
Techniques for Mathematical Analysis and Optimization of
Agent-based Models

Matthew S. Oremland

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Mathematics

Reinhard Laubenbacher, Chair
Stanca Ciupe
Stefan Hoops

Chris Lawrence

December 6, 2013
Blacksburg, Virginia

Keywords: agent-based models, optimization, heuristic algorithms, model reduction,
discrete dynamical systems

Copyright 2013, Matthew S. Oremland

Techniques for Mathematical Analysis and Optimization of Agent-based
Models

Matthew S. Oremland

ABSTRACT

Agent-based models are computer simulations in which entities (agents) interact with each
other and their environment according to local update rules. Local interactions give rise to
global dynamics. These models can be thought of as in silico laboratories that can be used
to investigate the system being modeled. Optimization problems for agent-based models
are problems concerning the optimal way of steering a particular model to a desired state.
Given that agent-based models have no rigorous mathematical formulation, standard anal-
ysis is difficult, and traditional mathematical approaches are often intractable.

This work presents techniques for the analysis of agent-based models and for solving op-
timization problems with such models. Techniques include model reduction, simulation
optimization, conversion to systems of discrete difference equations, and a variety of heuris-
tic methods. The proposed strategies are novel in their application; results show that for a
large class of models, these strategies are more effective than existing methods.

This work was funded by U.S. Army Research Office grant # W911NF-09-1-0538. Results
were in no way influenced by the funding agency.

Dedicated to ,
and all of my family.

iii

Acknowledgments

I am grateful to many people for their contributions, both personally and professionally, to
the work presented in this document. First and foremost I would like to thank Reinhard
Laubenbacher, my advisor, for his continued support and guidance throughout my graduate
studies. Dr. Laubenbacher was instrumental in my coming to work at the Virginia Bioin-
formatics Institute (VBI) and in addition to his research contributions, he has helped me
navigate endless conferences, talks, and applications. I would also like to thank my commi-
tee, Dr. Ciupe, Dr. Hoops, and Dr. Lawrence. As professors, colleagues, and collaborators,
each have contributed meaningfully in the course of my studies.

I thank my fellow students at VBI, including Seda Arat, Madison Brandon, Cory Brunson,
Franziska Hinkelmann, Claus Kadelka, Shernita Lee, David Murrugarra, and Kasia Swiry-
dowicz, for making studying and working a continually interesting and engaging experience.
I also thank professional mentors and colleagues Jennifer Galovich, Kathy O’Hara, Anael
Verdugo, and Betsy Williams for their guidance and advice. I would also like to acknowledge
my colleagues from a working group sponsored by the National Institute for Mathematical
and Biological Synthesis entitled Optimal Control for Agent-based Models; these include
Scott Christley, Paula Federico, Suzanne Lenhart, Rachael Neilan, and Rene Salinas. Many
of the ideas presented in this work have come from ongoing discussions and meetings with
the working group, and I am grateful to have been a part of it.

Several chapters in this document began as Research Experience for Undergraduates Summer
projects, and I would like to thank Cara DeAngelis, Chris Gaskill, Eric Kernfeld, Herb
Susmann, and Erin Twohy for being parts of those projects and contributing in a meaningful
way to my own research. They were all a joy to work with, and I would gladly work with each
of them again. Of course, research cannot be accomplished without funding, and I would like
to acknowledge and thank the U.S. Army Research Office, NIMBioS, the National Science
Foundation, and the Mathematics Department at Virginia Tech for supporting me and my
work in various ways throughout my graduate studies.

Finally, I would like to thank , my parents, and the rest of my family. They have always
encouraged and supported me in everything I’ve chosen to pursue, and none of this could
have been accomplished without them.

iv

Contents

1 Introduction 1

2 Scaling Methods and Heuristic Algorithms 4

2.1 Introduction . 4

2.1.1 Related work . 5

2.1.2 A framework for solving optimization problems 5

2.2 Data reliability . 6

2.3 Pareto optimization . 7

2.4 Software . 8

2.5 Two models . 9

2.5.1 Rabbits and grass . 9

2.5.2 SugarScape model . 16

2.6 Conclusions . 20

3 Optimal Harvesting for a Predator-Prey Agent-based Model using Differ-
ence Equations 23

3.1 Introduction . 23

3.2 Background and related work . 24

3.3 The model: rabbits and grass . 25

3.4 Deriving the equations . 25

3.5 Steady-state analysis of the DE model . 29

3.6 Cohen’s weighted κ: a similarity measure . 32

v

3.7 The two-equation model . 33

3.8 The optimization problem . 34

3.9 Pareto optimization . 34

3.10 Results . 35

3.11 Discussion and future work . 37

4 Mathematical Conversion of SugarScape to Analytical Difference Equa-
tions 38

4.1 Introduction . 38

4.1.1 Related work . 39

4.2 The model . 40

4.2.1 The SugarScape Gradient model . 41

4.2.2 An optimization problem . 41

4.3 Analytical equations . 42

4.4 Results . 44

4.4.1 Pareto optimization. 46

4.5 Discussion . 49

5 A Framework for a Mathematical Approach to Solving Optimization Prob-
lems for Agent-based Models 51

5.1 Introduction . 51

5.1.1 A framework for solving optimization problems for ABMs 52

5.2 SugarTax: A running example . 53

5.3 Deriving the equation model . 55

5.3.1 Wealth and population . 56

5.3.2 Migration . 57

5.4 Solving the optimization problem . 58

5.4.1 Pareto optimization . 58

5.4.2 Results . 59

5.5 Discussion . 61

vi

6 A Computational Model of Invasive Aspergillosis in the Lung 62

6.1 Introduction . 62

6.1.1 Related work . 64

6.2 The model . 64

6.3 Discussion . 68

A Overview, Design concepts, and Details (ODD) protocol for Rabbits and
Grass 83

A.1 Purpose . 83

A.2 Entities, state variables, and scales . 83

A.3 Process overview and scheduling . 85

A.4 Design concepts . 85

A.5 Initialization . 86

A.6 Optimization . 86

B Overview, Design concepts, and Details protocol for SugarScape with tax-
ation 88

B.1 Purpose . 88

B.2 Entities, state variables, and scales . 88

B.3 Process overview and scheduling . 90

B.4 Design concepts . 91

B.5 Initialization . 92

B.6 Input data . 92

C Overview, Design concepts, and Details protocol for Rabbits and Grass 93

C.1 Purpose . 93

C.2 Entities, state variables, and scales . 93

C.3 Process overview and scheduling . 95

C.4 Design concepts . 95

C.5 Initialization . 96

vii

C.6 Submodels . 96

C.7 Optimization . 97

D Difference equation models 98

E Squeaky wheel optimization for parameter estimation 101

F Optimal poison schedules 103

G Overview, Design concepts, and Details (ODD) protocol for the Sug-
arScape Gradient Model 104

G.1 Purpose . 104

G.2 Entities, state variables, and scales . 105

G.3 Process overview and scheduling . 106

G.4 Design concepts . 106

G.5 Initialization . 108

G.6 Input data . 108

H SugarScape Gradient: Difference equations 109

I Overview, Design concepts, and Details (ODD) protocol for SugarTax 112

I.1 Purpose . 112

I.2 Entities, state variables, and scales . 112

I.3 Process overview and scheduling . 113

I.4 Design concepts . 114

I.5 Initialization . 116

I.6 Input data . 116

J SugarTax difference equation model 117

J.1 Population equations . 118

J.2 Migration equations . 118

J.3 Wealth equations . 119

viii

J.4 Initial values . 122

K Overview, Design Concepts, and Details (ODD) protocol for an agent-
based model of A. fumigatus in the lung 123

K.1 Purpose . 123

K.2 Entities, state variables, and scales . 124

K.3 Process overview and scheduling . 128

K.4 Design concepts . 130

K.5 Initialization . 131

K.6 Input data . 132

K.7 Submodels . 132

ix

List of Figures

2.1 An overview of the framework presented in this work. The three shadings
represent the phases of analysis, scaling, and optimization. 6

2.2 Average population values are not improved upon by using more than 50 runs. 11

2.3 Cohen’s weighted κ for various world sizes and run times. 13

2.4 An example Pareto frontier for the Rabbits and Grass model. Frontier points
are marked with an × and non-frontier points with a square. 15

2.5 Pareto frontiers for models with lower κ values. 16

2.6 Pareto frontiers for models with higher κ values. 17

2.7 Plot of κ values vs. size of frontier, with line of best fit (Pearson’s r2 = 0.66). 17

2.8 Landscape of the 50×50 Sugarscape model – darker regions contain more sugar. 18

2.9 Average values for deaths (solid) and tax income (dashed) are not improved
upon beyond 50 runs. Tax income values have been scaled linearly to fit on
the plots. 19

2.10 Cohen’s weighted κ when controls are ranked by deaths and by tax income. . 20

2.11 Pareto optimization results for the SugarScape model. 21

3.1 A view of the NetLogo interface for the Rabbits and Grass model. 26

3.2 Data from the ABM and the equation model, using random jump movement. 28

3.3 Population data from the ABM vs. data predicted by the equations, using
the wiggle movement rule. 28

3.4 Data from the ABM and the equation model using neighbor 8 movement.
Parameter values are provided in table 3.2. 29

3.5 The two-equation DE model. 33

x

3.6 The two-equation DE model coupled with poison schedule u. The length of u
indicates the length of the simulation. 34

3.7 Results from Pareto optimization. 36

4.1 Landscape of the SugarScape Gradient model. Labels indicate the amount of
sugar contained on each grid cell in that region. 42

4.2 Ants are represented by circles; potential moves are represented with an ‘×’. 43

4.3 The order in which the equation system is updated. 44

4.4 Population and wealth data from the ABM (light colors) and the equation
model (dark colors) when no tax is applied. 45

4.5 Population and wealth data from the ABM (light colors) and the equation
model (dark colors) for a randomly chosen tax structure. 45

4.6 Snapshots of the evolutionary Pareto optimization algorithm. 48

4.7 A comparison of results from a random search and those from the Pareto
optimization algorithm. 49

4.8 The Pareto frontier evaluated in the equation model and in the ABM. 49

5.1 A flowchart of the framework presented in this work. Dashed lines indicate
the validation process. 54

5.2 Spatial regions labeled by number. 56

5.3 Results from Pareto optimization. 60

6.1 A labeled snapshot from the simulation window. 65

6.2 A. fumigatus spores drifting through the branching airway. 66

6.3 Clusters of A. fumigatus hyphae. 66

6.4 The interface for the simulation. 68

D.1 The discrete model (using random jump movement), tracking rabbits at dif-
ferent energy levels. 99

D.2 The updated model with movement parameters m0, . . . ,m8. 100

F.1 Several poison schedules (to be read from left to right). 103

xi

G.1 The SugarScape Gradient is a 48 × 48 grid of cells, so named because sugar
levels increase from left to right. 105

H.1 Population equations. 109

H.2 Wealth equations. 110

H.3 Initial values. Wealth equations hold for r ∈ {1, . . . , 4} and m ∈ {1, 2} . . . 111

K.1 Cutaway snapshot of the three-dimensional model. Spores travel from left to
right through the airway. 125

xii

List of Tables

2.1 Number of simulations in equivalent run time. 12

2.2 Number of simulations of SugarScape in equivalent run time. 20

3.1 A description of the terms used in the difference equation system. 26

3.2 Movement parameters for various movement rules. 29

3.3 Steady states for wiggle movement. 30

3.4 Population at each energy level. ABM values are averaged over a single 1000-
tick simulation. 31

5.1 Table of terms used in the equation model. 56

A.1 Grid cell state variables. 84

A.2 Rabbit state variables. 84

A.3 Poison schedule details. 85

B.1 Ant state variables . 89

B.2 Grid cell state variables . 89

B.3 Maximum sugar and grid cell counts for each region. 89

B.4 Taxation and temporal variables . 90

C.1 Grid cell state variables. 94

C.2 Rabbit state variables. 94

C.3 Poison schedule details. 95

G.1 Taxation and temporal variables . 105

xiii

G.2 Ant state variables . 106

I.1 Ant state variables . 113

I.2 Grid cell state variables . 113

I.3 Maximum sugar and grid cell counts for each region. 113

I.4 Taxation and temporal variables . 114

J.1 Terms used in the equation model. 117

J.2 Initial population values are based on 240 ants distributed randomly among
the regions. 122

K.1 Global state variables and scales . 124

K.2 Grid cell state variables . 125

K.3 Fungal spore state variables . 126

K.4 Epithelial cell state variables . 127

K.5 Macrophage state variables . 127

K.6 Hyphae state variables . 128

K.7 Neutrophil state variables . 129

xiv

Chapter 1

Introduction

Agent-based models (ABMs) are computer simulations consisting of entities (agents) that
act according to local update rules. From these local rules, global dynamics emerge. Often
times, the relationship between the local rules and the emergent global behavior is of primary
interest – what are the local mechanisms which drive the larger system? Understanding this
interplay is highly non-trivial: in some cases, global phenomena are robust with respect to
changes in local rules, but in other cases, even the most subtle changes can have a substantial
impact.

While some ABMs are quite abstract, many are rooted in some real-world system. A model
may represent an ecology, a molecular interaction, a social network, or a citywide traffic grid,
for example. The focus of this dissertation is on models of this type. Rather than focusing
on how closely model dynamics hew to real systems, this work emphasizes techniques for
analysis of ABMs: given an ABM of some system, what deductions can be made from the
model, and what type of problems can be solved? The inherent stochasticity in many ABMs
and the lack of a formal mathematical structure make standard mathematical approaches
intractable – hence, there is a great need for the development of a rigorous mathematical
framework for analysis of ABMs. The work contained here is meant to address that need,
particularly in terms of solving optimization problems.

The meaning of optimization in this context is perhaps best explained via several exam-
ples. In a traffic network, what is the optimal timing schedule for stoplights in order to
minimize the total amount of time spent waiting at red lights? In a cancer model, what is
the best drug target, or the best delivery protocol for a given treatment? In a social rumor
network, what is the best way to transmit information to the greatest number of people in
the shortest amount of time? These are optimization questions because they ask about the
optimal way to achieve a particular goal. ABMs are well-suited to questions of this sort:
since simulation is (relatively) quick and inexpensive, ABMs act as in silico laboratories in
which questions such as these can be investigated. Solving optimization questions for ABMs

1

Matthew S. Oremland Chapter 1. Introduction 2

is not a trivial proposition. Stochasticity makes data unreliable, and the lack of mathemat-
ical formulation renders traditional optimal control theory inapplicable. The focus of this
dissertation is on the development of techniques both for analysis of ABMs and for solving
optimization problems.

This document consists of five manuscripts each emphasizing a different aspect of these
goals. Background and related work are presented at the beginning of each chapter and
hence omitted here. Throughout Chapters 2 – 5, variations of two running examples are
considered. The first is an ABM of rabbits in a field. The rabbits hop randomly around the
field, gaining energy from eating grass and losing energy by moving (and via reproduction).
Considering these rabbits to be an invasive species, the optimization problem is to determine
a poison schedule which minimizes the number of rabbits while also minimizing the amount
of poison required. This model was chosen because it represents a general predator-prey
system (with grass acting as prey); such systems hold interest for researchers from a variety
of fields. Additionally, the model is spatially homogeneous – thus, the Rabbits and Grass
model serves as a simple baseline example of the techniques introduced in the manuscripts.

The second model was one of the first large-scale agent-based models. It is known as Sug-
arScape: in this model, ants traverse a landscape comprised of various amounts of sugar.
Some ants can see farther than others, and some have slower metabolism; these advanta-
geous features allow certain ants to survive longer than others. SugarScape represents a
step up in complexity from the Rabbits and Grass model because the agents have more
traits and because the model is spatially heterogeneous. While not present in the original
formulation of SugarScape, this dissertation introduces a tax structure into the model. Pe-
riodically, ants are taxed for their sugar; tax rates are based on physical location and/or
agent traits such as vision and metabolism. The optimization problem is to determine the
optimal tax structure in order to minimize the number of deaths (ants die if their sugar is
taken away) while maximizing the amount of tax collected. SugarScape was chosen as a
representative model due to its popularity, complexity, and wide applicability – minor mod-
ifications have framed SugarScape as a model of economics, trade, culture, and even combat.

Each manuscript focuses on a different aspect of model analysis. Chapter 2 deals with
simulation optimization techniques: that is, strategies that can be used directly on ABMs
by obtaining results from repeated simulation. Since simulation optimization is often time-
intensive, the issue of model reduction is of natural interest. Hence, scaling strategies are
introduced in this chapter, in addition to heuristic methods for solving optimization prob-
lems via simulation alone. A metric known as Cohen’s weighted κ is applied as a statistical
measure of model similarity. In Chapter 3, the Rabbits and Grass model is translated into
a system of discrete difference equations. In particular, the system of equations is derived
analytically from the ABM rules. In the course of deriving the equations, this chapter em-
phasizes the effect that subtle rule changes can have on global dynamics. Specifically, the
manuscript shows how changing the way agents move can substantially affect population

Matthew S. Oremland Chapter 1. Introduction 3

dynamics, even when no other changes are made. Additionally, some mathematical analy-
sis is performed on the equations that is not possible with the ABM alone – particularly,
steady state and bifurcation analysis. Finally, the optimization problem is solved using the
equations as a surrogate for the ABM. This precludes the need for lengthy simulation and
provides a rigorous mathematical formulation to which a wealth of mathematical tools can
be applied. Chapter 4 performs a similar procedure for a modified version of SugarScape:
a system of difference equations are formulated that capture the pertinent dynamics of the
ABM. This chapter focuses on the issue of heterogeneity, which is not present in Chapter
3. In particular, there are different agent categories and different spatial regions; Chapter
4 shows how these types of heterogeneity are addressed in the equation formulation. In
Chapter 5, a more complicated version of SugarScape is analyzed. The landscape is consid-
erably more heterogeneous than that examined in Chapter 4, and agent behavior is more
complicated as well. In this case, the equations are not derived analytically. Rather, a tech-
nique known as symbolic regression is used to fit difference equations to ABM data. This
manuscript lays out a framework for solving optimization problems for ABMs, using a variety
of the techniques introduced in previous chapters. Finally, Chapter 6 introduces an agent-
based model of invasive aspergillosis in the lung. This model was originally developed as a
two-dimensional simulation during the course of a Research Experience for Undergraduates
(REU) program in Summer 2012. In Chapter 6, a three-dimensional version is introduced.
Rather than focusing on optimization techniques, this chapter shows how a complicated
agent-based model can be built using results from literature and laboratories. While the
Rabbits and Grass model and SugarScape are pre-existing models chosen for their wide ap-
plicability, the lung model in Chapter 6 is an original creation. This model serves multiple
purposes: it shows how an ABM is built, and in doing so, emphasizes the layers of complexity
that build up from relatively straightforward local interactions; at the same time, it serves
as a template model to which the framework established in previous chapters can be applied.

As mentioned above, each chapter in this document is its own manuscript, meant to stand
alone outside the dissertation. As such, there may be noticeable overlap in the subject matter
among chapter introductions and in certain descriptions. This is because the chapters were
prepared with journal submission in mind. The appendices contain formal descriptions of the
ABMs examined in each chapter; these descriptions provide enough detail that all models
and results can be replicated by independent research. Chapter 2 was submitted to a peer-
reviewed journal in Summer 2013, and the remaining chapters will be submitted Fall 2013
or Spring 2014. Names of collaborators, acknowledgements, and the author’s contribution
to each manuscript are provided at the beginning of each chapter, where applicable.

Chapter 2

Scaling Methods and Heuristic
Algorithms

2.1 Introduction

Agent-based models (ABMs) are often created in order to simulate real-world systems. In
many cases, ABMs act as in silico laboratories wherein questions can be posed and inves-
tigated; such questions often arise naturally in the context of the system in question. For
example, an ABM of a financial network might be used to determine which policies lead to
maximized profit, while an ABM modeling social networks might be studied to determine
the most effective means of transmitting information. Questions concerning how one can
influence an ABM in order to best achieve some specific goal are optimization problems. In
other contexts, optimization may refer to parameters or model design. It is important to
reiterate that the meaning of the term in this study is different – it refers to the optimal
choice of a sequence of external inputs to a model in order to achieve a particular goal. The
stochasticity inherent in many ABMs means that care must be taken when attempting to
solve optimization problems. Under fixed initial conditions, data from individual simulation
replications often vary. Thus, careful analysis of ABM dynamics is a prerequisite for the
development of optimization techniques. In particular, statistical methods must be brought
to bear on the interpretation of simulation results.

In this study, statistical and optimization techniques are presented which can be applied
directly to ABMs: translation of the model to an equation-based form is not necessary.
There are several advantages to this approach – such techniques can be applied to virtu-
ally any ABM, and there is no need for transformation of either the model or the controls.
Repeated simulation is used to obtain reliable results, and controls are applied directly to
the ABMs. While there may be models for which this approach fails, the sufficiently broad
examples provide good evidence that for large classes of ABMs, meaningful results can be

4

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 5

obtained by direct analysis and optimization.

The goal of this paper is to introduce and illustrate a framework for solving optimiza-
tion problems using agent-based models. In general, the number of possible solutions to an
optimization problem is far too large for enumeration. Thus, heuristic methods must be
employed to answer such questions. Computational efficiency is a key factor in this process;
as such, the use of scaled approximations can be invaluable. As long as a scaled model
faithfully maintains the dynamics of the original, it can be used to solve the optimization
problem, resulting in a reduction of run time and computational complexity.

The paper is organized as follows: standards for data analysis are established and a sta-
tistical measure for model similarity is proposed. A heuristic technique known as Pareto
optimization is proposed as a means for solving optimization problems. The framework
is presented via the use of two models acting as representatives of large classes of ABMs,
which ought to hold interest for researchers from a wide variety of disciplines. Brief model
descriptions are outlined in the text, and detailed model descriptions following the Overview,
Design Concepts, and Details (ODD) protocol for agent-based models [47, 48] are provided
in the appendices. These descriptions ought to provide enough detail that the model (and
results) can be reconstructed and verified by independent research.

2.1.1 Related work

Optimization problems of the type presented here have been studied in models of influenza
and epidemics [67, 138], cancer treatment [82, 121], and the human immune system [6, 107],
to name a few. Previous studies have investigated the effect of various model features on
outcomes – for example, subway travel on the spread of epidemics [24], mobility and location
in a molecular model [70], molecular components in a cancer model [129], and strategies for
mitigating influenza outbreaks [86] – while not quite posing formal optimization problems.
A study on the effect of ABMs in determining malaria elimination strategies [39] suggests
that results from agent-based models are invaluable in the analysis of interventions.

In other studies, ABMs have been transformed into systems of differential equations [68]
and polynomial dynamical systems [55, 125], among others. The importance of spatial het-
erogeneity has been examined in specific [51] and more general [50] cases, and predator-prey
ABMs have been analyzed using statistical methods [135, 136].

2.1.2 A framework for solving optimization problems

The framework is summarized in Figure 2.1; subsequent sections motivate and explain the
process in detail.

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 6

Pose optimization problem

Determine no. of runs
for accurate data

Generate relevant data
to serve as benchmark

Reduce model

Generate data

Compare models using κ

Select a reduced model

Perform Pareto
optimization

Select desired control

Figure 2.1: An overview of the framework presented in this work. The three shadings
represent the phases of analysis, scaling, and optimization.

2.2 Data reliability

A key factor in analysis of agent-based models is stochasticity. The approach suggested here
is to examine how data averages change as the number of simulations (runs) increases. In
many cases, the data will settle in on some average that is not improved upon by increasing
the number of runs. Determining a sufficient number of runs is the first step in obtaining
reliable results. The emphasis on solving optimization problems necessitates this process:
while some of the stochasticity inherent to an individual run is lost when averaging over
repeated runs, it is necessary in order to determine the general efficacy of one control versus
another.

Agent-based models are often implemented on a grid, representing the ‘space’ of the model
(often times, the grid indeed represents some physical space). Treating the original size and
scope of the model as true, the goal of scaling is to determine the extent to which a model
can be reduced without altering pertinent dynamics. The models examined here contain
physical agents traversing physical landscapes. In this setting, the strategy is to gradually
scale down the model until the dynamics no longer faithfully represent the original model.
When applicable, this strategy results in reduced run time – in many cases substantially
so – reducing the computational requirements for the solving of optimization problems and
allowing access to a wider range of analytical tools.

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 7

Determining to what degree a reduced model is a faithful representation of the original
is an important question. In terms of optimization, it is necessary to determine the extent
to which models can be reduced for the purpose of optimal control. In order to accomplish
this, a sample of the control space is implemented in both the original model and reduced
versions. For each reduced version, the controls are ranked according to their effectiveness
in regards to the optimization or control objective. The aim is to use a reduced model as
a proxy for the original; thus, the ranking of the controls on the reduced model must be
compared to the ranking of the same controls applied to the original.

We propose Cohen’s weighted κ [21] as a measure of concordance of rankings for differ-
ent model sizes. Let pobs be the observed proportion of agreement in the two lists and let
pexp be the proportion of agreement expected by random chance. Then κ = pobs−pexp

1−pexp . Hence

if the lists are in perfect agreement, κ = 1; if the lists are no more similar than what is
expected purely by chance, κ = 0. This similarity metric for ranked lists determines penal-
ties based on the magnitude of disagreement. For details of how to calculate pobs, pexp, and
weighted penalties, see [21].

For examples of the use of this statistic as a measure of agreement, see [41] and [37]. Cohen’s
weighted κ is chosen because of its wide documentation and implementation in a variety of
studies; as such, there is precedent for this measure. There is no objective way to determine
a benchmark value for κ. Several studies propose a κ value greater than 0.75 as being very
good [3, 40], while others recommend a value of 0.8 or higher [74, 73]. In this study no
benchmark is set; rather, κ values are assessed a posteriori. For more details on setting a
benchmark for κ, see [116] and [35].

It is of course not guaranteed that all ABMs will be amenable to the strategies presented
here (for discussion on this issue see [32]). In fact, models may exist for which no reduction
is possible – nevertheless, reduction strategies are frequently useful and invariably informa-
tive. In particular, the investigation of differences in qualitative behavior can be served by
these (and other) methods of model reduction. For examples of model reduction strategies
applied to ABMs, see [144], [111], and [139]. It is also worth noting that ‘model reduction’
is a phrase whose meaning may be discipline-dependent: the extent to which a model can
be reduced is dependent on which meaning is taken and which model details one wishes to
preserve.

2.3 Pareto optimization

Once a suitable reduction has been made, an optimization problem can be solved using the
reduced model as a surrogate for the original. Perhaps the most explored method for opti-
mal control of ABMs has come in the form of heuristic algorithms. Given that enumeration

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 8

of the solution space is often infeasible, heuristic algorithms are used to conduct a guided
search of the solution space in order to determine locally optimal controls.

Several heuristic algorithms have been utilized in solving optimization problems for ABMs.
Examples include simulated annealing [101], tabu search [127], and squeaky wheel optimiza-
tion [79]. In this study, attention is focused on a certain type of genetic algorithm (GA).
These algorithms, first brought to general attention in 1989 [46], are designed to mimic evo-
lution: solutions that are more fit are used to ‘breed’ new solutions. GAs have been used
in conjunction with ABMs to find optimal vaccination schedules for influenza [100], cancer
[81], and in determining optimal anti-retroviral schedules for HIV treatment [15]. Vaccina-
tion schedule optimization results obtained from simulated annealing and genetic algorithms
have even been compared and contrasted [96]. As the primary focus of this paper is to
introduce a general framework for solving optimization problems for ABMs, a comparison of
various heuristic methods is outside the scope of this study. For a more comprehensive look
at heuristic control of ABMs, see [93].

The control problems described here have multiple objectives – this necessitates assigning
weights to each objective. Determination of weights in multi-objective optimization prob-
lems can be problematic because a priori, the appropriate weights may be unknown – in
particular, the assignment is at the discretion of the investigator. While there have been
various proposals for these assignments (for an example, see [45]), any method which does
not require weights has particular appeal.

Pareto optimization is just such a heuristic method: instead of a focusing on a single solution,
the algorithm returns a suite of solutions. Solutions on the Pareto frontier represent those
that cannot be improved upon in terms of one objective without some sacrifice in another.
In this sense, each solution on the Pareto frontier is optimal with respect to some choice of
weights. Thus, the ‘managerial’ decision of how to assign weights can be settled after the
search has concluded.

An extensive list of references on multi-objective optimization techniques can be found in
[20]. Pareto optimization has been selected for this study as it is novel in its application
to ABMs. The algorithm adopted here is a minor variant of that described in [60]: it is a
heuristic algorithm which searches the control space in an attempt to find the Pareto frontier.
Pseudocode for the algorithm is presented in Algorithm 1.

2.4 Software

The proposed framework requires two types of software: modeling, and statistical analysis.
Agent-based models can be implemented in a variety of software packages. Some of these,
such as NetLogo [133], Repast [91], and MASON [84] have been designed for general agent-

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 9

Algorithm 1 Pseudocode for Pareto optimization algorithm.
1: generate random initial population of solutions
2: while generation < max gens do
3: evaluate current generation, call it current pop . tally multiple objective data
4: determine Pareto frontier; call it current frontier
5: let next pop = current frontier . save frontiers between generations
6: while size of next pop < size of generation size do . each generation contains a fixed number of solutions
7: repeat
8: choose two candidate solutions from current pop
9: let comp set = random subset of 5 solutions from current pop

10: if exactly one candidate is Pareto dominant over comp set then
11: that candidate becomes parent . add candidates more likely to be on frontier
12: else if one candidate has fewer neighbors in solution space then . give preference to isolated solutions
13: that candidate becomes parent
14: else
15: choose candidate at random to become parent
16: end if
17: until two parents have been chosen
18: Breed two new solutions (a and b) using parents:
19: for all components in parent solutions do . uniform crossover
20: select component from random parent
21: add this component to a
22: add corresponding component from other parent to b
23: end for
24: mutation rate = 0.20((max gens− generation)/max gens) . mutation decreases over time
25: for all components in a and b do . perform mutation
26: change component with probability mutation rate
27: end for
28: end routine
29: add a and b to next pop
30: end while
31: increase generation by 1
32: end while

based modeling. Other software has been developed for agent-based modeling in specific
fields – these include C-ImmSim, VaccImm, and SIMMUNE for the human immune system
[13, 137, 89], FluTE for influenza epidemiology [17], and SnAP for public health studies [10].
While one can always implement one’s own toolkit for examining agent-based models, the use
of established software can reduce both the variability between researchers’ implementations
and the learning curve for conducting research in this field. NetLogo was chosen as the
modeling platform in this study, though there is no reason why the study could not have been
undertaken using a number of different software packages. A standard NetLogo installation
contains an extensive library of models from a variety of fields; the models discussed here are
adaptations of popular models from this built-in library. Statistical analysis can be performed
by virtually any statistical software package; in this study, Microsoft Excel was used. Due
to the fact that simulation data was needed in order to perform Pareto optimization, this
process was implemented in NetLogo as well. In general, the techniques described here are
sufficiently straight-forward that highly specialized software is not needed, and the framework
is not limited to any particular software choice.

2.5 Two models

2.5.1 Rabbits and grass

The first model to be examined is based on a sample model from the NetLogo library [133]
involving rabbits in a field. At each time step, each rabbit moves, eats grass (if there is grass

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 10

at its location), and then possibly reproduces or dies, based on its energy level. There are
several compelling reasons for the use of this model as a test case for the proposed frame-
work. One is that the model is sufficiently simple to describe, so results can be obtained,
interpreted, and understood with minimal overhead. A more important reason is that this
model represents the category of general predator-prey systems (with grass functioning as
prey). Such models are commonly used in ecology and have been widely studied. Thus,
the framework can be presented through an example that appeals to a broad community
of researchers. Indeed, this model illustrates many concepts common in ABMs containing
interacting species. A detailed description of the model and parameter values are provided
in Appendix A.

Control consists of deciding (each day) whether or not to apply poison to the grid (i.e.,
uniformly to all grid cells). Specifically, the control objective is to determine a poison sched-
ule u that minimizes the number of rabbits alive throughout the course of a simulation while
also minimizing the number of days on which poison is used. Note that it is unlikely that
one control schedule will minimize both objectives simultaneously – for example, the control
wherein no poison is used certainly minimizes the second objective, but not the first. Thus,
this problem is a good candidate for Pareto optimization: a suite of solutions can be found,
each member of which is optimal depending on the weights assigned to the two objectives.

Scaling results

One of the control objectives concerns the average number of rabbits alive over the course of
a simulation; thus, this is the pertinent metric in terms of model reduction (given that the
other control objective – minimizing days on which control is used – is entirely preserved at
any model size and for any number of runs).

As noted in Section 2.2, the first consideration when attempting to scale the model is deter-
mining the number of runs necessary in order to achieve reliable results. To this end, several
control schedules were selected at random. Each was applied to the original 50× 50 model,
and results were tallied up to 100 runs. Population dynamics for three randomly selected
control schedules are presented in Figure 2.2: plots show how the average number of rabbits
alive over the course of the schedule change as the number of runs increases, with error bars
representing one standard deviation. These three schedules represent three distinct regions
of the control space, in that each contains a different number of control days. Note that in
all cases, there is little change in the mean or the standard deviation beyond 50 runs – this
suggests that there is no advantage in averaging over more than 50 runs. It is important to
note that if the control objectives were altered (for example, if grass levels were of interest
rather than rabbit levels) then this conclusion may not hold. In particular, the necessary
number of runs depends upon the model dynamics of interest – in this case, the average
number of rabbits.

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 11

(a) 10 control days (b) 30 control days

(c) 50 control days

Figure 2.2: Average population values are not improved upon by using more than 50 runs.

Once a benchmark for reliable results has been established, various model reductions can be
investigated with respect to control. In the original model, there are 50× 50 = 2500 patches
and 150 rabbits initially. A model size of M means that the world width and height are
both M . Hence, when reducing the model to size M , the initial number of rabbits ought to
be 150× M2

2500
, in order to maintain the same proportion of rabbits to model size. All other

state variable values remain the same.

For each of a set of controls applied to the original model, average rabbit numbers are
obtained via simulation; the controls can then be ranked by these numbers. These same
controls can be applied to a reduced model, resulting in a (potentially) different ranked list.
The κ statistic (see Section 2.2) measures the similarity between the two rankings, thereby
serving as a measure of the extent to which the reduced model serves as a substitute for
the original. It is important that these rankings are maintained over a wide range of control
schedules, since solving the optimal control problem will involve the potential examination
of the entire solution space.

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 12

Generating a set of controls randomly results in a normal distribution centered on solu-
tions with fifty zeros and fifty ones. To avoid focusing on too narrow a portion of the
control space, a stratified random sample was taken: 24 values N1, . . . , N24 were chosen as
frequency numbers, representing the number of ones (i.e., poison days) in the schedule.
These values were chosen at random within the following scheme: three values were chosen
between 1 and 10, three between 10 and 20, and so on, with the final three chosen between 70
and 80. Four control schedules were then randomly generated, each containing Nk ones and
100 −Nk zeros (distributed randomly throughout the schedule), for k ∈ {1, . . . , 24}. Thus,
for each trial, a total of 96 schedules were evaluated, chosen as a stratified random sample
of the solution space. Note that schedules with more than 80 non-zero entries were not
considered, as preliminary investigation showed that such schedules were quickly eliminated
from any heuristic optimal control search.

One trial is defined as follows: 96 control schedules (chosen according to the above de-
scription) were run using the original M = 50 model, and then again on the model at each of
the following model sizes: 50, 40, 30, 20, 10, 5, and 3. Note that the schedules are run twice
on the original M = 50 model: this is done in order to establish how consistent the rankings
are when evaluated twice on the same-sized model. In some sense, this serves as validation of
the choice of 50 simulations as being sufficient for reliable results, and also provides insight
into the analysis of an appropriate benchmark for κ, as will be seen below.

Evaluation of 150 schedules (each averaged over 50 simulations) at model size M = 50
requires approximately 3 seconds. Table 2.1 gives the number of simulations that can be
run for the reduced models in approximately 3 seconds. Given that the primary advantage

World size Simulations Avg. run time (sec.)
50 50 3.04
40 75 3.00
30 135 3.05
20 290 3.03
10 1100 3.03
5 3500 3.01
3 5700 3.03

Table 2.1: Number of simulations in equivalent run time.

for scaling models is to reduce run time, it is more appropriate to compare data based on
equivalent run time rather than using a fixed number of simulations for each size. This data
aids in scaling analysis: if one wishes to reduce the run time by 50%, the number of runs
that can be performed is easily calculated.

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 13

Figure 2.3 summarizes κ values for various world sizes and run times. Each data point
represents the mean taken over ten trials, with error bars representing one standard de-
viation. A benchmark value of κ = 0.8 is plotted as well – it is presented to serve as a
preliminary gauge of how well the reduced models capture the dynamics of the original.
Each line on the graph connects data points of equivalent run time. Figure 2.3 helps identify

Figure 2.3: Cohen’s weighted κ for various world sizes and run times.

unviable reductions: accepting a benchmark of κ = 0.8, world sizes below 20 are not suffi-
ciently accurate representatives of the original model (and the size 20 model is only sufficient
at 100% run time). The data also show that if one insists on using the size 3 model, the
benchmark for κ will have to be lowered. It further shows that if one wishes to use the size
3 model and insists on a κ value higher than 0.8, it will certainly require an increase in the
run time of the model (and even then, may not be possible).

Several important conclusions can be drawn from this data: one is that if the priority is
achieving the highest possible value for κ, then the original size 50 model is always the best
choice for any fixed run time. This is perhaps unsurprising, as one can only expect to lose
some accuracy as model size decreases. Another important conclusion is that if the only
priority is decreased run time, it is always better to use fewer runs of the size 50 model
rather than more runs of a smaller model. This follows because each line represents a fixed
run time, and for any fixed run time, the size 50 model results in the highest value for κ. A
fixed benchmark for κ further informs a researcher with a priority of reduced run time: as
the data show, if one wishes to keep κ above 0.8, then it is possible to reduce the run time by
90%, but not further (as indicated by the data for the size 50 model at 0.3 seconds). Thus,
not only can one determine which world size should be used in order to obtain minimum run
time, but also the minimum run time that can be achieved in order to maintain a pre-set
benchmark for κ.

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 14

There may be cases where a reduced model is of particular interest – for example, [55]
describe methods for translating ABMs into polynomial dynamical systems (PDS), offering
advantages such as steady state and bifurcation analysis. The number of required equa-
tions may be too large for the size 50 model, but not so for the size 10 model. A similar
concern applies to differential equations approximations. Examples of these considerations
are discussed in [69] and [68]. Hence, depending on the priority of the modeler, the data
here shows which world sizes may be used and what κ values can be expected when doing
so. Furthermore, note that for smaller world sizes the range of κ values is decreased. In
particular, in order to achieve 1% run time on the 50× 50 model, κ decreases from 0.90 to
0.68. However, in order to achieve a 1% run time on the 3× 3 model, κ decreases from 0.38
to 0.33. Thus, for smaller models κ may be less affected by a decrease in run time.

In addition to the above conclusions, the data informs the study of points at which the
dynamics of the model undergo a qualitative change. There is a larger change in reducing
from world size 10 to 5 than there is in going from size 20 to 10; this indicates the dynamics
are more rapidly changing between world sizes 10 and 5. In particular, the data seem to
suggest that the pertinent dynamics are not drastically altered between the original size 50
model and the size 20 model, but change rather quickly at smaller sizes. This is of particular
interest in light of the fact that the original world size was chosen more or less arbitrarily. If
one began with a size 10 model, it may not be possible to reduce it to the same extent that
one can reduce a size 50 model.

As mentioned in Section 2.2, several studies suggest a κ value of 0.8 as a benchmark for
sufficient similarity. While largely cited and used, the applicability of this value ought to
be examined in light of the results obtained by heuristic algorithms. In particular, for each
model size an appropriate κ value can be determined a posteriori based on said results. The
goal of this model reduction analysis is not to prescribe which model size one ‘should’ use;
rather, given that the process depends on the priority of the modeler, the goal is to present
κ values and run times one can expect when using a particular reduced model.

Results from Pareto Optimization

As discussed in Section 2.3, the goal of a Pareto optimization algorithm is to return a suite
of solutions, each of which is optimal for a particular choice of objective weights. For this
model, the objectives are to minimize the number of days on which control is used and to
minimize the number of rabbits alive during the course of a simulation. Recall that a control
is a vector of length 100 with entries in {0, 1}. Figure 2.4 shows an example of the Pareto
frontier. Each dot corresponds to one control, plotted according to the values on the axes.
The ×’s make up the Pareto frontier of this data set: for every point on this frontier, one of
the objectives cannot be improved upon without some sacrifice in the other. On the other
hand, for each point not on the frontier, there exists some point in the set that improves

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 15

upon both objectives: in particular, for every square (i.e., non-Pareto frontier) data point,
there exists at least one other point with fewer control days and a lower average number of
rabbits. The goal of the heuristic Pareto optimization algorithm is to determine, as near

Figure 2.4: An example Pareto frontier for the Rabbits and Grass model. Frontier points
are marked with an × and non-frontier points with a square.

as possible, the true Pareto frontier of the control space. Thus, remaining figures consist of
Pareto frontiers only and not the entire data sets. In order to investigate a variety of κ values
as determined in Section 2.5.1, several representative model sizes and run times were chosen.
For each representative model the Pareto optimization algorithm was run and a Pareto
frontier obtained. If a reduced model is a suitable substitute for the original then the Pareto
frontier for the reduced model ought to be the same as the Pareto frontier of the original
model. For each reduced model, the controls making up the frontier are implemented in
the original model in order to determine if they are actually Pareto optimal (as the reduced
model results has suggested). Note that Pareto optimization has been performed on the
original model as well in order to serve as a basis for comparison.

Figure 2.5 summarizes results for representative models with lower κ values. Each shape
corresponds to one representative model, with results coming from the implementation of
these controls in the original model. These results suggest that models with κ values below
0.5 are not very good surrogates for the original model. In particular, there are fewer data
points, and they tend to cluster near certain regions of the frontier. In short, very few of the
controls determined to be Pareto optimal by these representative models are in fact Pareto
optimal in the original model. Figure 2.6 shows similar results for models with higher κ
values. The representative model with a κ score of 0.89 produces a Pareto frontier very near
to the frontier of the original model, suggesting that a κ value of 0.89 is sufficiently high
– hence, a reduced model with a κ value of 0.89 can likely be used as a surrogate for the
original model. The data for the model with a κ value of 0.76 is also near to the Pareto

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 16

Figure 2.5: Pareto frontiers for models with lower κ values.

frontier of the original model, though not to the same extent. For the model with κ = 0.65,
there are fewer data points, and these are a bit further from the true frontier.

Finally, Figure 2.7 suggests that there is a mildly linear relationship between the κ value of
a reduced model and the number of points on the Pareto frontier. The same settings were
used for each Pareto optimization algorithm; yet, in general, this data shows that models
with lower κ values tend to produce smaller Pareto frontiers (even within the reduced model
itself). One possible explanation for this is that for a reduced model, there is a narrower
range in the possible dynamics of a model, and thus the true Pareto frontier for a reduced
model may indeed be smaller. Thus, again, κ values indicate the extent to which model
dynamics are preserved. A qualitative examination of the data presented here suggests that
a κ benchmark in the region of 0.75 – 0.80 is in fact a good benchmark for this example.
Once again, the final decision rests with the researcher and is ultimately determined by the
level of desired accuracy.

2.5.2 SugarScape model

The second model is a modified version of SugarScape [36], in which a population of agents
traverse a landscape in search of sugar. This model was chosen for several reasons: first, it is
spatially heterogeneous. This is a common feature of many ABMs and thus it is important
to demonstrate how the framework presented here can be applied to models wherein space is
an issue. Second, the model has been examined by researchers in a variety of fields – studies
based on SugarScape have focused on migration and culture [27], distribution of wealth [105],
and trade [26]. As such, it is of broad general interest as a test case. Thus, future work may
build on the framework presented here as a means of conducting research in areas as diverse
as social science, biology, and economics.

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 17

Figure 2.6: Pareto frontiers for models with higher κ values.

Figure 2.7: Plot of κ values vs. size of frontier, with line of best fit (Pearson’s r2 = 0.66).

The basis of the model used here is included with the standard NetLogo distribution [133].
The landscape consists of fixed regions containing different amounts of sugar; as such, this
model contains a spatial heterogeneity not present in the rabbits and grass model. The
original landscape is presented in Figure 2.8; darker regions represent areas with more sugar.
Periodically, ants are taxed based on their vision, metabolism, and location (e.g., high-vision
ants in sugar-rich regions may be taxed at higher rates than low-vision ants in regions with
less sugar). The optimization problem is to determine the tax schedule which maximizes the
total tax income collected while minimizing the number of deaths. Full model details, includ-
ing those pertaining to taxation, are provided in Appendix B. Note that certain parameter
values are altered when considering reduced models; parameter values given in Appendix B
refer to the 50× 50 model.

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 18

Figure 2.8: Landscape of the 50 × 50 Sugarscape model – darker regions contain more
sugar.

Scaling results

A total of 100 controls were generated, consisting of three different average tax rates. The
number of deaths and tax income for each was collected over a total of 100 runs. Represen-
tative data is presented in Figure 2.9, with error bars representing one standard deviation.
As seen in the figure, there is very little change in the mean and standard deviation of the
data beyond 50 runs; hence, there is no benefit to averaging over more than 50 simulations.

Given the importance of the spatial layout of the SugarScape model, it is necessary to
preserve this layout as nearly as possible in any reduced version. Landscape reduction
was determined by the nearest-neighbor algorithm, a means of re-sampling the original
landscape in order to determine the layout of a reduced version.

In addition to scaling the map, the number of agents was also scaled. While low vision is
defined to be 1 at any model size, high vision depends on the size of the grid: an agent with
vision v on a 50 × 50 grid has vision vr = v · n

50
on an n × n grid. For grid sizes 10 and 5,

this would result in high vision being equivalent to low; thus in these two cases high vision
was defined to be 2. The metabolism of each agent is not scaled: at each model size, it was
randomly set between 1 and 4 (inclusive).

To run the simulation 50 times at model size M = 50 (meaning a 50 × 50 grid) takes
approximately 8.5 seconds. Table 2.2 shows the number of simulations which can be run in
equivalent run time for reduced model sizes. Figure 2.10 shows κ values for various model
reductions. Since there are two variables in this case (deaths and tax income), controls can
be ranked according to either, resulting in two different κ values. Note that when ranked
according to the number of deaths, κ values are extremely low – in fact, close to being
completely random. While the rankings according to tax income result in higher κ values,
they still fall short of the proposed minimum benchmark of 0.8. An interesting feature of
this data is that there appears to be no great difference in the κ values obtained from models
run at 2% of the original run time versus those obtained from 100% run time. This may
indicate that the number of runs (50) used for reliable data was originally set too high, or
it may indicate that κ values at or below 0.45 are equally unreliable. Nevertheless, there is

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 19

(a) Avg. tax rate of 0.125 (b) Avg. tax rate of 0.25

(c) Avg. tax rate of 0.375

Figure 2.9: Average values for deaths (solid) and tax income (dashed) are not improved
upon beyond 50 runs. Tax income values have been scaled linearly to fit on the plots.

a clear trend showing that as the model size decreases the κ values decrease as well. As in
the previous example, this may be an indication of qualitative changes in model dynamics
as the model size is reduced.

Results from Pareto Optimization

Although κ values appear lower in this case, it is necessary to again examine the performance
of reduced models with respect to control. While the suggested benchmark of 0.75 − 0.8
proved fitting for the previous model, it may be that a lower κ benchmark is acceptable in this
case. Results are presented in Figure 2.11. Pareto frontiers from three models are presented
here: those with κ values of 0.43, 0.27, and 0.15 (with respect to tax income). The shape of
the data from the three models follow the same basic shape of the true Pareto frontier (labeled
‘Master’ in the figure), but there is a distinct difference in performance. In particular, none
of the controls found by any of these models are on the Pareto frontier of the original.

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 20

World size Simulations Avg. run time (sec.)
50 50 8.51
40 88 8.48
30 173 8.49
20 427 8.52
10 1375 8.53
5 3900 8.48

Table 2.2: Number of simulations of SugarScape in equivalent run time.

Figure 2.10: Cohen’s weighted κ when controls are ranked by deaths and by tax income.

Furthermore, there does not appear to be any significant difference between solutions found
using the model with κ = 0.43 and those found using the model with κ = 0.15. This indicates
that not only are none of these models appropriate as replacements for the original, but that
there may in fact be a minimum κ value, below which all models are unsuitable. In other
words, the downward trend indicated in Figure 2.10 may be misleading: while it seems to
suggest that as model size decreases, the models become less representative of the dynamics
of the original, the results in Figure 2.11 suggest that this isn’t actually the case. On the
contrary, models with a κ value of 0.15 may be no worse than those with κ values of 0.43.
Given that no models attained a κ value higher than 0.45, it is impossible to judge the
benchmark of 0.75 as appropriately high. On the other hand, it is possible to conclude that
κ values at or below 0.45 are certainly too low.

2.6 Conclusions

The goal of this paper is to introduce a framework for optimization of agent-based models.
Once reliable data is obtained, reduced models can be compared to the original. Similarity
can be measured using Cohen’s weighted κ. Pareto optimization was implemented in order

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 21

Figure 2.11: Pareto optimization results for the SugarScape model.

to solve control problems in both cases, allowing for a posteriori analysis of the κ benchmark.
Results presented here show that in one example, the established benchmark in the range of
0.75− 0.8 was indeed sufficient for model reduction, while the second example showed that
values below 0.45 were too low. These results suggest κ can be a meaningful measure for
model reduction.

The models presented here were selected for their universality and popularity – as such, they
act as standard models to which any attempt at analysis should be applied. In principle
there is no reason why the methodology would not apply to extensions of these models or
to other ABMs. In the future this collection of models should be expanded to include a
wider variety of models of increasing complexity. This methodology has been applied here to
models wherein space and agent location are key features; it may require some modification
in order to generalize to non-spatial models. In addition, other methods for analysis of
agent-based models include transformation to equation models. Such work (using the same
models presented here) is underway.

As ABMs are used more and more to investigate real-world systems, optimization and opti-
mal control problems will naturally arise in the context of ABMs. Heuristic methods have
several advantages: they are easy to implement on a computer and they can be applied
to virtually any ABM. This is particularly important for models that are too complex for
conversion to other mathematical forms, e.g., in cases where differential equations are in-
sufficient. The user has direct control over how each algorithm runs, and can fine-tune
parameters and settings to better suit the model. However, there are drawbacks to these
methods. For those interested in the certainty of finding globally optimal solutions, heuristic
methods are lacking. On the other hand, one may obtain sufficient controls using these
methods, and that is a step in the right direction for control of ABMs – in particular when
one’s goal is to obtain controls that are either sufficient or simply better than any previously

Matthew S. Oremland Chapter 2. Scaling Methods and Heuristic Algorithms 22

known.

It is possible that the complexity of agent-based models will make formulaic translation
to rigorous mathematical models intractable – in that case, heuristic methods provide the
only means for optimization and optimal control of agent-based models. Coupled with the
model reduction techniques and analysis introduced here, this technique provides valuable
methodology for solving control problems with agent-based models.

Chapter 3

Optimal Harvesting for a
Predator-Prey Agent-based Model
using Difference Equations

Acknowledgements are due to Claus Kadelka and Kristin Deger, who helped in the develop-
ment of ideas in this paper. MSO is responsible for the movement scheme analysis, parameter
estimation algorithm, derivation of the equation model, and implementation of the Pareto
optimization algorithm.

3.1 Introduction

Agent-based models (ABMs) are computer simulations wherein entities follow update rules
based on their local environment. These local interactions give rise to global dynamics – in
many cases, the global dynamics are directly determined by the choice of local rules. The
ability to investigate the nature of this relationship is a key aspect of agent-based modeling.
In this sense, ABMs function as in silico laboratories, wherein experiments can be conducted,
analyzed, and used to suggest further investigation, either into the ABM itself or into the
system being modeled. Beyond standard analysis of model dynamics, one frequently wishes
to use an ABM to answer some specific question (or set of questions). External inputs may
be implemented which allow formulation of an optimization problem: what is the best way
to steer the model to a particular state?

Currently, there is no established framework for solving optimization problems for agent-
based models, despite the obvious value that a universal framework would provide. In this
study, a predator-prey ABM is used as a representative model in order to investigate how
global dynamics are affected by changes to local update rules, and how optimization prob-

23

Matthew S. Oremland Chapter 3. Optimal Harvesting 24

lems might be approached. In particular, discrete difference equations are implemented to
serve as a mathematical tool for ABM analysis. The equations are initially developed ana-
lytically from the rules of the model, and subsequently altered numerically in order to track
changes to the ABM ruleset. Results suggest that equations can be useful in investigating
the importance of local rules as well as in solving optimization problems. As such, this
mathematical approach has the potential to be a powerful tool for analysis of a broad class
of models.

This work presented in the following order: first, related work is presented in order to brief
the reader on what has been done in this area, both by the authors and by others in the
field. Next, a representative predator-prey model is described, followed by details on how the
model was converted to a system of equations. This is followed by some analysis using the
equation model and how it compares to ABM dynamics. Finally, the optimization problem
is implemented, the equations are updated to incorporate it, and a heuristic algorithm is
used to solve the problem. The paper concludes with a discussion and thoughts on future
work.

3.2 Background and related work

Many studies have investigated the differences and similarities between agent-based and
equation-based modeling. A 1998 study compared an ordinary differential equation (ODE)
model with an ABM, concluding that ABMs are preferable if the system is highly localized
[33]; this point is reiterated in a 2008 study which notes that equation models may be more
appropriate in cases where sensitivity analysis is of particular interest [106]. A 1992 study
contrasts local and global population dynamics [88]; a similar study on mean-field approxi-
mations emphasizes the importance of local densities [94]. All of this work suggests that local
dynamics are a critical feature of agent-based models, and that care must be taken in any
attempt to analyze or describe ABMs with equations. This is echoed in the conclusions of
[63] and [44], wherein equations were found to better fit ABMs containing large populations.
A study wherein spatial dynamics were shown to match well with mean-field aggregation [34]
was expanded upon and improved by the inclusion of neighborhoods of varying sizes [61].
Given that the model used here is a predator-prey system, studies of similar systems are of
particular interest. One study compared linear stability analysis between an ABM and a
differential equations model [134], highlighting the key differences of each system. Another
study focused on the oscillatory nature of predator and prey populations in an ABM [83],
noting that it can be difficult to capture this feature using ODEs. In previous studies, we
have shown how ABM dynamics can be translated into systems of polynomial dynamical
systems [76, 55].

A second focus of the work presented here concerns methods for solving optimization prob-
lems for agent-based models. It is worth noting that the term ‘optimization’ may refer to

Matthew S. Oremland Chapter 3. Optimal Harvesting 25

model design or parameter choice; the meaning implied here is neither of these. Rather,
solving an optimization problem refers to determining the best sequence of external inputs
to a model in order to steer the model to a particular state, or to achieve a certain goal.
For example, ABMs have been used in this context in order to investigate influenza miti-
gation strategies [138, 86], malaria outbreaks [92], general disease control [10], and resource
allocation [67], among others. We have examined the model presented here in a textbook
chapter aimed at undergraduate students [77]; this work contains results using simulation
optimization techniques. One of the advantages of converting ABM dynamics to a system of
equations is that the equation model can be used in order to solve optimization problems. A
pair of studies on leukemia used partial differential equations to do precisely that [69, 68]. A
separate study conducted on a model very similar to that presented here (and with a similar
optimization problem) was carried out in [23]; there, ordinary differential equations are used.
The combination of discrete dynamical systems and heuristic methods for optimization as
described below provide a novel approach.

3.3 The model: rabbits and grass

The model we examine in this study simulates a population of rabbits in a field. The rabbits
jump around throughout the field, gaining energy by eating grass (if it is available) and losing
energy by moving and via reproduction. Grass is removed from a location when eaten and
grows back at each time step with some fixed probability. Rabbits die when they run out of
energy. A version of the model is available as part of the model library in NetLogo [133], free
software available for download from http://ccl.northwestern.edu/netlogo/. Note that the
version of the model included with NetLogo differs slightly from the formulation presented
here – in particular, in this paper poison is implemented as an external input. Viewing the
rabbits as an invasive species, this gives rise to a natural optimization problem: what is the
best poison strategy in order to minimize the rabbit population while also minimizing the
amount of poison used? For a detailed description of the model examined here, including
details on how poisoning is implemented, see Appendix C. A screenshot of the model interface
is provided in Figure 3.1.

3.4 Deriving the equations

Table 3.1 provides a description of all terms used in the derivation of the equations. Note that
the equations are discrete difference equations – time jumps from t to t+1, corresponding to
one time step in the ABM. First we note that r(t)

N
represents the density of the rabbits. The

proportion of empty (i.e., grassless) patches is (1− g(t)). Given that the initial distribution
of rabbits and grass is random, we expect the proportion of grass that gets eaten to be

http://ccl.northwestern.edu/netlogo/

Matthew S. Oremland Chapter 3. Optimal Harvesting 26

Figure 3.1: A view of the NetLogo interface for the Rabbits and Grass model.

Term Description
r(t) Number of rabbits alive at time t
g(t) Proportion of grid cells containing grass at time t
N Total number of grid cells
γ Probability of grass growing back in an empty grid cell at each time step
pk(t) Number of rabbits with energy k at time t
en Energy gained by eating grass
m Energy lost by moving (i.e., movement cost)
bt Birth threshold
bc Energy lost by reproduction (i.e., birth cost)

Table 3.1: A description of the terms used in the difference equation system.

r(t)
N
g(t). Then the difference equation for the grass is:

g(t+ 1) = g(t) + γ(1− g(t))− r(t)

N
g(t) =

(
1− γ − r(t)

N

)
g(t) + γ.

Because food energy, movement cost, and birth cost all have integer values, rabbits can be
tracked by their precise energy level. Note that since all rabbits with energy above bt give
birth, the maximum energy of a rabbit at the end of each day is bt.
Any rabbit with energy zero or less dies, so given that rabbits lose m energy each time they
move, p0(t + 1) = (1 − g(t))

∑m
i=1 pi(t). Here, 1 − g(t) indicates the proportion of patches

not containing grass – in other words, the proportion of rabbits that fail to eat.

For k > 0, there are several ways a rabbit can end each day with energy k:

Matthew S. Oremland Chapter 3. Optimal Harvesting 27

• a rabbit moves and fails to eat, thereby losing energy,

• a rabbit moves and eats, thereby gaining energy,

• a rabbit moves, eats, and gives birth, thus reducing its (and its offspring’s) energy.

The first case is described by the term (1−g(t))pk+m(t), the second by the term g(t)pk+m−en(t),
and the third by the term 2g(t)pk+m−en+bc(t). Note that k + m− en ≤ 0 =⇒ k ≤ en−m
and by assumption, en −m > 0. Thus the second term is not present for values of k such
that k ≤ en−m.

Next note that in order for birth to have occurred, k+bc > bt =⇒ k > bt−bc. Also, since all
rabbits above energy level bt give birth, there are no rabbits with energy greater than bt, so
the third term will only be present when k+m−en+bc ≤ bt =⇒ k ≤ bt−m+en−bc. Thus
the third term (the ‘birth’ term) only applies for k satisfying bt − bc < k ≤ bt −m+ en− bc
(the coefficient 2 appears because the parent’s energy level is reduced, and the offspring is
spawned with this reduced energy level). The above description allows for the model to
be written in terms of parameters m, en, bc, and bt. Section D presents the entire discrete
model, using state variable values provided in Appendix C.

The next step is to validate the discrete model by comparing data obtained from the ABM
with data predicted by the difference equation (DE) model. Figure 3.2 confirms that the
equations capture the average population dynamics of the ABM. However, one important
adjustment to the ABM has been made: the equations do not account for agent dispersal
or local densities. In particular, the ABM data shown in figure 3.2 was generated under the
random jump movement rule (see section C.6). Under this movement scheme, rabbits lose
the same amount of energy regardless of the actual distance moved. Random jump ensures
that every rabbit has the same probability of coming into contact with each grid cell. In
light of this, it is perhaps not so surprising that the equations do not account for space:
random jump has the effect of eliminating localization from the model.

The original movement rule implemented in the ABM is wiggle movement, which has the
effect of rabbits moving in a more or less straight direction, with some wiggling; see details
in section C.6. Figure 3.3a shows the equation data plotted alongside ABM data generated
using wiggle movement. While the same basic shape of the data remains the same, it is now
clear that the data from the equation model is no longer a good fit – this is entirely due to
changes in the movement rule. The next step, then, is to introduce movement parameters
m0, . . . ,m8 that adjust for changes to the movement rule. The updated model is presented
in figure D.2.

A heuristic technique known as ‘squeaky wheel’ optimization was used in order to deter-
mine parameters values; see section E for details. Figure 3.3b shows how well the equations
fit the ABM data generated using wiggle movement; parameter values are given in table 3.2.

Matthew S. Oremland Chapter 3. Optimal Harvesting 28

Figure 3.2: Data from the ABM and the equation model, using random jump movement.

(a) Unadjusted data – bars represent one standard
deviation).

(b) Equation data after parameter adjustment.

Figure 3.3: Population data from the ABM vs. data predicted by the equations, using the
wiggle movement rule.

Finally, to illustrate the effectiveness of the movement parameters, a third movement scheme
entitled Neighbor 8 was also considered (see section C.6) – in this scheme, rabbits move to
the center of one of the neighboring 8 grid cells. Movement parameters adjusted to match
neighbor 8 ABM data are presented graphically in figure 3.4. Neighbor 8 movement is in-
cluded here for an important reason: it highlights how a subtle change in the movement rule
can produce qualitatively different dynamics. While the difference between random jump
and wiggle is notable, the difference between neighbor 8 and either of those is dramatically
more so. Nevertheless, the heuristic algorithm for parameter estimation is able to match
these dynamics, lending credibility both to the form of the model and to the algorithm itself.

Recall that one of the main uses of the equation model is to solve an optimization problem
– in light of that, having accurate equations is critical. One commonly noted drawback of

Matthew S. Oremland Chapter 3. Optimal Harvesting 29

Movement rule m0 m1 m2 m3 m4 m5 m6 m7 m8

Random jump 1 1 1 1 1 1 1 1 1
Wiggle 0.954 1.182 1.194 0.960 0.856 1.094 0.918 0.695 1.009
Neighbor 8 0.818 1.583 1.139 0.849 0.804 0.913 0.908 0.908 1

Table 3.2: Movement parameters for various movement rules.

Figure 3.4: Data from the ABM and the equation model using neighbor 8 movement.
Parameter values are provided in table 3.2.

aggregate models such as the one presented here is that they do not offer any particular
insight; they are phenomenological rather than analytical or explanatory. This remains an
issue here, as we can see that the parameters have something to do with agent movement
but we certainly can’t interpret them in the same way as γ, bc, or m, for example. However,
this issue doesn’t take away from the usefulness of the equation model: in order to solve
optimization problems with the equations, our main priority is that the equations respond
to various controls in the same way as the ABM. As long as they retain these qualitative
features, the equations remain quite useful indeed. We next use the DE model to analyze
long-term behavior.

3.5 Steady-state analysis of the DE model

The main motivation for using equations to describe the ABM is to solve a particular op-
timization problem. However, the usefulness of the equations is not limited to this setting.
Understanding the long-term limiting behavior of any ABM can be quite difficult due to the
stochastic nature of many models. The DE model makes such analysis possible, providing
insight into the dynamics of the ABM while precluding the need for extensive simulation.
In particular, equations p0(t), . . . , p8(t), and g(t) track the rabbit population and the grass

Matthew S. Oremland Chapter 3. Optimal Harvesting 30

Equation Steady state 1 Steady state 2
p0 0 2.53
p1 0 4.44
p2 0 6.31
p3 0 8.87
p4 0 12.52
p5 0 10.31
p6 0 7.98
p7 0 4.80
p8 0 2.96
r(t) 0 58.20
g 1.79 0.40

Table 3.3: Steady states for wiggle movement.

level. Solving for steady states requires solving the system f(t+1) = f(t) simultaneously for
each equation f in the system. The FindRoot() function in Mathematica was used to solve
this nonlinear system, though many other software packages and alternatives exist. For the
analysis presented here, wiggle movement was implemented in the ABM and the equation
parameters were set according to table 3.2. For a wide variety of initial conditions, only
two steady states were found – these are presented in table 3.3. Steady state 1 (SS1) is the
extinction state; all rabbits die out and the grass fills up the field (the value of g being higher
than 1 is an artifact of the DE model). Steady state 2 (SS2) is the co-existence state: a total
of approximately 58 rabbits are alive at each time step, with the distribution of energy levels
given in the table. The proportion of patches containing grass goes to 0.40. In addition to
yielding these steady states, mathematical analysis enables us to determine the stability of
each by examining the DE model. The Jacobian of the system is J =

0 m0(1− g) . . . 0 0 0 0 −m0p1
0 0 . . . 0 0 0 0 −m1p2
0 0 . . . 0 0 0 0 −m2p3
0 m0g . . . 0 0 0 0 m0p1−m3p4
0 0 . . . m4(1− g) 0 2m5g 0 m1p2 −m4p5 + 2m5p7
0 0 . . . 0 m6(1− g) 0 2m7g m2p3 −m6p6 + 2m7p8
0 0 . . . 0 0 m5(1− g) 0 m3p4 −m5p7
0 0 . . . m4g 0 0 m7(1− g) m4p5 −m7p8
0 0 . . . 0 m6g 0 0 m6p6
0 −m8g

1600
. . . −m8g

1600
−m8g
1600

−m8g
1600

−m8g
1600

m8

(
0.98− p1+...+p8

1600

)

.

Recall that the DE model provides expected values over a large number of runs rather than
results for an individual run. Thus, the steady states presented here must be interpreted
in the same way: not as values that any particular simulation will tend to, but rather as

Matthew S. Oremland Chapter 3. Optimal Harvesting 31

Energy SS2 value ABM value
1 4.44 4.34
2 6.31 6.29
3 8.87 9.16
4 12.52 12.09
5 10.31 9.81
6 7.98 7.50
7 4.80 5.15
8 2.96 2.67

Table 3.4: Population at each energy level. ABM values are averaged over a single 1000-tick
simulation.

averages of the represented values over many time steps.

Evaluating J at the extinction steady state and solving for eigenvalues, we see that the
maximum magnitude of the eigenvalues is 2.72. Since this is greater than 1, we may conclude
that SS1 is unstable. This means that as long as the initial number of rabbits is non-zero,
the probability of extinction is highly unlikely (though still technically possible in the ABM
due to stochasticity). On the other hand, the maximum magnitude of the eigenvalues for
SS2 is 0.983. In particular, this is less than 1, so SS2 is stable. We may verify these results
by initializing the ABM with a distribution of rabbits near SS2 (exact values are not possible
since the number of rabbits must be an integer value) and examining long-term behavior.
Our observation is that for each individual run, the distribution is not closely followed. The
population at each energy level undergoes frequent oscillations, though the amplitude and
frequency are quite regular. However, the mean number of rabbits at each energy level hews
closely to the distribution of SS2, as shown in table 3.4. Similar values were observed for a
wide variety of initial conditions, including an initialization of only one rabbit at each energy
level. This confirms the validity of the steady state analysis conducted above. It is important
to reiterate that the DE model is unable to capture the oscillatory effects of the ABM; as
such, it is less applicable for studying the behavior of individual replications. Nevertheless,
it remains effective for an accurate description of aggregate behavior. In the next section we
describe the optimization problem and compare results from the DE and ABM models in
order to confirm that the DE model faithfully captures the aggregate dynamics of the ABM
with respect to control.

Matthew S. Oremland Chapter 3. Optimal Harvesting 32

3.6 Cohen’s weighted κ: a similarity measure

In order for the DE model to serve as a surrogate for the ABM in terms of solving the opti-
mization problem, it is necessary that it responds to different controls in the same way as the
ABM. In this model, a control is a poison schedule: specifically, a binary vector indicating
whether or not poison is used on each day of the simulation (for details see Appendix C).
In order to obtain the parameters given in table 3.2, a set of 100 poison schedules was used
as training data. The details of how this training set was selected and of the parameter
estimation process are provided in Appendix E. A different set of 500 poison schedules was
generated in order to validate that the DE model responds to these schedules in the same
way as the ABM. These validation schedules were implemented both in the ABM and the
DE models. Since the optimization problem has two objectives and one of these (the sum
of the control schedule) is identical in the two models, the only objective that differs is the
rabbit population data. This data was tallied and ordinal lists were created – in ascending
order by number of rabbits – representing rankings of the validation schedules for each of
the models. In order to determine if the DE model is an accurate representation of the ABM
with respect to control, it is necessary that the two models rank poison schedules in the
same way – thus the problem reduces to examining the similarity of the ordinal lists.

Cohen’s weighted κ provides just such a measure. The original κ metric was introduced
in 1960 [22]. The weighted version, introduced in 1968 [21], can be used to measure the sim-
ilarity of two ranked lists of the same set of objects. Let pobs be the observed proportion of
agreement and pexp be the proportion of agreement expected by chance. Then κ = pobs−pexp

1−pexp .

Hence for rankings only as similar as those expected by chance, κ = 0, and for two lists in
perfect agreement, κ = 1. κ is weighted in the sense that dissimilarities are penalized based
on their magnitude; for details of calculating pobs and pexp (and assigning weights), see [21].
For examples of studies using weighted κ in a manner similar to that presented here, see [41]
and [37].

Of course, it is unclear exactly how high the κ value needs to be in order to determine
that two lists are sufficiently similar. In the literature, common benchmarks for acceptable
κ values generally range from 0.75 [73] to 0.8 [3]. In this case, the ordinal lists from the
ABM and DE models result in κ = 0.9023 – an extremely high value indicating that the
lists are very nearly identical. Hence, κ serves as a rigorous statistical means of determin-
ing the extent to which the equation model matches the ABM with respect to control, and
subsequently how it may be used as a surrogate for the ABM in solving the optimization
problem. The next section describes how the system of equations might be further reduced.

Matthew S. Oremland Chapter 3. Optimal Harvesting 33

3.7 The two-equation model

Given that the control problem is only concerned with the average number of rabbits alive
over the course of a simulation, it is not necessary (from the perspective of the control
problem) to keep track of how many rabbits there are at each energy level. In principle,
a system of two equations is sufficient: one equation to track the grass levels and another
to track the total rabbit population. Note that the optimization problem does not depend
on the grass level, leading one to perhaps conclude that a one-equation model might be
sufficient. A simple thought experiment reveals the necessity of the grass equation: it is not
enough to know, for example, that there were only twenty rabbits at the previous time step.
If the field was empty this number will go down, but if the field is full of grass, the number
will go up. Thus a one-equation model is not possible. We begin the assumption that the
rabbit equation r(t) has the following form:

r(t+ 1) = a · r(t) + b · r(t)g(t).

Here, the number of rabbits at the next time step depends on the number of rabbits alive
during the previous time step, along with an interaction term representing how the popu-
lation depends on the grass level. The grass equation g(t) remains the same as in figure
D.2. Parameter estimation is performed as described in Appendix E; the full two-equation
model is presented in figure 3.5. While it would seem that fewer equations result in a loss

r(t+ 1) = 0.7213 · r(t) + 1.1355 · r(t)g(t),

g(t+ 1) = 0.9679

((
0.98− r(t)

1600

)
g(t) + 0.02

)
.

Figure 3.5: The two-equation DE model.

of accuracy, the validation process yields κ = 0.9019 in this case – practically the same as
the κ value for the model in figure D.2. This makes sense in light of the control objective,
which does not require information about rabbits at different energy levels. In particular,
this result suggests that the two-equation DE model is a suitable surrogate for the ABM in
terms of solving the optimization problem. The trade-off is a loss of analytical power: the
meaning of parameters a and b are not as easily understood as the parameters bt, bc, m, and
en in the original model, for example. It is worth noting that were the control objective
altered – for example, if we poisoned only rabbits with a certain energy level – then the
two-equation model would not be sufficient. However, the fact that the κ value is the same
for the two-equation model emphasizes an important consideration: an equation model need
not describe every feature of an ABM. As long as pertinent model details are preserved, it
may be possible to work with a simplified version without sacrificing accuracy. To that end,
the two-equation model was used to generate all further results. In the following section, we
describe how the optimization problem is implemented in the equations.

Matthew S. Oremland Chapter 3. Optimal Harvesting 34

3.8 The optimization problem

Recall that a poison schedule is a binary vector u of length equal to the total simulation
time: a 0 indicates that poison is not used on that day and a 1 indicates that it is (for
more details see Appendix C). On any given day, the strength s of the poison depends on
pdeg, pmax, and u; it is determined by the equation

s(t+ 1) = (1−pdeg) ·u(t) ·s(t) +(1−u(t)) · (s(t)+pdeg(pmax−s(t))), s(0) = pmax. (3.1)

The equation shows that if poison was not used on the previous day (i.e., u(t) = 0) then the
strength grows back at a rate proportional to pdeg, while if poison was used on the previous
day, the strength is reduced. Note that s(t), the strength of the poison, determines the
number of rabbits that we expect to die on each day. The poison schedule u is an input to
the equation model, which now includes 3.1. Hence the two-equation DE model with control
is the coupled system (X, u), where X is the system presented in figure 3.6. From the rabbit
equation r(t) we see that poison strength only affects the rabbit population when poison is
used.

r(t+ 1) = (1− u(t)s(t)) · (0.7213 · r(t) + 1.1355 · r(t)g(t)) ,

g(t+ 1) = 0.9679

((
0.98− r(t)

1600

)
g(t) + 0.02

)
,

s(t+ 1) = 0.5 · u(t) · s(t) + (1− u(t)) · (s(t) + 0.5(0.3− s(t))),
{r(0), g(0), s(0)} = {120, 0.20, 0.3}.

Figure 3.6: The two-equation DE model coupled with poison schedule u. The length of u
indicates the length of the simulation.

3.9 Pareto optimization

There are several popular approaches to optimal control theory for discrete difference equa-
tions. Ding et al. [30] examine a stochastic model on a spatial grid and perform optimal
control by forward-tracking. Lenhart and Workman [78] include a textbook chapter on the
subject which focuses on a similar technique. A multi-objective problem dealing with an
infinite time horizon is investigated by Hayek in [53]. In fact, many studies implement back-
tracking or forward-tracking to solve optimal control problems in the discrete case. In our
study the length of a simulation is finite but arbitrary; for the example here we set the length
at 100 time steps. Due to computational complexity, traditional approaches are no longer
applicable: hence, we focus on heuristic methods in order to solve the optimization problem.

Matthew S. Oremland Chapter 3. Optimal Harvesting 35

Evolutionary algorithms (EA) mimic the natural process of evolution in that more fit so-
lutions are used to ‘breed’ new solutions in the hopes that the new solutions inherit and
improve upon the beneficial features of the virtual ‘parents’. Various EAs – first brought
to general attention by Goldberg in 1989 [46] – have been implemented in solving optimal
control problems for agent-based models. In particular, they have been used in studies on
optimal vaccination strategies in an influenza model [100] and cancer models [81, 101], as
well as in a study on optimal drug treatment schedules for HIV patients [15]. A common
approach to such problems – and the one taken in these studies – is to determine a fitness
function by assigning weights to each objective in the optimization problem. This allows
one to define an optimal solution by fine-tuning the balance of the objectives; see [45] for a
discussion of assigning weights in objective functions.

A potential drawback of this approach is that optimal solutions may be highly sensitive
to the choice of weights, and one must be careful that the weights are not assigned arbi-
trarily. Thus, any method which sidesteps this issue is of particular appeal. The method
proposed here is Pareto optimization: rather than employing a fitness function, a set of
solutions is determined, each of which may be optimal depending on the choice of weights.
The method is named for ideas first put forth by Italian economist Vilfredo Pareto [90]. The
Pareto frontier refers to solutions that cannot be improved upon in terms of one objective
without a sacrifice in at least one other objective.

For this example, it is clear that using no poison at all minimizes the cost of the poison
– then the only way to obtain a lower number of rabbits is by increasing the poison cost.
Hence, the ‘no poison’ schedule is a de facto member of the Pareto frontier, as one objective
(minimizing rabbits) cannot be improved upon without some sacrifice in the other (minimiz-
ing the amount of poison used). Since the solution space is finite, the existence of a Pareto
frontier is guaranteed. The goal of Pareto optimization, then, is to determine the Pareto
frontier of the solution space by employing a strategy similar to that of traditional EAs. Of
course, there are many other approaches to multi-objective optimization; for an extensive
list of resources see [20]. Pseudocode for the algorithm used here is presented in Algorithm
2; it is based on work introduced by Horn et al [60] in 1994. A key feature of Algorithm 2
is the method by which poison schedules are mutated, which encourages exploration of the
entire Pareto frontier rather than focusing on a narrow section.

3.10 Results

Results were obtained using the two-equation model presented in figure 3.6 with d = 0.5
and pmax = 0.3. The Pareto EA was run for 80 generations with a schedule population size
of 40.The initial and final generations of the algorithm are presented in figure 3.7. Each
element in the figure corresponds to one poison schedule, which was evaluated using the

Matthew S. Oremland Chapter 3. Optimal Harvesting 36

Algorithm 2 Pseudo-code for Pareto optimization algorithm.
1: generate random initial population of solutions
2: while generation < max gens do
3: evaluate current generation, call it current pop . store rabbit and poison levels
4: determine Pareto frontier; call it current frontier
5: let next pop = current frontier . save frontiers between generations
6: while size of next pop < size of generation size do . each generation contains a fixed number of solutions
7: repeat
8: choose two candidate solutions from current pop
9: let comp set = random subset of 5 solutions from current pop

10: if exactly one candidate is Pareto dominant over comp set then
11: that candidate becomes parent . add candidates more likely to be on frontier
12: else if one candidate has fewer neighbors in solution space then . give preference to isolated solutions
13: that candidate becomes parent
14: else
15: choose candidate at random to become parent
16: end if
17: until two parents have been chosen
18: Breed two new solutions (a and b) using parents:
19: for all components in parent solutions do . uniform crossover
20: select component from random parent
21: add this component to a
22: add corresponding component from other parent to b
23: end for
24: mutation: . a and b are both subject to mutation
25: mutation rate = 15 · ((max gens− generation)/max gens) . mutation rate decreases over time
26: randomly choose whether to increase or decrease poison
27: if increasing poison then
28: replace mutation rate 0’s with 1’s . increase poison days
29: else
30: replace mutation rate 1’s with 0’s . decrease poison days
31: end if
32: end routine
33: end routine
34: add a and b to next pop
35: end while
36: increase generation by 1
37: end while

two-equation DE model and plotted according to the amount of poison used and the average
number of rabbits alive over the course of evaluation. The wide range of schedules and

Figure 3.7: Results from Pareto optimization.

the shape of the final generation indicate that the Pareto optimization algorithm is quite
successful. The data confirm our intuition that as the number of poison days increases, the
average rabbit population decreases. However, this is true only to a point – note that in
the final generation, there are no schedules with more than 50 poison days. This is likely
due to the degradation of the poison – with increasing poison days, the effective strength

Matthew S. Oremland Chapter 3. Optimal Harvesting 37

of the poison is diminished and thus has less of an effect on the rabbit population. This
figure highlights several advantages of Pareto optimization: since the algorithm returns a
set of schedules, one can now choose the ‘optimal’ schedule from a managerial point of view.
Additionally, is now possible to examine the trade-off between poison and population. For
example, increasing poison days from 0 to 10 can substantially decrease the average rabbit
population, but increasing poison days from 30 to 40 results in a much smaller population
decrease. Several example schedules from the final generation are presented in Appendix F.

3.11 Discussion and future work

The equation models presented here illustrate how equations can be built analytically from
the rules of an ABM and how they can be altered in order to better fit data. While the
ABM investigated here is a predator-prey system, there is no a priori reason why the same
methodology would not apply to a wide variety of ABMs; Cohen’s weighted κ and Pareto op-
timization ought to apply just as well. Thus, the model used here is simply a representative
example of an approach that ought to hold appeal to a variety of researchers, as it provides
more rigorous mathematical and statistical grounds for ABM analysis. The application of
Pareto optimization to ABMs is novel, and should be of wide interest as well due to the
investigatory motivation behind many ABMs.

Ongoing work includes the application of this framework to a more complicated ABM as
a means of validation. In particular, we are currently applying the approach described here
to several spatially heterogeneous models; preliminary results are promising. While more
complicated models may require more equations, the framework applies just as well. There
are two areas of research which we believe are critical to development of mathematical anal-
ysis of agent-based models. The first is developing a rigorous formulation of the relationship
between ABM model rules and equation parameters. This would help identify the precise
mathematical mechanisms which drive model dynamics, and as such would be invaluable to
future analysis. The second area of research is control theory for large, finite horizon, dis-
crete systems. This would reduce uncertainty in solving optimization problems and would
benefit both modeling and mathematics. We plan to pursue these areas in future work.

Chapter 4

Mathematical Conversion of
SugarScape to Analytical Difference
Equations

Acknowledgements for this chapter are due to Scott Christley, Rachael Neilan, and Rene
Salinas, all of whom were consulted during the course of this work. MSO is responsible for
the design and implementation of the SugarScape Gradient model, the difference equation
derivation, and the Pareto optimization implementation.

4.1 Introduction

Agent-based models (ABMs) are computer simulations in which entities (i.e., agents) in-
teract with each other and their environment according to local update rules; these local
rules give rise to global dynamics. ABMs are a natural framework for investigation of sys-
tems consisting of heterogeneous populations wherein traditional modeling approaches are
unwieldy, either due to computational constraints or lack of knowledge of what drives global
dynamics. A key feature of agent-based modeling is the investigation of hypotheses of how
local behavior affects global phenomena; hence a rigorous framework for analysis of ABMs
is of particular interest.

Even the simplest local interactions can give rise to complicated and unpredictable global
dynamics – indicating both the power of agent-based modeling and the care that must be
taken in any attempted analysis. A mathematical description of an ABM is appealing be-
cause it brings the desired rigor to the form of the model, and allows access to a plethora
of theory and tools. Once a system of equations is formulated describing pertinent model
dynamics, steady state analysis and optimal control are possible, for example. For many

38

Matthew S. Oremland Chapter 4. SugarScape Conversion 39

ABMs, questions amenable to investigation arise naturally: for example, in a cancer model,
what is the best possible drug target? In an ecological model, what is the best harvesting
strategy in order to avoid extinction? In a economic model, which policies maximize wealth?
We refer to these types of question as optimization problems: what is the best way to achieve
a particular goal? While ‘optimization’ in other contexts may refer to model design or pa-
rameter estimation, here it refers to questions of the sort in these examples.

There are methods for solving optimization problems for ABMs – this area of study is
referred to (unsurprisingly) as simulation optimization. However, a mathematical formula-
tion of ABM dynamics brings to light another advantage when examined in this context:
rather than relying on results from simulation – which can be computationally expensive and
unreliable – the equation system can be used to solve optimization problems. Furthermore,
if the equations are analytical rather than phenomenological, the solving of such problems
can offer additional insight into model dynamics, as results can be interpreted in terms of
the model parameters.

To illustrate the power of this technique, we introduce a spatially explicit ABM, pose an
optimization problem, and develop analytical equations to capture pertinent model dynam-
ics. Finally, we use the equations to solve the optimization problem and then verify that the
solutions faithfully translate back to the ABM. The results indicate both the power and the
potential limitations of this approach, as well as informing directions for future research.

4.1.1 Related work

Many studies have examined similarities and differences between ABMs and equation-based
models (EBMs). In their user’s guide, Parunak et al contrast ordinary differential equation
(ODE) models with ABMs [98], concluding that ABMs are more appropriate in models with
highly local features. Fahse et al use an ABM of birds in an attempt to extract a popula-
tion growth rate from ABM data [38]; a similar goal is examined in a zooplankton model
by Duboz et al [31]. A spatially heterogeneous forest ABM is used to derive a series of
equation-based models in a study by Picard and Franc [104]; here, local spatial effects are
shown to be critically important. Mean-field aggregations of ABM dynamics are shown to
work well by Edwards et al [34], while Ovaskainen and Cornell emphasize the importance of
local densities in such models [94]. Huet et al examine the issue of local neighborhoods in
the development of mean-field approximations [61]. A broader study on the use of ABMs
versus EBMs by Rahmandad and Sterman [106] discusses circumstances for which a par-
ticular model type is preferable. Cecconi et al use a model from game theory to generate
empirical data in order to fit an EBM to that data [16]; they emphasize the complementary
nature of the two modeling paradigms. A formal methodology for translation of ABMs to
polynomial dynamical systems (PDS) over a finite field is presented by Hinkelmann et al
[55]; this technique demonstrates that in theory, every ABM can be represented as a PDS.

Matthew S. Oremland Chapter 4. SugarScape Conversion 40

In addition to general studies on agent- and equation-based modeling, simulation optimiza-
tion techniques have been investigated in order to solve problems similar to those posited in
section 4.1. Okell et al examine the effects of therapy and treatment in an ABM of malaria
transmission [92], while Kasaie et al focus on optimal resource allocation in epidemiology
[67]. Strategies for mitigating influenza outbreaks are the focus of studies by Mao [86] and
Yang [138]. A textbook chapter by Laubenbacher et al examines optimal control theory for
ABMs [77], offering examples of simulation optimization strategies.

In this study, a system of discrete difference equations is developed analytically from ABM
rules; the equations are subsequently used to solve an optimization problem. While optimal
control theory exists for the mathematical system, it is often limited to cases of very few
equations or a very short time horizon. Ding et al describe such theory for a model of rac-
coons [30] containing several equations, but simulations are limited to fewer than ten time
steps. Lenhart and Workman dedicate a textbook chapter to the topic [78] but also focus on
small systems. An infinite-time discrete optimal control problem is investigated by Hayek
[53]; it is not clear if results are generalizable to finite-time systems.

Existing optimal control theory is intractable for models containing many equations over a
long (but finite) time horizon, and translation of spatially heterogeneous ABMs often results
in just such models. Hence, heuristic methods are employed in order to solve optimization
problems. Heuristic methods have been used in conjunction with ABMs to solve optimization
problems related to cancer vaccination [81, 101] and HIV treatment [15]. Different heuristic
methods for determining general vaccination strategies are contrasted by Pappalardo et al
[96]. Hence, there is precedent for the use of such methods in solving the same optimization
problem in an equation-based model, which is precisely the approach taken in this study.

4.2 The model

In order to illustrate how analytical difference equations can be used to describe agent-based
model dynamics, a representative model is used as a running example. The version of the
model used here is based on SugarScape [36], a large-scale ABM wherein virtual ants patrol
a landscape made up of sugar. SugarScape was chosen as a representative model because
it was the first large-scale ABM and it can be studied in a variety of contexts. Although
first introduced as an abstract study of generative social science, SugarScape has been used
to study economic trade [26] and wealth distribution [105]; it even served as the basis for a
study on the culture and migratory patterns of the Anasazi people [27]. We use a modified
version of the model: while simplified in order to highlight how analytical equations can be
built, our version maintains spatial heterogeneity and complicated local dynamics. In the
following section we provide a brief description of the model; full details (including parameter
values and pseudo-code) are provided in Appendix G. It should be noted that there are many

Matthew S. Oremland Chapter 4. SugarScape Conversion 41

free software platforms for agent-based modeling, including Repast [91], MASON [84], and
NetLogo [133]. A comparison of these platforms is outside the scope of this text. Results for
this study were generated using NetLogo – in fact, the SugarScape Gradient model is adapted
from a model contained in the NetLogo model library – though by using the description in
Appendix G, the model can be replicated in a variety of agent-based modeling platforms.
NetLogo was chosen for its intuitive interface and ease of use.

4.2.1 The SugarScape Gradient model

The landscape in the version of SugarScape studied here consists of four vertical regions,
increasing in sugar from left to right (see figure 4.1); hence, we refer to this as the SugarScape
Gradient model. While edges wrap vertically, they are bound horizontally, so ants can only
move to a higher sugar region by moving to the right. Each ant has its own metabolism,
determining how much sugar it burns each time step. Ants collect sugar at their current
location and lose sugar based on their metabolism; an ant dies if it runs out of sugar. In
addition to the modified landscape, there are several changes to the original SugarScape
model rules that bear mentioning:

• ants can collect up to a maximum of 50 sugar,

• upon being collected by an ant, the sugar on that grid cell is not depleted,

• multiple ants may occupy one grid cell at any given time,

• ants move to the grid cell within their vision with the most sugar; if there are multiple
such locations, ants choose one at random.

In order to make the analytical structure of the equations clearer, all ants have metabolism
of 1 or 2, and vision 1 (meaning they can see one grid cell in each of the four principal
directions).

4.2.2 An optimization problem

In the SugarScape Gradient model, wealth (i.e., sugar) is of natural interest: it drives the
migration of the ants and determines their survival. In order to pose an optimization prob-
lem, we impose taxation in the model: at regular intervals, ants are taxed a proportion of
their sugar, depending on their location at the time of taxation. The purpose of taxation
is to study its effect on the overall population dynamics: if taxes are always higher in a
particular region, will agents tend to avoid that location? How high can taxes be before all
of the ants die as a result? There are many optimization questions that arise from this line
of thinking. We pose the following: what is the optimal tax structure in order to minimize

Matthew S. Oremland Chapter 4. SugarScape Conversion 42

Figure 4.1: Landscape of the SugarScape Gradient model. Labels indicate the amount of
sugar contained on each grid cell in that region.

the number of deaths and maximize the amount of tax collected? There are four regions,
and five permissible tax rates: {0, 0.25, 0.5, 0.75, 1}. Tax is collected ten times, and the
rates for each region may change each time it is collected. Hence there are 54·10 ≈ 9 × 1027

possible tax structures. This is far too many for enumeration via simulation, highlighting
the importance of both the equation system and the heuristic approach.

4.3 Analytical equations

In order to derive analytical equations describing ABM dynamics, it is important to con-
sider the optimization problem. Since our optimization problem involves taxation, we need
information about the location of the ants (since tax is location dependent) and the wealth
distribution (so we know how much income we collect). Furthermore, the equation system is
being used to find optimal tax structures for the ABM; hence it is preferable that a given tax
structure can be implemented without alteration in both the ABM and the equation system.
Hence, results obtained from the equations can be tested directly in the ABM without any
modification. Several example equations are explained here; for the full set of equations see
Appendix H. It should be noted that in the following explanations, ‘wealth’ and ‘sugar level’
are used interchangeably.

Population equations. Each of the four regions consists of 12 columns; since the map
wraps in the vertical direction each column is homogeneous. Hence there are 4 · 12 = 48
population equations p1, . . . , p48 tracking the number of ants in each column at each time
step. We use discrete-time difference equations whose values are updated according to values

Matthew S. Oremland Chapter 4. SugarScape Conversion 43

at the previous time step. Consider the equation for p5(t), given in equation 4.1. The left
half of figure 4.2 illustrates this equation: each ant can see exactly 5 grid cells, and in this
case all of them have the same amount of sugar (since the ants are in the interior of the
region). All ants have vision 1. In the interior of each region, there is a 60% chance at each
time step that an ant will stay in that column and a 20% chance that it will move to the
left or the right. Ants at the right edge of a region all move to the right. At the left edge,
there are only 4 grid cells that an ant considers, so 3

4
of them remain in that column (note

that we do not need to track the vertical location of the ants).

p5(t+ 1) = 0.2p4(t) + 0.6p5(t) + 0.2p6(t). (4.1)

If an ant is at the rightmost edge of a boundary, it can see into the next region and will

Figure 4.2: Ants are represented by circles; potential moves are represented with an ‘×’.

consequently move there. At the leftmost edge ants can see a column with lower sugar than
their current location; in that case, they are guaranteed to not move there. The right half of
figure 4.2 illustrates these scenarios; equations 4.2 and 4.3 show examples of how boundary
column equations account for these effects.

p12(t+ 1) = 0.20p11(t), (4.2)

p13(t+ 1) = p12(t) + 0.75p13(t) + 0.2p14(t). (4.3)

Similar equations hold for each of the remaining columns; for the full set of equations see
Appendix H.

Wealth distribution. Ants may accumulate up to 50 sugar; ants with 0 sugar die.
Some ants have metabolism 1 and some have metabolism 2, and these are tracked separately.
Finally, since taxation occurs by region, wealth distributions need to be tracked by region as
well. Hence, since there are 51 sugar levels (0 to 50) for ants at each metabolism, there are
51 · 2 = 102 wealth equations per region, for a total of 408 wealth equations. Let wr,m,s(t)
represent the number of ants in region r with metabolism m and sugar level s. The net sugar
gain is r −m, so in general,

wr,m,s(t+ 1) = wr,m,s−(r−m)(t). (4.4)

Matthew S. Oremland Chapter 4. SugarScape Conversion 44

Some modification is needed for particular sugar levels in each region: for example, ants
cannot accumulate more than 50 sugar, so this equation must absorb all ants whose sugar
level would have reached 50 or higher:

wr,m,50(t+ 1) =
50∑

i=50−(r−m)

wr,m,i(t). (4.5)

Similar modifications are necessary for equations tracking the number of ants with 0 sugar.
The full system of equations is provided in Appendix H; explanations here are meant to
provide some insight as to how the equations are formulated.

Migration and taxation. Wealth distributions are affected not only by eating and
metabolism, but by migration and taxation as well. When ants move from one region to
another, the wealth equations for each region are affected as the incoming (and outgoing)
ants take their wealth with them. Furthermore, taxation causes additional wealth shifts,
and these are also region-dependent. In order to account for this, the equations are updated
in a certain order; the order is determined by the order of events in the ABM. Figure 4.3
explains the order in which the population and wealth equations are evaluated. Note that
wealth equations are affected by migration (step 3) and population equations are in turn
affected by taxation via the wealth equations (step 8).

Figure 4.3: The order in which the equation system is updated.

4.4 Results

Population and wealth data. Figure 4.4 compares data from the ABM and the
equation model; ABM data is averaged over 100 runs. Since the optimization problem
concerns taxation by region, it is necessary that the dynamics match at the regional level ;
hence, regional populations are presented. Note that there does not appear to be any error
propagation; that is, though the simulation time was fixed in this case, the equations ought
to capture dynamics for arbitrary time horizons.

Matthew S. Oremland Chapter 4. SugarScape Conversion 45

(a) Population by region (b) Total wealth by region

Figure 4.4: Population and wealth data from the ABM (light colors) and the equation
model (dark colors) when no tax is applied.

Similarity with respect to control. Recall that a primary feature of the equation
model is the ability to use it to solve the optimization problem. Thus, while the equations
appear to be a near-perfect match for population and wealth levels without taxation, it
is necessary to examine how the equations hold up when subjected to taxation. To that
end, 100 tax schedules were generated at random and evaluated in both the ABM and the
equation model. Figure 4.5 provides an example taken from these 100 schedules; the results
for the other tax schedules are similar. Note that as in figure 4.4, ABM data is averaged
over 100 runs. As in the no-taxation case, the equations appear to capture the dynamics of
the ABM nearly perfectly, further indicating that the equation model is a suitable surrogate
– with respect to the optimization problem – for the ABM.

(a) Population by region (b) Total wealth by region

Figure 4.5: Population and wealth data from the ABM (light colors) and the equation
model (dark colors) for a randomly chosen tax structure.

Matthew S. Oremland Chapter 4. SugarScape Conversion 46

4.4.1 Pareto optimization.

Having confirmed that the equation model truly captures the dynamics of the ABM with
respect to the optimization problem, the equation model was used to solve the optimization
problem. This was accomplished by a heuristic method known as Pareto optimization. Based
on ideas first introduced by Italian economist Vilfredo Pareto in 1897 [90], this evolutionary
algorithm is designed for multiobjective optimization problems. The Pareto frontier consists
of the set of solutions with the following property: no objective can be improved upon
without some tradeoff in another. For our example, this means that the Pareto frontier
consists of solutions wherein if we wish to obtain fewer deaths, we must use a tax schedule
that results in lower income; alternately, if we wish to increase tax income, we can only do
so with schedules that cause more deaths. A typical evolutionary algorithm defines a fitness
function that combines all of the objectives, perhaps by attaching weights to each, and then
searches the solution space for the solution that maximizes fitness. Pareto optimization
side-steps the issue of defining such a fitness function by searching for a set of solutions –
each is optimal with respect to some choice of weights. There are several advantages to this
approach: determining appropriate weights for a fitness function can be highly arbitrary, and
may inadvertently focus attention on too narrow a region of the solution space. Additionally,
heuristic algorithms typically examine many hundreds of solutions, but in the end return
only one. By making use of a broader set of the solution space, Pareto optimization is
more efficient – in fact, run time is similar to the case where only one solution is returned.
A comprehensive review of heuristic methods for multiobjective optimization is outside the
scope of this paper (for an extensive reference of other methods see [20]); Pareto optimization
was chosen because it is intuitive, effective, and novel in its application to optimization for
ABMs.

The algorithm. The Pareto optimization algorithm is based on a standard evolutionary
algorithm: a population of solutions are generated at random and evaluated. Solutions from
this population that contain advantageous features with respect to the optimization problem
are then used to ‘breed’ subsequent solutions – child solutions are composed by selecting
values from parent solutions at random. These solutions are then subjected to mutation,
wherein taxation is either increased or decreased, in order to broaden the range of the Pareto
frontier. The next generation of solutions consists of the Pareto optimal solutions from the
prior generations plus the newly bred solutions. This process repeats for a fixed number of
generations, or until some stopping condition is met. In this case, a solution is advantageous
if it is either Pareto optimal with respect to the current generation of solutions, or if it
has few neighbors in solution space. This latter trait rewards more unique solutions and
encourages exploration of the solution space. The algorithm used here is based on work by
Horn et al [60]; pseudo-code is provided in Algorithm 3.

Matthew S. Oremland Chapter 4. SugarScape Conversion 47

Algorithm 3 Pareto optimization pseudo-code.
1: generate random initial population of 40 solutions . each solution is a tax structure
2: while generation < 80 do
3: evaluate current generation, call it current pop . tally deaths and income
4: determine Pareto frontier; call it current frontier
5: let next pop = current frontier . save frontiers between generations
6: while size of next pop < size of generation size do . each generation contains a fixed number of solutions
7: repeat
8: choose two candidate solutions from current pop
9: let comp set = random subset of 5 solutions from current pop

10: if exactly one candidate is Pareto dominant over comp set then
11: that candidate becomes parent . add candidates more likely to be on frontier
12: else if one candidate has fewer neighbors in solution space then . give preference to isolated solutions
13: that candidate becomes parent
14: else
15: choose candidate at random to become parent
16: end if
17: until two parents have been chosen
18: breed two new solutions (a and b) using parents:
19: for all components in parent solutions do . uniform crossover
20: select component from random parent
21: add this component to a
22: add corresponding component from other parent to b
23: end for
24: mutation rate = 0.20((max gens− generation)/max gens) . mutation decreases over time
25: for all components in a and b do . perform mutation
26: change component with probability mutation rate . permissible values: {0, 0.25, 0.5, 0.75, 1}
27: end for
28: end routine
29: add a and b to next pop
30: end while
31: increase generation by 1
32: end while

Evolution of the Pareto frontier. There are two objectives in our optimization
problem: minimizing death, and maximizing taxes collected. Each tax structure is evaluated
in the equation model, and the values for these two objectives are stored; we can then
visualize the solutions as data points on a scatter plot, where the axes correspond to the
objectives. Examining the state of these plots at various times during the optimization
algorithm gives some indication of its progress. Figure 4.6 provides four snapshots of the
algorithm, taken from generations 0, 3, 8, and 25. Values from past generations remain on
the plot in a lighter shade in order to accentuate the evolution of the solutions toward the
Pareto frontier – as generations progress, we tend to see solutions with fewer deaths and
higher income. A notable feature of the optimization algorithm is that by giving preference
to solutions with fewer neighbors, a wide variety of Pareto optimal solutions are found. This
is hinted at in figure 4.6d, where we see solutions spread across a range of values.

Validation. While the evolutionary features observed in figure 4.6 indicate that the al-
gorithm is working, they do not serve as total validation of Pareto optimization. A better
validation comes from the comparison of results from the algorithm with results from a ran-
dom search, which serves as a baseline for heuristic methods. The algorithm was run for
a total of 80 generations, each consisting of 40 solutions. Since the Pareto frontier carries
over each generation, the total number of different schedules evaluated by the Pareto opti-
mization algorithm was 821. Hence, 821 random solutions were generated and evaluated for
comparison. The results are presented in figure 4.7. The searches are equivalent in run time,
indicating that Pareto optimization offers a substantial improvement on a random search.
Note that a comprehensive overview of multi-objective optimization methods is beyond the

Matthew S. Oremland Chapter 4. SugarScape Conversion 48

(a) Gen. 0 (b) Gen. 3

(c) Gen. 8 (d) Gen. 25

Figure 4.6: Snapshots of the evolutionary Pareto optimization algorithm.

scope of this text; however, this evaluation indicates the potential advantage of at least one
such method. It is particularly worth noting that the algorithm returns a wide variety of
solutions rather than just focusing on one region of the Pareto frontier. Another advantage
of Pareto optimization is the insight offered into the choice of fitness function. The solution
wherein no tax is imposed is a de facto member of the frontier since it is guaranteed to min-
imize deaths; however, as seen in figure 4.7, it is possible to obtain more than 4000 sugar as
tax without visibly increasing the number of deaths. On the other hand, the tradeoff between
death and taxes increases drastically between 4000 and 5000 sugar collected, indicating that
beyond 4500 sugar or so, the tax can only be increased by a substantial sacrifice in the
number of deaths. The shape of the frontier seems to suggest that for most reasonable fit-
ness functions, there should be no more than 10 deaths and no less than 4000 sugar collected.

The final step in the validation process is to check how the solutions obtained via the equa-
tion model actually track back to the ABM – after all, the equation model was built in order
to aid investigation into an ABM optimization problem. To that end, the solutions compris-
ing the final generation of the Pareto algorithm were implemented in the ABM; deaths and
taxes were tallied for each. The results predicted by the equation model and those obtained

Matthew S. Oremland Chapter 4. SugarScape Conversion 49

Figure 4.7: A comparison of results from a random search and those from the Pareto
optimization algorithm.

via simulation in the ABM (with results averaged over multiple runs) are presented in figure
4.8. These results indicate that values obtained by the equation model are very similar to

Figure 4.8: The Pareto frontier evaluated in the equation model and in the ABM.

those obtained via ABM simulation, further validating both the qualitative and quantitative
accuracy of the equations with respect to the dynamics of interest.

4.5 Discussion

In this paper, a spatially heterogeneous agent-based model is approximated by a system of
discrete difference equations, which are then used to solve an optimization problem. The
example presented here illustrates an approach to solving optimization problems for agent-
based models which ought to have wide appeal: ABMs are often created to investigate

Matthew S. Oremland Chapter 4. SugarScape Conversion 50

real-world systems, and optimization problems typically arise naturally in many such inves-
tigations. Here, the equation system was shown to capture pertinent ABM dynamics for
a variety of conditions, and Pareto optimization was used as a novel means for solving the
optimization problem. The results of this heuristic approach are encouraging, as they serve
as an effective means for optimization when other theoretical approaches are not tractable
in practice. Finally, the results obtained via the equations were shown to track faithfully
back to the ABM, serving as a sort of a posteriori validation of the equation system. While
there may be cases for which this approach is not suitable, this example serves as evidence
that equation-based analysis of agent-based models holds the potential to be a powerful tool
for a broad class of models.

Future work. In this case, the equation system was built analytically from the rules
of the ABM. However, in many ABMs this approach is not practical: either the rules are
too complicated to express mathematically, or the dynamics of interest rely on too many
factors. In such cases, phenomenological equations must be developed that fit ABM data.
While principles from symbolic regression can be applied, they are not well-established in the
framework of ABM analysis. This is an area of ongoing research and preliminary results are
promising. It was mentioned earlier that there may be cases for which the approach presented
here is inappropriate; hence, the ability to classify models based on susceptibility to equation-
based analysis would be of particular interest. For any attempts at describing ABMs via
equations, statistical methods need to be developed that can bring rigor to the discussion
of model similarity; we are examining such methods in another ongoing project. Finally, a
similar study to that presented here, using partial differential equations rather than difference
equations, is currently underway. This will help contrast the advantages and disadvantages
of the continuous and discrete modeling frameworks as applied to mathematical analysis of
agent-based models.

Chapter 5

A Framework for a Mathematical
Approach to Solving Optimization
Problems for Agent-based Models

This project began as a Research Experience for Undergraduates (REU) project in Summer
2013; acknowledgements are due to Cara DeAngelis, Herb Susmann, and Erin Twohy. MSO
is responsible for coding the SugarTax model, drafting the equation system, designing and
implementing the Pareto algorithm in the ABM, and the comparison of equation and ABM
results.

5.1 Introduction

Agent-based models (ABMs) provide a rich environment in which to model and study a wide
variety of phenomena. At the macroscopic level they may involve interactions between plan-
ets, people, or traffic systems, while at the microscopic level they can be used to investigate
interactions between proteins, molecules, or atoms. The visual component of ABMs makes
them ideal for interdisciplinary research: experts in the domain being modeled need not be
computer scientists in order to suggest experiments or to interpret results from a model.
ABMs can save time, money, and resources by acting as in silico laboratories; in cases such
as traffic scenarios and cancer studies they even have the potential to conduct otherwise
infeasible or unethical experiments.

Once the desired system has been modeled, a natural follow-up question immediately arises:
what should we do with it? In many cases, there are natural questions that can be posed
and investigated using an ABM. Solving a posed question raised with regard to an ABM
is an optimization problem. Various scenarios, inputs, and interventions are investigated in

51

Matthew S. Oremland Chapter 5. A Framework 52

order to determine the best way to solve the problem. One drawback to these simulation
models is their resistance to standard analytical approaches. A lack of rigorous mathemat-
ical formulation and inherent stochasticity makes consistent and reliable information more
difficult to obtain.

One step in the process towards solving an optimization problem for an ABM comes from
preliminary model analysis. A model is run under a variety of conditions and observations
are made, giving some indication of the factors most pertinent to the question at hand. Stud-
ies concerning influenza [24, 75], malaria [39], cancer [129], and a variety of other biological
systems [70, 107] have been conducted in this manner, as have studies in applied engineer-
ing [141] and economics [50]. A reasonable next step is to introduce interventions into an
ABM in order to determine better protocol or policies. This has been investigated in studies
focusing specifically on influenza [138, 86] and malaria [92] as well as more general disease
control strategies [10] and resource-allocation problems [67]. These studies have all focused
on ABMs directly, and rely on results obtained from simulation. Other studies have focused
on differences between equation models and ABMs [106] and methods for translating ABMs
to discrete [55, 76] and continuous [144, 134] mathematical formulations. An overview of
simulation and mathematical techniques can be found in [93].

Perhaps the most critical issue in describing ABMs mathematically is space: while equations
have been shown to describe population dynamics fairly well on a large scale [34, 44, 63],
models with heterogeneous spatial structures have proven more difficult to approximate
[61, 94, 99]. However, non-ABM-derived equation models are capable of handling spatial
issues [8, 4, 88], indicating the importance of careful methodology in capturing spatially
explicit ABM dynamics.

To summarize: ABMs have been used as simulation tools for investigation, and they have
been described and analyzed mathematically via equation models, both with and without
spatial heterogeneity. However, the use of equations to replicate simulation data as a means
of solving optimization problems, while not unheard of (see [69, 68]), is not well-established.
We propose a framework for this approach which combines discrete mathematical models,
heuristic algorithms, and symbolic regression. The remainder of this section outlines the
approach; in subsequent sections we introduce an ABM to use as a running example, pose
an optimization problem, and apply the approach to solve it. Our results indicate that this
approach can be used in a wide variety of ABMs, including those wherein space is critical.

5.1.1 A framework for solving optimization problems for ABMs

Before outlining the framework it is necessary to establish some terminology which will be
used throughout the remainder of this work. ABMs often incorporate randomness into the
local rules, so resetting the model and running the simulation again often produces vari-

Matthew S. Oremland Chapter 5. A Framework 53

ability in the data. Each simulation is referred to as a run. The set of potential answers
to an optimization problem is the solution space, and each element of that set is a solu-
tion (note that a solution need not be optimal; it refers to any element of the solution space).

Figure 5.1 outlines the approach described in this work. First an ABM is selected and
an optimization problem posed. Note that the problem posed determines the nature of the
equations to be fit, so it is necessary to identify a problem prior to model conversion. Thus,
even for a fixed ABM the conversion process may vary depending on the optimization prob-
lem under investigation. Once a problem is posed, pertinent data is generated using the
ABM. The solution space for any optimization problem is typically too large for enumera-
tion; thus a stratified sample is taken and data is generated for each solution in the sample.
Given the stochasticity inherent in many ABMs, reliable data is obtained by averaging over
many runs. The next phase is the conversion process. Here, discrete difference equations are
fit to the data; these equations may be determined analytically or via numerical methods,
depending on the complexity of the dynamics. The equations are deterministic and return
expected values, so there is no stochasticity in the equation system. Note that the equations
are fit over the entire stratified sample of the solution space. Next, the fit must be verified.
Given that the sample data was used to generate the equations, one would expect a good
fit and ought not use this data for validation. Thus, a separate stratified sample is chosen,
evaluated both in the ABM and in the equations, and compared. This indicates the extent
to which the equations can be expected to actually match the behavior of the ABM. While
a variety of statistical methods may be used to quantify how well the equations fit the data,
the final validation comes from comparison of solutions and thus the fit may only truly be
established a posteriori. Once established, the equation system is used to solve the opti-
mization problem. For certain models mathematical theory may allow for the employment
of rigorous methodology; in our running example we employ heuristic methods.

The final steps of the framework are for validation purposes. The optimization problem
is solved using the ABM itself via simulation optimization techniques in order to compare
results from the equation system. Of course, the key advantage to using the equation system
is precisely that one does not need to solve the problem using the ABM itself – indeed, by
doing so the equations are not necessary at all. However, this part of the process actually
serves an important purpose: this framework is only just being introduced, and as such it is
necessary to establish its efficacy. Direct comparison with ABM results is the only way to
accomplish this. Once the usefulness and validity of the framework is established, it will not
be necessary to solve the optimization problem using the ABM directly.

5.2 SugarTax: A running example

The model we use as a subject for the framework presented here is a modified version of
a model known as SugarScape [36]. SugarScape simulates a population of abstract agents

Matthew S. Oremland Chapter 5. A Framework 54

Select agent-
based model

Pose optimiza-
tion problem

Generate per-
tinent data

Fit equations to data

Verify fit

Use equations to
solve opt. problem

Use simulation
methods to solve

opt. problem

Compare solutions

Figure 5.1: A flowchart of the framework presented in this work. Dashed lines indicate the
validation process.

(hereafter referred to as ‘ants’) which patrol a fixed geographical landscape made up of sugar.
The landscape contains peaks and valleys; as the simulation progresses one can observe the
population clustering in high-sugar regions. Each time step, ants accumulate sugar based
on their location and burn sugar based on their metabolism. Each ant has a fixed vision –
that is, a distance they are able to see in the four principal directions – but vision levels vary
from ant to ant.

As one of the earliest large-scale agent-based models, SugarScape is well known and well-
studied in the modeling community. Originally introduced in the context of social science,
the model has been used as the basis of studies on trade and economics [26], culture and
migration [27], and wealth distribution [105]. SugarScape was chosen as a representative
model for this framework for several reasons. One is its wide versatility: with only minor
adjustments, the model can be studied in a number of different contexts, making it appealing
to researchers from many areas. Another reason is the balance the model strikes between
complexity and ease of use: SugarScape is spatially heterogeneous and contains agents with
varying attributes, which makes traditional mean-field approximation problematic. At the
same time, the model can be explained and understood relatively quickly, without need for
specialization in any particular field.

In order to pose an optimization problem, we implemented taxation in the model: peri-
odically, ants are taxed for their sugar based on their location (e.g., perhaps ants in regions
with more sugar ought to be taxed more frequently than those in regions with less). Stated
precisely, the optimization problem is the following: what is the ideal tax structure in order
to maximize tax income while minimizing deaths? The more frequently ants are taxed, the
more likely they are to run out of sugar and die, so the two objectives conflict. As a result,

Matthew S. Oremland Chapter 5. A Framework 55

the answer to the optimization problem is not clear.

A detailed description of the model (with taxation) is provided in Appendix I. This descrip-
tion follows the Overview, Design concepts, and Details (ODD) protocol for agent-based
models [47, 48]. The purpose of the ODD protocol is to to act as a template for describing
agent-based models, and to provide sufficient detail for model dynamics and results to be
reproduced. While SugarScape is explained in detail in [36], there are modifications in the
model presented here – particularly, the addition of taxation – which are perhaps most easily
explained via this detailed description. In order to emphasize the differences, and to avoid
confusion with the original model, we refer to the model presented here as SugarTax. For
those interested only in a general overview of the model, and in order to understand the
framework outlined in Figure 5.1, the above description may suffice. Finally, it should be
noted that there are many software platforms for agent-based modeling, many of which are
free of charge. SugarTax was built using NetLogo [133] – in fact, the SugarScape code upon
which it is based is included as a sample model in the NetLogo model library.

5.3 Deriving the equation model

In order to determine the fit of equations to ABM data, pertinent data must first be gener-
ated using the ABM. Of course, stochasticity is a key feature of most ABMs – in order to
minimize discrepancy between simulations, data must be averaged over multiple runs. The
extent to which the data can be fit by deterministic equations depends on the reliability
of these averages and the associated standard deviations. The appropriate number of runs
depends on the model; as such, it is not possible to prescribe a fixed number that is appro-
priate in every case. We have found 50 runs to be sufficient – indeed, one might argue that
if the average over 50 runs of an ABM is not a good indicator of typical behavior, then the
model is likely to be resistant to analysis via deterministic equations.

The optimization problem in SugarTax concerns minimizing death and maximizing income,
and the tax rates are regional. Thus for every tax structure investigated, data and equations
are needed for the following:

• wealth distribution in each region at each time step,

• income tax collected from each region at each time step,

• population in each region at each time step,

• deaths.

Table 5.1 summarizes the meaning of each term found in the equation model and figure 5.2
provides a labeled image of the landscape.

Matthew S. Oremland Chapter 5. A Framework 56

Term Meaning
wr,b(t) Number of ants in region r and wealth bin b at time t
pr(t) Population in region r at time t
mx,y(t) Proportion of ants migrating from region x to region y at time t
taxr(t) Binary entry indicating taxation (0 corresponds to no taxation)

Table 5.1: Table of terms used in the equation model.

Figure 5.2: Spatial regions labeled by number.

5.3.1 Wealth and population

Rather than tracking the number of ants at each individual sugar level, they are tracked
according to bins. With the exception of the first bin, all bins have size 10. Bin 1 contains
the number of ants with sugar from 1− 10 and in general, the nth bin contains the number
of ants with sugar from 1 + 10(n − 1) to 10n. Note that in SugarTax, ‘sugar’ and ‘wealth’
are interchangeable terms. Bin 0 contains the number of ants with zero wealth – in other
words, the number of deaths. Given the fixed metabolism, the maximum sugar level in the
landscape, and the finite duration of a simulation, only fifteen bins are necessary, as no ant
can accumulate more than 130 sugar. An example of a template wealth equation is provided
in 5.1 – the number of ants in bin 1 and region 0.

w0,1(t+ 1) = (1− tax0(t)) · (0.8 · (1−m0,2(t)) · w0,1(t) + 0.2 · (1−m0,2(t)) · w0,2(t))

+ tax0(t) · (0.8 · (1−m0,2(t)) · w0,2(t) + 0.2 · (1−m0,2(t)) · w0,3(t)).
(5.1)

Note that if region 0 is not being taxed at this time step, then the first half of the equation
is used; otherwise, the second half is used. Suppose that the region is not being taxed. Some
ants will migrate into region 2, leaving (1−m0,2(t)) ·w0,1(t). Since each ant has metabolism
2 and the bins have size 10, we expect 80% of the ants (specifically, those with sugar 3− 10)
to remain in bin 1. Eating and metabolization occurs post-migration, so the amount that
remains is thus 0.8(1−m0,2(t))w0,1(t). Similarly, of the ants that do not migrate into region
2 in bin 2, 20% of them (those with sugar 11 − 12) will drop into bin 1; hence the term
0.2 · (1 −m0,2(t) · w0,2(t). If, on the other hand, the region is being taxed, then the latter
half of equation (5.1) comes into play: the terms are the same, but the bins are shifted by

Matthew S. Oremland Chapter 5. A Framework 57

one. This is because the tax rate is 10 – precisely the same as the bin size – so every ant in
that region is shifted down an extra bin when taxation occurs.

The equation for population in region 2 is provided in equation (5.2): it is the popula-
tion that remains in the region after migration, minus deaths and plus those that migrated
in from region 0. Note that migration does not occur from region 4 into region 2 (though
migration from region 8 to region 6, for example, happens regularly).

p2(t+ 1) = (1−m2,4(t))p2(t)− w0,0(t) +m0,2(t)p0(t). (5.2)

5.3.2 Migration

While wealth and population equations are analytical, equations determining migration are
not so easily captured. The difficulty stems from ABM features that are common to many
models. As such, rather than altering SugarTax to simplify the equations, it is more beneficial
to demonstrate a technique for dealing with these features. In particular, random execution
order, asynchronous update, and the exclusion principle – that only one ant may occupy a
grid cell at any time – make migration data difficult to fit. In this case, we do not know
the form of the equations, but we do know the inputs. For example, consider region 2. We
know that the migration rate depends on how many ants are in region 2, but it will also
depend on the number of ants in region 4. This is because of the exclusion principle: if every
space in region 4 is occupied, for example, then no migration can occur, regardless of how
many ants are in region 2. On the other hand, if region 2 is densely occupied, fewer ants
will migrate because many (or all) available spaces will be taken by the first ants to execute
movement. The interplay of these two populations is not clear, and is difficult to determine
probabilistically. Knowing the inputs allows us to use symbolic regression to determine
the form of the equations. Symbolic regression builds on the idea of parameter estimation by
allowing not only the parameters to change, but the terms in the equations as well. There are
many software packages for symbolic regression; we used Eureqa [112], which contains many
options for user customization. In order to fit migration data, we restricted the symbolic
regression search to the four principal operations of addition, subtraction, multiplication,
and divison (i.e., no trigonometric, exponential, or logarithmic functions were allowed). The
algorithm was set to minimize the sum-squared error between time course data from the
ABM and the equations. The migration equation out of region 2 is presented in (5.3).

m2,4(t+ 1) = 6.39× 10−18 · p2(t)4 · p4(t)6. (5.3)

The sample wealth equation in (5.1) is referred to as a template equation because once
the entire system is formed, a parameter estimation algorithm is used to refine the fit –
hence, exact parameter values are altered in the final system. The full model is provided in
Appendix J.

Matthew S. Oremland Chapter 5. A Framework 58

5.4 Solving the optimization problem

The best way to solve an optimization problem using a system of equations depends on the
details of the system and the preferences of the researcher. For sufficiently small systems,
techniques from optimal control theory can be applied, both for continuous and discrete
mathematical models. However, the number of equations necessary for a model the size
of SugarTax (and many other ABMs) is typically too large for the practical application of
control theory. At the same time, enumeration of the solution space is often computation-
ally infeasible. Thus, in this study we employ heuristic methods to solve the optimization
problem.

5.4.1 Pareto optimization

The two objectives in the SugarTax optimization problems conflict: by increasing tax rates,
one expects to increase income but at the same time to cause more deaths. On the other
hand, removing taxation entirely will certainly minimize deaths, but will minimize tax in-
come as well. It is not likely that there is a tax structure that optimizes both variables:
typically, any improvement in one of the objectives will require some sacrifice in the other.
One strategy for multi-objective optimization problems is to weight the objectives sepa-
rately and combine them into a fitness function, and then find the solution which optimizes
this function. Though determination of appropriate weights has been investigated [45], it re-
mains an inexact science – weights are frequently chosen arbitrarily and without justification.

Pareto optimization is a heuristic method that addresses this issue head-on by returning not
just one solution, but a suite of solutions, each of which is optimal depending on some choice
of weights. This method is based on (and named for) ideas posited by Italian economist
Vilfredo Pareto [90]; it is a type of genetic algorithm [46] wherein a population of solutions is
used to ‘breed’ better solutions in subsequent generations. In particular, a solution is Pareto
optimal if it cannot be improved upon with respect to any objective without a sacrifice
with respect to some other objective. The set of Pareto optimal solutions is known as the
Pareto frontier. The goal of Pareto optimization is to determine this frontier as completely
as possible. Given that there is no solution that is optimal with respect to every objective
at the same time, the solution that is chosen from the frontier is a ‘managerial’ decision –
it will depend on the priorities and interests of the researcher. Pseudo-code for the Pareto
optimization algorithm used here is presented in 4; this algorithm has been adapted from
[60]. A fairly comprehensive list of references on this and other methods of multi-objective
optimization is maintained at [20].

Matthew S. Oremland Chapter 5. A Framework 59

Algorithm 4 SugarTax Pareto optimization pseudo-code.
1: generate random initial population of solutions . each solution is a tax structure
2: while generation < max gens do
3: evaluate current generation, call it current pop . tally deaths and income
4: determine Pareto frontier; call it current frontier
5: let next pop = current frontier . save frontiers between generations
6: while size of next pop < size of generation size do . each generation contains a fixed number of solutions
7: repeat
8: choose two candidate solutions from current pop
9: let comp set = random subset of 5 solutions from current pop

10: if exactly one candidate is Pareto dominant over comp set then
11: that candidate becomes parent . add candidates more likely to be on frontier
12: else if one candidate has fewer neighbors in solution space then . give preference to isolated solutions
13: that candidate becomes parent
14: else
15: choose candidate at random to become parent
16: end if
17: until two parents have been chosen
18: Breed two new solutions (a and b) using parents:
19: for all components in parent solutions do . uniform crossover
20: select component from random parent
21: add this component to a
22: add corresponding component from other parent to b
23: end for
24: mutation rate = 0.20((max gens− generation)/max gens) . mutation decreases over time
25: for all components in a and b do . perform mutation
26: change component with probability mutation rate . only permissible values are 0 and 1
27: end for
28: end routine
29: add a and b to next pop
30: end while
31: increase generation by 1
32: end while

5.4.2 Results

The final steps of the framework in Figure 5.1 concern validation: in order to determine
whether or not the equation model can be used as a surrogate for the ABM, the results from
the equation model must be validated in the ABM. In order to perform such a validation,
the Pareto optimization outlined in Algorithm 4 was performed directly on the ABM, using
repeated simulation in place of function evaluation. These results serve as a baseline for
comparison – while not necessarily providing the global Pareto frontier, the results serve as
the nearest attainable ‘true’ frontier. Hereafter we refer to these results as the ABM frontier.

The equation system described in section 5.3 fits the ABM data qualitatively, but in or-
der to compare results with the ABM frontier, the frontier obtained by the equations must
be re-evaluated in the ABM. This is not particularly time-intensive as the equation frontier
consists of approximately 20 solutions only. The purpose of this re-evaluation is to correct
for the qualitative nature of the fit: by evaluating the frontier directly in the ABM, results
can be compared quantitatively with the ABM frontier, giving a better indication of the
reliability of the equation model.

Figure 5.3 presents three sets of data: values predicted by the equation model, the val-
ues actually obtained when the equation frontier is evaluated in the ABM, and the values
obtained by performing Pareto optimization on the ABM directly. It is worth first discussing
the shape of the ABM frontier and what it implies about the optimization problem. Note
that there are a cluster of solutions that all cause approximately 70 deaths, but for whom
the tax income varies greatly. The shape of this subset implies that there isn’t much justi-

Matthew S. Oremland Chapter 5. A Framework 60

Figure 5.3: Results from Pareto optimization.

fication in choosing any solution that collects less than 5000 − 6000 sugar in tax, because
there are solutions in this income range that essentially minimize deaths. In contrast, the
relative flatness of the remainder of the frontier suggests that there is not much justification
for selecting any solution that causes more than 90 − 100 deaths: there are solutions that
certainly cause more deaths, but they do not substantially increase the amount of tax col-
lected. Thus the shape of the frontier itself indicates that regardless of how the objectives
are weighted, optimal solutions are likely to be those that collect at least 5000 sugar and
cause no more than 100 deaths. This is information that is only obtainable by examining
the entire Pareto frontier.
While the values predicted by the equation model are not a good quantitative fit, they do

match ABM data qualitatively. In particular, the basic shape of the frontier is maintained
upon re-evaluation, validating that model dynamics are qualitatively preserved in the equa-
tion model. Once the solutions are re-evaluated, the values are much closer to those found
by the ABM, further supporting the equation model as a surrogate for the ABM. In partic-
ular, a wide range of the Pareto frontier is obtained via the equation model. These results
are promising, as they demonstrate the possibility for equation systems to describe spatially
heterogeneous ABMs. Specifically, the results encourage further investigation of the frame-
work presented here as a viable means for solving optimization problems with agent-based
models.

Matthew S. Oremland Chapter 5. A Framework 61

5.5 Discussion

There are many ways to perform the framework presented in Figure 5.1 – for example, one
can use differential equations (stochastic or otherwise), discrete dynamical systems, polyno-
mial dynamical systems, or other mathematical representations to fit data. The mechanism
used to fit the data is up to the researcher, as are the statistical techniques used to evaluate
the fit. The optimization problem can be solved in a variety of ways as well, including meth-
ods from optimal control theory for continuous and discrete systems, heuristic algorithms,
and other simulation optimization strategies. The details presented in the running exam-
ple merely provide one avenue for implementing this framework, but the implementation
is ultimately up to the researcher. For that reason, this framework may be beneficial to
researchers with a broad range of interests. It is a step towards a rigorous mathematical
analysis of agent-based models, and it is our intention to continue to expand and develop
the framework.

That said, there are a few issues that bear mentioning. While several steps presented here
rely on heuristic methods, it would be preferable to have access to mathematical theory that
would preclude such methods. Rigorous statistical verification, optimization, and analysis
ought to be the next steps in developing this framework. In addition, it is likely that there
are agent-based models for which this framework simply does not apply or would not work
– models with many agent types and more complicated spatial dynamics, for example. It is
not our intention to claim that the framework can be applied in all cases. On the contrary,
a classification of models for which this approach would not and could not work would be
of great benefit. Such a classification would be a boon to anyone interested in analysis of
agent-based models, as it is difficult at present to classify models in terms of complexity.
This is another issue we plan to investigate in future work. While there may be cases where
this framework does not apply, it has the potential to be an indispensable tool in any math-
ematical approach to agent-based modeling. It is certainly worth pursuing as a viable means
for solving optimization problems for agent-based models.

Chapter 6

A Computational Model of Invasive
Aspergillosis in the Lung

Acknowledgements are due to Chris Gaskill and Eric Kernfeld, who were involved with the
development of the two-dimensional version of this model. MSO contributed to the design of
the agent-based model and is responsible for its implementation. Acknowledgements are also
due to Reinhard Laubenbacher, Chris Lawrence, and Borna Mehrad, all of whom contributed
to the design of the model.

6.1 Introduction

Invasive aspergillosis represents a major and growing health problem in the U.S. and around
the world. The growing population of immunocompromised patients, including those with
haematologic malignancies, and stem cell- or solid organ-transplant recipients are at high-
est risk for this disease [118]. In addition to conventionally immunosuppressed patients,
other large populations are also at risk of this infection, including individuals with fibro-
cavitary tuberculosis in developing countries who develop chronic invasive aspergillosis as a
secondary infection [43]; it is estimated that in 2007, 372, 000 of the 7.7 million new cases
of pulmonary tuberculosis world-wide also developed chronic pulmonary aspergillosis [28].
The introduction of new antifungal drugs during the last decade, principally azole-based
compounds capitalizing on new insights into the molecular structure of the fungal cell wall,
has dramatically improved disease outcomes, but mortality rates remain approximately 30%
in recent surveys [118, 54]. In addition, increased resistance to these new drugs [49] raises
the specter of a “perfect storm,” as it has been called in [28], combining a rapidly growing
patient population with a diminished repertoire of treatment options.

To date, the focus of the search for new therapeutics has been largely on fungal targets. But
more recent promising efforts have looked to the host, in particular host immunity [11, 12].

62

Matthew S. Oremland Chapter 6. A computational model of invasive aspergillosis 63

The host immune response to respiratory fungal pathogens is multilayered, involving the
actions of several cell types, such as epithelial cells, mononuclear phagocytes, neutrophils,
and dendritic cells, among others. However, a full exploration of the possibilities for anti-
fungal therapeutics targeted at the host requires a better understanding of the innate host
response. The complexity of the dynamic regulatory molecular networks and the multi-scale
nature of the innate immune response strongly suggest taking a systems biology approach
[59], as done in, e.g., [1, 80].

A substantial body of literature supports the critical role of iron homeostasis in Aspergillus
biology. Aspergillus species adapt to iron-limited environments by activating a system of
intracellular and secreted siderophores that scavenge from the environment and store it.
In in vitro studies, Aspergillus siderophores remove iron from transferrin in human serum
[56] and impair macrophage iron uptake [115]; conversely, neutrophil lactoferrin inhibits As-
pergillus conidial growth by sequestering extracellular iron [142]. In animal models, mutant
Aspergillus species with defective siderophore systems are avirulent [113], and therapeutic
iron chelation has an additive benefit to antifungal antibiotics [62]. These mechanisms appear
to be clinically important, since among immunocompromised stem cell transplant patients,
clinically unsuspected iron overload is an independent risk factor with invasive aspergillosis
[72, 2]. Taken together, these data suggest that the competition for iron is a key component
of the pathogenesis of invasive aspergillosis.

The innate immune response to invasive aspergillosis is difficult to study. Studying dynamic
molecular networks in a human host is, in most cases, impossible. In the study of the
innate immune response to A.f. a number of in vitro and in vivo approaches have been used
successfully. These include the in vitro interaction of A.f. with leukocytes and epithelial
cells [52, 120]. In addition, animal models have been a valuable tool to investigate the
complexities of cell-cell interactions and inflammatory pathways in a realistic system. These
complementary approaches have led to recognition of neutrophils, macrophages, dendritic
cells, and lung epithelial cells as key early players in host response to Aspergillus species
[97].

Mathematical modeling related to respiratory pathogens and the host response has received
only limited attention so far, and the field has not yet taken full advantage of this tool. As
examples of existing studies, a mathematical model of the host response to pneumococcal
lung infection [117] depicts a 3-stage process involving alveolar macrophages, neutrophils, and
monocyte-derived macrophages. The model captures cell counts as well as the concentrations
of certain cytokines, validated through data from mouse experiments. The goal of the model
is to capture the effect of the initial inoculum on disease outcome. Also, a mathematical
model of key regulatory networks in A.f. was published recently [80]. The work presented
in this paper represents the first step toward a multi scale systems biology model of invasive
aspergillosis in the lung, focused on the role of iron. Here, we present the tissue level
component of the model, validated with in in vivo data from a mouse model of invasive
aspergillosis.

Matthew S. Oremland Chapter 6. A computational model of invasive aspergillosis 64

6.1.1 Related work

A number of immune system simulators have been presented for general use. C-ImmSim
[13, 14, 6] is a multi-purpose agent-based model of a section of lymph node tissue; a web
version is available as well [108]. This model focuses on immune response to a range of
pathogens, as well as HIV infection and cancer therapy. More recently, C-ImmSim has in-
corporated assessment of molecular binding [107]. An extension of this model, known as
Vacc-Imm, focuses on peptide vaccination in cancer therapy [137]. SIMMUNE [89] is an-
other general immune system simulator that can be adapted to simulate other systems as
well. The Basic Immune Simulator [42] emphasizes interactions between innate and adaptive
immunity. Another model, SIMISYS [66], is a cellular automata model which reproduces
certain aspects of the human immune system. SimB16 [95] is a more specific simulation
model focusing on immune response to B16 melanoma.

Studies with narrower biological focus include simulation models examining influenza [110],
brain tumors [143], metastasis [19], Toxoplasma gondii [64], pancreatic macrophages [87],
and cell motility [70]. Additionally, a number of studies discuss the usefulness of agent-
based modeling in biological systems – for a review of host-pathogen ABMs see [5]; for a
review of ABMs and the immune system see [18]. The versatility of agent-based models of
biological systems is discussed in [57]; models at the intracellular, cellular, and organism
levels are used to demonstrate this point.

The model presented here focuses on fungal infection in the lung. As such, it is worth
briefly reviewing similar lung models and their respective emphases. A multi-scale ABM of
cancer in the lung was introduced in 2007 [128], followed by a separate study emphasizing
metastasis in 2009 [102]. Inflammation and fibrosis were the focus of a more recent study
[9], wherein an ABM of the lung was subjected to particulate exposure. Certain players in
immune response in the lung have been studied in detail: see [114] for a study of macrophage
response to bacteria in the lung, including a discussion of chemotaxis (a key feature of the
model introduced here). Agent movement is also examined in [123], wherein a model of
neutrophil response to fungal presence in the lung is investigated. While various aspects of
the model presented below have been examined in previous studies, there are no agent-based
models tying all of these processes together in quite the same way. Related work serves as a
precedent for simulation models of biological systems (in particular, the lung); however, the
scope and focus of this particular model make it a novel entry to the field of in silico models.

6.2 The model

The agent-based model is a three-dimensional simulation of a section of lung tissue; see figure
6.1 for a labeled image of a simulation snapshot. A. fumigatus conidia begin at one end of

Matthew S. Oremland Chapter 6. A computational model of invasive aspergillosis 65

Figure 6.1: A labeled snapshot from the simulation window.

a branching airway. As the simulation progresses, the conidia drift through the airway (see
figure 6.2). Upon encountering the epithelium, most conidia are swept away due to ciliary
beating [122]; some, however, are not swept away and lodge themselves in the epithelial layer.
Occasionally, these lodged conidia even enter an epithelial cell [131], though most remain
outside the cell. Left undisturbed, conidial spores germinate and hyphal clusters grow in the
interstitial space (see figure 6.3). The description of the modeling of the immune response
to A. fumigatus provided here is meant to serve as an overview of the ABM and how the
agents function; for a detailed description see Appendix K.

Epithelial cells act as the second line of defense against A. fumigatus (after the cilia). Ep-
ithelial cells recognize the presence of conidia and emit cytokines into the interstitial space
in an effort to initiate an immune response. After a period of swelling, the conidia germi-
nate and attempt to grow – either between epithelial cells and into the interstitial space, or
directly through the cell if the conidia has been internalized by an epithelial cell. The cells
that grow out of a germinated spore are fungal hyphae; these tend to form clusters as they
grow.

There are two immune cell types in the ABM: macrophages and neutrophils. Epithelial
cells can emit two different kinds of cytokines: one that attracts macrophages, and another
that attracts neutrophils. These are tracked separately because certain cytokines attract
neutrophils but not macrophages [140] while others (such as MCAF) do just the reverse
[124]. Since macrophages are the primary defense against conidia and neutrophils are the
primary defense against hyphae, macrophage and neutrophil cytokine production levels are
determined by the presence of these fungal cell types, respectively. The cytokines diffuse
through the interstitial tissue, eventually reaching the bloodstream. Once the cytokine level

Matthew S. Oremland Chapter 6. A computational model of invasive aspergillosis 66

Figure 6.2: A. fumigatus spores drifting through the branching airway.

Figure 6.3: Clusters of A. fumigatus hyphae.

Matthew S. Oremland Chapter 6. A computational model of invasive aspergillosis 67

in the blood for a particular immune cell rises above a certain threshold, an immune cell of
the appropriate type is recruited to that site via the blood.

Recruited macrophages and neutrophils enter the interstitial space via the bloodstream.
There, chemotaxis is simulated as the immune cells follow the direction of highest cytokine
concentration [25], leading to the area with highest fungal concentration. Along the way, the
immune cells may encounter fungal cells, whereupon such cells are attacked. Macrophages
may internalize up to five fungal cells. Once internalized by a macrophage, cells cannot es-
cape and cannot germinate. The ‘health’ of the internalized fungal cells is reduced according
to the time scale of the model. Upon encountering fungal hyphae, neutrophils destroy the
cells via granulation: granules are deposited at that location until all fungal cells have been
destroyed. Neutrophils have a finite number of granules – once these have all been deposited,
the neutrophil may no longer affect fungal cells.

The cytokine level in the surrounding area of a macrophage or neutrophil must be above a
certain threshold in order for chemotaxis to occur. If there aren’t any such locations nearby,
macrophages and neutrophils move through the tissue randomly. Since the lifetime of neu-
trophils is between 24 and 48 hours [119], neutrophils die after a certain amount of time
has passed. Macrophages begin to drift out of the represented cross section once all conidial
spores have been eliminated.

The focus of this simulation is on the battle for iron: while host cells require iron in or-
der to maintain function, the fungal cells are competing for iron in order to grow. Fungal
hyphae cannot grow if the parent cell does not contain enough iron, which they obtain from
surrounding tissue. At each time step in the simulation, iron enters the tissue via the blood-
stream. From there, iron diffuses into the interstitial tissue, where fungal cells attempt to
acquire it. Macrophages halt iron export by the production of ferroportin, which binds to
hepcidin and is subsequently degraded [130]. Hence, in the ABM, macrophages have no
effect on the iron levels of their surrounding area.

The model interface (see 6.4) allows the user to investigate various scenarios: the time
scale, simulation duration, cilia strength, whether or not the virtual patient is neutropenic,
and the amount of iron that enters the blood are all settings which can be changed in the
interface. Additionally, there is an option to save a movie of the simulation. Alongside the
visualization there are plots tracking cell counts and iron levels; the user can easily configure
custom plots. By building up the ABM from local rules based on individual cell behaviors,
the ABM is capable of capturing subtle biological features. At the same time, the intuitive
interface and three-dimensional visualization are conducive to innovative interdisciplinary
research.

Matthew S. Oremland Chapter 6. A computational model of invasive aspergillosis 68

Figure 6.4: The interface for the simulation.

6.3 Discussion

The development of this model is part of an ongoing collaboration with mathematicians,
bioinformaticians, and experimental biologists. While the preliminary results indicate that
this is a promising modeling paradigm for invasive aspergillosis, it will only continue to
improve in detail and accuracy as the model is refined based on data from the laboratory
and the literature. The model already exhibits several features observed in vivo. One of
these features, the clusters of hyphae which tend to form, arises naturally as a result of
local individual interactions. It is our hope to observe more emergent properties like this,
and to validate simulation results with laboratory data. The next step for this model is
to incorporate multiple scales: epithelial cells will have internal iron metabolism networks
determining iron export and import, and this will tie in to the tissue-level dynamics as
iron levels in the interstitial space are affected. Similar intracellular networks are being
developed for fungal cells, and we hope to develop intracellular networks for neutrophils and
macrophages as well.

Bibliography

[1] D. Albrecht, O. Kniemeyer, F. Mech, M. Gunzer, A. Brakhage, and R. Guthke. On the
way toward systems biology of Aspergillus fumigatus infection. Int. J. Med. Microbiol.,
301(5):453–459, Jun 2011.

[2] A. Altes, A. F. Remacha, P. Sarda, F. J. Sancho, A. Sureda, R. Martino, J. Briones,
S. Brunet, C. Canals, and J. Sierra. Frequent severe liver iron overload after stem cell
transplantation and its possible association with invasive aspergillosis. Bone Marrow
Transplant., 34(6):505–509, Sep 2004.

[3] D. Altman. Practical Statistics for Medical Research. Chapman and Hall, London,
1991.

[4] F. Ball and P. Neal. Network epidemic models with two levels of mixing. Mathematical
Biosciences, 212(1):69 – 87, 2008.

[5] A. L. Bauer, C. A. Beauchemin, and A. S. Perelson. Agent-based modeling of host-
pathogen systems: The successes and challenges. Inf Sci (Ny), 179(10):1379–1389, Apr
2009.

[6] M. Bernaschi and F. Castiglione. Design and implementation of an immune system
simulator. Comput. Biol. Med., 31:303–331, Sep 2001.

[7] F. Botterel, K. Gross, O. Ibrahim-Granet, K. Khoufache, V. Escabasse, A. Coste,
C. Cordonnier, E. Escudier, and S. Bretagne. Phagocytosis of Aspergillus fumigatus
conidia by primary nasal epithelial cells in vitro. BMC Microbiol., 8:97, 2008.

[8] T. Britton, T. Kypraios, and P. O’Neill. Inference for epidemics with three levels of
mixing: Methodology and application to a measles outbreak. Scandinavian Journal of
Statistics, 38(3):578–599, 2011.

[9] B. N. Brown, I. M. Price, F. R. Toapanta, D. R. DeAlmeida, C. A. Wiley, T. M. Ross,
T. D. Oury, and Y. Vodovotz. An agent-based model of inflammation and fibrosis
following particulate exposure in the lung. Math Biosci, 231(2):186–196, Jun 2011.

69

70

[10] D. L. Buckeridge, C. Jauvin, A. Okhmatovskaia, and A. D. Verma. Simulation Analysis
Platform (SnAP): a Tool for Evaluation of Public Health Surveillance and Disease
Control Strategies. AMIA Annu Symp Proc, 2011:161–170, 2011.

[11] A. Carvalho, C. Cunha, F. Bistoni, and L. Romani. Immunotherapy of aspergillosis.
Clin. Microbiol. Infect., 18(2):120–125, Feb 2012.

[12] A. Carvalho, C. Cunha, R. G. Iannitti, A. Casagrande, F. Bistoni, F. Aversa, and
L. Romani. Host defense pathways against fungi: the basis for vaccines and im-
munotherapy. Front Microbiol, 3:176, 2012.

[13] F. Castiglione. C-ImmSim Simulator. Institute for Computing Applications, Na-
tional Research Council (CNR) of Italy, 1995. http://www.iac.cnr.it/~filippo/

C-ImmSim.html.

[14] F. Castiglione, M. Bernaschi, and S. Succi. Simulating the immune response on a
distributed parallel computer. Int J Mod Phys C, 8(3):527–545, 1997.

[15] F. Castiglione, F. Pappalardo, M. Bernaschi, and S. Motta. Optimization of HAART
with genetic algorithms and agent-based models of HIV infection. Bioinformatics,
23(24):3350–3355, 2007.

[16] Federico Cecconi, Marco Campenni, Giulia Andrighetto, and Rosaria Conte. What do
agent-based and equation-based modelling tell us about social conventions: The clash
between abm and ebm in a congestion game framework. Journal of Artificial Societies
and Social Simulation, 13(1):6, 2010.

[17] D. L. Chao, M. E. Halloran, V. J. Obenchain, and I. M. Longini. FluTE, a pub-
licly available stochastic influenza epidemic simulation model. PLoS Comput. Biol.,
6:e1000656, Jan 2010.

[18] A. K. Chavali, E. P. Gianchandani, K. S. Tung, M. B. Lawrence, S. M. Peirce, and
J. A. Papin. Characterizing emergent properties of immunological systems with multi-
cellular rule-based computational modeling. Trends Immunol., 29(12):589–599, Dec
2008.

[19] J. Chen, K. Sprouffske, Q. Huang, and C. C. Maley. Solving the puzzle of metastasis:
the evolution of cell migration in neoplasms. PLoS ONE, 6:e17933, 2011.

[20] C.A. Coello. List of references on evolutionary multiobjective optimiza-
tion, 2013. http://www.lania.mx/ ccoello/EMOO/EMOObib.html. Archived at
http://www.webcitation.org/6HhFo4K5H.

[21] J. Cohen. Weighted kappa: nominal scale agreement with provision for scaled dis-
agreement or partial credit. Psychol Bull, 70(4):213–220, Oct 1968.

http://www.iac.cnr.it/~filippo/C-ImmSim.html
http://www.iac.cnr.it/~filippo/C-ImmSim.html

71

[22] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and Psycho-
logical Measurement, 20(1):37–46, 1960.

[23] C. Collins, S. Lenhart, S. Nanda, Jie Xiong, K. Yakovlev, and J. Yong. Optimal control
of harvesting in a stochastic metapopulation model. Optimal Control Applications and
Methods, 33(2):127–142, 2012.

[24] P. Cooley, S. Brown, J. Cajka, B. Chasteen, L. Ganapathi, J. Grefenstette, C. R.
Hollingsworth, B. Y. Lee, B. Levine, W. D. Wheaton, and D. K. Wagener. The role of
subway travel in an influenza epidemic: a New York City simulation. J Urban Health,
88:982–995, Oct 2011.

[25] T. R. Dagenais and N. P. Keller. Pathogenesis of Aspergillus fumigatus in Invasive
Aspergillosis. Clin. Microbiol. Rev., 22(3):447–465, Jul 2009.

[26] Monica Dascàlu, Eduard Franti, and George Stefan. Modeling production with ar-
tificial societies: the emergence of social structure. In S. Bandini, R. Serra, and
F.Suggi Liverani, editors, Cellular Automata: Research Towards Industry, pages 218–
229. Springer London, 1998.

[27] Jeffrey S Dean, George J Gumerman, Joshua M Epstein, Robert L Axtell, Alan C
Swedlund, Miles T Parker, and Stephen McCarroll. Understanding anasazi culture
change through agent-based modeling. Dynamics in human and primate societies.
Oxford University Press, Oxford, pages 179–206, 2000.

[28] David W Denning, Alex Pleuvry, and Donald C Cole. Global burden of chronic pul-
monary aspergillosis as a sequel to pulmonary tuberculosis. Bulletin of the World
Health Organization, 89:864 – 872, 12 2011.

[29] R. D. Diamond and R. A. Clark. Damage to Aspergillus fumigatus and Rhizopus oryzae
hyphae by oxidative and nonoxidative microbicidal products of human neutrophils in
vitro. Infect. Immun., 38(2):487–495, Nov 1982.

[30] W. Ding, L. J. Gross, K. Langston, S. Lenhart, and L. A. Real. Rabies in raccoons:
optimal control for a discrete time model on a spatial grid. J Biol Dyn, 1(4):379–393,
Oct 2007.

[31] Raphaël Duboz, Éric Ramat, and Philippe Preux. Scale transfer modeling: Using
emergent computation for coupling an ordinary differential equation system with a
reactive agent model. Systems Analysis Modelling Simulation, 43(6):793–814, 2003.

[32] R. Durrett and S. Levin. The importance of being discrete (and spatial). Theoretical
Population Biology, 46(3):363 – 394, 1994.

72

[33] H. Dyke Parunak, Robert Savit, and Rick L. Riolo. Agent-based modeling vs. equation-
based modeling: A case study and users guide. In Jaime Simão Sichman, Rosaria
Conte, and Nigel Gilbert, editors, Multi-Agent Systems and Agent-Based Simulation,
volume 1534 of Lecture Notes in Computer Science, pages 10–25. Springer Berlin Hei-
delberg, 1998.

[34] M. Edwards, S. Huet, F. Goreaud, and G. Deffuant. Comparing an individual-based
model of behavior diffusion with its mean field aggregate approximation. J. Artificial
Societies Soc. Simulation, 6(4), 2003.

[35] Khaled El Emam. Benchmarking kappa: interrater agreement in software process
assessments. Empirical Software Engineering, 4(2):113–133, 1999.

[36] Joshua M. Epstein and Robert Axtell. Growing artificial societies: social science from
the bottom up. The Brookings Institution, Washington, DC, USA, 1996.

[37] Barbara Di Eugenio. On the usage of kappa to evaluate agreement on coding tasks.
In In Proceedings of the Second International Conference on Language Resources and
Evaluation, pages 441–444, 2000.

[38] L. Fahse, C. Wissel, and V. Grimm. Reconciling classical and individual-based ap-
proaches in theoretical population ecology: a protocol for extracting population pa-
rameters from individual-based models. Am. Nat., 152(6):838–852, Dec 1998.

[39] Jordi Ferrer, Clara Prats, Daniel Lopez, Joaquim Valls, and Domingo Gargallo. Con-
tribution of individual-based models in malaria elimination strategy design. Malaria
Journal, 9(Suppl 2):P9, 2010.

[40] J. Fleiss. Statistical Methods for Rates and Proportions. John Wiley And Sons, Hobo-
ken, NJ, 1981.

[41] Joseph L Fleiss. Measuring nominal scale agreement among many raters. Psychological
Bulletin, 76(5):378–382, 1971.

[42] V. A. Folcik, G. C. An, and C. G. Orosz. The Basic Immune Simulator: an agent-based
model to study the interactions between innate and adaptive immunity. Theor Biol
Med Model, 4:39, 2007.

[43] J. P. Gangneux, C. Camus, and B. Philippe. [Epidemiology of and risk factors for
invasive aspergillosis in nonneutropenic patients]. Rev Mal Respir, 25(2):139–153, Feb
2008.

[44] J. Gani and S. Yakowitz. Error bounds for deterministic approximations to Markov
processes, with applications to epidemic models. J. Appl. Prob, 32(4):1063–1076, 1995.

73

[45] Michael A. Gennert and A.L. Yuille. Determining the optimal weights in multiple
objective function optimization. In Computer Vision., Second International Conference
on, pages 87–89, 1988.

[46] D.E. Goldberg. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley, Reading, MA, 1989.

[47] Volker Grimm, Uta Berger, Finn Bastiansen, Sigrunn Eliassen, Vincent Ginot, Jarl
Giske, John Goss-Custard, Tamara Grand, Simone K. Heinz, Geir Huse, Andreas Huth,
Jane U. Jepsen, Christian Jørgensen, Wolf M. Mooij, Birgit Müller, Guy Pe’er, Cyril
Piou, Steven F. Railsback, Andrew M. Robbins, Martha M. Robbins, Eva Rossmanith,
Nadja Rüger, Espen Strand, Sami Souissi, Richard A. Stillman, Rune Vabø, Ute Visser,
and Donald L. DeAngelis. A standard protocol for describing individual-based and
agent-based models. Ecological Modelling, 198(1-2):115 – 126, 2006.

[48] Volker Grimm, Uta Berger, Donald L. DeAngelis, J. Gary Polhill, Jarl Giske, and
Steven F. Railsback. The ODD protocol: A review and first update. Ecological Mod-
elling, 221(23):2760 – 2768, 2010.

[49] I. Hadrich, F. Makni, S. Neji, S. Abbes, F. Cheikhrouhou, H. Trabelsi, H. Sellami,
and A. Ayadi. Invasive aspergillosis: resistance to antifungal drugs. Mycopathologia,
174(2):131–141, Aug 2012.

[50] Kathrin Happe. Agent-based modelling and sensitivity analysis by experimental design
and metamodelling: An application to modelling regional structural change. 2005
International Congress, August 23-27, 2005, Copenhagen, Denmark 24464, European
Association of Agricultural Economists, August 2005.

[51] Y. Harada, H. Ezoe, Y. Iwasa, H. Matsuda, and K. Sato. Population persistence and
spatially limited social interaction. Theoretical Population Biology, 48(1):65 – 91, 1995.

[52] M. Hasenberg, J. Behnsen, S. Krappmann, A. Brakhage, and M. Gunzer. Phagocyte
responses towards Aspergillus fumigatus. Int. J. Med. Microbiol., 301(5):436–444, Jun
2011.

[53] Näıla Hayek. Infinite horizon multiobjective optimal control problems in the discrete
time case. Optimization, 60(4):509–529, 2011.

[54] R. Herbrecht, D. W. Denning, T. F. Patterson, J. E. Bennett, R. E. Greene, J. W.
Oestmann, W. V. Kern, K. A. Marr, P. Ribaud, O. Lortholary, R. Sylvester, R. H.
Rubin, J. R. Wingard, P. Stark, C. Durand, D. Caillot, E. Thiel, P. H. Chandrasekar,
M. R. Hodges, H. T. Schlamm, P. F. Troke, and B. de Pauw. Voriconazole ver-
sus amphotericin B for primary therapy of invasive aspergillosis. N. Engl. J. Med.,
347(6):408–415, Aug 2002.

74

[55] Franziska Hinkelmann, David Murrugarra, AbdulSalam Jarrah, and Reinhard Lauben-
bacher. A mathematical framework for agent based models of complex biological net-
works. Bulletin of Mathematical Biology, 73(7):1583–1602, 2011.

[56] A. H. Hissen, J. M. Chow, L. J. Pinto, and M. M. Moore. Survival of Aspergillus
fumigatus in serum involves removal of iron from transferrin: the role of siderophores.
Infect. Immun., 72(3):1402–1408, Mar 2004.

[57] M. Holcombe, S. Adra, M. Bicak, S. Chin, S. Coakley, A. I. Graham, J. Green, C. Gree-
nough, D. Jackson, M. Kiran, S. Macneil, A. Maleki-Dizaji, P. McMinn, M. Pogson,
R. Poole, E. Qwarnstrom, F. Ratnieks, M. D. Rolfe, R. Smallwood, T. Sun, and
D. Worth. Modelling complex biological systems using an agent-based approach. In-
tegr Biol (Camb), 4:53–64, Jan 2012.

[58] W. W. Hope, V. Petraitis, R. Petraitiene, T. Aghamolla, J. Bacher, and T. J. Walsh.
The initial 96 hours of invasive pulmonary aspergillosis: histopathology, comparative
kinetics of galactomannan and (1− > 3) β-d-glucan and consequences of delayed anti-
fungal therapy. Antimicrob. Agents Chemother., 54(11):4879–4886, Nov 2010.

[59] F. Horn, T. Heinekamp, O. Kniemeyer, J. Pollmacher, V. Valiante, and A. A. Brakhage.
Systems biology of fungal infection. Front Microbiol, 3:108, 2012.

[60] J. Horn, N. Nafpliotis, and D.E. Goldberg. A niched pareto genetic algorithm for mul-
tiobjective optimization. In Evolutionary Computation, 1994. IEEE World Congress
on Computational Intelligence., Proceedings of the First IEEE Conference on, pages
82–87 vol.1, 1994.

[61] S. Huet, M. Edwards, and G. Deffuant. Taking into account the variations of neigh-
bourhood sizes in the mean-field approximation of the threshold model on a random
network. J. Artificial Societies Soc. Simulation, 10(1), 2007.

[62] A. S. Ibrahim, T. Gebremariam, S. W. French, J. E. Edwards, and B. Spellberg. The
iron chelator deferasirox enhances liposomal amphotericin B efficacy in treating murine
invasive pulmonary aspergillosis. J. Antimicrob. Chemother., 65(2):289–292, Feb 2010.

[63] J. A. Jacquez and C. P. Simon. The stochastic SI model with recruitment and deaths.
I. Comparison with the closed SIS model. Math Biosci, 117(1-2):77–125, 1993.

[64] W. Jiang, A. M. Sullivan, C. Su, and X. Zhao. An agent-based model for the trans-
mission dynamics of Toxoplasma gondii. J. Theor. Biol., 293:15–26, Jan 2012.

[65] David E. Joslin and David P. Clements. “Squeaky wheel” optimization. J. Artificial
Intelligence Res., 10:353–373 (electronic), 1999.

[66] J. K. Kalita, K. Chandrashekar, R. Hans, and P. Selvam. Computational modelling
and simulation of the immune system. Int J Bioinform Res Appl, 2:63–88, 2006.

75

[67] P. Kasaie, W.D. Kelton, A. Vaghefi, and S.G.R.J. Naini. Toward optimal resource-
allocation for control of epidemics: An agent-based-simulation approach. In Winter
Simulation Conference (WSC), Proceedings of the 2010, pages 2237 –2248, Dec. 2010.

[68] P. S. Kim, P. P. Lee, and D. Levy. A PDE model for imatinib-treated chronic myel-
ogenous leukemia. Bull. Math. Biol., 70:1994–2016, Oct 2008.

[69] P. S. Kim, P. P. Lee, and D. Levy. Modeling imatinib-treated chronic myelogenous
leukemia: reducing the complexity of agent-based models. Bull. Math. Biol., 70:728–
744, Apr 2008.

[70] M. T. Klann, A. Lapin, and M. Reuss. Agent-based simulation of reactions in the
crowded and structured intracellular environment: Influence of mobility and location
of the reactants. BMC Syst Biol, 5:71, 2011.

[71] L. Kohidai and G. Csaba. Chemotaxis and chemotactic selection induced with cy-
tokines (IL-8, RANTES and TNF-alpha) in the unicellular Tetrahymena pyriformis.
Cytokine, 10(7):481–486, Jul 1998.

[72] D. P. Kontoyiannis, G. Chamilos, R. E. Lewis, S. Giralt, J. Cortes, I. I. Raad, J. T.
Manning, and X. Han. Increased bone marrow iron stores is an independent risk
factor for invasive aspergillosis in patients with high-risk hematologic malignancies and
recipients of allogeneic hematopoietic stem cell transplantation. Cancer, 110(6):1303–
1306, Sep 2007.

[73] K. Krippendorff. Content Analysis: an Introduction to its Methodology. Sage Publica-
tions, Beverly Hills, CA, 1980.

[74] J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical
data. Biometrics, 33(1):159–174, Mar 1977.

[75] M. Laskowski, B. C. Demianyk, J. Witt, S. N. Mukhi, M. R. Friesen, and R. D.
McLeod. Agent-based modeling of the spread of influenza-like illness in an emergency
department: a simulation study. IEEE Trans Inf Technol Biomed, 15:877–889, Nov
2011.

[76] R. Laubenbacher, A. S. Jarrah, H. Mortveit, and S. S. Ravi. Mathematical formalism
for agent-based modeling. In R.A. Meyers, editor, Encyclopedia of Complexity and
Systems Science, pages 160–176. Springer, 2009.

[77] Reinhard Laubenbacher, Franziska Hinkelmann, and Matt Oremland. Agent-based
models and optimal control in biology: A discrete approach. In Raina Robeva and
Terrell L. Hodge, editors, Mathematical Concepts and Methods in Modern Biology,
pages 143 – 178. Academic Press, Boston, 2013.

76

[78] S. Lenhart and J.T. Workman. Optimal Control Applied to Biological Models. Chapman
and Hall/CRC, Boca Raton, FL, 2007.

[79] Jingpeng Li, Andrew J. Parkes, and Edmund K. Burke. Evolutionary squeaky wheel
optimization: A new analysis framework. Evolutionary Computation, Jan 2011. pub-
lished online.

[80] J. Linde, P. Hortschansky, E. Fazius, A. A. Brakhage, R. Guthke, and H. Haas. Regu-
latory interactions for iron homeostasis in Aspergillus fumigatus inferred by a Systems
Biology approach. BMC Syst Biol, 6:6, 2012.

[81] P. L. Lollini, S. Motta, and F. Pappalardo. Discovery of cancer vaccination protocols
with a genetic algorithm driving an agent based simulator. BMC Bioinformatics, 7:352,
2006.

[82] P.L. Lollini, F. Castiglione, and S. Motta. Modelling and simulation of cancer im-
munoprevention vaccine. Int J Cancer, 77:937–941, 1998.

[83] Carlos A. Lugo and Alan J. McKane. Quasicycles in a spatial predator-prey model.
Phys. Rev. E, 78:051911, Nov 2008.

[84] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan.
MASON: A multi-agent simulation environment. Simulation: Transactions of the
society for Modeling and Simulation International, 82(7):517–527, 2005.

[85] E. K. Manavathu, J. Cutright, and P. H. Chandrasekar. Comparative study of suscep-
tibilities of germinated and ungerminated conidia of Aspergillus fumigatus to various
antifungal agents. J. Clin. Microbiol., 37(3):858–861, Mar 1999.

[86] L. Mao. Agent-based simulation for weekend-extension strategies to mitigate influenza
outbreaks. BMC Public Health, 11:522, 2011.

[87] I. V. Martinez, E. J. Gomez, M. E. Hernando, R. Villares, and M. Mellado. Agent-
based model of macrophage action on endocrine pancreas. Int J Data Min Bioinform,
6(4):355–368, 2012.

[88] Hirotsugu Matsuda, Naofumi Ogita, Akira Sasaki, and Kazunori Satō. Statistical
mechanics of population. Progress of Theoretical Physics, 88(6):1035–1049, 1992.

[89] M. Meier-Schellersheim and G. Mack. Simmune, a tool for simulating and analyzing
immune system behavior. CoRR, cs.MA/9903017, 1999.

[90] H.L. Moore. Cours d’économie politique. by Vilfredo Pareto, professeur à l’Université
de Lausanne. Vol. i. pp. 430. i896. Vol. ii. pp. 426. i897. Lausanne: F. Rouge. The
ANNALS of the American Academy of Political and Social Science, 9(3):128–131, 1897.

77

[91] Michael J. North, Nicholson T. Collier, and Jerry R. Vos. Experiences creating three
implementations of the repast agent modeling toolkit. ACM Trans. Model. Comput.
Simul., 16(1):1–25, January 2006.

[92] L. C. Okell, C. J. Drakeley, T. Bousema, C. J. Whitty, and A. C. Ghani. Modelling
the impact of artemisinin combination therapy and long-acting treatments on malaria
transmission intensity. PLoS Med., 5:e226; discussion e226, Nov 2008.

[93] Matthew Oremland. Optimization and optimal control of agent-based models. Master’s
thesis, Virginia Polytechnic Institute and State University, May 2011.

[94] O. Ovaskainen and S. J. Cornell. Space and stochasticity in population dynamics.
Proc. Natl. Acad. Sci. U.S.A., 103(34):12781–12786, Aug 2006.

[95] F. Pappalardo, I. Martinez Forero, M. Pennisi, A. Palazon, I. Melero, and S. Motta.
SimB16: modeling induced immune system response against B16-melanoma. PLoS
ONE, 6:e26523, 2011.

[96] F. Pappalardo, M. Pennisi, F. Castiglione, and S. Motta. Vaccine protocols optimiza-
tion: in silico experiences. Biotechnol. Adv., 28:82–93, 2010.

[97] S. J. Park and B. Mehrad. Innate immunity to Aspergillus species. Clin. Microbiol.
Rev., 22(4):535–551, Oct 2009.

[98] H. Parunak, Robert Savit, and Rick L. Riolo. Agent-based modeling vs. equation-based
modeling: A case study and users guide. In Jaime Simão Sichman, Rosaria Conte, and
Nigel Gilbert, editors, Multi-Agent Systems and Agent-Based Simulation, volume 1534
of Lecture Notes in Computer Science, pages 10–25. Springer Berlin Heidelberg, 1998.

[99] M Pascual and S. Levin. From individuals to population densities: searching for the
intermediate scale of nontrivial determinism. Ecology, 80(7):2225–2236, 1999.

[100] Rajan Patel, Ira M. Longini, Jr., and M. Elizabeth Halloran. Finding optimal vacci-
nation strategies for pandemic influenza using genetic algorithms. J. Theoret. Biol.,
234(2):201–212, 2005.

[101] M. Pennisi, R. Catanuto, F. Pappalardo, and S. Motta. Optimal vaccination schedules
using simulated annealing. Bioinformatics, 24:1740–1742, Aug 2008.

[102] Marzio Pennisi, Francesco Pappalardo, and Santo Motta. Agent based modeling of lung
metastasis-immune system competition. In Paul S. Andrews, Jon Timmis, Nick D.L.
Owens, Uwe Aickelin, Emma Hart, Andrew Hone, and Andy M. Tyrrell, editors, Arti-
ficial Immune Systems, volume 5666 of Lecture Notes in Computer Science, pages 1–3.
Springer Berlin Heidelberg, 2009.

78

[103] B. Philippe, O. Ibrahim-Granet, M. C. Prevost, M. A. Gougerot-Pocidalo,
M. Sanchez Perez, A. Van der Meeren, and J. P. Latge. Killing of Aspergillus fumi-
gatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect.
Immun., 71(6):3034–3042, Jun 2003.

[104] Nicolas Picard and Alain Franc. Aggregation of an individual-based space-dependent
model of forest dynamics into distribution-based and space-independent models. Eco-
logical Modelling, 145(1):69 – 84, 2001.

[105] Arash Rahman, Saeed Setayeshi, and M. Shamsaei. An analysis to wealth distribution
based on sugarscape model in an artificial society. International Journal of Engineering,
20(3):211–224, 2007.

[106] Hazhir Rahmandad and John Sterman. Heterogeneity and network structure in the
dynamics of diffusion: Comparing agent-based and differential equation models. Man-
agement Science, 54(5):998–1014, 2008.

[107] N. Rapin, O. Lund, M. Bernaschi, and F. Castiglione. Computational immunology
meets bioinformatics: the use of prediction tools for molecular binding in the simulation
of the immune system. PLoS ONE, 5:e9862, 2010.

[108] N. Rapin, O. Lund, and F. Castiglione. Immune system simulation online. Bioinfor-
matics, 27:2013–2014, Jul 2011.

[109] J. H. Rex, J. E. Bennett, J. I. Gallin, H. L. Malech, and D. A. Melnick. Normal and
deficient neutrophils can cooperate to damage Aspergillus fumigatus hyphae. J. Infect.
Dis., 162(2):523–528, Aug 1990.

[110] B. Roche, J. M. Drake, and P. Rohani. An agent-based model to study the epidemi-
ological and evolutionary dynamics of Influenza viruses. BMC Bioinformatics, 12:87,
2011.

[111] Andre M. De Roos, Edward Mccauley, and William G. Wilson. Mobility versus density-
limited predator–prey dynamics on different spatial scales. Proceedings: Biological
Sciences, 246(1316):pp. 117–122, 1991.

[112] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental
data. Science, 324(5923):81–85, 2009.

[113] M. Schrettl, E. Bignell, C. Kragl, C. Joechl, T. Rogers, H. N. Arst, K. Haynes, and
H. Haas. Siderophore biosynthesis but not reductive iron assimilation is essential for
Aspergillus fumigatus virulence. J. Exp. Med., 200(9):1213–1219, Nov 2004.

[114] Jose L. Segovia-Juarez, Suman Ganguli, and Denise Kirschner. Identifying control
mechanisms of granuloma formation during m. tuberculosis infection using an agent-
based model. Journal of Theoretical Biology, 231(3):357 – 376, 2004.

79

[115] M. Seifert, M. Nairz, A. Schroll, M. Schrettl, H. Haas, and G. Weiss. Effects of the
Aspergillus fumigatus siderophore systems on the regulation of macrophage immune
effector pathways and iron homeostasis. Immunobiology, 213(9-10):767–778, 2008.

[116] J. Sim and C. C. Wright. The kappa statistic in reliability studies: use, interpretation,
and sample size requirements. Phys Ther, 85(3):257–268, Mar 2005.

[117] A. M. Smith, J. A. McCullers, and F. R. Adler. Mathematical model of a three-stage
innate immune response to a pneumococcal lung infection. J. Theor. Biol., 276(1):106–
116, May 2011.

[118] W. J. Steinbach, K. A. Marr, E. J. Anaissie, N. Azie, S. P. Quan, H. U. Meier-Kriesche,
S. Apewokin, and D. L. Horn. Clinical epidemiology of 960 patients with invasive
aspergillosis from the PATH Alliance registry. J. Infect., 65(5):453–464, Nov 2012.

[119] Alan Stevens, James S. Lowe, and Barbara Young. Wheater’s Basic Histopathology:
A Color Atlas and Text (Wheater’s Histology and Pathology). Churchill Livingstone,
4 edition, October 2002.

[120] W. K. Sun, X. Lu, X. Li, Q. Y. Sun, X. Su, Y. Song, H. M. Sun, and Y. Shi. Dectin-1
is inducible and plays a crucial role in Aspergillus-induced innate immune responses
in human bronchial epithelial cells. Eur. J. Clin. Microbiol. Infect. Dis., 31(10):2755–
2764, Oct 2012.

[121] A. Swierniak, M. Kimmel, and J. Smieja. Mathematical modeling as a tool for planning
anticancer therapy. Eur. J. Pharmacol., 625(1-3):108–121, Dec 2009.

[122] A. B. Thompson, R. A. Robbins, D. J. Romberger, J. H. Sisson, J. R. Spurzem,
H. Teschler, and S. I. Rennard. Immunological functions of the pulmonary epithelium.
Eur. Respir. J., 8(1):127–149, Jan 1995.

[123] C. Tokarski, S. Hummert, F. Mech, M. T. Figge, S. Germerodt, A. Schroeter, and
S. Schuster. Agent-based modeling approach of immune defense against spores of
opportunistic human pathogenic fungi. Front Microbiol, 3:129, 2012.

[124] A. J. Valente, D. T. Graves, C. E. Vialle-Valentin, R. Delgado, and C. J. Schwartz.
Purification of a monocyte chemotactic factor secreted by nonhuman primate vascular
cells in culture. Biochemistry, 27(11):4162–4168, May 1988.

[125] Alan Veliz-Cuba, Abdul Salam Jarrah, and Reinhard Laubenbacher. Polynomial alge-
bra of discrete models in systems biology. Bioinformatics, 26(13):1637–1643, 2010.

[126] J. E. Wang, A. Warris, E. A. Ellingsen, P. F. Jorgensen, T. H. Flo, T. Espevik,
R. Solberg, P. E. Verweij, and A. O. Aasen. Involvement of CD14 and toll-like receptors
in activation of human monocytes by Aspergillus fumigatus hyphae. Infect. Immun.,
69(4):2402–2406, Apr 2001.

80

[127] Ting Wang and Xiaolong Zhang. 3D protein structure prediction with genetic tabu
search algorithm in off-lattice AB model. In Proceedings of the 2009 Second Inter-
national Symposium on Knowledge Acquisition and Modeling - Volume 01, KAM ’09,
pages 43–46, Washington, DC, USA, 2009. IEEE Computer Society.

[128] Z. Wang, L. Zhang, J. Sagotsky, and T. S. Deisboeck. Simulating non-small cell lung
cancer with a multiscale agent-based model. Theor Biol Med Model, 4:50, 2007.

[129] Zhihui Wang, Veronika Bordas, and Thomas Deisboeck. Identification of Critical
Molecular Components in a Multiscale Cancer Model Based on the Integration of
Monte Carlo, Resampling, and ANOVA. Frontiers in Physiology, 2(0), 2011.

[130] R. J. Ward, R. R. Crichton, D. L. Taylor, L. Della Corte, S. K. Srai, and D. T. Dexter.
Iron and the immune system. J Neural Transm, 118(3):315–328, Mar 2011.

[131] J. A. Wasylnka and M. M. Moore. Uptake of Aspergillus fumigatus Conidia by phago-
cytic and nonphagocytic cells in vitro: quantitation using strains expressing green
fluorescent protein. Infect. Immun., 70(6):3156–3163, Jun 2002.

[132] J. A. Wasylnka and M. M. Moore. Aspergillus fumigatus conidia survive and germinate
in acidic organelles of A549 epithelial cells. J. Cell. Sci., 116(Pt 8):1579–1587, Apr
2003.

[133] U. Wilensky. Netlogo. Center for Connected Learning and Computer-Based Model-
ing, Northwestern University, Evanston, IL, 2009. http://ccl.northwestern.edu/

netlogo/.

[134] W. G. Wilson. Resolving discrepancies between deterministic population models and
individual-based simulations. Am. Nat., 151(2):116–134, Feb 1998.

[135] W.G. Wilson, A.M. Deroos, and E. Mccauley. Spatial instabilities within the diffu-
sive lotka-volterra system: Individual-based simulation results. Theoretical Population
Biology, 43(1):91 – 127, 1993.

[136] W.G. Wilson, E. McCauley, and A.M. Roos. Effect of dimensionality on lotka-volterra
predator-prey dynamics: Individual based simulation results. Bulletin of Mathematical
Biology, 57:507–526, 1995.

[137] A. L. Woelke, J. von Eichborn, M. S. Murgueitio, C. L. Worth, F. Castiglione, and
R. Preissner. Development of immune-specific interaction potentials and their appli-
cation in the multi-agent-system VaccImm. PLoS ONE, 6:e23257, 2011.

[138] Y. Yang, P. M. Atkinson, and D. Ettema. Analysis of CDC social control measures
using an agent-based simulation of an influenza epidemic in a city. BMC Infect. Dis.,
11:199, 2011.

http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

81

[139] Serhat Yeşilyurt and Anthony T. Patera. Surrogates for numerical simulations; opti-
mization of eddy-promoter heat exchangers. Computer Methods in Applied Mechanics
and Engineering, 121(14):231 – 257, 1995.

[140] T Yoshimura, K Matsushima, S Tanaka, E A Robinson, E Appella, J J Oppenheim,
and E J Leonard. Purification of a human monocyte-derived neutrophil chemotactic
factor that has peptide sequence similarity to other host defense cytokines. Proceedings
of the National Academy of Sciences, 84(24):9233–9237, 1987.

[141] H. Zahedmanesh and C. Lally. A multiscale mechanobiological modelling framework
using agent-based models and finite element analysis: application to vascular tissue
engineering. Biomech Model Mechanobiol, May 2011.

[142] K. A. Zarember, J. A. Sugui, Y. C. Chang, K. J. Kwon-Chung, and J. I. Gallin.
Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth
by lactoferrin-mediated iron depletion. J. Immunol., 178(10):6367–6373, May 2007.

[143] L. Zhang, B. Jiang, Y. Wu, C. Strouthos, P. Z. Sun, J. Su, and X. Zhou. Developing
a multiscale, multi-resolution agent-based brain tumor model by graphics processing
units. Theor Biol Med Model, 8:46, Dec 2011.

[144] Y. Zou, V. A. Fonoberov, M. Fonoberova, I. Mezic, and I. G. Kevrekidis. Model
reduction for agent-based social simulation: coarse-graining a civil violence model.
Phys Rev E Stat Nonlin Soft Matter Phys, 85(6 Pt 2):066106, Jun 2012.

Appendices

82

Appendix A

Overview, Design concepts, and
Details (ODD) protocol for Rabbits
and Grass

The model upon which this version is based is included in the sample library of NetLogo
[133], a popular agent-based modeling platform. The description here is warranted as it
includes the mechanics of an optimization problem, the details of which are not available
elsewhere.

A.1 Purpose

The purpose of this model is to examine population dynamics of a simple environmental
system. In particular, it is a model of rabbits eating grass in a field. On each day of the
simulation, poison can be placed on the field in order to kill the rabbits. This version of the
model is an attempt to answer the following optimization question: what is the best way
of controlling (i.e., minimizing) the rabbit population while also minimizing the amount of
poison used?

A.2 Entities, state variables, and scales

This section contains a description of the grid cells, spatial and temporal scales, and the
rabbits. It also contains a description of the format of a poison strategy, the investigation of
which is the key feature of the model.

83

84

Grid cells, spatial scale, and temporal scale. The world is a square grid of
discrete cells, representing a field. The grid is toroidal: edges wrap around both in the
horizontal and vertical directions. The distance from the center of a cell to a neighboring
horizontal or vertical cell is 1 unit (thus the distance between two diagonal cells is

√
2).

Units are abstract spatial measurements. Time steps are also abstract discrete units. A
simulation consists of a finite number of time steps. The only state variable for each cell
indicates whether or not the cell currently contains grass. When grass is eaten on a grid cell
there is a certain probability that it will grow back at each time step. This growth happens
spontaneously.

State variable Name Value
Side length of field s 50 grid cells
Total grid cells N 2500
Presence of grass grass? 0 = no grass, 1 = grass.
Grass growth probability γ 0.02
Simulation time total sim time 100 time steps

Table A.1: Grid cell state variables.

Rabbits. Each time step, rabbits move, eat grass (or not), and reproduce (or not).
Reproduction is asexual and based on energy level, which is raised when a rabbit eats.
Rabbits lose energy both by moving and by spawning new rabbits. If a rabbit’s energy level
drops to 0 or lower the rabbit dies.

State variable Name Value
Movement cost move cost 0.5
Energy from food food energy 3
Birth threshold birth threshold 8
Current energy level energy varies

Table A.2: Rabbit state variables.

Poison schedule. A poison schedule u is a vector of length total sim time, with each
entry either 0 or 1. Each entry corresponds to one time step in the simulation; 0 means that
poison is not used and 1 means that poison is used. Thus, there are a total of 2total sim time

possible poison schedules. The poison has a maximum efficacy which degrades over time
with repeated use. If the poison is not used the efficacy increases again, up to the maximum.

85

State variable Name Value
Maximum efficacy pmax 0.3
Degradation rate pdeg 0.5
Current efficacy peff varies in (0, pmax]

Table A.3: Poison schedule details.

A.3 Process overview and scheduling

In order to minimize ambiguity details of model execution are presented as pseudo-code; see
Algorithm 5.

Algorithm 5 Rabbits and Grass process pseudo-code.
1: setup world and initialize rabbits
2: set poison schedule u
3: while time steps < total sim time do
4: store population and grass levels
5: rabbit routine:
6: Face left by random amount up to 45 degrees
7: Face right by random amount up to 45 degrees . simulates ‘wiggling’ movement
8: move forward 1 unit
9: energy = energy −move cost

10: if u(t− 1) = 1 then
11: peff = (1− pdeg)peff . efficacy degrades on repeated use
12: else
13: peff = peff + pdeg(pmax − peff) . efficacy increases if not used
14: end if
15: if u(t) = 1 and rand(0, 1) < peff then die end if . probability of being poisoned
16: if grass? = 1 here then
17: energy = energy + food energy
18: grid cell: grass? = 0
19: end if
20: if energy > birth threshold then
21: energy = energy/2 . energy is halved for reproduction
22: create new rabbit here . rabbit inherits location and energy values from parent
23: new rabbit moves
24: end if
25: if energy ≤ 0 then die end if
26: end routine
27: for all grid cells with grass? = 0 do
28: if rand(0, 1) < γ then grass? = 1 end if
29: end for
30: advance one time step
31: end while
32: write data to file

A.4 Design concepts

In the ODD protocol [47, 48] there are eleven design concepts. Those which do not apply
have been omitted.

Basic principles. In essence, this model is a predator-prey system wherein the rabbits
are predators and the grass is prey. Introduction of poison into the model, and having
that poison modeled as a direct external influence on population levels, creates a natural

86

setting for an optimization problem. One can study the effect of various poison strategies
on population levels – in terms of minimizing the rabbit population it can be thought of as
a harvesting problem, but in terms of minimizing poison it can be thought of as resource
allocation.

Emergence. Rabbit population and grass levels tend to oscillate as the simulation pro-
gresses. The frequency and amplitude of these oscillations can be affected by parameter
settings and initial values and hence may be described as emergent model dynamics.

Interaction. Agent interaction is indirect: since rabbit movement is executed serially,
it is possible that other rabbits deplete all of the grass in a particular rabbit’s potential field
of movement, thereby reducing or eliminating the chance for that rabbit to gain energy.

Stochasticity. Rabbit movement is totally random in that they cannot sense whether
neighboring grid cells contain grass or not. Whether grass grows back on an empty grid cell
is also random, and a grid cell that has been empty for several time steps is no more likely
to grow grass than a cell which has only just become empty.

Observation. Rabbit population and grass counts are recorded at each time step. The
total number of rabbits alive during the course of a simulation serves as a measure of fitness
of the poison schedule.

A.5 Initialization

At initialization, 20% of the grid cells contain grass; these are chosen at random. There are
150 rabbits placed at random locations throughout the grid. Each begins with a random
amount of energy between 0 and 9 inclusive (rabbits with 0 energy may survive the first time
step by eating grass). Total simulation time is 100 time steps and each simulation contains
a poison schedule u, described in section A.2.

A.6 Optimization

Since the multi-objective optimization problem is the key feature of the model as presented
here, a few clarifying details are in order. The objectives of the optimization problem are
to determine, for the parameter values provided, a set of Pareto optimal poison schedules
which minimize the number of rabbits while also minimizing the amount of poison used.

87

The number of rabbits refers to the total number of rabbits alive during the course of a
simulation – not just those alive at the end of the final time step. Since a poison schedule
is a binary vector of length total sim time, the amount of poison used is represented by the
sum of the entries of that vector.

Appendix B

Overview, Design concepts, and
Details protocol for SugarScape with
taxation

B.1 Purpose

The version of SugarScape presented here is a modified version of the original SugarScape
[36], a model in which abstract entities roam a landscape made of sugar. These agents
are periodically taxed for their sugar stores – the tax rate is constant but the frequency
differs from region to region. The purpose of this version of SugarScape is to investigate the
effects of various taxation policies on tax income and agent population. In particular, the
model is used to investigate the following question: what is the optimal taxation policy for
maximizing collected income while minimizing deaths?

B.2 Entities, state variables, and scales

Ants. Each ant has a fixed vision and metabolism level for the duration of the simulation;
these levels vary from ant to ant. Ants can see in the four principal directions up, down,
left, and right, but cannot see any other grid cells. Metabolism determines how much sugar
an ant loses (‘burns’) each time step. Movement is governed by vision: an ant moves to the
nearest grid cell within its vision with the maximum amount of sugar. Only one ant may
occupy a grid cell at any given time. Ants die if their sugar level reaches zero. There is no
upper limit to how much sugar an ant may accumulate. Low vision is defined as 1, 2, or 3
and low metabolism is defined as 1 or 2. Thus, each ant belongs to one of the following four
categories: low vision / low metabolism (LL), low vision / high metabolism (LH), high

88

89

State variable Abbreviation Value(s)
Location (current region) reg {0, 1, . . . , 8}
Vision vis random in {1, 2, . . . , 5}
Metabolism met random in {1, 2, 3, 4}
Sugar sug {1, 2, . . .}

Table B.1: Ant state variables

vision / low metabolism (HL), and high vision / high metabolism (HH).

Grid cells. When ants consume the sugar from a grid cell, the sugar grows back at a
fixed rate over subsequent time steps, up to a pre-determined maximum based on the layout
of the landscape.

State variable Abbreviation Value(s)
Maximum sugar smax one of {0, 1, 2, 3, 4}
Sugar shere {0, 1, 2, 3, 4}
Grow back rate α 1

Table B.2: Grid cell state variables

Spatial and temporal scales. The landscape for SugarScape is presented in Figure
2.8. The maximum sugar amounts for each region are given in Table B.3. There are five
region types: those whose maximum sugar is 0, 1, 2, 3, or 4. Each ant occupies exactly one

Region 0 1 2 3 4 5 6 7 8
Max. sugar 0 0 1 1 2 3 3 4 4

Table B.3: Maximum sugar and grid cell counts for each region.

grid cell, and the map is toroidal – edges wrap in both the horizontal and vertical directions.
The landscape is a 50 × 50 grid of cells. Given the fairly abstract nature of the model,
time and space are unitless. A simulation consists of a finite number of time steps. Taxes
are collected at regular intervals. The tax rate for a given ant depends on its category and
current region (for example, an agent with high vision and low metabolism may be taxed at
rate 0.75 in a high-sugar region but only at 0.25 in a low-sugar region). Tax amounts are
always rounded up to the nearest integer – this ensures that any non-zero tax rate always
collects at least 1 unit of sugar. Taxes are collected once every subsequent 5 time steps for a

90

Variable Abbreviation Value(s) Units
Simulation duration total sim time 50 time steps
Permissible tax rates tax {0, 0.25, 0.5, 0.75} N/A
Tax interval tax interval 5 time steps

Table B.4: Taxation and temporal variables

total of ten tax cycles. The choice to tax every 5 ticks is motivated by the desire to not let
the dynamics stabilize – with frequent taxation the dynamics are more immediately affected
by previous tax rates.

For each of the four ant categories there are five possible tax rates depending on their
current region and each of these rates may be different for each of the ten tax cycles. Thus,
a tax schedule is a vector of length 5 · 4 · 10 = 200 with each entry in {0, 0.25, 0.5, 0.75} –
this means there are a total of 4200 different tax schedules. The optimization problem is to
determine the tax schedules which maximize the total tax income collected while minimizing
the number of deaths.

B.3 Process overview and scheduling

The ABM process is presented as pseudo-code in Algorithm 6. The ant and tax routines
are executed fully by one ant, then fully by another – i.e., serially. Hence state variables are
updated asynchronously. Time steps are discrete units, as is movement: ants jump directly
from the center of one grid cell to the center of another.

Algorithm 6 SugarScape process pseudo-code.
1: setup map and generate tax schedule . layout is read in from a matrix in a .txt file
2: while simulation time < total sim time do
3: ant routine:
4: let vision cells be set of unoccupied grid cells within vis . includes current cell
5: let potential cells be set of vision cells with maximum sugar
6: move to nearest member of potential cells . select at random if more than one
7: sug = sug −met + shere . eat and metabolize sugar
8: grid cell here: shere = 0
9: end routine

10: grid cells: shere = min{shere + α, smax} . sugar gradually grows back, up to capacity
11: if time mod tax interval = 0 then . collect tax every tax interval time steps
12: for all ants do
13: set tax based on category, location, and tax cycle
14: let paid = min{sug, dtax · suge} . tax is rounded up; ants cannot pay more than they have
15: sug = sug − paid
16: end for
17: update amount paid by all ants . keep track of tax income
18: end if
19: ants with sugar ≤ 0 die
20: store death data
21: advance one time step
22: end while
23: write all data to file

91

B.4 Design concepts

Basic principles. This version of SugarScape builds on the original by incorporating
taxation. In general, the basic question under investigation is how spatially-dependent local
inputs affect global dynamics. Specifically, the model investigates how local tax rates affect
tax income and regional population distribution, a question which holds interest in a variety
of real-world settings.

Emergence. Spatial population dynamics ought to be an emergent property of the model:
for example, high tax rates in high-sugar regions might substantially alter regional population
dynamics. The precise mechanism driving such changes is not built in to the model in any
direct sense.

Objectives. The objective of each ant is to move to a cell within its vision with the
maximum amount of sugar. There is no other consideration, and ants do not have knowledge
of past or future tax rates at any location.

Sensing. Ants are aware of the sugar level and occupancy of each grid cell within their
vision. They are not aware of any properties of any other ants, even those within their vision.

Interaction. Ants interact with one another indirectly in the sense that only one ant
may occupy a grid cell at any given time. Thus if two ants have the same high-sugar grid
cell within their vision, whichever ant is randomly selected to move first will occupy that
cell. This may very well alter the movement of the other ant. In this way, serial execution
and asynchronous update are key features of agent interaction. If ant order was not random
(i.e., the same ant was allowed to move first each time step), population dynamics might be
fundamentally altered.

Stochasticity. Ant movement is partially stochastic: if an ant sees four unoccupied
grid cells with 2 sugar and three unoccupied grid cells with 3 sugar, the ant will choose the
nearest cell with 3 sugar. This ‘minimum distance’ policy tends to lead to ants clustering on
regional boundaries, as they have limited incentive to move to the interior of a region. This
movement feature is discussed in [36].

Collectives. In a sense, ants form collectives which affect individuals inside and outside
of the collective. This arises because only one ant may occupy a grid cell at any time. In
high-sugar regions, ants in the middle of the region tend to become trapped because all
available spaces are occupied. At the same time, an individual on the border of such a

92

region is frequently unable to enter due to the high population density within the region.
These collectives form entirely as a result of local interactions.

Observation. Each simulation consists of a finite number of time steps. At each time
step, the following information is collected: the total amount of tax collected, and the number
of deaths which occur. For each simulation, the tax policy is recorded as well. At the end
of each simulation these data are written to a comma separated value (.csv) file, a universal
format for spreadsheet applications.

B.5 Initialization

The model is initialized with 200 ants; each is placed at a random unoccupied location on
the landscape. Ants begin with a random amount of sugar between 5 and 25 (inclusive); this
value is different for each ant and chosen from a uniform distribution. Ants are initialized
with vision chosen at random between 1 and 5 (inclusive) and metabolism between 1 and
4 (inclusive). Vision and metabolism of a given ant do not change over the course of a
simulation.

B.6 Input data

The landscape is read in from a .txt file; this helps with implementation and makes it easier
to make changes. A tax policy can either be chosen directly via code manipulation or chosen
at random. The policy must be chosen prior to simulation. As such, the tax policy may be
thought of as input to the model.

Appendix C

Overview, Design concepts, and
Details protocol for Rabbits and
Grass

The model upon which this version is based is included in the sample library of NetLogo
[133], a popular agent-based modeling platform. The description here is warranted as it
includes the mechanics of an optimization problem, the details of which are not available
elsewhere (including the NetLogo version).

C.1 Purpose

The purpose of this model is to examine population dynamics of a simple environmental
system. In particular, it is a model of rabbits eating grass in a field. On each day of the
simulation, poison can be placed on the field in order to kill the rabbits. The poison kills
the rabbits with a certain efficacy but has no effect on the grass. The poison costs money, so
there is some interest in minimizing the number of days on which poison is used. From this
scenario, a natural multi-objective optimization problem arises: what poison schedule should
be used in order to minimize the total number of rabbits alive over the entire simulation
while also minimizing the amount of poison? This version of the model is an attempt to
answer this question.

C.2 Entities, state variables, and scales

This section contains a description of the grid cells, spatial and temporal scales, and the
rabbits. It also contains a description of the format of a poison strategy, the investigation of

93

94

which is the key feature of the model.

Grid cells, spatial scale, and temporal scale. The world is a square grid of
discrete cells, representing a field. The grid is toroidal, meaning that edges wrap around
both in the horizontal and vertical directions. The distance from the center of a cell to a
neighboring horizontal or vertical cell is 1 unit (thus the distance between two diagonal cells
is
√

2). Units are abstract spatial measurements. Time steps are also abstract discrete units.
A simulation consists of a finite number of time steps. The only state variable for each cell
indicates whether or not the cell currently contains grass. When grass is eaten on a grid cell,
there is a certain probability that it will grow back at each time step. This growth happens
spontaneously.

State variable Name Value
Side length of field s 40 grid cells
Total grid cells N 1600
Presence of grass grass? 0 = no grass, 1 = grass.
Grass growth probability γ 0.02
Simulation time total sim time 100 time steps

Table C.1: Grid cell state variables.

Rabbits. Each time step, rabbits move, eat grass (or not), and reproduce (or not).
Reproduction is asexual and based on energy level, which is raised when a rabbit eats.
Rabbits lose energy both by moving and by spawning new rabbits. If a rabbit’s energy level
drops to 0 or lower, the rabbit dies.

State variable Name Value
Movement cost move cost 1
Energy from food food energy 3
Birth cost birth cost 5
Birth threshold birth threshold 8
Current energy level energy varies

Table C.2: Rabbit state variables.

Poison schedule. A poison schedule u is a vector of length total sim time, with each
entry either 0 or 1. Each entry corresponds to one time step in the simulation; 0 means that

95

poison is not used and 1 means that poison is used. Thus, there are a total of 2total sim time

possible poison schedules. The poison has a maximum efficacy which degrades over time with
repeated use. If the poison is not used, the efficacy increases again, up to the maximum.

State variable Name Value
Maximum efficacy pmax 0.3
Degradation rate pdeg 0.5
Current efficacy peff varies in (0, pmax]

Table C.3: Poison schedule details.

C.3 Process overview and scheduling

In order to minimize ambiguity, the model process is presented in figure 7 as pseudo-code.

Algorithm 7 Process pseudo-code.
1: setup world and initialize rabbits
2: set poison schedule u
3: while time steps < total sim time do
4: store population and grass levels
5: rabbit routine:
6: move . see section C.6
7: energy = energy −move cost
8: if u(t− 1) = 1 then
9: peff = (1− pdeg)peff . efficacy degrades on repeated use

10: else
11: peff = peff + pdeg(pmax − peff) . efficacy increases if not used
12: end if
13: if u(t) = 1 and rand(0, 1) < peff then die end if . probability of being poisoned
14: if grass? = 1 on this grid cell then
15: energy = energy + food energy
16: grid cell: grass? = 0
17: end if
18: if energy > birth threshold then
19: energy = energy/2 . energy is halved for reproduction
20: create new rabbit here . rabbit inherits location and energy values from parent
21: new rabbit moves
22: end if
23: if energy ≤ 0 then die end if
24: end routine
25: for all grid cells with grass? = 0 do
26: if rand(0, 1) < γ then grass? = 1 end if
27: end for
28: advance one time step
29: end while
30: write data to file

C.4 Design concepts

In the proposed ODD protocol [48] there are eleven design concepts. Those which do not
apply have been omitted.

96

Basic principles. In essence, this model is a predator-prey system, wherein the rabbits
are predators and the grass is prey. Introduction of poison into the model, and having
that poison modeled as a direct external influence on population levels, creates a natural
setting for an optimization problem. One can study the effect of various poison strategies
on population levels – in terms of minimizing the rabbit population it can be thought of as
a harvesting problem, but in terms of minimizing poison it can be thought of as resource
allocation.

Emergence. Rabbit population and grass levels tend to oscillate as the simulation pro-
gresses. The frequency and amplitude of these oscillations can be affected by parameter
settings and initial values and hence may be described as emergent model dynamics.

Interaction. Agent interaction is indirect: since rabbit movement is executed serially,
it is possible that other rabbits deplete all of the grass in a particular rabbit’s potential field
of movement, thereby reducing or eliminating the chance for that rabbit to gain energy.

Stochasticity. Rabbit movement is totally random in that they cannot sense whether
neighboring grid cells contain grass or not. Whether grass grows back on an empty grid cell
is also random, and a grid cell that has been empty for several time steps is no more likely
to grow grass than a cell which has only just become empty.

Observation. Rabbit population and grass counts are recorded at each time step. The
total number of rabbits alive during the course of a simulation serves as a measure of fitness
of the poison schedule.

C.5 Initialization

At initialization, 20% of the grid cells contain grass; these are chosen at random. There
are 120 rabbits placed at random locations throughout the grid; each begins with a random
amount of energy between 1 and 8 inclusive. Total simulation time is 100 time steps, and
each simulation contains a poison schedule u, described in section C.2.

C.6 Submodels

There are three types of rabbit movement investigated in this study. In the first, referred to
as random jump, rabbits jump to a grid cell selected at random from the entire space. The

97

second type of movement is wiggle, wherein rabbits execute the following commands: face
left by a random amount up to 45 degrees, face right by a random amount up to 45 degrees,
move forward 1 unit. The latter is similar to rabbits selecting a direction from a uniformly
random distribution centered at their current heading, and thus is meant to represent a
more realistic movement scheme. The final movement scheme is referred to as neighbor 8
movement: under this rule, rabbits move to the center of one of the 8 neighboring grid cells.
In all movement schemes, the energy lost by moving is the same regardless of the distance
moved. The body of the text makes clear which movement scheme is being considered at
any given time.

C.7 Optimization

Since the multi-objective optimization problem is the key feature of the model as presented
here, a few clarifying details are in order. The objectives of the optimization problem are
to determine, for the parameter values provided, a set of Pareto optimal poison schedules
which minimize the number of rabbits while also minimizing the amount of poison used.
The number of rabbits refers to the total number of rabbits alive during the course of a
simulation, not just those alive at the end of the final time step. Since a poison schedule is
a binary vector of length total sim time, the amount of poison used is represented by the
sum of the entries of that vector.

Appendix D

Difference equation models

Figures D.1 and D.2 contain the full equation models discussed in the body of the text,
including initial conditions. See Table 3.1 for a description of the terms used in the equations
and section C.2 for state variable values.

98

99

p0(t+ 1) = (1− g(t))p1(t)

p1(t+ 1) = (1− g(t))p2(t)

p2(t+ 1) = (1− g(t))p3(t)

p3(t+ 1) = (1− g(t))p4(t) + g(t)p1(t)

p4(t+ 1) = (1− g(t))p5(t) + g(t)p2(t) + 2g(t)p7(t)

p5(t+ 1) = (1− g(t))p6(t) + g(t)p3(t) + 2g(t)p8(t)

p6(t+ 1) = (1− g(t))p7(t) + g(t)p4(t)

p7(t+ 1) = (1− g(t))p8(t) + g(t)p5(t)

p8(t+ 1) = g(t)p6(t)

g(t+ 1) =

(
0.98− r(t)

1600

)
g(t) + 0.02

r(t+ 1) =
8∑
i=1

pi(t)

p0(0) = 0,

pi(0) = 15, 1 ≤ i ≤ 8,

r(0) = 120,

g(0) = 0.20

Figure D.1: The discrete model (using random jump movement), tracking rabbits at dif-
ferent energy levels.

100

p0(t+ 1) = m0(1− g(t))p1(t)

p1(t+ 1) = m1(1− g(t))p2(t)

p2(t+ 1) = m2(1− g(t))p3(t)

p3(t+ 1) = m3(1− g(t))p4(t) + m0g(t)p1(t)

p4(t+ 1) = m4(1− g(t))p5(t) + m1g(t)p2(t) + m52g(t)p7(t)

p5(t+ 1) = m6(1− g(t))p6(t) + m2g(t)p3(t) + m72g(t)p8(t)

p6(t+ 1) = m5(1− g(t))p7(t) + m3g(t)p4(t)

p7(t+ 1) = m7(1− g(t))p8(t) + m4g(t)p5(t)

p8(t+ 1) = m6g(t)p6(t)

g(t+ 1) = m8

(
0.98− r(t)

1600

)
g(t) + 0.02

r(t+ 1) =
8∑
i=1

pi(t)

Figure D.2: The updated model with movement parameters m0, . . . ,m8.

Appendix E

Squeaky wheel optimization for
parameter estimation

Parameter estimation for this model is performed using a version of ‘squeaky wheel’ opti-
mization [65], wherein parameters are updated according to their effect on the sum-of-squares
error (SSE) between ABM and equation data. The process is so named because the ‘squeaky
wheel’ – the equation contributing most to the error – is more likely to be fixed first. Twenty
values were chosen at random between 1 and 50; these represent the frequency values – for
each frequency value n, five control schedules were generated randomly containing n 1’s and
100−n 0’s; this provides a stratified random sample of controls. These 100 control schedules
were used as training data: the SSE was calculated over all of the training data.

As seen in D.2, each equation in the model contains up to 3 parameters; each equation
contributes a different amount to the total error between datasets. The algorithm is ini-
tialized with all parameters equal to 1. Each iteration, an equation is chosen based on its
contribution to the total error: if one equation contributes twice as much error as another,
it is twice as likely to be selected for update. Once selected, exactly one parameter is chosen
from that equation. The parameter (with value, say, v) is altered by selecting a random
number from a normal distribution with mean v and standard deviation 0.075. There is
then a small probability of the value mutating, wherein it is replaced with a random number
selected from a normal distribution with mean 1 and standard deviation 0.075 (this mutation
feature encourages exploration of the state space and reduces risk of the algorithm getting
stuck at a local minimum). If the new parameter set reduces the SSE, the new parameters
replace the old. If not, the new parameters still have the possibility of replacing the old
with a certain probability w(t). The algorithm terminates after a fixed number of steps.
Note that w is a function of time – in particular, this value decreases linearly over time,
allowing the algorithm to converge. Since the algorithm uses SSE as the fitness measure,
the algorithm can be used to fit parameters for various movement types by simply using
the appropriate ABM data values in the error calculation. Since the SSE is calculated over

101

102

100 control schedules, the algorithm is more likely to determine parameters that are optimal
with respect to control.

Appendix F

Optimal poison schedules

Figure F.1 contains four schedules from the final generation of the Pareto optimization
algorithm.

1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(a) 10 poison days.

1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 1 0
0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 1
0 1 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0

(b) 20 poison days.

0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 0 1 0 0 0
1 1 0 0 0 1 0 1 1 0
0 1 1 0 1 1 0 0 1 1
0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1
0 0 1 0 0 0 1 0 1 0
1 0 1 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0

(c) 30 poison days.

1 1 1 0 1 0 1 1 0 0
1 0 1 1 0 0 1 0 0 1
0 0 0 0 0 1 0 1 0 0
1 0 0 1 1 1 0 0 1 0
0 0 0 1 0 0 1 1 0 0
0 1 0 0 1 0 0 1 1 0
1 0 0 1 0 1 1 1 0 0
1 0 1 0 0 0 1 0 0 1
0 1 1 0 1 0 0 1 0 1
0 1 1 1 1 0 1 1 0 1

(d) 46 poison days.

Figure F.1: Several poison schedules (to be read from left to right).

103

Appendix G

Overview, Design concepts, and
Details (ODD) protocol for the
SugarScape Gradient Model

This appendix contains the Overview, Design Concepts, and Details (ODD) protocol for
the SugarScape Gradient model. This protocol was introduced by Grimm et al [47, 48] as
a template for describing an agent-based model in detail sufficient enough that the model
(and results) can be replicated by an independent researcher. The protocol also includes a
list of modeling features that the ABM contains. The description in this appendix is meant
to stand alone; as such, overlap may occur between the description here and that contained
in the body of the text.

G.1 Purpose

The SugarScape Gradient model is a simplified version of SugarScape [36], a model in which
abstract entities (ants) roam a landscape made of sugar. Ants all have the same vision
strength, but they have varying metabolisms, affecting the amount of sugar burnt over time.
Ants that are able to make it to the sugar-rich regions on the right side of the map tend to
survive, while those who do not are more likely to run out of sugar and die. Additionally,
ants are periodically taxed for their sugar stores – tax rates may be 0%, 25%, 50%, 75%,
or 100%, and the rates are set regionally (hence regions with more sugar may have higher
taxes, for example). Each tax cycle, tax rates may change. The purpose of this model
is to investigate the effects of various taxation policies on tax income and ant population.
In particular, the model is used to investigate the following question: what is the optimal
taxation policy for maximizing collected income while minimizing deaths?

104

105

G.2 Entities, state variables, and scales

Grid cells, spatial, and temporal scales. The landscape is a 48× 48 grid of cells
containing various levels of sugar. Figure G.1 presents a snapshot of the landscape; labels
refer to the amount of sugar contained on each grid cell in that region. The landscape wraps
vertically but not horizontally; thus, the only way to reach a region with more sugar is
by traveling to the right. When ants consume the sugar from a grid cell, the sugar is not
depleted. Hence sugar levels are preserved throughout each simulation. Given the fairly
abstract nature of the model, time and space are unitless. A simulation consists of a finite
number of time steps. At regular intervals, taxes are either collected or not, depending on
the tax policy being simulated.

Variable Abbreviation Value(s) Units
Simulation duration total sim time 51 time steps
Tax rate tax {0, 0.25, 0.5, 0.75, 1} N/A
Tax interval tax interval 5 time steps

Table G.1: Taxation and temporal variables

Figure G.1: The SugarScape Gradient is a 48 × 48 grid of cells, so named because sugar
levels increase from left to right.

Taxation. Taxes are collected every 5 time steps for a total of 10 tax cycles, and tax
rates may be different in each region and at each tax cycle. Hence, using the values in table
G.1, a tax policy is a 4× 10 matrix with entries in {0, 0.25, 0.5, 0.75, 1}. Entry (i, j) of this

106

matrix indicates the tax rate in region i during the jth tax cycle. Thus there are a total of
540 ≈ 9× 1027 possible tax policies. For each policy, the resultant number of deaths and the
amount of tax collected are stored.

Ants. Each ant has a fixed vision level of 1 grid cell for the duration of the simulation:
this means ants can see exactly one cell in each of the four principal directions up, down,
left, and right (unless they are on the horizontal edge of the map, in which case vision does
not wrap). Additionally, each ant has a fixed metabolism which determines how much sugar
it loses each time step. Movement is governed by vision: an ant moves to the grid cell within
its vision with the maximum amount of sugar. Multiple ants may occupy the same grid cell;
each ant obtains the full amount of sugar at that location (i.e., sugar is not depleted and
there is no exclusion principle in effect). Ants die if their sugar level reaches zero. Ants may
accumulate up to 50 sugar.

State variable Abbreviation Value(s)
Location (current region) reg {1, . . . , 4}
Vision vis 1
Metabolism met random in {1, 2}
Sugar sug {1, 2, . . . 50}

Table G.2: Ant state variables

G.3 Process overview and scheduling

Per the suggestion in [48], the ABM process is presented in Algorithm 8 as pseudo-code in
order to give a detailed account of the order of events. The ant and tax routines are executed
fully by one ant, then fully by another – i.e., serially. This means that state variables are
updated asynchronously. Time steps are discrete units, as is movement: ants jump directly
from the center of one grid cell to the center of another.

G.4 Design concepts

Basic principles. The SugarScape Gradient model builds on SugarScape, which can be
studied in a myriad of contexts, including sociology, ecology, economics, and culture. The
primary motivation for this version is to investigate the effects of various tax policies in an
abstract setting. It is hoped that the model will provide insight into the relationship between

107

Algorithm 8 SugarScape Gradient process pseudo-code.
1: setup map and constants . layout is read in from a matrix in a .txt file
2: while simulation time < total sim time do
3: store population and wealth data
4: ant routine:
5: let vision cells be set of grid cells within 1 grid cell of location . includes current cell
6: let potential cells be set of vision cells with maximum sugar . maximum sugar cell may not be unique
7: move to randomly selected member of potential cells
8: sug = sug −met + shere . eat and metabolize sugar
9: end routine

10: if time mod tax cycle = 0 then . collect tax every tax interval time steps
11: for all ants do
12: sug = sug − dtax · suge . taxes are always rounded up
13: end for
14: update amount paid by all ants . keep track of tax income
15: end if
16: ants with sugar ≤ 0 die
17: store death data
18: end while
19: write all data to file

tax policies and population dynamics, and that these insights might be extrapolated to some
real-world system.

Emergence. Spatial population dynamics ought to be an emergent property of SugarTax:
for example, frequent high taxation in high-sugar regions might substantially alter regional
population counts. The precise mechanism driving such changes is not built in to the model
in any direct sense.

Objectives. The objective of each ant is to move to a cell within its vision with the
maximum amount of sugar. There is no other consideration, and ants do not have knowledge
of past or future taxation in any location.

Sensing. Ants are aware of the sugar level and occupancy of each grid cell within their
vision. They are not aware of any properties of any other ants, including those within their
vision.

Stochasticity. Ant movement is partially stochastic: if there are multiple grid cells
within an ants vision with the same (maximum) sugar level, the ant will move to one of
these grid cells at random. This stochasticity is vital to population distributions – if the
ants chose the nearest such cell, for example, populations tend to cluster on the boundary
of each region. Clustering severely affects migrational patterns, as ants are not encouraged
to explore the landscape. This movement feature is discussed in [36].

Observation. Each simulation occurs over a finite number of time steps. At each time
step, the following information is collected: the number of ants in each region, the wealth
distribution of the ants in each region (separated into disjoint bins), the total amount of
tax collected, and the number of deaths occurring in each region. In addition, the tax

108

policy implemented over the course of the simulation is recorded as well. At the end of each
simulation, these data are written to a comma separated value (.csv) file, a universal format
for spreadsheet applications.

G.5 Initialization

The model is initialized with an average of 62.5 ants; each is placed at a random location on
the landscape. Ants begin with a random amount of sugar between 5 and 25 (inclusive); this
value is different for each ant and chosen from a uniform distribution. Ants are initialized
with vision 1 and metabolism either 1 or 2. Vision and metabolism of a given ant do not
change over the course of a simulation.

G.6 Input data

The landscape is read in from a .txt file; this helps with implementation and makes it easier
to make changes. A tax policy can either be chosen directly via code manipulation or chosen
at random. The policy must be chosen prior to simulation. As such, the tax policy may be
thought of as input to the model.

Appendix H

SugarScape Gradient: Difference
equations

Figure H.1 contains the population equations for the 48 columns in the ABM; figure H.2
contains the wealth (i.e., sugar level) equations. Note that in order to match ABM behavior,
all equations are updated synchronously. See figure 4.3 for the order in which equations
are updated. Note too that since there are multiple updates of the equations in order to
simulate one time step in the ABM, the time scale in the equation system is not quite the
same. In particular, time steps in the equations are more closely aligned with processes in
the ABM (for example, agent movement or taxation). Note that the wealth equations track

p1(t+ 1) = 0.75p1(t) + 0.2p2(t),

pa(t+ 1) = pa−1(t) + 0.75pa(t) + 0.2pa+1(t), a ∈ {13, 25, 37},
pb(t+ 1) = 0.25pb−1(t) + 0.6pb(t) + 0.2pb+1(t), b ∈ {2, 14, 26, 38},
pc(t+ 1) = 0.2pc−1(t) + 0.6pc(t) + 0.2pc+1(t), c ∈ {3, . . . , 10, 15, . . . , 22,

27, . . . , 34, 39, . . . , 46},
pm(t+ 1) = 0.2pm−1(t) + 0.6pm(t), m ∈ {11, 23, 35},
pn(t+ 1) = 0.2pn−1(t), n ∈ {12, 24, 36},
p47(t+ 1) = 0.2p46(t) + 0.6p47(t) + 0.25p48(t),

p48(t+ 1) = 0.2p47(t) + 0.75p48(t).

Figure H.1: Population equations.

sugar levels based on sugar eaten and sugar metabolized, but do not account for migration
or taxation. Here, the number of ants with 0 sugar is always set to 0; this is done to simulate
death. Note that according to figure 4.3, wealth values are updated after migration and

109

110

w1,1,0(t+ 1) = 0,

w1,1,a(t+ 1) = w1,1,a(t) a ∈ {1, . . . , 50},
w1,2,b(t+ 1) = w1,2,b+1(t) b ∈ {0, . . . , 49},
w1,2,50(t+ 1) = 0,

w2,1,0(t+ 1) = 0,

w2,1,a(t+ 1) = w2,1,a−1(t) a ∈ {1, . . . 49},
w2,1,50(t+ 1) = w2,1,49(t) + w2,1,50(t),

w2,2,0(t+ 1) = 0,

w2,2,b(t+ 1) = w2,2,b(t) b ∈ {1, . . . , 50},
w3,1,a(t+ 1) = 0, a ∈ {0, 1},
w3,1,b(t+ 1) = w3,1,b−2(t) b ∈ {2, . . . , 49},
w3,1,50(t+ 1) = w3,1,48(t) + w3,1,49(t) + w3,1,50(t),

w3,2,0(t+ 1) = 0,

w3,2,c(t+ 1) = w3,2,c−1(t) c ∈ {1, . . . , 49},
w3,2,50(t+ 1) = w3,2,49(t) + w3,2,50(t),

w4,1,a(t+ 1) = 0 a ∈ {0, 1, 2},
w4,1,b(t+ 1) = w4,1,b−3(t) b ∈ {3, . . . , 49},
w4,1,50(t+ 1) = w4,1,47(t) + w4,1,48(t) + w4,1,49(t) + w4,1,50(t),

w4,2,m(t+ 1) = 0 m ∈ {0, 1},
w4,2,n(t+ 1) = w4,2,n−2(t) n ∈ {2, . . . , 49},
w4,2,50(t+ 1) = w4,2,48(t) + w4,2,49(t) + w4,2,50(t).

Figure H.2: Wealth equations.

population values are updated after taxation. This ensures that at the end of each time
step, the sum of the population equations is always the same as the sum of the wealth
equations. Tax rates are percentages, but a ceiling function is applied in order to ensure
that an integer amount of tax is paid.

Initial values. Initial values for each of the equations are provided in figure H.3. These
values are determined by settings from the ABM. Note that in this study we focus only on
agents with low vision (i.e., vision 1) and low metabolism (metabolism 1 or 2). In the original
ABM, there were three other categories of ants, total of 250 inital agents. Hence, since we are
focusing on one category, the initial population values must sum to 250/4 = 62.5. These are
placed at random throughout the grid. Likewise, ants begin the simulation with an amount

111

of sugar chosen uniformly randomly between 5 and 25 (inclusive, for a total of 21 possible
values); hence the number of ants in a region determines the expected number at each sugar
level. There are 48 population equations tracking the number of ants in each column. The
62.5 initial agents are assumed to be distributed among the regional sugar levels uniformly
at the start of each simulation.

pn(0) = 62.5/48 n ∈ {1, . . . , 48},
wr,m,a(0) = 0 a ∈ {0, . . . , 4},
wr,m,b(0) = 62.5/(4 · 21) b ∈ {5, . . . , 25},
wr,m,c(0) = 0 c ∈ {26, . . . , 50}.

Figure H.3: Initial values. Wealth equations hold for r ∈ {1, . . . , 4} and m ∈ {1, 2}

Appendix I

Overview, Design concepts, and
Details (ODD) protocol for SugarTax

I.1 Purpose

SugarTax is a modified version of SugarScape [36], a model in which abstract entities roam a
landscape made of sugar. These agents are periodically taxed for their sugar stores – the tax
rate is constant, but the frequency differs from region to region. The purpose of SugarTax
is to investigate the effects of various taxation policies on tax income and agent population.
In particular, the model is used to investigate the following question: what is the optimal
taxation policy for maximizing collected income while minimizing deaths?

I.2 Entities, state variables, and scales

Ants. Each ant has a fixed vision level for the duration of the simulation; these levels
vary from ant to ant. Ants can see in the four principal directions up, down, left, and right,
but cannot see any other grid cells. Additionally, each ant has a fixed metabolism which
determines how much sugar it loses each time step. Movement is governed by vision: an ant
moves to the grid cell within its vision with the maximum amount of sugar. Only one ant
may occupy a grid cell at any given time. Ants die if their sugar level reaches zero. There is
no upper limit to how much sugar an ant may accumulate.

Grid cells. When ants consume the sugar from a grid cell, the sugar grows back at a
fixed rate over subsequent time steps, up to a pre-determined maximum based on the layout
of the landscape.

112

113

State variable Abbreviation Value(s)
Location (current region) reg {0, 1, . . . , 8}
Vision vis random in {1, 2, . . . , 5}
Metabolism met 2
Sugar sug {1, 2, . . .}

Table I.1: Ant state variables

State variable Abbreviation Value(s)
Maximum sugar smax one of {0, 1, 2, 3, 4}
Sugar shere {0, 1, 2, 3, 4}
Grow back rate α 1

Table I.2: Grid cell state variables

Spatial and temporal scales. The landscape for SugarTax is presented in Figure 5.2;
the regions are labeled 0 − 8. Note that the label of a region serves only as its name, and
does not refer to the amount of sugar in that region. The maximum sugar amounts for each
region (as well as the size of the region by grid cell count) are given in Table I.3. Each ant

Region 0 1 2 3 4 5 6 7 8
Max. sugar 0 0 1 1 2 3 3 4 4

Table I.3: Maximum sugar and grid cell counts for each region.

occupies exactly one grid cell, and the map is bounded on all four sides. The landscape is
a 50 × 50 grid of cells. Given the fairly abstract nature of the model, time and space are
unitless. A simulation consists of a finite number of time steps. At regular intervals, taxes
are either collected or not, depending on the tax policy being simulated. Using the values
in table I.4, a tax policy is a 9 × 10 matrix with binary entries. Entry (i, j) of this matrix
indicates whether or not tax was collected in region i during the jth tax cycle. An entry of
1 implies tax and an entry of 0 implies no tax. Thus, according to these values there are a
total of 290 possible tax policies.

I.3 Process overview and scheduling

Per the suggestion in [48], the ABM process is presented in Algorithm 9 as pseudo-code in
order to give a detailed account of the order of events. The ant and tax routines are executed
fully by one ant, then fully by another – i.e., serially. This means that state variables are

114

Variable Abbreviation Value(s) Units
Simulation duration total sim time 51 time steps
Tax amount tax 10 sugar
Tax interval tax interval 5 time steps

Table I.4: Taxation and temporal variables

updated asynchronously. Time steps are discrete units, as is movement: ants jump directly
from the center of one grid cell to the center of another.

Algorithm 9 SugarTax process pseudo-code.
1: setup map and constants . layout is read in from a matrix in a .txt file
2: while simulation time < total sim time do
3: store population and wealth data
4: grid cells: shere = min{shere + α, smax} . sugar gradually grows back, up to capacity
5: ant routine:
6: let vision cells be set of unoccupied grid cells within vis . includes current cell
7: let potential cells be set of vision cells with maximum sugar . maximum sugar cell may not be unique
8: move to randomly selected member of potential cells
9: sug = sug −met + shere . eat and metabolize sugar

10: grid cell here: shere = 0
11: update ants’ current region
12: end routine
13: store migration data
14: if time mod tax cycle = 0 then . collect tax every tax interval time steps
15: for all ants do
16: if reg is being taxed on this cycle then
17: let paid = min{sug, tax} . ants pay as much as they have, up to tax amount
18: sug = sug − paid
19: end if
20: end for
21: update amount paid by all ants . keep track of tax income
22: end if
23: ants with sugar ≤ 0 die
24: store death data
25: end while
26: write all data to file

I.4 Design concepts

Basic principles. SugarTax builds on SugarScape, which can be studied in a myriad of
contexts, including sociology, ecology, economics, and culture. The primary motivation for
SugarTax is to investigate the effects of various tax policies in an abstract setting. It is hoped
that the model will provide insight into the relationship between tax policies and population
dynamics, and that these insights might be extrapolated to some real-world system.

Emergence. Spatial population dynamics ought to be an emergent property of Sugar-
Tax: for example, frequent taxation in high-sugar regions might substantially alter regional
population counts. The precise mechanism driving such changes is not built in to the model
in any direct sense.

115

Objectives. The objective of each ant is to move to a cell within its vision with the
maximum amount of sugar. There is no other consideration, and ants do not have knowledge
of past or future taxation in any location.

Sensing. Ants are aware of the sugar level and occupancy of each grid cell within their
vision. They are not aware of any properties of any other ants, including those within their
vision.

Interaction. Ants interact with one another indirectly, in the sense that only one ant
may occupy a grid cell at any given time. Thus if two ants have the same high-sugar grid
cell within their vision, whichever ant is randomly selected to move first will occupy that
cell. This may very well alter the movement of the other ant. In this way, serial execution
and asynchronous update are key features of agent interaction. If ant order was not random
(i.e., the same ant was allowed to move first each time step), population dynamics might be
fundamentally altered.

Stochasticity. Ant movement is partially stochastic: if ant sees four unoccupied grid
cells with 2 sugar and three unoccupied grid cells with 3 sugar, the ant will choose one of the
3-sugar cells at random. This stochasticity is vital to population distributions – if the ants
chose the nearest such cell, for example, populations tend to cluster on the boundary of each
region. This clustering severely affects migrational patterns, as ants are not encouraged to
explore the landscape. This movement feature is discussed in [36].

Collectives. In a sense, ants form collectives which affect individuals inside and outside
of the collective. This arises because only one ant may occupy a grid cell at any time. In
high-sugar regions, ants in the middle of the region tend to become trapped because all
available spaces are occupied. At the same time, an individual on the border of such a
region is frequently unable to enter due to the high population density within the region.
These collectives form entirely as a result of local interactions.

Observation. Each simulation occurs over a finite number of time steps. At each time
step, the following information is collected: the number of ants in each region, the wealth
distribution of the ants in each region (separated into disjoint bins), the total amount of
tax collected, and the number of deaths occurring in each region. In addition, the tax
policy implemented over the course of the simulation is recorded as well. At the end of each
simulation, these data are written to a comma separated value (.csv) file, a universal format
for spreadsheet applications.

116

I.5 Initialization

The model is initialized with 240 ants; each is placed at a random location on the landscape.
Ants begin with a random amount of sugar between 1 and 30 (inclusive); this value is different
for each ant and chosen from a uniform distribution. Ants are initialized with vision chosen
at random between 1 and 5 (inclusive) and metabolism 2. Vision and metabolism of a given
ant do not change over the course of a simulation.

I.6 Input data

The landscape is read in from a .txt file; this helps with implementation and makes it easier
to make changes. A tax policy can either be chosen directly via code manipulation or chosen
at random. The policy must be chosen prior to simulation. As such, the tax policy may be
thought of as input to the model.

Appendix J

SugarTax difference equation model

The full system of difference equations is presented here, post-parameter optimization – these
are the equations that were used to perform the Pareto optimization outlined in section 5.4.
Table J.1 provides descriptions of the terms used in the equations. A tax policy U is a 9×10
binary matrix, with entry (i, j) indicating whether tax is applied in region i during tax cycle
j. This matrix U is determined prior to equation evaluation.

The equations are iteratively evaluated 51 times, in order to replicate the time step du-
ration of the ABM. Recall that the tax cycle is 5 time steps, which means that taxr(t) = 0
for t = 0 and when t mod 5 6= 0. For t > 0 and t mod 5 = 0, taxr(t) is determined by
the tax policy U . Wealth bin 0 tracks the number of agents with 0 sugar; in other words,
deaths. Thus the total number of deaths is

∑
r,twr,0(t). The tax rate is exactly 10 sugar,

so total tax income is 10 ·
∑

i,j Ui,j · pi(5(j + 1)). Note that tax income is an approximation
since some ants have less than 10 sugar when taxed.

Term Meaning
wr,b(t) Number of ants in region r and wealth bin b at time t
pr(t) Population in region r at time t
mx,y(t) Proportion of ants migrating from region x to region y at time t
taxr(t) Binary entry indicating taxation (0 corresponds to no taxation)

Table J.1: Terms used in the equation model.

117

118

J.1 Population equations

p0(t+ 1) = (1−m0,2(t))p0(t)− w0,0(t)

p1(t+ 1) = (1−m1,3(t))p1(t)− w1,0(t)

p2(t+ 1) = (1−m2,4(t))p2(t)− w2,0(t) +m0,2(t)p0(t)

p3(t+ 1) = (1−m3,4(t))p3(t)− w3,0(t) +m1,3(t)p1(t)

p4(t+ 1) = (1−m4,5(t)−m4,6(t))p4(t)−w4,0(t) +m2,4(t)p2(t) +m3,4(t)p3(t)

+m5,4(t)p5(t) +m6,4(t)p6(t)

p5(t+ 1) = (1−m5,4(t)−m5,7(t))p5(t)−w5,0(t) +m4,5(t)p4(t) +m7,5(t)p7(t)

p6(t+ 1) = (1−m6,4(t)−m6,8(t))p6(t)−w6,0(t) +m4,6(t)p4(t) +m8,6(t)p8(t)

p7(t+ 1) = (1−m7,5(t))p7(t)− w7,0(t) +m5,7(t)p5(t)

p8(t+ 1) = (1−m8,6(t))p8(t)− w8,0(t) +m6,8(t)p6(t)

J.2 Migration equations

Note that migration occurs based on population values at the same time step, so the time
index is t rather than t+ 1.

m0,2(t) = 1.993× 10−10p0(t)
5p2(t)

2 − 7.969× 10−7p0(t)
4

m1,3(t) = 3.339× 10−13p1(t)
8p3(t)

m2,4(t) = 6.392× 10−18p2(t)
4p4(t)

6

m3,4(t) = 1.708× 10−16p3(t)
7p4(t)

3

m4,5(t) =
0.03382p4(t)

2 + 0.00583p5(t)
2

15.78 + p4(t)p5(t)

m4,6(t) =
p6(t) + 0.1209p4(t)

2 − 5.015

85.71 + 214p4(t)

m5,7(t) = 3.152 + 0.01343p7(t)
2 + 0.001075p5(t)p7(t)

− 0.0329p5(t)− 0.3258p7(t)− 0.0001975p7(t)
3

m5,4(t) = 7.541× 10−6p4(t) + 1.996× 10−6p5(t)
2

m6,8(t) = 3.749 + 0.01551p8(t)
2 + 0.001394p6(t)p8(t)

− 0.04202p6(t)− 0.3874p8(t)− 0.0002211p8(t)
3

m6,4(t) = 2.169× 10−6p6(t)
2 + 3.771× 10−8p4(t)

3 − 5.387× 10−10p4(t)
4

m7,5(t) = 0.1165 + 0.0008416p5(t) + 0.0006451p7(t)
2 − 0.01891p7(t)− 1.471× 10−5p5(t)

2

m8,6(t) = 0.1109 + 0.0003374p6(t) + 0.0006092p8(t)
2 − 0.01771p8(t)

119

J.3 Wealth equations

All ants have metabolism 2 and the maximum sugar region has 4 sugar, so the most they can
gain each time step is 2 sugar. Ants are initialized with at most 30 sugar, so accumulating
2 sugar over 51 times steps leads to a maximum of 30 + 2 · 51 = 132 sugar per ant over
the course of a simulation. Ants with 131 − 132 sugar in region r are tracked by equation
wr,14(t); hence, this is the last wealth bin in each region.

w0,0(t+ 1) = 0.2((1−m0,2(t))w0,1(t)) + tax0(t)(0.8(1−m0,2(t))w0,1(t)

+ 0.2(1−m0,2(t))w0,2(t))

For n ∈ {1, . . . , 12} :

w0,n(t+ 1) = (1− tax0(t))(0.8(1−m0,2(t))w0,n(t) + 0.2(1−m0,2(t))w0,n+1(t))

+ tax0(t)(0.8(1−m0,2(t))w0,n+1(t) + 0.2(1−m0,2(t))w0,n+2(t))

w0,13(t+ 1) = (1− tax0(t))(0.8(1−m0,2(t))w0,13(t) + 0.2(1−m0,2(t))w0,14(t))

+ tax0(t)(0.8(1−m0,2(t))w0,14(t))

w0,14(t+ 1) = (1− tax0(t))(0.8(1−m0,2(t))w0,14(t))

w1,0(t+ 1) = 0.2((1−m1,3(t))w1,1(t)) + tax1(t)(0.8(1−m1,3(t))w1,1(t)

+ 0.2(1−m1,3(t))w1,2(t))

For n ∈ {1, . . . , 12} :

w1,n(t+ 1) = (1− tax1(t))(0.8(1−m1,3(t))w1,n(t) + 0.2(1−m1,3(t))w1,n+1(t))

+ tax1(t)(0.8(1−m1,3(t))w1,n+1(t) + 0.2(1−m1,3(t))w1,n+2(t))

w1,13(t+ 1) = (1− tax1(t))(0.8(1−m1,3(t))w1,13(t) + 0.2(1−m1,3(t))w1,14(t))

+ tax1(t)(0.8(1−m1,3(t))w1,14(t))

w1,14(t+ 1) = (1− tax1(t))(0.8(1−m1,3(t))w1,14(t))

w2,0(t+ 1) = 0.1((1−m2,4(t))w2,1(t) +m0,2(t)w0,1(t)) + tax2(t)(0.9((1−m2,4(t))w2,1(t)

+m0,2(t)w0,1(t)) + 0.1((1−m2,4(t))w2,2(t) +m0,2(t)w0,2(t)))

For n ∈ {1, . . . , 12} :

w2,n(t+ 1) = (1− tax2(t))(0.9((1−m2,4(t))w2,n(t) +m0,2(t)w0,n(t))

+ 0.1((1−m2,4(t))w2,n+1(t) +m0,2(t)w0,n+1(t)))

+ tax2(t)(0.9((1−m2,4(t))w2,n+1(t) +m0,2(t)w0,n+1(t))

+ 0.1((1−m2,4(t))w2,n+2(t) +m0,2(t)w0,n+2(t)))

w2,13(t+ 1) = (1− tax2(t))(0.9((1−m2,4(t))w2,13(t) +m0,2(t)w0,13(t))

+ 0.1((1−m2,4(t))w2,14(t) +m0,2(t)w0,14(t)))

+ tax2(t)(0.9((1−m2,4(t))w2,14(t) +m0,2(t)w0,14(t)))

w2,14(t+ 1) = (1− tax2(t))(0.9((1−m2,4(t))w2,14(t) +m0,2(t)w0,14(t)))

120

w3,0(t+ 1) = 0.1((1−m3,4(t))w3,1(t) +m1,3(t)w1,1(t))

+ tax3(t)(0.9((1−m3,4(t))w3,1(t) +m1,3(t)w1,1(t))

+ 0.1((1−m3,4(t))w3,2(t) +m1,3(t)w1,2(t)))

For n ∈ {1, . . . , 12} :

w3,n(t+ 1) = (1− tax3(t))(0.9((1−m3,4(t))w3,n(t) +m1,3(t)w1,n(t))

+ 0.1((1−m3,4(t))w3,n+1(t) +m1,3(t)w1,n+1(t)))

+ tax3(t)(0.9((1−m3,4(t))w3,n+1(t) +m1,3(t)w1,n+1(t))

+ 0.1((1−m3,4(t))w3,n+2(t) +m1,3(t)w1,n+2(t)))

w3,13(t+ 1) = (1− tax3(t))(0.9((1−m3,4(t))w3,13(t) +m1,3(t)w1,13(t))

+ 0.1((1−m3,4(t))w3,14(t) +m1,3(t)w1,14(t)))

+ tax3(t)(0.9((1−m3,4(t))w3,14(t) +m1,3(t)w1,14(t)))

w3,14(t+ 1) = (1− tax3(t))(0.9((1−m3,4(t))w3,14(t) +m1,3(t)w1,14(t)))

w4,0(t+ 1) = tax4(t)((1−m4,5(t)−m4,6(t))w4,1(t) +m2,4(t)w2,1(t) +m3,4(t)w3,1(t)

+m5,4(t)w5,1(t) +m6,4(t)w6,1(t))

For n ∈ {1, . . . , 13} :

w4,n(t+ 1) = (1− tax4(t))((1−m4,5(t)−m4,6(t))w4,n(t) +m2,4(t)w2,n(t)

+m3,4(t)w3,n(t) +m5,4(t)w5,n(t) +m6,4(t)w6,n(t))

+ tax4(t)((1−m4,5(t)−m4,6(t))w4,n+1(t) +m2,4(t)w2,n+1(t)

+m3,4(t)w3,n+1(t) +m5,4(t)w5,n+1(t) +m6,4(t)w6,n+1(t))

w4,14(t+ 1) = (1− tax4(t))((1−m4,5(t)−m4,6(t))w4,14(t) +m2,4(t)w2,14(t)

+m3,4(t)w3,14(t) +m5,4(t)w5,14(t) +m6,4(t)w6,14(t))

w5,0(t+ 1) = tax5(t)(0.9((1−m5,4(t)−m5,7(t))w5,1(t) +m4,5(t)w4,1(t) +m7,5(t)w7,1(t)))

w5,1(t+ 1) = (1− tax5(t))(0.9(((1−m5,4(t)−m5,7(t))w5,1(t) +m4,5(t)w4,1(t)

+m7,5(t)w7,1(t)))) + tax5(t)(0.9((1−m5,4(t)−m5,7(t))w5,2(t)

+m4,5(t)w4,2(t) +m7,5(t)w7,2(t)) + 0.1((1−m5,4(t)−m5,7(t))w5,1(t)

+m4,5(t)w4,1(t) +m7,5(t)w7,1(t)))

For n ∈ {2, . . . , 13} :

w5,n(t+ 1) = (1− tax5(t))(0.9(((1−m5,4(t)−m5,7(t))w5,n(t) +m4,5(t)w4,n(t)

+m7,5(t)w7,n(t))) + 0.1((1−m5,4(t)−m5,7(t))w5,n−1(t)

+m4,5(t)w4,n−1(t) +m7,5(t)w7,n−1(t)))

+ tax5(t)(0.9((1−m5,4(t)−m5,7(t))w5,n+1(t) +m4,5(t)w4,n+1(t)

+m7,5(t)w7,n+1(t)) + 0.1((1−m5,4(t)−m5,7(t))w5,n(t)

+m4,5(t)w4,n(t) +m7,5(t)w7,n(t)))

121

w5,14(t+ 1) = (1− tax5(t))(0.9(((1−m5,4(t)−m5,7(t))w5,14(t) +m4,5(t)w4,14(t)

+m7,5(t)w7,14(t))) + 0.1((1−m5,4(t)−m5,7(t))w5,13(t)

+m4,5(t)w4,13(t) +m7,5(t)w7,13(t)))

w6,0(t+ 1) = tax6(t)(0.9((1−m6,4(t)−m6,8(t))w6,1(t) +m4,6(t)w4,1(t)

+m8,6(t)w8,1(t)))

w6,1(t+ 1) = (1− tax6(t))(0.9(((1−m6,4(t)−m6,8(t))w6,1(t) +m4,6(t)w4,1(t)

+m8,6(t)w8,1(t)))) + tax6(t)(0.9((1−m6,4(t)−m6,8(t))w6,2(t)

+m4,6(t)w4,2(t) +m8,6(t)w8,2(t)) + 0.1((1−m6,4(t)−m6,8(t))w6,1(t)

+m4,6(t)w4,1(t) +m8,6(t)w8,1(t)))

For n ∈ {2, . . . , 13} :

w6,n(t+ 1) = (1− tax6(t))(0.9(((1−m6,4(t)−m6,8(t))w6,n(t) +m4,6(t)w4,n(t)

+m8,6(t)w8,n(t))) + 0.1((1−m6,4(t)−m6,8(t))w6,n−1(t) +m4,6(t)w4,n−1(t)

+m8,6(t)w8,n−1(t))) + tax6(t)(0.9((1−m6,4(t)−m6,8(t))w6,n+1(t)

+m4,6(t)w4,n+1(t) +m8,6(t)w8,n+1(t)) + 0.1((1−m6,4(t)−m6,8(t))w6,n(t)

+m4,6(t)w4,n(t) +m8,6(t)w8,n(t)))

w6,14(t+ 1) = (1− tax6(t))(0.9(((1−m6,4(t)−m6,8(t))w6,14(t) +m4,6(t)w4,14(t)

+m8,6(t)w8,14(t))) + 0.1((1−m6,4(t)−m6,8(t))w6,13(t) +m4,6(t)w4,13(t)

+m8,6(t)w8,13(t)))

w7,0(t+ 1) = tax7(t)(.8((1−m7,5(t))w7,1(t) +m5,7(t)w5,1(t)))

w7,1(t+ 1) = (1− tax7(t))(.8((1−m7,5(t))w7,1(t) +m5,7(t)w5,1(t)))

+ tax7(t)(.8((1−m7,5(t))w7,2(t) +m5,7(t)w5,2(t))

+ 0.2((1−m7,5(t))w7,1(t) +m5,7(t)w5,1(t)))

For n ∈ {2, . . . , 13} :

w7,n(t+ 1) = (1− tax7(t))(.8((1−m7,5(t))w7,n(t) +m5,7(t)w5,n(t))

+ 0.2((1−m7,5(t))w7,n−1(t) +m5,7(t)w5,n−1(t)))

+ tax7(t)(.8((1−m7,5(t))w7,n+1(t) +m5,7(t)w5,n+1(t))

+ 0.2((1−m7,5(t))w7,n(t) +m5,7(t)w5,n(t)))

w7,14(t+ 1) = (1− tax7(t))(.8((1−m7,5(t))w7,14(t) +m5,7(t)w5,14(t))

+ 0.2((1−m7,5(t))w7,13(t) +m5,7(t)w5,13(t)))

w8,0(t+ 1) = tax8(t)(.8((1−m8,6(t))w8,1(t) +m6,8(t)w6,1(t)))

w8,1(t+ 1) = (1− tax8(t))(.8((1−m8,6(t))w8,1(t) +m6,8(t)w6,1(t)))

+ tax8(t)(.8((1−m8,6(t))w8,2(t) +m6,8(t)w6,2(t))

+ 0.2((1−m8,6(t))w8,1(t) +m6,8(t)w6,1(t)))

122

For n ∈ {2, . . . , 13} :

w8,n(t+ 1) = (1− tax8(t))(.8((1−m8,6(t))w8,n(t) +m6,8(t)w6,n(t))

+ 0.2((1−m8,6(t))w8,n−1(t) +m6,8(t)w6,n−1(t)))

+ tax8(t)(.8((1−m8,6(t))w8,n+1(t) +m6,8(t)w6,n+1(t))

+ 0.2((1−m8,6(t))w8,n(t) +m6,8(t)w6,n(t)))

w8,14(t+ 1) = (1− tax8(t))(.8((1−m8,6(t))w8,14(t) +m6,8(t)w6,14(t))

+ 0.2((1−m8,6(t))w8,13(t) +m6,8(t)w6,13(t)))

J.4 Initial values

The ABM is initialized with 240 ants placed at random throughout the landscape. Hence
initial population values for each region are based off of the size of each region. Table
J.2 summarizes the initial values for the population equations. Ants are initialized with a
uniformly random amount of sugar between 1 and 30 (inclusive), which means that bins 1, 2,
and 3 for each region contain one-third of the initial population in that region each and the
rest of the bins have initial value 0. Thus wr,0(0) = 0, wr,1(0) = wr,2(0) = wr,3(0) = pr(0)/3,
and wr,n(0) = 0 for n > 3. There is no time lag on migration equations, so initial migration
values are calculated using the initial population values in the equations given in section J.2.

Region 0 1 2 3 4 5 6 7 8
No. cells 214 217 246 251 790 279 279 112 112
Proportion of map 0.086 0.087 0.098 0.100 0.316 0.112 0.112 0.045 0.045
pr(0) 20.54 20.83 23.62 24.10 75.84 26.78 26.78 10.75 10.75

Table J.2: Initial population values are based on 240 ants distributed randomly among the
regions.

Appendix K

Overview, Design Concepts, and
Details (ODD) protocol for an
agent-based model of A. fumigatus in
the lung

The Overview, Design Concepts, and Details (ODD) protocol for describing agent-based
models was first introduced by Grimm in 2006 [47] and subsequently updated in 2010 [48].
The purpose of the protocol is to serve as a standard template for ABM description, including
detail sufficient enough that models can be replicated independently. This document provides
the ODD protocol for the model introduced in the body of the paper. The model is described
in full detail, including citations indicating how certain state variable values were chosen.

K.1 Purpose

The purpose of this model is to simulate the human immune response to Aspergillus fumigatus
in the lung. Specifically, the purpose is to investigate the following questions:

• What is the role of iron in both immune response and fungal growth?

• How does invasive Aspergillosis develop in immunocompromised patients?

123

124

K.2 Entities, state variables, and scales

In this section, global state variables, model parameters, and spatial and temporal scales
are described first, followed by behavioral descriptions and state variables for grid cells and
entities. Each description concludes with a table of state variables. The notation N(µ, σ)
indicates a value chosen at random from the normal distribution with mean µ and standard
deviation σ. The notation rand(a, b) indicates a uniformly distributed random number
chosen from interval (a, b). A length of one grid cell indicates the distance from the center
of one cell to the center of a neighboring horizontal or vertical cell. For values that vary,
initial values are given in Section K.5.

Global state variables, model parameters, and scales. This model is a sim-
ulation of the effects of an inoculation of A. fumigatus spores on a cross-section of lung
tissue. As such, the inoculum refers to that given to the entire patient; only a fraction of
those spores appear in any cross-section. The spatial scale was chosen for computational
and visual considerations. As patient fate is typically determined in the first four days after
inoculation [58], 96 hours was chosen as the virtual duration of a simulation.

Variable State variable Value Units
Grid cell length grid size 10 microns
World size world size 20× 40× 20 grid cells
Duration of one time step time step 20 minutes
Total simulation time total sim time 96 hours
Inoculation size init inoc 6, 000, 000 spores
Fraction of inoculum appearing in model inoc frac 0.00005 N/A
Maximum grid cell iron ironmax(p) 100 none
Macrophage cytokine evaporation rate cyto evap m 0.05 N/A
Neutrophil cytokine evaporation rate cyto evap n 0.05 N/A

Table K.1: Global state variables and scales

Grid cells. Figure K.1 provides a labeled snapshot of the model. The airway is a tube of
grid cells which branches about one-third of the way across the horizontal span of the model.
In total, approximately 16% of the grid cells make up the airway. Airway grid cells have no
properties other than the number of spores at that location. Non-specific interstitial tissue
cells comprise approximately 80% of the grid cells. The state variables for these cells are iron,
macrophage-specific cytokines, and neutrophil-specific cytokines. Four blood vessels run the
length of the model, made up of blood cells occupying one grid cell each; they comprise
approximately 4% of the grid cells. These cells serve as the recruitment sites for macrophages

125

and neutrophils as well as the source of iron for the interstitial space. Iron is introduced
in the blood cells and diffuses into surrounding tissue. Cytokine levels are first affected
by the epithelial cells and diffuse from the epithelium throughout the interstitial and blood
cells. These cytokines serve as aggregations of macrophage- and neutrophil-specific cytokines,
such as TNF-α, IL-8, IFNγ, and others. There are two separate values for macrophages and
neutrophils because certain cytokines attract neutrophils but not macrophages [140] while
others (such as MCAF) do just the reverse [124].

Figure K.1: Cutaway snapshot of the three-dimensional model. Spores travel from left to
right through the airway.

Grid cell type State variable Abbreviation Value Units
Airway Spore count fung varies spores
Blood cells Iron per hour iph 8 none
Blood cells Iron ironp varies none
Blood cells Macrophage cytokine level cytom varies none
Blood cells Neutrophil cytokine level cyton varies none
Interstitial space Iron ironp varies none
Interstitial space Macrophage cytokine level cytom varies none
Interstitial space Neutrophil cytokine level cyton varies none
Blood and inter. Iron diffusion rate irondif 0.8 N/A

Table K.2: Grid cell state variables

Fungal spores. A. fumigatus spores drift through the airway, and if a spore meets the
epithelial cell wall it lodges there with a fixed probability. This probability is small, as ciliary
beating serves as the primary mechanism for elimination of the fungus [122]. Once lodged,
a spore cannot be swept away. Spores that are swept away are placed on the nearest airway
grid cell and continue to drift. Once a spore has traversed the entire airway, it is removed
from the simulation.

126

Approximately 30% of spores are internalized by an epithelial cell [131]. Since approxi-
mately 3% of internalized spores survive and 34% of these germinate [132], internalized
spores germinate with approximate probability 0.01. Internalized or not, all lodged spores
enter a resting stage. Upon completion of the resting stage, all non-internalized spores be-
come swollen. After remaining in the swollen stage for some time, spores germinate. Since
the resting stage lasts roughly 2 hours and germination occurs between 6− 8 hours [85], the
swelling process lasts approximately 5 hours. A germinated spore spawns a fungal hyphal
cell, which is connected to the spore and grows into neighboring tissue in a random direction.
Since behavior of hyphae are different from that of fungal spores, these agents are described
separately.

State variable Abbreviation Value Units
Drift speed speedf N(3, 0.5) grid cells
Probability of lodging plodge 0.05 N/A
Probability of internalization pint 0.3 N/A
Probability of internalized spore swelling pswell 0.01 N/A
Duration of resting stage trest N(120, 10) minutes
Duration of swollen stage tswollen N(300, 30) minutes
Initial health init health(f) 100 none
Health healthf varies none

Table K.3: Fungal spore state variables

Epithelial cells. Epithelial cells form the boundary between the airway and the in-
terstitial tissue. Each time step, these cells first determine the number of fungal spores and
hyphae within their detection radius. These counts indicate the amount of macrophage-
specific and neutrophil-specific cytokines to produce, respectively. While the cells produce
the cytokine levels based on fungal presence, these levels are in fact grid cell state variables,
not attributes of the epithelial cells. After adjusting local cytokine levels accordingly, each
epithelial cell damages any internalized spores. This continues until either the spore germi-
nates and kills the epithelial cell, or the spore dies. It is observed in [7] that only 3% of
conidia survive at least 36 hours – hence 30 hours is chosen as the approximate time it takes
an epithelial cell to kill an internalized conidium.

Macrophages. Macrophages are recruited to the site of infection via the bloodstream.
Each time step, if there is at least one blood cell whose macrophage-specific cytokine level is
above the macrophage recruitment threshold, there is a possibility of a macrophage spawning
at exactly one such location. All macrophages absorb some of the macrophage cytokines on

127

State variable Abbreviation Value Units
Spore detection radius sdet 1 grid cells
Hyphae detection radius hdet 1.5 grid cells
Cytokine production factor cyto rate 100 none
Time taken to kill internal spore ekill 30 hours

Table K.4: Epithelial cell state variables

their current location, simulating uptake by receptors. Macrophages have a detection radius
for conidial spores and hyphae; if a macrophage has fewer than two internalized spores,
it will internalize a spore within this radius. Internalization prevents spores from growing
hyphae. The internalization process takes approximately two hours [103]; since engulfed
conidia are assumed unable to escape, this is used as the time it takes for a macrophage
to kill an internalized spore. Macrophages do not phagocytose hyphae, but they are known
to produce IL-8 to aid in neutrophil recruitment [71, 126] – this is simulated by having
macrophages increase the neutrophil-specific cytokine level at their current location based
on the amount of nearby hyphae. Macrophages produce ferroportin which binds to hepcidin,
upon which time the complex is degraded, thereby preventing iron export [130]. Hence in
the simulation, macrophages do not alter iron levels in any way.

State variable Abbreviation Value Units
Recruitment threshold mrecr 25 none
Probability of recruitment precr(m) 0.5 N/A
Cytokine absorption rate mabs 0.05 none
Fungus detection radius mdet 2 grid cells
Time taken to kill internal spore mkill 120 minutes
Neutrophil cytokine factor mn 5 none

Table K.5: Macrophage state variables

Fungal hyphae. Hyphae grow out of germinated fungal spores. They are attached to the
spores and thus do not move. Once a hyphal cell appears, it spends time in a growth stage,
during which no new hyphae can grow out of it. During the growth phase, if the hyphae
has not been internalized, it attempts to absorb iron from surrounding tissue. Once the cell
obtains enough iron, a new hyphal cell (or two new cells, if branching occurs) grows from the
parent cell, with the new cells inheriting iron from the parent. Once it has spawned a new
cell, a parent cell is no longer eligible for spawning future cells, though it does continue to
take up iron from the environment. Many hyphae state variable values are unitless, abstract
measures (e.g., iron levels), while others are chosen empirically.

128

State variable Abbreviation Value Units
Duration of growth stage tgrow N(105, 10) minutes
Iron level ironf varies none
Maximum iron level ironmax(f) 20 none
Grid cell iron threshold cell ironmin 2 none
Iron absorption rate iron abs(f) 1 none
Iron needed for growth ironmin(f) 2 none
Probability of branching pbranch 0.15 N/A
Spacing of hyphal cells spacing 0.3 grid cells
Initial health init health(f) 100 none
Health healthf varies none

Table K.6: Hyphae state variables

Neutrophils. Neutrophils are recruited from the bloodstream in much the same way
as macrophages – if there is at least one blood cell with neutrophil-specific cytokines above
a certain threshold, then there is the possibility of a neutrophil spawning at exactly one
such location. To indicate absorption of cytokines by receptors, every neutrophil reduces
the neutrophil-specific cytokine level at its current location. As long as there are grid cells
nearby with cytokine levels above the recruitment threshold, neutrophils move towards the
grid cell with highest cytokine level – this simulates the chemotactic movement of recruited
neutrophils [25]. Otherwise, they move to the center of a randomly chosen neighboring non-
airway grid cell. Neutrophils raise cytokine levels in order to boost recruitment of additional
neutrophils by an amount equal to the number of hyphae within their detection radius.
Neutrophils are initialized with a fixed number of granules, which are deposited every time
step in order to degrade and kill hyphae. Various studies indicate that the approximate
killing time of hyphae by neutrophils is 2 hours [29, 109]. All hyphae within the neutrophil
detection radius are damaged as long as the neutrophil has not run out of granules; during
this process iron is removed from the neutrophil’s location in order to simulate sequestration.
Additionally, neutrophils do not move while they are degrading nearby hyphae. Recruited
neutrophils have a lifespan of 1− 2 days [119]; thus in the model, the average lifespan is set
at 36 hours.

K.3 Process overview and scheduling

The process overview is described here as pseudocode. Bold faced italicized processes are
described in detail in section K.7. In the simulation, time is discrete. Entity routines are
executed serially – that is, one entity executes every command in the routine, then the
next entity does the same, and so on. This means that entity state variables are updated

129

State variable Abbreviation Value Units
Recruitment threshold nrecr 15 none
Probability of recruitment precr(n) 0.5 N/A
Cytokine absorption rate nabs 0.02 none
Hyphae detection radius ndet 2 grid cells
Time taken to kill hyphal cell nkill 120 minutes
Initial number of granules init gran N(100, 10) granules
Granules gran varies granules
Life span life span(n) N(2160, 240) minutes
Current age age varies minutes

Table K.7: Neutrophil state variables

asynchronously; pertinent state variables are updated as each command is executed. The
order in which entities perform the routine is randomly chosen at each time step. The code
here is meant as an overview; as such, the descriptions are as non-technical as possible.
Submodel pseudocode in section K.7 provides detailed instructions for each step of the
process.

Algorithm 10 Lung model process pseudo-code.
1: setup map and constants
2: while simulation time < total sim time do
3: conidia routine:
4: if healthf ≤ 0 then die end if
5: if mobile then
6: if at edge of model then die else conidia move end if
7: check for contact and lodging with epithelium
8: if lodged then
9: check for internalization

10: begin growth countdown
11: end if
12: end if
13: growth countdown
14: if growth time reached then
15: switch stage of spore do
16: case swollen: germinate
17: case resting and not internalized: become swollen
18: case internalized: swell with probability pswell

19: if swollen then begin swelling countdown end if
20: end if
21: end routine
22: iron uptake
23: grow hyphae
24: iron diffusion
25: epithelial routine:
26: epithelial cytokine update
27: epithelial damage internal spores
28: end routine
29: cytokine evaporation and diffusion
30: check for new macrophages
31: macrophage routine:
32: macrophage absorb cytokines
33: if any free spores nearby then internalize spore end if
34: macrophage produce neutrophil cytokine
35: macrophage move

130

Algorithm 10 Lung model process pseudo-code (cont.)
36: macrophage damage conidia
37: end routine
38: check for new neutrophils
39: neutrophil routine:
40: neutrophil absorb cytokines
41: neutrophil produce neutrophil cytokine
42: neutrophil move
43: neutrophil damage hyphae
44: increase age according to time scale
45: if age limit reached then die end if
46: end routine
47: increase time by time step
48: end while

K.4 Design concepts

Basic principles. The biological mechanics of cell-cell interactions are the basic princi-
ples underlying the design of this model. These are described in literature and derived from
experimentation, both in vivo and in vitro. Some behavioral processes, such as phagocytosis,
occur on a local scale between two cells, while others, such as recruitment of macrophages
and neutrophils, are tissue-level processes. The model aims to tie together what is known
about individual cell behavior to create an in silico model of a larger-scale process.

Emergence. The ability of the fungus to survive under various conditions is an emergent
property of individual fungal cells competing for iron. At the same time, the tendency for
survival of infection is an emergent property of the entire immune response.

Adaptation. Macrophages and neutrophils both generally travel in the direction of high-
est cytokine concentration; thus, they adapt their movement in response to developing in-
fection.

Objectives. The objective of immune cells is to remove all fungal cells, which is measured
simply as a count of those cells. Thus whether a patient lives or dies depends on the amount
of fungus present in the system.

Learning. Agents do not change adaptive traits over time in this simulation.

Prediction. Agent prediction is similar to adaptation in this case: macrophages and
neutrophils inherently predict that following the path of highest cytokine concentration will
lead to the area where immune response is most needed.

Sensing. Fungal spores sense the type of grid cell they are near, be it airway or interstitial
space. In addition, both spores and hyphae sense the amount of iron present at their current

131

location, and use this information to ‘decide’ if they will grow. Epithelial cells, macrophages,
and neutrophils can all sense nearby spores and hyphae as well as the cytokine levels of all
neighboring cells. All sensing is local.

Interaction. While section K.2 provides a fairly comprehensive overview of entity inter-
actions, it is perhaps helpful to mention several interactions which do not occur. Specifically,
macrophages and neutrophils do not directly interact with other immune cells, either of their
type or another. For example, the presence of many macrophages at one location has no
bearing on the likelihood of another macrophage targeting that location. Fungal hyphae in-
teract with other hyphae as long as they are connected – in particular, iron uptake is shared
among all hyphae at a given location, and when new hyphae are spawned, they inherit iron
from the parent cell.

Stochasticity. Agent movement, when not dictated by concerns such as cytokine levels,
is stochastic: agents face in the direction of a randomly chosen legal space and move in that
direction. Hyphae grow in random directions, leading to clumps of fungus rather than long
strands; hyphal branching is stochastic as well. In general, stochasticity is employed as a
substitute for unknown mechanisms of the biological entities being represented.

Collectives. Fungal hyphae form a collective of sorts, as they maintain information
about every other hyphae they are connected to. Iron stores are shared among local neigh-
bors, which has an indirect effect on the collective group. These groups arise naturally
and from the local rules of individual entities; they are not entities themselves and have no
distinct state variables.

Observation. Many data can be collected from the model for analysis and understanding.
These include fungal cell counts, iron levels, cytokine levels, macrophage and neutrophil
counts, and collateral tissue damage. Any or all of these may be collected during each
simulation, depending on the needs and interests of the researcher. The data are collated in
a universal spreadsheet format for ease of statistical interpretation and analysis.

K.5 Initialization

Many initialization values are given in table K.1; as such, they are not repeated here. In
addition to these values, the following information may be necessary to reproduce results:
all grid cells begin with cytokine and iron levels at 0. The initial inoculum is placed at
one end of the airway. There are no macrophages or neutrophils until recruitment occurs
via cytokine triggering. Macrophages and neutrophils are created at the blood cell where

132

recruitment occurs. Given that the model is meant to function as an in silico laboratory, it
is not meant to be entirely robust with respect to initial conditions. Indeed, a key feature
of the model is the ability to investigate the effect of initial conditions on outcome.

K.6 Input data

The model requires a map file (in .txt format) in order to set up grid cell types and locations.
The map file is a three-dimensional matrix. Grid cell layout is determined aesthetically to
serve the visual representation of model dynamics. No other input data is used.

K.7 Submodels

There are seventeen submodels listed in the pseudocode in section K.3. These are described
here using pseudocode. Note that while the code in section K.3 is intended to read naturally,
the submodels presented here are more technical.

Submodel 1 conidia move
1: face random direction down airway
2: move forward speedf
3: if at edge of map then die end if . simulates inoculum passing through airway

Submodel 2 iron uptake
1: for all non-airway grid cells with iron > cell ironmin do
2: for all non-captive hyphal or hyphal-tip fungus here with ironf < ironmax(f) do
3: ironf = ironf + (iron abs(f) · ironp/no. fungus here) . iron is split among all eligible fungus
4: ironf = min{ironf , ironmax(f)} . iron capped at ironmax(f)
5: end for
6: ironp = (1− iron abs(f)) · ironp . grid cell iron reduced
7: end for

Submodel 3 grow hyphae
1: for all germinated non-captive spores which haven’t spawned hyphae do
2: spawn hyphal cell
3: hyphal cell routine:
4: move forward spacing in a random non-airway direction
5: set stage to ‘hyphal tip’
6: set growth time to tgrow . begin swelling phase
7: ironf = ironf of parent cell
8: end routine
9: end for

10: for all hyphal tip cells with ironf > ironmin(f) and growth time reached do
11: num to spawn = 1
12: if rand(0, 1) < pbranch then . probability of branching
13: num to spawn = 2
14: ironf = ironf/3
15: else
16: otherwise ironf = ironf/2
17: end if
18: spawn num to spawn hyphal cells
19: set stage to ‘hyphal’ . only ‘hyphal tip’ cells can spawn
20: each new hyphal cell performs hyphal cell routine
21: end for

133

Submodel 4 iron diffusion
1: for all blood grid cells do
2: ironp = min{(ironp + iph · time step/60), ironmax(p)} . iron is capped at ironmax(p)
3: end for
4: for all non-airway grid cells do
5: give each neighbor cell (irondif · ironp/26) iron . 26 neighbors in 3D
6: airway cells: ironp = 0 . no iron in airway
7: end for

Submodel 5 epithelial cytokine update
1: for all epithelial cells do
2: spore count = swollen or germinated spores within sdet
3: hyphae count = hypal or hyphal-tip cells within hdet
4: cytom = cytom + cyto rate · spore count . increase cytokine level based on counts
5: cyton = cyton + cyto rate · (hyphae count + spore count)
6: end for

Submodel 6 epithelial damage internal spores
1: for all internalized spores do
2: healthf = healthf − (init health(f) · time step/ekill)
3: end for

Submodel 7 cytokine evaporation and diffusion
1: for all grid cells do
2: cytom = (1− cyto evap m) · cytom . cytokine evaporation
3: cyton = (1− cyto evap n) · cyton
4: add cytom/26 to each neighboring cell . cytom refers to cytokine level of contributing cell
5: add cyton/26 to each neighboring cell . diffusion to 26 neighbors in 3D
6: end for
7: airway cells: cytom, cyton = 0 . no cytokines in airway

Submodel 8 check for new macrophages
1: if any blood cells with cytom ≥ mrecr then
2: let L be one such location, selected at random
3: if rand(0, 1) < precr(m) then . probability of recruitment
4: spawn new macrophage at location L
5: end if
6: end if

Submodel 9 macrophage absorb cytokines
1: cytom = (1−mabs) · cytom

Submodel 10 macrophage produce neutrophil cytokine
1: let h be number of fungus in stage ‘hyphal tip’ or ‘hyphal’ within mdet
2: grid cell here: cyton = cyton +mn · h

Submodel 11 macrophage move
1: if any neighboring grid cells with cytom ≥ mrecr then
2: move to neighbor with highest cytom . follow highest cytokine concentration
3: else
4: move to random neighboring grid cell . may wrap around map
5: end if

Submodel 12 macrophage damage conidia
1: for all internalized conidia do . macrophages internalize spores only, not hyphae
2: healthf = healthf − (init health(f) · time step/mkill) . damage depends on time scale
3: ensure location is same as macrophage
4: end for

134

Submodel 13 check for new neutrophils
1: if any blood cells with cyton ≥ nrecr then
2: let L be one such location, selected at random
3: if rand(0, 1) < precr(n) then . probability of recruitment
4: spawn new neutrophil at location L
5: end if
6: end if

Submodel 14 neutrophil absorb cytokines
1: cyton = (1− nabs) · cyton

Submodel 15 neutrophil produce neutrophil cytokine
1: let h be number of non-internalized fungus in stage ‘hyphal tip’ or ‘hyphal’ within ndet
2: grid cell here: cyton = cyton + h

Submodel 16 neutrophil move
1: if degranulating nearby hyphae then
2: do not move
3: else if any neighboring grid cells with cyton ≥ nrecr then
4: move to neighbor with highest cyton . follow highest cytokine concentration
5: else
6: move to random neighboring grid cell . may wrap around map
7: end if

Submodel 17 neutrophil damage hyphae
1: if any hyphae within ndet and gran > 0 then
2: hyphae: healthf = healthf − (init health(f) · time step/nkill)
3: gran = gran− 1
4: all grid cells within ndet: set ironp = 0 . neutrophils produce lactoferrin to sequester iron
5: end if

	Introduction
	Scaling Methods and Heuristic Algorithms
	Introduction
	Related work
	A framework for solving optimization problems

	Data reliability
	Pareto optimization
	Software
	Two models
	Rabbits and grass
	SugarScape model

	Conclusions

	Optimal Harvesting for a Predator-Prey Agent-based Model using Difference Equations
	Introduction
	Background and related work
	The model: rabbits and grass
	Deriving the equations
	Steady-state analysis of the DE model
	Cohen's weighted : a similarity measure
	The two-equation model
	The optimization problem
	Pareto optimization
	Results
	Discussion and future work

	Mathematical Conversion of SugarScape to Analytical Difference Equations
	Introduction
	Related work

	The model
	The SugarScape Gradient model
	An optimization problem

	Analytical equations
	Results
	Pareto optimization.

	Discussion

	A Framework for a Mathematical Approach to Solving Optimization Problems for Agent-based Models
	Introduction
	A framework for solving optimization problems for ABMs

	SugarTax: A running example
	Deriving the equation model
	Wealth and population
	Migration

	Solving the optimization problem
	Pareto optimization
	Results

	Discussion

	A Computational Model of Invasive Aspergillosis in the Lung
	Introduction
	Related work

	The model
	Discussion

	Overview, Design concepts, and Details (ODD) protocol for Rabbits and Grass
	Purpose
	Entities, state variables, and scales
	Process overview and scheduling
	Design concepts
	Initialization
	Optimization

	Overview, Design concepts, and Details protocol for SugarScape with taxation
	Purpose
	Entities, state variables, and scales
	Process overview and scheduling
	Design concepts
	Initialization
	Input data

	Overview, Design concepts, and Details protocol for Rabbits and Grass
	Purpose
	Entities, state variables, and scales
	Process overview and scheduling
	Design concepts
	Initialization
	Submodels
	Optimization

	Difference equation models
	Squeaky wheel optimization for parameter estimation
	Optimal poison schedules
	Overview, Design concepts, and Details (ODD) protocol for the SugarScape Gradient Model
	Purpose
	Entities, state variables, and scales
	Process overview and scheduling
	Design concepts
	Initialization
	Input data

	SugarScape Gradient: Difference equations
	Overview, Design concepts, and Details (ODD) protocol for SugarTax
	Purpose
	Entities, state variables, and scales
	Process overview and scheduling
	Design concepts
	Initialization
	Input data

	SugarTax difference equation model
	Population equations
	Migration equations
	Wealth equations
	Initial values

	Overview, Design Concepts, and Details (ODD) protocol for an agent-based model of A. fumigatus in the lung
	Purpose
	Entities, state variables, and scales
	Process overview and scheduling
	Design concepts
	Initialization
	Input data
	Submodels

