Techno-Economics and Cost Modeling for State-of-the-Art sCO₂ Components

NETL-PUB-22690 October 31st, 2019

Nathan T. Weiland, NETL

DOE sCO₂ Workshop 2019, Golden, Colorado

NETL's sCO₂ Techno-Economic Analyses

Past, Present, and Future Analyses

- Preliminary commercial-scale sCO₂ techno-economic analyses:
 - Oxy-coal CFB indirect sCO₂ plant with carbon capture & storage (CCS) 2017
 - <u>Air-fired coal CFB indirect sCO₂ plant *without* CCS 2019</u>
 - <u>Coal gasification integrated with direct sCO₂ plant with CCS 2018</u>
 - <u>Natural gas-fueled direct sCO₂ plant with $C\overline{CS} 2019$ </u>
- Detailed focus area studies for sCO₂ plant cost and efficiency improvements:
 - <u>sCO₂ component cost scaling study</u> ASME Turbo Expo 2019 (GT2019-90493)
 - <u>sCO₂ cooling system cost and performance models</u> beta-testing ongoing
 - $\underline{sCO_2}$ cooling system integration study 3rd European sCO₂ Conference, 2019
 - sCO_2^{-} heat source integration study (indirect sCO_2^{-}) ongoing
 - Air separation unit modeling and integration (direct sCO_2) ongoing
 - Direct sCO₂ turbine modeling ongoing
 - Direct sCO_2 integration with alternative gasifiers beginning Apr. 2020
- Exemplar coal-fueled indirect sCO_2 plants, with and without CCS June 2020
- Exemplar coal and natural gas direct sCO₂ plants with CCS June 2021
- Techno-economic analysis of a NGCC plant with a sCO₂ bottoming cycle Sept. 2020

Tools for sCO₂ Economic Optimization

Presentation Outline

- 1. sCO₂ Component Cost Scaling Algorithms
 - DOE National Laboratory collaboration with Sandia, NREL, INL
- 2. sCO₂ Cooling System Cost and Performance Spreadsheet Models
 - Models available for beta-testing
 - Cost of Electricity (COE) minimization of indirect & direct sCO₂ plants
- 3. Primary Heater Cost and Performance Model
 - Tube bank models determine cost and sCO₂ pressure drop as a function of material selection, tubing outside diameter, and sCO₂ pressure and temperature
 - Roll-up to a coal-fired primary heater cost allows for COE optimization

<u>1. sCO₂ Component Cost Scaling Collaboration **N**</u>

Collaborative work with Sandia, NREL, INL

- Motivation
 - Most sCO₂ systems analysis studies to date focus on efficiency-based optimization
 - Commercialization is driven by economics, so plant capital cost <u>must</u> be considered
 - Little component cost data is available to date for this relatively new field
- Background
 - Present study is inspired by the work of Carlson et al. (2017 Turbo Expo), which developed cost algorithms for 1-100 MW_e CSP sCO₂ plants¹
 - Present study expands upon this work by leveraging the collective resources of the U. S. Department of Energy (DOE) National Laboratories, with sCO₂ component vendor costs spanning multiple applications (nuclear, fossil, solar) and size ranges (5-750 MW_e)
- Resulting cost correlations are reasonably accurate and comprehensive, and should enable a shift from efficiency-based to cost of electricity-based sCO₂ plant optimization, accelerating commercialization of sCO₂ cycles
- Developed cost algorithms include cost scaling factors for high temperature, and have been validated and refined through industry feedback

4

Development of Cost Algorithms

Source of Vendor Quotes

- Vendor quotes were collected for sCO₂-specific components from a wide range of DOE sources:
 - Internal quotes from NETL, SNL, and NREL
 - Results from DOE-funded sCO₂ plant design studies
 - All quotes are for indirect sCO₂ primary cycle applications
- Vendor confidentiality was maintained when exchanging quotes across each DOE laboratory, and in reporting results no vendor data points are shared
- Total 129 vendor quotes were gathered from DOE-wide collaboration
 - Of these, some vendor quotes (36) were not included in curve fitting due to lack of needed information or very high/low costs relative to similar quotes
- Non-recurring engineering and component installation costs have been separated to arrive at equipment-only costs

Description of Cost Algorithms

General Cost Correlation Form

- Power law form is used for developing new cost algorithms
 - Appropriate scaling parameter (SP) is selected for different components
 - For recuperators and coolers, UA scaling parameter calculated from 1-D models
- Temperature correction factor (f_T) is included for certain components to account for increase in cost with temperature

° Temperature break point (T_{bp}) is set to 550 °C

• Other correction factors to account for influence of operating pressures, pressure drops on the component costs are not included in the current study, but may be considered in future studies

$$C = a SP^{b} \times f_{T}$$

$$f_{T} = \begin{cases} 1 & \text{if } T_{max} < T_{bp} \\ 1 + c(T_{max} - T_{bp}) + d(T_{max} - T_{bp})^{2} & \text{if } T_{max} \ge T_{bp} \end{cases}$$

Description of Cost Algorithms

Methodology - Confidence Rating

- Confidence Rating (CR) is assigned to each vendor quote to properly account for quality of the quote
 - Similar to AACE International cost estimate 0 classification²
- Quote Confidence Ratings are used in the curvefitting procedure and uncertainty quantification
 - Curve fitting minimizes CR-weighted average absolute error between the actual quotes and the cost algorithms 0
 - Lends statistical confidence to curve fits in which no 0 vendor data points are shown
- Uncertainty associated with the cost algorith has two independent sources of error:
 - Uncertainty associated with vendor quote (U_{CR})
 - Cost algorithm weighted correlation error (how we model fits the vendor data)

hm	Size and weight	Ν	Ν	Μ	Μ	Y	
	Drawings	Ν	Ν	Ν	Μ	Υ	
	Installation costs	Ν	Ν	Ν	Μ	Y	
ell the Y = Yes; M = Maybe; N = No							
d Practice Number 16F nd Budgeting," AACE, 3	R-90, "Conducting Technical and Economic Evalua 2003.	tions As Applied	d for the Proces	s and Utility In	dustries; TCM	7	

5

-50%

+100%

Ν

Ν

Ν

Ν

Confidence Rating (CR)

AACE Class

Uncertainty – Low (U_{CR})

Uncertainty – High (U_{CR})

Ouote Includes:

sCO₂-specific

Performance estimates

Cost itemization

Materials of construction

2

-15%

+20%

Y

Y

Y

1

-10%

+15%

Y

Y

3

-20%

+30%

Υ

Υ

Μ

Μ

4

-30%

+50%

Υ

Μ

Ν

Ν

Summary of Cost Algorithms

$$C = a \, SP^b \, \mathbf{x} \, f_T \qquad f_T = \begin{cases} 1 & i f \, T_{max} < 550 \, ^{\circ}C \\ 1 + c \big(T_{max} - T_{bp} \big) + d \big(T_{max} - T_{bp} \big)^2 & i f \, T_{max} \ge 550 \, ^{\circ}C \end{cases}$$

	Scaling	Coefficients			Database Range	Uncertainty	Installation	
Component	Parameter (Units)	а	b	С	d	(Range of Validity)	Range	(Materials & Labor)
Coal-fired heaters	Q (MW $_{ m th}$)	820,800	0.7327	0	5.4e-5	187 to 1,450 MW _{th}	-23% to +26%	50%
Coal-fired heaters	UA (MW $_{ m th}$)	1,248	0.8071	0	5.3e-6	7.4e5 to 5.9e6 W/K	-16% to +21%	50%
Natural gas-fired heaters	Q (MW $_{ m th}$)	632,900	0.60	0	5.4e-5	10 to 50 MW_{th}	-25% to +33%	20%
Recuperators	<i>UA</i> (W/K)	49.45	0.7544	0.02141	0	1.6e5 to 2.15e8 W/K	-31% to +38%	5%
Direct air coolers	<i>UA</i> (W/K)	32.88	0.75	0	0	8.6e5 to 7.5e7 W/K	-25% to +28%	20%
Radial turbines	$\dot{W_{sh}}$ (MW $_{ m sh}$)	406,200	0.8	0	1.137e-5	8 to 35 MW _{sh}	-32% to +51%	20%
Axial turbines	$\dot{W_{sh}}$ (MW $_{ m sh}$)	182,600	0.5561	0	1.106e-4	10 to 750 MW_{sh}	-25% to +30%	20%
IG centrifugal compressors	$\dot{W_{sh}}$ (MW $_{ m sh}$)	1,230,000	0.3992	0	0	1.5 to 200 MW _{sh}	-40% to +48%	20%
Barrel type compressors	<i>V_{in}</i> (m³/s)	6,220,000	0.1114	0	0	0.1 to 2.4 m ³ /s	-30% to +50%	20%
Gearboxes	$\dot{W_{sh}}$ (MW $_{ m sh}$)	177,200	0.2434	0	0	4 to 10 MW_{sh}	-15% to +20%	20%
Generators	$\dot{W_e}$ (MW $_{ m e}$)	108,900	0.5463	0	0	4 to 750 MW_e	-19% to +23%	20%
Explosion proof motors	$\dot{W_e}$ (MW $_{ m e}$)	131,400	0.5611	0	0	0.00075 to 2.8 MW_{e}	-15% to +20%	20%
Synchronous motors	$\dot{W_e}$ (MW $_{ m e}$)	211,400	0.6227	0	0	0.15 to 15 MW_{e}	-15% to +20%	20%
Open drip-proof motors	$\dot{W_e}$ (MW $_{ m e}$)	399,400	0.6062	0	0	0.00075 to 37 MW_e	-15% to +20%	20%

³ S. E. Zitney and E. A. Liese, "Dynamic Modeling and Simulation of a 10 MWe Supercritical CO2 Recompression Closed Brayton Power Cycle for Off-Design, Part-Load, and Control Analysis," in The 6th International Supercritical CO2 Power Cycles Symposium, Pittsburgh, 2018.

Application of Cost Algorithms

Baseline 10 MW_e plant cost

U.S. DEPARTMENT OF

ENERGY

• Operating conditions for a 10 MW_e plant taken from Zitney & Liese³

• Turbine Inlet: 700 °C, 24 MPa

- sCO₂ power block installed cost, excluding piping: \$27.1M
 - 1.4% increase in cost with turbo-driven compressors

Example Application of Cost Algorithms

Sensitivity of 10 MW_{e} Plant to Turbine Inlet Temperature

- Using a spreadsheet cycle model developed with REFPROP, sensitivity analysis was conducted using the new cost algorithms (maintaining 10 MW_e net plant output)
- Optimized plant balances annualized capital cost against expected fuel cost
- Economics assume 80% capacity factor, 30 yr. plant life, scaled capital cost

sCO₂ Component Costs - Future Work

Potential Improvements and Additional Cost Algorithms

- Extend the recuperator cost algorithm to higher temperatures (> 585 °C) for higher turbine inlet temperature indirect and direct sCO₂ plant applications
 - Additional pressure drop cost scaling factor might also be included
- Develop separate cost algorithm for sCO_2 -to-water coolers, which should be lower cost than recuperators
- Revise high-uncertainty cost correlations for radial turbines, integrally-geared and barrel-type compressors with additional high-quality vendor quotes
- Extend gearbox cost algorithm size range to $\sim 60 \text{ MW}_{sh}$ (currently 4 to 10 MW_{sh})
- Develop cost algorithms for other indirect sCO₂ primary heaters
 - Waste heat recovery applications
 - Coal-fired CFB (Oxy-fired, Air-fired)
 - CSP applications
 - Nuclear
- Develop cost algorithms for other turbines and supporting components
 - Turbine stop and control valves
 - Direct sCO₂ combustor and turbine

2. sCO₂ Cooling System Modeling

Motivation

- The efficiency of sCO₂ power cycles is about 5 times more sensitive to cold cycle temperature than steam- or gas turbine-based power cycles
 - sCO₂ compression power is sensitive to inlet conditions near the CO₂ critical temperature (31 °C)
 - Addition of low-cost cooling capacity can lower the compressor inlet temperature
- Conventional cooling system design principles based on steam power cycles need to be reconsidered for sCO₂ power cycles
 - Opportunity to significantly improve sCO₂ plant performance through cooling system design
 - Economic re-optimization of cooling system capacity and operating parameters

sCO₂ Cooling System Models

- Developed performance and cost spreadsheet models for four cooler types
 - Direct and indirect (via water) sCO₂ cooling
 - Includes water/sCO₂ heat exchanger, if needed
 - Wet and dry cooling technologies
 - Applicable to indirect and direct sCO₂ power cycles
- Applied results to an existing plant design, optimized for different cold sCO₂ temperatures from 20-40 °C

Input Parameters	Output Parameters		
CO ₂ inlet temperature	Air flow rate and outlet		
& pressure	temperature		
O ₂ outlet temperature	Fan power consumption		
mbient temperature,	Circulating water pump		
pressure & humidity	power consumption		
Cooling duty	Circulating water flow rate		
Cooling range	Water make-up requirement		
Cooling approach	Cooler construction cost		

Example Results: Wet Cooling Tower

Efficiency and COE Sensitivity to Range and Approach

- Representative results shown for a cooler outlet temperature of 25 °C
- For increasing cooling water Range:
 - Water flow decreases, reducing cooling fan and water pump power consumption, increasing efficiency
 - Water/CO₂ heat exchanger capital costs increase due to reduced driving forces and higher heat transfer area
 - Cooling tower capital costs decrease

S. DEPARTMENT OF

- Opposing cost trends minimize the plant's COE for a cooling tower range of 15.3 °C in this example case.
- For increasing Temperature Approach:
 - Fan and pump power increase, reducing efficiency
 - Smaller cooling tower is needed, but water/CO₂ heat exchanger costs increase rapidly
 - Recommended minimum approach is 2.8 °C (5 °F)

Cooling Technology Comparison

Efficiency and COE Optimization Results

- Cooler operating conditions optimized for COE at each cooler temperature
 - Optimized results are valid only for the plant design and ambient conditions selected
- CO₂ cooler exit temperatures of 20-25 °C minimize COE
- Plant efficiency improves 3.0 3.5 % points, and the plant COE is reduced by as much as 8%, by decreasing the CO₂ cooler temperature from 40 to 20 °C
- Cooler Modeling Impacts:
 - Cooling system optimization can be applied to all sCO₂ plant types
 - Published cooler cost and performance modeling tools enables COE optimization at any sCO₂ plant site given its ambient conditions

<u>Cooling Technology Comparison</u>

Efficiency and COE Optimization Results (cont.)

- Indirect dry cooling is non-competitive
- Wet cooling towers are attractive, but have the highest water consumption
- Performance of direct dry and adiabatic cooling technologies are similar until cooler temperatures approach ambient
- Adiabatic cooling used in CO₂ refrigeration systems may be the most applicable to sCO₂ power cycles
 - Ability to provide the coldest sCO₂ temperatures for a given ambient temperature
 - Flexibility to use water only as needed during hot conditions
 - $\sim 40\%$ less water consumption than wet cooling towers (using present study's assumptions)

– Eff. Direct Dry

- COE Wet Tower —— COE Ind. Dry

- ← - Eff. Wet Tower - ● - Eff. Ind. Dry

122

120

118

116

114

112

110

20

25

(4/M/W)

COE w/out T&S

- ← - Eff. Adiabatic

45

43

Plant HHV

3. sCO₂ Primary Heater Integration

- <u>Motivation</u>: For fossil-fueled systems, the primary heater costs 1.3 2.6 times the *entire* sCO₂ power cycle, and incurs high sCO₂ pressure drops.
 - Little has been done to reduce primary heater costs and pressure drops through sCO₂ cycle architecture changes and thermal integration
- <u>Objective</u>: Determination of an optimized thermal integration strategy between the primary heater and indirect sCO_2 cycle to maximize plant performance and reduce Cost of Electricity (COE).
- <u>Approach</u>: Develop primary heat cost and performance relationships as a function of temperature, pressure, tubing diameter, and material selection
 - Exercise performance and cost model to minimize plant COE for recompression and partial cooling sCO_2 cycles, both with and without reheat
- <u>Impact</u>: Improved economics and commercialization potential of coal-fired sCO₂ power cycles relative to steam

Circulating Fluidized Bed (CFB) Design Tool

CFB cost breakdown for steam or sCO₂ power cycles

- Goal is to calculate CFB pressure drop and estimate bottoms-up CFB cost for sCO₂ power cycles with reasonable accuracy
- A model was developed that can be used to
 - Understand the impact of varying pressure drop, turbine inlet pressure and temperature on CFB capital cost
 - More accurately compare the performance and economics of recompression vs partial cooling cycle
- CFB data was gathered for eight STEAMPRO simulations of air-fired CFB steam Rankine plants with reheat to understand the impact of heat duty, turbine inlet temperature (TIT) and tube bank arrangement

CFB cost sub-accounts	Description			
SA1	Furnace radiative tube banks			
SA2 Convective tube banks				
SA3	Interconnecting piping, cyclones, refractory etc.			
SA4	Tubular oxidant pre-heater (scaled to UA)			
SA5	Rest of the CFB (scaled to heat duty) (Soot blowers, ducts, feeders, fans, structural)			

SA1 & SA2 are a function of tube sizes, tube material, working fluid, temperature, pressure and driving forces

These sub-accounts are assumed to be independent of the working fluid (same for steam and sCO₂ cycles)

Tube Bank Sizing and Cost Model

Overview of the model

- A tube bank sizing and cost model was developed as part of the CFB design tool to calculate the pressure drop and cost of tube banks (SA1 and SA2)
 - Allows user to select several alloys for tube, tube outer diameter
 - Calculates required tube wall thickness from ASME code, heat transfer area, working fluid pressure drop (either steam/sCO₂) for specified process conditions
 - Tube bank cost scaled from /lb tubing material costs + 50% fabrication cost
 - Model validated against tube bank data from STEAMPRO

Model Inputs	Model Outputs		
Steam/sCO ₂ flow rate			
Steam/sCO ₂ inlet pressure and temperature	Tube bank heat duty		
Steam/sCO ₂ outlet temperature			
Flue gas inlet temperature	Driving force (LMTD)		
Flue gas outlet temperature	Steam/sCO ₂ pressure drop		
Tube material	Required heat transfer area		
Tube outer diameter	Tube wall thickness and maximum wall temperature		
Tube length	Tube bank cost		

20

sCO₂ Heat Source Integration Study

Partial Cooling vs. Recompression sCO₂ Cycles

- Study applies the CFB cost model to a recompression cycle and a partial cooling cycle, which has:
 - Increased specific power due to higher sCO₂ cycle pressure ratio
 - Reduced cycle mass flow and recuperation duty
 - Reduced sCO₂ inlet temperature to primary heater

• Approach:

U.S. DEPARTMENT OF

- Incorporate primary heater pressure drop and cost
- With and without reheat
- Perform integrated COE optimization of primary heater and sCO₂ cycle

Cycle Parameter	Recomp -ression	Partial Cooling
Thermal Input (MW _{th})	1018	1056
Net Power Output (MW_e)	550	550
Cycle Efficiency	54.1	52.1
Specific Power (kJ/kg)	174	215
Mass Flow (kg/s)	3154	2558
Recuperation (MW_{th})	1923	1268
PHX Inlet Temp (°C)	509	438

CFB Pressure Drop vs Cost Results

Evaluated for a 760 °C Turbine Inlet Temperature

- Partial cooling cycle without reheat (PC760) offers lowest CFB cost for same CFB pressure drop
 - Followed by IC760, RhtPC760, RhtIC760
- Reheat section pressure drops are significant
 - Flow arrangement (heat recovery) should be carefully considered for reheat cases
- CFB pressure drop vs. cost data will next be used to minimize the plant COE

I.S. DEPARTMENT OF

NETL's sCO₂ Techno-Economic Analyses

Past, Present, and Future Analyses

- Preliminary commercial-scale sCO₂ techno-economic analyses:
 - Oxy-coal CFB indirect sCO₂ plant with carbon capture & storage (CCS) 2017
 - <u>Air-fired coal CFB indirect sCO₂ plant *without* CCS 2019</u>
 - Coal gasification integrated with direct sCO₂ plant with CCS 2018
 - <u>Natural gas-fueled direct sCO₂ plant with $C\overline{CS} 2019$ </u>
- Detailed focus area studies for sCO₂ plant cost and efficiency improvements:
 - <u>sCO₂ component cost scaling study</u> ASME Turbo Expo 2019 (GT2019-90493)
 - <u>sCO₂ cooling system cost and performance models</u> beta-testing ongoing
 - $\underline{sCO_2}$ cooling system integration study 3rd European sCO₂ Conference, 2019
 - sCO_2 heat source integration study (indirect sCO_2) ongoing
 - Air separation unit modeling and integration (direct sCO_2) ongoing
 - Direct sCO₂ turbine modeling ongoing
 - Direct sCO_2 integration with alternative gasifiers beginning Apr. 2020
- Exemplar coal-fueled indirect sCO₂ plants, with and without CCS June 2020
- Exemplar coal and natural gas direct sCO₂ plants with CCS June 2021
- Techno-economic analysis of a NGCC plant with a sCO_2 bottoming cycle Sept. 2020

Questions?

Nathan/Weiland@netl.doe.gov Office: 412-386-4649

Acknowledgements:

KeyLogic: Chuck White, Sandeep Pidaparti, Drew O'Connell, Can Uysal NETL: Wally Shelton, Travis Shultz, Eric Liese, Rich Dennis

<u>NETL's sCO₂ Techno-Economic Analyses</u>

OSTI.GOV

nt of Energy

Fechnical Information

- Q

to MM/DD/YYYY

Limit to INIS / NSA records only Limit to Nobel Prize winning records only

Finding our research

- On <u>www.OSTI.gov</u>:
 - Search for: Subject = sCO2 AND Research Org = NETL
- On <u>www.netl.doe.gov</u>:
 - Go to: Research and Programs > Energy Analysis > Search Energy Analysis
 - Link to Website
 - Search: Collection Name = Supercritical CO2 (SCO2)

NETIONAL ENERGY TECHNOLOGY LABORATORY		٩		U.S. Department of En Office of Scientific and Technic		
About ~ Research	ch v Programs v Business v	Education - Library - News	and Events 🗸	Search 3+ million rese Advanced Search Options Advanced Search queries use a traditional Term Search. For our FAQ.	earch results	
		Search Clear all filters		All Fields:	Full Text:	
Technology Focus:	None selected -	Group:	None selected -	Title:	Resource Type	
Analysis Focus:	None selected -	Life Cycle Analysis:	None selected -	Creator / Author:	Subject:	
Document Kind:	None selected -	Author:	None selected -		sCO2	
Collection Name:	Supercritical CO2 (SCO2) -	Authoring Organization:	None selected -	Identifier Numbers:	Site:	
Release Year:	None selected -	NETL Point of Contact:	None selected -	Dublication Date:	Research Org:	
		Sort Preference:	● Recent ○ Relevance	MM/DD/YYYY to MM/DD/YY	NETL	
					Sponsoring Or	
					Update Date:	
					MM/DD/YYY	
					Limit to INI	
		0			Limit to No	

