
Techniques



Contents
1. How we work
2. Unit Testing

a. Test Driven Development

3. Toolchain (TFS)
a. Work Item Tracking
b. DevOps
c. Code Quality

4. Frameworks
5. Core Technologies



How we work



What we can provide - Teams

● K&K “A-Team”: 5 full-time developers with deep specialisation in C#, XAML 
(WPF) & T-SQL (Microsoft SQL Server)

○ For peak throughput, support by our other K&K “Team X” possible (also 5 C# developers)
○ K&K can thus provide up to 1500 hours of development per month

● We can accommodate external developers and integrate them into the project
● We can also contract an UI/UX expert to support your wishes



Industry supported best practice
● Coding Conventions and Guidelines from Microsoft

○ Coding Conventions
■ https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program

/coding-conventions
○ Guidelines:

■ Framework Design Guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines

■ User-Experience 
https://docs.microsoft.com/en-us/windows/desktop/uxguide/guidelines

○ Language Features (new in version 7.3)
■ https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7-3

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/index
https://docs.microsoft.com/en-us/windows/desktop/uxguide/guidelines
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-7-3


Unit Testing & Test Driven Development



● To ensure the quality of code, almost every component has to be runnable 
without the normal application context

● Must be implemented from conception, otherwise there is a risk that 
individual components can no longer be separated from the rest of the 
application and thus tested

● Unit testing as basis for proper and lasting software quality
➢ Provides the basis for Test Driven Development (see next slide)
➢ Generally Test Driven Development is more expensive initially, but saves resources in the long 

term. Even when pure Test Driven Development is unfeasible, many elements of this method 
of development can be adapted to fit “normal” projects.

Unit Testing



Unit Testing: Test Driven Development

● This method of development yields earliest possible error detection and 
avoidance.

● Focus work on the functionality and the primary features of the software.
● Acceptance criteria and dependencies are turned into unit tests, piece by 

piece.
● Every change is fully automatically tested. We can recognize and correct 

errors while we implement user stories.



Toolchain



Toolchain
● Visual Studio (opt. Productivity Power Tools)
● Sql Server Management Studio (SSMS)
● Team Foundation Server (TFS)

○ Transparent communication and documentation at a glance
■ Shows which acceptance criteria meets the implemented user story
■ Shows all code changes to meet individual acceptance criteria
■ Shows who implemented each user story

○ Automated builds and release management
■ Is provided by us
■ Every version can be compiled and downloaded seamlessly

○ Accessible via the internet



TFS





One unit test per 
acceptance 
criteria











Frameworks and Techniques



Current frameworks and Techniques

Use of best practice guidelines ⇒ we do not reinvent the wheel.

● PRISM Framework
● Repository in conjunction with Unit-of-Work design pattern
● Dependency Injection
● Façades
● Unit Testing
● Entity Framework



PRISM

● PRISM is a powerful open source MVVM library
● Glossary

○ MVVM = loose coupling between Model, View and ViewModel
○ Model = data model (intermediate layer to represent the data from the database)
○ View = display objects (graphical user interface & visual representation of ViewModel)
○ ViewModel = state of the interface (and link between model and view)

● Benefits
○ Supporting design patterns that embody important principles of architectural design (e.g. 

“Separation of Concerns”), PRISM helps developers design and build loosely-coupled 
components that can be developed independently, but jet can be easily and seamlessly 
integrated into the overall application.



Repository and Unit-of-Work pattern

● Repository pattern in conjunction with unit-of-work pattern
○ Glossary

■ Repository ⇒ Representation and collection of database operations for business logic
■ Unit-of-Work ⇒ Collection of repositories within a mask

○ Benefits
■ Data is created, edited, and deleted centrally in one place
■ Prevention of duplicate code as this layer can be accessed from anywhere

● ⇒ We are writing future-oriented and maintainable code!



Dependency Injection
● Is a technique to minimize fixed references
● Increases the testability due to hiding complex code fragments behind 

simplified interfaces => code lines are not needlessly tested twice
● The library “Unity” is used as our Dependency Injector
● Centralized dependency management, which “inserts” the appropriate code 

fragment (e.g. Service, Factory, or Façade, etc.) into objects



Façade
● Hides complex code fragments behind a simple “facade”

○ Code irrelevant to the developer is hidden 
⇒ improves readability of code
⇒ especially important if the code is modified by several developers



Frontend frameworks
● Xceed Toolkit

○ See Live-Explorer for Demo: https://github.com/xceedsoftware/wpftoolkit/releases
○ AvalonDock

■ Window management for complex applications
○ User Controls

■ A variety of components for editing, creating, and deleting data
■ Easily expandable

https://github.com/xceedsoftware/wpftoolkit/releases


Core Technologies



C# common toolsets
● “MVP” Concept

○ Minimum Viable Product
● Design patterns

○ Dependency Injection (Unity, …)
○ Asynchronous Programming Model
○ Inversion of Control
○ …

● We support a wide range of database 
management systems. Depending on 
project requirements Microsoft SQL Server 
or SQLite are preferred.

● Unit Testing
○ NUnit
○ Moq

● Nuget Package Manager to provide 
specially designed source code libraries

● Encryption and authentication of 
communications to ensure data integrity 
and security

● High-performance applications with 
multi-threaded programming



Frontend Technology
Desktop-Client

● Windows Presentation Foundation (WPF)
● MVVM Light Toolkit or PRISM, depending 

on the scope of the project.
● OxyPlot to generate graphs and diagrams
● Xceed Toolkit to support your UI needs.
● AvalonDock to support multi window 

applications

Web-Client

● Backend
○ ASP.NET MVC 6 or ASP.NET Core MVC 

depending on platform
● Frontend

○ Current web html5 technology
○ Typescript
○ Bootstrap 4
○ Angular

https://docs.microsoft.com/de-de/dotnet/framework/wpf/


Any questions? Please contact us!

We are committed to your request and will 
be happy to answer detailed questions 
promptly. We look forward to your inquiry. 

I am your contact person:

Laura Köpl
Head of Marketing and Sales

Phone: 09382 / 3102-241
Mail: koepl@kk-software.de



Protect your interests:
Develop excellent products with our team at K&K Software AG using 

state-of-the-art agile methods, now. 


