables agents know and act on, and which components they do not.
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cent continuous time duration analysis of Abbring and Van Den Berg (2003) discussed in

Section 3.3. They build a continuous time model of counterfactuals for outcomes that are

durations. They model treatment assignment time using a continuous time duration model.

Our analysis is in discrete time and builds on previous work by Heckman (1981a,c) on

heterogeneity and state dependence that identiÞes the causal effect of employment (or un-

employment) on future employment (or unemployment).73 We model time to treatment and

associated vectors of outcome equations that may be discrete, continuous or mixed discrete-

continuous. In a discrete time setting, we are able to generate a variety of distributions

of counterfactuals and economically motivated parameters. We allow for heterogeneity in

responses to treatment that has a general time series structure.

As noted in Section 3.3, Abbring and Van Den Berg (2003) do not identify explicit agent

information sets as we do in this paper and in Cunha, Heckman, and Navarro (2005e) and

they do not model learning about future rewards. Their outcomes are restricted to be con-

tinuous time durations. Our discrete time framework avoids many of the technical measure

theoretic problems that they and Gill and Robins (2001) encounter in continuous time by

using discrete time analysis. We can attach a vector of treatment outcomes that includes

continuous outcomes, discrete outcomes and durations expressed as binary strings.74 At a

practical level, we can produce very Þne-grained descriptions of continuous time phenomena

by using models with many Þnite periods. Clearly a synthesis of the Abbring � Van Den Berg

approach with our approach would be highly desirable. That would entail taking continuous

time limits of the discrete time models developed in this paper. It is a task we leave for

another occasion.

Flinn and Heckman (1982) utilize information on stopping times and associated wages

to use cross equation restrictions to partially identify an equilibrium job search model for

a stationary economic environment where agents have an inÞnite horizon. They establish

73Heckman and Borjas (1980) investigate these issues in a continuous time duration model. See also
Heckman and MaCurdy (1980).
74Abbring (2000) considers nonparametric identiÞcation of semi-Markov event history models that extends

his work with Van Den Berg.
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that the model is nonparametrically nonidentiÞed. Their analysis shows that use of outcome

data in conjunction with data on stopping times is not sufficient to secure nonparametric

identiÞcation. Allowing for nonstationarity arising from Þnite horizons can break their non-

identiÞcation result (see Wolpin, 1987). Our analysis exploits the Þnite-horizon backward-

induction structure of our model in conjunction with outcome data to secure identiÞcation

and does not rely on arbitrary period by period exclusion restrictions. We substantially

depart from the assumptions maintained in Rust�s nonidentiÞcation theorem (1994). We

achieve identiÞcation by using more information and exploiting the structure of our Þnite

horizon nonrecurrent model. Nonstationarity of regressors greatly facilitates identiÞcation

by producing both exclusion and curvature restrictions which can substitute for exclusion

restrictions. We leave exploration of identiÞcation of an inÞnite horizon version of our model

with recurrent states in a stationary environment for another occasion.

5 Conclusion

This paper develops two econometric models of time to treatment (or dropout) and associ-

ated systems of outcomes generated at different treatment times. A third benchmark model

for a conventional static discrete choice framework with counterfactuals is developed in Ap-

pendix B. Our semiparametric analysis of a dynamic discrete choice model with associated

outcomes allows for general time series processes for the unobservables and agent learning.

We do not make parametric assumptions about model unobservables. The outcomes we an-

alyze may be discrete, continuous or mixed discrete-continuous random variables, although

in this paper we focus on the continuous outcome case in analyzing structural models. We

establish conditions for semiparametric identiÞcation of these models, and we develop the

counterfactuals that can be produced by each model. Our identiÞcation analysis of the

time to treatment is of interest in its own right and constitutes an independent contribu-

tion to the semiparametric analysis of dynamic discrete choice models. Our explicit choice
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theoretic model is suitable for the analysis of outcomes associated with different times to

treatment in conjunction with choice data on times to treatment. The cross-equation restric-

tions generated by choice theory and the nonstationarity induced by agent Þnite horizons

help to identify agent preferences (costs) and agent information sets. Access to measurement

equations is helpful in identifying the unobservables associated with cost functions, and in

constructing distributions of outcomes across stopping times, measurements are not needed

for identiÞcation of choice equations or of state-speciÞc outcome equations. We identify ex

ante and ex post objective and subjective evaluations of outcomes and allow for updating of

expected rewards and stopping times as information accumulates over the life cycle.

The reduced form models we analyze cannot identify treatment effects motivated by

choice theory such as the marginal treatment effect (MTE). They also generate certain

counterfactuals that are difficult to interpret and can violate basic principles of causality.

The benchmark multinomial discrete choice model with associated outcomes developed in

Appendix B rules out option values but that can produce all of the conventional ex post

treatment effects.

Heckman and Navarro (2006) present estimates of option values and compare the pre-

dictive performance of static and structural models. Cunha, Heckman, and Navarro (2005d)

consider identiÞcation of a generalized ordered discrete choice model with stochastic thresh-

olds that rules out many of the perversities associated with the unrestricted reduced form

time to treatment model but at the cost of eliminating option values. Our paper demon-

strates the value of articulated economic choice models in elucidating the structure of statis-

tical treatment effect models and in identifying parameters of costs, preferences and returns.

66



Appendices

A The Matzkin Conditions

Consider a binary choice model,D = 1(ϕ(Z) > V ), where Z is observed and V is unobserved.

Let ϕ∗ denote the true ϕ and let F ∗V denote the the true cdf of V . Let Z ∈ Z. Let Γ denote
the set of monotone increasing functions from R into [0, 1]. Assume

(i) ϕ∗ : Z → R, where Z ⊂ RK and ϕ∗ ∈ Φ, where Φ is a set of functions mapping Z into
R that are continuous and strictly increasing in their Kth coordinate.

(ii) Z ⊥⊥ V

(iii) The conditional distribution of the Kth coordinate of Z has a Lebesgue density that is

everywhere positive conditional on the other coordinates of Z.

(iv) F ∗V is strictly increasing.

(v) The support of the marginal distribution of Z is included in Z.

Then (ϕ∗, F ∗V ) is identiÞed within Φ × Γ if and only if Φ is a set of functions such that no
two functions in Φ are strictly increasing transformations of each other (Matzkin, 1994).

She also shows that the following alternative representations of functional forms satisfy

the conditions for exact identiÞcation for ϕ(Z).

1. ϕ(Z) = Zγ, kγk = 1 or γ1 = 1.

2. ϕ(Z) is homogeneous of degree one attains a given value α, at Z = z∗ (e.g. cost

functions).

3. Least concave functions that attain common values at two points in their domain.

4. Additively separable functions:
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(a) Functions additively separable into a continuous andmonotone increasing function

and a continuous monotone increasing, concave and homogeneous of degree one

function.

(b) Functions additively separable into the value of one variable and a continuous,

monotone increasing function of the remaining variables

(c) Additively separable functions, e.g. ϕ(Z) = Z1 + τ(Z2, . . . , ZK)

B IdentiÞcation of Counterfactual Outcomes for aMultino-

mial Discrete Choice Model with State-Contingent

Outcomes

Let outcomes in state s be Y (s,X) = μY (s,X) + U (s), s = 1, . . . , S̄, where there are S̄

discrete states. Let V (s, Z) = μV (s, Z)+η(s). The U (s) and η(s), s = 1, . . . , S̄ are assumed

to be continuous and measurably separated as a collection of random variables. Thus the

support of one random variable does not restrict the supports of the other random variables.

State s is selected if

s = argmax
j

{V (j, Z)}S̄j=1

and Y (s,X) is observed. If s is observed, D (s) = 1. Otherwise D (s) = 0.
S̄P
s=1

D (s) = 1.

Matzkin (1993) considers identiÞcation of polychotomous discrete choice models under the

conditions of the Theorem B.1 below. We extend her analysis by adjoining counterfactual

outcomes associated with each choice. We can identify μY (s,X) , s = 1, . . . , S̄ over the

support of X; μV (s, Z) , up to scale over the support of Z and the joint distributions of¡
U (s) , η(s)− η(1), . . . , η(s)− η(s− 1), η(s)− η(s+ 1), . . . , η(s)− η(S̄)¢ with the contrasts
η(s)− η(I) up to a scale that we present below in our discussion of Theorem B.1.

Theorem B.1. Assume
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(i)
¡
U (1) , . . . , U

¡
S̄
¢
, η(1), . . . , η(S̄)

¢
are continuous random variables (absolutely contin-

uous with respect to Lebesgue measure).

(ii) They are measurably separated random variables so that Supp
¡
U (s) , η(1), . . . , η(S̄)

¢
=

Supp (U (s))× Supp (η(1))× · · · × Supp ¡η(S̄)¢
(iii) Supp

¡
μY (s,X) , μV (s,X)− μV (1,X) , . . . , μV (s,X)− μV

¡
S̄,X

¢¢
=

Supp (μY (s,X))×
S̄Q
s0=1
s0 6=s

Supp (μV (s,X)− μV (s0,X)) , s = 1, . . . , S̄

(iv) Supp
¡
μY (s,X) , μV (s,X)− μV (1,X) , . . . , μV (s,X)− μV

¡
S̄,X

¢¢
⊇ Supp ¡U (s) , η(s)− η(1), . . . , η(s)− η(S̄)¢ , s = 1, . . . , S̄

(v)
¡
U (s) , η(s)− η(1), . . . , η(s)− η(S̄)¢ ⊥⊥ (X,Z) s = 1, . . . , S̄

Then μY (s,X) , s = 1, . . . , S̄, is identiÞed;
¡
μV (s,X)− μV (1,X) , . . . , μV (s,X)− μV

¡
S̄,X

¢¢
,

are identiÞed up to a common scale for all s = 1, . . . , S̄, and the distribution of (U (s) , η(s)−
η(1), . . . , η(s)− η(S̄)) is identiÞed, the last S̄ − 1 components up to a common scale.

Proof. This theorem follows from an application of Theorem 3 in CHH. Because of (iii) we

can Þnd limit sets Z such that

lim
Z→Z

Pr (D (s) = 1 | Z) = 1

and we can identify the μY (s,X) , s = 1, . . . , S̄ in those limit sets. We can then vary μY (s,X)

and trace out the marginal distribution of the U (s) , s = 1, . . . , S̄. By similar reasoning, we

identify the (μV (s,X)−μV (1, X) , . . . , μV (s,X)−μV
¡
S̄,X

¢
) up to scale. We can, by virtue

of (iv), trace out the joint distribution of
¡
U (s) , η(s)− η(1), . . . , η(s)− η(S̄)¢, s = 1, . . . , S̄

with the last S̄ coordinates identiÞed up to scale on the unobservables. ¥

Invoking the Matzkin conditions we can set the scale of the deterministic functions. If

we invoke her functions up to an unknown scale, we only identify the functions up to scale.

We identify the μY (s,X) and the scaled version of
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(μV (s,X) − μV (1,X) , . . . , μV (s,X) − μV
¡
S̄,X

¢
) over the supports of X and Z respec-

tively. Exclusion restrictions are the traditional way to satisfy conditions (iii) and (iv) but

these are not required as the argument of Corollary 1 of Theorem 1 proved in Appendix C

demonstrates. With minor modiÞcation, the proof structure of this corollary can be adapted

to this setting. Matzkin (1993) provides conditions for identiÞcation of the V (j, Z) in the

random utility case with conventional structure.

From this model, we can identify the marginal treatment effect (CHH, p. 368, equa-

tion (71)) and all pairwise average treatment effects by forming suitable limit sets. We

can also identify all pairwise mean treatment on the treated and mean treatment on the

untreated effects.

In the general case, we can identify the densities of U (s) , η(s) − η(1), . . . , η(s) − η(S̄),
s = 1, . . . , S̄,where U (s) may be a vector and the contrasts are identiÞed up to a scale which

we now deÞne. Set V ar (η(s)) = 1 for all s = 1, . . . , S̄ − 1. Set μV
¡
S̄, Z

¢ ≡ 0 and η(S̄) ≡
0.75 From the choice equation for S̄

¡
Pr
¡
D
¡
S̄
¢
= 1 | Z = z¢¢, we can identify the pairwise

correlations ρi,j = Correl (η(i), η(j)) , i, j = 1, . . . , S̄ − 1. We assume that −1 ≤ ρi,j < 1. If
ρi,j = 1 for some i, j, the choice of a normalization is not innocuous. Under our assumptions,

we can identify V ar (η(s)− η(I)) = 2 ¡1− ρs,7¢. DeÞne τ s,7 = [V ar(η(s) − η(I))]1/2 where
positive square roots are used. This is used to set the scale for contrast s, I.

Consider constructing the distribution of Y (I,X) givenD (s) = 1, X, Z. If I 6= s, this is a
counterfactual distribution. From this distribution we can construct, among many possible

counterfactual parameters, E (Y (s,X)− Y (I,X) | D (s) = 1, X = x,Z = z) , a treatment

on the treated parameter. We can also construct

E

⎛⎜⎜⎝Y (s,X)− Y (I,X)
¯̄̄̄
¯̄̄̄ V (s, Z) = V (I, Z),
V (s, Z), V (I, Z) ≥ max

j=1,...,S̄
j 6=s,7

{V (j, Z)}

⎞⎟⎟⎠ ,
the effect of moving from state I to state s for people at the margin of indifference between

75This is one of many possible normalizations.
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s and I.76

To form the counterfactual distribution
µ
U (I) , (η(s)−η(1))

τs,1
, . . . ,

(η(s)−η(S̄))
τs,S̄

¶
for any I 6= s

from the output of Theorem B.1, we use the normalized versions of η(s)− η(1), . . . , η(s)−
η(S̄) : (η(s)−η(1))

τs,1
, . . . ,

(η(s)−η(S̄))
τs,S̄

. From the density of U (I) , (η(7)−η(1))
τ',1

, . . . ,
(η(7)−η(S̄))

τ',S̄
which

we identify from Theorem B.1, we can transform the contrast variables in the following way.

DeÞne q(I, s) = (η(7)−η(s))
τ',s

. Observe that q (s, j) = η(s)−η(j)
τs,j

=
q(7,j)τ',j−q(7,s)τ',s

τs,j
for all

j = 1, 2, . . . , S̄. Replace η(s)−η(j)
τs,j

by q(7,j)τ',j−q(7,s)τ',s
τs,j

j = 1, 2, . . . , S̄, j 6= I in the density of
(U (I) , (η(7)−η(s))

τ',s
, . . . ,

(η(7)−η(S̄))
τ',S̄

) and use the Jacobian of transformation
Q
j=1,...,S̄,j 6=7 |τ 7,j|,

where �| |� denotes determinant. Thus we can generate the desired counterfactual density
for all s = 1, . . . , S̄. Provided that the Jacobians are nonzero (which rules out perfect

dependence, ρ7,s 6= 1, I 6= s), we preserve all of the information and can construct the

marginal distribution of any U (I) for any desired pattern of latent indices. Thus we can

construct the desired counterfactuals.

The key difference between this model and the one developed in Section 2 in the text is

that across all counterfactual states the same collection of random variables generates the

D (s), s = 1, . . . , S̄. In contrast, in the model of Sections 2 and Section 3, new random

variables are added at each stage of the time to treatment process. If we control the prolif-

eration of unobservables, as we do in the factor model of Section 2.5, we can identify all of

the traditional counterfactual means and the distributions of outcomes as well.
76Heckman (2006) and Heckman and Vytlacil (2006a) call this parameter EOTM, the effect of treatment

for people at the margin.
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C IdentiÞcation Proofs

Proof. (Theorem 1) Let

Sη(1)(z(1)γ1) = 1− Fη(1)(z(1)γ1)

= 1− Pr(D(1) = 1 | Z(1) = z(1))

= Pr(D(1) = 0 | Z(1) = z(1))

= Pr (z(1)γ1 < η (1) | Z(1) = z(1)) .

Similarly let

Sη(1),η(2)(z(1)γ1, z(2)γ2) = Pr (z(1)γ1 < η (1) ∧ z(2)γ2 < η (2) | Z(1) = z(1), Z(2) = z(2))

and so forth. By hypothesis, we know the left hand sides of the following T̄ equations:

Pr (D (1) = 0 | Z(1) = z(1)) = Sη(1) (z(1)γ1) (C.1)

Pr (D (1) = 0,D (2) = 0 | Z(1) = z(1), Z(2) = z(2)) = Sη(1),η(2) (z(1)γ1, z(2)γ2)

...

Pr

⎛⎜⎝ D (1) = 0,D(2) = 0, . . . ,

D
¡
T̄
¢
= 0

¯̄̄̄
¯̄̄ Z(1) = z(1), . . . ,

Z(T̄ ) = z(T̄ )

⎞⎟⎠ = Sη(1),...,η(T̄)
¡
z(1)γ1, . . . , z(T̄ )γT̄

¢
.

We may treat the Þrst equation as a binary discrete choice model. Following the analysis

of Manski (1988, Proposition 2, Corollary 5), under the conditions of the theorem we can

identify γ1 and Sη(1) up to scale and location. For example, we may normalize the location

and scale by assuming E(η (1)) = 0 and by requiring that kγ1k = 1, where kγ1k is the norm
of the vector γ1.

We cannot directly apply Manski�s analysis for T ≥ 2. We do not directly observe

Pr(D (2) = 0 | Z(2)), since the D (2) outcome is not observed for individuals with D (1) = 1.
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We therefore proceed with a recursive �identiÞcation in the limit� argument.

If the true parameter values are
¡
Sη0(2), γ

0
2

¢
, then given the identiÞcation of the Þrst

period parameters which we just established, the second period parameters are identiÞed,

iff for any alternative parameter values
¡
Sη∗(2), γ

∗
2

¢ ∈ Γ2×H2 with (Sη∗(2), γ∗2) 6= (Sη0(2), γ02),
there exists some ϕ > 0 such that

PrZ|D(1)=0
¡¯̄
Sη0(1),η0(2)

¡
Z(1)γ01, Z(2)γ

0
2

¢− Sη0(1),η∗(2) ¡Z(1)γ01, Z(2)γ∗2¢¯̄ > ϕ¢ > 0. (C.2)

Pick any
¡
Sη∗(2), γ

∗
2

¢ ∈ Γ2×H2 \
¡
Sη0(2), γ

0
2

¢
. We now show that (C.2) holds for some ϕ > 0.

By continuity of Sη0(1), for any ε > 0 we can pick �g1 ∈
¡
η(1), η̄(1)

¢
such that

Sη0(1) (g1) ≤ ε/2 for all g1 ≥ �g1 =⇒ sup
g2

¯̄
Sη0(1),η0(2) (g1, g2)− Sη0(2) (g2)

¯̄ ≤ ε/2 (C.3)

and

sup
g2

¯̄
Sη0(1),η∗(2) (g1, g2)− Sη∗(2) (g2)

¯̄ ≤ ε/2 (C.4)

for all g1 ≥ �g1. The triangle inequality implies that¯̄̄̄
¯̄̄̄
¯̄
£
Sη0(1),η0(2) (Z(1)γ

0
1, Z (2) γ

0
2)− Sη0(1),η∗(2) (Z(1)γ01, Z (2) γ∗2)

¤

− £Sη0(2) (Z(2)γ02)− Sη∗(2) (Z(2)γ∗2)¤
¯̄̄̄
¯̄̄̄
¯̄ ≤ ε. (C.5)

From this, it follows that

Pr

⎛⎜⎝
¯̄̄̄
¯̄̄ Sη0(1),η0(2) (Z(1)γ

0
1, Z(2)γ

0
2)

−Sη0(1),η∗(2) (Z(1)γ01, Z(2)γ∗2)

¯̄̄̄
¯̄̄ > ϕ

¯̄̄̄
¯̄̄ Z(1)γ01 ≥ max(�g1, ùg1)

⎞⎟⎠
≥ Pr

¡ ¯̄
Sη0(2)

¡
Z(2)γ02

¢− Sη∗(2) (Z(2)γ∗2)¯̄ > ϕ+ ε ¯̄Z(1)γ01 ≥ max(�g1, ùg1)¢ .77
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Using conditions (iii) and (iv) of the Theorem, Pr(Sη0(2)(Z(2)γ02) = Sη∗(2)(Z(2)γ
∗
2) | Z(1)γ01 ≥

max(�g1, ÿg1)) = 1 iff (Sη∗(2), γ∗2) = (Sη0(2), γ
0
2). Since (Sη∗(2), γ

∗
2) 6= (Sη0(2), γ02), and since we

can set ε arbitrarily small, there exists ϕ values such that the last probability is strictly

positive so that, for such ϕ values,

Pr

⎛⎜⎝
¯̄̄̄
¯̄̄ Sη0(1),η0(2) (Z(1)γ

0
1, Z (2) γ

0
2)

−Sη0(1),η∗(2) (Z(1)γ01, Z (2) γ∗2)

¯̄̄̄
¯̄̄ > ϕ

¯̄̄̄
¯̄̄ Z(1)γ01 ≥ max(�g1, ÿg1)

⎞⎟⎠ > 0.

Using (iv), we have that the conditioning set in (C.2) has positive probability

Pr(Z(1)γ01 ≥ max(�g1, ÿg1)) > 0,

so that (C.2) holds. We have shown that (Sη∗(2), γ∗2) 6= (Sη0(2), γ02) implies (C.2), and thus
the (Sη0(2), γ02) parameters are identiÞed. Proceeding in this fashion, we can recover Z(t)γ

0
t ,

t = 1, . . . , T̄ . Since we identify Z(t)γ0t using (iv), we can recover the joint distribution of

(η(1), . . . , η(T̄ )) varying the components of (Z(1)γ01, . . . , Z(T̄ )γ
0
T̄
) to trace out Sη(1),...,η(T̄ ) and

hence we can recover Fη(1),...,η(T̄ ). ¥

Proof. (Corollary 1) Let

zγ1 = g1.

Recall that kγtk = 1 for some t = 1, . . . , T ∗, is our normalization. The Þrst T ∗ coordinates
of z correspond to continuous regressors. By assumption (vi), γ11 6= 0, and we can write

z1 =
g1
γ11

− z2γ12
γ11

− · · ·− zK γ1K
γ11

where in this expression, lower case zi is the ith coordinate of z.

In the index zγ2 use Gaussian elimination and substitute for z1 from the preceding

77The intuition for this result is that if the Þrst term inside (C.5) is bigger than ϕ in absolute value, the
second term in (C.5) must be within ϕ±ε in absolute value since the two terms live in a narrow band deÞned
by ε.
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equation to obtain the expression

µ
g1
γ11

− z2γ12
γ11

− · · ·− zK γ1K
γ11

¶
γ21 + γ22z2 + · · ·+ γ2KzK. (C.6)

Under assumption (iii) of Theorem 1 as amended in assumption (v) in the statement of

Corollary 1, these variables can be freely varied given zγ1 = g1. Proceeding recursively, in

the (j+1)th argument, (j < T ∗), we obtain an expression that substitutes out for (z1, . . . , zj)

leaving T ∗ − j free continuous variables and T̄ − j total remaining variables.
Array the γj into a matrix C with the j

th column of C being γj. C is a K × T̄ matrix.
Let C(r, n) be the n× r submatrix of C consisting of the Þrst n rows and r columns, and let
C(r,K − n) be the matrix consisting of the last K − n rows and the Þrst r columns of C.
Partition γj into the Þrst e elements

¡
γj (e)

¢
and the last K−e elements γj(K− e). Finally,

let �zj be the last T̄ − j elements of z and �γj denote the parameters associated with them at
the jth step of the Gaussian elimination process.

In this notation, the index zγ2 in equation (C.6) can be written as

g1
γ21
γ11

+ �z2�γ2.

Successive Gaussian elimination produces

�γj+1 = γj+1 (K − j)− C (j,K − j) [C (j, j)]−1 γj+1 (j)

aK−j dimensional vector. In order for [C(j, j)]−1 to exist, j = 1, . . . , T ∗, it is necessary that
γ1, . . . , γj be linearly independent vectors. Condition (v) assures us that this requirement is

satisÞed for j ≤ T ∗. DeÞne �γj+1 (T ∗ − j) as the Þrst (T ∗−j) elements of �γj+1 associated with
the continuous regressors. In order to satisfy (vi), at least one component of �γj+1(T

∗ − j)
must be non-zero.
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Again consider

g1 = zγ1

g2 = �γ2(g1) + �z2�γ2

where �γ2(g1) =
µ
g1
γ11
γ21

¶
is obtained using the same linear transformation that is used

to obtain �γj+1 with j = 1. Since �γ2(g1) is a function of g1, the second period index is a

function of g1 and for Þxed �z2 we have that g1 →∞ =⇒ g2 →∞. However, note that using
assumptions (iii) and (v) of Theorem 1 and assumptions (v) and (vi) of the corollary, we can

send g1 →∞ while varying �z2 to keep g2 Þxed. In particular, we can use z1 to send g1 →∞
and set z2 to compensate for z1 in the second period index so as to hold g2 Þxed. Thus,

Supp(Zγ2|Zγ1 = g1) = R and the Z that satisfy Zγ1 = g1 will have rank K − 1 for a.e.
g1 ∈ R. Moreover, we have, for a.e. g1 ∈ R, Supp(Zγ2|Zγ1 ≥ g1) = R and the Z that satisfy
Zγ1 ≥ g1 has full rank (there exists no proper linear subspace of RK having probability 1
under FZ|Zγ1≥g1). We can repeat this argument, using sequential Gaussian elimination as

described above, to show that

Supp
¡
Zγt|Zγ1 = g1, . . . , Zγt−1 = gt−1

¢
= R, t ≤ T ∗,

and there exists no proper linear subspace of RK having probability 1 under FZ|Zγ1≥g1,...,Zγt≥gt

for almost every (gt−1, . . . , g1) ∈ Rt−1 for t = 2, . . . , T̄ . Using the argument in Cameron

and Heckman (1998), we can identify all the remaining parameters of the model (γt, for

t = 1, . . . , T ∗, up to scale and location normalizations). ¥

D IdentiÞcation of the General Model of Section 2

This appendix generalizes the analysis of Theorems 2 and 3 in the text. Use Y (a, t) as short-

hand for Y (a, t,X, U (a, t)). Ignore (for notational simplicity) the mixed discrete-continuous

outcome case. We can build that case from the continuous and discrete cases and for the sake
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of brevity we do not analyze it here. We also do not analyze duration outcomes although it is

straightforward to do so.78 We decompose Y (a, t) into discrete and continuous components:

Y (a, t) =

⎡⎢⎣Yc (a, t)
Yd (a, t)

⎤⎥⎦ .
Associated with the jth component of Yd (a, t), Yd,j (a, t) is a latent variable Y ∗d,j (a, t). We

deÞne

Yd,j (a, t) = 1
¡
Y ∗d,j (a, t) ≥ 0

¢
.79

From standard results in the discrete choice literature, without additional information, we

can only know Y ∗d,j (a, t) up to scale.

We assume an additively separable model for the continuous variables and latent contin-

uous indices. Making the X explicit, we have

Yc (a, t,X) = μc (a, t,X) + Uc (a, t)

Y ∗d (a, t,X) = μd (a, t,X)− Ud (a, t)

1 ≤ t ≤ T̄ , 1 ≤ a ≤ Ā.

We array the Yc (a, t,X) into a matrix Yc (t,X) and the Y ∗d (a, t,X) into a matrix Y
∗
d (t,X).

We decompose these vectors into components corresponding to the means μc (t,X) , μd (t,X)

and the unobservables Uc (t) , Ud (t). Thus

Yc (t,X) = μc (t,X) + Uc (t)

Y ∗d (t,X) = μd (t,X)− Ud (t) .
78The ingredients for doing so are in Corollary 2 of Theorem 3
79Extensions to nonbinary discrete outcomes are straightforward. Thus we could entertain, at greater

notational cost, a multinomial outcome model at each age a for each counterfactual state, building on the
analysis of Appendix B.
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Y ∗d (t,X) generates Yd (t,X). To simplify the notation, we will make use of the condensed

forms Yc (X), Y ∗d (X), μc (X), μd (X), Uc and Ud as described in Section 2.3. In this notation,

Yc (X) = μc (X) + Uc

Y ∗d (X) = μd (X)− Ud.

Following CHH, and Cunha, Heckman, and Navarro (2005a,b,c,e), we may also have a

system of measurements with both discrete and continuous components. The measurements

are not t-indexed. They are the same for each stopping time. (Hansen, Heckman, and

Mullen, 2004, generalize a version of the model discussed in this section to allow for t-speciÞc

measurements.) We write the equations for the measurements in an additively separable

form, in a fashion comparable to those of the outcomes. The equations for the continuous

measurements and latent indices producing discrete measurements are

Mc (a,X) = μc,M (a,X) + Uc,M (a)

M∗
d (a,X) = μd,M (a,X)− Ud,M (a)

where the discrete variable corresponding to the jth index in M∗
d (a,X) is

Md,j (a,X) = 1
¡
M∗
d,j (a,X) ≥ 0

¢
.

The measurements play the role of indicators unaffected by the process being studied. We

array Mc (a,X) and M∗
d (a,X) into matrices Mc (X) and M∗

d (X). We array μc,M (a,X) ,

μd,M (a,X) into matrices μc,M (X) and μd,M (X). We array the corresponding unobservables

into Uc,M and Ud,M . Thus we write

Mc (X) = μc,M (X) + Uc,M

M∗
d (X) = μd,M (X)− Ud,M .
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We use the notation of Section 2.4 to write I (t) = Ψ (t, Z)−η(t) and collect I (t) ,Ψ (t, Z)
and η(t) into vectors I, μ (Z), η. We deÞne ηt = (η(1), . . . , η(t)) and Ψt (Z) = (Ψ (1, Z) , . . . ,

Ψ (t, Z)). Using this notation, we extend the analysis of CHH to identify our model assuming

that (Yc, Yd,Mc,Md, I) are independently distributed across people.

Theorem D.1. The joint distribution of (Uc (t) , Ud (t) , Uc,M , Ud,M , ηt) is identiÞed (the

components corresponding to discrete outcomes up to scale) along with the mean functions

(μc (t,X) , μd (X) , μc,M (X) , μd,M (X) , Ψ
t (Z)) with mean functions for the Ψt (Z) and the

discrete outcome components belonging to the Matzkin class of functions if

(i) (Uc, Ud, Uc,M , Ud,M , ηt) are continuous random variables with zero means, Þnite vari-

ances and support: Supp (Uc) × Supp (Ud) × Supp (Uc,M) × Supp (Ud,M) × Supp (ηt)
with upper and lower limits

¡
Ūc, Ūd, Ūc,M , Ūd,M , η̄

t
¢
and

¡
U c, Ud, U c,M , Ud,M , η

t
¢
respec-

tively. These conditions are assumed to apply within each component of each subvector.

The joint system is thus measurably separable (variation free) for each component with

respect to every other component.

(ii) (Uc, Ud, Uc,M , Ud,M , ηt) ⊥⊥ (X,Z).

(iii) Supp
¡
μc (t,X) , μd (t,X) , μc,M (X) , μd,M (X) ,Ψ

t (Z)
¢
=

Supp (μc (t,X))×Supp (μd (t,X))×Supp
¡
μc,M (X)

¢×Supp ¡μd,M (X)¢×Supp (Ψt (Z))
and a comparable condition holds for all subcomponents;

(iv) Supp
¡
μd (t,X) , μd,M (X) ,Ψ

t (Z)
¢ ⊇ Supp(Ud (t) , Ud,M , ηt),

where ηt = (η (1) , . . . , η (t)) collects the Þrst t elements of η.

Proof. From the data on Yc (t,X) , Yd (t,X) ,Mc (X) ,Md (X) for D (t) = 1,Dt−1 = (0), and

from the time to treatment probabilities, we can construct the left hand side of the following
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equation:

Pr

⎛⎜⎝ Yc (t,X) ≤ yc (t,X) , μd (t,X) ≤ Ud (t) ,
Mc (X) ≤ mc (X) , μd,M (t,X) ≤ Ud,M

¯̄̄̄
¯̄̄ D (t) = 1,Dt−1 = (0),X = x, Z = z

⎞⎟⎠
×Pr ¡D (t) = 1, Dt−1 = (0) | X = x,Z = z

¢

=

yc(t,x)−μc(t,x)Z
Uc

ŪdZ
μd(t,x)

mc(x)−μc,M (x)Z
Uc,M

Ūd,MZ
μd,M (x)

(D.1)

Ψ(t,z)Z
η
t

η̄(t−1)Z
Ψ(t−1,z(t−1))

· · ·
η̄1Z

Ψ(1,z(1))

fUc(t),Ud(t),Uc,M ,Ud,M ,ηt (uc (t) , ud (t) , uc,M , ud,M , η (1) , . . . , η(t))

·dη (1) · · · dη(t) dud,M duc,M dud (t) duc (t)

(Recall that D (0) = 0 is Þxed outside the model.)

Under assumptions (i)-(iv), for all x ∈ Supp (X), we can vary the Ψ (j, Z) , j = 1, . . . , t
and obtain a limit set Z such that lim

z→Z
Pr (D(t) = 1,Dt−1 = (0) | X = x, Z = z) = 1. We can

identify the joint distribution of Yc (t,X) , Yd (t,X) ,Mc (X) ,Md (X) free of selection bias for

all t = 1, . . . , T̄ in this limit set. We identify the parameters of Yd (t,X), t = 1, . . . , T̄ , and

Md (X) only up to scale normalizations. We know the limit set given the functional forms

for the Ψ (t, Z) used in Theorem 1 or in Matzkin (1992, 1993, 1994).

As a consequence of (ii), we can identify μc (t,X) , μc,M (X) directly from the means of

the limit outcome distributions. We can thus identify all pairwise average treatment effects

E (Yc (t,X) | X = x) − E (Yc (t0, X) | X = x) for all t, t0 and any other linear functionals

derived from the distributions of the continuous variables deÞned at t and t0. IdentiÞcation

of the means and distributions of the latent variables giving rise to the discrete outcomes is

more subtle. The argument required is the same as that used in the Þrst step of the proof

of Theorem 1. With one continuous regressor among the X, one can identify the marginal

distributions of the Ud (t) and the Ud,M (up to scale if the Matzkin functions are only speciÞed
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up to scale). To identify the joint distributions of Ud (t) and Ud,M one must invoke a version

of condition (iii) used in the proof of Theorem 1.

Thus for system t, suppose that there are Nd,t discrete outcome components with asso-

ciated means μd,j (t,X) and error terms Ud,j (t) , j = 1, . . . , Nd,t. As a consequence of condi-

tion (iii) of this Theorem, Supp (μd (t,X)) = Supp(μd,1 (t,X))×· · ·×Supp
³
μd,Nd,t (t,X)

´
and

Supp (μd (t,X)) ⊇ Supp (Ud (t)). We thus can trace out the joint distribution of Ud (t) and
identify it (up to scale if we specify the Matzkin class only up to scale). By a parallel ar-

gument for the measurements, we can identify the joint distribution of Ud,M . Let Nd,M be

the number of discrete measurements. From condition (iii), we obtain Supp
¡
μd,M (X)

¢
=

Supp(μd,M,1 (X))× · · · × Supp
³
μd,M,Nd,M (X)

´
and Supp

¡
μd,M (X)

¢ ⊇ Supp (Ud,M). Under
these conditions, we can trace out the joint distribution of Ud,M and identify it (up to scale

for Matzkin class of functions speciÞed up to scale) within the limit sets.

In the general case, we can vary each limit of the integral in (D.1) independently and

trace out the full joint distribution of (Uc (t) , Ud (t) , Uc,M , Ud,M , η (1) , . . . , η(t)). For further

discussion, see the analysis in CHH, Theorem 3. ¥
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