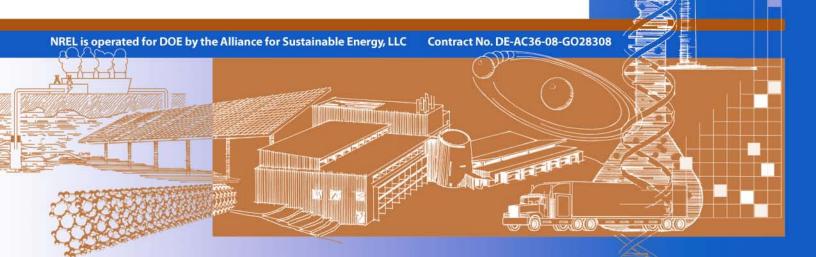


Innovation for Our Energy Future


Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol

F. Kabir Kazi, J. Fortman, and R. Anex *Iowa State University*

G. Kothandaraman ConocoPhillips Company

D. Hsu, A. Aden, and A. Dutta *National Renewable Energy Laboratory*

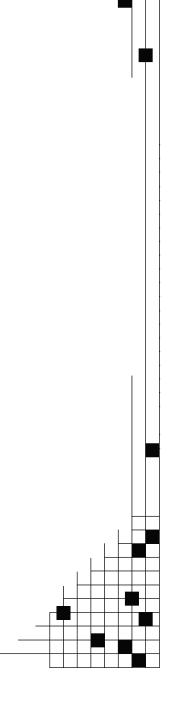
Technical Report NREL/TP-6A2-46588 June 2010

Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol

Technical Report NREL/TP-6A2-46588 June 2010

F. Kabir Kazi, J. Fortman, and R. Anex *Iowa State University*

G. Kothandaraman ConocoPhillips Company


D. Hsu, A. Aden, and A. Dutta National Renewable Energy Laboratory

Prepared under Task No. BB07.7510

National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

Contract No. DE-AC36-08-GO28308

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728

email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road

Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900

email: orders@ntis.fedworld.gov

online ordering: http://www.ntis.gov/ordering.htm

Foreword

The purpose of this techno-economic analysis is to compare a set of biofuel conversion technologies selected for their promise and near-term technical viability. Every effort has been made to make this comparison on an equivalent basis using common assumptions. The process design and parameter value choices underlying this analysis are based on public domain literature only. For these reasons, the results are not indicative of potential performance. Rather they are meant to represent the most likely performance given the current state of public knowledge.

List of Acronyms

AFEX ammonia fiber explosion (or expansion)

ASPEN Advanced Simulator For Process Engineering (software)

BTU British thermal unit

CAFI Consortium for Applied Fundamentals and Innovation

COD chemical oxygen demand

DB declining balance (depreciation)

EtOH ethanol

EVD experimentally validated data FCI fixed capital investment

FPU filter paper units

GGE gallons of gasoline equivalent IRS Internal Revenue Service

MACRS (IRS) modified accelerated cost recovery system

PV product value MM million MT metric ton

NREL National Renewable Energy Laboratory

SSCF simultaneous saccharification and cofermentation SSF simultaneous saccharification and fermentation

ST short ton

TD&IC total direct and indirect costs
TCI total capital investment

Executive Summary

A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed and a matrix was prepared considering economics, technological soundness and maturity, environmental aspects, process performance, and technical and economic risks. Then, a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. In the first screening, the lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. In the second screening, seven scenarios of process variations were selected: four variations involved pretreatment (dilute acid, two-stage dilute acid, hot water, and ammonia fiber explosion) and three variations involved downstream processes (pervaporation, separate 5-carbon and 6-carbon sugar fermentation, and on-site enzyme production). Each of these scenarios was examined in detail. Given the time needed for design, construction, and startup of large process plants, plants operating in the 5-8 year timeframe would likely need to be based on recent experimental data. For this work, process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an "nth plant" (mature technology) to obtain total investment and product value (PV) (defined as value of the product needed for a net present value of zero with a 10% internal rate of return). The final selection among the scenarios was performed primarily based on the PV. Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of \$3.40/gal of ethanol (which is \$5.15/gallon of gasoline equivalent, GGE) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

The cellulosic ethanol process is a new technology, for which a pioneer plant is expected to be significantly more expensive than the nth plant. To assess the impact of technology maturity on pioneer plant cost, a cost growth analysis was performed following a method documented in a RAND Corporation report. This methodology attempts to incorporate added expenses and start-up time for a new process. There is some subjectivity in choosing the parameters for the pioneer plant analysis, so a range of parameters was used to estimate pioneer plant costs for three scenarios: optimistic, most probable, and pessimistic. The PV obtained from cost-growth analysis is substantially larger for a pioneer plant, increasing from \$3.40/gal (which is \$5.15/GGE), before including added expenses, to \$5.01/gal (\$7.59/GGE), \$5.76/gal (\$8.72/GGE), and \$7.08/gal (\$10.71/GGE) for the optimistic, most probable, and pessimistic scenarios, respectively.

The PV obtained from the 2007 published data is much higher than the market gasoline price. Also, published technological data may not be adequate to accurately project a competitive PV from a commercial plant of 2000 MT/day capacity. However, this analysis identifies some of the more cost intensive operations and areas. The current process can only reach approximately 4.5% ethanol in the fermentor beer, which is a third of what grain ethanol plants are achieving today. The analysis also assumed an enzyme price as \$0.69/gal of ethanol produced. Based on this analysis, we believe that high-performance enzymes at a cheaper price are required and that more research is needed to achieve higher ethanol concentration in the fermentor for this process to compete in the current energy market.

Table of Contents

Foreword	
List of Acronyms	
Executive Summary	
Table of Contents	
List of Figures List of Tables	
Methodology	
Summary of the Down-Selection Process	
Project Assumptions	
Process Description and Flow Diagram.	
Process Variations.	
Dilute Acid Pretreatment	
Two-Stage Dilute Acid Pretreatment	
Hot Water Pretreatment	
AFEX Pretreatment	
Separate C5 and C6 Fermentation	
Ethanol Separation Using Pervaporation	
On-Site Enzyme Production	
Methodology for Economic Analysis	
Methodology for Discounted Cash Flow Analysis for n th Plant	13
Pioneer Plant Analysis	
n th Plant Cost Analysis	
Sensitivity Analysis	
Pioneer Plant Analysis Results	
Comparison with Previous Studies	
Conclusions	
References	
Appendices	31
Appendix A - Assumptions for Techno-economic Studies of Biochemical Conversion	
Processes	
Plant Size, Location, and Construction	
Units	
Feedstock and Enzymes	31
Material and Energy Balance	32
Equipment Design, Material of Construction, and Costing	33
Chemical Costing	34
Operating Cost	34
Wastewater Treatment Plant	34
Greenhouse Emissions and Control	35
Cost Analysis	35
Appendix B - Sensitivity Parameters and Values	
Appendix C - Sensitivity Results	
Appendix D - Cost Analysis Result Summary	43
Appendix E - Equipment List and Costs, Installation Factors, and Installed Equipment C	
for Dilute Acid Pretreatment Processes	

Appendix F - Process Operating Summaries	62
Appendix G - General Process Description	
Appendix H - Cost By Area Of Process Scenarios	
Appendix I - Down Selection Matrix	
Appendix J - Analysis: Cost Growth Variables And Results	
The second secon	
List of Figures	
Figure 1. Overall process block diagram of a typical cellulosic ethanol process plant (based or	n
NREL's 2002 design report and modified to 2007 EVD)	
Figure 2. Process flow diagram for dilute acid pretreatment	
Figure 3. Process flow diagram for two-stage dilute acid pretreatment/hydrolysis and	
fermentation	7
Figure 4. Process flow diagram for base case pretreatment, enzymatic hydrolysis, and	
fermentation	7
Figure 5. Hot water pretreatment process flow diagram	
Figure 6. AFEX process flow diagram	
Figure 7. Separate C5 and C6 fermentation configuration	
Figure 8. Base case distillation configuration	
Figure 9. Pervaporation separation process	
Figure 10. On-site enzyme production process flow diagram	
Figure 11. Impact of pretreatment parameters on PV	
Figure 12. Impact of saccharification parameters on PV	
Figure 13. Impact of overall process/economic parameters on PV (dilute acid pretreatment)	23
Figure 14. Ethanol cost estimations from previous techno-economic studies	25
Figure G-1. Wastewater treatment section (Area 600)	79
Figure G-2. Steam and power generation section (Area 800)	80
List of Tables	
Table 1. Plant Performance and Cost Growth Variables for Dilute Acid Pretreatment	
Processes	
Table 2. Product Value for Various Pretreatment and Downstream Process Variations	
Table 3. Comparison of Dilute Acid Pretreatment Results from Lab- and Pilot-Scale Data	
Table 4. Costs by Area of the Dilute Acid Pretreatment Process Scenario	
Table 5. Pioneer Plant Analysis Results for the Dilute Acid Pretreatment Process Scenario	
Table A-1. Corn Stover Feedstock Composition	
Table B-1. Sensitivity Parameters for Pretreatment and Saccharification (AREA 200)	
Table B-2. Sensitivity Parameters for Overall Process	
Table C-1. Impact of Pretreatment Parameters on PV	
Table C-2. Impact of Overall Process and Economic Parameters on PV	
Table D-1. Cost Analysis Result Summary for Dilute Acid Pretreatment Processes	43
Table D-2. Cost Analysis Result Summary for Dilute Acid Pretreatment (High Solids)	4.4
Processes	44

Table D-3. Cost Analysis Result Summary for Hot Water Pretreatment Process	45
Table D-5. Cost Analysis Result Summary for AFEX Pretreatment Processes	
Table D-6. Cost Analysis Result Summary for On-site Enzyme Production Processes	
Table D-7. Cost Analysis Result Summary for Pervaporation Purification Processes	
Table D-8. Cost Analysis Result Summary for Separate C5 and C6 Fermentation Processes	
Table E-1. Equipment Lists and Costs for Dilute Acid Pretreatment Processes	
Table F-1. Operating Summary for Dilute Acid Pretreatment Processes	. 62
Table F-2. Operating Summary for Dilute Acid Pretreatment (Pilot) Processes	
Table F-3. Operating Summary for Two-Stage Dilute Acid Pretreatment Processes	
Table F-4. Operating Summary for Hot Water Pretreatment Processes	
Table F-5. Operating Summary for AFEX Pretreatment Processes	
Table F-6. Operating Summary for Separate C5 & C6 Fermentation Processes	72
Table F-7. Operating Summary for Pervaporation Two-Stage Dilute Acid Pretreatment	
Processes	74
Table F-8. Operating Summary for On-site Enzyme Production Processes	
Table H-1. Costs by Area of the Dilute Acid Pretreatment (High Solids) Scenario	81
Table H-2. Costs by Area of the 2-Stage Dilute Acid Pretreatment Scenario	81
Table H-3. Costs by Area of the Hot Water Pretreatment Scenario	82
Table H-4. Costs by Area of the AFEX Pretreatment Scenario	
Table H-5. Costs by Area of the Separate C-5 and C-6 Fermentation Process Scenario	83
Table H-6. Costs by Area of the Pervaporation Process Scenario	
Table H-7. Costs by Area of the On-site Enzyme Production Processes Scenario	. 84
Table I-1. Process Down-Selection Matrix	. 85
Table J-1. Plant Performance and Cost Growth Variables for Dilute Acid Pretreatment (High	
Solids Loading) Processes	. 90
Table J-2. Plant Performance and Cost Growth Variables for Hot water Pretreatment	
Processes	. 90
Table J-3. Plant Performance and Cost Growth Variables for Two-Stage Dilute Acid	
Pretreatment Processes.	91
Table J-4. Plant Performance and Cost Growth Variables for AFEX Pretreatment Processes	. 91
Table J-5. Plant Performance and Cost Growth Variables for On-Site Enzyme Production	
Processes	
Table J-6. PV from Cost Growth Analysis for Various Process Scenarios	92

Methodology

The objective of this study was to select a biochemical conversion process from published literature to produce a second generation liquid biofuel from lignocellulosic biomass. The studies involved several steps defining the objective and scope of the project. They started with a review of various biochemical processes published in journals and reports and then applied two steps of screening to make the final selection. The cost analysis is performed assuming nth plant technology (mature technology) and then subjected to cost growth analysis for a pioneer plant. The following steps explain the basic methodology for performing the techno-economic analysis:

- Search literature for technologies under consideration
- Perform down selection with criteria to narrow to a few scenarios
- Design process models using AspenPlus process simulation using available experimental data
- Size and cost equipment using traditional methods such as literature references and vendor quotations
- Determine project investments and perform discounted cash flow analysis
- Adjust sensitivity parameters and document results
- Perform pioneer plant cost growth and performance analysis.

Summary of the Down-Selection Process

Thirty-five biochemical fuel production technologies were initially selected for consideration (Table I-1). Each technology option was evaluated based on economic and technical feasibility, environmental performance, and uncertainty criteria to determine, at a high level, the technologies with the greatest overall promise in the 5-8 year timeframe. For a plant to be operating at commercial levels in this timeframe, the plant would likely need to be designed based on current data because of the time needed for design, construction, and startup of a plant. A matrix of techno-economic studies was developed for "down selecting" the most promising fuels and processes. Major process and economic parameters such as feedstock, capital expenditure, operating cost, yield, capacity factor, complexity of the process, level of technology development, and internal rate of return were included in the matrix. These parameters cover the major process aspects that reflect the overall economics of the processes. This evaluation was conducted using past models, if they existed. It was also conducted through publicly available literature in 2007. If quantitative numbers were available for the matrix, they were used. But since the technologies are not mature, many matrix entries were qualitative.

Both butanol and ethanol processes were initially considered. Butanol has properties such as higher energy density and immiscibility with water that may make it a better transportation fuel. However, butanol production processes are currently at the lab scale or very early pilot stage of development, and published data on butanol-producing organisms indicate low yields relative to ethanol production. Therefore, only ethanol technologies were adopted for analysis.

Ethanol-producing processes were categorized by pretreatment method. Substantial research has been done on biomass pretreatment for biochemical conversion at the bench scale by the Consortium for Applied Fundamentals and Innovation (CAFI) projects [1, 2, 3]. Based on the results of these studies, concentrated acid, SO₂-steam, lime, and ammonia-recycle-percolation pretreatment were rejected as less attractive due to the high costs associated with the processes.

The pretreatment processes selected for further analysis were:

- 1. Acid pretreatment (single-stage dilute and two-stage dilute)
- 2. Ammonia Fiber Explosion (or Expansion) (AFEX)
- 3. Hot water pretreatment.

Dilute acid is a pretreatment technology that showed promise in the original CAFI study [1, 2] and serves as the base technology for the National Renewable Energy Laboratory's (NREL's) cellulosic ethanol design report [4]. AFEX is a pretreatment that does not require as much water as other pretreatments. Hot water pretreatment has low capital investment requirements. Two-stage dilute acid is a pretreatment that eliminates the need for enzymes for saccharification, one major source of uncertainty in the other pretreatments. Single-stage dilute acid, AFEX, and hot water pretreatment conversions are based on bench-scale experiments from CAFI [3]. Two-stage dilute acid pretreatments are also based on bench-scale experiments [5, 6].

In addition, process variations in combination with pretreatment that may offer attractive system performance were also considered. Among those process variations selected for further study was the production of enzymes on-site using hydrolyzate as a carbon source. On-site enzyme production may be cheaper by precluding the use of stabilizers and other additives that are needed when enzymes are purchased.

Another variation considered was parallel fermentation of 5-carbon (C5) and 6-carbon (C6) sugars. Current cofermentative organisms do not have high ethanol yields and are not highly robust to system variations. We therefore chose to include parallel fermentations of C5 and C6 sugars for comparison with the baseline fermentation.

Another technology that was considered worthy of further analysis was the use of pervaporation instead of the beer distillation column to separate ethanol and potentially allow higher titer and substrate utilization in the fermentor. Pervaporation also has the advantage of lower steam and utility requirements than a distillation column.

The three downstream technologies—parallel fermentation of C5 and C6 sugars, on-site enzyme production, and pervaporation—were compared to a base case using dilute acid pretreatment.

All together, seven scenarios were examined:

- Dilute Acid Pretreatment
- Two-Stage Dilute Acid Pretreatment
- Hot Water Pretreatment

- AFEX Pretreatment
- On-site Enzyme Production with Dilute Acid Pretreatment
- Ethanol Separation using Pervaporation with Dilute Acid Pretreatment
- Separate C5 and C6 Fermentation with Dilute Acid Pretreatment.

Project Assumptions

For each down-selected process a common list of assumptions on process operations and economic analysis was made. The scope of the work was to determine the product value of cellulosic ethanol for a plant operating in the 5-8 year timeframe. This timeframe was chosen because of the renewable fuel standard volumes mandated in the Energy Independence and Security Act of 2007 [7]. For a plant to be operating at commercial levels in this timeframe, the plant would likely need to be designed based on current data as large process plant projects typically take more than four years for design, construction, and startup [8]. The major assumptions are highlighted below, and the complete list is provided in Appendix A.

- The plant capacity is 2000 MT/day.
- The processes use corn stover as feedstock.
- The feedstock contains 25% moisture and the composition is assumed to be the same as that obtained in CAFI II feedstock analysis (Table A-1).
- Plant capacity factor is 96% (350 on-stream days/year).
- Feedstock cost is \$83/dry MT (\$75/dry ST).
- Purchased enzyme cost from off-site source is \$507/MT (\$460/ST) of broth of 10% protein used at a loading of 31.3 mg protein per gram cellulose in the feed. This cost was calculated based on the cost of producing enzyme on-site using hydrolyzate. This cost comes to \$0.69/gallon of ethanol.
- The processes use 2007 lab-scale, experimentally validated data (2007 EVD) and equipment prices (indexed).
- Plant depreciation is calculated following the Internal Revenue Service (IRS) modified accelerated cost recovery system (MACRS) over 7 years for the main plant and 20 years for the cogeneration area.
- Plant life is 20 years.
- The plant is 100% equity financed.
- Contingency factor and working capital are 20% of total direct and indirect costs (TD&IC) and 15% of fixed capital investment (FCI), respectively, for nth plant.
- The plant initiates operation in 5-8 years.
- Adopted units: cost of all purchased chemicals and feedstocks, plant capacity, and yields are reported in metric tons (MT). Operating conditions: temperature (in °C), pressure (in bar), and mass flow rates (in MT/day).

Process Description and Flow Diagram

The different scenarios detailed above were generated by modifying the NREL 2002 production process [4]. Appendix G contains a general description of the process steps that have not been altered from previous NREL studies. Appendix F contains details of operating conditions for the major process steps. The basic cellulosic ethanol production process, modified from NREL's 2002 design report [4], comprises nine sections as shown in Figure 1 and listed below.

- Feed Handling (Area 100)
- Pretreatment and Detoxification (Area 200)
- Enzymatic Hydrolysis and Fermentation (Area 300)
- On-site Enzyme Production (Area 400)
- Product Recovery (Area 500)
- Wastewater Pretreatment (Area 600)
- Storage (Area 700)
- Burner/Boiler Turbo-Generator (Area 800)
- Utilities (Area 900) sections.

The AspenPlus Process Simulator is used in process modeling. Current technological data are used in the simulation and described as the 2007 experimentally validated data (2007 EVD). In the pretreatment area, data for AFEX and hot water 2007 EVD are obtained from CAFI II research [1, 2, 3]. Two-stage dilute acid data are based on available literature [5, 6]. Dilute acid pretreatment data are taken from both CAFI II and NREL research. For all other areas, 2007 EVD conversion data are obtained from NREL research [9]. The overall process block diagram is shown in Figure 1. Operating conditions of the major unit operations of each area and mass flow rates are included in Figure 1.

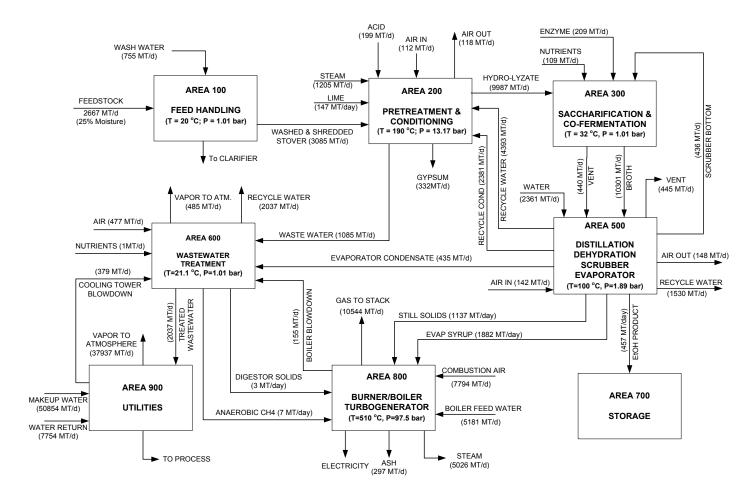


Figure 1. Overall process block diagram of a typical cellulosic ethanol process plant (based on NREL's 2002 design report and modified to 2007 EVD)

Process Variations

This section includes a description of each of the process scenarios. Results from the seven process variations are shown in Table 2 of the Results and Discussion section.

Dilute Acid Pretreatment

Table F-1 includes a summary of the dilute acid operating conditions and model parameters. The biomass from Area 100 is fed by a screw feeder to the presteamer, where low pressure steam (163°C, 4.46 bar) is added to maintain a temperature of around 100°C. The presteamer allows a portion of the pretreatment heat requirement to be met with low pressure steam. The biomass then enters the pretreatment reactor, where high pressure steam (268°C, 13.17 bar) is added as shown in Figure 2. Sulfuric acid, diluted with process water, is added to the reactor at a rate necessary to achieve 1.9 wt% of the liquid phase in the reactor. The reactor temperature, pressure, and residence time are maintained at 190°C, 11.6 bar, and 2 minutes, respectively. The biomass slurry is then flashed to 1.0 bar in the blow-down tank. The solid fraction is separated from the slurry in a Pneumapress pressure filter. In order to reduce toxicity to the fermentation organisms downstream, a liming step is added to neutralize excess H₂SO₄ in the hydrolyzate.

Solid lime is added to the overliming tank along with the aqueous fraction from the Pneumapress to raise the pH to 10. The reaction of lime and H₂SO₄ forms gypsum, which is separated from the hydrolyzate as solid cake. The residence time in the overliming tank is 1 hour. The slurry is pumped to a second tank where additional H₂SO₄ is added to reduce the pH to 4.5. The residence time in the second tank is 4 hours, which allows the gypsum crystals to grow to an adequate size for solid/liquid separation. The gypsum is separated from the slurry in a two-step process, with the first being a hydrocyclone and the second being a rotary drum filter. The conditioned hydrolyzate is mixed with the solid biomass fraction from which it was previously separated in the Pneumapress pressure filter, and the resulting slurry is ready for enzymatic hydrolysis. Mass balance and operating conditions of major unit operations are shown in the process flow diagram (Figure 2).

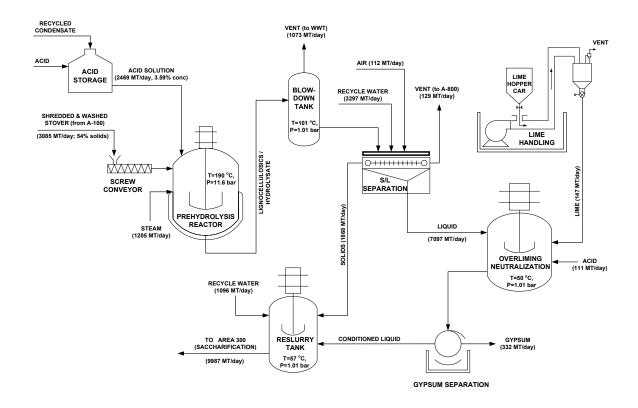


Figure 2. Process flow diagram for dilute acid pretreatment

Two-Stage Dilute Acid Pretreatment

An operating summary of the two-stage dilute acid pretreatment is provided in Table F-2. In the two-stage dilute acid pretreatment process, the first stage solubilizes most of the hemicellulose, just as in the dilute acid pretreatment process. In the second stage, a higher concentration of acid is added to hydrolyze the cellulose and remaining hemicellulose (Figure 3). This contrasts with the dilute acid pretreatment process, where enzymes are used to hydrolyze the cellulose (Figure 4). Mass balance and operating conditions of the major unit operations are shown in the flow diagrams (Figures 3 and 4). Two-stage dilute acid conversion data were taken from literature for softwood and assumed to be similar for corn stover [5, 6].

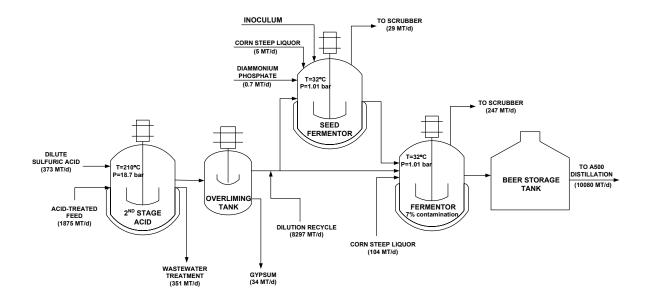


Figure 3. Process flow diagram for two-stage dilute acid pretreatment/hydrolysis and fermentation

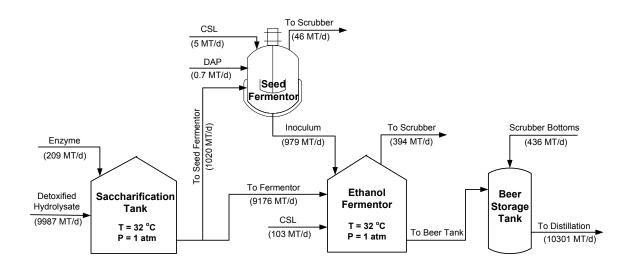


Figure 4. Process flow diagram for base case pretreatment, enzymatic hydrolysis, and fermentation

Hot Water Pretreatment

Table F-3 contains a summary of model parameters for hot water pretreatment. The chopped and washed biomass from Area 100 is mixed with recycled hot water from Area 500. The slurry is fed to a plug flow pretreatment reactor. The reactor pressure is maintained at 12.7 bar and the temperature is held constant at 190°C. The residence time in the pretreatment reactor is 5 minutes. The slurry is then cooled to 65°C and flashed to 1.0 bar in the flash tank. Ammonia is added to the reactor to neutralize acetic acid formed during the pretreatment process. The xylose and cellulose pretreatment yields are shown in Table F-3. Mass flow rates and operating conditions of reactor and major units are shown in the process flow diagram (Figure 5).

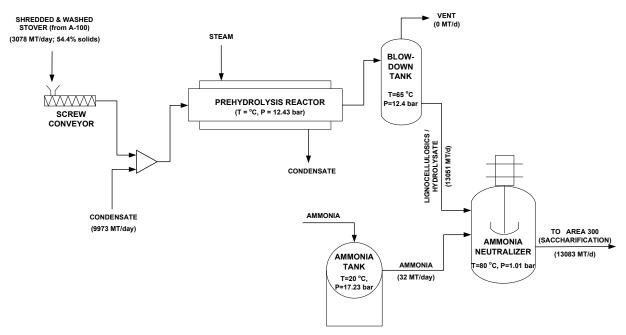


Figure 5. Hot water pretreatment process flow diagram

AFEX Pretreatment

A summary of operating parameters for AFEX pretreatment can be found in Table F-4. In the AFEX pretreatment process, the biomass is treated with liquid anhydrous ammonia under high pressure (17.2 bar) and 60°C for about 5 minutes [10]. The pressure is rapidly released, causing the fibers to explode and increasing the access of enzymes to cellulose. Most of the ammonia is recovered from the blow-down tank. Residual ammonia is recovered from the solids by a flash followed by fractionation from other volatiles. Recovered ammonia vapor is then compressed, condensed, and recycled back into the AFEX reactor [10]. The pretreated biomass is slurried into a holding tank to be sent to Area 300 for enzymatic hydrolysis (Figure 6).

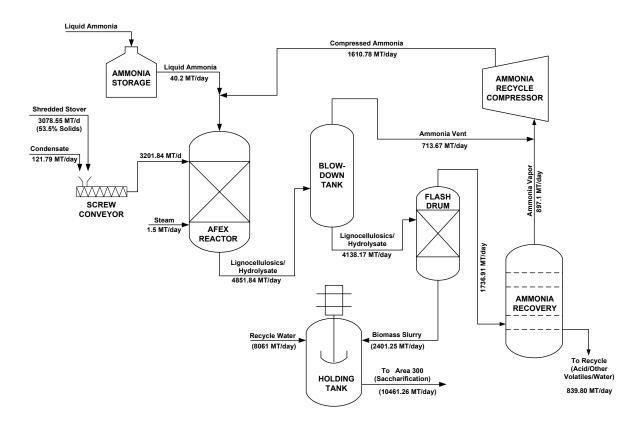


Figure 6. AFEX process flow diagram

Separate C5 and C6 Fermentation

Separate solid and liquid processing (C6 and C5 sugars respectively) takes advantage of enhanced yields where xylose is fermented separately using *Zymomonas mobilis* and glucose is fermented separately with yeast (*Saccharomyces cerevisiae* or *Saccharomyces pastorianus*). This avoids the issue of lower xylose to ethanol yields seen in the current cofermenting organisms. One disadvantage of separate processing is that more water is needed to dilute the solids stream because the best yields are achieved at low solids loading. The additional water increases ethanol recovery costs. The process shown in Figure 7 attempts to mitigate the water issue by using the product stream from the liquor (xylose) fermentation to dilute the stream prior to saccharification. Table F-5 contains a summary of operating parameters for the separate C5 and C6 fermentation scenario, based on work by Dutta et al. [11].

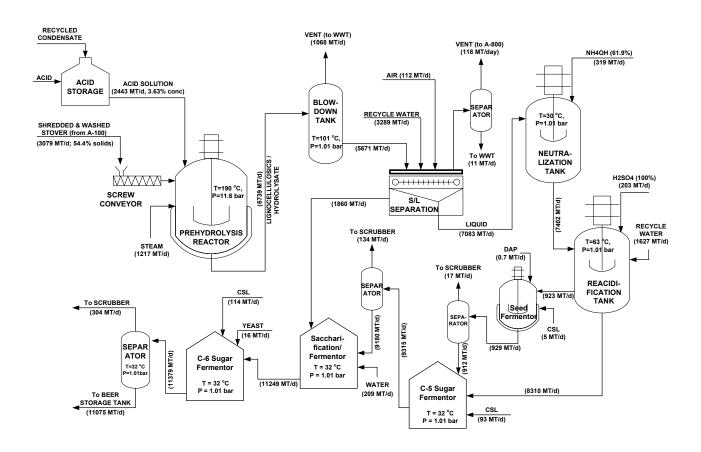


Figure 7. Separate C5 and C6 fermentation configuration

Ethanol Separation Using Pervaporation

Pervaporation refers to separation using a membrane with liquid feed on one side and a low-pressure, gaseous permeate output on the other side. Components in the liquid feed preferentially permeate through the membrane and then evaporate into the gaseous phase. Because pervaporation does not involve a large heat input, the process could save on costs associated with the heat and steam needed for the reboiler of a conventional distillation column. A summary of operating parameters for the pervaporation separation scenario is located in Table F-6.

In contrast to the base case distillation configuration (Figure 8), the pervaporation variation modifies the distillation section of the dilute acid model by inserting a pervaporation system in place of the beer column (Figure 9). The pervaporation system output is calculated from a separation factor and a total material flux needed to achieve the same separation as in the beer column [12]. The separation factors and material fluxes are based on literature [12]. In the base case dilute acid model, the beer column also serves to separate carbon dioxide from the ethanol stream. In the pervaporation model, a flash tank is added to separate out CO₂ at 110°C and a heat exchanger cools the stream to 41°C. The separation of CO₂ is assumed to be easier than what is modeled here, so neither the capital nor utility costs of the flash tank and heat exchanger are included in the economic analysis. The membrane system costs \$200/m² in 1999 dollars, with a replacement needed every five years at a cost of \$100/m² [13].

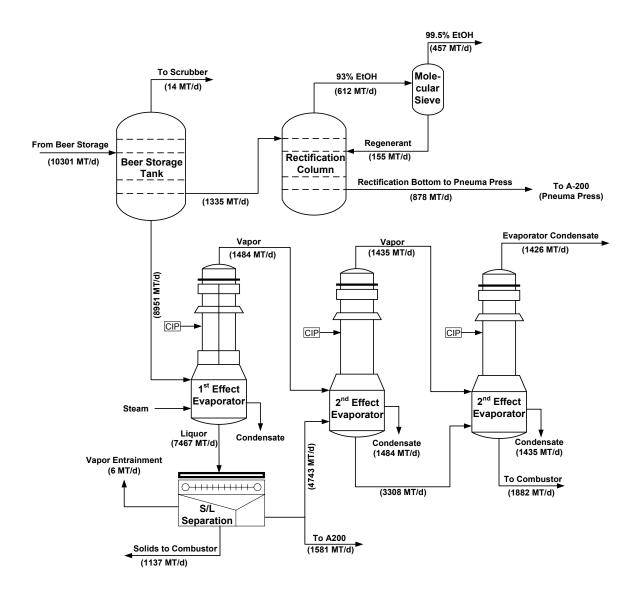


Figure 8. Base case distillation configuration

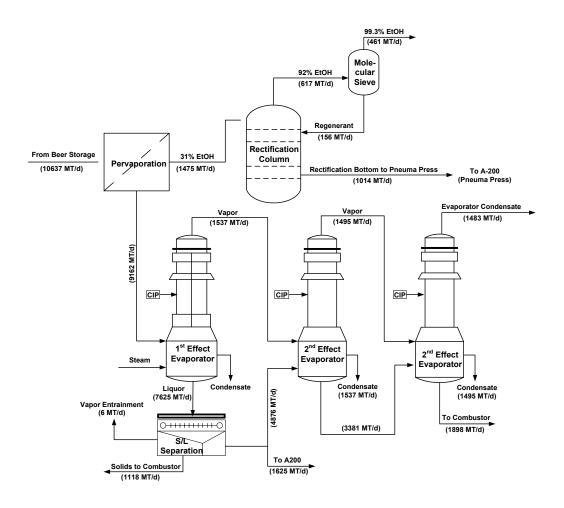


Figure 9. Pervaporation separation process

On-Site Enzyme Production

Table F-7 contains a summary of the on-site enzyme production operating parameters. On-site enzyme production (Area 400) is modeled as a variation to the baseline dilute acid process model (where enzyme is assumed to be purchased from suppliers). This work was based on a design report by NREL in 1999 [14]. Cellulase enzyme is a mixture of endoglucanases, exoglucanases, and β-glucosidase enzymes. In the present case, *Trichoderma reesei* (a fungal strain) is used for on-site cellulase enzyme production. A portion of the conditioned pretreated biomass from Area 200 is pumped to Area 400, where a fraction of the stream is used for the growth of *Trichoderma reesei* inoculums in seed bioreactors. The remainder is pumped into the jacketed aerobic bioreactors where inocula are added from the seed bioreactors to produce enzymes. Corn steep liquor and other trace nutrients are also added to the reactors. Ammonia is used to control pH and to provide additional fixed nitrogen to the fungus; oxygen is supplied by an air compressor. To control foam formation, corn oil is added into the bioreactors. Mass flow rates and process conditions of major unit operations are shown in Figure 10.

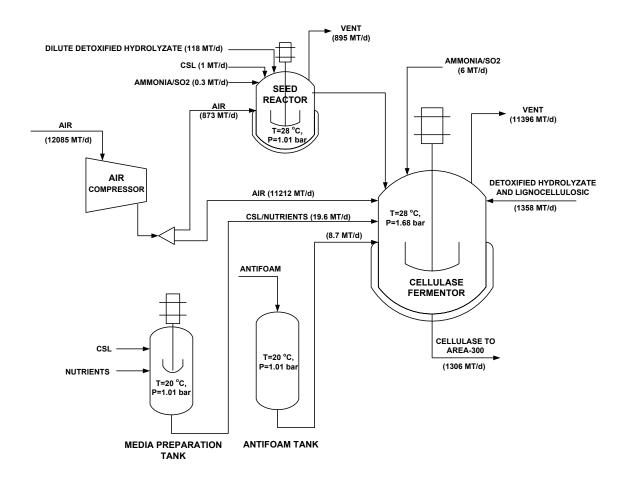


Figure 10. On-site enzyme production process flow diagram

Methodology for Economic Analysis

The base case cost estimation and analysis is performed assuming the plant is an nth plant design. This means that a similar plant was previously constructed and operated without unexpected delays in startup and capacity loss. The process design is assumed to become the nth plant, operating at the reported yields from experimental, bench-scale data. This is a major assumption for a process that is still early in its development, and when an nth plant for cellulosic ethanol becomes commercial, it may not look like this design. However, the nth plant analysis was chosen to provide an analysis parallel to analyses done by different groups, including NREL, the CAFI group, and Pacific Northwest National Laboratory.

However, because of the new technological elements of cellulosic ethanol production there are a number of engineering design and performance uncertainties. These uncertainties are accounted for in the cost growth analysis for a pioneer plant using the risk analysis methodology developed by RAND [15, 16]. The details of the cost estimation for the nth plant and the cost growth analysis for the pioneer plant are discussed in the following subsections.

Methodology for Discounted Cash Flow Analysis for nth Plant

Mass and energy balances for each of the seven selected process variations are performed by AspenPlus Process Simulator. Pinch analysis is performed to optimize energy balances. The

stream flow rates, from AspenPlus simulations, are used to size unit operations. The costs for most of the equipment are obtained from previous vendor quotes obtained by NREL. Individual equipment is scaled and the scaled cost is estimated following exponential correlations as described in Appendix A. The scaled cost is then indexed to a year 2007 dollar value using the Chemical Engineering Plant Cost Index [17]. Separate installation factors are used for each of the unit operations to obtain individual installed equipment costs. The installation factors are obtained from the vendors who provided equipment quotes. The cost analysis is performed following NREL's approach [4] and that found in Peters et al. [18], with modified terminologies. Total installed cost (TIC) is defined as the sum of total installed equipment cost, warehouse, and site development costs.

Engineering and supervision costs, construction expenses, and legal and contractor's fees are assumed to be 32%, 34%, and 23% of purchased equipment cost, respectively. Total direct and indirect costs (TD&IC) is the sum of total installed cost and indirect costs. Contingency is assumed to be 20% of TD&IC, and working capital is 15% of fixed capital investment (FCI). FCI is the sum of TD&IC and contingency, and the total capital investment is the sum of FCI and working capital.

The manufacturing costs include raw materials costs (such as corn stover), variable costs (such as process chemicals, enzyme, nutrients) and fixed operating costs (employee salaries, overhead, insurance, and maintenance). The feedstock cost is assumed to be \$83/dry MT (\$75/dry ST) (Appendix A). The chemical and nutrients costs are obtained from NREL's previous quotes from suppliers and are indexed to 2007 dollar values following the Inorganic Chemical Index of the SRI International Economics Handbook, Economic Environment of the Chemical Industry [19]. NREL estimated the required number of employees and their salaries in their 2002 design report [4]. In the present study, the same number of employees is required for the same plant capacity, and the salaries are indexed to 2007 dollar values following the labor index from the Bureau of Labor Statistics [20].

In the present analysis, the process and steam generation plants are assumed to depreciate in 7 and 20 years, respectively, following IRS MACRS, and the plant life is 20 years. The project is assumed to be 100% equity financed and internal rate of return is 10%. For the present cost analysis, the capital investment is spread over 3 years at a rate of 8%, 60%, and 32% in the first, second, and third years, respectively. The product value (PV) of ethanol is calculated by iterating to reach a net present value of \$0 with a 10% internal rate of return.

Pioneer Plant Analysis

The pioneer plant analysis is performed using a method developed by Merrow et al. of RAND Corporation [15]. This methodology considers two sources of production cost growth in pioneer plants: less than expected plant performance and low capital cost estimation. These sources are regressed with two multi-factor ordinary least squares correlations to estimate the unexpected reduced plant performance (Equation 1) and capital cost growth (Equation 2) associated with pioneer plants.

Equation 1 estimates pioneer plant performance as a percentage of design capacity in the second 6 months after startup.

Plant Performance =
$$85.77 - 9.69 \times NEWSTEPS + 0.33 \times BALEQS$$

- $4.12 \times WASTE - 17.91 \times SOLIDS$ (Eq. 1)

Where,

NEWSTEPS ≡ The number of steps in the process that have not been proven commercially.

BALEQS = The percentage of mass and energy balance equations used in plant design that are validated with commercial-scale data. The RAND report also mentions that some weight is given to rigorous theoretical models.

WASTE ≡ Potential problems that may be associated with waste handling. A 0-5 scale is used, with 0 meaning no waste handling issues and 5 meaning significant waste handling issues.

SOLIDS: The scale used is 0 or 1. If the process handles solids then the value is 1; otherwise it's 0.

Equation 2 estimates the capital cost growth, defined as the ratio of estimated to actual costs.

$$\label{eq:cost-growth} \begin{split} &\text{Cost Growth} = 1.12196 - 0.00297 \times \text{PCTNEW} - 0.02125 \times \text{IMPURITIES} \\ &- 0.01137 \times \text{COMPLEXITY} + 0.00111 \times \text{INCLUSIVENESS} \\ &- C_1 \times \text{PROJECT DEFINITION} \end{split} \tag{Eq. 2}$$

Where,

PCTNEW = The installed cost of all commercially undemonstrated equipment as percentage of total installed equipment cost.

IMPURITIES: Represents the potential process issues that may arise due to impurity buildup from recycle streams or problems due to equipment corrosion. The value ranges from 0 to 5, with 0 being given to processes with no impurity buildup or corrosion issues.

COMPLEXITY \equiv The number of continuously linked process steps.

INCLUSIVENESS ≡ The percentage of three factors: pre-startup personnel costs, prestartup inventory cost, and land purchase. For example, if two of these factors have been rigorously considered, the variable would be given a value of 67%.

C1: C1 is 0.06361 if the design is at pre-development/exploratory or research and development stage and 0.04011 if the design is in commercial or pre-commercial stage. For the present studies C1 is assumed to be 0.06361.

PROJECT DEFINITION: Includes commitment of funds to define the plant scope, basic plant layout, and process flow conditions. Most major equipment is defined and examination of site begins at this point. The amount of work involved here depends on how much information is already available from previous project experience. Often some critical level of engineering (heat and mass balances, equipment need, and so forth) and site-specific information (on-site and off-site unit configurations, soils and hydrology data, health and safety requirements, and environmental requirements) is completed here. A numerical value is assigned to define the level of engineering completed at the time of estimation, following the

level of completeness: (1) engineering completed, (2) moderate or extensive engineering, (3) limited engineering, and (4) screening design stage. Similarly, a value for site-specific information is assigned by the following: (1) definitive or completed work, (2) preliminary or limited work, (3) assumed or implicit analysis, and (4) not used in the cost estimation at all. The range of values given to project definition is 2 (for maximum definition) to 8 (for no definition).

Cost growth analysis for all seven process variations was performed. There was some subjectivity in choosing the parameters for the pioneer plant analysis, so a range of parameters was used to estimate pioneer plant costs for three scenarios: optimistic, most probable, and pessimistic. For the dilute acid pretreatment process the selected variable values of Equations 1-2 are shown in Table 1; the selection justification is discussed below. For all other process variations, the variable values are shown in Appendix J.

Table 1. Plant Performance and Cost Growth Variables for Dilute Acid Pretreatment Processes

Plant Performance (Equation 1)			Cost Growth (Equation 2)				
	Values				Values		
Variables	Opti- mistic	Most Probable	Pessi- mistic	Variables	Opti- mistic	Most Probable	Pessi- mistic
NEWSTEPS ^a	6	6	6	PCTNEW	61.76	61.76	61.76
BALEQS	50	40	30	IMPURITIES	0	3	5
WASTE	1	2	3	COMPLEXITY ^b	6	6	6
SOLIDS	1	1	1	INCLUSIVE- NESS	33	0	0
				PROJECT DEFINITION	6	6	7
Plant Performance (%)	22.10	14.68	7.26	Cost Growth	0.53	0.42	0.32

^a New steps/units: Feedstock Handling, Pretreatment, Saccharification, Cofermentation, Beer Column, and Combustor. ^b Continuously linked steps: Feedstock Handling, Pretreatment, Saccharification, Cofermentation, Distillation, and Steam/Power Generation.

Justification of Correlation Variable Value Selection for Plant Performance (Equation 1) For all three scenarios, the operations considered new steps/units are feedstock handling, pretreatment, saccharification, cofermentation, beer column, and the fluidized bed combustor (for converting lignin to heat and power), resulting in a value of 6 for NEWSTEPS.

Some of the steps and units are being used commercially, so the BALEQS variable is assigned a value of 50, 40, and 30 for optimistic, most probable, and pessimistic scenarios, respectively.

The wastewater contains a small amount of furfural that may not be degraded by the anaerobic or aerobic treatments used in the model, meaning that an additional chemical treatment may be necessary. No additional complications with waste are foreseen. The WASTE variable was assigned a value of 2 for the most probable case. Values of 1 and 3 were assigned for the optimistic and pessimistic cases, respectively.

These variable values are used in Equation 1 to calculate the percentage of Plant Performance for the three cases (Table 1).

Justification of Correlation Variable Value Selection for Cost Growth (Equation 2) The feedstock handling area, pretreatment area, saccharification, cofermentation, beer column, and fluidized bed combustor are selected as new technologies/units to calculate the parameter PCTNEW for all three of the cases.

Some of the degradation products inhibit the saccharification and fermentation process, and buildup of those inhibitors in the process may result in yield loss. For the most probable case, the assigned value for the variable IMPURITIES is 3. For the optimistic and pessimistic cases the assigned values are 0 and 5, respectively.

The process design has six continuously linked process steps, which include feedstock handling, pretreatment, saccharification, cofermentation, distillation, and steam/power generation. Therefore, the value for the variable COMPLEXITY is assigned as 6 for all three cases.

Some of the initial plant inventory is included in the base case cost estimate, although it is not validated in a commercial plant. So, for the optimistic scenario a value of 33% is assigned for the variable INCLUSIVENESS. The value of 0% is assigned for both pessimistic and most probable cases.

A plant site has not been chosen, so none of the site-specific information has been procured. Some level of engineering has been completed. Therefore, a value of 6 is assigned for most probable and optimistic cases for the variable PROJECT DEFINITION and the pessimistic case is assigned a 5.

The assigned variable values are used in Equation 2 to calculate the percentage of cost growth as shown in Table 1. The base case nth plant TCI is divided by the cost growth, obtained from Equation 2 (Table 1), to obtain an estimate for the pioneer plant TCI. The contingency factor is increased to 30%, compared with 20% for an nth plant, to account for additional construction uncertainties. The plant performance, obtained from Equation 1 (Table 1), is multiplied by the first year ethanol sales to account for the reduced production of a pioneer plant. For the discounted cash flow analysis, plant performance is increased by 20% per year until design capacity is reached.

Results and Discussion

nth Plant Cost Analysis

Ethanol yield, byproduct credit, total installed equipment cost, total project investment, and estimated PV for each of the process variations are shown in Table 2.

Table 2. Product Value for Various Pretreatment and Downstream Process Variations

Process Variations	Total Capital Investment (\$MM)	Total Installed Equipment Cost (\$MM)	Ethanol Yield (Gal/MT) ^a	Ethanol Production (MM Gal/Yr) ^b	Electricity Export (\$MM/Yr)	Product Value (\$/Gal) ^c
Dilute Acid Pretreatment (base case)	376	164	76.3 (288.8)	53.4 (202.2)	11.7	3.40 (0.90)
Dilute Acid Pretreatment (high solids)	389	169	72.5 (274.5)	50.8 (192.1)	12.6	3.60 (0.95)
Two-Stage Dilute Acid Pretreatment	391	173	46.8 (177.5)	32.8 (124.2)	16.8	4.38 (1.16)
Hot Water Pretreatment	361	156	55.8 (211.0)	39.0 (147.7)	11.3	4.44 (1.21)
AFEX Pretreatment	386	167	65.9 (249.7)	46.2 (174.8)	16.9	3.69 (0.97)
Pervaporation- Distillation	501	209	76.9 (291.3)	53.9 (203.9)	13.6	3.75 (0.99)
Separate C5 and C6 Fermentation	386	168	79.3 (300)	55.5 (210.1)	6.5	3.67 (0.97)
On-site Enzyme Production	434	188	67.7 (256.3)	47.4 (179.4)	-0.8	3.54 (0.94)

^a Values in parentheses are in liter/MT. ^b Values in parentheses are in MM liter/year. ^c Values in parentheses are in \$/liter.

Each pretreatment process has some variation in yield (47-76 gal/MT) with dilute acid pretreatment being the highest. The lowest PV among all process variations is from the dilute acid pretreatment scenario, which is \$3.40/gal, and those for other pretreatment processes are in the range of \$3.60/gal to \$4.44/gal. The yield from two-stage dilute acid pretreatment is lowest (46.8 gal/MT) and the process requires higher TCI (\$391 million), which drives the PV as high as \$4.38/gal.

The installed equipment cost and TCI for all four pretreatment scenarios are in the range of \$156-\$173 million and \$361-\$391 million, respectively, with hot water pretreatment being the lowest and two-stage dilute acid pretreatment being the highest. The reason for lower installed equipment cost for hot water is because it uses a relatively simple horizontal tubular pretreatment reactor. The installed cost of the tubular reactor is \$311,000 for hot water pretreatment, whereas pretreatment reactors for dilute acid and AFEX pretreatment processes are \$22.99 million and \$9.15 million, respectively. The dilute acid pretreatment process requires long retention time for

overliming, which requires large expensive vessels. Although the AFEX reactor cost is lower than the dilute acid pretreatment reactor, the AFEX pretreatment process has additional expensive unit operations (such as the ammonia compressor) that increase the total installed equipment cost to slightly more than that of dilute acid pretreatment processes.

For the comparison of pretreatment technologies, lab-scale experimental data at low solids loading (25%) were used in the model [3]. In order to understand how process scale-up may impact ethanol production cost, a process model was developed using data from experiments conducted at NREL at higher solids loading (40%). Table 3 presents a summary comparison of the results from the dilute acid pretreatment models.

Table 3. Comparison of Dilute Acid Pretreatment Results from Lab- and Pilot-Scale Data

	Base Case (2007 EVD)	High Solids
Solids Loading	25%	40%
PV (\$/gal)	3.40	3.60
Ethanol Yield (gal/MT)	76.3	72.5
Installed Equipment Cost (MM\$)	164.1	169.4
Fixed Capital Investment (MM\$)	326.8	337.8
Total Capital Investment (MM\$)	375.9	388.5
Lang Factor	3.44	3.43

The PV of the model using high solids loading is \$0.20/gal higher than that of the base case model. This is primarily due to the decreased ethanol production caused by lower yields of monosaccharides at higher solids loadings.

The costs of each process area for the dilute acid pretreatment scenario are presented in Table 4; costs for other scenarios are given in Appendix H. The expensive areas of the dilute acid pretreatment scenario are the pretreatment, saccharification and fermentation, distillation and solids recovery, and boiler and turbo-generator sections. Among these, the boiler and turbo-generator section is the most expensive area, accounting for 56% of the total installed equipment costs.

Table 4. Costs by Area of the Dilute Acid Pretreatment Process Scenario

Cost Areas/Factor	Installed	Cost	Purchased Equipment Cost	
	(MM\$)	(%)	(MM\$)	(%)
Feedstock Handling (Area 100)	10.9	6.6	6.0	5.5
Pretreatment (Area 200)	36.2	22.1	19.7	18.0
Saccharification and Fermentation (Area 300)	21.8	13.3	17.3	15.8
Distillation and Solids Recovery (Area 500)	26.1	15.9	17.2	15.8
Wastewater Treatment (Area 600)	3.5	2.1	2.6	2.4
Storage (Area 700)	3.2	2.0	2.0	1.8
Boiler/Turbogenerator (Area 800)	56.1	34.2	40.3	36.9
Utilities (Area 900)	6.3	3.8	4.2	3.8
Total Installed Equipment Cost	164.1	100	109.3	100
Fixed Capital Investment (FCI)	326.8			
Working Capital (WC)	49.0			
Total Capital Investment (TCI)	375.9			
Lang Factor ^a	3.44			

^a The Lang factor is calculated by dividing TCI by the total purchased equipment cost.

The PV from the pervaporation scenario is \$3.75/gal, which is higher than the PV for the base case process (dilute acid pretreatment process, \$3.40/gal). The cost differential comes from the high capital cost of the pervaporation membrane, which is not well developed commercially.

Ethanol yield in the dilute acid pretreatment process with cofermentation is 76.3 gal/MT. It was thought that separate C5 and C6 sugar fermentation using selective yeast might reduce the PV because of higher yields (79.3 gal/MT). However, the PV is 8% higher than the base case scenario because of increased capital costs primarily due to the additional fermentation vessels required.

It was also thought that on-site enzyme production might provide economic advantages over purchasing enzymes because it eliminates the need to use stabilizing chemicals and to concentrate the enzyme broth prior to transportation. The PV from the on-site enzyme production process is \$3.54/gal, which is \$0.14/gal higher than the base case dilute acid pretreatment process. The cost of the enzyme is affected by a lower electricity credit than the base case. This is because of high electricity consumption by the compressor supplying air to the enzyme production bioreactors that leads to lower net excess electricity and lower ethanol yield (67.7 gal/MT). In the on-site enzyme production process, part of the feedstock (hydrolyzate from Area 200) is diverted to enzyme production, which reduces the overall plant capacity by 6 MMGal of ethanol per year. It is assumed that *Trichoderma reesei* is the enzyme-producing fungal strain. The specific activity of enzyme, yield, and productivity are 600 FPU/g protein, 0.33 g protein/g cellulose and xylose, and 0.125 g protein/L-hr, respectively. The PV is higher for the on-site case than for the off-site case because the off-site case's enzyme cost was determined after increasing the feedstock in order to produce the same amount of ethanol. This increase in scale provided some economic benefit. This comparison does not include costs of stabilizing chemicals

associated with purchased enzymes, so the enzyme cost continues to be uncertain. However, the comparison of an on-site case helps demonstrate what yields and electricity tradeoffs occur when enzyme is produced on-site.

Sensitivity Analysis

Process-specific sensitivity analysis of pretreatment and saccharification operations was performed on all pretreatment process scenarios. This analysis showed the impact of process operation parameters including operating temperature, retention time, acid concentrations, and yields on PV. The results are shown in Figures 11 and 12 (the detailed parameter values and results are tabulated in Table B-1 and Table C-1, respectively). PV is most sensitive to pretreatment solid consistency, retention time, and xylan and cellulose conversions. When the retention time of the dilute acid pretreatment reactor is increased from 2 to 10 minutes, an increase in PV of 16% is observed (Figure 11). When the conversion of xylan to xylose in the pretreatment reactor is reduced from 82.5% (2007 EVD) to 33%, the PV increases by 6%. And when the solid consistency in the hot water pretreatment reactor is increased from 13% to 20%, the PV is reduced by 10%. Xylose and cellulose conversions in the pretreatment reactor of the two-stage dilute acid scenario showed significant impact on PV. The PV increased by 44% and is reduced by 10% when xylan to xylose conversion is reduced from 82.5% to 33% and cellulose to glucose conversion is increased from 6.3% to 23%, respectively. The impact of other pretreatment parameters on PV is not so significant.

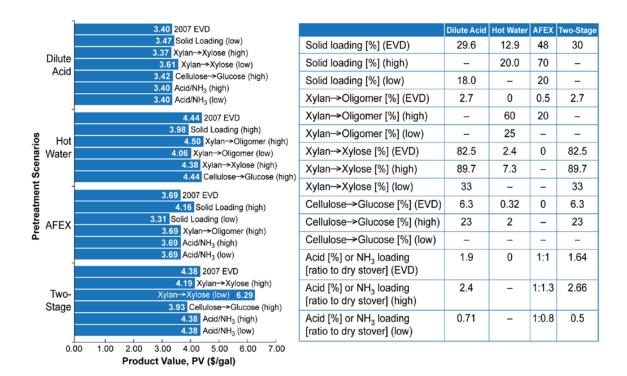


Figure 11. Impact of pretreatment parameters on PV

Among the saccharification parameters, cellulose to glucose conversions showed significant impact on PV for all scenarios (Figure 12; the detailed parameter values and results are tabulated in Table B-1 and Table C-1, respectively). For the dilute acid pretreatment process, the PV increased by 20% when the cellulose to glucose conversion was reduced from 91% to 67%. The impact on PV for the hot water pretreatment scenario was much higher. For the hot water scenario, the PV increased by 31% when the cellulose to glucose conversion was reduced from 90% to 65%.

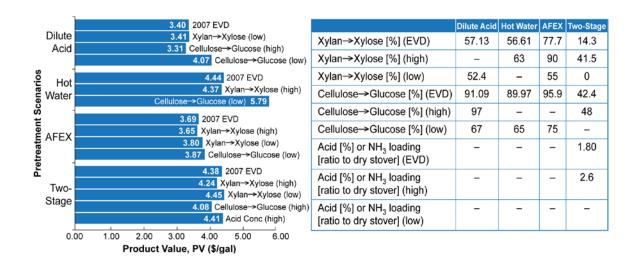


Figure 12. Impact of saccharification parameters on PV

A sensitivity analysis for the major economic assumptions was performed on the dilute acid pretreatment process to test the robustness of the estimated PV. The selected sensitivity parameters were feedstock cost, enzyme loading, enzyme cost (for purchased enzymes), contingency factor, installation factor (or corresponding installed equipment cost), and byproduct (electricity) credit. The feedstock cost and enzyme price have the dominant impact on PV. Enzyme loading, contingency factor, and the total installed equipment cost showed moderate impact on PV. Results are shown in Figure 13 (the detailed parameter values and results are tabulated in Table B-2 and Table C-2, respectively).

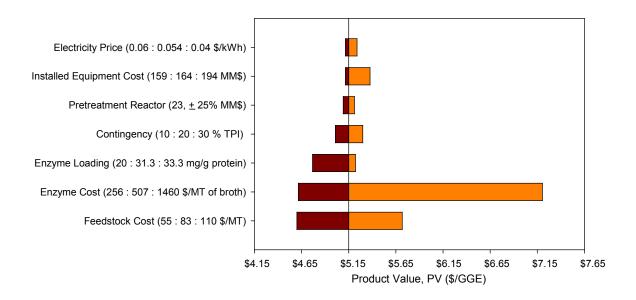


Figure 13. Impact of overall process/economic parameters on PV (dilute acid pretreatment)

When feedstock cost was increased from \$83/dry MT (base case scenario) to \$110/dry MT, PV increased by 11%. PV increased by 38% to \$4.70/gal when enzyme cost was increased from \$507/MT broth to \$1460/MT (equivalent to \$2.00/gal of ethanol produced). When enzyme cost was reduced to \$256/MT (equivalent to \$0.35/gal of ethanol produced), a 10% decrease in PV was observed. The exact cost of cellulase enzymes for large scale needs is not yet publicly available. A recent Novozymes presentation estimated enzyme costs in 2009 to be around \$1-\$2/gal of ethanol, and this range is included in the sensitivity analysis [21]. It may be important to further study the on-site enzyme production process with emphasis on microbial strain, protein yield, specific activity, residence time, oxygen requirement, and overall process area optimization. The current study is limited to publicly available data on those important parameters.

The enzyme loading in the saccharification reactor showed some impact on PV. When the enzyme loading was reduced from 31.3 mg protein/g cellulose (equivalent to 18.8 FPU/g cellulose) to 20 mg protein/g cellulose (equivalent to 12 FPU/g cellulose), the PV was reduced by 7%; the PV increased by 1% when the loading was increased from 31.3 to 33.3 mg protein/g cellulose (equivalent to 20 FPU/g cellulose).

Sensitivity analysis on total installed equipment cost was also performed. When the installed equipment cost was increased from \$MM164.1 (corresponding weighted average installed factor of 2.58 for the base case scenario) to \$MM194 (corresponding installed factor of 3.05 obtained from Peters and Timmerhaus [18]), the PV increased by 4%. Contingency factor showed a similar impact on PV. The impact of other parameters such as reactor cost and electricity price on PV was not significant.

Pioneer Plant Analysis Results

Table 5 shows the pioneer-plant PV results for all three cases. The PV for the most-probable case is \$5.76/gal, and that for the optimistic and pessimistic cases is \$5.01/gal and \$7.08/gal, respectively. The PV for the most probable, optimistic, and pessimistic cases is 69%, 47%, and 108% more, respectively, than the PV estimated for the nth plant. The cost growth analysis shows that the TCI and Lang factor increased significantly from the base case nth plant. For the most probable cost growth scenario, the TCI and Lang factor are MM\$886.4 and 8.11, respectively, which are an increase of 136% from the base case nth plant values.

Table 5. Pioneer Plant Analysis Results for the Dilute Acid Pretreatment Process Scenario

Cost Item	Cost Growth (Pioneer Plant)				
Cost item	Most Probable	Optimistic	Pessimistic		
PV (\$/gal)	5.76	5.01	7.08		
Fixed Capital Investment (MM\$)	833	674	1,111		
Total Capital Investment (MM\$)	886	727	1,164		
Lang Factor	8.11	6.65	10.65		

Comparison with Previous Studies

The results of this study deviate considerably from a number of previous techno-economic analyses of cellulosic ethanol production. There are many contributing factors to this deviation, and an explanation of the most significant of these factors is discussed here. Figure 14 presents a plot of estimated ethanol prices from seven previous studies as a function of feedstock price. The ethanol and feedstock prices were updated to 2007 dollars using the Consumer Price Index. The solid line on the plot represents the PV for the dilute acid pretreatment scenario using the model developed in this study as a function of feedstock price.

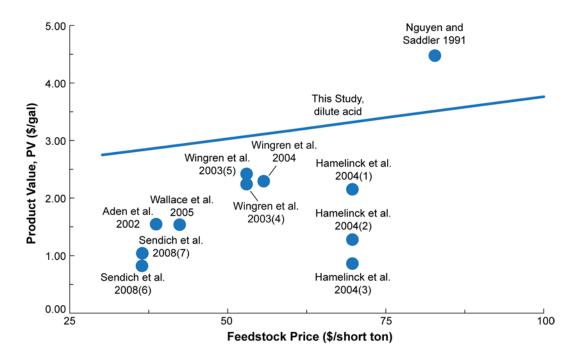


Figure 14. Ethanol cost estimations from previous techno-economic studies.

(1) Short term technology—Simultaneous saccharification and fermentation (SSF). (2) Middle term technology—Simultaneous saccharification and cofermentation (SSCF). (3) Long term technology—Consolidated bioprocessing (CBP). (4) Separate hydrolysis and fermentation (SHF). (5) SSF. (6) CBP. (7)

After updating the feedstock and ethanol prices to 2007 dollars, much of the difference from previous studies can be explained by the clear correlation that exists between feedstock price and ethanol price. However, all of the studies except that of Nguyen and Saddler [22] remain lower than the line derived from this study. The study by Hamelinck et al. [23] represents a significant outlier from the apparent correlation between feedstock price and ethanol price. The three ethanol price estimates are for short-term (5 years from time of study), middle-term (10–15 years), and long-term (20+ years) technology implementation. The short-term estimate is closest to the time frame considered in this study. However, it also deviates from the trend of other studies. The assumptions for the short-term estimate—including feedstock input, rate of return, and reaction conversions—are quite similar to those used in this study, and the TCI (updated to 2007 dollars) is nearly equal as well. The most significant difference from this study is the non-feedstock operating cost, which is approximately \$0.32/gal ethanol (EtOH) compared to

\$1.68/gal. This is partly due to lower costs for corn steep liquor, cellulase, and other raw materials. This factor accounts for most of the discrepancy between ethanol price estimates.

The ethanol price from the study published by Sendich et al. [24] is also slightly lower than the apparent correlation of feedstock and ethanol price. The lowest estimate in that study assumes the use of consolidated bioprocessing, which is an advanced technology also modeled in the long-term estimate from Hamelinck et al. [23]. The higher ethanol price estimate of \$1.03/gal is from a model using simultaneous saccharification and cofermentation (SSCF). SSCF is a more advanced technology than was considered in this study; this factor results in lower capital and operating costs by combining enzymatic saccharification and fermentation. A new AFEX pretreatment scheme was also employed, which may have contributed to lower capital and operating costs of pretreatment.

The enzyme cost used in this study is much higher than that used in other studies. Because enzyme cost is such a significant fraction of the PV, it contributes significantly to the discrepancy between the current study and previous studies. For example, the enzyme prices used in the prior studies of Wingren et al. (2003), Wingren et al. (2004), and Aden et al. [25, 26, 4] are approximately 30%, 30%, and 17% of the price used in this study, respectively.

Conclusions

The present study is based on published technological and economical data that in many ways lacks specifics and details. Thus, a list of assumptions was developed. Sensitivity analysis on those assumptions was performed, and their impact on TCI and PV was wide. The studies identify the strengths and weaknesses of the technology. The major strength of the technology is its pre-commercial maturity. Several pilot-scale cellulosic ethanol plants are in development today. The U.S. Department of Energy has funded 10 pioneer plant projects producing biofuels using a biochemical pathway [27]. However, technological and economic data from these pilot and demo plants are not publically available for use in this study.

The published data in 2007 shows that the technology can reach 4.5% of ethanol concentration in the fermented beer, which is approximately one-third of what commercial grain ethanol plants are achieving. The enzyme and feedstock costs are two major cost contributors. In our studies, cellulase price is assumed to be nearly \$0.70/gal of ethanol produced and its loading is 18.8 FPU/g of cellulose. The high cost of enzymes represents a significant opportunity to reduce the PV through improved biotechnology. The current feedstock cost is assumed to be \$83/MT. However, the cost is likely to be location sensitive. It is important to critically estimate the feedstock cost, which may limit the plant locations to certain areas. Published improvements in process technology since 2007 have not been considered in this work, and these improvements would likely decrease PV for a project being designed today.

References

- 1. Eggeman, T.; Elander, R.T. "Process and Economic Analysis of Pretreatment Technologies." *Bioresource Technology*; Vol. 96(18), 2005; pp. 2019-2025.
- 2. Elander, R.; Eggeman, T. *Alternative Pretreatment (CAFI)—Inital Data And Economic Analysis*. Report. Golden, CO: National Renewable Energy Laboratory, 2004.
- 3. Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladish, M.R.; Lee, Y.Y. "Comparative Sugar Recovery Data from Laboratory Scale Application of Leading Pretreatment Technologies to Corn Stover." *Bioresource Technology*; Vol. 96, 2005; pp. 2026-2032.
- 4. Aden, A.; Ruth, M; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Likes, J. *Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover*. Report No. NREL/TP-510-32438. Golden, CO: National Renewable Energy Laboratory, 2002.
- 5. Neeves, K.; Ibsen, K. *Lignocellulosic Biomass-to-Ethanol Process Design and Economics Using Two-Stage Dilute Acid Hydrolysis*. Report. Golden, CO: National Renewable Energy Laboratory, 2000.
- 6. Nguyen, Q.A.; Tucker, M.P.; Keller, F.A.; Eddy, F.P. "Two-Stage Dilute-Acid Pretreatment of Softwoods." *Applied Biochemistry and Biotechnology*; Vol. 84-86, 2000; pp. 561-576.
- 7. The Energy Independence and Security Act of 2007. Public Law 110-140; 121, 1491. Available at http://frwebgate.access.gpo.gov/cgibin/getdoc.cgi?dbname=110_cong_bills&docid=f:h6enr.txt.pdf.
- 8. Myers, C.W.; Shangraw, R.F.; Devey, M.R.; Hayashi, T. *Understanding Process Plant Schedule Slippate and Startup Costs*. Report No. R-3215-PSSP/RC. Santa Monica, CA: RAND Corp., June 1986.
- 9. Aden, A. *Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model*. Report No. NREL/TP-510-43205. Golden, CO: National Renewable Energy Laboratory, 2008.
- 10. Teymouri, F.; Laureano-Perez, L.; Alizadeh, H.; Dale, B.E. "Optimization of the Ammonia Fiber Explosion (AFEX) Treatment Parameters for Enzymatic Hydrolysis of Corn Stover." *Bioresource Technology*; 96, 2005; pp. 2014-2018.
- 11. Dutta, A.; Dowe, N.; Ibsen, K.; Schell, D.; Aden, A. "Comparison of Biochemical Conversion Process Configurations for the Production of Cellulosic Ethanol." *Biotechnology Progress*; Vol. 26(1), 2009; pp. 64-72. DOI: 10.1002/btpr.311.

- 12. Hsu, D. *Process Economics of Pervaporation Membrane* **S***eparation of Ethanol and Water in the Biochemical Design Report*. Technical Memo. Golden, CO: National Renewable Energy Laboratory, 2008.
- 13. O'Brien, D.J.; Roth, L.H.; McAloon, A.J. "Ethanol Production by Continuous Fermentation-Pervaporation: A Preliminary Economic Analysis." *Journal of Membrane Science*; Vol. 166(1), 2000; pp. 105-111.
- 14. Wooley, R.; Ruth, M.; Sheehan, J.; Ibsen, K.; Majdeski, H.; Galvez, A. *Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios*. Report No. NREL/TP-580-26157. Golden, CO: National Renewable Energy Laboratory, 1999.
- 15. Merrow, W.E.; Phillips, K.E.; Myers, C.W. (1981). *Understanding Cost Growth and Performance Shortfalls in Pioneer Process Plants*. Report No. RAND/R-2569-DOE. Santa Monica, CA: The Rand Corporation, 1981.
- 16. Wallace, B. Cost Estimation for a Lignocellulosic Biomass to Ethanol Pioneer Plant. NREL Technical Memo. Golden, CO: National Renewable Energy Laboratory, 2003.
- 17. "Chemical Engineering Plant Cost Index." Chemical Engineering. November 2008.
- 18. Peters, M.S.; Timmerhaus, K.D.; West, R.E. *Plant Design and Economics For Chemical Engineers*. Fifth Edition. New York: McGraw Hill, 2004.
- 19. "Inorganic Chemical Index." SRI International Economics Handbook, Economic Environment Of The Chemical Industry. 2008 Menlo Park, CA: SRI Consulting, 2008.
- 20. "Labor Index." Washington, DC: U.S. Bureau of Labor Statistics, 2008.
- 21. Bryant, C. "Step Change in Cellulosic Ethanol The Future is Moving Closer." Presented at the National Ethanol Conference, San Antonio, TX, 2009.
- 22. Nguyen, Q.A.; Saddler, J.N. "An Integrated Model for The Technical and Economic Evaluation of an Enzymatic Biomass Conversion Process." *Bioresource Technology*; Vol. 35(3), 1991; pp. 275-282.
- 23. Hamelinck, C.N.; van Hooijdonk, G.; Faaij, A.P.C. "Ethanol from Lignocellulosic Biomass: Techno-Economic Performance in Short-, Middle- and Long-Term." *Biomass and Bioenergy*; Vol. 28, 2005; pp. 384-410.
- 24. Sendich, E.N.; Laser, M.; Kim, S.; Alizadeh, H.; Laureano-Perez, L.; Dale, B.; Lynd, L. "Recent Process Improvements for the Ammonia Fiber Expansion (AFEX) Process and Resulting Reductions in Minimum Ethanol Selling Price." *Bioresource Technology*; Vol. 99, 2009; pp. 8429-8435.

- 25. Wingren, A.; Galbe, M.; Zacchi, G. "Techno-Economic Evaluation of Producing Ethanol from Softwood: Comparison of SSF and SHF and Identification of Bottlenecks." *Biotechnology Progress*; Vol. 19, 2003; pp. 1109-1117.
- 26. Wingren, A.; Soderstrom, J.; Galbe, M.; Zacchi, G. "Process Considerations and Economic Evaluation of Two-Step Steam Pretreatment for Production of Fuel Ethanol from Softwood." *Biotechnology Progress*; Vol. 20, 2004; pp. 1421-1429.
- 27. "Major DOE Biofuels Project Locations." Washington, DC: U.S. Department of Energy, 2008. Available at http://www.energy.gov/media/Major_DOE_Biofuels_Project_Locations.pdf; accessed January 27, 2010.

Appendices

Appendix A - Assumptions for Techno-economic Studies of Biochemical Conversion Processes

Plant Size, Location, and Construction

- Optimum plant size is regarded as economically feasible plant size, which would be a plant with capacity of 2000 MT/day (dry feedstock).
- The plant produces EtOH (as product) and electricity (as byproduct).
- The plant is considered to be located in the middle of corn farmland.
- 25% of the land will be tied up in infrastructure (roads and buildings).
- 75% of the farm land plants corn.
- The plant will be designed based on the state of the technology (as of 2007), and it would be the nth plant of its kind. RAND/risk analysis will inflate price from mature nth plant to immature pioneer plant.
- The online time would be 350 days per year (equivalent capacity factor of 96%).
- Construction time of 24 months is considered.
- Startup period would be 25% of the construction time (6 months).
- During this period, an average of 50% production will be achieved with expenditure of about 75% of variable expenses and 100% of fixed expenses.

Units

- Plant capacity, mass flow, and yields are based on metric tons (MT) per day.
- Feedstock cost and purchased chemicals costs are based on short tons (ST).
- Ethanol sale price is in \$/gallon, and byproduct credit (electricity) is in \$/kWh.
- Process operating conditions are:
 - o Temperature in °C
 - o Pressure in bar
 - o Mass flow rates in MT/day.

Feedstock and Enzymes

- Corn stover (composed of stalks, leaves, cobs, and husks) is considered as feedstock.
 - o The feedstock will be delivered to the feed handling area of the plant.
 - o Moisture content in the feedstock is 25% (wet basis).
 - Feed composition is assumed to be the same as CAFI II analysis results. Table A-1 displays feedstock composition.
 - Feedstock is delivered in bales.
 - o The feedstock transportation and management protocol are not considered.

- o Feed cost is assumed to be \$83/MT (\$75/dry short ton) at the gate.
- 72 hours of on-site storage (corn stover bales) is considered, and long term storage costs are not included in the analysis.
- Stover is washed of dirt and metal is removed; no biomass is lost in washing.
- Enzyme will be purchased or produced on-site through purchase/licensing agreements with enzyme suppliers.
 - o Enzyme loading is assumed as 31.3 mg protein/g cellulose in original feed.
 - o Enzyme cost is \$507/MT broth when purchased from off-site sources.

Components	Composition (%)	Components	Composition (%)
Extractives	8.26	Lignin	10.69
Cellulose	33.43	Ash	5.93
Xylan	22.16	Acetate	5.44
Galactan	1.36	Protein	2.24
Arabinan	4.08	Soluble Solids	5.83
Mannan	0.58	Moisture	25

Table A-1. Corn Stover Feedstock Composition

Material and Energy Balance

Material Balance

- Reactions and conversions of hemicellulose carbohydrates (arabinan, mannan, galactan) are assumed to have the same value as xylan in the pretreatment hydrolyzer (depends on pretreatment).
- A total of 7% of fermenting sugars is assumed to be lost to contamination, which may be regarded as bad batches (the bad batches are dumped and regarded as loss).
- The total amount of water from the pressure filter (bottom product of the first distillation column) that is directly recycled is set to be 25% (to minimize contaminant buildup in the stream).
- Boiler blow down is considered to be 3% of steam production.
- Carbon efficiency can be calculated based on carbohydrate carbon content, as follows:

$$Carbon\ efficiency\ (\%) = \frac{Carbon\ in\ Ethanol}{Carbon\ in\ Biomass\ Carbohydrate} \times 100$$

- Cooling tower windage is 0.1% of the total flow to the tower.
 - The tower blow down is 10% of the of the sum of the evaporative loss plus windage.
- Well water will be used as process makeup water (lost to evaporation, blow down, windage, in solid waste).

Energy Balance

- Heat loss from the reactor will not be accounted for in energy balance calculations.
- Heat loss from the combustor is accounted for, totaling about 2.2%.
- Electricity will be generated by burning lignin and waste (process waste and pressed solids from wastewater treatment), which will be used in the plant, and the net surplus will be sold to grid at a price of \$0.054/kW (2007 dollar value).

Equipment Design, Material of Construction, and Costing Equipment Design

- The reactors will be modeled using experimentally determined conversions of specific reactions (kinetic expressions will be not used because of the level of their development).
- If the size of any equipment is known to change linearly with the inlet flow, that information can be used for equipment scaling (a characteristic of the size might be the heat duty for a heat exchanger if the log-mean temperature difference is known not to change).
- For some equipment, nothing can be easily related to the size, in which case the unit will be resized with each process change (for example heat exchangers with varying temperature profiles; in this case, the heat exchanger area will be calculated each time the model will be run and the cost will be scaled using the ratio of the new and original areas).

Material of Construction

- The materials of construction for all equipment (except the pretreatment reactor, flash tank, and Pneumapress equipment) will be as follows (Delta-T/NREL experience):
 - o SS316 for flash tank (for the solid-liquid separation equipment)
 - o Incoloy 825-clad steel for continuous pretreatment reactor and its parts in contact with acid, and SS316L for most other parts including presteamer.

Costing

- All pumps, tanks, screw conveyors, agitators, heat exchangers, and surge tanks will be estimated using ICARUS Process Evaluator and NREL database.
- Large vessels (saccharification tank, fermentors, seed hold tanks), boiler feed water softening equipment, anaerobic and aerobic digesters, and filter press will be estimated from quotation.
- Smaller vessels (seed fermentor) and coil coolers will be estimated by ICARUS and NREL database.
- If process changes are made and the equipment size changes, the equipment will be recosted following the exponential scaling expression:

New Cost = Original Cost
$$\left(\frac{\text{New size }*}{\text{Original size }*}\right)^{\text{exp}}$$

*or characteristic linearly related to the size

- o The scaling exponents are obtained from NREL's vendor quote database.
- The purchased equipment cost obtained in a particular year (before 2007) will be indexed to the year of 2007 using the Chemical Engineering Index.
- Installation factors (from Delta-T/NREL experience for aqueous-based process) will be applied to purchased equipment costs to determine the installation cost (not ICARUS).

Chemical Costing

- Cost of acids and other chemicals, including boiler feed water softening chemical cost, will be obtained from quotation.
 - The cost of the chemicals will also be indexed following Industrial Inorganic Chemical Index (from SRI) to estimate the cost of the chemicals in the year of 2007.

Operating Cost

- Working capital is assumed to be 15% of fixed capital investment.
 - It is assumed that the product will be made and shipped and payment received in 30 days.
- Annual maintenance materials will be 2% of the total installed equipment cost.
- Employee salaries will be indexed, if required, to the year 2007 following the data of the Bureau of Labor Statistics.
- Salaries of the yard employees will not include benefits and will be covered in the general overhead category.
 - O General overhead will be a factor of 60% applied to the total salaries and covers items such as safety, general engineering, general plant maintenance, payroll overhead (including benefits), plant security, janitorial and similar services, phone, light, heat, and plant communications.

Wastewater Treatment Plant

- The process will be designed for zero discharge to a municipal treatment plant in a steady-state mode, and the treated water will be suitable for recycling to the process.
- Any process upset (sudden increase of solids in the wastewater) will not be considered in the model.
- Rain and snow run-off, equipment washing, and other non-process waters are assumed to flow to the municipal wastewater treatment system; other intermittent loads (process spills) will not be considered in the design.
- No insoluble components (cellulose, xylan) will be included in the chemical-oxygendemand (COD) calculations because of uncertainty of their reactivity.
- Biological oxygen demand in the anaerobic digester is assumed to be 70% of the COD.
 - o COD reduction in both digesters is considered as 99.4%.

Greenhouse Emissions and Control

- All of the sulfur entering into the combustor is converted to SO₂.
 - o 1% of the generated SO₂ is converted to sulfuric acid.
 - o Flue gas temp will be kept above the dew point of sulfuric acid.
- Carbon monoxide is assumed to be generated at a rate of 0.31 kg/MWhr.
 - o Unburned carbon (char) in the ash is low at 1%.
- NO_x is generated at 0.31 kg/MWhr.
- Baghouse efficiency is taken as 98.8% (from Foster Wheeler Energy Limited experience) and will control the emission level below new source performance standard limit.
- The nitrogen level in the combined feed to the combustor is similar to coal when ammonia species are included, but more like untreated biomass when they are not.
 - o Impact of global warming potential of NOx is small relative to global warming potential of CO₂ emission from the process.

Cost Analysis

- The total plant investment cost will be determined by applying overhead and contingency factors (NREL, ConocoPhillips Company experience and literature) to installed equipment costs.
 - o 20% (of total direct and indirect cost) contingency is assumed for nth plant, and 30% for pioneer plant.
- Warehouse cost is 1.5% of total installed equipment cost, and site development cost is 9% of the installed cost of process equipment areas (A100, A200, A300 and A500) (Delta-T/NREL/published data).
 - The estimates are location sensitive.
- Total installed cost (TIC) includes total installed equipment cost, warehouse cost, and site development cost.
- Indirect cost involves:
 - o Engineering and supervision (32% of purchased equipment cost)
 - o Construction expenses (34% of purchased equipment cost)
 - o Legal and contractor's fees (23% of purchased equipment cost).
- Total direct and indirect cost (TD&IC) includes TIC and indirect costs.
- Working capital is assumed as 15% of FCI (FCI is the sum of TD&IC and contingency).
- Total capital investment is the sum of FCI and working capital.
- To determine the product value per gallon of ethanol (PV), a discounted cash flow analysis will be used (after knowing the major three costs areas: (i) total capital investment, (ii) variable operating costs, and (iii) fixed operating cost).

- o A 10% discounted cash flow rate of return will be used over a 20-year plant life.
- o The plant is considered 100% equity financed.
- For federal tax return purposes, depreciation will be determined as follows:
 - IRS modified accelerated cost recovery system, which includes general depreciation system, will be followed that allows both the 200% and 150% declining balance (DB) methods of depreciation.
 - o This allows the shortest recovery period and the largest deductions.
 - According to the IRS, the steam production plant should use a 20-year recovery period (depreciated over 20 years).
 - Any other property not specifically described in the publication should be depreciated using a 7-year recovery period.
 - Property listed with a recovery period less than 10 years will use the 200% DB depreciation method and a 20-year recovery period property will use the 150% DB depreciation.
 - State tax will not be considered for the calculation (because the location of the plant is not specified).
- Return on investment will be calculated on a per gallon basis. Income tax will be averaged over the plant life and that average will be calculated on a per gallon basis.

Appendix B - Sensitivity Parameters and Values

Table B-1. Sensitivity Parameters for Pretreatment and Saccharification (AREA 200)

	Dilute Acid (2007 EVD)	2-Stage D	-Stage Dilute acid		Hot Water		AFEX		
Parameters	Base Case	Sensitivity	Base Case	e (50%)	Sensitivity	(0-100%)	Base Case	Sensitivity	Base Case	Sensitivity
	(50%)	(0-100%)	1 st Stage	2 nd Stage	1 st Stage	2 nd Stage	(50%)	(0-100%)	(50%)	(0-100%)
Pretreatment										
Temperature (°C)	190	190-200	190	210	180		190	190-200	108	90-110
Pressure (atm)	11.6		12	18.5			12.6	12.6-15.4	18.7	
Retention time (min)	2	1-10	2				15	15-5	5	5
Catalyst (Acid/NH ₃) conc (%)	1.9	0.71-2.4	1.64	1.80	0.5-2.66	2.6	0	N/A	1.1	0.5-1.3
Solid consistency (%)	29.6	18-29.6%	30	30			12.9	12.9-20	48	20-70
Conversion (%)										
Cellulose → Glucose	6.3	6.3-23	6.3	42.4	23	48	0.32	2-2.5	0	N/A
Xylan → Xylose oligomer	2.7		2.7	0			0	N/A	0.5	N/A
Xylan → Xylose	82.5	33-89.7	82.5	14.3	33-89.7	0-41.5	2.4	7.3-25	0	N/A
Saccharification										
Conversion (%)										
Cellulose → Glucose	91.09	67-97					89.97	65	95.9	75
Xylan → Xylose	57.13	52.4					56.61	63	77.7	55-90

Table B-2. Sensitivity Parameters for Overall Process

	Dilute Acid (2007 EVD)		2-Stage Dilu	2-Stage Dilute acid		Hot Water		
Parameters	Base Case (50%)	Sensitivity (0-100%)	Base Case (50%)	Sensitivity (0-100%)	Base Case (50%)	Sensitivity (0-100%)	Base Case (50%)	Sensitivity (0-100%)
Feedstock Cost (\$/MT) ^a	83	55-110	55	83-110	83	55-110	83	55-110
Pretreatment Reactor Installed Cost (MM\$) ^b	23	14-32.7			0.32	0.22-0.62	25.7	20-40
Project Contingency (%)	20	10-30	20	20-30	20	10-30	20	10-30
Installation Factor or Cost (MM\$)								
Factor	2.58	2.50-3.05			2.59	2.50-3.05	2.05	2-4
Total Installed Equipment Cost	164.1	159-194			156	151-184	211.5	200-275
Enzyme Cost (\$/MT broth)	507	256-1460			507	256-1460	507	256-1460
Enzyme loading (mg protein/g cellulose)	31.3	20-33.3	31.3	20-33.3	31.3	20-33.3	31.3	20-33.3
Value of Excess Electricity/ Byproduct Credit (\$/kWh)	0.054	0.03-0.06	0.054	0.03-0.05	0.04	0.03-0.05	0.04	0.03-0.05

^a Feedstock contains 25% moisture. ^b 2007 indexed installed equipment cost.

Appendix C - Sensitivity Results

Table C-1. Impact of Pretreatment Parameters on PV

		Sensitiv	ity	Production	P	V		
		Parameter	Values	(MMGal/Yr)	(\$/Gal)	Change (%) ^a		
Dilute Acid Pretreatment — 2007 EVD Scenario								
Base Case				53.4	3.40			
		Reactor temperature (°C)	200.0	53.4	3.40	0		
		Residence time (min)	10	53.4	3.93	15.6		
	High ^b Scenarios	Acid concentration (%)	2.4	53.4	3.40	0		
		Cellulose to Glucose (% conv)	23	53.4	3.42	0.6		
Pretreatment		Xyl to Xylose (% conv)	Xyl to Xylose 80.7 53		3.37	-0.9		
	Low ^b Scenarios	Residence time (min)	1	53.4	3.34	-1.8		
		Solid consistency (%)	18.0	53.4	3.47	2.1		
		Acid concentration (%)	0.71	53.4	3.40	0		
		Xyl to Xylose (% conv)	33	50.1	3.61	6.2		
	High Scenarios	Cellulose to Glucose (% conv)	97	54.9	3.31	-2.6		
Saccharification	Low	Cellulose to Glucose (% conv)	67	44.6	4.07	19.7		
	Scenarios	Xylan to Xylose (% conv)	52.4	53.3	3.41	0.3		
Two-Stage Dilute	Acid Pretre	atment — 2007	EVD Sce	nario				
Base Case				42.5	4.38			
1 st Stage Acid Pretreatment	High	Cellulose to Glucose (% conv)	23	47.3	3.93	-10.3		
(Pretreatment)	Scenarios	Xylan to Xylose (% conv)	89.7	44.4	4.19	-4.3		

		Sensitivit	ty	Production	P\	/
		Parameter	Values	(MMGal/Yr)	(\$/Gal)	Change (%) ^a
		Other hemicellulose to monomers (% conv)	90	42.5	4.38	0
		Acid Concentration (%)	2.66	42.5	4.38	0
		Reactor temperature (°C)	180	42.5	4.37	-0.2
	Low Scenarios	Acid concentration (%)	0.5	42.5	4.38	0
		Xylan to Xylose (% conv)	33	29.5	6.29	43.6
	Lligh	Cellulose to glucose (% conv)	48	45.7	4.08	-6.8
2 nd Stage Acid	High Scenarios	Xylan to Xylose (% conv)	41.5	43.9	4.24	-3.2
Pretreatment (Saccharification)		Acid concentration	2.6	42.4	4.41	0.7
	Low Scenarios	Xylan to Xylose (% conv)	0	41.8	4.45	1.6
Hot Water Pretrea	atment — 20	07 EVD Scenari	0			
Base Case				39.0	4.29	
		Reactor temperature (°C)	200	39.0	4.29	0
		Residence time (min)	20	39.0	4.29	0
	High	Solid consistency (%)	20.0	39.0	3.84	-10.2
Drotrootmont	Scenarios	Cellulose to Glucose (% conv)	2	39.1	4.29	0
Pretreatment		Xylan to Oligomer (% conv)	60	38.5	4.36	1.6
		Xylan to Xylose (% conv)	7.3	39.5	4.24	-1.1
	Low	Residence time (min)	5	39.0	4.29	0
	Scenarios	Xylan to oligomer (% conv)	25	42.9	3.92	-8.4

		Sensitivi	ty	Production	P\	/
		Parameter	Values	(MMGal/Yr)	(\$/Gal)	Change (%) ^a
		Xylan to Xylose (% conv)	63	39.6	4.23	-1.4
Saccharification	High Scenarios	Cell Cellulose to Glucose (% conv)	Cell Cellulose to Glucose 65		5.61	30.7
Cacchanication	Low Scenarios	Cellulose to Glucose (% conv)	65	29.7	5.61	30.7
AFEX — 2007 EV	D Scenario					
Base Case				46.2	3.69	
		Reactor temperature (°C)	110	46.1	3.69	0
	High Scenarios	Solids consistency 70 46.2		46.2	4.16	12.7
		Xylan to Oligomer (%conv)	20	46.2	3.69	0
Pretreatment		Ammonia loading (ratio to dry stover)	1:0.8	46.2	3.69	0
		Reactor temperature (°C)	80	46.0	3.68	-0.3
	Low	Solid consistency (%)	20	46.2	3.31	-10.3
	Scenarios	Xylan to Xylose (%conv)	90	46.9	3.65	-1.1
		Ammonia loading (ratio to dry stover)	1:1.3	46.2	3.70	0.3
0 1 15 11	High Scenarios	Xylan to Xylose (%conv)	55	45.8	3.80	3.0
Saccharification	Low Scenarios	Cellulose to Glucose (%conv)	75	43.2	3.87	4.9

^a Percentage change of PV from 2007 EVD scenarios. ^b High and low refer to the value of each parameter with respect to the base case. Not all parameters were tested at both high and low scenarios.

Table C-2. Impact of Overall Process and Economic Parameters on PV

	Base Ca	Base Case		Low		
Sensitivity Parameters	Value	PV (\$/gal)	Value	PV (\$/gal)	Value	PV (\$/gal)
Feedstock Cost (\$/MT)	83	3.40	55	3.04	110	3.77
Pretreatment Reactor (MM\$)	23	3.40	14	3.34	32.7	3.47
Installed Equipment Cost (MM\$)	164.1	3.40	159	3.38	194.0	3.55
(Corresponding Installation factor)	(2.58)		(2.5)		(3.05)	
Enzyme Cost (\$/MT of broth)	507	3.40	256	3.05	1460	4.73
Electricity Price (\$/kWh)	0.054	3.40	0.06	3.38	0.03	3.50
Enzyme Loading (mg/g protein)	31.3	3.40	20	3.15	33.3	3.45
Contingency (%)	20	3.40	10	3.31	30	3.50

Appendix D - Cost Analysis Result Summary

Table D-1. Cost Analysis Result Summary for Dilute Acid Pretreatment Processes

Ethanol Pro	duction Process	Engineering Analysis					
		over, Current Case arification and Cofermentation 2007\$					
Product Value \$3.40							
Ethanol Production (MM Gal.	/ Year)	53.4 Ethanol at 68°F					
Ethanol Yield (Gal / Dry Metric Tor	r Feedstock)	76.3					
Feedstock Cost \$/Dry Metri	icTon	\$83					
Internal Rate of Return (Afte	r-Tax)	10%					
Equity Percent of Total Inves	stment	100%					
Capital Costs		Operating Costs (cents/gal	ethanol)				
Feed Handling	\$10,900,000	Feedstock	108.4				
Pretreatment	\$36,200,000	Biomass to Boiler	0.0				
Saccharification & Fermentation	\$21,800,000	CSL	16.0				
Distillation and Solids Recovery	\$26,100,000	Cellulase	69.5				
Wastewater Treatment	\$3,500,000	Other Raw Materials	17.8				
Storage	\$3,200,000	Waste Disposal	12.7				
Boiler/Turbogenerator	\$56,100,000	Electricity	-21.9				
Utilities	\$6,300,000	Fixed Costs 18					
Total Installed Equipment Cost	\$164,100,000						
		Average Income Tax	26.7				
Added Costs ^a	\$211,800,000	Average Return on Investment 6					
(% of TCI)	56%	Operating Costs (\$/y	/r)				
Working Capital	49,030,000	Feedstock	\$57,900,000				
Total Capital Investment	\$375,900,000	Biomass to Boiler	\$0				
		CSL	\$8,500,000				
Installed Equipment Cost/Annual Gallon	\$3.07	Cellulase	\$37,100,000				
Total Project Investment/Annual Gallon	\$7.04	Other Raw Matl. Costs	\$9,500,000				
		Waste Disposal	\$6,800,000				
Loan Rate	N/A	Electricity	-\$11,700,000				
Term (years)	N/A	Fixed Costs	\$9,900,000				
Capital Charge Factor	0.170	Capital Depreciation	\$16,300,000				
		Average Income Tax	\$14,300,000				
Denatured Fuel Prod. (MMgal / yr)	55.9	Average Return on Investment	\$33,300,000				
Denatured Fuel Min. Sales Price	\$3.29	Excess Electricity (KWH/gal)	4.06				
Denaturant Cost (\$/gal denaturant)	\$0.739	Plant Electricity Use (KWH/gal)	2.23				
		Plant Steam Use (kg steam/gal)	17.5				
Maximum Yields (100% of Theoretical)	,						
Ethanol Production (MM Gal/yr)	82.5	Boiler Feed–Water Fraction	0.542				
Theoretical Yield (Gal/ton)	106.9	Specific Operating Cond					
Current Yield (Actual/Theoretical)	65%	Enzyme Loading (mg/g cellulose)	33.5				
		Saccharification Time (days)	5.0				
		Conversion Cellulose>Glucose	0.9109				
		Fermentation Time (days)	2.0				

^a Added costs include indirect costs (engineering and supervision, construction expenses, legal and contractor fees) and contingency.

Table D-2. Cost Analysis Result Summary for Dilute Acid Pretreatment (High Solids) Processes

Ethanal	Draduation Broom	oo Engineering Analysis					
		ss Engineering Analysis elds based on NREL FY08 SOT					
		charification and Cofermentation					
	All Values						
Product Value \$3.60							
Ethanol Production (MM Gal.	/ Year)	50.8 Ethanol at 68°F					
Ethanol Yield (Gal / Dry Metric To		72.5					
Feedstock Cost \$/Dry Metri	•	\$83					
Internal Rate of Return (After	er-Tax)	10%					
Equity Percent of Total Inve	stment	100%					
Capital Costs		Operating Costs (cents/gal	ethanol)				
Feed Handling	\$10,900,000	Feedstock	114.0				
Pretreatment	\$38,000,000	Biomass to Boiler	0.0				
Saccharification & Fermentation	\$21,800,000	CSL	16.5				
Distillation and Solids Recovery	\$25,700,000	Cellulase	73.1				
Wastewater Treatment	\$5,800,000	Other Raw Materials	18.8				
Storage	\$3,100,000	Waste Disposal	13.0				
Boiler/Turbogenerator	\$57,600,000	Electricity	-24.8				
Utilities	\$6,600,000	Fixed Costs	19.8				
Total Installed Equipment Cost	\$169,400,000	Capital Depreciation	33.3				
Added Costs ^a	\$219,100,000	Average Return on Investment	29.0 67.5				
	56%	Average Return on Investment					
(% of TCI) Working Capital	50,670,000	Operating Costs (\$/yr	\$57,900,000				
Total Capital Investment	\$388,500,000	Biomass to Boiler	\$57,900,000				
Total Capital Investment	φ300,300,000	CSL	\$8,400,000				
Installed Equipment Cost/Annual Gallon	\$3.34	Cellulase	\$37,100,000				
Total Project Investment/Annual Gallon	\$7.65	Other Raw Matl. Costs	\$9,600,000				
rotar roject iii ootii oito, tiiii dar ootii ii	ψ1.00	Waste Disposal	\$6,600,000				
Loan Rate	N/A	Electricity	-\$12,600,000				
Term (years)	N/A	Fixed Costs	\$10,100,000				
Capital Charge Factor	0.169	Capital Depreciation	\$16,900,000				
		Average Income Tax	\$14,700,000				
Denatured Fuel Prod. (MMgal / yr)	53.1	Average Return on Investment	\$34,200,000				
Denatured Fuel Min. Sales Price	\$3.47						
Denaturant Cost (\$/gal denaturant)	\$0.739	Excess Electricity (KWH/gal)	4.58				
		Plant Electricity Use (KWH/gal)	2.39				
Maximum Yields (100% of Theoretical)							
Ethanol Production (MM Gal/yr)	82.5	Plant Steam Use (kg steam/gal)	18.2				
Theoretical Yield (Gal/ton)	106.9	Boiler Feed LHV (Btu/lb)	2,286				
Current Yield (Actual/Theoretical)	62%	Boiler Feed Water Fraction	0.539				
		Specific Operating Condi					
		Enzyme Loading (mg/g cellulose)	35.1				
		Saccharification Time (days) Conversion Cellulose> Glucose	5.0 0.9109				
		Fermentation Time (days)	2.0				

^a Added costs include indirect costs (engineering and supervision, construction expenses, legal and contractor fees) and contingency.

Table D-3. Cost Analysis Result Summary for Hot Water Pretreatment Process

-		ngineering Analysis						
Ethanol Production Process Engineering Analysis Hot Water - Corn Stover, Current Case								
	Hot Water Prehydrolysis with Saccharification and Cofermentation							
All Values in 2007\$								
Product Value		\$4.44						
Ethanol Production (MM Gal.	/ Year)	39.0 Ethanol at 68°F						
Ethanol Yield (Gal / Dry Metric Ton	Feedstock)	55.7						
Feedstock Cost \$/Dry Metric		\$83						
Internal Rate of Return (After	•	10%						
Equity Percent of Total Inves	tment	100%	41 IV					
Capital Costs	£40,000,000	Operating Costs (cents/gal e	•					
Feed Handling Pretreatment	\$10,900,000 \$6,700,000	Feedstock	148.4					
Saccharification & Fermentation	\$30,200,000	Biomass to Boiler CSL	0.0 28.5					
Distillation and Solids Recovery	\$30,900,000	Cellulase	95.1					
Wastewater Treatment	\$1,900,000	Other Raw Materials	5.1					
Storage	\$3,300,000	Waste Disposal	3.5					
Boiler/Turbogenerator	\$65,800,000	Electricity	-29.0					
Utilities	\$6,700,000	Fixed Costs	24.5					
Total Installed Equipment Cost	\$156,300,000	Capital Depreciation	40.2					
		Average Income Tax	36.3					
Added Costs ^a	\$204,800,000	Average Return on Investment	90.9					
(% of TCI)	57%	Operating Costs (\$/yr						
Working Capital	47,100,000		\$57,900,000					
Total Capital Investment	\$361,100,000	Biomass to Boiler	\$0					
Installed Equipment Cost/Appual Callen	\$4.01		\$11,100,000 \$37,100,000					
Installed Equipment Cost/Annual Gallon Total Project Investment/Annual Gallon	\$9.26	Other Raw Matl. Costs	\$2,000,000					
Total Project investment/Annual Gallon	ψ3.20	Waste Disposal	\$1,400,000					
Loan Rate	N/A	•	\$11,300,000					
Term (years)	N/A	Fixed Costs	\$9,600,000					
Capital Charge Factor	0.181	Capital Depreciation	\$15,700,000					
		Average Income Tax	\$14,200,000					
Denatured Fuel Prod. (MMgal / yr)	40.8	Average Return on Investment	\$35,500,000					
Denatured Fuel Min. Sales Price	\$4.27							
Denaturant Cost (\$/gal denaturant)	\$0.739	Excess Electricity (KWH/gal)	5.37					
Maximum Violde (1000/ of The exatical)		Plant Electricity Use (KWH/gal)	3.30					
Maximum Yields (100% of Theoretical)	82.5	Plant Steam Lise (kg steam/gal)	40.7					
Ethanol Production (MM Gal/yr) Theoretical Yield (Gal/ton)	106.9	Plant Steam Use (kg steam/gal) Boiler Feed LHV (Btu/lb)	2,354					
Current Yield (Actual/Theoretical)	47%	Boiler Feed Water Fraction	0.529					
((((((((((((((((((((1.70	Specific Operating Condit						
		Enzyme Loading (mg/g cellulose)	33.1					
		Saccharification Time (days)	5.0					
		Conversion Cellulose> Glucose	0.8997					
^a A dd d a sate in alled a indicate a sate (an sin san		Fermentation Time (days)	2.0					

^a Added costs include indirect costs (engineering and supervision, construction expenses, legal and contractor fees) and contingency.

Table D-4. Cost Analysis Result Summary for Two-Stage Dilute Acid Pretreatment Processes							
Ethanol Production Process Engineering Analysis							
Corn Stover Design Report Case: 2020 Market Target Case (2002 Design Report Target Case)							
Dilute Acid Prehydrolysis and Hydrolysis							
All Values in 2007\$							
Product Value		\$4.38					
Ethanol Production (MM Gal.	/ Year)	32.8 Ethanol at 68°F					
Ethanol Yield (Gal / Dry Metric Ton	,	46.9					
Feedstock Cost \$/Dry Metric		\$83					
Internal Rate of Return (Afte		10%					
Equity Percent of Total Inves	stment	100%					
Capital Costs		Operating Costs (cents/gal ethanol)					
Feed Handling	\$10,900,000	Feedstock 176.4					
Pretreatment	\$44,900,000	Biomass to Boiler 0.0					
Saccharification & Fermentation	\$9,700,000	CSL 26.2					
Distillation and Solids Recovery	\$26,700,000	Cellulase 0.0					
Wastewater Treatment	\$4,600,000	Other Raw Materials 32.3					
Storage	\$2,800,000	Waste Disposal 22.0					
Boiler/Turbogenerator	\$66,200,000	Electricity -51.3					
Utilities	\$6,900,000	Fixed Costs 31.0					
Total Installed Equipment Cost	\$172,700,000	Capital Depreciation 51.8					
		Average Income Tax 45.8					
Added Costs ^a	\$218,300,000	Average Return on Investment 103.5					
(% of TCI)	56%	Operating Costs (\$/yr)					
Working Capital (WC)	51,000,000	Feedstock \$57,900,000					
Total Capital Investment	\$391,000,000	Biomass to Boiler \$0					
		CSL \$8,600,000					
Installed Equipment Cost/Annual Gallon	\$5.26	Cellulase \$0					
Total Project Investment/Annual Gallon	\$11.92	Other Raw Matl. Costs \$10,600,000					
		Waste Disposal \$7,200,000					
Loan Rate	N/A	Electricity -\$16,800,000					
Term (years)	N/A	Fixed Costs \$10,200,000					
Capital Charge Factor	0.169	Capital Depreciation \$17,000,000					
		Average Income Tax \$15,000,000					
Denatured Fuel Prod. (MMgal / yr)	34.3	Average Return on Investment \$34,000,000					
Denatured Fuel Min. Sales Price	\$4.21						
Denaturant Cost (\$/gal denaturant)	\$0.739	Excess Electricity (KWH/gal) 9.50					
		Plant Electricity Use (KWH/gal) 3.46					
		Plant Steam Use (kg steam/gal) 35.4					
Maximum Yields (100% of Theoretical)		Boiler Feed LHV (Btu/lb) 2,379					
Ethanol Production (MM Gal/yr)	82.5	Boiler Feed Water Fraction 0.521					
Theoretical Yield (Gal/ton)	106.9	Specific Operating Conditions					
Current Yield (Actual/Theoretical)	40%	Feed rate (dry tonnes/day) 2,000					
		Feed rate (dry tons/day) 2,205					
		Lignin Residue (dry tonnes/day) 979					
		Lignin Residue (dry tons/day) 1,079					
		Pretreatment Total Solids (wt%) 30					
		Saccharification Total Solids (wt%) 34					

^a Added costs include indirect costs (engineering and supervision, construction expenses, legal and contractor fees) and contingency.

Table D-5. Cost Analysis Result Summary for AFEX Pretreatment Processes

Ethanol Production Process Engineering Analysis								
Corn Stover Design Report Case: 2020 Market Target Case (2002 Design Report Target Case)								
	AFEX with Saccharification and Cofermentation							
All Values in 2007\$								
Product Value		\$3.69						
Ethanol Production (MM Gal. /	' Year)	46.2 Eth	nanol at 68°F					
Ethanol Yield (Gal / Dry Metric Ton	Feedstock)	66.0						
Feedstock Cost \$/Dry Metric	: Ton	\$83						
Internal Rate of Return (After	-Tax)	10%						
Equity Percent of Total Inves	tment	100%						
Capital Costs		Operating	Costs (cents/gal	ethanol)				
Feed Handling	\$10,900,000	eedstock		125.3				
Pretreatment	\$30,800,000	iomass to Boile	er	0.0				
		SL		19.4				
Saccharification & Fermentation	\$23,500,000	Cellulase		80.4				
Distillation and Solids Recovery	\$27,500,000	Other Raw Mate	rials	14.1				
Wastewater Treatment	\$1,600,000	Vaste Disposal		2.9				
Storage	\$2,800,000	lectricity		-36.7				
Boiler/Turbogenerator	\$62,000,000	ixed Costs		21.6				
Utilities	\$8,400,000	Capital Deprecia		36.4				
Total Installed Equipment Cost	\$167,400,000	verage Income		32.0				
		verage Return	on Investment	73.4				
Added Costs ^a	\$218,600,000	Оре	erating Costs (\$/y	r)				
(% of TCI)	57%	eedstock		\$57,900,000				
Working Capital	50,350,000	iomass to Boile	er	\$0				
Total Capital Investment	\$386,000,000	SL		\$8,900,000				
		Cellulase		\$37,100,000				
Installed Equipment Cost/Annual Gallon	\$3.63	other Raw Matl.	Costs	\$6,500,000				
Total Project Investment/Annual Gallon	\$8.36	Vaste Disposal		\$1,400,000				
		lectricity		-\$16,900,000				
Loan Rate	N/A	ixed Costs		\$10,000,000				
Term (years)	N/A	apital Deprecia		\$16,800,000				
Capital Charge Factor	0.170	verage Income		\$14,800,000				
		verage Return		\$33,900,000				
Denatured Fuel Prod. (MMgal / yr)	48.3	xcess Electricit		5.23				
Denatured Fuel Min. Sales Price	\$3.56	lant Electricity	` ,	2.57				
Denaturant Cost (\$/gal denaturant)	\$0.739		(kg steam/gal)	35.9				
		oiler Feed Lh	` '	2,295				
Maximum Yields (100% of Theoretical)		oiler Feed W		0.538				
Ethanol Production (MM Gal/yr)	82.5		C Operating Cond					
Theoretical Yield (Gal/ton)	106.9	eed rate (dry to	• ,	2,000				
Current Yield (Actual/Theoretical)	56%	eed rate (dry to		2,205				
		•	dry tonnes/day)	730				
		ignin Residue (804				
			tal Solids (wt%)	48				
		accharitication	Total Solids (wt%)	20				

^a Added costs include indirect costs (engineering and supervision, construction expenses, legal and contractor fees) and contingency.

Table D-6. Cost Analysis Result Summary for On-site Enzyme Production Processes

,			enios enios Analysis	
			ngineering Analysis	
	lute Acid - Corn Sto			otion)
Dilute Acid Prenydrolysis with Sac	All Values in 2		fermentation (On-site Enzyme Produc	Stion)
	All values III 2	200		
Product Value			\$3.54	
Ethanol Production (MM Gal. /	•		47.4 Ethanol at 68°F	
Ethanol Yield (Gal / Dry Metric Ton	•		67.7	
Feedstock Cost \$/Dry Metric			\$83	
Internal Rate of Return (After	•		10%	
Equity Percent of Total Inves	tment		100%	
Capital Costs			Operating Costs (cents/gal	
Feed Handling	\$10,900,000		Feedstock	122.1
Pretreatment	\$36,200,000		Biomass to Boiler	0.0
On-site Enzyme Production	\$23,700,000		CSL	19.8
Saccharification & Fermentation	\$21,800,000		Cellulase	0.0
Distillation and Solids Recovery	\$25,400,000		Other Raw Materials	20.4
Wastewater Treatment	\$3,500,000		Waste Disposal	14.3
Storage	\$2,500,000		Electricity	1.6
Boiler/Turbogenerator	\$57,200,000		Fixed Costs	22.7
Utilities	\$6,800,000		Capital Depreciation	39.9
Total Installed Equipment Cost	\$187,800,000		Average Income Tax	34.0
			Average Return on Investment	79.2
Added Costs ^a	\$246,400,000		Operating Costs (\$/y	•
(% of TCI)	57%		Feedstock	\$57,900,000
Working Capital	56,630,000		Biomass to Boiler	\$0
Total Capital Investment	\$434,200,000		CSL	\$9,400,000
			Cellulase	\$0
Installed Equipment Cost/Annual Gallon	\$3.96		Other Raw Matl. Costs	\$9,700,000
Total Project Investment/Annual Gallon	\$9.16		Waste Disposal	\$6,800,000
			Electricity	\$800,000
Loan Rate	N/A		Fixed Costs	\$10,700,000
Term (years)	N/A		Capital Depreciation	\$18,900,000
Capital Charge Factor	0.167		Average Income Tax	\$16,100,000
			Average Return on Investment	\$37,500,000
Denatured Fuel Prod. (MMgal / yr)	49.6			
Denatured Fuel Min. Sales Price	\$3.42		Excess Electricity (KWH/gal)	-0.30
Denaturant Cost (\$/gal denaturant)	\$0.739		Plant Electricity Use (KWH/gal)	7.63
			Plant Steam Use (kg steam/gal)	19.7
			Boiler Feed LHV (Btu/lb)	2,239
Maximum Yields (100% of Theoretical)			Boiler Feed Water Fraction	0.538
Ethanol Production (MM Gal/yr)			Specific Operating Cond	itions
Theoretical Yield (Gal/ton)	82.5		Enzyme Loading (mg/g cellulose)	0.0
Current Yield (Actual/Theoretical)	106.9		Saccharification Time (days)	5.0
	57%		Conversion Cellulose> Glucose	0.9109
			Fermentation Time (days)	2.0

^a Added costs include indirect costs (engineering and supervision, construction expenses, legal and contractor fees) and contingency.

Table D-7. Cost Analysis Result Summary for Pervaporation Purification Processes

Ethanol Pr		ngineering Analysis	
		et Case (2002 Design Report Target 0	Case)
Dilute Acid Prehydrolysis with S	accharification and C	Cofermentation (Pervaporation Separa	ition)
	All Values in 20	007\$	
Product Value		\$3.75	
Ethanol Production (MM Gal.	•	53.9 Ethanol at 68°F	
Ethanol Yield (Gal / Dry Metric Tor		77.0	
Feedstock Cost \$/Dry Metri		\$83	
Internal Rate of Return (Afte	•	10%	
Equity Percent of Total Inves	stment	100%	
Capital Costs	#40.000.000	Operating Costs (cents/ga	•
Feed Handling	\$10,900,000	Feedstock	107.5
Pretreatment	\$36,200,000	Biomass to Boiler CSL	0.0 15.8
Saccharification & Fermentation	\$21,900,000	Cellulase	68.9
Distillation and Solids Recovery	\$70,800,000	Other Raw Materials	18.4
Wastewater Treatment	\$3,300,000	Waste Disposal	12.6
Storage	\$3,300,000	Electricity	-25.3
Boiler/Turbogenerator	\$55,900,000	Fixed Costs	21.4
Utilities	\$7,000,000	Capital Depreciation	40.5
Total Installed Equipment Cost	\$209,200,000	Average Income Tax	34.1
		Average Return on Investment	81.0
Added Costs ^a	\$226,500,000	Operating Costs (\$	/yr)
(% of TCI)	52%	Feedstock	\$57,900,000
Working Capital	\$65,350,000	Biomass to Boiler	\$0
Total Capital Investment	\$501,000,000	CSL	\$8,500,000
		Cellulase	\$37,100,000
Installed Equipment Cost/Annual Gallon	\$3.88	Other Raw Matl. Costs	\$9,900,000
Total Project Investment/Annual Gallon	\$8.09	Waste Disposal	\$6,800,000
	21/0	Electricity	-\$13,600,000
Loan Rate	N/A	Fixed Costs	\$11,500,000
Term (years)	N/A 0.192	Capital Depreciation Average Income Tax	\$21,800,000
Capital Charge Factor	0.192	Average Return on Investment	\$18,400,000 \$43,600,000
Denatured Fuel Prod. (MMgal / yr)	56.4	Excess Electricity (KWH/gal)	4.68
Denatured Fuel Min. Sales Price	\$3.61	Plant Electricity Use (KWH/gal)	2.25
Denaturant Cost (\$/gal denaturant)	\$0.739	Plant Steam Use (kg steam/gal)	11.9
Maximum Yields (100% of Theoretical)	46.1.66	Boiler Feed LHV (Btu/lb)	2,193
Ethanol Production (MM Gal/yr)	82.5	Boiler Feed Water Fraction	0.543
Theoretical Yield (Gal/ton)	106.9	Specific Operating Con	
Current Yield (Actual/Theoretical)	65%	Feed rate (dry tonnes/day)	2,000
,		Feed rate (dry tons/day)	2,205
		Lignin Residue (dry tonnes/day)	626
		Lignin Residue (dry tons/day)	690
		Pretreatment Total Solids (wt%)	30
		Saccharification Total Solids (wt%) 20

^a Added costs include indirect costs (engineering and supervision, construction expenses, legal and contractor fees) and contingency.

Table D-8. Cost Analysis Result Summary for Separate C5 and C6 Fermentation Processes

		epa		
Ethanol F	Production Proc	ess	Engineering Analysis	
Corn Stover Design Case: 2005 Pos	t Enzyme-Subco	ntra	act Case - 90% Cellulose in 7 days @	1.9X loading
Dilute Acid Prehydrolysis with Sacch	arification and Co	ofer	rmentation (Separate C5 & C6 Sugar	fermentation)
	All Values	s in	2007\$	
Product Value			\$3.67	
Ethanol Production (MM Ga	l. / Year)		55.5 Ethanol at 68°F	
Ethanol Yield (Gal / Dry Metric To			79.3	
Feedstock Cost \$/Dry Met	,		\$83	
Internal Rate of Return (Aff			10%	
Equity Percent of Total Inve	•		100%	
Capital Costs			Operating Costs (cents/gal	ethanol)
Feed Handling	\$11,400,000		Feedstock	104.3
Pretreatment	\$34,200,000		Biomass to Boiler	0.0
	. , ,		CSL	33.1
Saccharification & Fermentation	\$29,600,000		Cellulase	66.9
Distillation and Solids Recovery	\$27,300,000		Other Raw Materials	35.9
Wastewater Treatment	\$3,100,000		Waste Disposal	2.6
Storage	\$5,100,000		Electricity	-11.6
Boiler/Turbogenerator	\$50,900,000		Fixed Costs	18.0
Utilities	\$6,200,000		Capital Depreciation	30.3
Total Installed Equipment Cost	\$167,800,000		Average Income Tax	26.0
	. , ,		Average Return on Investment	61.6
Added Costs ^a	\$218,000,000		Operating Costs (\$/y	r)
(% of TCI)	57%		Feedstock	\$57,900,000
Working Capital	\$50,320,000		Biomass to Boiler	\$0
Total Capital Investment	\$385,800,000		CSL	\$18,400,000
	· · · ·		Cellulase	\$37,100,000
Installed Equipment Cost/Annual Galle	on \$3.02		Other Raw Matl. Costs	\$19,900,000
Total Project Investment/Annual Gallo			Waste Disposal	\$1,400,000
			Electricity	-\$6,500,000
Loan Rate	N/A		Electricity Fixed Costs	-\$6,500,000 \$10,000,000
Loan Rate Term (years)	N/A N/A		•	
			Fixed Costs	\$10,000,000
Term (years)	N/A		Fixed Costs Capital Depreciation	\$10,000,000 \$16,800,000
Term (years)	N/A 0.170 58.1		Fixed Costs Capital Depreciation Average Income Tax	\$10,000,000 \$16,800,000 \$14,400,000
Term (years) Capital Charge Factor	N/A 0.170		Fixed Costs Capital Depreciation Average Income Tax	\$10,000,000 \$16,800,000 \$14,400,000
Term (years) Capital Charge Factor Denatured Fuel Prod. (MMgal / yr)	N/A 0.170 58.1		Fixed Costs Capital Depreciation Average Income Tax Average Return on Investment	\$10,000,000 \$16,800,000 \$14,400,000 \$34,200,000
Term (years) Capital Charge Factor Denatured Fuel Prod. (MMgal / yr) Denatured Fuel Min. Sales Price	N/A 0.170 58.1 \$3.54		Fixed Costs Capital Depreciation Average Income Tax Average Return on Investment Excess Electricity (KWH/gal) Plant Electricity Use (KWH/gal) Plant Steam Use (kg steam/gal)	\$10,000,000 \$16,800,000 \$14,400,000 \$34,200,000 2.16 2.33 19.9
Term (years) Capital Charge Factor Denatured Fuel Prod. (MMgal / yr) Denatured Fuel Min. Sales Price Denaturant Cost (\$/gal denaturant)	N/A 0.170 58.1 \$3.54 \$0.739		Fixed Costs Capital Depreciation Average Income Tax Average Return on Investment Excess Electricity (KWH/gal) Plant Electricity Use (KWH/gal) Plant Steam Use (kg steam/gal) Boiler Feed LHV (Btu/lb)	\$10,000,000 \$16,800,000 \$14,400,000 \$34,200,000 2.16 2.33 19.9 1,489
Term (years) Capital Charge Factor Denatured Fuel Prod. (MMgal / yr) Denatured Fuel Min. Sales Price Denaturant Cost (\$/gal denaturant) Maximum Yields (100% of Theoretica	N/A 0.170 58.1 \$3.54 \$0.739		Fixed Costs Capital Depreciation Average Income Tax Average Return on Investment Excess Electricity (KWH/gal) Plant Electricity Use (KWH/gal) Plant Steam Use (kg steam/gal)	\$10,000,000 \$16,800,000 \$14,400,000 \$34,200,000 2.16 2.33 19.9
Term (years) Capital Charge Factor Denatured Fuel Prod. (MMgal / yr) Denatured Fuel Min. Sales Price Denaturant Cost (\$/gal denaturant) Maximum Yields (100% of Theoretica Ethanol Production (MM Gal/yr)	N/A 0.170 58.1 \$3.54 \$0.739	-	Fixed Costs Capital Depreciation Average Income Tax Average Return on Investment Excess Electricity (KWH/gal) Plant Electricity Use (KWH/gal) Plant Steam Use (kg steam/gal) Boiler Feed LHV (Btu/lb)	\$10,000,000 \$16,800,000 \$14,400,000 \$34,200,000 2.16 2.33 19.9 1,489 0.547
Term (years) Capital Charge Factor Denatured Fuel Prod. (MMgal / yr) Denatured Fuel Min. Sales Price Denaturant Cost (\$/gal denaturant) Maximum Yields (100% of Theoretica Ethanol Production (MM Gal/yr) Theoretical Yield (Gal/ton)	N/A 0.170 58.1 \$3.54 \$0.739 0) 82.5 106.9	-	Fixed Costs Capital Depreciation Average Income Tax Average Return on Investment Excess Electricity (KWH/gal) Plant Electricity Use (KWH/gal) Plant Steam Use (kg steam/gal) Boiler Feed LHV (Btu/lb) Boiler Feed Water Fraction Specific Operating Cond Enzyme Loading (mg/g cellulose)	\$10,000,000 \$16,800,000 \$14,400,000 \$34,200,000 2.16 2.33 19.9 1,489 0.547
Term (years) Capital Charge Factor Denatured Fuel Prod. (MMgal / yr) Denatured Fuel Min. Sales Price Denaturant Cost (\$/gal denaturant) Maximum Yields (100% of Theoretica Ethanol Production (MM Gal/yr)	N/A 0.170 58.1 \$3.54 \$0.739	-	Fixed Costs Capital Depreciation Average Income Tax Average Return on Investment Excess Electricity (KWH/gal) Plant Electricity Use (KWH/gal) Plant Steam Use (kg steam/gal) Boiler Feed LHV (Btu/lb) Boiler Feed Water Fraction Specific Operating Cond Enzyme Loading (mg/g cellulose) Saccharification Time (days)	\$10,000,000 \$16,800,000 \$14,400,000 \$34,200,000 2.16 2.33 19.9 1,489 0.547 itions
Term (years) Capital Charge Factor Denatured Fuel Prod. (MMgal / yr) Denatured Fuel Min. Sales Price Denaturant Cost (\$/gal denaturant) Maximum Yields (100% of Theoretica Ethanol Production (MM Gal/yr) Theoretical Yield (Gal/ton)	N/A 0.170 58.1 \$3.54 \$0.739 0) 82.5 106.9	-	Fixed Costs Capital Depreciation Average Income Tax Average Return on Investment Excess Electricity (KWH/gal) Plant Electricity Use (KWH/gal) Plant Steam Use (kg steam/gal) Boiler Feed LHV (Btu/lb) Boiler Feed Water Fraction Specific Operating Cond Enzyme Loading (mg/g cellulose)	\$10,000,000 \$16,800,000 \$14,400,000 \$34,200,000 2.16 2.33 19.9 1,489 0.547 itions

[|] Fermentation Time (days)

^a Added costs include indirect costs (engineering and supervision, construction expenses, legal and contractor fees) and contingency.

Appendix E - Equipment List and Costs, Installation Factors, and Installed Equipment Costs for Dilute Acid Pretreatment Processes

Table E-1. Equipment Lists and Costs for Dilute Acid Pretreatment Processes

Equip- ment ID	Number Required	Spares Nos	Equipment Name	Scaling Stream Flow (Kg/hr)	New Stream Flow	Size Ratio	Original Equip Cost (per unit)	Base Year	Total Original Equip Cost (Req'd & Spare) in Base Year	Scaling Expo- nent	Scaled Cost in Base Year	Installa- tion Factor	Installed Cost in Base Year	Installed Cost in 2007\$
C-101	2		Bale Transport Conveyor	98,040	111,111	1.13	\$400,000	2000	\$800,000	0.6	\$862,388	1.62	\$1,397,068	\$1,862,521
C-102	2		Bale Unwrapping Conveyor	98,040	111,111	1.13	\$150,000	2000	\$300,000	0.6	\$323,395	1.19	\$384,840	\$513,056
C-103	1		Belt Press Discharge Conveyor	98,040	111,111	1.13	\$50,000	2000	\$50,000	0.6	\$53,899	1.89	\$101,870	\$135,809
C-104	4		Shredder Feed Conveyor	98,040	111,111	1.13	\$60,000	2000	\$240,000	0.6	\$258,716	1.38	\$357,028	\$475,978
M-101	2		Truck Scales	98,040	111,111	1.13	\$34,000	2000	\$68,000	0.6	\$73,303	2.47	\$181,058	\$241,380
M-102	4	1	Truck Unloading Forklift	98,040	111,111	1.13	\$18,000	2000	\$90,000	1	\$101,999	1	\$101,999	\$135,982
M-103	4		Bale Moving Forklift	98,040	111,111	1.13	\$18,000	2000	\$72,000	1	\$81,599	1	\$81,599	\$108,785
M-104	2		Corn Stover Wash Table	98,040	111,111	1.13	\$104,000	2000	\$208,000	0.6	\$224,221	2.39	\$535,888	\$714,426
M-105	4		Shredder	98,040	111,111	1.13	\$302,000	2000	\$1,208,000	0.6	\$1,302,205	1.38	\$1,797,043	\$2,395,754
M-106	1		Concrete Feedstock-Storage Slab	98,040	111,111	1.13	\$450,655	2000	\$450,655	1	\$510,738	2.2	\$1,123,624	\$1,497,976
M-107	1		Polymer Feed System	98,040	111,111	1.13	\$30,000	2000	\$30,000	0.6	\$32,340	2.28	\$73,734	\$98,300
P-101	2	1	Wash Table Pump	98,040	111,111	1.13	\$20,000	2000	\$60,000	0.79	\$66,236	3.87	\$256,332	\$341,732
P-102	2	1	Wash Water Pump	98,040	111,111	1.13	\$15,000	2000	\$45,000	0.79	\$49,677	5.19	\$257,822	\$343,719
P-103	1	1	Clarifier Underflow Pump	98,040	111,111	1.13	\$6,000	2000	\$12,000	0.79	\$13,247	13.41	\$177,644	\$236,828
P-104	1	1	Clarified Water Pump	98,040	111,111	1.13	\$15,000	2000	\$30,000	0.79	\$33,118	7.07	\$234,143	\$312,151
P-105	1	1	Belt Press Sump Pump	98,040	111,111	1.13	\$19,000	2000	\$38,000	0.79	\$41,949	2.92	\$122,492	\$163,301
S-101	1		Clarifier Thickener	98,040	111,111	1.13	\$135,000	2000	\$135,000	0.6	\$145,528	1.51	\$219,747	\$292,959

Equip- ment ID	Number Required		Equipment Name	Scaling Stream Flow (Kg/hr)	New Stream Flow	Size Ratio	Original Equip Cost (per unit)	Base Year	Total Original Equip Cost (Req'd & Spare) in Base Year	Scaling Expo- nent	Scaled Cost in Base Year	Installa- tion Factor	Installed Cost in Base Year	Installed Cost in 2007\$
S-102	1		Belt Press	98,040	111,111	1.13	\$100,000	2000	\$100,000	0.6	\$107,798	1.25	\$134,748	\$179,641
S-103	1		Magnetic Separator	159,948	111,111	0.69	\$13,863	1998	\$13,863	0.6	\$11,141	1.3	\$14,483	\$19,537
T-101	1		Wash Water Tank	98,040	111,111	1.13	\$50,000	2000	\$50,000	0.51	\$53,296	2.8	\$149,227	\$198,945
T-102	1		Clarifier Thickener Tank	98,040	111,111	1.13	\$135,000	2000	\$135,000	0.51	\$143,898	3.04	\$437,450	\$583,192
A100							Subtot	al	\$4,135,518		\$4,490,691	1.81	\$8,139,839	\$10,851,970
A-201	1		In-line Sulfuric Acid Mixer	55,308	102,884	1.86	\$1,900	1997	\$1,900	0.48	\$2,559	1	\$2,559	\$3,479
A-205	1		Hydrolyzate Mix Tank Agitator	358,810	236,880	0.66	\$36,000	1997	\$36,000	0.51	\$29,129	1.2	\$34,955	\$47,517
A-209	1		Overliming Tank Agitator	167,050	301,831	1.81	\$19,800	1997	\$19,800	0.51	\$26,773	1.3	\$34,805	\$47,313
A-224	1		Reacidification Tank Agitator	167,280	306,440	1.83	\$65,200	1997	\$65,200	0.51	\$88,782	1.2	\$106,539	\$144,827
A-232	1		Reslurrying Tank Agitator	358,810	416,118	1.16	\$36,000	1997	\$36,000	0.51	\$38,826	1.2	\$46,591	\$63,335
C-201	1		Hydrolyzate Screw Conveyor Hydrolyzate	225,140	236,880	1.05	\$59,400	1997	\$59,400	0.78	\$61,802	1.3	\$80,343	\$109,217
C-202	1		Washed Solids Belt Conveyor	91,633	77,862	0.85	\$80,000	2000	\$80,000	0.76	\$70,686	1.45	\$102,495	\$136,643
C-225	1		Lime Solids Feeder				\$3,900	1997	\$3,900		\$3,900	1.3	\$5,070	\$6,892
H-200	1		Hydrolyzate Cooler	1,988	2,288	1.15	\$45,000	1997	\$45,000	0.51	\$48,340	2.1	\$101,515	\$137,997
H-201	2	1	Beer Column Feed Economizer	12,532	12,217	0.97	\$132,800	1997	\$398,400	0.68	\$391,574	2.1	\$822,304	\$1,117,823
H-205	1		Pneumapress Vent Condensor	120	176	1.46	\$15,385	2000	\$15,385	0.68	\$19,940	2.1	\$41,874	\$55,825
H-244	2	1	Waste Vapor Condensor	12,532	1,710	0.14	\$132,800	1997	\$398,400	0.68	\$102,824	2.1	\$215,931	\$293,532
M-202	3		Prehydrolysis/Scre w Feeder/Reactor	271,313	281,602	1.04	\$2,454,982	2000	\$7,364,947	0.6	\$7,531,285	2.29	\$17,246,643	\$22,992,607
P-201	1	1	Sulfuric Acid	1,647	8,300	5.04	\$4,800	1997	\$9,600	0.79	\$34,446	2.8	\$96,450	\$131,112

Equip- ment ID	Number Required		Equipment Name	Scaling Stream Flow (Kg/hr)	New Stream Flow	Size Ratio	Original Equip Cost (per unit)	Base Year	Total Original Equip Cost (Req'd & Spare) in Base Year	Scaling Expo- nent	Scaled Cost in Base Year	Installa- tion Factor	Installed Cost in Base Year	Installed Cost in 2007\$
			Pump											
P-205	2	1	Pneumapress Feed Pump	50,299	42,588	0.85	\$15,416	2000	\$46,248	0.79	\$40,551	3.34	\$135,440	\$180,563
P-209	1	1	Overlimed Hydrolyzate Pump	167,050	301,831	1.81	\$10,700	1997	\$21,400	0.79	\$34,149	2.8	\$95,617	\$129,980
P-211	1	1	Primary Filtrate Pump	136,350	159,432	1.17	\$32,549	2000	\$65,098	0.79	\$73,659	3.56	\$262,225	\$349,590
P-213	1	1	Wash Filtrate Pump	131,530	136,282	1.04	\$49,803	2000	\$99,606	0.79	\$102,438	2.71	\$277,607	\$370,096
P-222	1	1	Filtered Hydrolyzate Pump	162,090	292,599	1.81	\$10,800	1997	\$21,600	0.79	\$34,443	2.8	\$96,441	\$131,099
P-223	1		Lime Unloading Blower	547	6,117	11.18	\$47,600	1998	\$47,600	0.5	\$159,176	1.4	\$222,847	\$300,600
P-224	2	1	Saccharification Feed Pump	358,810	416,118	1.16	\$61,368	1998	\$184,104	0.7	\$204,225	2.8	\$571,831	\$771,348
P-239	1	1	Reacidified Liquor Pump	167,280	306,440	1.83	\$10,800	1997	\$21,600	0.79	\$34,845	2.8	\$97,567	\$132,631
S-205	3		Pneumapress Filter	50,299	42,588	0.85	\$1,575,000	2000	\$4,725,000	0.6	\$4,276,015	1.05	\$4,489,816	\$5,985,662
S-222	1		Hydroclone & Rotary Drum Filter	5,195	13,841	2.66	\$165,000	1998	\$165,000	0.39	\$241,801	1.4	\$338,521	\$456,634
S-227	1		LimeDust Vent Baghouse	548	6,117	11.16	\$32,200	1997	\$32,200	1	\$359,422	1.5	\$539,133	\$732,886
T-201	1		Sulfuric Acid Tank	1,647	8,300	5.04	\$5,760	1996	\$5,760	0.71	\$18,160	1.4	\$25,423	\$34,995
T-203	1		Blowdown Tank	270,300	281,602	1.04	\$64,100	1997	\$64,100	0.93	\$66,589	1.2	\$79,907	\$108,624
T-205	1		Hydrolyzate Mixing Tank	358,810	236,880	0.66	\$44,800	1997	\$44,800	0.71	\$33,361	1.2	\$40,033	\$54,420
T-209	1		Overliming Tank	167,050	301,831	1.81	\$71,000	1997	\$71,000	0.71	\$108,061	1.4	\$151,286	\$205,654
T-211	1		Primary Filtrate Tank	136,350	159,432	1.17	\$36,000	2000	\$36,000	0.71	\$40,228	2.45	\$98,558	\$131,394
T-213	1		Wash Filtrate Tank	131,530	136,282	1.04	\$18,000	2000	\$18,000	0.71	\$18,459	3.68	\$67,930	\$90,562
T-220	1		Lime Storage Bin	548	6,117	11.16	\$69,200	1997	\$69,200	0.46	\$209,928	1.3	\$272,906	\$370,983
T-224	1		Reacidification Tank	167,280	306,440	1.83	\$147,800	1997	\$147,800	0.51	\$201,258	1.2	\$241,510	\$328,304
T-232	1		Slurrying Tank	358,810	416,118	1.16	\$44,800	1997	\$44,800	0.71	\$49,770	1.2	\$59,724	\$81,188

Equip- ment ID	Number Required	Spares Nos	Equipment Name	Scaling Stream Flow (Kg/hr)	New Stream Flow	Size Ratio	Original Equip Cost (per unit)	Base Year	Total Original Equip Cost (Req'd & Spare) in Base Year	Scaling Expo- nent	Scaled Cost in Base Year	Installa- tion Factor	Installed Cost in Base Year	Installed Cost in 2007\$
A200							Subto	tal	\$14,464,84 8		\$14,757,407	1.84	\$27,102,397	\$36,235,330
			Ethanal Farmantan											
A-300	12		Ethanol Fermentor Agitator				\$19,676	1996	\$236,112		\$236,112	1.2	\$283,334	\$390,002
A-301	1		Seed Hold Tank Agitator	41,777	40,806	0.98	\$12,551	1996	\$12,551	0.51	\$12,401	1.2	\$14,882	\$20,484
A-304	2		4th Seed Vessel Agitator	41,777	40,806	0.98	\$11,700	1997	\$23,400	0.51	\$23,121	1.2	\$27,745	\$37,716
A-305	2		5th Seed Vessel Agitator	41,777	40,806	0.98	\$10,340	1996	\$20,680	0.51	\$20,433	1.2	\$24,520	\$33,751
A-306	2		Beer Surge Tank Agitator	381,700	429,208	1.12	\$48,700	1998	\$97,400	0.51	\$103,405	1.2	\$124,086	\$167,381
A-310	30		Saccharification Tank Agitator				\$19,676	1996	\$590,280		\$590,280	1.2	\$708,336	\$975,006
F-300	6		Ethanol Fermentor				\$493,391	1998	\$2,960,346		\$2,960,346	1.2	\$3,552,415	\$4,791,884
F-301	2		1st Seed Fermentor				\$14,700	1997	\$29,400		\$29,400	2.8	\$82,320	\$111,904
F-302	2		2nd Seed Fermentor				\$32,600	1997	\$65,200		\$65,200	2.8	\$182,560	\$248,168
F-303	2		3rd Seed Fermentor				\$81,100	1997	\$162,200		\$162,200	2.8	\$454,160	\$617,376
F-304	2		4th Seed Fermentor	41,777	40,806	0.98	\$39,500	1997	\$79,000	0.93	\$77,291	1.2	\$92,749	\$126,081
F-305	2		5th Seed Fermentor	41,777	40,806	0.98	\$147,245	1998	\$294,490	0.51	\$290,978	1.2	\$349,174	\$471,004
H-300	6	1	Fermentation Cooler	67,820	129,602	1.91	\$4,000	1997	\$28,000	0.78	\$46,402	2.1	\$97,444	\$132,463
H-301	1	1	Hydrolyzate Heater	256	376	1.47	\$22,400	2001	\$44,800	0.68	\$58,229	2.1	\$122,282	\$162,939
H-302	3		Saccharified Slurry Cooler	3,765	0	0.00	\$25,409	1998	\$76,227	0.78	\$0	2.1	\$0	\$0
H-304	1		4th Seed Fermentor Coil	0.1380	0.2846	2.06	\$3,300	1997	\$3,300	0.83	\$6,017	1.2	\$7,220	\$9,815
H-305	1		5th Seed Fermentor Coil	0.1380	0.2846	2.06	\$18,800	1997	\$18,800	0.98	\$38,208	1.2	\$45,849	\$62,326
H-310	15	1	Saccharification Cooler	67,820	1,696	0.03	\$4,000	1997	\$64,000	0.78	\$3,603	2.1	\$7,566	\$10,286

Equip- ment ID	Number Required	Spares Nos	Equipment Name	Scaling Stream Flow (Kg/hr)	New Stream Flow	Size Ratio	Original Equip Cost (per unit)	Base Year	Total Original Equip Cost (Req'd & Spare) in Base Year	Scaling Expo- nent	Scaled Cost in Base Year	Installa- tion Factor	Installed Cost in Base Year	Installed Cost in 2007\$
P-300	6	1	Fermentation Recirc/Transfer Pump	67,737	129,602	1.91	\$8,000	1997	\$56,000	0.79	\$93,497	2.8	\$261,792	\$355,875
P-301	1	1	Seed Hold Transfer Pump	41,777	40,806	0.98	\$22,194	1998	\$44,388	0.7	\$43,663	1.4	\$61,128	\$82,457
P-302	2		Seed Transfer Pump	41,777	40,806	0.98	\$54,088	1998	\$108,176	0.7	\$106,409	1.4	\$148,973	\$200,951
P-306	1	1	Beer Transfer Pump Saccharification	381,701	429,208	1.12	\$17,300	1997	\$34,600	0.79	\$37,960	2.8	\$106,287	\$144,484
P-310	15	1	Recirc/Transfer Pump	67,737	1,696	0.03	\$8,000	1997	\$128,000	0.79	\$6,952	2.8	\$19,465	\$26,461
T-301	1		Seed Hold Tank	41,777	40,806	0.98	\$161,593	1998	\$161,593	0.51	\$159,666	1.2	\$191,599	\$258,450
T-306	1		Beer Storage Tank	381,700	429,208	1.12	\$237,700	1998	\$237,700	0.71	\$258,345	1.2	\$310,014	\$418,181
T-310	15		Saccharification Tank				\$493,391	1998	\$7,400,865		\$7,400,865	1.2	\$8,881,038	\$11,979,711
A300							Subto	tal	\$12,977,508		\$12,830,984	1.3	\$16,156,940	\$21,835,156
A400							Subtot	tal	\$0		\$0		\$0	\$0
A-530	1		Recycled Water Tank Agitator	179,446	263,502	1.47	\$5,963	1998	\$5,963	0.51	\$7,254	1.3	\$9,430	\$12,720
C-501	1		Lignin Wet Cake Screw	99,199	47,373	0.48	\$31,700	1997	\$31,700	0.78	\$17,811	1.4	\$24,936	\$33,897
D-501	1		Beer Column	17	20	1.17	\$478,100	1998	\$478,100	0.68	\$531,355	2.1	\$1,115,846	\$1,505,174
D-502	1		Rectification Column	56,477	62,095	1.10	\$525,800	1996	\$525,800	0.68	\$560,821	2.1	\$1,177,724	\$1,621,105
E-501	2		1st Effect Evaporation	22,278	32,408	1.45	\$544,595	1996	\$1,089,190	0.68	\$1,405,364	2.1	\$2,951,265	\$4,062,339
E-502	1		2nd Effect Evaporation	22,278	32,408	1.45	\$435,650	1996	\$435,650	0.68	\$562,112	2.1	\$1,180,436	\$1,624,839
E-503	2		3rd Effect Evaporation	22,278	32,408	1.45	\$435,650	1996	\$871,300	0.68	\$1,124,224	2.1	\$2,360,871	\$3,249,677
H-501	1	1	Beer Column Reboiler	28.3092	-32	1.14	\$158,374	1996	\$316,748	0.68	\$346,704	2.1	\$728,079	\$1,002,181

Equip- ment ID	Number Required	Spares Nos	Equipment Name	Scaling Stream Flow (Kg/hr)	New Stream Flow	Size Ratio	Original Equip Cost (per unit)	Base Year	Total Original Equip Cost (Req'd & Spare) in Base Year	Scaling Expo- nent	Scaled Cost in Base Year	Installa- tion Factor	Installed Cost in Base Year	Installed Cost in 2007\$
H-502	1		Rectification Column Reboiler	-3.5547	-4	0.99	\$29,600	1997	\$29,600	0.68	\$29,382	2.1	\$61,702	\$83,876
H-504	1		Beer Column Condenser	1.0002	0	0.45	\$29,544	1996	\$29,544	0.68	\$17,260	2.1	\$36,246	\$49,892
H-505	1		Start-up Rect. Column Condenser	17.6595	19	1.06	\$86,174	1996	\$86,174	0.68	\$89,788	2.1	\$188,555	\$259,542
H-512	1	1	Beer Column Feed Interchanger	909	914	1.01	\$19,040	1996	\$38,080	0.68	\$38,214	2.1	\$80,250	\$110,462
H-517	1	1	Evaporator Condenser	24	33	1.35	\$121,576	1996	\$243,152	0.68	\$297,600	2.1	\$624,959	\$860,240
M-503	1		Molecular Sieve (9 pieces)	20,491	19,052	0.93	\$2,700,000	1998	\$2,700,000	0.7	\$2,565,867	1	\$2,565,867	\$3,461,120
P-501	1	1	Beer Column Bottoms Pump	5,053	6,003	1.19	\$42,300	1997	\$84,600	0.79	\$96,938	2.8	\$271,425	\$368,970
P-503	1	1	Beer Column Reflux Pump Rectification	1.0002	0.4537	0.45	\$1,357	1998	\$2,714	0.79	\$1,454	2.8	\$4,070	\$5,490
P-504	1	1	Column Bottoms Pump	31,507	36,584	1.16	\$4,916	1998	\$9,832	0.79	\$11,064	2.8	\$30,978	\$41,787
P-505	1	1	Rectification Column Reflux Pump	18	19	1.06	\$4,782	1998	\$9,564	0.79	\$10,030	2.8	\$28,084	\$37,883
P-511	2	1	1st Effect Pump	278,645	311,140	1.12	\$19,700	1997	\$59,100	0.79	\$64,481	2.8	\$180,547	\$245,432
P-512	1	1	2nd Effect Pump	91,111	137,819	1.51	\$13,900	1997	\$27,800	0.79	\$38,551	2.8	\$107,944	\$146,736
P-513	2	1	3rd Effect Pump	48,001	78,409	1.63	\$8,000	1997	\$24,000	0.79	\$35,365	2.8	\$99,022	\$134,608
P-514	1	1	Evaporator Condensate Pump	140,220	181,051	1.29	\$12,300	1997	\$24,600	0.79	\$30,104	2.8	\$84,290	\$114,582
P-515	1		Scrubber Bottoms Pump	15,377	18,179	1.18	\$2,793	1998	\$2,793	0.79	\$3,188	2.8	\$8,926	\$12,040
P-530	1	1	Recycled Water Pump	179,446	263,502	1.47	\$10,600	1997	\$21,200	0.79	\$28,718	2.8	\$80,409	\$109,306
S-505	4		Pneumapress Filter	26,601	18,737	0.70	\$1,418,750	2000	\$5,675,000	0.6	\$4,598,800	1.04	\$4,782,752	\$6,376,193
T-503	1		Beer Column Relfux Drum	1.0002	0	0.45	\$11,900	1997	\$11,900	0.93	\$5,706	2.1	\$11,982	\$16,288
T-505	1		Rectification Column Reflux	17.6627	19	1.06	\$45,600	1997	\$45,600	0.72	\$47,621	2.1	\$100,005	\$135,944

Equip- ment ID	Number Required	Spares Nos	Equipment Name	Scaling Stream Flow (Kg/hr)	New Stream Flow	Size Ratio	Original Equip Cost (per unit)	Base Year	Total Original Equip Cost (Req'd & Spare) in Base Year	Scaling Expo- nent	Scaled Cost in Base Year	Installa- tion Factor	Installed Cost in Base Year	Installed Cost in 2007\$
			Drum											
T-512	1		Vent Scrubber	18,523	18,916	1.02	\$99,000	1998	\$99,000	0.78	\$100,635	2.1	\$211,335	\$285,071
T-514	1		Evaporator Condensate Drum	164,760	181,051	1.10	\$37,200	1998	\$37,200	0.93	\$40,609	2.1	\$85,279	\$115,034
T-530	1		Recycled Water Tank	179,446	263,502	1.47	\$14,515	1998	\$14,515	0.745	\$19,325	1.4	\$27,055	\$36,495
A500							Subto	tal	\$13,030,419		\$12,726,345	1.51	\$19,220,269	\$26,118,926
A-602	1		Equalization Basin Agitator	188,129	85,599	0.46	\$28,400	1997	\$28,400	0.51	\$19,007	1.2	\$22,808	\$31,005
A-606	1		Anaerobic Agitator	810,250	401,778	0.50	\$30,300	1997	\$30,300	0.51	\$21,188	1.2	\$25,425	\$34,562
A-608	16		Aerobic Lagoon Agitator	812	108	0.13	\$31,250	1998	\$500,000	0.51	\$178,402	1.4	\$249,763	\$336,908
C-614	1		Aerobic Sludge Screw Anaerobic	978	112	0.11	\$5,700	1997	\$5,700	0.78	\$1,051	1.4	\$1,471	\$2,000
H-602	1		Digestor Feed Cooler	7,627	3,155	0.41	\$128,600	1997	\$128,600	0.74	\$66,913	2.1	\$140,518	\$191,017
M-604	1		Nutrient Feed System				\$31,400	1998	\$31,400		\$31,400	2.58	\$81,012	\$109,278
M-606	1		Biogas Emergency Flare	2,572	292	0.11	\$20,739	1998	\$20,739	0.6	\$5,620	1.68	\$9,442	\$12,737
M-612	1		Filter Precoat System				\$3,000	1998	\$3,000		\$3,000	1.4	\$4,200	\$5,665
P-602	1	1	Anaerobic Reactor Feed Pump	188,129	85,599	0.46	\$11,400	1997	\$22,800	0.79	\$12,240	2.8	\$34,271	\$46,587
P-606	1	1	Aerobic Digestor Feed Pump	185,782	85,335	0.46	\$10,700	1997	\$21,400	0.79	\$11,574	2.8	\$32,408	\$44,055
P-608	1		Aerobic Sludge Recycle Pump	5,862	679	0.12	\$11,100	1997	\$11,100	0.79	\$2,022	1.4	\$2,831	\$3,848
P-610	1		Aerobic Sludge Pump	5,862	679	0.12	\$11,100	1997	\$11,100	0.79	\$2,022	1.4	\$2,831	\$3,848
P-611	1	1	Aerobic Digestion Outlet Pump	187,827	85,560	0.46	\$10,700	1997	\$21,400	0.79	\$11,498	2.8	\$32,196	\$43,766
P-614	1	1	Sludge Filtrate Recycle Pump	4,885	567	0.12	\$6,100	1997	\$12,200	0.79	\$2,226	2.8	\$6,234	\$8,474

Equip- ment ID	Number Required		Equipment Name	Scaling Stream Flow (Kg/hr)	New Stream Flow	Size Ratio	Original Equip Cost (per unit)	Base Year	Total Original Equip Cost (Req'd & Spare) in Base Year	Scaling Expo- nent	Scaled Cost in Base Year	Installa- tion Factor	Installed Cost in Base Year	Installed Cost in 2007\$
P-616	1	1	Treated Water Pump	181,965	84,881	0.47	\$10,600	1997	\$21,200	0.79	\$11,607	2.8	\$32,498	\$44,178
S-600	1		Bar Screen	188,129	85,599	0.46	\$117,818	1991	\$117,818	0.3	\$93,028	1.2	\$111,634	\$162,338
S-614	1		Belt Filter Press	438	58	0.13	\$650,223	1998	\$650,223	0.72	\$151,646	1.8	\$272,963	\$368,203
T-602	1		Equalization Basin	188,129	85,599	0.46	\$350,800	1998	\$350,800	0.51	\$234,772	1.42	\$333,376	\$449,694
T-606	1		Anaerobic Digestor	810,250	401,778	0.50	\$881,081	1998	\$881,081	0.51	\$616,103	1.04	\$640,747	\$864,309
T-608	1		Aerobic Digestor	19,506,756	8,960,675	0.46	\$635,173	1998	\$635,173	1	\$291,775	1	\$291,775	\$393,578
T-610	1		Clarifier	185,782	85,335	0.46	\$174,385	1998	\$174,385	0.51	\$117,272	1.96	\$229,852	\$310,050
A600							Subto	tal	\$3,678,819		\$1,884,366	1.36	\$2,558,255	\$3,466,097
A-701	1		Denaturant In-line Mixer	19,436	19,838	1.02	\$1,900	1997	\$1,900	0.48	\$1,919	1	\$1,919	\$2,608
A-720	1		CSL Storage Tank Agitator	41,777	4,488	0.11	\$12,551	1996	\$12,551	0.51	\$4,023	1.2	\$4,828	\$6,645
A-760	1		CSL/DAP Day Tank Agitator	1,400	4,488	3.21	\$12,795	2001	\$12,795	0.51	\$23,177	1.2	\$27,813	\$37,060
C-755	1		DAP Solids Feeder				\$3,900	1997	\$3,900		\$3,900	1.3	\$5,070	\$6,892
P-701	2	1	Ethanol Product Pump	18,549	19,052	1.03	\$7,500	1997	\$22,500	0.79	\$22,981	2.8	\$64,347	\$87,472
P-703	1	1	Sulfuric Acid Pump	1,647	8,300	5.04	\$8,000	1997	\$16,000	0.79	\$57,411	2.8	\$160,750	\$218,520
P-704	1	1	Firewater Pump	6,823	7,008	1.03	\$18,400	1997	\$36,800	0.79	\$37,585	2.8	\$105,238	\$143,059
P-710	1	1	Gasoline Pump	887	786	0.89	\$4,500	1997	\$9,000	0.79	\$8,181	2.8	\$22,907	\$31,139
P-720	1	1	CSL Pump	2,039	4,488	2.20	\$8,800	1997	\$17,600	0.79	\$32,824	2.8	\$91,908	\$124,937
P-750	1	1	Cellulase Pump	6,823	8,712	1.28	\$18,400	1997	\$36,800	0.79	\$44,637	2.8	\$124,983	\$169,900
P-755	1		DAP Unloading Blower	154	30	0.19	\$47,600	1998	\$47,600	0.5	\$20,922	1.4	\$29,291	\$39,511
P-760	1	1	CSL/DAP Pump	2,039	4,488	2.20	\$8,800	1997	\$17,600	0.79	\$32,824	2.8	\$91,908	\$124,937
S-755	1		DAP Vent Baghouse	548	30	0.05	\$32,200	1997	\$32,200	1	\$1,748	1.5	\$2,622	\$3,565

Equip- ment ID	Number Required	Spares Nos Equipment Name	Scaling Stream Flow (Kg/hr)	New Stream Flow	Size Ratio	Original Equip Cost (per unit)	Base Year	Total Original Equip Cost (Req'd & Spare) in Base Year	Scaling Expo- nent	Scaled Cost in Base Year	Installa- tion Factor	Installed Cost in Base Year	Installed Cost in 2007\$
T-701	2	Ethanol Product Storage Tank	18,549	19,052	1.03	\$165,800	1997	\$331,600	0.51	\$336,159	1.4	\$470,623	\$639,755
T-703	1	Sulfuric Acid Storage Tank	1,647	8,300	5.04	\$42,500	1997	\$42,500	0.51	\$96,961	1.2	\$116,353	\$158,168
T-704	1	Firewater Storage Tank	6,822	7,008	1.03	\$166,100	1997	\$166,100	0.51	\$168,392	1.4	\$235,748	\$320,472
T-709	1	Propane Storage Tank	15	16	1.04	\$24,834	2001	\$24,834	0.72	\$25,580	1.4	\$35,812	\$47,719
T-710	1	Gasoline Storage Tank	887	786	0.89	\$43,500	1997	\$43,500	0.51	\$40,902	1.4	\$57,262	\$77,841
T-720	1	CSL Storage Tank	2,039	4,488	2.20	\$88,100	1997	\$88,100	0.79	\$164,307	1.4	\$230,030	\$312,699
T-750	2	Cellulase Storage Tank	9,234	8,712	0.94	\$125,900	2001	\$251,800	0.79	\$240,483	1.4	\$336,676	\$448,617
T-755	1	DAP Storage Bin	154	30	0.19	\$33,384	2001	\$33,384	0.44	\$16,195	1.3	\$21,054	\$28,054
T-760	1	CSL/DAP Day Tank	1,400	4,488	3.21	\$30,084	2001	\$30,084	0.79	\$75,512	1.4	\$105,717	\$140,866
A700						Subtot	tal	\$1,279,148		\$1,456,624	1.6	\$2,342,860	\$3,170,437
		_											
H-801	1	Burner Combustion Air Preheater	24.0337	13	0.56	\$1,049,900	1997	\$1,049,900	0.6	\$739,305	1.5	\$1,108,957	\$1,507,493
H-811	1	BFW Preheater	415	226	0.54	\$58,400	1997	\$58,400	0.68	\$38,647	2.1	\$81,159	\$110,325
M-803	1	Fluidized Bed Combustion Reactor	341,270	209,403	0.61	24,900,000	1998	\$24,900,00 0	0.75	\$17,262,891	1.3	\$22,441,758	\$30,271,886
M-804	1	Combustion Gas Baghouse	652,517	450,947	0.69	\$2,536,300	1998	\$2,536,300	0.58	\$2,047,058	1.5	\$3,070,587	\$4,141,941
M-811	1	Turbine/Generator	281,179	209,403	0.74	10000000	1998	\$10,000,00 0	0.71	\$8,111,862	1.5	\$12,167,793	\$16,413,244
M-820	1	Hot Process Water Softener System	225,889	192,701	0.85	\$1,381,300	1999	\$1,381,300	0.82	\$1,212,546	1.3	\$1,576,310	\$2,120,311
M-830	1	Hydrazine Addition Pkg.	229,386	215,880	0.94	\$19,000	1994	\$19,000	0.6	\$18,321	1	\$18,321	\$26,150
M-832	1	Ammonia Addition Pkg	229,386	215,880	0.94	\$19,000	1994	\$19,000	0.6	\$18,321	1	\$18,321	\$26,150

Equip- ment ID	Number Required	Spares Nos	Equipment Name	Scaling Stream Flow (Kg/hr)	New Stream Flow	Size Ratio	Original Equip Cost (per unit)	Base Year	Total Original Equip Cost (Req'd & Spare) in Base Year	Scaling Expo- nent	Scaled Cost in Base Year	Installa- tion Factor	Installed Cost in Base Year	Installed Cost in 2007\$
M-834	1		Phosphate Addition Pkg.	229,386	215,880	0.94	\$19,000	1994	\$19,000	0.6	\$18,321	1	\$18,321	\$26,150
P-804	2		Condensate Pump	61,471	136,035	2.21	\$7,100	1997	\$14,200	0.79	\$26,596	2.8	\$74,470	\$101,233
P-811	2		Turbine Condensate Pump	39,524	59,037	1.49	\$7,800	1997	\$15,600	0.79	\$21,419	2.8	\$59,972	\$81,525
P-824	2		Deaerator Feed Pump	293,605	192,701	0.66	\$9,500	1997	\$19,000	0.79	\$13,623	2.8	\$38,145	\$51,853
P-826	5		BFW Pump	564,626	215,880	0.38	\$52,501	1998	\$262,505	0.79	\$122,821	2.8	\$343,900	\$463,890
P-828	2		Blowdown Pump	6,613	6,476	0.98	\$5,100	1997	\$10,200	0.79	\$10,033	2.8	\$28,093	\$38,189
P-830	1		Hydrazine Transfer Pump	229,386	215,880	0.94	\$5,500	1997	\$5,500	0.79	\$5,243	2.8	\$14,679	\$19,955
T-804	1		Condensate Collection Tank	228,862	136,035	0.59	\$7,100	1997	\$7,100	0.71	\$4,907	1.4	\$6,870	\$9,339
T-824	1		Condensate Surge Drum	222,360	192,701	0.87	\$49,600	1997	\$49,600	0.72	\$44,742	1.7	\$76,062	\$103,397
T-826	1		Deaerator	266,213	215,880	0.81	\$165,000	1998	\$165,000	0.72	\$141,890	2.8	\$397,292	\$535,911
T-828	1		Blowdown Flash Drum	6,563	6,476	0.99	\$9,200	1997	\$9,200	0.72	\$9,112	2.8	\$25,515	\$34,684
T-830	1		Hydrazine Drum	229,386	215,880	0.94	\$12,400	1997	\$12,400	0.93	\$11,720	1.7	\$19,923	\$27,083
A800							Subto	tal	\$40,553,205		\$29,879,378	1.4	\$41,586,447	\$56,110,709
M-902	1		Cooling Tower System	147.960 0	105	0.71	\$1,659,000	1998	\$1,659,000	0.78	\$1,265,253	1.2	\$1,518,304	\$2,048,054
M-904	2	1	Plant Air Compressor	98,040	111,111	1.13	\$278,200	2000	\$834,600	0.34	\$870,881	1.3	\$1,132,145	\$1,509,336
M-910	1		CIP System	63	63	1.00	\$95,000	1995	\$95,000	0.6	\$95,036	1.2	\$114,043	\$157,225
P-902	1	1	Cooling Water Pump	182900 00	12,447, 929	0.68	\$332,300	1997	\$664,600	0.79	\$490,386	2.8	\$1,373,081	\$1,866,538
P-912	1	1	Make-up Water Pump	244,160	211,894	0.87	\$10,800	1997	\$21,600	0.79	\$19,312	2.8	\$54,073	\$73,506
P-914	2	1	Process Water Circulating Pump	352,710	254,604	0.72	\$11,100	1997	\$33,300	0.79	\$25,741	2.8	\$72,073	\$97,975
S-904	1	1	Instrument Air Dryer	159,950	111,111	0.69	\$15,498	1999	\$30,996	0.6	\$24,910	1.3	\$32,383	\$43,558

Equip- ment ID	Number Required	Spares Nos Equipment Name	Scaling Stream Flow (Kg/hr)	New Stream Flow	Size Ratio	Original Equip Cost (per unit)	Base Year	Total Original Equip Cost (Req'd & Spare) in Base Year	Scaling Expo- nent	Scaled Cost in Base Year	Installa- tion Factor	Installed Cost in Base Year	Installed Cost in 2007\$
T-902	3	Prehydrolysis Filter Air Receiver	5,259	4,687	0.89	\$17,000	2000	\$51,000	0.72	\$46,942	1.2	\$56,331	\$75,098
T-904	1	Plant Air Receiver	159,950	111,111	0.69	\$13,000	1997	\$13,000	0.72	\$10,000	1.3	\$13,001	\$17,673
T-905	4	Product Recovery Filter Air Receiver	5,700	5,921	1.04	\$17,000	2000	\$68,000	0.72	\$69,887	1.2	\$83,865	\$111,806
T-914	1	Process Water Tank	352,710	254,604	0.72	\$195,500	1997	\$195,500	0.51	\$165,560	1.4	\$231,784	\$315,082
A900						Subtot	tal	\$3,666,596		\$3,083,909	1.5	\$4,681,083	\$6,315,850
						Equipmen	t Cost	\$93,786,061		\$81,109,704	1.50	\$121,788,091	\$164,104,477

Appendix F - Process Operating Summaries

Table F-1. Operating Summary for Dilute Acid Pretreatment Processes

Pretreatment		Saccharification		Fermentation	
Acid Conc (wt%)	0.0190	Enzyme Loading (mg/g cell)	35.1	Total Solids (wt%)	20.1%
Acid Loading (g acid/g dry biomass)	0.0445	Total Solids (wt%)	20.0%	Insoluble Solids (wt%)	4.3%
Total Solids (wt%)	0.2956	Insoluble Solids (wt%)	10.0%	Temperature (°C)	32
Temperature (°C)	190	Temperature (°C)	32	Pressure (atm)	1.0
Pressure (atm) 11.5		Pressure (atm)	1.0	Residence Time (days)	2
Residence Time (min.)		Residence Time (days)	5	Conversions:	
Conversions:		Conversions:		Glucose to Ethanol	0.95
Cellulose to Glucolig	0.003	Cellulose to Glucolig	0	Glucose to Zymo	0.02
Cellulose to Cellobiose	0	Cellulose to Cellobiose	0	Glucose to Glycerol	0.004
Cellulose to Glucose	0.099	Cellulose to Glucose	0.9109	Glucose to Succinic Acid	0.006
Cellulose to HMF	0.003	Glucolig to Cellobiose	0	Glucose to Acetic Acid	0.015
Xylan to Oligomer	0.21	Glucolig to Glucose	0	Glucose to Lactic Acid	0.002
Xylan to Xylose	0.6	Cellobiose to Glucose	0	Xylose to Ethanol	0.756
Xylan to Furfural	0.11	Xylan to Oligomer	0	Xylose to Zymo	0.019
Xylan to Tar	0	Xylan to Xylose	0.5713	Xylose to Glycerol	0.003
Mannan to Oligomer	0.21	Xylose Oligomer to Xylose	0	Xylose to Xylitol	0.046
Mannan to Mannose	0.6	Xylan to Tar	0	Xylose to Succinic Acid	0.009
Mannan to HMF	0.08	Arabinan to Oligomer	0.5713	Xylose to Acetic Acid	0.014
Galactan to Oligomer	0.21	Arabinan to Arabinose	0	Xylose to Lactic Acid	0.002
Galactan to Galactose	0.6	Galactan to Oligomer	0	Arabinose to Ethanol	0
Galactan to HMF	0.08	Galactan to Galactose	0.5713	Arabinose to Zymo	0
Arabinan to Oligomer	0.21	Galactose Oligomer to Galactose	0	Arabinose to Glycerol	0
Arabinan to Arabinose	0.6	Mannan to Oligomer	0	Arabinose to Succinic Acid	0
Arabinan to Furfural	0.08	Mannan to Mannose	0.5713	Arabinose to Acetic Acid	0
Arabinan to Tar	0	Mannose Oligomer to Mannose	0	Arabinose to Lactic Acid	0
Acetate to Oligomer	0	Sugar & Solids Flow Rates (kg/hr)		Galactose to Ethanol	0
Acetate to Acetic Acid	1	Soluble Sugars From PT	22,989	Galactose to Zymo	0
Furfural to Tar	1	Other Soluble Solids From PT	18,543	Galactose to Glycerol	0
HMF to Tar	1	Soluble Sugars in Purchased Cellulase	0	Galactose to Succinic Acid	0
Lignin to Soluble Lignin	0.1	Other Sol Solids in Purchased Cellulase	e 0	Galactose to Acetic Acid	0

Pretreatment, cont.		Saccharification, cont.		Fermentation, cont.	
S/L Separation		Soluble Sugars in Produced Cellulase	0	Galactose to Lactic Acid	0
Water/Hydrolyzate Ratio (kg/kg)	0.58	Other Sol Solids in Produced Cellulase	0	Mannose to Ethanol	0
Water to S/L Separator (kg/hr)	131,829			Mannose to Zymo	0
Dilution Water (kg/hr)	52,436	Soluble Sugars From Sacc	44,457	Mannose to Glycerol	0
Conditioning		Other Soluble Solids From Sacc	16,688	Mannose to Succinic Acid	0
Ca(OH)2 to Gypsum	0.145	Soluble Sugars From Seed Train	880	Mannose to Acetic Acid	0
Sugar Conversion to TAR:		Other Soluble Solids From Seed Train	1,955	Mannose to Lactic Acid	0
Xylose	0.13	Soluble Sugars From DAP	0		
Arabinose	0.2	Other Soluble Solids From DAP	0	Contamination Loss	7.0%
Glucose	0.12	Soluble Sugars From CSL	0		
Galactose	0.28	Other Soluble Solids From CSL	2,095	Ethanol Out of Fermenters (wt%)	4.7%
Mannose	0				
Cellobiose	0.36				

Table F-2. Operating Summary for Dilute Acid Pretreatment (Pilot) Processes

Pretreatment		Saccharification		Fermentation	
Acid Conc (wt%)	0.0190	Enzyme Loading (mg/g cell)	35.1	Total Solids (wt%)	20.1%
Acid Loading (g acid/g dry biomass)	0.0445	Total Solids (wt%)	20.0%	Insoluble Solids (wt%)	4.3%
Total Solids (wt%)	0.2956	Insoluble Solids (wt%)	10.0%	Temperature (°C)	32
Temperature (°C)	190	Temperature (°C)	32	Pressure (atm)	1.0
Pressure (atm)	11.5	Pressure (atm)	1.0	Residence Time (days)	2
Residence Time (min.)		Residence Time (days)	5	Conversions:	
Conversions:		Conversions:		Glucose to Ethanol	0.95
Cellulose to Glucolig	0.003	Cellulose to Glucolig	0	Glucose to Zymo	0.02
Cellulose to Cellobiose	0	Cellulose to Cellobiose	0	Glucose to Glycerol	0.004
Cellulose to Glucose	0.099	Cellulose to Glucose	0.9109	Glucose to Succinic Acid	0.006
Cellulose to HMF	0.003	Glucolig to Cellobiose	0	Glucose to Acetic Acid	0.015
Xylan to Oligomer	0.21	Glucolig to Glucose	0	Glucose to Lactic Acid	0.002
Xylan to Xylose	0.6	Cellobiose to Glucose	0	Xylose to Ethanol	0.756
Xylan to Furfural	0.11	Xylan to Oligomer	0	Xylose to Zymo	0.019
Xylan to Tar	0	Xylan to Xylose	0.5713	Xylose to Glycerol	0.003
Mannan to Oligomer	0.21	Xylose Oligomer to Xylose	0	Xylose to Xylitol	0.046
Mannan to Mannose	0.6	Xylan to Tar	0	Xylose to Succinic Acid	0.009
Mannan to HMF	0.08	Arabinan to Oligomer	0.5713	Xylose to Acetic Acid	0.014
Galactan to Oligomer	0.21	Arabinan to Arabinose	0	Xylose to Lactic Acid	0.002
Galactan to Galactose	0.6	Galactan to Oligomer	0	Arabinose to Ethanol	0
Galactan to HMF	0.08	Galactan to Galactose	0.5713	Arabinose to Zymo	0
Arabinan to Oligomer	0.21	Galactose Oligomer to Galactose	0	Arabinose to Glycerol	0
Arabinan to Arabinose	0.6	Mannan to Oligomer	0	Arabinose to Succinic Acid	0
Arabinan to Furfural	0.08	Mannan to Mannose	0.5713	Arabinose to Acetic Acid	0
Arabinan to Tar	0	Mannose Oligomer to Mannose	0	Arabinose to Lactic Acid	0
Acetate to Oligomer	0			Galactose to Ethanol	0
Acetate to Acetic Acid	1	Sugar & Solids Flow Rates (kg/hr)		Galactose to Zymo	0
Furfural to Tar	1	Soluble Sugars From PT	22,989	Galactose to Glycerol	0
HMF to Tar	1	Other Soluble Solids From PT	18,543	Galactose to Succinic Acid	0
Lignin to Soluble Lignin	0.1	Soluble Sugars in Purchased Cellula	se 0	Galactose to Acetic Acid	0
		Other Sol Solids in Purchased Cellul	ase 0	Galactose to Lactic Acid	0
		Soluble Sugars in Produced Cellulas	e 0	Mannose to Ethanol	0
		Other Sol Solids in Produced Cellula	se 0	Mannose to Zymo	0

Pretreatment, cont.		Saccharification, cont.		Fermentation, cont.	
S/L Separation		Soluble Sugars From Sacc	44,457	Mannose to Glycerol	0
Water/Hydrolyzate Ratio (kg/kg)	0.58	Other Soluble Solids From Sacc	16,688	Mannose to Succinic Acid	0
Water to S/L Separator (kg/hr)	131,829	Soluble Sugars From Seed Train	880	Mannose to Acetic Acid	0
Dilution Water (kg/hr)	52,436	Other Soluble Solids From Seed Train	1,955	Mannose to Lactic Acid	0
Conditioning		Soluble Sugars From DAP	0		
Ca(OH)2 to Gypsum	0.145	Other Soluble Solids From DAP	0	Contamination Loss	7.0%
Sugar Conversion to TAR:		Soluble Sugars From CSL	0		
Xylose	0.13	Other Soluble Solids From CSL	2,095	Ethanol Out of Fermenters (wt%)	4.7%
Arabinose	0.2				
Glucose	0.12				
Galactose	0.28				
Mannose	0				
Cellobiose	0.36				

Table F-3. Operating Summary for Two-Stage Dilute Acid Pretreatment Processes

Pretreatment		Saccharification		Fermentation	
Acid Conc (wt%)	0.0190	Enzyme Loading (mg/g cell)	N/A	Total Solids (wt%)	19.7%
Acid Loading (g acid/g dry biomass)	0.0443	Total Solids (wt%)	34.2%	Insoluble Solids (wt%)	7.1%
Total Solids (wt%)	0.2956	Insoluble Solids (wt%)	28.6%	Temperature (°C)	32
Temperature (°C)	190	Temperature (°C)	144.0873	Pressure (atm)	1.0
Pressure (atm)	11.5	Pressure (atm)	4.0	Residence Time (days)	2
Residence Time (min.)		Residence Time (days)	0	Conversions:	
Conversions:		Conversions:		Glucose to Ethanol	0.95
Cellulose to Glucolig	0	Cellulose to Glucolig	N/A	Glucose to Zymo	0.02
Cellulose to Cellobiose	0	Cellulose to Cellobiose	N/A	Glucose to Glycerol	0.004
Cellulose to Glucose	0.0626	Cellulose to Glucose	N/A	Glucose to Succinic Acid	0.006
Cellulose to HMF	0	Glucolig to Cellobiose	N/A	Glucose to Acetic Acid	0.015
Xylan to Oligomer	0.0265	Glucolig to Glucose	N/A	Glucose to Lactic Acid	0.002
Xylan to Xylose	0.8249	Cellobiose to Glucose	N/A	Xylose to Ethanol	0.756
Xylan to Furfural	0	Xylan to Oligomer	N/A	Xylose to Zymo	0.019
Xylan to Tar	0	Xylan to Xylose	N/A	Xylose to Glycerol	0.003
Mannan to Oligomer	0.0265	Xylose Oligomer to Xylose	N/A	Xylose to Xylitol	0.046
Mannan to Mannose	0.8249	Xylan to Tar	N/A	Xylose to Succinic Acid	0.009
Mannan to HMF	0	Arabinan to Oligomer	N/A	Xylose to Acetic Acid	0.014
Galactan to Oligomer	0.0265	Arabinan to Arabinose	N/A	Xylose to Lactic Acid	0.002
Galactan to Galactose	0.8249	Galactan to Oligomer	N/A	Arabinose to Ethanol	0
Galactan to HMF	0	Galactan to Galactose	N/A	Arabinose to Zymo	0
Arabinan to Oligomer	0.0265	Galactose Oligomer to Galactose	N/A	Arabinose to Glycerol	0
Arabinan to Arabinose	0.8249	Mannan to Oligomer	N/A	Arabinose to Succinic Acid	0
Arabinan to Furfural	0	Mannan to Mannose	N/A	Arabinose to Acetic Acid	0
Arabinan to Tar	0	Mannose Oligomer to Mannose	N/A	Arabinose to Lactic Acid	0
Acetate to Oligomer	0	Sugar & Solids Flow Rates (kg/hr)		Galactose to Ethanol	0
Acetate to Acetic Acid	1	Soluble Sugars From PT	0	Galactose to Zymo	0
Furfural to Tar	1	Other Soluble Solids From PT	13,600	Galactose to Glycerol	0
HMF to Tar	1	Soluble Sugars in Purchased Cellulase	0	Galactose to Succinic Acid	0
Lignin to Soluble Lignin	0.1	Other Sol Solids in Purchased Cellulase	0	Galactose to Acetic Acid	0
S/L Separation		Soluble Sugars in Produced Cellulase	0	Galactose to Lactic Acid	0
Water/Hydrolyzate Ratio (kg/kg)	0.58	Other Sol Solids in Produced Cellulase	0	Mannose to Ethanol	0
Water to S/L Separator (kg/hr)	137,458			Mannose to Zymo	0

Pretreatment, cont.		Saccharification, cont.		Fermentation, cont.	
Conditioning		Soluble Sugars From Sacc	33,169	Mannose to Glycerol	0
Ca(OH)2 to Gypsum	0.183	Other Soluble Solids From Sacc	16,462	Mannose to Succinic Acid	0
Sugar Conversion to TAR:		Soluble Sugars From Seed Train	881	Mannose to Acetic Acid	0
Xylose	0.13	Other Soluble Solids From Seed Train	1,934	Mannose to Lactic Acid	0
Arabinose	0.2	Soluble Sugars From DAP	0		
Glucose	0.12	Other Soluble Solids From DAP	0	Contamination Loss	7.0%
Galactose	0.28	Soluble Sugars From CSL	0		
Mannose	0	Other Soluble Solids From CSL	2,159	Ethanol Out of Fermenters (wt%)	3.1%
Cellobiose	0.36				

Table F-4. Operating Summary for Hot Water Pretreatment Processes

Pretreatment		Saccharification		Fermentation	
Total Solids (wt%)	17.2%	Enzyme Loading (mg/g cell)	33.1	Total Solids (wt%)	16.5%
Total Insoluble Solids (wt%)	12.9%	Total Solids (wt%)	16.0%	Insoluble Solids (wt%)	3.9%
Temperature (°C)	190.0	Insoluble Solids (wt%)	9.2%	Temperature (°C)	32
Pressure (atm)	12.3	Temperature (°C)	32	Pressure (atm)	1.0
Conversions:		Pressure (atm)	1.0	Residence Time (days)	2
Cellulose to Glucolig	0.053	Residence Time (days)	5	Conversions:	
Cellulose to Cellobiose	0	Conversions:		Glucose to Ethanol	0.95
Cellulose to Glucose	0.0032	Cellulose to Glucolig	0	Glucose to Zymo	0.02
Cellulose to HMF	0	Cellulose to Cellobiose	0	Glucose to Glycerol	0.004
Xylan to Oligomer	0.554	Cellulose to Glucose	0.8997	Glucose to Succinic Acid	0.006
Xylan to Xylose	0.0239	Glucolig to Cellobiose	0	Glucose to Acetic Acid	0.015
Xylan to Furfural	0	Glucolig to Glucose	0	Glucose to Lactic Acid	0.002
Xylan to Tar	0	Cellobiose to Glucose	0	Xylose to Ethanol	0.756
Mannan to Oligomer	0.554	Xylan to Oligomer	0	Xylose to Zymo	0.019
Mannan to Mannose	0.0239	Xylan to Xylose	0.5661	Xylose to Glycerol	0.003
Mannan to HMF	0	Xylose Oligomer to Xylose	0	Xylose to Xylitol	0.046
Galactan to Oligomer	0.554	Xylan to Tar	0	Xylose to Succinic Acid	0.009
Galactan to Galactose	0.0239	Arabinan to Oligomer	0.5661	Xylose to Acetic Acid	0.014
Galactan to HMF	0	Arabinan to Arabinose	0	Xylose to Lactic Acid	0.002
Arabinan to Oligomer	0.554	Galactan to Oligomer	0	Arabinose to Ethanol	0
Arabinan to Arabinose	0.0239	Galactan to Galactose	0.5661	Arabinose to Zymo	0
Arabinan to Furfural	0	Galactose Oligomer to Galactose	0	Arabinose to Glycerol	0
Arabinan to Tar	0	Mannan to Oligomer	0	Arabinose to Succinic Acid	0
Acetate to Oligomer	0	Mannan to Mannose	0.5661	Arabinose to Acetic Acid	0
Acetate to Acetic Acid	1	Mannose Oligomer to Mannose	0	Arabinose to Lactic Acid	0
Furfural to Tar	1	Sugar & Solids Flow Rates (kg/hr)		Galactose to Ethanol	0
HMF to Tar	1	Soluble Sugars From PT	19,745	Galactose to Zymo	0
Lignin to Soluble Lignin	0.05	Other Soluble Solids From PT	18,174	Galactose to Glycerol	0
Glucose to HMF	0.5	Soluble Sugars in Purchased Cellulase	0	Galactose to Succinic Acid	0
Mannose to HMF	0.5	Other Sol Solids in Purchased Cellulase	0	Galactose to Acetic Acid	0
Galactose to HMF	0.5	Soluble Sugars in Produced Cellulase	0	Galactose to Lactic Acid	0
Xylose to Furfural	0.5	Other Sol Solids in Produced Cellulase	0	Mannose to Ethanol	0
Arabinose to Furfural	0.5			Mannose to Zymo	0

Pretreatment, cont.		Saccharification, cont.		Fermentation, cont.	
		Soluble Sugars From Sacc	47,147	Mannose to Glycerol	0
S/L Separation		Other Soluble Solids From Sacc	16,357	Mannose to Succinic Acid	0
Water/Hydrolyzate Ratio (kg/kg)	#N/A	Soluble Sugars From Seed Train	2,176	Mannose to Acetic Acid	0
Water to S/L Separator (kg/hr)	#N/A	Other Soluble Solids From Seed Train	1,954	Mannose to Lactic Acid	0
Dilution Water (kg/hr)	#N/A	Soluble Sugars From DAP	0		
Conditioning		Other Soluble Solids From DAP	0	Contamination Loss	7.0%
Ca(OH)2 to Gypsum	0.000	Soluble Sugars From CSL	0		
Sugar Conversion to TAR:		Other Soluble Solids From CSL	2,792	Ethanol Out of Fermenters (wt%)	2.7%
Xylose	0				
Arabinose	0				
Glucose	0				
Galactose	0				
Mannose	0				
Cellobiose	0				

Table F-5. Operating Summary for AFEX Pretreatment Processes

Pretreatment		Saccharification		Fermentation	
Acid Conc (wt%)	0.0000	Enzyme Loading (mg/g cell)	31.3	Total Solids (wt%)	20.5%
Acid Loading (g acid/g dry biomass)	0.0000	Total Solids (wt%)	20.0%	Insoluble Solids (wt%)	3.6%
Total Solids (wt%)	0.4808	Insoluble Solids (wt%)	11.6%	Temperature (°C)	32
Temperature (°C)	108.1302	Temperature (°C)	32	Pressure (atm)	1.0
Pressure (atm)	18.7	Pressure (atm)	1.0	Residence Time (days)	2
Residence Time (min.)		Residence Time (days)	5	Conversions:	
Conversions:		Conversions:		Glucose to Ethanol	0.95
Cellulose to Glucolig		Cellulose to Glucolig	0	Glucose to Zymo	0.02
Cellulose to Cellobiose		Cellulose to Cellobiose	0	Glucose to Glycerol	0.004
Cellulose to Glucose		Cellulose to Glucose	0.959	Glucose to Succinic Acid	0.006
Cellulose to HMF		Glucolig to Cellobiose	0	Glucose to Acetic Acid	0.015
Xylan to Oligomer	0.5	Glucolig to Glucose	0	Glucose to Lactic Acid	0.002
Xylan to Xylose		Cellobiose to Glucose	1	Xylose to Ethanol	0.756
Xylan to Furfural		Xylan to Oligomer	0	Xylose to Zymo	0.019
Xylan to Tar		Xylan to Xylose	0.777	Xylose to Glycerol	0.003
Mannan to Oligomer	0.5	Xylose Oligomer to Xylose	0	Xylose to Xylitol	0.046
Mannan to Mannose		Xylan to Tar	0	Xylose to Succinic Acid	0.009
Mannan to HMF		Arabinan to Oligomer	0.777	Xylose to Acetic Acid	0.014
Galactan to Oligomer	0.5	Arabinan to Arabinose	0	Xylose to Lactic Acid	0.002
Galactan to Galactose		Galactan to Oligomer	0	Arabinose to Ethanol	0
Galactan to HMF		Galactan to Galactose	0.777	Arabinose to Zymo	0
Arabinan to Oligomer	0.5	Galactose Oligomer to Galactose	0	Arabinose to Glycerol	0
Arabinan to Arabinose		Mannan to Oligomer	0	Arabinose to Succinic Acid	0
Arabinan to Furfural		Mannan to Mannose	0.777	Arabinose to Acetic Acid	0
Arabinan to Tar		Mannose Oligomer to Mannose	0	Arabinose to Lactic Acid	0
Acetate to Oligomer		Sugar & Solids Flow Rates (kg/hr)		Galactose to Ethanol	0
Acetate to Acetic Acid		Soluble Sugars From PT	15,980	Galactose to Zymo	0
Furfural to Tar		Other Soluble Solids From PT	21,338	Galactose to Glycerol	0
HMF to Tar		Soluble Sugars in Purchased Cellulase	0	Galactose to Succinic Acid	0
Lignin to Soluble Lignin	0.33	Other Sol Solids in Purchased Cellulase	0	Galactose to Acetic Acid	0
S/L Separation		Soluble Sugars in Produced Cellulase	0	Galactose to Lactic Acid	0
Water/Hydrolyzate Ratio (kg/kg)	N/A	Other Sol Solids in Produced Cellulase	0	Mannose to Ethanol	0

Pretreatment, cont.		Saccharification, cont.		Fermentation, cont.	
Water to S/L Separator (kg/hr)	N/A			Mannose to Zymo	0
Dilution Water (kg/hr)	N/A	Soluble Sugars From Sacc	50,400	Mannose to Glycerol	0
Conditioning		Other Soluble Solids From Sacc	19,205	Mannose to Succinic Acid	0
Ca(OH)2 to Gypsum	#N/A	Soluble Sugars From Seed Train	1,962	Mannose to Acetic Acid	0
Sugar Conversion to TAR:		Other Soluble Solids From Seed Train	2,242	Mannose to Lactic Acid	0
Xylose	#N/A	Soluble Sugars From DAP	0		
Arabinose	#N/A	Other Soluble Solids From DAP	0	Contamination Loss	7.0%
Glucose	#N/A	Soluble Sugars From CSL	0		
Galactose	#N/A	Other Soluble Solids From CSL	2,242	Ethanol Out of Fermenters (wt%)	3.9%
Mannose	#N/A				
Cellobiose	#N/A				

Table F-6. Operating Summary for Separate C5 & C6 Fermentation Processes

Pretreatment		Saccharification		Fermentation	
Acid Conc (wt%)	0.0190	Enzyme Loading (mg/g cell)	33.4	Total Solids (wt%)	17.1%
Acid Loading (g acid/g dry biomass)	0.0443	Total Solids (wt%)	16.1%	Insoluble Solids (wt%)	3.9%
Total Solids (wt%)	0.2968	Insoluble Solids (wt%)	9.4%	Temperature (°C)	32
Temperature (°C)	190	Temperature (°C)	32	Pressure (atm)	1.0
Pressure (atm)	11.4	Pressure (atm)	1.0	Residence Time (days)	2
Residence Time (min.)		Residence Time (days)	5	Conversions:	
Conversions:		Conversions:		Glucose to Ethanol	0.97
Cellulose to Glucolig	0	Cellulose to Glucolig	0	Glucose to Zymo	0.01
Cellulose to Cellobiose	0	Cellulose to Cellobiose	0	Glucose to Glycerol	0.002
Cellulose to Glucose	0.0626	Cellulose to Glucose	0.9109	Glucose to Succinic Acid	0.002
Cellulose to HMF	0	Glucolig to Cellobiose	0	Glucose to Acetic Acid	0.005
Xylan to Oligomer	0.0265	Glucolig to Glucose	0	Glucose to Lactic Acid	0.001
Xylan to Xylose	0.8249	Cellobiose to Glucose	0	Xylose to Ethanol	0
Xylan to Furfural	0	Xylan to Oligomer	0	Xylose to Zymo	0
Xylan to Tar	0	Xylan to Xylose	0.5713	Xylose to Glycerol	0
Mannan to Oligomer	0.0265	Xylose Oligomer to Xylose	0	Xylose to Xylitol	0
Mannan to Mannose	0.8249	Xylan to Tar	0	Xylose to Succinic Acid	0
Mannan to HMF	0	Arabinan to Oligomer	0.5713	Xylose to Acetic Acid	0
Galactan to Oligomer	0.0265	Arabinan to Arabinose	0	Xylose to Lactic Acid	0
Galactan to Galactose	0.8249	Galactan to Oligomer	0	Arabinose to Ethanol	0
Galactan to HMF	0	Galactan to Galactose	0.5713	Arabinose to Zymo	0
Arabinan to Oligomer	0.0265	Galactose Oligomer to Galactose	0	Arabinose to Glycerol	0
Arabinan to Arabinose	0.8249	Mannan to Oligomer	0	Arabinose to Succinic Acid	0
Arabinan to Furfural	0	Mannan to Mannose	0.5713	Arabinose to Acetic Acid	0
Arabinan to Tar	0	Mannose Oligomer to Mannose	0	Arabinose to Lactic Acid	0
Acetate to Oligomer	0	Sugar & Solids Flow Rates (kg/hr)		Galactose to Ethanol	0
Acetate to Acetic Acid	1	Soluble Sugars From PT	10,676	Galactose to Zymo	0
Furfural to Tar	1	Other Soluble Solids From PT	20,699	Galactose to Glycerol	0
HMF to Tar	1	Soluble Sugars in Purchased Cellulase	0	Galactose to Succinic Acid	0
Lignin to Soluble Lignin	0.1	Other Sol Solids in Purchased Cellulase	0	Galactose to Acetic Acid	0
S/L Separation		Soluble Sugars in Produced Cellulase	0	Galactose to Lactic Acid	0
Water/Hydrolyzate Ratio (kg/kg)	0.58	Other Sol Solids in Produced Cellulase	0	Mannose to Ethanol	0
Water to S/L Separator (kg/hr)	137,034			Mannose to Zymo	0

Pretreatment, cont.		Saccharification, cont.		Fermentation, cont.	
Dilution Water (kg/hr)	67,796	Soluble Sugars From Sacc	39,360	Mannose to Glycerol	0
Conditioning		Other Soluble Solids From Sacc	20,699	Mannose to Succinic Acid	0
Ca(OH)2 to Gypsum	#N/A	Soluble Sugars From Seed Train	0	Mannose to Acetic Acid	0
Sugar Conversion to TAR:		Other Soluble Solids From Seed Train	0	Mannose to Lactic Acid	0
Xylose	0.018	Soluble Sugars From DAP	0		
Arabinose	0.018	Other Soluble Solids From DAP	0	Contamination Loss	7.0%
Glucose	0.006	Soluble Sugars From CSL	0		
Galactose	0.006	Other Soluble Solids From CSL	2,371	Ethanol Out of Fermenters (wt%)	4.3%
Mannose	0.006				
Cellobiose	0.006				

Table F-7. Operating Summary for Pervaporation Two-Stage Dilute Acid Pretreatment Processes

Pretreatment		Saccharification		Fermentation	
Acid Conc (wt%)	0.0190	Enzyme Loading (mg/g cell)	33.5	Total Solids (wt%)	20.1%
Acid Loading (g acid/g dry biomass)	0.0443	Total Solids (wt%)	20.0%	Insoluble Solids (wt%)	4.2%
Total Solids (wt%)	0.2960	Insoluble Solids (wt%)	10.3%	Temperature (°C)	32
Temperature (°C)	190	Temperature (°C)	32	Pressure (atm)	1.0
Pressure (atm)	11.4	Pressure (atm)	1.0	Residence Time (days)	2
Residence Time (min.)		Residence Time (days)	5	Conversions:	
Conversions:		Conversions:		Glucose to Ethanol	0.95
Cellulose to Glucolig	0	Cellulose to Glucolig	0	Glucose to Zymo	0.02
Cellulose to Cellobiose	0	Cellulose to Cellobiose	0	Glucose to Glycerol	0.004
Cellulose to Glucose	0.0626	Cellulose to Glucose	0.9109	Glucose to Succinic Acid	0.006
Cellulose to HMF	0	Glucolig to Cellobiose	0	Glucose to Acetic Acid	0.015
Xylan to Oligomer	0.0265	Glucolig to Glucose	0	Glucose to Lactic Acid	0.002
Xylan to Xylose	0.8249	Cellobiose to Glucose	0	Xylose to Ethanol	0.756
Xylan to Furfural	0	Xylan to Oligomer	0	Xylose to Zymo	0.019
Xylan to Tar	0	Xylan to Xylose	0.5713	Xylose to Glycerol	0.003
Mannan to Oligomer	0.0265	Xylose Oligomer to Xylose	0	Xylose to Xylitol	0.046
Mannan to Mannose	0.8249	Xylan to Tar	0	Xylose to Succinic Acid	0.009
Mannan to HMF	0	Arabinan to Oligomer	0.5713	Xylose to Acetic Acid	0.014
Galactan to Oligomer	0.0265	Arabinan to Arabinose	0	Xylose to Lactic Acid	0.002
Galactan to Galactose	0.8249	Galactan to Oligomer	0	Arabinose to Ethanol	0
Galactan to HMF	0	Galactan to Galactose	0.5713	Arabinose to Zymo	0
Arabinan to Oligomer	0.0265	Galactose Oligomer to Galactose	0	Arabinose to Glycerol	0
Arabinan to Arabinose	0.8249	Mannan to Oligomer	0	Arabinose to Succinic Acid	0
Arabinan to Furfural	0	Mannan to Mannose	0.5713	Arabinose to Acetic Acid	0
Arabinan to Tar	0	Mannose Oligomer to Mannose	0	Arabinose to Lactic Acid	0
Acetate to Oligomer	0	Sugar & Solids Flow Rates (kg/hr)		Galactose to Ethanol	0
Acetate to Acetic Acid	1	Soluble Sugars From PT	22,739	Galactose to Zymo	0
Furfural to Tar	1	Other Soluble Solids From PT	18,576	Galactose to Glycerol	0
HMF to Tar	1	Soluble Sugars in Purchased Cellulase	0	Galactose to Succinic Acid	0
Lignin to Soluble Lignin	0.1	Other Sol Solids in Purchased Cellulase	0	Galactose to Acetic Acid	0
S/L Separation		Soluble Sugars in Produced Cellulase	0	Galactose to Lactic Acid	0
Water/Hydrolyzate Ratio (kg/kg)	0.58	Other Sol Solids in Produced Cellulase	0	Mannose to Ethanol	0
Water to S/L Separator (kg/hr)	137,371			Mannose to Zymo	0

Pretreatment, cont.		Saccharification, cont.		Fermentation, cont.	
Dilution Water (kg/hr)	45,921	Soluble Sugars From Sacc	46,152	Mannose to Glycerol	0
Conditioning		Other Soluble Solids From Sacc	16,718	Mannose to Succinic Acid	0
Ca(OH)2 to Gypsum	0.174	Soluble Sugars From Seed Train	839	Mannose to Acetic Acid	0
Sugar Conversion to TAR:		Other Soluble Solids From Seed Train	1,960	Mannose to Lactic Acid	0
Xylose	0.13	Soluble Sugars From DAP	0		
Arabinose	0.2	Other Soluble Solids From DAP	0	Contamination Loss	7.0%
Glucose	0.12	Soluble Sugars From CSL	0		
Galactose	0.28	Other Soluble Solids From CSL	2,138	Ethanol Out of Fermenters (wt%)	4.8%
Mannose	0				
Cellobiose	0.36				

Table F-8. Operating Summary for On-site Enzyme Production Processes

Pretreatment		Saccharification		Fermentation	
Acid Conc (wt%)	0.0190	Enzyme Loading (mg/g cell)	0.0	Total Solids (wt%)	20.1%
Acid Loading (g acid/g dry biomass)	0.0442	Total Solids (wt%)	20.0%	Insoluble Solids (wt%)	4.7%
Total Solids (wt%)	0.2959	Insoluble Solids (wt%)	10.2%	Temperature (°C)	32
Temperature (°C)	190	Temperature (°C)	32	Pressure (atm)	1.0
Pressure (atm)	11.4	Pressure (atm)	1.0	Residence Time (days)	2
Residence Time (min.)		Residence Time (days)	5	Conversions:	
Conversions:		Conversions:		Glucose to Ethanol	0.95
Cellulose to Glucolig	0	Cellulose to Glucolig	0	Glucose to Zymo	0.02
Cellulose to Cellobiose	0	Cellulose to Cellobiose	0	Glucose to Glycerol	0.004
Cellulose to Glucose	0.0626	Cellulose to Glucose	0.9109	Glucose to Succinic Acid	0.006
Cellulose to HMF	0	Glucolig to Cellobiose	0	Glucose to Acetic Acid	0.015
Xylan to Oligomer	0.0265	Glucolig to Glucose	0	Glucose to Lactic Acid	0.002
Xylan to Xylose	0.8249	Cellobiose to Glucose	0	Xylose to Ethanol	0.756
Xylan to Furfural	0	Xylan to Oligomer	0	Xylose to Zymo	0.019
Xylan to Tar	0.085	Xylan to Xylose	0.5713	Xylose to Glycerol	0.003
Mannan to Oligomer	0.0265	Xylose Oligomer to Xylose	0	Xylose to Xylitol	0.046
Mannan to Mannose	0.8249	Xylan to Tar	0	Xylose to Succinic Acid	0.009
Mannan to HMF	0	Arabinan to Oligomer	0.5713	Xylose to Acetic Acid	0.014
Galactan to Oligomer	0.0265	Arabinan to Arabinose	0	Xylose to Lactic Acid	0.002
Galactan to Galactose	0.8249	Galactan to Oligomer	0	Arabinose to Ethanol	0
Galactan to HMF	0	Galactan to Galactose	0.5713	Arabinose to Zymo	0
Arabinan to Oligomer	0.0265	Galactose Oligomer to Galactose	0	Arabinose to Glycerol	0
Arabinan to Arabinose	0.8249	Mannan to Oligomer	0	Arabinose to Succinic Acid	0
Arabinan to Furfural	0	Mannan to Mannose	0.5713	Arabinose to Acetic Acid	0
Arabinan to Tar	0.085	Mannose Oligomer to Mannose	0	Arabinose to Lactic Acid	0
Acetate to Oligomer	0	Sugar & Solids Flow Rates (kg/hr)		Galactose to Ethanol	0
Acetate to Acetic Acid	1	Soluble Sugars From PT	20,317	Galactose to Zymo	0
Furfural to Tar	1	Other Soluble Solids From PT	16,259	Galactose to Glycerol	0
HMF to Tar	1	Soluble Sugars in Purchased Cellulase	0	Galactose to Succinic Acid	0
Lignin to Soluble Lignin	0.1	Other Sol Solids in Purchased Cellulase	0	Galactose to Acetic Acid	0
S/L Separation		Soluble Sugars in Produced Cellulase	545	Galactose to Lactic Acid	0
Water/Hydrolyzate Ratio (kg/kg)	0.58	Other Sol Solids in Produced Cellulase	2,781	Mannose to Ethanol	0
Water to S/L Separator (kg/hr)	137,416			Mannose to Zymo	0

Pretreatment, cont.		Saccharification, cont.		Fermentation, cont.	
Dilution Water (kg/hr)	19,186	Soluble Sugars From Sacc	41,246	Mannose to Glycerol	0
Conditioning		Other Soluble Solids From Sacc	17,136	Mannose to Succinic Acid	0
Ca(OH)2 to Gypsum	0.175	Soluble Sugars From Seed Train	783	Mannose to Acetic Acid	0
Sugar Conversion to TAR:		Other Soluble Solids From Seed Train	2,003	Mannose to Lactic Acid	0
Xylose	0.13	Soluble Sugars From DAP	0		
Arabinose	0.2	Other Soluble Solids From DAP	0	Contamination Loss	7.0%
Glucose	0.12	Soluble Sugars From CSL	0		
Galactose	0.28	Other Soluble Solids From CSL	2,056	Ethanol Out of Fermenters (wt%)	4.5%
Mannose	0				
Cellobiose	0.36				

Appendix G - General Process Description

Area 100

The feedstock handling area receives the corn stover in bales. After being unwrapped, stover is washed to remove dirt before being passed through a magnetic separator to remove tramp metal and then conveyed to the shredders for size reduction.

Area 200

In the pretreatment area, biomass undergoes a physical and/or chemical treatment, which allows for improved exposure of the cellulose during enzymatic hydrolysis. The details of the four pretreatment processes are discussed under the Pretreatment Variation section of process variations in the results section.

Area 300

Enzymatic saccharification followed by fermentation of sugars occurs in this area. The pretreatment hydrolyzate from Area 200 is pumped into 18 parallel saccharification vessels (each has a capacity of 1 MM gal) where enzyme is added (enzyme loading of 31.3 mg protein/g cellulose) either from purchased stock preparation or from the on-site enzyme production section (Area 400). The residence time for saccharification is 5 days. Note that for two-stage dilute acid treatment, acid is used in place of enzyme to hydrolyze the cellulose and xylan.

A small fraction of the hydrolyzate leaving the saccharification vessel is sent to one of two sequenced batch fermentation seed vessel trains to be used as a carbon source for the growth of the fermentative organism, *Zymomonas mobilis*. Nutrients such as CSL and diammonium phosphate are also added into the bio-reactors.

The bulk of the hydrolyzate from the saccharification vessels is pumped to one of eight parallel sequenced batch fermentation reactors, where *Zymomonas mobilis* is introduced from the seed reactors. A 2 day residence time is used for fermentation. Vent gas from the fermentors is scrubbed to collect escaped ethanol in the scrubber and sent to the beer column along with fermented beer from the fermentors.

Area 500

Ethanol is separated and recovered from water and residual solids in this section. Fermented beer is distilled in two distillation columns: beer column and rectification column. The beer column removes dissolved CO₂ and vapor generating a concentrated ethanol stream. The rectification column purifies the ethanol to about 95 wt% concentration. Nearly all of the remaining water is removed in a molecular sieve adsorption column. The stillage from the beer column is pumped to the 1st-effect evaporator where water content is reduced, followed by dewatering in a Pneumapress filter and screw press to separate most of the insoluble solids, comprising mainly lignin, from the aqueous stream. The liquid fraction from the screw press is concentrated in the 2nd- and the 3rd-effect evaporators to high concentration syrup of soluble solids. The evaporator syrup and the dewatered solid fraction from the screw press are used as boiler fuel in the fluidized bed combustor

Area 600

Wastewater is treated in anaerobic and aerobic digesters. In the anaerobic digester, a small amount of urea, phosphoric acid, and micronutrients are added as nutrients for the anaerobic organisms. Biogas from the anaerobic digester is used as boiler fuel. The wastewater is further treated aerobically. It is then held in a clarifying tank where the settled solids are separated from the water. The solids are dewatered in a belt filter press, with a polymer being added to aid in dewatering, followed by a screw press. The resulting sludge is used as boiler fuel. The water from the clarifying tank is recycled as process water.

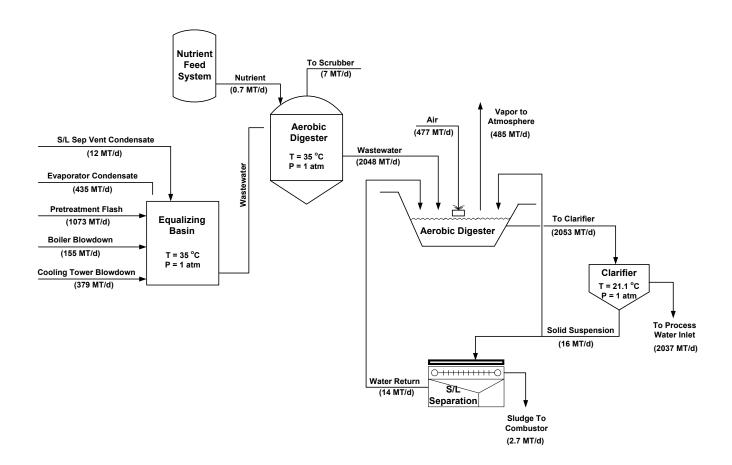


Figure G-1. Wastewater treatment section (Area 600)

Area 800

Cogeneration of steam for process heat and electricity occurs in Area 800. Evaporator syrup, insoluble solids from the Pneumapress, wastewater treatment sludge, and biogas are used as fuel in the fluidized bed combustor. Superheated steam is generated in the boiler and exits the multistage turbine at three different conditions needed in the process.

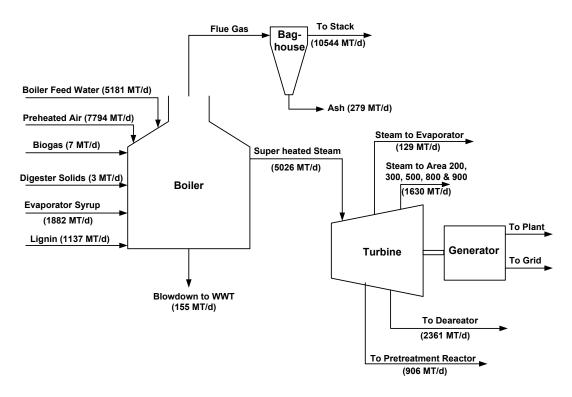


Figure G-2. Steam and power generation section (Area 800)

Appendix H - Cost By Area Of Process Scenarios

Table H-1. Costs by Area of the Dilute Acid Pretreatment (High Solids) Scenario

Cost Areas / Factor	Installed	Cost	Purchased Equipment Cost				
	(MM\$)	(%)	(MM\$)	(%)			
Feedstock Handling (Area 100)	10.9	6.4	6.0	5.3			
Pretreatment (Area 200)	38.0	22.4	21.0	18.5			
Saccharification & Fermentation (Area 300)	21.8	12.9	17.3	15.3			
Distillation and Solids Recovery (Area 500)	25.7	15.1	16.9	14.9			
Wastewater Treatment (Area 600)	5.8	3.4	4.5	4.0			
Storage (Area 700)	3.1	1.8	1.9	1.7			
Boiler/Turbogenerator (Area 800)	57.6	24.4	41.4	36.5			
Utilities (Area 900)	6.6	3.9	4.3	3.8			
Purchased Equipment Cost			113.3	100			
Total Installed Equipment Cost	169.4	100					
Fixed Capital Investment (FCI)	337.8						
Working Capital (WC)	50.7						
Total Capital Investment (TCI)	388.5						
Lang Factor	3.43						

Table H-2. Costs by Area of the 2-Stage Dilute Acid Pretreatment Scenario

Cost Areas / Factor	Installed	Cost	Purchas Equipme	
	(MM\$)	(%)	(MM\$)	(%)
Feedstock Handling (Area 100)	10.9	6.3	6.0	5.4
Pretreatment (Area 200)	44.9	26.0	23.5	21.0
Saccharification & Fermentation (Area 300)	9.7	5.6	7.2	6.4
Distillation and Solids Recovery (Area 500)	26.7	15.5	18.1	16.1
Wastewater Treatment (Area 600)	4.6	2.7	3.5	3.1
Storage (Area 700)	2.8	1.6	1.7	1.5
Boiler/Turbogenerator (Area 800)	66.2	38.3	47.6	42.5
Utilities (Area 900)	6.9	4.0	4.5	4.0
Purchased Equipment Cost			112.1	100
Total Installed Equipment Cost	172.7	100		
Fixed Capital Investment (FCI)	340.0			
Working Capital (WC)	51.0			
Total Capital Investment (TCI)	391.0			
Lang Factor	3.49			

Table H-3. Costs by Area of the Hot Water Pretreatment Scenario

Cost Areas / Factor	Installed	Cost	Purchase Cost	ed Equipment
	(MM\$)	(%)	(MM\$)	(%)
Feedstock Handling (Area 100)	10.9	7.0	6.0	5.6
Pretreatment (Area 200)	6.7	4.3	3.9	3.6
Saccharification & Fermentation (Area 300)	30.2	19.3	23.4	21.7
Distillation and Solids Recovery (Area 500)	30.9	19.8	19.4	18.0
Wastewater Treatment (Area 600)	1.9	1.2	1.3	1.2
Storage (Area 700)	3.3	2.1	2.1	2.0
Boiler/Turbogenerator (Area 800)	65.8	42.1	47.3	43.9
Utilities (Area 900)	6.7	4.3	4.3	4.0
Purchased Equipment Cost			107.8	100
Total Installed Equipment Cost	156.3	100		
Fixed Capital Investment (FCI)	314.0			
Working Capital (WC)	47.1			
Total Capital Investment (TCI)	361.1			
Lang Factor	3.35			

Table H-4. Costs by Area of the AFEX Pretreatment Scenario

Cost Areas / Factor	Installed	Cost	Purchase Cost	ed Equipment
Cost Aleas / Lactor	(MM\$)	(%)	(MM\$)	(%)
Feedstock Handling (Area 100)	10.9	6.5	6.0	5.3
Pretreatment (Area 200)	30.8	18.4	18.4	16.1
Saccharification & Fermentation (Area 300)	23.5	14.0	18.8	16.5
Distillation and Solids Recovery (Area 500)	27.5	16.4	17.5	15.4
Wastewater Treatment (Area 600)	1.6	1.0	1.1	1.0
Storage (Area 700)	2.8	1.7	1.8	1.6
Boiler/Turbogenerator (Area 800)	62.0	37.0	44.6	39.1
Utilities (Area 900)	8.4	5.0	5.8	5.1
Purchased Equipment Cost			113.9	100
Total Installed Equipment Cost	167.4	100		
Fixed Capital Investment (FCI)	335.6			
Working Capital (WC)	50.4			
Total Capital Investment (TCI)	386.0			
Lang Factor	3.39			

Table H-5. Costs by Area of the Separate C-5 and C-6 Fermentation Process Scenario

Cost Areas / Factor	Installed	Cost	Purchase Cost	d Equipment
	(MM\$)	(%)	(MM\$)	(%)
Feedstock Handling (Area 100)	11.4	6.8	6.2	5.5
Pretreatment (Area 200)	34.2	20.4	18.4	16.4
Saccharification & Fermentation (Area 300)	29.6	17.6	23.7	21.1
Distillation and Solids Recovery (Area 500)	27.3	16.3	17.8	15.8
Wastewater Treatment (Area 600)	3.1	1.8	2.3	2.0
Storage (Area 700)	5.1	3.0	3.4	3.0
Boiler/Turbogenerator (Area 800)	50.9	30.3	36.5	32.5
Utilities (Area 900)	6.2	3.7	4.1	3.6
Purchased Equipment Cost			112.4	100
Total Installed Equipment Cost	167.8	100		
Fixed Capital Investment (FCI)	335.4			
Working Capital (WC)	50.3			
Total Capital Investment (TCI)	385.8			
Lang Factor	3.43			

Table H-6. Costs by Area of the Pervaporation Process Scenario

Cost Areas / Factor	Installed	Cost	Purchase Cost	ed Equipment
	(MM\$)	(%)	(MM\$)	(%)
Feedstock Handling (Area 100)	10.9	5.2	6.0	3.9
Pretreatment (Area 200)	36.2	17.3	19.7	12.7
Saccharification & Fermentation (Area 300)	21.9	10.5	17.4	11.2
Distillation and Solids Recovery (Area 500)	70.8	33.8	62.9	40.5
Wastewater Treatment (Area 600)	3.3	1.6	2.4	1.5
Storage (Area 700)	3.3	1.6	2.1	1.4
Boiler/Turbogenerator (Area 800)	55.9	26.7	40.1	25.8
Utilities (Area 900)	7.0	3.3	4.6	3.0
Purchased Equipment Cost			155.2	100
Total Installed Equipment Cost	209.2	100		
Fixed Capital Investment (FCI)	435.7			
Working Capital (WC)	65.4			
Total Capital Investment (TCI)	501.0			
Lang Factor	3.23			

Table H-7. Costs by Area of the On-site Enzyme Production Processes Scenario

Cost Areas / Factor	Installed	Cost	Purchase Cost	ed Equipment
	(MM\$)	(%)	(MM\$)	(%)
Feedstock Handling (Area 100)	10.9	5.8	6.0	4.7
Pretreatment (Area 200)	36.2	19.3	19.7	15.5
Saccharification & Fermentation (Area 300)	21.8	11.6	17.3	13.6
On-site Enzyme Production (Area 400)	23.7	12.6	17.9	14.0
Distillation and Solids Recovery (Area 500)	25.3	13.5	16.8	13.2
Wastewater Treatment (Area 600)	3.4	1.9	2.6	2.0
Storage (Area 700)	2.5	1.3	1.6	1.2
Boiler/Turbogenerator (Area 800)	57.2	30.4	41.1	32.3
Utilities (Area 900)	6.8	3.6	4.4	3.5
Purchased Equipment Cost			127.4	100
Total Installed Equipment Cost	187.8	100		
Fixed Capital Investment (FCI)	377.5			
Working Capital (WC)	56.6			
Total Capital Investment (TCI)	434.2			
Lang Factor	3.41			

Appendix I - Down Selection Matrix

Table I-1. Process Down-Selection Matrix

																			WII OCI								
	Capital Expenditure (x10 ⁶ \$)	Operating Costs (x10°\$)	Fuel Cost (\$/gal)	Internal Rate of Return (%)	Risk	Plant Efficiency (%)	Carbon Efficiency	Process Yield (fuel) [gal Ethanol or Butanol/ ton feed stock]	Capacity Factor	Optimal Plant Size (MTon/day)	Complexity of Process	Technology Development	Water Use/Discharge (Mton/day)	Greenhouse Gas Emissions	Particulates/Solid Wastes	Air Emissions	Waste Treatment	Toxics	Energy Content (Gasoline Equivalent)	Engine Compatibility	Use Emissions	Infrastructure Compatibility	Fuel Toxicity	Ability to Meet Fuel Standards	Bibliography ^a	Notes	Process Blocks
Ethanol Concentrated Acid/Fermentation																											
Ethanol Dilute Acid Pretreatment/Enzymatic / Fermentation	3.24	0.16	1.07	10			48	89.7	93	2000		Pilot	5440						0.658						1		Process Blocks: (1) Pretreatment (dilute H ₂ SO ₄); (2) Continuous Saccharification; and (3) Cofermentation (hydrolysis & fermentation units are in series); (4) Separation/Purification (distillation and molecular sieve); (5) Water treatment (treated water recycle to process)
Ethanol Dilute Acid Pretreatment/Enzymatic / Fermentation	0.21	0.10					2	- 66				Commercial/Pilot F	0110													Scenario-I (Short Term: 5 years, following pretreatment and SSF)	Process Blocks: (1) Pretreatment (dilute acid); (2) Hydrolysis (Enzymatic); (3) Fermentation; (4) Separation/Purification (distillation & desiccants)
Ethanol Dilute Acid Pretreatment/Enzymatic / Fermentation	4.53		1.71				48	76.2	91	5000		Commercial/Pilot Co							0.628						3	Current Process (pretreatment & SSF)	Process Blocks: (1) Pretreatment (dilute acid); (2a) SSF (simultaneous sccharification & fermentation); (2b) with separate fermentation for C5; (3) Separation/Purification (2-column distillation); (4) Water treatment (suspended sludge digester)
Ethanol Dilute Acid Pretreatment/Enzymatic / Fermentation	1.27	1.02	0.88				50	119.5											0.658						4	Feedstock: Corn	Process Blocks: (1) Pretreatment (dilute H ₂ SO ₄); (2) Simultaneous Saccharification and Cofermentation (glucose & Xylose); and (3) Separation/Purification (distillation and molecular sieve); (5) Water treatment (treated water recycle to process)
Ethanol Dilute Acid Pretreatment/Enzymatic / Fermentation	4.83		1.45				42	79.2	90.4										0.658						5	Feedstock: Cornstover	Process Blocks: (1) Pretreatment (dilute H ₂ SO ₄); (2) Simultaneous Saccharification and Cofermentation (glucose & Xylose); and (3) Separation/Purification (distillation and molecular sieve); (5) Water treatment (treated water recycle to process)
Ethanol Dilute Acid Pretreatment/Enzymatic / Fermentation	4.91	0.25	1.14	10			36	68	95.9	2000		Pilot	6307						0.661						6	SSCF Base Case; Feedstock: Yellow poplar	Process Blocks: (1) Pretreatment (dilute H ₂ SO ₄); (2) Simultaneous sccharification and cofermentation (of glucose & xylan); (3) Separation/Purification; (5) Water treatment (treated water recycle to process)

	1			,	1		1			1	ı	1			1	1		-	1	1		1				1	
	Capital Expenditure (x10 ⁶ \$)	Operating Costs (x10 ⁶ \$)	Fuel Cost (\$/gal)	Internal Rate of Return (%)	Risk	Plant Efficiency (%)	Carbon Efficiency	Process Yield (fuel) [gal Ethanol or Butanol/ ton feed stock]	Capacity Factor	Optimal Plant Size (MTon/day)	Complexity of Process	Technology Development	Water Use/Discharge (Mton/day)	Greenhouse Gas Emissions	Particulates/Solid Wastes	Air Emissions	Waste Treatment	Toxics	Energy Content (Gasoline Equivalent)	Engine Compatibility	Use Emissions	Infrastructure Compatibility	Fuel Toxicity	Ability to Meet Fuel Standards	Bibliography ^a	Notes	Process Blocks
Ethanol Dilute Acid Pretreatment/Enzymatic / Fermentation	3.85		1.16	10			40	76	95.9	2000		Pilot	6307						0.661						7	SSCF Near Term; Feedstock: Yellow poplar	
Ethanol Dilute Acid Pretreatment/Enzymatic / Fermentation	2.98		0.94	10			42	81	95.9	2000		Pilot	6307						0.661						8	SSCF 2005; Feedstock: Yellow poplar	
Ethanol Dilute Acid Pretreatment/Enzymatic / Fermentation	2.37		0.82	10			49	94	95.9	2000		Pilot	6307						0.661						9	SSCF 2010; Feedstock: Yellow poplar	
Ethanol Dilute Acid Pretreatment/Enzymatic / Fermentation	2.29		0.76	10			52	99	95.9	2000		Pilot	6307						0.661						10	SSCF 2015; Feedstock: Yellow poplar	
Ethanol Dilute Acid Pretreatment/Enzymatic / Fermentation	8.67	1.76		15			78	33	100	4360		Pilot													11	SHF (TVA process); High profit from co- products: furfural	Process Blocks: (1) Pretreatment (dilute H ₂ SO ₄); (2) Hydrolysis (Enzymatic); (3) Fermentation (Hexose & Pentose in separate vessels); (4) Separation/Purification (distillation); (5) Waste treatment
Ethanol SO ₂ -Steam Pretreatment/Enzymatic / Fermentation	5.58		0.98				42	78.5	100	500															12	SO ₂ & NaOH in 2-step preteratment; Rate of return on working capital	Process Blocks: (1) Pretreatment (SO ₂ , Steam); (2) Hydrolysis (Enzymatic); (3a) Fermentation, and (3b) fermentation of C5 sugars in separate vessels; (4) Seperation; (5) water treatment
Ethanol SO ₂ -Steam Pretreatment/Enzymatic / Fermentation	13.61		0.75				36	69.6		586.8		lab	552						0.624						13	SHF process; SO ₂ is used for pretreatment; Total Investment is 1184 MSKR	Process Blocks: (1) Pretreatment (Stake Tech: SO ₂ & Steam); (2) Hydrolysis (Enzymatic); (3) Fermentation; (4) Separation/Purification (distillation & drying)
Ethanol SO ₂ -Steam Pretreatment/Enzymatic / Fermentation	9.18		0.83	5			41	79.2	91.2	586.8		lab	586						0.618						14	SSF process; SO ₂ is used for pretreatment; Total Investment is 910 MSKR	Process Blocks: (1) Pretreatment (Stake Tech: SO ₂ & Steam); (2) SSF (Simultaneous Saccharification & Fermentation); (3) Separation/Purification (distillation & drying)
Ethanol SO ₂ -Steam Pretreatment/Enzymatic / Fermentation	8.63		2.24	6			40	76.8	91.2	600		lab							0.621						15	SSF process; SO ₂ is used for pretreatment; One-Step Pretreatment; Total Investment is 847 MSKR	Process Blocks: (1) Pretreatment (Stake Tech: SO ₂ & Steam); (2) SSF (Simultaneous Saccharification & Fermentation; feed batch); (3) Separation/Purification (2-separate stripper & rectifier operations)

	1							_		1	1	1		1	1	1	1	1	ı	1					1	T	
	Capital Expenditure (x10 ⁶ \$)	Operating Costs (x10 ⁶ \$)	Fuel Cost (\$/gal)	Internal Rate of Return (%)	Risk	Plant Efficiency (%)	Carbon Efficiency	Process Yield (fuel) [gal Ethanol or Butanol/ ton feed stock]	Capacity Factor	Optimal Plant Size (MTon/day)	Complexity of Process	Technology Development	Water Use/Discharge (Mton/day)	Greenhouse Gas Emissions	Particulates/Solid Wastes	Air Emissions	Waste Treatment	Toxics	Energy Content (Gasoline Equivalent)	Engine Compatibility	Use Emissions	Infrastructure Compatibility	Fuel Toxicity	Ability to Meet Fuel Standards	Bibliography ^a	Notes	Process Blocks
Ethanol SO ₂ -Steam Double Pretreatment/Enzymatic / Fermentation	8.72		2.24	6			42	80.1	91.2	600		lab							0.621						16	SSF process; SO₂ is used for pretreatment; Two-Step Pretreatment; Total Investment is 847 MSKR	Process Blocks: (1) Pretreatment (2- step SO ₂ -steam pretreatment: double pretreatment); (2) SSF (Simultaneous Saccharification & Fermentation; feed batch); (3) Separation/Purification (2- separate stripper & rectifier operations)
Ethanol AFEX Pretreatment/Enzymatic / Fermentation	1.95		0.73	12			61	105.3	95.9	5000		Lab													17	Advanced EtOH Rankine process	Process Blocks: (1) Pretreatment (Ammonia fiber expansion, AFEX, pretreatment - no detoxification); (2) SSF (simultaneous sccharification & fermentation); (3) Separation/Purification (1-column distillation with heat integration); (4) Water treatment (attached film digester)
Ethanol AFEX Pretreatment/Enzymatic / Fermentation	2.89		0.77	12			61	105.3	95.9	5000		conceptual													18	Advanced EtOH-GTCC Process	Process Blocks: (1) Pretreatment (Ammonia fiber expansion, AFEX, pretreatment- no detoxification); (2) CBP (consolidated bio-processing); (3) Separation/Purification (1-column distillation with heat integration); (4) Water treatment (attached film digester)
E thanol Liquid Hotwater Pretreatment/Enzymatic / Fermentation			0.99	10					91	2000		conceptual							0.628						19	Scenario-III (Long Term: >20 years, following Consolidated BioProcessing, CBP)	Process Blocks: (1) Pretreatment (Liquid Hot Water); (2) Consolidated Bio-Processing; (3) Separation/Purification (distillation & desiccants)
Ethanol Steam Pretreatment/Enzymatic / Fermentation	681- 907		1.48	10					91	2000		lab/pilot							0.628						20	Scenario-II (Mid Term: 5- 10 years, following pretreatment and SSCF)	Process Blocks: (1) Pretreatment (steam explosion); (2) SSF & SSCF(Simultaneous saccharification & fermentation, and simultaneous saccharification and cofermentation); (3) Separation/Purification (distillation & desiccants)
Ethanol Enzymatic / Fermentation	9.06	1.33	1.1	15			47	79.4	100	15		Lab							0.658						21	Scenario-I (minerals sent to land fill; No ethanol from xylan)	Process Blocks: (1) SSF (Simultaneous saccharification and fermentation); (2) Separation/Purification (distillation and molecular sieve); (3) Water treatment
Ethanol Enzymatic / Fermentation	7.70		1.1	15			55	93.5	100	15		no-lab demo							0.658						22	Scenario-II (90% of minerals are recovered and sent to paper mill)	Process Blocks: (1) SSF (Simultaneous saccharification and fermentation); (2) Separation/Purification (distillation and molecular sieve); (3) Water treatment
Butanol Concentrated Acid / Fermentation																											
Butanol Dilute Acid Pretreatment / Fermentation							44	28.4				lab							0.957						23	Feedstock: corn fiber; dilute H ₂ SO ₄ hydrolysis	Process Blocks: (1) Hydrolysis (dilute H ₂ SO ₄); (2) Fermentation; (3) Separation/Purification (distillation)

		1		ı	1	1	ı				ı	1 1		1	ı		ı	1		ı	1						
	Capital Expenditure (x10 ⁶ \$)	Operating Costs (x10 ⁶ \$)	Fuel Cost (\$/gal)	Internal Rate of Return (%)	Risk	Plant Efficiency (%)	Carbon Efficiency	Process Yield (fuel) [gal Ethanol or Butanol/ ton feed stock]	Capacity Factor	Optimal Plant Size (MTon/day)	Complexity of Process	Technology Development	Water Use/Discharge (Mton/day)	Greenhouse Gas Emissions	Particulates/Solid Wastes	Air Emissions	Waste Treatment	Toxics	Energy Content (Gasoline Equivalent)	Engine Compatibility	Use Emissions	Infrastructure Compatibility	Fuel Toxicity	Ability to Meet Fuel Standards	Bibliography ^a	Notes	Process Blocks
Butanol AFEX Pretreatment / Enzymatic / Fermentation																											
Butanol Hotwater Pretreatment / Enzymatic / Fermentation							65	57.6				Lab							0.957						24	Feedstock: Saccharified Liquefied Cornstarch (SLCS) with moisture content of approximately 60%	Process Blocks: (1) Hydrolysis (enzymatic hydrolysis of LCS to SLCS); (2) Fermentation; (3) Separation/Purification
Butanol Hotwater Pretreatment / Fermentation							60	54				Lab							0.957						25	Feedstock: Liquefied Cornstarch (LCS) with moisture content of approximately 60%	Process Blocks: (1) Simultaneous saccharification and Fermentation; (2) Separation/Purification
Butanol Enzyme / Fermentation	0.81	0.07	0.74	10- 30			66	89.84	95.9	1469		lab							0.949						26	Feedstock: corn (14% moisture); Hydrolysis + Immobilized Cell Continuous Fermentation & pervaporative recovery, ICCFPR process	Process Blocks: (1) Hydrolysis (enzymatic); (2) Fermentation (contineous); (3) Separation/Purification (pervaporation & distillation)
Butanol Fermentation	1.31	0.15	0.81	15			58	5.52	100	2268		ab							0.957						27	Feedstock: Whey permeat (4.5% lactose); Fibrous Bed Reactor, FBR; Process: 2 step fermentation	Process Blocks: (1) 2-step Fermentation (i. fermentation of lactose to butyric acid, ii. Fermentation of butyric acis to butanil); (3) Separation/Purification (adsorption, desorption, distillation);
Butanol Fermentation							57	114				lab							0.957							Feedstock: Glucose; 2- step fermentation, FBR	Process Blocks: (1) hydrolysis of lignocellulosics/starch to fermentable sugars; (2) 2-step Fermentation of glucose (i. fermentation of lactose to butyric acid, ii. Fermentation of butyric acis to butanil); (3) Separation/Purification (adsorption, desorption, distillation);
Butanol Fermentation	2.37	0.22	1.68	20			65	89.79	95.9	1469		Pilot							0.947						28	Feedstock: corn (14% moisture)	Process Blocks: (1) Simultaneous saccharification and Fermentation; (2) Separation/Purification (distillation); (3) Wastewater treatment (recycling to process)
Butanol Fermentation	1.00	0.09	0.95	10- 30			66	89.84	95.9	1469		Pilot							0.949						29	Feedstock: corn (14% moisture); Batch Fermentation & pervaporative recovery, BFPR process	Process Blocks: (1) Simultaneous saccharification and Fermentation; (2) Separation/Purification (pervaporation & distillation)

	Capital Expenditure (x10 ⁶ \$)	Operating Costs (x10 ⁶ \$)	Fuel Cost (\$/gal)	Internal Rate of Return (%)	Risk	Plant Efficiency (%)	Carbon Efficiency	Process Yield (fuel) [gal Ethanol or Butanol/ ton feed stock]	Capacity Factor	Optimal Plant Size (MTon/day)	Complexity of Process	Technology Development	Water Use/Discharge (Mton/day)	Greenhouse Gas Emissions	Particulates/Solid Wastes	Air Emissions	Waste Treatment	Toxics	Energy Content (Gasoline Equivalent)	Engine Compatibility	Use Emissions	Infrastructure Compatibility	Fuel Toxicity	Ability to Meet Fuel Standards	Bibliography ^a	Notes	Process Blocks
Butanol Fermentation	0.93	0.08	0.81	10- 30			66	89.84	95.9	1469		Pilot							0.949						30	Feedstock: corn (14% moisture); Fed- batch Fermentation & pervaporative recovery, FBFPR process	Process Blocks: (1) Simultaneous saccharification and Fermentation; (2) Separation/Purification (pervaporation & distillation)
Zeachem Process																											

^a Bibliography references:

- 1. Aden, A., et al. (2002). NREL Report NREL/TP-510-32438.
- 2. Hamelinck, C.N., et al. (2005). Biomass & Bioenergy, vol. 28, pp. 384-410.
- 3. Laser, M., et al. (2009). Biofuels Bioproducts & Biorefining, vol. 3, pp. 195-218.
- 4. Wallace, R., et al. (2005). NREL Report TP-510-37092.
- 5. Wallace, R., et al. (2005). NREL Report TP-510-37092.
- 6. Wooley, R., et al. (1999). NREL Report TP-580-26157.
- 7. Wooley, R., et al. (1999). NREL Report TP-580-26157.
- 8. Wooley, R., et al. (1999). NREL Report TP-580-26157.
- 9. Wooley, R., et al. (1999). NREL Report TP-580-26157.
- 10. Wooley, R., et al. (1999). NREL Report TP-580-26157.
- 11. Kaylen, M., et al. (2000). Bioresource Technology, vol. 72, pp. 19-32.
- 12. Nguyen, Q.A., Saddler, J.N. (1991). Bioresource Technology, vol. 35(3), pp. 275-282.
- 13. Wingen, A., et al. (2003). Biotechnology Progress, vol. 19(4), pp. 1109-1117.
- 14. Wingen, A., et al. (2003). Biotechnology Progress, vol. 19(4), pp. 1109-1117.
- 15. Wingen, A., et al. (2004). Biotechnology Progress, vol. 20(5), pp. 1421-1429.
- 16. Wingen, A., et al. (2004). Biotechnology Progress, vol. 20(5), pp. 1421-1429.
- 17. Laser, M., et al. (2009). Biofuels Bioproducts & Biorefining, vol. 3, pp. 247-270.
- 18. Laser, M., et al. (2009). Biofuels Bioproducts & Biorefining, vol. 3, pp. 247-270.
- 19. Hamelinck, C.N., et al. (2005). Biomass & Bioenergy, vol. 28, pp. 384-410.
- 20. Hamelinck, C.N., et al. (2005). Biomass & Bioenergy, vol. 28, pp. 384-410.
- 21. Fan, Z., Lynd, L.R. (2007). Bioprocess and Biosystems Engineering, vol. 30(1), pp. 35-45.
- 22. Fan, Z., Lynd, L.R. (2007). Bioprocess and Biosystems Engineering, vol. 30(1), pp. 35-45.
- 23. Ezeji, C.T., et al. (2007). Biotechnology and Bioengineering, vol. 97(6), pp. 1460-1469.
- 24. Ezeji, C.T., et al. (2007). Journal of Industrial Microbiology & Biotechnology, vol. 34(12), pp. 771-777.
- 25. Ezeji, C.T., et al. (2007). Journal of Industrial Microbiology & Biotechnology, vol. 34(12), pp. 771-777.
- 26. Quereshi, N., Blaschek, H.P. (2001). Bioprocess and Biosystems Engineering, vol. 24, pp. 219-226.
- 27. Ramney, D., Yang, S-T. (2004). Final Report, DOE; Ramey, D., Edward, D. (1998). US Patent No. 5753474; Yang, S-T. (1996). US Patent No. 5563069.
- 28. Quereshi, N., Blaschek, H.P. (2000). Trans I Chem E, vol. 78(C), pp. 139-144.
- 29. Quereshi, N., Blaschek, H.P. (2001). Bioprocess and Biosystems Engineering, vol. 24, pp. 219-226.
- 30. Quereshi, N., Blaschek, H.P. (2001). Bioprocess and Biosystems Engineering, vol. 24, pp. 219-226.

Appendix J - Analysis: Cost Growth Variables And Results

Table J-1. Plant Performance and Cost Growth Variables for Dilute Acid Pretreatment (High Solids Loading) Processes

Plant Performance (Equation	1)		Cost Growth (Equation 2)							
	Values				Values						
Variables	Opti- mistic	Most Prob- able	Pessi- mistic	Variables	Opti- mistic	Most Probable	Pessi- mistic				
NEWSTEPS ^a	6	6	6	PCTNEW	61.4	61.4	61.4				
BALEQS	50	40	30	IMPURITIES	0	3	5				
WASTE	1	2	3	COMPLEXITY ^b	6	6	6				
SOLIDS	1	1	1	INCLUSIVENESS	33	0	0				
				PROJECT DEFINITION	6	6	7				
Plant Performance (%)	22.1	14.7	7.3	Cost Growth (%)	52.6	42.6	32.0				

^a New steps/units: Feedstock handling, Pretreatment, Saccharification, Cofermentation, Beer Column, and Combustor. ^b Continuously linked steps: Feedstock Handling, Pretreatment, Saccharification, Cofermentation, Distillation, Steam/Power Generation.

Table J-2. Plant Performance and Cost Growth Variables for Hot water Pretreatment Processes

Plant Performance (Equation	1)		Cost Growth (Equation 2)							
	Values				Values						
Variables	Opti- mistic Most Prob- able Pessi- mistic			Variables	Opti- mistic	Most Probable	Pessi- mistic				
NEWSTEPS ^a	6	6	6	PCTNEW	53.6	53.6	53.6				
BALEQS	50	40	30	IMPURITIES	0	3	5				
WASTE	1	2	3	COMPLEXITY ^b	6	6	6				
SOLIDS	1	1	1	INCLUSIVENESS	33	0	0				
				PROJECT DEFINITION	6	6	7				
Plant Performance (%)	22.1	14.7	7.3	Cost Growth (%)	55.0	44.9	34.3				

^a New steps/units: Feedstock handling, Pretreatment, Saccharification, Cofermentation, Beer Column, and Combustor. ^b Continuously linked steps: Feedstock Handling, Pretreatment, Saccharification, Cofermentation, Distillation, Steam/Power Generation.

Table J-3. Plant Performance and Cost Growth Variables for Two-Stage Dilute Acid Pretreatment Processes

Plant Performance (Equation	1)		Cost Growth (Equation 2)							
	Values				Values						
Variables	Opti- mistic Most Prob- able		Pessi- mistic	Variables	Opti- mistic	Most Probable	Pessi- mistic				
NEWSTEPS ^a	6	6	6	PCTNEW	60.8	60.8	60.8				
BALEQS	50	40	30	IMPURITIES	0	3	5				
WASTE	1	2	3	COMPLEXITY ^b	6	6	6				
SOLIDS	1	1	1	INCLUSIVENESS	33	0	0				
				PROJECT DEFINITION	6	6	7				
Plant Performance (%)	22.1	14.7	7.3	Cost Growth (%)	50.8	42.8	32.2				

^a New steps/units: Feedstock Handling, Pretreatment, Saccharification, Cofermentation, Beer Column, and Combustor. ^b Continuously linked steps: Feedstock Handling, Pretreatment, Saccharification, Cofermentation, Distillation, Steam/Power Generation.

Table J-4. Plant Performance and Cost Growth Variables for AFEX Pretreatment Processes

Plant Performance (Equation	1)		Cost Growth (Equation 2)							
	Values				Values						
Variables	i Pron-		Pessi- mistic	Variables	Opti- mistic	Most Probable	Pessi- mistic				
NEWSTEPS ^a	7	7	7	PCTNEW	60.38	60.38	60.38				
BALEQS	50	40	30	IMPURITIES	0	3	5				
WASTE	1	2	2	COMPLEXITY ^b	7	7	7				
SOLIDS	1	1	1	INCLUSIVENESS	33	0	0				
				PROJECT DEFINITION	6	6	7				
Plant Performance (%)	12.4	5.0	1.7	Cost Growth (%)	51.8	41.8	31.2				

^a New steps/units: Feedstock Handling, Pretreatment, Saccharification, Cofermentation, Ammonia Separation, Beer Column, and Combustor. ^b Continuously linked steps: Feedstock Handling, Pretreatment, Saccharification, Cofermentation, Ammonia recovery, Distillation, Steam/Power Generation.

Table J-5. Plant Performance and Cost Growth Variables for On-Site Enzyme Production Processes

Plant Performance (Equation	1)		Cost Growth (Equation 2)							
	Values				Values						
Variables	Opti- mistic Most Prob- able Pes mis			Variables	Opti- mistic	Most Probable	Pessi- mistic				
NEWSTEPS ^a	7	7	7	PCTNEW	66.9	66.9	66.9				
BALEQS	50	40	30	IMPURITIES	0	3	5				
WASTE	1	2	3	COMPLEXITY ^b	7	7	7				
SOLIDS	1	1	1	INCLUSIVENESS	33	0	0				
				PROJECT DEFINITION	6	6	7				
Plant Performance (%)	12.4	5.0	0	Cost Growth (%)	49.9	39.8	29.2				

^a New steps/units: Feedstock handling, Pretreatment, Saccharification, Cofermentation, Beer Column, Combustor, and Enzyme Production. ^b Continuously linked steps: Feedstock Handling, Pretreatment, Saccharification, Cofermentation, Distillation, Steam/Power Generation, and Enzyme Production.

Table J-6. PV from Cost Growth Analysis for Various Process Scenarios

Contitors	Cost Growth (Pic	oneer Plant) ^a							
Cost Item	Most Probable	Optimistic	Pessimistic						
Dilute Acid Pretreatment Processe	s (Pilot)								
PV (\$/Gal)	6.11	5.27	7.59						
Total Capital Investment (MM\$)	913.9	750.1	1,198.8						
Lang Factor	8.06	6.62	10.58						
Hot Water Pretreatment Processes									
PV (\$/Gal)	7.32	6.41	8.87						
Total Capital Investment (MM\$)	808.3	619.0	1,042.5						
Lang Factor	7.50	6.21	9.67						
2-Stage Dilute Acid Pretreatment Processes									
PV (\$/Gal)	8.36	7.10	10.56						
Total Capital Investment (MM\$)	916.2	752.6	1,200.2						
Lang Factor	8.17	6.71	10.70						
AFEX Pretreatment Processes									
PV (\$/Gal)	6.84	5.85	8.41						
Total Capital Investment (MM\$)	925.2	756.5	1,221.7						
Lang Factor	8.12	6.64	10.72						
On-site Enzyme Production Processes									
PV (\$/Gal)	7.21	6.04	9.21						
Total Capital Investment (MM\$)	1,088.1	881.4	1460.9						
Lang Factor	8.54	6.92	11.47						

^a 30% contingency is used for pioneer plant cost analysis.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLE	EASE DO NOT RETURN YOUR FORM	M TO TH	IE ABOVE ORGANI	ZATION.						
1.	REPORT DATE (DD-MM-YYYY)	2. RI	PORT TYPE			3. DATES COVERED (From - To)				
	June 2010	Te	echnical report							
4.	TITLE AND SUBTITLE					ONTRACT NUMBER				
	Techno-Economic Analysis of	Bioch	emical Scenarios	for Production	DE	E-AC36-08-GO28308				
	of Cellulosic Ethanol				5b GE	RANT NUMBER				
					3D. GIV	VAINT NOMBER				
					5c DD	ROGRAM ELEMENT NUMBER				
					3C. FIX	COCKAM ELEMENT NOMBER				
6.	AUTHOR(S)				5d. PR	ROJECT NUMBER				
	F. Kabir Kazi, J. Fortman, R. A	Anex (3 Kothandarama	an D Hsu		REL/TP-6A2-46588				
	A, Aden, and A. Dutta	1107,	s. Romandarame	in, D. 1100,						
	, , , , , , , , , , , , , , , , , , , ,					ASK NUMBER				
					BE	B07.7510				
					5f WO	ORK UNIT NUMBER				
7.	PERFORMING ORGANIZATION NA	ME(S) A	ND ADDRESS(ES)			8. PERFORMING ORGANIZATION				
	National Renewable Energy L					REPORT NUMBER				
	1617 Cole Blvd.		,			NREL/TP-6A2-46588				
	Golden, CO 80401-3393									
9	SPONSORING/MONITORING AGEN	ICY NAI	ME(S) AND ADDRES	SS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)				
٥.	or oncommon round Activ	101 117.	ME(O) AND ADDITE	30(20)		NREL				
						141.22				
						11. SPONSORING/MONITORING				
						AGENCY REPORT NUMBER				
12.	DISTRIBUTION AVAILABILITY STA									
	National Technical Information		ce							
	U.S. Department of Commercial	е								
	5285 Port Royal Road									
	Springfield, VA 22161									
13.	SUPPLEMENTARY NOTES									
14.	ABSTRACT (Maximum 200 Words)									
						entation was conducted to understand the				
						ally, 35 technologies were reviewed, then				
						ted in a more detailed economic analysis.				
						and portions of the process have been				
	tested at pilot scales. Seven p	rocess	variations were	selected and e	xamine	d in detail. Process designs were				
						r future process improvements. Economic				
						investment and product value (PV).				
						in process and economic parameters.				
						y downstream process variation had the				
	PV is most sensitive to feedsto			soline equivalei	11) 111 20	007 dollars. Sensitivity analysis shows that				
15	SUBJECT TERMS	ock all	u enzyme costs.							
15.		oduct v	value: formentatio	nn: hiochemica	l· faedst	tock; enzyme; process design; economic				
	analysis; dilute acid pretreatm		aide, ierrieritatit	on, biodifernica	i, iecusi	took, chizyrne, process design, economic				
16	SECURITY CLASSIFICATION OF:	CIIL	17. LIMITATION	18. NUMBER	19a. NAMF	E OF RESPONSIBLE PERSON				
	EPORT b. ABSTRACT c. THIS I	PAGE	OF ABSTRACT	OF PAGES	. Ju. Hall	- C. M. S. Grideline I Errodit				
	nclassified Unclassified Unclassified		UL		40h TE! =:	DUONE NUMBER (Include on the 14)				
19						19b. TELEPHONE NUMBER (Include area code)				