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Abstract

Satellite formation flying allows for many innovative mission concepts which can some-
times better perform than missions based on single large satellites. They also offer several
advantages, among which are the reduced cost and risk due to the distributed architec-
ture and smaller, simpler spacecraft design. One possible application of such mission
designs consists in deploying several small Synthetic Aperture Radar (SAR) satellites
flying in close formation. SAR images of metric and submetric resolution can be syn-
thesized by combining the data from several small spacecraft. The feasibility of such
multistatic SAR mission concepts largely relies on the ability to achieve relative time
and phase synchronization accuracy better than a few picoseconds and a few degrees,
respectively. The proposed master thesis provides an overview, including preliminary
performance assessment, of the following aspects in the frame of multistatic constella-
tions: i) improvement of positioning accuracy, ii) improvement of relative positioning
(i.e., baseline) accuracy, and iii) GNSS-based clock synchronization.

This work proposes joint kinematic estimators combining code delay GNSS data from
satellites in close formation (tens of meters) with different hardware configurations. The
thesis evaluates the effects of combining single and dual-frequency receivers and of adding
an intersatellite ranging system to a pair of satellites in the formation. In addition, it
proposes and evaluates an algorithm using information derived from SAR interferometry
to calibrate the baselines. A simulator for the GNSS data and for the interferometric
and intersatellite ranging data was developed for testing the algorithms. The compar-
ative results indicate improvement in the baseline estimates by employing data from
an intersatellite ranging system and also by using the calibration algorithm based on
interferometric data. The position estimates improved with the number of satellites in
the formation in the scenario where each satellite is equipped with a dual-frequency
receiver. Finally, dual frequency receivers could be used to improve baseline and posi-
tioning results for single frequency receivers by estimating the ionospheric delay affecting
the whole formation.

This thesis also puts forward a phase synchronization scheme based on the combined
evaluation of precise orbit determination (POD) and GNSS data, in which the GNSS
receiver and the radar payload share the same oscillator. It presents a discussion on
accuracy, an error analysis, and an evaluation of its viability by means of a system-
oriented simulation of the navigation data. The results suggest the proposed approach
is capable of delivering reliable estimates of carrier frequency and phase errors for low-
and medium-frequency systems in the absence of strong baseline velocity deviations if
multipath and other systematic errors are successfully suppressed or calibrated.
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1 Introduction

1.1 Motivation

Synthetic Aperture Radar is one of the most powerful remote sensing techniques avail-
able. One of the main features of radar remote sensing in general is that it provides
high-resolution two dimensional images which do not depend on daylight or weather
conditions, thus offering a reliable means of monitoring the dynamic processes of the
Earth. Radar systems measure the distance to an object by observing the time inter-
val and the phase difference between a transmitted microwave signal and its received
echo. The simplest radar applications provide a 2-D reflectivity map of the imaged
area. Synthetic Aperture Radars (SAR) consist of conventional radars mounted on a
moving platforms. In these systems, the antenna displacement between the times of
transmission and reception allows for the construction of an aperture larger than the
antenna length by coherently combining the received signals [MPY+13]. One SAR ap-
plication of particular interest in this thesis is the so-called across-track interferometry,
in which two antennas are laterally displaced and the combination of their two images
gives information on the imaged surface elevation.

In conventional radar systems the transmitter and receiver are on the same platform.
In bistatic and multistatic space radar systems they are spatially separated, which typi-
cally reduces development costs and risks, and enhances the overall performance [KM06].
Multistatic radar constellations also allow for better reconfigurability and scalability. A
system composed of a combination of small standard satellites is easier to reconfigure
and, depending on the system design, the performance could be scaled with the number
of satellites without the need for changing each of them. Bistatic systems provide addi-
tional observables, enabling the extraction of important parameters from the scene. A
multistatic system with several satellites illuminating a common footprint can be con-
sidered as a large aperture system, which results in a very narrow antenna beam and
allows for reducing the size of each antenna, thus enabling cost-effective high-resolution
SAR missions [KM06].

In bistatic and multistatic systems, however, different oscillators are used for modula-
tion and demodulation of the radar signal, and the low-frequency part of the phase noise
process cannot be expected to cancel out as in monostatic systems [Aut84]. This residual
phase may cause defocusing, position and phase errors in the computed images, which
may compromise the use of the systems for interferometric and tomographic applications
[KY06].

Another challenge for designing bistatic and multistatic radar systems is the very high
accuracy required in determining the baseline, which is the relative position between the
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Figure 1.1: TandemX artistic concept (credits: DLR).

transmitter and receiver antennas. A very high accuracy, of the order of millimeters or
even sub-millimeter level, can be achieved by using geodetic grade GNSS receivers and
precise orbit and baseline determination techniques. Future radar applications for small
satellites could benefit from estimation techniques that improve the baseline accuracy,
specially if they can be used with data from low-cost, small GNSS receivers.

The TanDEM-X mission, illustrated in fig. 1.1, exemplifies the stringent requirements
for interferometric bistatic missions. It was launched in 2010 and consists of two satellites
flying in a controlled helix formation with the objective of generating a digital elevation
model of the Earth with the unprecedented accuracy of 2 m. The generation of high-
resolution digital elevation models required the knowledge of relative phases within a
few degrees [KMF+07] and the baselines needed to be determined within 1-2 millimeter
accuracy to allow for the targeted relative height accuracy [GAB+12].

In TanDEM-X, phase synchronization with the required accuracy was achieved by ex-
changing compressed pulses at the radar carrier frequency between the satellites through
a direct microwave link [BV], which involved the implementation of dedicated transmit
and receive hardware and a total of six antennas covering most of the angular environ-
ment of the satellites. Besides the need for additional hardware, the incorporation of
such direct links may be problematic due to differences in the development schedules
of different elements of the constellation, as it is typically the case of companion SAR
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missions [RCPIZ+17].

Another possibility would be to estimate the synchronization phase based on the
evaluation of the received data. Although this approach was demonstrated in spaceborne
environments [RCPS+12, RC12] and it provides estimates with varying quality as a
function of the backscattering of the scene, it can only be considered acceptable for
interferometric SAR missions.

In an attempt to fulfill the phase synchronization requirement in a most cost-effective
manner, in [KZM+18] a full system architecture (MirrorSAR) is envisaged to avoid the
demodulation of the radar signals using a different oscillator. The approach consists of
having the receivers act like transponders, i.e., re-routing the radar echoes to another
element of the constellation (e.g., the transmitter) having access to the oscillator used in
the modulation. Although a MirrorSAR architecture requires a direct link between the
satellites, not necessarily in the microwave range, it still keeps the potential for relevant
spacecraft simplification by an appropriate design of baselines and the possible removal
of complete hardware blocks for demodulation, data storage, downlink or digital control
in the receivers.

The capability of high accuracy relative positioning (i.e., baseline determination) and
timing using GNSS has been extensively demonstrated in space. The baseline determina-
tion required in TanDEM-X was achieved through a posteriori calibration based on the
evaluation of the raw topographic maps of several sites spread across the world acquired
under different geometries [GAB+12]. GRACE achieved an accuracy of 1 mm with re-
spect to the more precise K-band ranging system, used as reference [KMBV05]. Both
missions used geodetic GPS receivers, capable of receiving two frequencies for correcting
the effects of the ionosphere. The PRISMA mission, on the other hand, demonstrated
the capability of achieving sub-decimeter relative positioning precision using a low-cost
single frequency GPS receiver [ADM10].

In the standard navigation solution the phase drift of the oscillator used in the GNSS
receiver directly affects the pseudorange measurements between the GNSS satellite and
the GNSS receiver and thus has to be estimated along with the position and velocity in a
filter. The phase estimated in the filter gives information on the accumulated phase error
due to frequency deviations on the master oscillator of the GNSS receiver. This indicates
the possibility of a phase synchronization method using precise baseline determination
and in which the same master oscillator is shared between the GNSS receiver and the
radar payload.

1.2 Objective

This thesis evaluates some of the potentials of GNSS applications for multistatic SAR
constellations. It addresses the issue of precise phase synchronization and precise baseline
determination having as a vision a multistatic SAR constellation consisting of several
low-cost small satellites. The developments presented here, however, could also be useful
for conventional bi- and multistatic SAR missions.

The first major objective of this thesis is to investigate if data from multiple satellites
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flying in close formation can be combined to achieve more accurate baseline solutions.
This preliminary assessment covers the basic cases in which each satellite is provided
with a double-frequency GNSS receiver, and considers the effect on the position and
baseline solutions when other information is added to the estimator. The thesis evaluates
the effect of intersatellite links, different capabilities of each GNSS receiver in terms of
frequency, and the possibility of using interferometric SAR data from different pairs of
satellites to calibrate the baseline.

The second major objective is to propose and evaluate a relative SAR carrier phase
estimator for bi- and multistatic SAR constellations in a hypothetical system in which the
radar payload and the navigation receiver share the same master oscillator, exploiting
the fact that the phase drift of the oscillator needs to be estimated in the standard
navigation solution.

1.3 Scope

The position and baseline determination are evaluated in a preliminary fashion. A kine-
matic solution, which does not consider in the estimation the spacecraft orbital dynamics,
is enough to evaluate if the information content of the GNSS signals in different satellites
combined with other external information sources can be used to improve the baseline
configuration. The basic assumption is that if there is no improvement in the baseline
for the kinematic solution, the dynamic solution will not be improved either and, on the
other hand, if there is an improvement, it would indicate that the final solution using a
dynamic solution could improve.

The phase determination problem will be presented in detail. The intention is to
propose an estimator and to provide a simulation to assess the performance of the
proposed synchronization scheme in as much detail as possible. The error sources are
listed and analyzed individually in terms of order of magnitude and variation over time.
Analytical expressions for some of the major errors sources are derived.

1.4 Outline

The chapters are divided into two major themes: position and baseline determination,
and SAR synchronization, with dedicated chapters for each. The thesis is separated into
seven chapters, including this introduction:

Chapter 2 exposes the fundamentals of position determination and SAR phase syn-
chronization and sets the basic theoretical framework and notations for the following
chapters.

Chapter 3 first details all the kinematic position determination configurations con-
sidered and the mathematical models used in the kinematic estimator for each of them.
Then, it gives an overview of the simulation developed to evaluate those algorithms and
finally presents the results from the simulation.
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Chapter 4 proposes and details a technique for estimating the phase difference be-
tween radar payloads using GNSS and POD data and gives an analytical error analysis
for the proposed technique. It shows the simulation framework and the assumptions to
assess the performance of the proposed phase estimator for a system example.

Chapter 5 summarizes the conclusions, describes the non-addressed issues which may
cause problems for the implementation in the future and proposes the next step to further
assess the technique and to take it into the practical implementation.
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2 Fundamentals

This section gives an introduction on two major themes: SAR remote sensing and GNSS
navigation. It explains the most relevant concepts on which the developments through-
out the thesis are based and introduces the main terms and mathematical notations.
This chapter gives a brief understanding on each concept necessary, avoiding lengthy
derivations. For more detailed information, refer to [CW05] and [MG00], which are
more comprehensive references on SAR remote sensing and navigation, respectively.
The notations and equations concerning GNSS navigation used here are largely based
on the PhD thesis by Remco Kroes [Kro06].

2.1 Synthetic Aperture Radar

Initially, radar remote sensing systems did not use the principle of the synthetic aperture,
and had the drawback of limited resolution in one of the image dimensions, namely
the azimuth direction. In 1951 Carl Wiley invented the use of coherent radar and the
principle of Doppler beam sharpening, which lead to improvement on azimuth resolution
and resulted in the concept of synthetic aperture radar used nowadays.

The initial developments of SAR were mainly targeted at military applications, such
as reconnaissance and man-made target detection. In the 70s and 80s many airborne sys-
tems for civilian applications were developed with the goal of retrieving geo/bio-physical
parameters. In 1978 the Jet Propulsion Lab from NASA launched the first civilian SAR
satellite, named Seasat, which measured various sea and atmosphere parameters. Nowa-
days, SAR is established as one of the most important remote sensing techniques, being
able to provide images with resolutions on the order of meters. The field of SAR remote
sensing is also following the current trend of using small satellites. Recently, the mi-
crosatellite missions ICEYE were able to achieve resolution on the order of a few meters
[ece].

The next subsection explains the general principles of real and synthetic aperture re-
mote sensing. The following two subsections explain the basics of phase synchronization
and across-track interferometry for SAR applications.

2.1.1 Synthetic Aperture Radar Principle

In order to understand the SAR principle, it is important to understand the limitations
on the simplest radar imaging system as it was conceived initially. These systems are
currently denominated Real Aperture Radar (RAR), since they do not use the principle
of synthetic aperture radar. The principle of RAR is illustrated in Fig. 2.1.

7
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Figure 2.1: Real Aperture Radar (RAR) remote sensing principle.

The RAR system provides a 2-D reflectivity map of the scenery, in which areas or
targets with high backscattering are represented as bright spots, and flat smooth surfaces
are represented as dark areas. The image is built in the direction of flight, denominated
azimuth direction, and along the line-of-sight, denominated slant range direction. Radar
sensors send frequency modulated pulse waveforms, the so-called chirp signal, and waits
for a period in which the radar receives the scattered echoes and stores the signal on-
board.

The resolution corresponds to the smallest distance between two points in the scenery
which can be detected by the radar. The beamwidth in the azimuth direction Θa is
given by

Θa =
λ

D
, (2.1)

in which λ is the wavelength and D is the antenna length. From Fig. (2.1), and
considering tan(Θa) ≈ Θa, valid for small Θa, the resolution in azimuth is given by

δa = Θa ·R =
λ

D
·R , (2.2)

in which R is the range distance from the antenna to the target. Eq. 2.2 shows that
the azimuth resolution decreases with the distance to the target. This restricts the
performance in azimuth of spaceborne RAR systems to low to average resolution.
The resolution in slant range direction depends on the pulse duration τ as follows [CW05]:

δr =
c · τ

2 · sin(θ)
, (2.3)
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with θ the look angle as illustrated in Fig. 2.1 and c the speed of light. Note that there
is a singularity for θ = 0, but it poses no problem since θ must be always positive to
avoid ambiguity in the radar data between signals received from the left and from the
right of the direction of flight. The resolution in slant range does not degrades with the
distance and tends to be much higher than the resolution in azimuth for these systems.

For example, consider a theoretical spaceborne RAR system with 1 cm wavelength, 5
m antenna length, at an altitude of 600 km, incident angle of 59 degrees and range of
1000 km. The resolution in slant range would be of 5.2 meters whereas the resolution in
azimuth would be of 2.3 km, a very large difference.

The principle of synthetic aperture radar, which addresses this discrepancy between
resolutions, is illustrated in Fig. 2.2.

Figure 2.2: Synthetic Aperture Radar principle.

In these radar systems a common point is illuminated from different azimuth positions.
The azimuth resolution is determined by the constructed synthetic aperture, defined as
the length of the trajectory segment during which a point is illuminated by the radar.
As shown in Fig. 2.2, the synthetic aperture Ls is given by

Ls = Θa ·R =
λR

D
. (2.4)
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This long aperture results in a narrow virtual beamwidth (Θsa), as shown in the equation

Θsa =
λ

2 · Ls
=

D

2 ·R
, (2.5)

and consequently on a high azimuth resolution

δa = R ·Θsa =
D

2
. (2.6)

For SAR systems, therefore, the resolution in azimuth doesn’t depend on the slant
distance and can be of the order of meters, many orders of magnitude lower than the
resolution provided by a spaceborne RAR. For the same theoretical mission presented
earlier in this subsection, if SAR was used instead of RAR, the resolution in azimuth
direction would be of 2.5 m, almost a thousand times better than the 2.3 km resolution
of the RAR system.

2.1.2 Synthetic Aperture Radar Data Processing

The data from a SAR payload consists in a two-dimensional matrix containing the
complex received signals, with information of amplitude and phase. The first dimension
corresponds to the range direction. Each range line contains the received echo after
amplification, conversion to base band and digitization. The second dimension is the
traveled distance in the direction of flight.

Differently from optical data, the raw SAR data cannot be directly interpreted. The
data has to go through a complex data processing before it can be translated into an
image. In a simplified way, the data processing can be understood as a sequence of two
separate matched filters operations, one in the range direction followed by one in the
azimuth direction.

In the matched filter the received signal is convoluted with a template, consisting in
the complex conjugate of the original signal. In the first matched filter the received
signal is convoluted with the transmitted chirp. The result is a range-compressed image,
which reveals only the relative distance between the radar and any point on the ground.
In the second matched filter the azimuth information is retrieved by multiplying the
range-compressed image by the complex conjugate of a model of the expected signal
received from any target point at a given range. The reference azimuth signal can be
modeled as follows

s(t) = A ·
√
σ0 · exp

(
jφscatt

)
· exp (−j2πfrτ) , (2.7)

in which j is the imaginary unit, fr is the radar frequency, σ0 is the radar cross section,
φscatt is the scatterer phase, τ is the wave traveled time from transmission to reception,
and A expresses the dependency of the received signal amplitude on system parameter
such as transmit power, antenna pattern, azimuth and elevation angle. The component
2πfrτ is the azimuth phase variation due to the traveled distance. This component plays
a central role in the problem addressed by this thesis, as will be explained in details in
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the next section.

2.1.3 Bistatic Phase Synchronization

The azimuth modulation expressed in 2.7 is directly affected by variations in the oscil-
lator originating the signal. Fig. 2.3 illustrates the effect of drifts in the oscillator in the
case of a monostatic radar system, in which the signal is transmitted and demodulated
using signals generated from the same oscillator.

m

exp{j[2πf0t+ ψ(t)]}

s(t)×

τ
Earth’s surface

s(t) = exp{jm[ −2πf0τ︸ ︷︷ ︸
AZ modulation

+ψ(t− τ)− ψ(t)︸ ︷︷ ︸
phase error≈ 0

]}

*

Figure 2.3: Monostatic SAR phase error.

In this figure the amplitude information is ignored and just the phase information is
expressed. The radar signal is generated by a oscillator signal and a frequency multi-
plier. It puts in evidence an phase error which is not accounted for in Eq. (2.7) and
which gets mixed with the azimuth phase variation, ultimately introducing errors in the
final synthesized SAR image. In the case shown in Fig. 2.3 the errors caused by the
oscillator is negligible, provided that the phase error bias of the oscillator doesn’t change
considerably in the interval of time τ , and thus cancels out when recombining it with
the template.

In the case of a bistatic system this scenario changes. In these systems different
oscillators are use for modulation and demodulation and therefore this phase in general
will not cancel out. This is illustrated in Fig. 2.4. This error mixes up with the azimuth
information and will cause several distortions in the synthesized image if not properly
compensated. This is one of the main challenge for the implementation of bistatic
and multistatic SAR systems. Fig. 2.5 exemplifies the effect of the phase error for a
SAR interferogram, built through across-track interferometry and which gives elevation
information about an area.
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m
m

exp{j[2πf0t+ ψu(t)]}

SARu SARv

exp{j[2πf0t+ ψv(t)]}

s(t)×

τ
Earth’s surface

s(t) = exp{jm[ −2πf0τ︸ ︷︷ ︸
AZ modulation

+ψu(t− τ)− ψv(t)︸ ︷︷ ︸
phase error

]}

*

Figure 2.4: Bistatic SAR phase error.

Figure 2.5: Bistatic interferograms of Brasilia area from TanDEM-X mission. At left a
non-synchronized and at right a synchronized interferogram (source: DLR).

2.1.4 Across-Track Interferometry

One of the main applications of bi-static SAR is the so called across-track interferometry.
The conventional radar image provides information on the range and elevation of certain
pixel, but not the elevation and therefore the height of that pixel. The across-track
interferometry overcomes this limitation by comparing two radar images of the same
area taken from a laterally displaced antenna, as illustrated in Fig. 2.6.
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Figure 2.6: Across-Track Interferometry principle.

The variation in height can be derived from the variation in range as follows

∆r =
B⊥

R sin(θi)
·∆h . (2.8)

This technique allows for building a digital elevation model (DEM) of the imaged
terrain, in addition to the reflectivity map. An error in the baseline will result in an
error in the estimated elevation and a distortion of the elevation model. This is further
explained in [GAB+12].

2.2 GNSS Navigation

Global Navigation Satellite Systems (GNSS) are constellations of satellites that provide
positioning and timing information at a global scale. The GNSS systems consists of three
major segments: space segment, which are the satellites of the constellation, the ground
segment, consisting of the control and tracking ground stations and the user segment.

The first developed GNSS was the NAVSTAR GPS (NAVigation System and Ranging
Global Positioning), which was initiated in 1973 and achieved its full operational capac-
ity on 1995. The GPS system consists of 24 satellites placed in six evenly spaced planes
with 55 degrees inclination and four satellites per plane. It is developed, maintained
and operated by the U.S. Air Force. Currently there are several additional GNSS sys-
tems available, from different countries, including Europe’s Galileo, Russia’s Global’naya
Navigatsionnaya Sputnikovaya Sistema (GLONASS) and China’s BeiDou Navigation
Satellite System.

In these systems, each satellite transmit L-band signals modulated with pseudo-range
codes used for acquisition and tracking of the satellites. The three main components of
the GNSS signal are: the carrier frequency, a sinusoidal signal at a central frequency;
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the navigation data, a binary-coded message providing the GNSS satellite ephemerides,
clock bias parameters, satellite health status, among others; and finally, the so-called
Pseudo-Random Noise (PRN) sequence, a binary sequence which allow to determine the
travel time of the signal from the GNSS satellite to the receiver.

Each GNSS constellation transmits continuously at least two of the signals described
above at two separate carrier frequencies. The use of two frequencies allows for the
correction of the main error source in GNSS positioning, the ionospheric delay.

The following subsections detail the GNSS positioning principle, followed by a mathe-
matical description of the useful observables extracted from the GNSS signal, and finally
it presents a algorithm for position estimation based on these observables.

2.2.1 GNSS Navigation Principle

Figure 2.7 illustrates the principle of GNSS navigation. The positioning is based on
triangulation from four satellites with known positions. Assuming the clocks between
the GNSS satellites and the receiver are synchronized, the distances from the satellites
to the receiver can be determined directly from the code delay information contained in
the signal.

Figure 2.7: GNSS position simplified principle.

From this distance information, the user knows that they are somewhere in a sphere
centered on the GNSS position of radius equal to the measured distance. Each GNSS
satellite provides one sphere of possible location, and the user can determine its position
by calculating the interception point between those spheres. The position information
consists of three independent pieces of information, therefore at least three independent
measurements are necessary for calculating the position.
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In case the clocks are not synchronized, the clock bias would be interpreted as a range
information in the algorithm, which would result in a erroneous position if the delay
is not considered. Therefore, along with the satellite position, the clock bias has to
be estimated in the solution. Because the range information derived from the code in
the GNSS signal is biased with the clock differences, it is denominated pseudorange.
Assuming the GNSS satellites are synchronized between each other, this bias adds an
additional variable to be estimated. Therefore four variables must be calculated and
thus four measurements are necessary. With the signals from four GNSS satellite the
clock bias and the position of the user can be determined.

The model described above is a simplification of the GNSS positioning principle. In
practice, error sources will affect the positioning and have to be accounted for, either
by calibrating the data or by modeling the additional effects and estimating them along
with the position and clock bias from the data. The next section gives the models for
the GNSS observable pseudorange data including the main error sources.

2.2.2 GNSS observables

The GNSS receiver provides two observables. The first is the already mentioned code
delay, an absolute estimate of the distance between the GNSS satellite and the receiver
biased by a clock error. The second measurement is the signal carrier phase. At the
instant the receiver starts tracking a GNSS satellite, it records an initial phase and the
variations from this phase during the whole tracking period. This measurement is not
limited to the interval from 0 to 2π since the receiver can record the integer number of
cycles passed. The measured phase, when multiplied by the wavelength, corresponds to
a range value with respect to the moment at which the phase was acquired. In order
to determine the range from the receiver to GNSS satellite from the phase estimate, an
additional constant, named ambiguity, must be determined. This constant accounts for
the integer number of wavelengths between the GNSS and the receiver at the time the
satellite was started being tracked. The phase delay, despite imposing the additional
difficulty of determining the ambiguities, has a noise level several orders of magnitude
lower than the code delay, and allows for much more precise estimates. This is the
reason why the phase information and the ambiguity resolution are crucial for precise
orbit determination algorithms.

In the case of spacecrafts, the larger contributor to the positioning errors is the delay
on the signal when crossing the ionosphere. The ionosphere is an atmosphere layer
consisting of free electrons and ions, which stretches from 50 to 1000 km altitude. The
electric charges in this layer delay the propagation of the GNSS signal, affecting the code
delay and phase measurements and introducing an error on the position estimation.

Fig. 2.8 illustrates the problem of determining the position from the GNSS observ-
ables. Each signal transverses a different path and therefore are expected to be affected
by different ionospheric delays.

In this figure, the ionosphere is represented as a thin layer above the LEO heights. This
representation, despite not being accurate, is in conformance with the widely used Lear
ionosphere model [Lea87]. This model will also be used in this thesis. The ionospheric
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Figure 2.8: GNSS positioning principle.

delay (I
(i)
u ) from satellite u to GNSS satellite i, in units of meters, is given by [HWC12]:

I(i)
u =

40.3 [m3/s2]

f2
TEC(i)

u , (2.9)

where c is the speed of light, f is the GNSS signal frequency, and TEC stands for the Total
Electron Content expressed in the unit TECU (1 TECU = 1016 el/m2), and computed
by integrating the electron density ρe− (number of electrons per unit of volume) along
the signal path from the receiving satellite position (ru) to the GNSS satellite position
(r(i)):

TEC(i)
u =

∫ r(i)

ru

ρe−ds . (2.10)

The factor 40.3 in Eq. (2.9) corresponds to the coefficient of the first term of a power
series representation of the refraction index of the ionosphere [Klo95]. This equation
covers only the first order ionospheric delay but offers sufficient precision, since ignoring
higher order terms only result in errors on the sub-mm level [KH03]. The Lear model

states that this equation can be approximated as a function of the elevation E
(i)
u as
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follows:

TEC(i)
u =

2.03

sin(E
(i)
u ) +

√
sin2(E

(i)
u ) + 0.076

VTECu . (2.11)

In this equation, VTEC stands for Vertical Total Electron Content, which is a param-
eter given in TECU that does not depends on the specific viewing geometry, only on the
satellite position.

The pseudorange measurements taking the ionospheric delay into consideration, for a
receiver capable of receiving two frequencies f1 and f2 is given by

P
(i)
u,1 = ρ(i)

u + cδtu + I(i)
u + ε

(i)
uP,1 , (2.12)

P
(i)
u,2 = ρ(i)

u + cδtu +

(
f1

f2

)2

I(i)
u + ε

(i)
uP,2 , (2.13)

where ρ
(i)
u is the distance from the receiver position vector ruI = [ruI ruJ ruK ]T to

the GNSS position vector r(i) =
[
r

(i)
I r

(i)
J r

(i)
K

]T
, given by

ρ(i)
u =

√(
ruI − r(i)

I

)2
+
(
ruJ − r(i)

J

)2
+
(
ruK − r(i)

K

)2
, (2.14)

δtu is the clock bias of the GNSS receiver with respect to the GPS time to which the

GNSS satellites are synchronized and c is the speed of light in vacuum, I
(i)
u is the total

ionospheric delay for the signal at frequency f1, and ε
(i)
uP,2 and ε

(i)
uP,2 are white Gaussian

noise components.

The measured phase delays can be expressed as a ranging measurement in meters by
multiplying it by the wavelength of the corresponding signal, which results in the phase-

related range observables L
(i)
u,1 and L

(i)
u,2. These observables can be modeled as follows

[Kro06]:

L
(i)
u,1 = ρ(i)

u + cδtu − I(i)
u + λ1A

(i)
1u + ε

(i)
uL,1 , (2.15)

L
(i)
u,2 = ρ(i)

u + cδtu −
(
f1

f2

)2

I(i)
u + λ2A

(i)
2u + ε

(i)
uL,2 , (2.16)

with A1u and A2u being the ambiguity terms explained earlier in this subsection, and

ε
(i)
uL,2 and ε

(i)
uL,2 are white Gaussian noise components of the phase measurement. Note

that the effect of the ionospheric delay in this case have the same magnitude but opposite
signs compared to the code delay models. This is due to the fact that the ionosphere
causes an advance on the phase and similarly a delay on the modulated code observation.

These equations give a model suitable for using in the position estimation algorithms
with sufficient accuracy. For an arbitrary frequency k, the full error models are shown
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in equations includes an additional term

P
(i)
u,k = ρ(i)

u + cδtu +

(
f1

fk

)2

I(i)
u +M

(i)
uP + ε

(i)
uP,k , (2.17)

L
(i)
u,k = ρ(i)

u + cδtu −
(
f1

fk

)2

I(i)
u + λA

(i)
u,k +M

(i)
uL + ε

(i)
uL,k . (2.18)

In these equations the additional term M
(i)
uP and M

(i)
uL encompass all additional errors

and biases, including multipath effects, caused by the superposition of the signal received
directly from the GNSS satellite and a signal reflected by the satellite surface, biases on
the receiver channel, hardware delays on the GPS satellites and other systematic errors.
These errors are further detailed in [Kro06]. We can always assume that the terms in

M
(i)
uP and M

(i)
uL are calibrated from the data to a value below noise level, and thus can

be considered as part of the noise component in equations (2.12) to (2.16).

In this thesis the models 2.12 and 2.13 are used for position estimation. For simplicity,
the carrier phase will not be used because they demands special techniques for deducing
the ambiguity, which are out of scope in this thesis.

2.2.3 Linearization for positioning

Because equation (2.14) is non linear with respect to the satellite position vector, the
observable models given by the equations (2.12) to (2.16) are non linear with the respect
to the parameters to be estimated. It is desirable to linearize the equations to allow us
to employ the well consolidated and effective linear estimation techniques. Eq. (2.14)

can be linearized around an initial estimate ρ
(i)
u0 as follows

ρ(i)
u = ρ

(i)
u0 − ~e

(i)
u ·∆~ru + ~e (i)

u ·∆~r (i) , (2.19)

in which the initial pseudorange estimate is defined as

ρ
(i)
u0 = ||~ru0 − ~r (i)

0 || , (2.20)

and the initial unit vector between satellite and the i-th GNSS satellite ~e
(i)
u is defined as

~e (i)
u =

~ru0 − ~r (i)
0

||~ru0 − ~r (i)
0 ||

. (2.21)

This linearization is illustrated in Fig. 2.9. Replacing Eq. (2.19) in Eqs. (2.12)
to (2.16) we obtain the final linearized equations for the carrier phase and code delay
observables.

Defining the measurement errors as:

∆P
(i)
1u = P

(i)
1u − ρ

(i)
u0
− cδtu0 − I(i)

u0
, (2.22)
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Figure 2.9: GNSS positioning linearization variables.

∆P
(i)
2u = P

(i)
2u − ρ

(i)
u0
− cδtu0 −

(
f1

f2

)2

I(i)
u0
, (2.23)

∆L
(i)
1u = L

(i)
1u − ρ

(i)
u0
− cδtu0 − λ1A

(i)
1u0

+ I(i)
u0
, (2.24)

∆L
(i)
2u = L

(i)
2u − ρ

(i)
u0
− cδtu0 − λ2A

(i)
2u0

+

(
f1

f2

)2

I(i)
u0
, (2.25)

the final linearized equations for the carrier phase and code delay obseervables are given
by:

∆P
(i)
1u =−

r
(i)
I − ru0I

ρ
(i)
u0

∆ruI −
r

(i)
J − ru0J

ρ
(i)
u0

∆ruJ −
r

(i)
K − ru0K

ρ
(i)
u0

∆ruK+

c∆δtu + I(i)
u + ε

(i)
uP,1 ,

(2.26)

∆P
(i)
2u =−

r
(i)
I − ru0I

ρ
(i)
u0

∆ruI −
r

(i)
J − ru0J

ρ
(i)
u0

∆ruJ −
r

(i)
K − ru0K

ρ
(i)
u0

∆ruK+

c∆δtu +

(
f1

f2

)2

I(i)
u + ε

(i)
uP,2 ,

(2.27)

∆L
(i)
1u =−

r
(i)
I − ru0I

ρ
(i)
u0

∆ruI −
r

(i)
J − ru0J

ρ
(i)
u0

∆ruJ −
r

(i)
K − ru0K

ρ
(i)
u0

∆ruK+

c∆δtu − I(i)
u + λ1A

(i)
1u + ε

(i)
uL,1 ,

(2.28)
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∆L
(i)
2u =−

r
(i)
I − ru0I

ρ
(i)
u0

∆ruI −
r

(i)
J − ru0J

ρ
(i)
u0

∆ruJ −
r

(i)
K − ru0K

ρ
(i)
u0

∆ruK+

c∆δtu −
(
f1

f2

)2

I(i)
u + λ2A

(i)
2u + ε

(i)
uL,2 .

(2.29)

2.2.4 Single difference model

When only relative positioning between two spacecrafts is required, one can use the
difference between the observations taken at the receivers from both spacecrafts. By
differentiating this data the common errors such as biases due to hardware delay are
eliminated or greatly reduced. The ionospheric delay becomes very small, and can be
reduced to sub-millimeter level if the satellites are at a distance of only a few kilometers.

2.2.5 Position estimation

2.2.5.1 Initial estimation

In order to apply an iterative linear estimator for the position we need an initial estimate
of the position. An analytical solution is possible if we neglect the ionospheric delays.
The equations below give a method for calculating the initial position from five pseu-
dorange measurements from different satellites. These equations are derived by setting
the ionospheric delay to zero in equation 2.12. This results in a system of four equations
which allows for estimating the position vector and the clock bias. Five measurements
are needed - instead of the minimum of four measurements for positioning - because
the linear system of equations is obtained by subtracting the squared observables to
eliminate the nonlinearities.

A0 · [ruI ruJ ruK cδtu]T = B0 , (2.30)

with

A0 =


2
(
r

(1)
I − r

(2)
I

)
2
(
r

(1)
J − r

(2)
J

)
2
(
r

(1)
K − r

(2)
K

)
2
(
P

(2)
u − P (1)

u

)
2
(
r

(1)
I − r

(3)
I

)
2
(
r

(1)
J − r

(2)
J

)
2
(
r

(1)
K − r

(3)
K

)
2
(
P

(3)
u − P (1)

u

)
2
(
r

(1)
I − r

(4)
I

)
2
(
r

(1)
J − r

(2)
J

)
2
(
r

(1)
K − r

(4)
K

)
2
(
P

(4)
u − P (1)

u

)
2
(
r

(1)
I − r

(5)
I

)
2
(
r

(1)
J − r

(2)
J

)
2
(
r

(1)
K − r

(5)
K

)
2
(
P

(5)
u − P (1)

u

)

 , (2.31)
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and

B0 =



−
∥∥~r (2)

∥∥2
+
∥∥~r (1)

∥∥2
+
(
P

(2)
u

)2
−
(
P

(1)
u

)2

−
∥∥~r (3)

∥∥2
+
∥∥~r (1)

∥∥2
+
(
P

(3)
u

)2
−
(
P

(1)
u

)2

−
∥∥~r (4)

∥∥2
+
∥∥~r (1)

∥∥2
+
(
P

(4)
u

)2
−
(
P

(1)
u
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−
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∥∥2
+
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+
(
P

(5)
u

)2
−
(
P

(1)
u
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
. (2.32)

This initial position estimation was used thorough the several cases tested in this
thesis and it has always presented good results. This estimate yielded errors from 10 to
30 meters in the test scenarios, which is very small compared to the absolute values fo
the position vector.

2.2.5.2 Linearized weighted least-squares estimation

Defining a state matrix X and a measurement matrix Y, assume the measurements are a
stochastic process defined as a function h of the states plus a noise process described by
the gaussian vector ε of covariance matrix cov(ε, ε) = Q. In this case the measurements
are given by the equation:

Y = h(X) + ε . (2.33)

Assume an initial estimate X0 of the state matrix is known. Defining the matrices:

A =
∂h(X)

∂X

∣∣∣∣
X=X0

, (2.34)

∆X = X−X0 , (2.35)

∆Y = Y − h(X) , (2.36)

if X0 is sufficiently close to X, Eq. (2.33) can be approximated as follows:

∆Y = A ·∆X + ε . (2.37)

Given the set of measurements Y, we want to find a correction vector ∆XLS such that
the resulting measurement error vector ∆Y is minimized in the least square sense, or:

∆XLS = arg min
∆X
||Y − h(X + ∆X)||2 . (2.38)

The covariance of this estimate is given by(
ATQ−1A

)
∆X = ATQ−1∆Y . (2.39)
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The covariance of this estimate is given by

Pxx =
(
ATQ−1A

)−1
. (2.40)

Finally, the corrected state vector is given by

X = X0 + ∆X . (2.41)

The algorithm described here is based on the solution of determining an optimal
estimate of a state from measurements which are a linear function of the state plus an
additive white Gaussian noise. Since the system is non-linear, this is an approximation
and the algorithm must be run iteratively to reach an optimal solution. At each iteration
X0 is replaced by X estimated at the previous step, until a stop criterion is fulfilled. This
stop criterion can be, for example, if the norm of ∆X is below a minimum threshold.

For simplest GNSS position estimation, using only code delay measurements and for a
receiver able to receive two frequencies, the states are the position components, the clock
bias and the ionospheric delays, one for each GNSS signal tracked, and the measurements
are described by the equations 2.12 and 2.13. If N is the number of GNSS satellites being
tracked at a given instant, the number of measurements in this case would be 2N , and
the number of estimated variables would be 4 +N , comprising the position components,
the clock bias and the N ionospheric delays.

2.2.6 Precise orbit and baseline determination

The algorithm described previously corresponds to a purely kinematic position esti-
mation algorithm, which has the advantage of requiring no a-priori knowledge of the
spacecraft motion. This solution achieves several to tens of meters and suffices for many
navigation applications. A kinematic GNSS based Precise Orbit Determination is pos-
sible by processing a data set containing code delay and carrier phase information for
a long time period in a single batch least-squares estimator. By using measurements
from different time steps, it is possible to solve for the ambiguities, since they remain
constant for a tracking period. By solving for the ambiguities it is possible to use the
more precise carrier phase measurements in the estimation, which yield better results
compared to a solution based on the data from a single time step using only code delay
data. This, however, demands the use of special numerical techniques to deal with the
long systems of equation, comprising possibly thousands of equations [Kro06].

By using information about the expected dynamic behavior of the spacecraft orbit
given an initial state, the estimation can be greatly improved. These algorithms, how-
ever, involve an extremely detailed model of the orbital dynamics, including a model of
the gravity field of high degree, the effects of polar tides and ocean tides, Sun and Moon
attraction, relativistic effects, atmospheric drag, solar radiation pressure, etc. Tech-
niques based on dynamic models allows for a very precise orbit determination, in the
order of centimeters for absolute positioning and below millimeter in relative position-
ing. The dynamic solutions can be approached also using batch least-squares or extended
Kalman filters.
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Chapter 3 focuses on applying the purely point by point kinematic position estimation
based on the background given in this chapter. The objective is to have comparative
position estimation results for several different cases involving different numbers of satel-
lites, geometry and additional information provided by other hardware. The comparative
results will give information on the information content of each configuration hinting the
possibility of improvement when applying the final algorithm for precise orbit determi-
nation.

In chapter 4, which is focused on phase estimation and not on positioning, we assume
the input orbital data to be in line with the state-of-the-art Precise Orbit Determination
in terms of precision.

2.3 Reference frames

This section defines the frames used through the thesis to express the input trajectory
data and the positioning results. The orbital data is expressed in an Earth-Centered
Inertial Frame. This frame is centered on Earth and fixed with respect to the stars. It
is defined as having the mean equinox as the x direction and the equatorial plane as
the reference plane. There are different realizations of this frame, the one used in this
work was the J2000 frame, defined from the Earth’s Mean Equator and Equinox at 12:00
Terrestrial Time on 1 January 2000.

Figure 2.10: Clohessy-Wiltshire frame definition.

The three unit vectors forming the CW frame are defined from the spacecraft position
(~r) and velocity vector (~v) as follows:

îx =
~r

||~r||
, (2.42)
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îz =
~r × ~v
||~r × ~v||

, (2.43)

îy =
îz × îx
||̂iz × îx||

. (2.44)

The components x, y and z of a vector in the CW frame will be referred to in this
thesis as radial, along-track and across-track, respectively. These components provide a
better insight on the problem since they are more directly associated with the viewing
geometry between the LEO satellites and the GNSS constellation.

The CW frame has to be calculated from the orbital data in ECI frame at each time
step, and from the unit vectors defining the CW frame one can calculate the coordinates
transformation matrix. Given that the unit vectors îx, îy and îz expressed in ECI frame,
the transformation matrix from ECI to CW frame iTcw is given by

iTcw =
[̂
ix îy îz

]
. (2.45)

Besides allowing for more insight in the results, the CW frame greatly simplifies the
description of the relative movement between two satellites flying in close distance. The
so-called Clohessy-Wiltshire equations describe the relative motion of two satellites with
almost identical, near-circular orbits. It reveals that the one satellite describes an ellip-
tical motion around the other under certain circumstances. The formations used as test
cases in this thesis are calculated based on solutions for the Clohessy-Wiltshire equa-
tions. For this thesis it is sufficient to describe the final relative motion of the spacecrafts,
which will be considered as an input, and the details on how those orbits were calculated
are left out of the scope of this thesis. For more details on spacecraft relative motion
refer to [Val01].



3 Multisatellite Position Determination

This chapter presents a study on position determination of satellites flying in formation,
using GNSS data combined with information derived from other embedded hardware.
The position determination algorithms are formulated such that the data from all the
satellites in the formation is processed coherently in a single batch least squares esti-
mator. A simulated environment was developed to generate all the data necessary for
testing the algorithms. The accuracies attained by each of the position determination
algorithms, for different numbers of satellites, are compared. The result gives an insight
on the information content of each data combination, and allows us to draw conclusions
on the possibility of exploiting them in more sophisticated Precise Orbit Determination
(POD) algorithms for more accurate position and baseline estimates.

The first section in this chapter details the algorithms and their underlying assump-
tions. The second section explains the simulation framework. Finally, the third section
presents the results from the simulations and conclusions drawn from them.

3.1 Algorithms descriptions

Four different scenarios are presented in this section. In all scenarios the satellites are
assumed to be flying close enough to each other, at distances of less than one kilometer,
so that the ionospheric delays affecting the signals received in the satellites are highly
correlated. For simplicity, every algorithm uses data from a single time step and only
code-delay information. The carrier phase information, although included in the simu-
lation framework, is not used in order to avoid rank deficiency problems in the design
matrix due to the addition of the ambiguity terms in the estimation parameters. In all
scenarios the measurements obtained from one satellite relates to at least one estimation
parameter related to other satellites, which justifies the coherent processing of the data.

In the first scenario we assume that every satellite is equipped only with dual frequency
GNSS receivers. In this case, the common estimation parameter is the highly correlated
ionospheric delay between satellites. This is the base scenario, upon which the other
scenarios are built.

In the second scenario, one satellite is provided with a dual frequency receiver and
all the others with a single frequency receivers. The common parameter in this case is
also the highly correlated ionospheric delay between satellites in close formation. The
advantage of this constellation architecture is that we can use the capability of estimating
the ionospheric delay from the dual frequency receiver to improve the estimation results
for the other satellites.

The third scenario consists in adding to the base scenario an inter-satellite ranging

25
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system providing an unbiased measurement of the distance between two of the satellites
in the formation. This additional information is expected to improve the baseline and
position estimates compared to the first and second case. The improvement in this case is
expected to be particularly dependent on the relative geometry of the satellites, since this
geometry determines to which degree the scalar distance measurement offers information
on each component of the baseline. This tests aims also at determining whether there
is an improvement on the baseline between one satellite with inter-satellite ranging and
one without it.

The fourth and last scenario consists in using information on the baseline provided by
interferometric data, and is specific for multistatic SAR applications. In interferometry,
the elevation of the scenery is retrieved by combining the images from two satellites. The
resulting Digital Elevation Model (DEM) relies on very precise baseline determination.
An error in the baseline translates into an error in the calculated elevations. A digital
elevation model is built using data from two SAR satellites, and an error in the baseline
between these two satellites will introduce a bias in the elevation profile. Two different
pairs of satellites imaging the same region should, in an ideal case, generate very similar
DEMs. A difference in the baselines errors would cause a bias between the synthesized
DEMs, which can be formulated as a function of those errors. Therefore, this bias
consists in an indirect measurement of the baselines. The solution proposed in this
scenario consists in using this bias in a estimator, along with data from the dual frequency
receivers.

All the estimation algorithms are Linear Least Square estimators, as described in
section 2.2.5. For each estimator, four components are needed to describe the problem:
the states correction matrix (∆X), the measurements error matrix (∆Y), the design
matrix (A) and the measurements covariance matrix (Q). The following subsections
detail the algorithms and define each of those components for each scenario.

In each estimator, the position, clock bias and ionospheric delays are calculated. The
baselines are calculated by subtracting the estimated position vector between two satel-
lites. Note that by using differenced GNSS data, one could formulate the estimation
problem in terms of the baseline vector instead of the individual position vectors, as
is done here. In this approach, it is easy to see that the ionospheric delays cancel out
by taking the single difference, which explains the sensibly better baseline accuracy at-
tained compared to absolute position estimations. Although not obvious at first glance,
the two approaches - calculating baseline from coherently estimated position vectors and
estimating the baselines directly from differenced data - yield almost identical results,
with divergences on the order of tenths of millimeter. The reason is that processing
the position vectors coherently results in correlated errors in the positions which cancel
out when subtracting them. This equivalence of the two methods was demonstrated
in preliminary tests to decide in which approach to follow. In the end, the approach
based on absolute position was chosen because is also offers insight into the position
determination problem.
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3.1.1 Multi-satellite with dual frequency receivers

Fig. 3.1 illustrates the problem of position determination for three satellites using code
delay measurements. The measurements are shown in red and the estimated parameters
in blue. The ionosphere is illustrated as a thin layer between MEO and LEO, which is
in accordance with the LEAR model for the ionospheric delay used thorough the thesis.
Note that this is just a representation. As mentioned in 2, the ionosphere is a continuous
layer which extends from roughly 50 km to 1000 km altitude. The figure shows three
satellites, but the equations derived in this section are for a generic number of n LEO
satellites and N visible GNSS satellites.

Figure 3.1: Multi-satellite positioning.

The variables to be estimated are the position vector, the clock biases and the iono-
spheric delays for each satellite. Given an initial estimate of each state, for each satellite
we can define a sub-state correction vector (∆Xu) as follows

∆Xu =
[
∆ruI ∆ruJ ∆ruK ∆δtu

]T
. (3.1)

Assuming that the satellites fly at a distance of no more than one kilometer from each
other, the LEAR model for the ionospheric delay given by equation 2.9 predicts that
the ionospheric delay affecting the signal received from the same GNSS satellite will be
approximately the same for every satellite in the formation, which is expressed in Eq.
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(3.2) below:

∆I
(i)
1 = ∆I

(i)
2 = · · · = ∆I(i)

n . (3.2)

This assumption greatly reduces the number of ionospheric delays to be estimated.
Defining the ionospheric delay correction vector as

∆I =
[
∆I(1) ∆I(1) · · · ∆I(N)

]T
, (3.3)

we can define the full state correction vector as

∆X =
[
(∆X1)T · · · (∆Xn)T ∆IT

]T
. (3.4)

Based on the linearized GNSS observation model, given by Eqs. 2.26 to 2.27, we can
define a measurement error vector (∆Yu,1) for a given spacecraft u and for the reference
frequency, with respect to which the ionospheric delays ∆I(N) are defined, as

∆Yu,1 =


P

(1)
u,1 − ρ

(1)
u0 − cδtu0 − I

(1)
u0

P
(2)
u,1 − ρ

(2)
u0 − cδtu0 − I

(2)
u0

...
Pnu,1 − ρnu0

− cδtu0 − Inu0

 , (3.5)

and the for second frequency as

∆Yu,2 =


P

(1)
u,2 − ρ

(1)
u0 − cδtu0 −

(
f1

f2

)2
I

(1)
u0

P
(2)
u,2 − ρ

(2)
u0 − cδtu0 −

(
f1

f2

)2
I

(2)
u0

...

Pnu,2 − ρnu0
− cδtu0 −

(
f1

f2

)2
Inu0


. (3.6)

The full measurement error vector is a combination of all the measurements errors for
every frequency and spacecraft. It can be defined as in Eq. (3.7) below

∆Y =
[
(∆Y1,1)T · · · (∆Yn,1)T (∆Y1,2)T · · · (∆Yn,2)T

]T
. (3.7)

Having defined the state correction vector ∆X and the full measurement error vector
∆Y, the design matrix A is uniquely defined from Eqs. 2.26 and 2.27. Defining the
terms

e
(i)
uI :=

r
(i)
I − ru0I

ρ
(i)
u0

, (3.8)

e
(i)
uJ :=

r
(i)
J − ru0J

ρ
(i)
u0

, (3.9)
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e
(i)
uK :=

r
(i)
K − ru0K

ρ
(i)
u0

, (3.10)

for each satellite u, the state correction ∆Xu relates to the measurement ∆Yu,1 and
∆Yu,2 through the following sub-matrix:

Eu =


−e(1)

uI −e(1)
uJ −e(1)

uK 1

−e(2)
uI −e(2)

uJ −e(2)
uK 1

...
...

...
...

−e(n)
uI −e(n)

uJ −e(n)
uK 1

 . (3.11)

Each state correction ∆Xu is dependent only on the measurements coming from the
receiver in the satellite u. The only common factor which is affected by measurements
across satellites is the ionospheric delay, under the assumption stated in Eq. (3.2). The
final design matrix A is given by

A =



E1 0N,4 · · · 0N,4 1N,N

0N,4 E2 · · · 0N,4 1N,N
...

...
. . .

...
...

0N,4 0N,4 · · · En 1N,N

E1 0N,4 · · · 0N,4

(
f1

f2

)2
· 1N,N

0N,4 E2 · · · 0N,4

(
f1

f2

)2
· 1N,N

...
...

. . .
...

...

0N,4 0N,4 · · · En

(
f1

f2

)2
· 1N,N


, (3.12)

where 0x,y denotes a null matrix of x lines and y columns, and 1N,N denotes the identity
matrix of dimensions N . As shown in Eq. (3.12), each satellite adds more information
on each ionospheric delay term, as long as the assumption expressed in Eq. (3.2) is
true. Therefore, it is expected that each added satellite improves the ionospheric delay
estimate accuracy, and by consequence also the position and clock bias estimates.

Finally, the covariance matrix for the measurements has to be defined. All the mea-
surements can be assumed to be independent from each other. For simplicity, we can
assume that every measurement have the same standard deviation (σP ), which results
in the following covariance matrix:

Q = σP · 12N ·n,2N ·n (3.13)

In a real scenario the covariance of each measurement will differ, specially due to the
difference in viewing geometries for signals coming from different GNSS satellites and
this would have to be taken into account in the matrix Q. However, this is not expected
to affect the comparative results and thus is not included in the simulations.



3.1. Algorithms descriptions 30

3.1.2 One satellite with double frequency, the others with single frequency
receivers

The second test case is illustrated in Fig. 3.2. In this case, one satellite is equipped with
a dual-frequency receiver, illustrated in blue, and the remaining satellites are equipped
with single-frequency receivers, indicated in red.

Figure 3.2: Multi-satellite positioning with receivers of different capabilities.

The states remain the same as in the first case, and is given by Eq. (3.4), but now we
have measurements on the second frequency only on a single satellite. The measurement
correction vector in this case can be defined as

∆Y =
[
(∆Y1,1)T (∆Y2,1)T · · · (∆Yn,1)T (∆Y1,2)T

]T
, (3.14)

where ∆Yu,1 and ∆Yu,2 are defined by Eqs. (3.5) and (3.6). The design matrix in this
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case is given by

A =



E1 0N,4 · · · 0N,4 1N,N

0N,4 E2 · · · 0N,4 1N,N
...

...
. . .

...
...

0N,4 0N,4 · · · En 1N,N

E1 0N,4 · · · 0N,4

(
f1

f2

)2
1N,N

 , (3.15)

and the covariance matrix by

Q = σP · 1N ·(n+1),N ·(n+1) . (3.16)

Note that since only one spacecraft is able to calculate the common parameter which
is the ionospheric delay, neither the baseline nor the position accuracy are expected to
improve with the number of satellites. However, the satellites with less capable receivers
may benefit from the ionosphere estimation made possible by the satellite with dual
frequency receiver.

3.1.3 Multi-satellite with dual frequency receivers and inter-satellite ranging
between two satellites

The third test case is illustrated in Fig. 3.3. In this case a direct measurement of the
distance between two satellites through an inter-satellite ranging system is added.

The inter-satellite ranging can be modelled as the physical distance between the satel-
lites plus a noise component as follows

Ruv =

√
(rvI − ruI)2 + (rvJ − ruJ)2 + (rvK − ruK)2 + εrng . (3.17)

This is a non-linear equation in terms of the estimation variables, so we need to
linearize it around an initial estimates for the position vectors, here denoted ~ru0 =
[ruI0 ruJ0 ruK0]T and ~rv0 = [rvI0 rvJ0 rvK0]T . Defining

Ruv0 =

√
(rvI0 − ruI0)2 + (rvJ0 − ruJ0)2 + (rvK0 − ruK0)2 , (3.18)

the inter-satellite ranging measurement error is defined as

∆Ruv = Ruv −Ruv0 . (3.19)

Linearizing Eq. (3.17) around an initial estimate, we have

∆Ruv ≈−
(rvI0 − ruI0)

Ruv0

∆ruI −
(rvJ0 − ruJ0)

Ruv0

∆ruJ −
(rvK0 − ruK0)

Ruv0

∆ruK+

(rvI0 − ruI0)

Ruv0

∆rvI +
(rvJ0 − ruJ0)

Ruv0

∆rvJ +
(rvK0 − ruK0)

Ruv0

∆rvK + εrng

. (3.20)
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Figure 3.3: Multi-satellite positioning with inter-satellite ranging information.

Defining the term

Euv =
[

(rvI0−ruI0)
Ruv0

(rvJ0
−ruJ0)

Ruv0

(rvK0
−ruK0)

Ruv0
0
]
, (3.21)

the line of the design matrix corresponding to the intersatellite range between u and v
is given by

ARuv =
[
01,4(u−1) −Euv 01,4(v−u−1) Euv 01,4(n−v)+N

]
. (3.22)

The layout of the full matrix depends on the specific satellites in the constellation
which share an intersatellite ranging system. The final estimator will be obtained by
appending the ranging measurements to the measurement error matrix ∆Y and the
matrices ARuv to the the design matrix in Eqs. (3.7) and (3.12) of the base scenario.

Given that the inter-satellite ranging is uncorrelated with the other measurements, and
denoting the standard deviation of its noise process εrng as σrng, and the total number
of intersatellite ranges available at a instant in time as nrng, the total covariance matrix
is given by

Q =

[
σP · 12N,2N 02N,nrng

0nrng,2N σrng · 1nrng,nrng

]
. (3.23)
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In this case it is clear that the additional equation provides a new independent mea-
surement on the positions and baselines. This test scenario will determine to which
extent this will improve the baseline, and if the orbit geometry will have an influence on
this improvement.

3.1.4 Multi-satellite with dual frequency receivers and interferometric data

The last scenario evaluates the possibility of using interferometric data to improve the
baseline estimation, it is illustrated in Fig. 3.4. In the example shown in the figure,
three SAR spacecrafts collect SAR data from the same area. From each pair of satellites
a Digital Elevation Model (DEM) of the area can be synthesized. The figure represents
a projection in the plane orthogonal to the chief satellite velocity vector.

Figure 3.4: Baseline error effect on DEM height offset.

A precise estimate of the baseline between the satellites is needed to synthesize the
DEM. An error in the baseline components parallel and orthogonal to the line-of-sight
direction vector (̂iSW ) will result into an height bias on the DEM. Denoting ∆ρ‖uv
the baseline error component parallel to the line of sight direction vector and ρ⊥uv the
baseline component orthogonal to the line-of-sight direction vector and to the velocity
vector, the error in the height of the calculated DEM due to the parallel component of
the baseline error is given by the following equation [KMF+07]:

∆huv =
Suv sin(θ)

ρ⊥uv
·∆ρ‖uv , (3.24)

where θ and Suv are the incident angle and the slant range of an appropriately selected
reference point, in this case the midswath, as illustrated in Fig. 3.4. As discussed in
[KMF+07], the height offset due to the parallel baseline error component is approxi-
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mately two order of magnitude greater than the height offset due to an error in the
orthogonal baseline component. Therefore, in this analysis only the parallel component
of the height error will be considered.

In the case illustrated in Fig. 3.4, three possible combinations of satellites result in
three DEMs with the same shape but different height offsets, since each combination will
result in a different baseline error. It is not possible to directly measure the true elevation
from the data, but the fact that the mismatch between DEMs have a direct relationship
with the baseline errors can be exploited. The proposed estimation algorithm using the
DEM information is shown in Fig. 3.5. The baseline is initially determined using the
GNSS data, which allows us to synthesize DEMs from the SAR data. By comparing
the DEMs we can derive height offsets, which are used to refine the baseline estimation.
The algorithm is run interactively until the baselines converge.

P
(i)
u,f , L

(i)
u,f

~̃r (i)

∆huv/lw

Baselines

~̃rv

~̃ru

~̃rw

~̃rl

+
-

+
-

Compare
DEMs

~̃ruv

~̃rlw

∆huv/lw

Synthetize
DEMs

DEMuv

DEMlw

Estimate

Figure 3.5: Proposed DEM-based baseline calibration scheme.

In order to implement the estimator shown in Fig. 3.5, we need a linearized descrip-
tion of the relation between the measurements (∆huv/lw) and the states. Consider a
constellation of n SAR satellites imaging the same area and the DEMs formed by two
arbitrary pairs of satellite in this constellation, one from satellites u and v and one from
satellites l and w. The observed height offset between the two DEMs (∆huv/lw) can be
modelled from Eq. (3.24) as follows

∆huv/lw =
Slw sin(θ)

ρ⊥lw
·∆ρ‖lw −

Suv sin(θ)

ρ⊥uv
·∆ρ‖uv + εDEM , (3.25)

where εDEM is a zero mean Gaussian process of standard deviation σDEM which models
the various error sources in the SAR data processing and DEM comparison. Eq. (3.25)
involves two baselines and therefore will involve the states of either three or four satellites,
depending if the two baselines involve one common satellite (e.g. in case v = l). Writing
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the equation in terms of the positioning error vectors results in

∆huv/lw =
Slw sin(θ)

ρ⊥lw
· (∆~rv −∆~ru) · îsw−

Suv sin(θ)

ρ⊥uv
· (∆~rw −∆~rl) · îsw + εDEM , (3.26)

where îsw is unit vector in the direction of the line-of-sight, and ”·” denotes both mul-
tiplication and dot product operator, in case the operands are vector. Defining the
line-of-sight components as

îsw =
[
iswI iswJ iswK

]T
, (3.27)

the equation can be linearized around an initial estimate of the position vectors (~ru, ~rv,
~rl, ~rw) for all the satellites, which results in:

∆huv/lw =
Suv sin(θ)iswI

ρ̂⊥uv
∆ruI +

Suv sin(θ)iswJ
ρ̂⊥uv

∆ruJ +
Suv sin(θ)iswK

ρ̂⊥uv
∆ruK

−Suv sin(θ)iswI
ρ̂⊥uv

∆rvI −
Suv sin(θ)iswJ

ρ̂⊥uv
∆rvJ −

Suv sin(θ)iswK
ρ̂⊥uv

∆rvK

−Slw sin(θ)iswI
ρ̂⊥lw

∆rlI −
Slw sin(θ)iswJ

ρ̂⊥lw
∆rlJ −

Slw sin(θ)iswK
ρ̂⊥lw

∆rlK

+
Slw sin(θ)iswI

ρ̂⊥lw
∆rwI +

Slw sin(θ)iswJ
ρ̂⊥lw

∆rwJ +
Slw sin(θ)iswK

ρ̂⊥lw
∆rwK + εDEM .

(3.28)

Defining the term

Duv =
[
Suv sin(θ)iswI

ρ̂⊥uv

Suv sin(θ)iswJ
ρ̂⊥uv

Suv sin(θ)iswK
ρ̂⊥uv

0
]
, (3.29)

the line of the design matrix corresponding to the DEM height offset for the pairs of
baseline ρuv and ρlw, assuming that u < v < l < w, is given by

ADuv =



04(u−1),1

DT
uv

04(v−u−1),1

−DT
uv

04(l−v−1),1

−DT
lw

04(w−l−1),1

DT
lw

04(n−w)+N,1



T

. (3.30)

Assuming one satellite is common to both baselines or, without loss of generality, that
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u < v = l < w, the corresponding line of the design matrix is given by

ADuv =



04(u−1),1

DT
uv

04(v−u−1),1

−DT
uv −DT

vw

04(w−v−1),1

−DT
vw

04(n−w)+N,1



T

. (3.31)

The number of measurements available correspond to the number of independent pairs
of baselines, and it grows rapidly with the number of satellites in the formation. Given
n SAR satellites flying in formation, the number of baselines that can be formed from
those satellites is given by

Nbaselines =
n(n− 1)

2
. (3.32)

The number of different pairs of baselines is given by

N∆h =
n(n− 1)

4

[
n(n− 1)

2
− 1

]
. (3.33)

Similarly to the inter-satellite ranging case, the final estimator is be obtained by
appending the DEM height offsets and the lines ADuv from every combination of baseline
to the measurement error matrix ∆Y and the design matrix A in Eqs. (3.7) and (3.12)
from the first test case.

Assuming that all the systems are identical so that the expected additive noise level is
the same for every pair of satellites, the covariance matrix of the measurements vector
is given by

Q =

[
σP · 12N,2N 02N,N∆h

0N∆h,2N σDEM · 1N∆h,N∆h

]
(3.34)

Note that the SAR systems combine data acquired in a continuous time interval to
form the synthetic aperture. In the equations developed in this section, it is assumed
that the baseline error affecting the interferogram remains constant for the SAR image
acquisition time. This assumption is based on the fact that the baseline error for two
identical satellites flying at close distance experience almost the same gravity field and
are exposed to highly correlated orbital perturbations, and hence show high degree of
temporal correlation [KMF+07].

3.2 Simulation framework

Figs 3.7 and 3.6 Illustrate the two orbit configurations tested. The trajectories are
expressed in Clohessy Witshire (CW) frame relative to a reference satellite, here denom-
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inated as Chief. The first configuration consists in a series of satellites flying in very
close formation with almost identical orbits, separated by a fixed distance. In the second
configuration two of the satellites describe a elliptical trajectory around the reference
satellite, and one describes a linear pattern, oscillating in the vertical direction. In this
configuration the orbit geometries are highly variable. Each of the algorithms described
in section 3.1 are run for both configurations and for an increasing number of satellites,
varying from 2 to 4.

Figure 3.6: Test constellation in helix configuration. The trajectories in CW frame are
indicated in blue.
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Figure 3.7: Test constellation in train configuration. The trajectories in CW frame are
indicated in blue.

The simulation framework is illustrated in Figs. 3.9 and 3.8. The SAR trajectories
are simulated using the software General Mission Analysis Tool (GMAT) from NASA.
Although the algorithms and the conclusion apply to any GNSS constellation or com-
bination of constellations, the simulation was based on the GPS constellation, which is
the most used GNSS constellation. The position data for the GPS constellation was im-
ported and propagated from real TLE data using the software Systems Tool Kit (STK)
from AGI. Both GMAT and STK are mission analysis tools widely used in the space
industry. The simulated trajectory data for the SAR constellation and from the GPS
constellation are imported into a python environment and all the measurements are sim-
ulated based on the position vectors. The GNSS data is simulated according to Eqs.
(2.12) to (2.13), and (2.15) to (2.16). The inter-satellite range is simulated according to
Eq. (3.17) and the DEM height biases according to Eq. (3.24). Note that both the code
delay and the phase delay are simulated, although only the code delay is used in this sec-
tion. The phase delay measurements will be used in the following section. The simulated
data serve as input for sub-routines implementing the estimation algorithms described
in the previous sections. Table (3.1) details the parameters used for the simulation.

The receiver parameters are based on the Phoenix GPS receiver from the German
Space Operations Center (GSOC) [MR], except that the theoretical receiver here con-
sidered is dual frequency capable while the Phoenix receiver is not. The simulated
inter-satellite ranging precision is chosen to be five times worse than the one reported
for GRACE mission [Kro06], an expensive state-of-the-art system. The standard devia-
tion of the DEM elevation is based on results from the TanDEM-X mission [GAB+12].
The clock delays are modelled by a uniform probability distribution between zero to a
maximum level. The maximum value is in accordance with reported delay values for
GPS receivers.
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Table 3.1: Simulation parameters for positioning determination tests.

Parameter Value

GNSS L1 signal frequency 1575.42 MHz
GNSS L2 signal frequency 1227.6 MHz

Code delay measurement standard deviation 0.4 m
Phase delay measurement standard deviation 0.5 mm

Inter-satellite ranging standard deviation 0.005 mm
DEM relative height standard deviation 1.8 mm
GNSS position bias standard deviation 2.0 m

Minimum elevation for visibility 10◦

Vertical Total Electron Content (VTEC) 50 TECU
Maximum clock delay 0.1 nanoseconds
Chief satellite altitude 500 km

Chief satellite inclination 80◦

SAR incidence angle 45◦

Simulation time 24 h
Simulation time step 60 minutes
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Figure 3.8: Simulation framework for DEM calibration algorithm.
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3.3 Estimation results

The simulation results for the baseline determination and position determination are
compiled in Figs. 3.10 to (3.13). Each point in the plot represents the standard deviation
of the estimated position or baseline errors for a specific spacecraft or pair of spacecrafts.
Each standard deviation is calculated relative to a set of 1440 estimations taken from
an orbit simulation of 24 hours duration and one minute time step. The baselines are
calculated by subtracting the position vectors coherently estimated in a Linear Least
Square Estimator. The results are all expressed in the CW frame relative to the chief
satellite’s orbit.
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Figure 3.10: Results of position determination of satellites in train configuration.
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Figure 3.12: Results of position determination of satellites in helix configuration.
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Figure 3.13: Results of baseline determination of satellites in helix configuration.

The position accuracy improves with the number of satellites for all the cases in which
all the satellites are equipped with dual frequency receivers, except for an outlier in
the along-track direction for the helix configuration and four satellites. In these cases
each satellite adds a new independent measurement of the ionospheric delay, thus more
satellites results in better ionospheric delay estimation and overall better accuracy. The
gains in accuracy, however, decrease at each satellite addition. To understand this di-
minishing gain, consider the simplest estimation case, in which a variable is estimated by
measurements described by the variable’s true value plus a zero-mean Gaussian process.
In this case, the variance of the estimation is inversely proportional to the square root of
the number of measurements. In the first scenario, since the estimated common variable
is not directly measured, it is expected that the performance will be worse than the one
in the simplest estimation case aforementioned, which already presents diminishing gain.
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This hypothesis is confirmed by the results.

As for the baselines, none of the results shows improvement with the number of satel-
lites. This is due to the fact that in all cases, except the DEM calibration, the only
estimation parameter which improves with the number of satellites is the ionospheric
delay, which has negligible influence in the baseline for satellites at close proximity. The
DEM height offset does offer additional information on the baseline at each satellite
addition. The DEM calibration test, however, worked only for the case with three satel-
lites, and therefore it’s not possible confirm from the results if the baseline estimate
would improve by adding more satellites.

The case in which one satellite is equipped with a dual frequency receiver and the oth-
ers with single frequency receivers shows comparable results, albeit consistently inferior,
to the case in which all satellites have dual frequency receivers. The fact that there is
no major discrepancy between the performances in those cases reinforces the idea that
sufficiently good results can be achieve by employing dual frequency receivers in only a
few of the satellites in the formation.

The case in which every satellite is equipped with dual frequency receivers and two of
them share inter-satellite ranging system shows better results in both the position and in
the baseline compared to the base scenario. The baseline between the satellites sharing
the ranging system is considerably better than the others, but the introduction of the
inter-satellite link also affects other baselines. The baseline determination is better for
inter-satellite link with in helix configuration compared to the train configuration, which
indicates that the performance of the estimation in this case depends on the geometry
of the formation.

Only the case with three satellites and helix configuration improved with the introduc-
tion of DEM height offset data. The other cases either diverged or converged to solutions
hundreds of meters away from the true value. This is possibly due to the fact that the
DEM height offset is highly sensitive to the baseline error, and errors on the order of
several decimeters in the results are not appropriate for interferometric applications. In
the case with four satellites, the number of relative height offset measurements greatly
increases, and those measurements end up outweighing the GNSS code delay measure-
ments in the estimator and leading the estimator to a local minimum far from the true
value. The consistent improvement observed for the case with three satellites and helix
configuration, however, indicates that the idea has great potential, especially because
it doesn’t require any additional hardware. Finally, the results show improvement for
every component of the baseline compared to the base scenario, but in particular for the
component in the radial direction.

It should be noted that in a real case the DEM combinations from different satellites
are expected to correlated to some degree, as they are derived from the same sets of
SAR data. This correlation was not considered in the model here presented. In addition
it is unclear how the fact that the DEM offset is assigned to a single instant in time
will affect the results in a real case. As mentioned before, the interferogram are formed
with data from an a interval of time, not from a single instant. These two factors may
play an important role if the DEM height calibration scheme is applied to real data.
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These gaps should be further investigated. One possibility of evaluating their effects on
the result is by implementing the technique with dynamic estimation algorithms, which
relates data from different instants in time, and by adding some level of correlation to
the measurements.

Concluding this section, we notice potential in most of the ideas presented here. The
inter-satellite ranging and the DEM calibration scenarios show potential to improve the
baseline results, and the case using only one double-frequency receiver shows potential
of achieving acceptable precision with a cheaper system design. The case in which only
data from dual-frequency receivers is used shows no improvement on the baseline by
processing data from several satellites in the same estimator.



4 GNSS and POD-based phase
synchronization

This chapter puts forward an approach to estimate the oscillator phase errors in bistatic
and multistatic SARs, based on GNSS phase delay data and on baseline estimates from
Precise Orbit Determination (POD), provided both the radar and the navigation receiver
share the same master oscillator. The approach exploits the fact that the phase drift of
the oscillator in the navigation receiver needs to be estimated in the standard navigation
solution. This drift directly affects the pseudorange measurements between the GNSS
satellite and the GNSS receiver, in the form of a clock bias, and is estimated with the
position and velocity in a filter. The suggested approach links the synchronization and
navigation solutions.

The chapter presents a detailed error analysis, and evaluates the impact of all system-
atic components in the solution. It is organized in five sections: Section 4.1 describes the
proposed synchronization solution based on POD and GNSS data; Section 4.2 presents
an error analysis, detailing all the factors that affect the phase estimation precision;
Section 4.3 presents a method for integrating data from a synchronization link, such as
the one employed in TanDEM-X mission, with the navigation-based synchronization;
Section 4.4 presents the end-to-end simulation used to validate the analysis in a rep-
resentative scenario; Section 4.5 closes the chapter with a discussion on the simulation
results.

4.1 POD-based synchronization approach

Figure 4.1 shows the block diagram of a possible, most general, GNSS-based architecture
for the solution of the considered synchronization problem. The same Ultra Stable Oscil-
lator (USO) is used for generating the radar signal and the reference signal in the GNSS
receiver. The natural frequency of the master oscillator is up-converted accordingly for
both radar and GNSS receiver. Without loss of generality, we will assume in our analysis
that both radar and navigation carriers are a multiple of the master frequency of the
system. Note the block diagram of Fig. 4.1 incorporates a full-duplex direct link as
used for the synchronisation of the TanDEM-X instruments [KMF+07]. The proposed
solution does not depend on this link, but they can complement each other, as will be
explained in Section 4.3.

The phase difference of the raw data of the GNSS receivers of the two spacecraft
carries information on the phase noise of the radar signal. This information, however,
comes mixed with the delay from the GNSS satellites to the SAR satellite in addition to

45
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a scaling factor proportional to the ratio between the navigation and radar carriers. On
the other hand, the phase difference of the raw data of the synchronization link operated
at the radar carrier directly incorporates the relative phase between the received radar
signals. The idea proposed in this paper is to combine the coherent processing of the
raw data of the GNSS receivers of the two spacecraft with the baseline solution provided
by POD. The difference between one and the other provides a scaled version of the
phase offset between the received radar echoes and the internally generated signal in the
receiving satellite - also called phase noise - as shown in Fig. 4.1.
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Figure 4.2: Proposed POD-based estimator of radar carriers phase difference.

The proposed estimator is shown in Fig. 4.2. The terms in this diagram are explained
later in this section. It suggests a two-step approach in which the estimation of the
clock synchronization phase is conducted after a regular POD process. The complete
estimation (i.e., POD and clock phase) could also be done in a single step, in which both
the baseline and clock phase difference are estimated simultaneously. We stick in this
thesis to the two-step solution for the sake of simplicity of analysis and implementation.
Employing a single-step approach is not expected to improve noticeably the accuracy
of the estimation due to the different temporal scales of the clock phase noise (much
faster) and the changes in spacecraft acceleration (much slower). This is illustrated in
[SCFD16], which demonstrates that using data at a higher temporal sampling rate does
not necessarily result in improved precision of the navigation solution, and it can even
worsen it.
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It is important to mention that since the same oscillator is used for the radar and for
the GNSS receiver, it has to satisfy constraints for both systems. In terms of stability,
radar oscillators tend to show better short-term characteristics, sometimes at the expense
of long-term stability.

In the following equations in this section the lower index followed by comma as in
()u,k indicates the navigation carrier frequency k. Furthermore, the difference between
quantities is denoted as ()uv = ()v − ()u. The phases of the radar reference signal ψu,0
and of the GNSS receiver ψu,k are related as follows

ψu,0 =
f0

fk
· ψu,k(t) =

λk
λ0
· ψu,k(t) , (4.1)

where f0 and is the carrier frequency of the radar, fk is the carrier frequency of the
navigation signal k, λ0 is the carrier wavelength of the radar, and λk is the wavelength
of the navigation signal k. Eq. (4.1) suggests any phase drift in the output of the master
oscillator will be replicated in all reference signals derived from it, only scaled by the
appropriate up-scaling or down-scaling factors. This assumption remains valid as long
as the bandwidth of the reference signals is much smaller than the distance between the
harmonics generated in the up-conversion [Poz12].

Under these circumstances, the solution of the oscillator phase noise provided by the
navigation solution can be effectively used for the calibration of the phase reference of the
radar data. Note that the phase noise affecting the bistatic radar measurements is the
scaled version of the differences between the transmitter and receiver oscillators evaluated
at times delayed by τ the two-way travel time of the radar signals, as acknowledged in
[KY06]. This lag, typically in the order of milliseconds, is beyond the inverse of the
bandwidth relevant for the calibration of the bistatic SAR data, which allows us to
approximate

ψv(t− τ)− ψu(t) ≈ ψv(t)− ψu(t) , (4.2)

where the subscript 0 referring to the radar carrier has been omitted for compactness,
and subscripts v and u can be identified with receiver and transmitter, respectively.

Let us assume each radar unit u and v incorporates its own GNSS receiver triggered
by the radar oscillator as described in Fig. 4.1. A biased measurement of the distance
between the GNSS receiver and the GNSS satellite can be derived from the code delay

P
(i)
u or from the carrier phase measurement L

(i)
u . The former measurement is unam-

biguous but less accurate. The latter one is ambiguous but has a precision at least two
orders of magnitude better and also a potentially better accuracy. Assuming that we can
estimate the ambiguity term, a pseudorange can be calculated from the carrier phase
measurement as follows

P
(i)
Lu,k = L

(i)
u,k + λk · Ã

(i)
u,k , (4.3)

where the term λk ·Ã
(i)
u corresponds to an estimate of the true ambiguity λk ·A

(i)
u . For the
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remainder of this chapter, the pseudorange measurement is considered to be obtained
from the carrier phase as shown in Eq. (4.3), since it provides a much higher accuracy
as long as the ambiguity term can be accurately determined.

The relationship between the differences of the pseudoranges P
(i)
Luv,k and the clock

biases expressed in time δtuv is given by [Kro06]

P
(i)
Luv,k = ρ(i)

uv + c · δtuv −
(
λk
λ1

)2

· I(i)
uv + ε , (4.4)

where ρ
(i)
uv is the difference between the distances from receivers v and u to the i-th

navigation satellite, respectively, I
(i)
uv is the difference between the biases caused by the

ionospheric delays for the wavelength λ1, and ε is the measurement error, which includes
systematic and noise-like contributions such as the thermal noise in the receivers and
the ambiguity estimation errors. A closer look into the physical effects contributing to ε
is given in Section 4.2. By isolating the clock bias term we can identify the relationship
between the navigation data and the clock synchronisation solution as follows

c · δtuv =
λ0

2π
· ψuv,0 = P

(i)
Luv,k − ρ

(i)
uv +

(
λk
λ1

)2

· I(i)
uv − ε . (4.5)

An estimator of the clock synchronization solution can be derived from Eq. (4.5) using

a weighted average over all navigation satellites in sight (i.e., N) and all the n
(i)
λ received

GNSS frequencies as

ψ̃uv,0 =
2π

λ0
·
N∑
i=1

n
(i)
λ∑

k=1

αi ·
P

(i)
Luv,k − ρ̃

(i)
uv +

(
λk
λ1

)2
· Ĩ(i)
uv

n
(i)
λ

. (4.6)

The terms in Eq. (4.6) are defined as follows: ρ̃
(i)
uv is the estimated value of ρ

(i)
uv as

provided by POD through direct estimation or through interpolation; αi are the weights
for the signal from each navigation satellite according to its quality (e.g., signal-to-noise

ratio); Ĩ
(i)
uv (t) is the estimated differential ionospheric delay, which can be also derived

in the POD process;

Eq. (4.6) provides an unbiased estimation under the assumption that ε is a zero-mean
uncorrelated noise process. As mentioned before, ε contains systematic error components
which will bias the estimate. When possible, these components shall be estimated and
removed. It should also be noted that the terms in the second sum have been assumed
to be sampled according to the condition in Eq. (4.2).

Assuming the measurement are statistically independent Gaussian processes, αi which
minimizes the variance of the estimator is given by

αi =
σ−2
i∑N

k=1 σ
−2
k

. (4.7)
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where the σi correspond to the standard deviation of the measurements. Assuming that
the measurement is dominated by the thermal noise in the receiver, σi can be expressed
as a function of the carrier-to-noise ratio (c/n0)i as follows [Gro13]

σi ≈

√
BL−CA

(c/n0)i
, (4.8)

where BL−CA is the so-called tracking bandwidth of the GNSS receiver for a Phase Lock
Loop discriminator. Replacing Eq. (4.8) into Eq. (4.7) yields

αi ≈
(c/n0)i∑N
k=1 (c/n0)k

. (4.9)

In order to use this equation in a practical application, the GNSS receiver employed
must be able to provide the carrier to noise ratios.

4.2 Error analysis

For the sake of clarity, the previous section provides a simplified model of GNSS ob-
servables. An error analysis demands a more realistic model incorporating the several
systematic components that contribute to the error in the pseudoranges. From Eq.
(2.18) the difference between the carrier phase measurements of receivers u and v is
given by

L
(i)
uv,k(t) = ρ(i)

uv(t) + c · δtuv(t)−
(
λk
λ1

)2

· I(i)
uv (t)−λk ·A

(i)
uv,k +M

(i)
uvL,k(t) + ε

(i)
uv,k(t) , (4.10)

in which t is a temporal variable, A
(i)
uv is the difference between the ambiguities, M

(i)
uv (t)

describes other systematic error components including multipath, and a bias on the

receiver tracking channel, and ε
(i)
uv(t) is a thermal noise process of the differenced mea-

surement. Eq. (4.10) is valid under the assumption that the measurements at two
different satellites are sampled at approximately the same epoch and the positioning
and timing errors due to temporal misalignment are negligible compared to the other
error sources. A similar condition applies for precise baseline determination.

Replacing Eq. (4.10) into Eq. (4.3), the pseudorange used in the estimation becomes

P
(i)
Luv,k(t) =ρ(i)

uv(t) + c · δtuv(t)−
(
λk
λ1

)2

· I(i)
uv (t) +M

(i)
uvL,k(t)

+ λk ·
(
Ã

(i)
uv,k −A

(i)
uv,k

)
+ ε

(i)
uv,k(t) . (4.11)

A further elaboration of the system model suggests the incorporation of independent
phase noise realizations occurring in the up-conversion stages of the radar and navigation
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receiver electronics, which may be in principle different for each navigation frequency.
Under these circumstances, we can relate the phase differences at radar and navigation
carriers between the two satellites as follows

ψuv,0(t) =
λk
λ0
· [ψuv,k(t) + ∆ψuv,k(t)] , (4.12)

where ∆ψuv,k denotes the additional phase noise introduced in the up-conversion stages
for the radar and navigation carriers at the level of the latter.

The error in the estimation of the differential phase at the radar carrier can be derived
after combining (4.6), (4.11) and (4.12) as follows

δψuv,0(t) =

N∑
i=1

n
(i)
λ∑

k=1

2π · αi
λ0 · n(i)

λ

·

{
λk
2π
·∆ψuv,k(t) +

[
ρ(i)
uv(t)− ρ̃(i)

uv(t)
]

+ λk ·
(
A

(i)
uv,k − Ã

(i)
uv,k

)
+M

(i)
uvL,k(t)−

(
λk
λ1

)2

·
(
I(i)
uv (t)− Ĩ(i)

uv (t)
)

+ ε
(i)
uv,k(t)

}
. (4.13)

Note that since the error components are proportional to the inverse of the radar
wavelength, the estimation error increases with the radar frequencies. Each term within
curly brackets in 4.13 describe an error component of the POD-based estimation of the
radar synchronization phase, averaged over all tracked GNSS signals and scaled by the
corresponding radar wavelength. These error components are listed in the bullets below
in the order from left to the right in Eq. (4.13):

� An up-conversion error for both the radar and navigation carriers;

� A baseline determination error arising from POD;

� An ambiguity resolution error, which is constant over a continuous tracking period
for each GNSS satellite;

� A mismodeling term including multipath, phase bias on the receiver tracking chan-
nel, phase wind up and other systematic errors;

� An error in the estimation of ionospheric delay difference between satellites;

� Receiver noise.

Following subsections discuss in more detail the impact of each of those error components.

4.2.1 Thermal Noise Contribution

The thermal noise contribution determines the boundary of the performance of the al-
gorithm in the absence of the other systematic components. Under the assumption of
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statistical independence and common standard deviation for all frequencies correspond-
ing to the measurement of a given navigation satellite, the standard deviation of the
phase estimator due to thermal noise is given by

σε =
2π

λ0
·

√√√√ N∑
i=1

α2
i · σ2

uv,i

n
(i)
λ

, (4.14)

where σuv,i is the standard deviation of the differential noise process corresponding to the
signal received from the GNSS satellite i. Under the assumption that both parts receive
the signal from satellite i with similar quality, quite reasonable for standard baselines
and equal GNSS receivers, and substituting from Eq. (4.7), the previous expression can
be approximated as

σε ≈
2π

λ0
·
√

2

nλ
· 1∑N

i=1 σ
−2
i

, (4.15)

where the same number of available navigation frequencies nλ for all satellites has been
assumed. Denoting σφmin and σφmax the minimum and maximum standard deviations

among σ
(i)
φ , σε can be bounded as follows

2π

λ0

√
2

nλN
σφmin ≤ σε ≤

2π

λ0

√
2

nλN
σφmax . (4.16)

The equation shows that the signal level can be reduced by increasing the number of
satellites and frequencies tracked. Figure 4.3 gives an example of expected performance
in terms of noise of such GNSS-based synchronization scheme for a 5.404 GHz SAR
payload. The receiver performance is loosely based on the single-frequency GPS receiver
Phoenix developed by the German Space Operation Center (GSOC) [MR], but assuming
it would be capable of receiving a second frequency with similar performance.

The results show acceptable error levels for the whole range between the maximum and
minimum noise. The noise level will be closer to the minimum or maximum depending
on the particular viewing geometry between the receiver antenna and the GNSS satellites
at a given instant.

Finally, the error boundary given by Eq. (4.16) does not take into account the in-
terpolation error in case the sampling frequency of the GNSS receiver is lower than
the sampling frequency of radar data. The noise boundary for the performance of the
POD-based estimation of the oscillator phase, considering the interpolation error, can
be expressed as

σψ = σε ·

√
Bψ
fGNSS

≈ 2π

λ0
·

√
2 ·Bψ

nλ · fGNSS

· 1∑N
i=1 σ

−2
i

, (4.17)

where Bψ represents the bandwidth of the oscillator phase noise relevant for the correc-
tion of the bistatic SAR data and fGNSS corresponds to the rate at which the pseudoranges
are made available by the GNSS receivers. The value of Bψ depends on the character-
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Figure 4.3: Noise boundaries for a test case for a 5.404 GHz SAR payload, with the
number of satellites in view (N) varying from four to twelve and the number
of frequencies nf up to two. Receiver carrier phase estimates due to noise
are assumed to vary between 1.2 and 0.4 mm.

istics of the master oscillator and of the radar carrier frequency. Reference [KMF+07]
evaluates the specific case of TanDEM-X, showing that values between 5 Hz and 15 Hz
provide additional contributions below 0.5 and 0.1 deg, respectively.
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4.2.2 Baseline determination error

This subsection presents an evaluation of the effects of the baseline error on the proposed
phase synchronization. The objective is to verify the order of magnitude of this error, its
dynamic behavior and how each of the three components of the baseline error - radial,
along-track and across-track - affect the phase separately.

Similar to what is done in [Kro06] for direct baseline determination, the orbit determi-
nation error for each GNSS satellite can be approximated by linearizing the error term
around zero as a function of the baseline solution as follows:

ρ(i)
uv − ρ̃(i)

uv ≈ −~̃e (i)
v ·∆~ruv − ~̃e (i)

uv ·∆~ru + ~̃e (i)
uv ·∆~r (i) , (4.18)

where the ~̃e
(i)
u are unit vectors indicating the direction from the estimated SAR satellite

u to GNSS satellite i positions, as shown in Fig. 4.4. The terms ∆~r (i), ∆~ruv and ∆~ru
denote the GNSS satellite position error, the error in the baseline vector from u to v,
and the error in the position of satellite u, respectively.

GNSSi

SARv

SARu

SARv (real)
SARu (real)

GNSSi (real)

Figure 4.4: Basic geometry for the derivation of the baseline determination error.

The terms ~̃e
(i)
uv ·∆~ru and ~̃e

(i)
uv ·∆~r (i) in Eq. (4.18) are much lower compared to the first

term because the vectors ~̃e
(i)
u and ~̃e

(i)
v are approximately parallel in case satellites u and

v are at a close distance. For example, as demonstrated in [TK98], the term ~̃e
(i)
uv ·∆~ru(t)

can be bounded as follows :

~̃e (i)
uv (t) ·∆~ru(t) ≤ ||~ruv(t)||

||~r (i)(t)− ~rv(t)||
· ||∆~ru|| . (4.19)

Assuming a baseline of 300 m, a range from SAR satellite to the GNSS satellite of
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19700 km and an absolute positioning error of 1 m, the upper boundary of the term
given by Eq. (4.19) is of 1.5E-2 mm, which is well below receiver noise level.

Therefore, the individual orbit determination errors can be approximated as the first
term of Eq. (4.18), which yields the following expression for the total orbit determination
error:

N∑
i=1

n
(i)
λ∑
j=1

2π · αi
λ0 · n(i)

λ

[
ρ(i)
uv(t)− ρ̃(i)

uv(t)
]
≈ 2π

λ0
∆~rvu(t) ·

N∑
i=1

αi~̃e
(i)
v (t) . (4.20)

The summation on the right corresponds to a weighted average of unit vectors dis-
tributed more or less uniformly in a semi-sphere. Since the weights (αi) depend on the
signal to-noise ratio, higher elevations will be given a larger weight. Assuming an an-
tenna pattern symmetrical with respect to the direction of the main lobe, the terms in

the along track and across track in the individual vectors (~̃e
(i)
v ) will tend to cancel out

when taking the average. These two factors contribute to make this summation term a
vector predominantly in the radial direction. Since the final result is the scalar product
of the baseline error with this mostly radial vector, the radial component of the baseline
error will play a more important role compared to the other components.

Figure 4.5 illustrates the influence of each component of the baseline error in the final
relative phase estimated in the GNSS-based synchronization scheme. It correspond to
the application of Eq. (4.20) to simulated orbital data considering a 5.404 GHz SAR
payload. The GNSS orbits are obtained from propagated GPS TLE data.

Fig. (4.5) gives a general idea of the expected order of magnitude of the error resulting
from the baseline error and demonstrates the higher influence of the radial component.
However, it does not tell about the dynamic behavior of the phase error due to the
baseline estimation. Not only the magnitude of the phase error is important, but also
its temporal variation. A constant phase error can be relatively easily estimated and
corrected in the SAR data processing without the need for external information. A bias
which varies over time, however, will introduce artifacts in the final SAR image which
are hard or impossible to compensate for. Eq. (4.20) predicts that both a variation of
the average GNSS-SAR direction vector and a variation of the baseline error during the
SAR data acquisition time will cause a time variation of baseline error component of the
phase estimation.

The variation of the average GNSS-SAR direction vector can be evaluated from the
same simulation as the one used for plotting Fig. 4.5. By checking the changes between
time periods of one minute, we see that this variation remained below one second of arc
and thus can be neglected.

The error in the baseline determination depends on how the real baseline changes
over time compared to the estimated baseline. This error is hard to predict since it is
impossible to perfectly model or measure the satellite orbital dynamics. Fortunately, the
PRIMA mission offered a glimpse on this behavior. In initial mission phase, the baseline
determination process was performed with the two spacecrafts attached to each other.
During this phase, the true baseline could be calculated with a very high precision from
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Figure 4.5: Components of the GNSS-SAR average direction vector for a 500 km altitude
circular orbit and expected phase estimation error per millimeter baseline
error for a 5.404 GHz SAR payload.

attitude measurements [ADM10]. A comparison between the estimated baseline through
POD and the direct calculation of the baseline shows that the three components of the
baseline error describe, most of the time, smooth sinus-like oscillations, with a period of
around one orbital period and amplitudes of approximately 5 mm. This suggests that
the baseline determination error changes smoothly and slowly enough so that it can be
approximated by a linear varying term for the short time frame of one minute, in which
the radar image is usually acquired. The data shows, however, a few discontinuities.
These discontinuities should be avoided if possible as they would have a direct effect on
the phase estimation if the scheme presented here is applied.

The simulation in the following section is roughly based on the results obtained in
PRIMA mission, regarding the order of magnitude of the errors in the absolute and
relative positions and velocities. It assumes an error in the initial positions and velocities,
but no error in the dynamics modeling. This means that the high-order terms of the
baseline error are ignored. This assumption should not affect the representativeness
of the simulation since, as explained, the higher order terms of the baseline error are
expected to be negligible.
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4.2.3 Frequency conversion error

The upconversion error for each different frequency in the receiver can be assumed to
be caused by an error in the scaling and by an additive noise (δφuv,j):

∆ψuvk =

(
λos
λ′k
− λos
λk

)
ψuv,os(t) + δψuv,k(t) , (4.21)

In this case, the upconversion error can be written as:

N∑
i=1

n
(i)
λ∑
j=1

λk · αi
λ0 · n(i)

λ

∆ψuv,j =
1

nλ

nλ∑
j=1

[(
λj
λ′j
− 1

)
ψuv,0 + δψuv,j

]
. (4.22)

An error in the multiplication factor of any of the four upconversions involved - two
in each satellite - will scale the value of the estimated phase, thus causing a proportional
error. Any noise introduced by those upconversions will also reflect on the final phase
estimation. These errors, however, are expected to be very low. The error in the scaling,
in particular, could be measured by sampling the signal before and after upconversion
at an sufficiently high rate.

4.2.4 Ionospheric delay error

As mentioned before, the ionospheric delays can be estimated in the POD along with the
clock bias, position and other parameters. For short baselines, of less than one kilometer,
ionospheric path delays for the two satellites are expected to highly correlated. For
example, in the GRACE mission, the differential path delays were dominated by carrier
phase measurement noise, which resulted in a scatter of roughly 1 cm [MvYV07]. The
differential ionospheric delay is thus expected to be very low and the error from the
ionospheric delay estimation is expected to be even lower.

4.2.5 Mismodeling errors

In the orbit determination process the mean value of all the unmodeled errors cannot
be separated from the GNSS receiver clock offset and therefore will bias it [MvYV07].
The effect of this error will cause a very slight time offset, and therefore will not affect
considerably the positioning solution. For the application presented in this paper, how-
ever, these effects are critical, and the biases must be calibrated to a value low enough
so that it can be corrected in the data processing.

The potentially most critical unmodeled error source is the so-called multipath effect,
which results from the superposition of the GNSS signal received directly from the GNSS
satellite with the signal reflected by the surfaces of the receiving satellite. This error
depends on the signal difference, the strength and polarization of the reflected radiation,
as well as internal characteristics of the receiver [Kro06]. The multipath effect is confined
to a quarter of the navigation signal wavelength [HWLC97]. This can be a significant
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error and it is important for a system where Precise Orbit Determination (POD) is re-
quired, to be designed so that this effect is suppressed or avoided. For example, GRACE
spacecrafts didn’t employ deployable solar panels, and their mechanical layout minimizes
multipath effects. PRISMA mission, which also performed experiments on POD, had the
GPS antennas on the tips of the solar panels, which may have contributed to mitigate
the problem of multipath effects. The strategy used in PRISMA is of particular interest
for SAR missions since the high power demand in those missions may require the use of
deployable solar panels.

Another relevant error source in the GNSS measurements is the so-called phase center
variation. The phase centers of the receiver and transmitter antenna vary depending on
their relative viewing geometry. If this variation is not accounted for, it introduces an
additional error to the phase measurement. This error can be calibrated in a labora-
tory, as done in CHAMP and GRACE missions [MGFY+09]. However, as remarked in
[JDM+09], even after applying the laboratory calibration, other unmodeled variations
correlated with the azimuth and elevation persist. These errors can be further reduced
by applying frequency-dependent patterns from on-orbit calibration. This was demon-
strated in [MGFY+09] through evaluation of satellite laser ranging residuals. In that
work, the carrier phase accuracy was improved to a level of 4 mm, close to the pure
receiver noise, by applying such frequency-dependent patterns.

In addition to the errors aforementioned, the phase measurements are affected by the
so called wind-up effect, a phase accumulation due to the rotation of the antennas about
the mutual line-of-sight [Kro06]. This error is not expected to be as significant as, for
example, multipath errors, but it should also be considered in future analysis.

4.2.6 Ambiguities

As shown in (4.13), errors in the ambiguity estimation for each signal will affect the
final phase estimate. Since the ambiguities are constant for any given tracking arc, the
corresponding error component will not change as long as the receiver remains locked to
the same GNSS satellites during the SAR data acquisition time. For a short acquisition
time of around one minute, this will most likely be the case. If a GNSS satellite comes
into view or goes out of view, using its carrier phase data would introduce a discontinuity
into the relative phase estimate, which would be carried on to the final synthesized radar
image or digital elevation model.

The easiest way to mitigate this problem would be to use only data from the GNSS
satellites to which the receiver remained locked during the whole data acquisition period.
This, however, would result in loss of useful information. One alternative solution could
be to apply extra processing steps to the data specifically to identify and eliminate such
discontinuities.

In the simulation in Section 4.4 this source of error is neglected, but it should taken
into account in future implementations of the proposed GNSS-based synchronization
scheme.
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4.3 Integration of POD-based synchronization with
synchronization link

Consider a system such as the one illustrated in Fig. (4.1), implementing both a inter-
satellite synchronization link and the GNSS and POD-based synchronization scheme
here introduced. The phase of the synchronization signal φruv received at satellite v
coming satellite u can be modeled as follows:

φruv =
1

c
ρuv − λ0N + ψu,0 + εr,uv , (4.23)

where N is the number of full wavelengths between the antennas phase centers and εr,uv
a noise component. Analogously, the synchronization phase φrvu received at satellite u
coming from satellite v can be modeled as:

φrvu =
1

c
ρuv − λ0N + ψv,0 + εr,vu . (4.24)

Subtracting the received phases yields

∆φr = φrvu − φruv = ψuv,0 + εr . (4.25)

where εr is noise process resulting from the difference between εr,uv and εr,vu.

Reference [KMF+07] shows that the error in this measurement is on the order of a
few degrees, which is on the same order of magnitude as the noise-like error component
of the GNSS and POD-based algorithm here presented for the representative scenario
evaluated in Subsection 4.2.1. Combining the two techniques, therefore, may result in
a significantly better accuracy. The unbiased reference provided by the synchroniza-
tion link can be used to estimate the bias and residual drift affecting the GNSS-based
measurement for a better overall phase estimate.

4.4 Simulation framework

This section provides an end-to-end simulation of the POD-based estimation of a bistatic
SAR operating in C band and using low-cost GNSS receivers. The purpose is to illus-
trate the potential of the suggested idea by providing an example of performance in a
realistic scenario. The realization of the oscillator phase error used in the simulation is
based on TanDEM-X calibration data, but scaled accordingly assuming a C-band SAR
system. The position and baseline determination parameters are based on results from
the PRISMA mission [ADM10]. The GNSS parameters are based on the Phoenix GPS
receiver [MR]. The orbit geometry corresponds to the train configuration introduced in
Fig. (3.7). Among the errors presented in the previous section, the ones resulting from
the orbit determination and thermal noise are evaluated in the simulation. The iono-
spheric delay in this scenario is negligible and was therefore not taken into account in the
estimator. Figure 4.6 shows the data flow and the major components of the simulation.
It is based on the same simulation framework presented in Fig. (3.9).
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In this case the total simulation time was of 40 seconds, representative of a SAR
acquisition period, and the time step was of 1 millisecond. A C-band bistatic SAR
system composed of a transmitter and receiver flying in close formation and possessing
the suggested hardware configuration for POD and GNSS based phase synchronization
was considered. The navigation antennas of the radar satellites have direct visibility
to nine GPS satellites continuously during the simulation period. Again, the orbits of
all LEO satellites are propagated using NASA’s open source software GMAT, and the
GPS satellites orbits are propagated from TLE data using the software STK. GMAT
allows for the numerical integration of all orbits using an accurate gravitational model
including drag and third bodies attraction. The errors in the position and velocity of
the radar satellites coming from the precise orbit determination have been simulated
by introducing an absolute bias in the initial state of the satellites and propagating the
orbit. The same dynamic model is used for simulating the reference orbit and the POD
result, which means that only first order terms on the baseline determination error are
considered.

The error in the baseline velocity is of particular concern, since it can introduce a
time-varying component in the estimated phase. The baseline error simulated was based
on the reported error from the PRISMA mission when the two satellites were attached,
as explained in Subsection 4.2.2.

After propagating the orbits, the ranges between the radar satellites and the GNSS
satellites in view at a minimum elevation of 10 degrees are calculated. The navigation
raw data are simulated by adding the following error components to the expected code
and phase signal: ionospheric delay, initial clock bias, thermal noise and clock drift. The
phase drift realization corresponds to a real measurement done with the synchronization
link of TanDEM-X operated at a frequency of 3 kHz. The ionospheric delay is calculated
assuming a constant Vertical Total Electron Content (VTEC) and applying the elevation-
only dependent mapping function by Lear [Lea87]. In this case, the difference in the
ionospheric delays affecting the signals in the satellites is negligible.

The simulations assume a single-frequency GNSS receiver, with noise characteristics
in line with the Phoenix receiver. The error figures are in the sub-decimeter level, similar
to those reported in the PRISMA mission, which also used a single-frequency GNSS re-
ceiver. The phase difference between the clocks is estimated using equation (4.7). In the
case of two-frequency receivers, the residuals of the estimation are expected to improve
by a factor square root of two due to the availability of a second independent measure-
ment, in addition to the improved accuracy due to a more accurate orbit determination.
Table 4.1 shows the simulation parameters.

Last but not least, the integer ambiguity factor assumed to be known from the precise
orbit determination process.
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Table 4.1: Simulation parameters

Parameter Value

GNSS signal frequency 1575.42 MHz
Radar payload frequency 5405 MHz

Pseudorange standard deviation 0.0005 m
GNSS position bias standard deviation 1.5 m

Minimum elevation for visibility 10◦

Number of GNSS satellites 9
Vertical Total Electron Content (VTEC) 50 TECU

Radial position error 1.478 m
Along-track position error 0.054 m
Across-track position error -0.034 m

Radial velocity error 0.082 m/s
Along-track velocity error 0.010 m/s
Across-track velocity error -0.007 m/s

Radial baseline error 8.248 mm
Along-track baseline error 1.177 mm
Across-track baseline error 0.767 mm

Radial baseline velocity error 0.0057 mm/s
Along-track baseline velocity error -0.0077 mm/s
Across-track baseline velocity error -0.0027 mm/s
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4.5 Simulation results

The simulation results are shown in Figs. 4.7 and 4.8. Even though the simulation
considered a single frequency receiver, compatible only with the GPS constellation, the
estimated phase error curve is able to replicate well the shape of the true phase error
with a standard deviation below two degrees. With hardware capable of receiving several
constellations and several frequencies, the standard deviation is expected to be reduced
below 1 degree. This standard deviation is of the order of magnitude of the synchro-
nization achieved by TanDEM-X through a synchronization link [KMF+07]. However,
the estimate in this case is biased. This bias cannot be corrected from the GNSS data
or through any method here presented but, at the level of 34.5 degrees shown in the
simulation results, it can be compensated by appropriate processing of the SAR data.

The simulation demonstrates that the baseline velocity errors attained by PRISMA
mission are low enough so that the linear component in the phase estimation introduced
by it is below noise level.

Note that error components not considered in the estimation will affect the final
accuracy result in a real scenario. In particular, the multipath effects could degrade
considerably both the precision and accuracy of the solution. Unmodeled phenomena
which cause errors that vary during the SAR data acquisition time are of particular
concern, since their influence is harder to eliminate in the data processing.

The estimation model considered in this paper does not take into account the stochas-
tic behavior of the radar clock. An estimator which filters the GNSS data by considering
its temporal behavior might reduce the standard deviation of the phase error estimation
even further. This can be inferred from Fig 4.7, which shows a clear time correlation of
the relative phase bias.

The suggested solution seems to provide reliable estimates for the oscillator synchro-
nization phase - although biased by the baseline error - as long as the contributions of the
baseline velocity error, differential ionospheric delays, multipath and other systematic
components are either negligible or can be corrected through appropriate calibration.
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Figure 4.7: Simulated phase drift data and estimation results from multiple GNSS data.
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5 Conclusions and Outlook

5.1 Summary

This work proposes solutions using GNSS technology for bi and multistatic SAR prob-
lems, in the context of formation flight system architectures. Specifically, two SAR-
related challenges are addressed: Precise baseline determination and radar phase syn-
chronization. Precise baseline determination is necessary for SAR applications such
as interferometry, and is currently achieved by employing state-of the art algorithms
with expensive geodetic-grade receivers, which may pose a challenge for low-cost multi-
satellite applications. Phase synchronization problems arise when the transmitter and
receiver SAR satellites do not share the same platform. Phase errors, if not estimated
and compensated in the data, results in artifacts in the synthetized SAR image or Digital
Elevation Model (DEM), compromising their scientific value. The current operational
solution for this problem uses an inter-satellite link, which adds cost, weight and com-
plexity to the system. Therefore, a alternative solution is desirable. This thesis is divided
in two major parts, each addressing one of the aforementioned problems.

The first part assesses potential ways of profiting from a SAR formation flight system
architecture to improve the baseline determination accuracy. Four different scenarios
were evaluated, each of them using GNSS data, some complemented with information
from external hardware. In the first scenario, also referred as base scenario, only data
from dual-frequency GNSS receivers is used. In the second scenario, one satellite is
equipped with a dual-frequency receiver and the others with low-cost single frequency
receivers. In the third scenario, data from an inter-satellite ranging system is added to
the base scenario. In the fourth scenario, interferometric SAR data is used to calibrate
the baseline in an iterative method. In each scenario, a kinematic position estimator
based on code delay information and using data from all the satellites was formulated.
A simulation framework was developed to generate the input GNSS code delay, inter-
satellite ranging and interferometric data. The algorithms were applied to the simulated
data for different numbers of satellites, varying from one to four. Conclusions could be
drawn by comparing the results from different scenarios and for different numbers of
satellites.

The second part proposes a phase synchronization scheme for bistatic and multistatic
SAR systems based on GNSS navigation data, assuming that the same base oscillator is
used in the GNSS receiver and in the SAR payload. A phase error estimator is proposed
employing raw GNSS data and precise orbit determination data. A comprehensive error
analysis was done for the estimator, including analytical evaluation of some of the main
error sources. A simulation framework was developed to generate realistic input data
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for the proposed estimator. The simulation included POD data for the SAR satellites,
position data for GNSS satellites, and raw GNSS data given by the receiver, including a
clock bias drift based on real data from the TanDEM-X mission. The algorithm proposed
was applied to the simulated data to evaluate the performance of the estimator in the
presence of noise in the receiver and errors in the SAR and GNSS satellites orbital data.

5.2 Conclusions

The precision determination studies indicated potential for baseline determination im-
provement in some of the proposed scenarios. They indicated that the close proximity
between satellites and the resulting high correlation between ionospheric delays could
be exploited in an architecture where one satellite has a dual-frequency receiver and
the others a single-frequency receiver. For the simple estimators implemented, a com-
parable performance for the single frequency receivers could be achieved by processing
their data along with the dual-frequency receiver data. The simulations showed that
using data from an inter-satellite ranging system improves the baseline accuracy, and
that this improvement depends on the relative orbit geometry between the satellites.
They also indicated that interferometric data can be integrated in position determina-
tion algorithms to improve the baseline accuracy in system architectures in which SAR
satellites flying in formation illuminate the same area. Finally, it was demonstrated that
by combining the GNSS data from several satellites flying in close proximity, under the
assumption that the ionospheric delays are equal, the absolute position estimates are
improved by the addition of each satellite, but not the baselines. The baselines were
improved only in scenarios in which external data is combined with the GNSS data.

The estimation technique here presented offers a simple solution for the phase synchro-
nization in bistatic or multistatic radar constellations. It has the potential for scalability,
since each additional satellite designed to employ the technique can be easily integrated
to the multistatic system without adding to the complexity of the other elements of the
space segment. The simulations indicate that a sufficiently good performance, in terms
of phase synchronization, could be obtained from low-cost GNSS receivers. The solution
relies in very precise relative navigation data. It assumes that the precision is in the sub-
decimeter level in relative position and negligible in relative velocity. The performance
can be improved considering the recent operational readiness of the new navigation con-
stellations Galileo and BeiDou, and with the use of receivers capable of receiving several
frequencies. The error analysis indicates some critical issues which must be addressed
for the technique to work. Of particular concern are multipath effects, which must be
reduced to a minimum by carefully addressing the spacecraft design. Also the calibration
of the up-converters must be carefully conducted in order to avoid relevant phase errors
in the estimated solution. Unlike using a synchronization link, the errors of the POD-
based estimation are expected to degrade -at least linearly- for increasing frequencies,
and may be at the edge of usability for Ka-band radar systems.
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5.3 Outlook

Given that all the positioning algorithms proposed here consisted in kinematic algo-
rithms, a possible next step could be to implement dynamic estimators for all the sce-
narios considered to check if the conclusions hold for estimators closer to the ones used
in real satellite operations. Furthermore, algorithms using the phase delay in addition
to the code delay could be implemented. The scenarios, in particular the one using one
dual frequency receiver and several single-frequency receivers, should be re-tested with
a more realistic ionospheric delay model, taking in consideration the space and time
variations of the ionosphere. By doing so, one can test what are the distance limits to
have a ionospheric delay sufficiently correlated to be approximated as equal.

The DEM calibration algorithm should be tested again with more accurate baselines,
which can be obtained from dynamic estimation. This would possibly expand the number
of cases in which it converges and allow us to evaluate the possibility that the baselines
accuracy improves with the number of satellite when employing such an algorithm.
Including in the covariance matrix some level of correlation between SAR data from
different satellites and restricting the available SAR data for one per orbit would make
the simulation more realistic. It is possible that, by doing so, the SAR calibration would
improve the baseline mainly for the time frame in which the SAR data was taken. This
would still be a positive result since in SAR applications only the baseline between
satellites during radar data acquisition interval matters.

The use of dynamic models in the estimation would also open new possibilities of
exploiting the close proximity of the satellites. Many parameters affecting the orbital
mechanics - for example, the air density and solar radiation intensity - are highly corre-
lated for identical satellites flying at close distances. It is possible that by considering
these parameters to be the same for every satellite, they could be more accurately esti-
mated by processing the data from several satellites in a single filter, and more accurate
baselines estimates could be achieved by consequence.

The proposed SAR synchronization scheme can be further tested and evaluated by
implementing it in hardware. The first step would be to check if the assumption that
phase drifts in the radar signal and in the reference GNSS signal are be proportional to
each other if the signals originate from the same oscillator. This can be tested simply by
implementing the up-conversion phases and monitoring the output signals. The following
would be to effectively implement the scheme with two GNSS receivers and performing a
test using GNSS signal simulators. In a controlled environment, the output radar signal,
the simulated baselines and the reference GNSS signals can be monitored and the phase
error estimated from the data can be compared to the expected results from the error
analysis. The multipath effects should also be evaluated in a laboratory environment
and reduced to an acceptably low level.

If the proposed synchronization scheme turns out to be effective in a real scenario -
as predicted in this thesis - it could be a important step towards reducing the cost and
complexity of bi-and multistatic SAR systems and enabling ambitious mission concepts
with several SAR satellites flying in formation.
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