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In an oligopoly context the present technological choice of a firm which expects 
to receive private revelant information just prior to the uncertain market stage has 
both a flexibility value and a strategic commitmenr value. In contrast to some 
common wisdom ideas we provide a natural two-stage competition framework in 
which an increase in uncertainty always raises the commitment value of the 
technological choice of the firm and may decrease its flexibility value when the 
increased uncertainty takes the form of more variable beliefs. The first result tends 
to reinforce therefore the findings of the strategic commitment literature under 
certainty. Journal @‘Economic Literature Classification Numbers: 026, 621. 1%~ 1989 
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1. INTRODUCTION 

In this paper we analyze the effect of strategic competition in the product 
market on the technological choices of firms in an uncertain environment. 
In particular, we examine the impact of changes in the degree of uncer- 
tainty, be it in terms of more variability in the environment or in terms of 
more variable beliefs in an incomplete information context, on the value of 
flexibility and on the value of strategic commitment of the technological 
choice prior to the market stage. Received common wisdom provides us 
with two presumptions in this respect. 

PRESUMPTION 1. More uncertainty wilI induce firms to seek more flexible 
technological positions. 

PRESUMPTION 2. Uncertainty will dilute the strategic commitment value 
of the technological choice. 
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In fact these two presumptions are linked together since it is thought 
that firms will gain flexibility by avoiding precommitment. For example, a 
firm may delay investment on the face of increased uncertainty and this 
way stay flexible (see Appelbaum and Lim [ 1 ] for a formalization of this 
argument). Nevertheless there are many situations where a firm, to gain 
production flexibility, does not need to delay decisions about plant design 
and investment. Instead, the firm may choose technologies which are 
flexible to respond to changes in the environment. 

Firms when faced with uncertainty (and with the prospect of receiving 
private information) about demand or prices of inputs often have to choose 
between “multipurpose” technologies and “specific” technologies. The first 
ones are usually more expensive in terms of capital and maintenance costs 
but give the firm more flexibility in either the inputs that may be used in 
the production process and/or the capacity to meet the changing demand. 
Often flexibility comes at the cost of not being able to use the most efficient 
technology for any level of output. Some examples may illustrate this issue. 
( 1) Consider an electric utility faced with fluctuating prices for oil, gas, and 
coal so that the least-cost fuel varies over time. The utility has the choice 
between installing a “multipurpose” (and relatively expensive) boiler which 
can use any type of fuel or installing a “specific” (and cheaper) technology 
which can use any type of fuel (see Fuss and McFadden [ 14, p. 3121). (2) 
Firms may be uncertain about the future level of demand, perhaps because 
there is a new product in the industry, like the case of the corn wet milling 
industry when confronted with the commercialization of high fructose corn 
syrup in the early seventies (see Porter and Spence [22]), and have to 
decide about productive capacity in advance of the realization of demand. 
Larger capacity choices will be more costly but will give the firms more 
flexibility to respond to demand conditions, to meet high demand for the 
new product for example. (3) Computer-integrated manufacturing (CIM) 
gives the firm flexibility to change output levels and alter its variety offer, 
perhaps even giving personalized design for customers. Automated factories 
with clusters of multipurpose machines (flexible machining centre) run by 
computers (computerised numerical control) require large investments of 
capital but are very far from the complete specialization of the transfer line. 

In the process of making technological choices in an uncertain environ- 
ment, firms have to consider not only the added production flexibility 
resulting but also the strategic commitment value of the choice made. That 
is, the fact that the technological choice fixes a short run cost function with 
which the firm has to compete in the market. For example, by investing a 
large amount on cost reduction a firm is credibly committing to an 
agressive production strategy at the market stage. Four strands of the 
literature have dealt partially with these issues. The first has analyzed the 
effect of increased uncertainty on the flexibility choice of a single decision 
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maker (see Epstein [S], Jones and Ostroy [17] and Freixas and Laffont 
[ 111). The second has studied the strategic value of capacity investment in 
the market under conditions of certainty (see, among others, Spence [23], 
Dixit [7], and Fudenberg and Tirole [12]). Nevertheless not much work 
has dealt with the effect of uncertainty on strategic investment decisions 
(the exceptions are Perrakis and Warskett [21] and the abovementioned 
Appelbaum and Lim [ 11). The third strand of the literature includes the 
technological competition studies, which have not dealt at all with the 
flexibility issue (see Dasgupta [S] for a survey). Finally, the information 
oligopoly literature, with its analysis of information sharing and com- 
parative statics issues of market competition (see Basar and Ho [3], 
Novshek and Sonnenschein [20], and Vives [25] as a sample). 

An increase in the degree of uncertainty, be it in terms of more 
variability in the environment or of more variable beliefs in an incomplete 
information context, will affect the value of flexibility and the value of 
strategic commitment to the firms. In the paper we will explore this rela- 
tionship decomposing the total (marginal) value of the technological posi- 
tion to the firm into a flexibility value and a strategic commitment value. 
This way we incorporate into the theory of technological competition the 
crucial desire for flexibility and analyze how the value of commitment is 
affected by uncertainty. All this in a small numbers framework where 
strategic interaction is unavoidable. 

We envision the process of competition in two stages. Firms choose, at 
a first stage, their technological positions. Afterwards they receive private 
signals about uncertain payoff relevant parameters and compete in the 
marketplace, where production decisions are made. The technological 
choice may consist of either investment which lowers production costs or 
of plant design which affects the shape of the short run cost function. In 
practice, a mix of both is usual. Two extreme models will be analyzed in 
the paper. In the cost reduction model firms’ investment at the first stage 
lowers the slope of the marginal cost of production, ’ keeping constant its 
intercept. In the plant design model, firms choose at the first stage a 
technological parameter, which corresponds to the slope of marginal 
production cost, but there is a trade-off: a lower slope means a higher 
intercept for marginal cost. A lower slope for marginal production costs 
corresponds to a more flexible technological position. This is basically 
Stigler’s definition of flexibility regarding technologies: a technology is 
more flexible than another if average and marginal costs are flatter in the 
former than in the latter (Stigler [24]).* In the cost reduction model a 
higher investment at the first stage represents a higher degree of commit- 

’ Related cost reduction models are considered by Spence [23] 
’ This definition of flexibility was adopted also in Vives [27]. 
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ment since it facilitates more aggressive production strategies at the market 
stage. In the plant design model a technology with a higher intercept and 
lower slope for marginal cost represents a higher degree of commitment 
since it also makes high outputs relatively cheaper to produce. 

Firms will face more uncertainty either because the prior variability of 
the uncertain payoff-relevant parameter has increased or because they 
expect to receive more precise signals at the production stage, in which case 
their beliefs are more variable at the previous technological choice stage. 
Indeed, if a firm expected to receive no information at the production 
stage, its beliefs would not be variable at all. 

According to Presumption 1, firms when confronted with more uncer- 
tainty will tend to choose more flexible first-stage positions. The reason 
why a firm may want to remain flexible when expecting to receive a more 
informative signal is to be able to take advantage of the increased informa- 
tion when the time of the production decision comes. Although this argu- 
ment strictly only applies to a monopoly, since it does not account for 
market interaction, it provides a commonly used hypothesis to analyze the 
value of flexibility under uncertainty. Presumption 2 suggests than even 
under risk neutrality more uncertainty will lessen the value of strategic 
commitment. We will show that these presumptions do not hold in the 
presence of private information in a context where firms can gain produc- 
tion flexibility through plant design and investment activities. 

In this article we analyze the subgame perfect equilibria of the two-stage 
game. In this situation a firm when making its technological choice takes 
into account the effects it will have on the subsequent production decisions 
of the firms in the market. An increase in uncertainty will affect then both 
the desire for flexibility and the desire for commitment in terms of the 
technological choice. We would like to separate the two effects. This can be 
accomplished by noting that the flexibility effect can be isolated considering 
open loop equilibria (OLE) of the game. In an open loop equilibrium a 
firm takes as given the technological positions and the output rules of the 
rival firms and therefore does not try to influence them via its first-stage 
technological choice. OLE isolate then the flexibility effect by abstracting 
from the strategic commitment value of the technology choice.3 With this 
technique we are able to define separate flexibility and strategic commit- 
ment effects which add up to the total effect on technological choice of a 
change in the degree of uncertainty faced by firms. 

Assuming that the n firms in the market are ex-ante identical and restric- 
ting attention to symmetric equilibria we are able to obtain the following 
results for the cost reduction model. If the increase in uncertainty comes 
from an increase in prior variability, both the value of flexibility and the 

’ A related analysis is provided in Fudenberg and Tirole [I21 
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value of strategic commitment are increased and therefore investment in 
cost reduction expands. If the increase in uncertainty comes from more 
variable beliefs (more precise signals) then the value of commitment is 
increased but the change in the value of flexibility is ambiguous. The basic 
reason is that by increasing the precision of the information from the point 
of view of a firm we are, at the same time, improving its precision and the 
precision of the rival firms. In our Cournot competition context, the first 
factor tends to increase the value of flexibility for the firm; the second, to 
decrease it. In fact, if the aggregate precision of the rival firms is high 
enough, the second factor will overwhelm the first and the value of 
flexibility will decrease. The sign of the total effect depends then on the 
relative strength of the changes in flexibility and strategic commitment 
values. Simulations with examples indicate that the negative changes in the 
value of flexibility may dominate the strategic effect for n as low as 5, in 
which case the investment in cost reduction as a function of the precision 
of the information is increasing first and decreasing afterwards. 

The main message is that an increase in uncertainty always increases the 
value of strategic commitment, a result that hinges on the risk neutrality of 
firms, but that it may decrease the value of flexibility due to the interaction 
in the market when it is a consequence of more variable beliefs. The 
comparative static properties of the plant design model with respect to the 
information structure turn out to be qualitative identical to the cost 
reduction model. 

Section 2 lays out our technology flexibility models and the information 
structure. Section 3 sets forth the structure of the two-stage game. Section 4 
deals with the cost reduction model. The plant design model is analyzed in 
Section 5 and concluding remarks follow. In the Appendix we collect some 
notation and proofs. 

2. TECHNOLOGY AND INFORMATION STRUCTURE 

Technological Choice and Flexibility 

When will we say that production plant A is more flexible than 
production plant B? According to Stigler [24] plant A is more flexible 
than plant B if the average and marginal costs associated with A are 
“flatter” than the average and marginal cost associated with B. Stigler 
considered the choice by firms of what degree of flexibility to incorporate 
in a plant, arguing that flexibility has value in an uncertain environment 
but comes at the cost of not being able to use the best technology for any 
given output level. 

Fuss and McFadden [ 141 analyzed a two-stage process where first the 
firm makes a technological choice which involves design and investment 
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variables (different designs being associated with different parameters in a 
family of production functions and investments being in physical capital, 
for example), then receives a signal about the uncertain environment, and 
finally production decisions are made taking prices as given. In this paper 
we will consider two extreme types of technological choice which we label 
the cost reduction model and the plant design model. 

In the cost reduction model a firm makes an investment at the first stage 
which lowers the marginal cost of production at the market stage. A firm 
by investing F(1) obtains a production technology characterized by the 
quadratic cost function LX’, where x is the output level and ;I > 0. Investing 
more, the firm can lower the slope of marginal cost 21. We assume: 

(ACR) F: R+++R++, is twice-continuously differentiable, 
strictly decreasing (F’ < 0) and strictly convex (F” > 0) with 
lim, _ 0 F( 1) = co and lim ;, _ x F( %) = 0. 

Figure 1 depicts F(. ). The total cost function of a firm is then C(x; 1) = 
F(L) + Lx’. For example, F(1) = yjV -‘, where y and E are positive 
parameters, F( .) can be thought of as being an innovation possibility curve 
showing diminishing returns to R & D expenditure. Alternatively, we could 
think that F(L) represents a capital investment which gives rise to the short 
run cost function C( .; A). The parameter j* would be related then to the 
elasticity of substitution between capital and variable inputs. In any case by 
investing more a firm may get a more flexible production technology, i.e., 
a marginal cost curve with lower slope. 

In the plant design model firms choose a technology parameter i at the 
first stage. The parameter 1 fixes the slope of marginal production cost but 
there is a trade-off; a lower slope means a higher intercept of marginal 
costs. The cost of design is fixed and independent of the level of ;( chosen, 
we will forget about it. Given A, production costs are given then by 
C(x; IL) = ~(2)s + LX’, where we assume: 

(APD) c: R,, -+R + +, is a twice continuously differentiable, 
strictly decreasing (c’ < 0) and strictly convex (c” > 0) function 
with lim, _ x ~(1”) = 0 and c(O) = C< cc. 

FIG. I. Cost reduction model. Innovation possibility curve. 
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FIG. 2. Plant design model. Intercept of marginal cost as a function of 1. 

Figure 2 depicts c( .). For example, c(1) = & md’, where C and d are 
positive. Marginal cost is given by MC(x; ;i) = c(A) + 21x, a lower 3, means 
a higher intercept c(L). In Fig. 3, i < 1’ and c(1) < ~(2’). 

Information Structure 

Firm i will receive a signal si about an uncertain payoff relevant 
parameter c( distributed according to some prior density with mean p and 
finite variance V(R). The signal received by firm i is of the “true state plus 
noise” variety: 

sj = a + Ej, 

where EE, = 0, E&f = u, and COV(E,, E,) = Cov(a, si) = 0, j # i. Error terms 
are independent across firms and signals are independent and identically 
distributed conditional on the true state. The signal si is perfect if u = 0 and 
contains no information if v = cc; l/v represents the precision of signal. 
Assuming that E(a) si) is afline in S, it follows (Ericson [9]) that 

E(crI~~)=(l--t)~++t~~, where I= V(a)/(V(a)+u) 

and, furthermore, 

E(sjlsi)= E(cllsi) and COV(S,, s~)=COV(S,, a)= V(U), j#i. 

MC 
MCI.;A’I 

_:::1:::: 

MC(.;XI 

CIA1 

C(X’I 

FIG. 3. Plant design model. Marginal costs for two different values of I: A.’ > i. 
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Information structures which satisfy the assumptions above include 
the pairs prior-likelihood, normal-normal, beta-binomial, and gamma- 
Poisson (see Ericson [9] and DeGroot [6] for more examples). In these 
examples the sample mean is a sufficient statistic for tl and a more precise 
signal just means a larger sample. Therefore signal s is more precise 
(weakly) than signal s’ (u 5 u’) if and only if s is more informative than s’ 
in the Blackwell sense (see Kihlstrom [18] and Marschak and Miyasawa 
C191). 

This affme information structure will allow us to give specific meaning to 
the statement that one situation is “more uncertain” than another from the 
point of view of the firm. Firms will choose first technological positions, 
and afterwards receive signals about the uncertain parameter a and com- 
pete in the marketplace. At the first stage “more uncertainty” can either be 
coming from an increase in the prior variance of a, V(a), or from the 
prospect of receiving a more informative signal, that is, with lower variance 
of the error term, u. 

3. MARKET COMPETITION AS A TWO-STAGE GAME 

There are n firms in the market. Demand is linear and given by 
p = a - PZ, where a is possibly random, B is a positive parameter, and 2 
is total output. Firm i receives a private signal s, about the uncertain a. 
(Firms are ex-ante identical, all face the same technological prospects and 
will receive signals of the same precision.) 

The sequence of events is as follows: firms make their technological 
choice first, learn some (private) information about demand and finally 
compete in quantities. That is, firm i chooses, at the first stage, a 
technological parameter I”, and, at the second, an output rule z, ( .) which 
yields productions contingent on the received signals. Firm i by choosing 
ii faces a total cost function C(z; 2,). We will consider subgame perfect 
equilibria (SPE) of this two-stage game. In this equilibrium the firms when 
making the first period decisions take into account the effects of their 
actions on the second stage equilibrium productions. As usual we solve the 
game starting with the second stage where a Bayesian-Cournot equilibrium 
obtains contingent on the chosen production cost schedules: z,+( .; /1), 
i = 1, . . . . n; where /i = (1,) . . . . A,). This yields second-stage expected profits 
as a function of technological choices made by the firms. We obtain thus 
a reduced-form payoff function for every firm depending only on their first 
stage decisions: 

P,(A)=E{pz~(s,; A)-C(z,*(s,; A); A,)}, i= 1, . . . . n, 

where p=a-j3C;=,z: (s,; A). We will restrict attention to symmetric 
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Nash equilibria of this reduced game. It is enough then to consider 
A = (&, I), w h ere Rj = 1, j# i. Under regularity conditions we will show 
that there is a unique interior symmetric equilibrium A*, characterized by 
the first-order condition (using the envelope result) 

where n = (A; A). 
In the SPE two phenomena are mixed: the desire for commitment and 

the desire for flexibility. A firm when making a technological choice takes 
into account both the production flexibility needed to face uncertainty and 
the strategic effect it will have on the output decisions of the rival firms. 

Our purpose is to evaluate the impact of an increase in uncertainty on 
the equilibrium technological choices of firms. In particular, we would like 
to separate the flexibility from the strategic effects of a change in the 
variability of demand or in the beliefs held by firms. The pure flexibility 
effect is easy to isolate since it corresponds to open loop equilibria of our 
two-stage game. In an open loop equilibrium a firm does nor take into 
account the effect of its technological choice on the output decisions of the 
other firms. In OLE firm i takes as given the technological decisions, i,,, 
and the output rules, z,( ), of the other firms, j # i, and optimizes accor- 
dingly, choosing an appropriate pair (A,, z;(.)). In SPE firm i takes as 
given the technological choices of the other firms but takes into account 
the effect of its choice of 2, on the second stage equilibrium productions. 
Consideration of OLE will allow us to separate the flexibility from the 
strategic impact of changes in information parameters. In this case, given 
that firms j # i use strategies (A,, z,( .)), firm i faces a payoff 

where p = c( - fi CT=, z,(.s,). Restricting attention again to symmetric 
equilibria and under regularity conditions, the open loop equilibrium 
technological choice i will be characterized by 

E _ ac(z*(si); 2) 
i al., I 

= 0, 

where z*( .) is the symmetric Bayesian-Cournot equilibrium at the produc- 
tion stage (when all firms have 1. as the technological parameter). This is 
so since production rules have, to the best responses to each other, given 
the technological choices of firms. 

We see thus that the expression for OLE only involves the term 
E{ -K/an,), the expected marginal effect on total costs of the technologi- 
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cal choice of the firm, while the expression for SPE involves also the 
term E( -Bz,+ J$,i az,?/8;li}, the expected marginal effect on the firm’s 
revenue due to the induced change in output decisions of other firms. The 
marginal profitability of the technological choice of a firm aP,/dR, can be 
decomposed then between a flexibility effect 

and a strategic commitment effect 

We examine now in the context of the cost reduction and the plant 
design models how changes in the information parameters impact the 
flexibility and the strategic effects and consequently affect the technological 
choices of firms. 

4. COST REDUCTION 

In this model every firm faces a total cost function4 C(x; A) = ix* + F(A). 
F( .) satisfies ACR (see Fig. 1). A firm by investing F(A) at the first stage 
can produce a level of output .Y at a cost 11x’. Since we restrict attention to 
symmetric subgame perfect equilibria when solving for the second stage 
Bayesian-Cournot equilibrium we need only consider the situation where, 
say, firm 1 has chosen R, and all the other firms x. Lemma 1 characterizes 
the unique equilibrium for this class of subgames. 

LEMMA 1. Given t E [0, l] and n firms in the market with (A,, 1, . . . . I), 
I 1, and 1, in [0, co ), there is a unique Bayesian-Cournot equilibrium’ (x ,(. ), 
F( .), . . . . Z( . )), where 

x,(s,)=a,(s, -p)+b,p and Z(s,)=c?(s,-p)+&, j#l, 

with a, =(2(P+X)-/?t)t/D,, 5=(2(8+1,)-Bt)t/D,, b, =a,(,,,, 5= 
cS( ,=,, andD, =2(p+A,)(2(/I+X)+(n-2)/?t)-(n-l)fl*t*. 

4 Uncertainty could be also about a common and constant part of marginal production 
cost: MC, =mx, + i,.~f with m random. Profits of firm i in a quantity setting context would 
then be z[, = (~-WI-/%X)X’- 2.~: - F(I,). Redefining appropriately a we go back to our 
original formulation. Notice nevertheless that this uncertainty cost formulation does not cover 
the complexity of our electric utility example. 

5 To simplify notation we do not make explicit the dependence of equilibrium productions 
x,( .) and Z( .) on (A,. 2). 
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Proof: Similar to Basar and Ho [3]. 

Remark 1. The equilibrium strategies are certainty equivalent. 
Ex 1 = b, p and EZ = 6~ are the Cournot equilibrium strategies when o! =.p 
almost surely. 

Remark 2. In the symmetric situations where A, = I= R equilibrium 
production is x(s,)= a(s, -p) + bu. The equilibrium slope is a = 
t/((2(P+ A) + (n - 1)(/I(t)), which is increasing in t (t = V(cr)/(u + V(a))). If 
the common precision of information (l/u) or the prior variance (V(a)) 
increase firms trust more the signal and output is more responsive to the 
appraisals of demand. It is worth noticing nevertheless that by increasing 
l/v from the point of view of a firm, we are increasing both the firms and 
the rivals’ precision of information. In fact, these are likely to have opposite 
effects. By increasing their own precision the firm will tend to respond more 
to its signal but by increasing the rivals’ precision, the opposite will be true 
in a Cournot context. This phenomenon is easily understood. Suppose that 
firm 1 is perfectly informed. If the other firms have no information then 
they will produce a constant amount (equal to 8,). If the rival firms have 
also perfect information then when demand is high they will produce more 
than &A and less when it is low. Consequently when the other firms are 
informed, firm 1 will produce less when demand is high and more when 
demand is low since in our Cournot context production best responses are 
decreasing. In other words, the slope of the equilibrium strategy of firm 1 
is decreasing in the precision of the information of rival firms. 

The implied short run profits for firm 1 when the rival firms choose 1 are 
given immediately from Lemma 1 by En, = (/I + A,) E(x,(s,))~. The first 
stage payoff to firm 1 is therefore P,(A,, x) = (B + A,) E(x,(s,))* - F(A,). 
Let r( .) = AF”/]F’j; that is, r( .) is the relative index of convexity of F( .). 
We will say that r( .) is large enough if r(A) 16 for all 1. We are now ready 
to characterize the (symmetric) SPE of our two-stage game. 

PROPOSITION 1. If the relative index of convexity of the innovation 
possibility curve F( .) is large enough then there is a unique symmetric sub- 
game perfect equilibrium. The equilibrium A* is the unique solution to 

q(A) = - [A V(a) + Bp’] -F’(A) = 0, 

where 

and B=AJ,,,. 

Furthermore the equilibrium is regular: cp’(A*) < 0. 
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FIG. 4. Equilibrium in the cost reduction model. 

Proof. Let BR,(x) be the best response function for firm 1 when the 
other firms choose x. In the Appendix, under the assumption for r 2 6, we 
show: 

(i) BR,(.) is well defined as the unique solution to 

since P,(A 1, 1) is strongly quasiconcave in 1 1 for all X > 0. 
(ii) BR,( .) is continuously differentiable and decreasing. 
(iii) Letting 4, =infi BR,(X) and 2, = supx BR,(X), we have 2, > 

A1 >o. 

Therefore BR,( .) is a depicted in Fig. 4 and uniqueness of a symmetric 
equilibrium follows immediately since the equilibrium is given by the 
intersection of BR,( . ) and the 45 ’ line. 

The equilibrium A* will be given by the unique solution to 

dE7c, 
cp(A)E a2, , , , = I= ;  

- F'(A) = 0. 

Some computations show that 

aE7c, -- 
an I 

=AV(cr)+Bp*, 
I, = ; = j, 

as asserted. 

(iv) cp’ < 0 when cp = 0. Therefore cp’(n*) < 0. Q.E.D. 

6 We say that the twice-continuously differentiable function f: R -+ R is strong/y quasi- 
concave iff’ = 0 implies that f” < 0. 
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TABLE I 

Cost Reduction Model SP Equilibrium (I*, .u( .)) 

Technology: cp(L*)s -[AV(a)+BpZ]-F’(L*)=O: 

Production: .Y(s,) = a(s, -1~) + bp, where 

A =(I +d)a’/r E=Al,=, =(l+J)b* 

A = 2(n - 1) /W/D ii=Lll,=, =2(n-1)82/D 

D=(2(fi+k*)-Pf)t/a d=Dl,=, =@+2A*)/b 

u = f/(2(/ + A*) + (n - 1) Pt) b=al,=, =l/((n+l)B+21*) 

Following the analysis of the section before we can decompose the incen- 
tives to invest in cost reduction between flexibility and strategic effects. 
Firm 1 by selecting (A L, zl( .)) when other firms select (x,5( .)) faces a 
payoff: 

E 
i( 

a-Bztb,)-P 1 z(s,) z,(s,) -E”,E(z,(s,))*-F(~,). 
jzl ) I 

In a symmetric situation with all A’s equal, the flexibility effect is then 

q’=E-5(x(q), A)= -E(x(s,))‘-F’(A) 

=- 
I 

-F’(A) 

and the strategic effect, 

dl(s,) _ 
(~‘5 -(n- l)flEx(~,)~- - . 

I 1 

These add up to the total effect: 

The subgame perfect equilibrium A* solves 

v(J) = 0 

and the open loop equilibrium’ AoL, 

cp’(;l) = 0. 

’ Uniqueness and regularity of the symmetric open loop equilibrium follows similarly to the 
SPE case. 
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Since cpf(J) > &A) for all I> 0 and both LoL and ,?* are regular equilibria, 
it follows immediately that ,I OL > ,I*. There is more investment in cost 
reduction with SPE. This result is in line with Dixit [7] and Brander and 
Spencer [4] which show that there is a strategic incentive for firms to 
invest more in capital than would be necessary for efficiency reasons. 

The comparative static properties of the equilibrium investment in cost 
reduction with respect to the parameters l/u and V(a) of the information 
structure will depend on how these parameters effect the marginal 
profitability of the investment cp. The information parameters do not affect 
the innovation possibility curve described by F(L). They affect only the 
marginal profitability at the production stage of investment in cost 
reduction, i.e., of a lower 2: 

aEn 
Y(A;u-‘, V(cx))r,l 

Obviously, cp = Y- F’. 
From Proposition 1 it follows 

_ -awav -1 aA* 
au-1 cp’ 

Since cp’(l*) < 0, 

immediately that 

ai* 
and -= - 

aul/av(c4 

au4 0’ . 

sign{f$}=sign{$] and sign{&}=sign{&]. 

The marginal profitability Y reflects both flexibility and strategic effects: 
Y = Yf + Y”, where Yf = cpf + F’ and Ys = @. Changes in the information 
parameters V(a) and v-l will affect both ul’ and Y. The next proposition 
tells us how. 

PROPOSITION 2. In a symmetric situation where allfirms choose the same 
technological position A, 

(a) an increase in uncertainty, be it in terms of V(a) or of v -I, always 
magntfies the strategic effect, provided signals are informative, and 

(b) an increase in prior uncertainty V(U) induces a larger flexibility 
effect but changes in the precision of information v -’ have an ambiguous 
impact: 

sign 
ayf 1 I -~ =sign{2A-B(t(n- l)-2)). 
au+ 

Proof See Appendix. 

642/48.2-S 
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Remark. The inequality 22 2 /?( t(n - 1) - 2) holds for all t if and only 
if 2A 2 j?(n - 3). (As a curiosity it is interesting to notice that when 21> 
fl(n - 3) the Cournot equilibrium of the uncertainty game is stable with 
respect to the usual Cournot tatonnement (See Fisher [lo])). It follows 
therefore that - 8Y’/& - ’ is always positive if n is less than or equal to 3. 

The total impact on the marginal profitability of investment of an 
increase in the variance of demand will be positive and of an increase in the 
precision of information will be ambiguous and will depend on the 
flexibility effect. This means that investment in cost reduction will always 
increase with V(cc) but may increase or decrease with v - ‘. The intuition for 
these results is not very complex. Let us start with the flexibility effect. We 
know from Remark 2 that the slope of the equilibrium production strategy 
increases with V(a) and with u-‘. Both make a firm more responsive to its 
signal. Nevertheless there is a difference between increasing P’(a) and u -’ 
from the point of view of a firm. When increasing the common precision of 
information we are giving the rival firms more accurate signals and this we 
have argued will tend to decrease the slope of the production strategy, 
decreasing in turn the value of flexibility for the firm. When 21~ 
/?(t(n - 1) - 2) the flexibility effect is decreasing in v -I, reflecting the fact 
that the aggregate precision of the rivals t(n - 1) is so high that a further 
increase in precision reduces the value of flexibility to the Cournotian firm; 
that is, it contributes to reducing the marginal profitability of investing in 
cost reduction. This explains the ambiguous comparative statics on the 
flexibility effect. In contrast, the induced changes on the strategic effect of 
an increase in uncertainty, in both of its forms, will always tend to increase 
investment. More uncertainty means that the strategic or commitment 
value of investment increases with risk-neutral firms. When 212 
b(t(n - 1) - 2) the total impact of an increase in the precision of informa- 
tion a!?/& - ’ will be unambiguous, since both - aYf/av ’ and - a!P/au - ’ 
are positive. Otherwise (21~ /?(t(n - 1) - 2)) it is possible to show that the 
negative flexibility effect dominates* and the marginal profitability of a firm 
is decreasing in the precision of the information if n is large and the 
common precision is high enough, provided that E, is not too small. The 
following proposition summarizes the comparative static results obtained. 

PROPOSITION 3. Under the assumptions of Proposition 1 the equilibrium 
investment in cost reduction F(;1*) is increasing in the variance of the demand 
intercept provided the signals are not pure noise and in the precision of 
information if 2A* >= P(t(n - 1) - 2). 

* Letting f=fi= 1 we get that the coeficient of the n* in the expression for -dY/Ylau-’ is 
2 - (1 + 21)‘, which is negative if 1 is not too small. For n large the n2 term will dominate and 
therefore -aY/‘ldu -’ < 0 if r is large enough. 
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A graphical summary of the argument follows. The unique symmetric 
equilibrium is given by the intersection of the 45 ’ line and BR, in Fig. 4. 
If the variance of the demand intercept increases then the marginal 
profitability from investing in cost reduction increases also and BR, shifts 
to the left and a new equilibrium obtains with a lower 1. This is also the 
case when the common precision of information increases, provided that at 
the initial equilibrium 22* 2 p(t(n - 1) - 2). If there are many firms in the 
market and the precision of information is good enough then the inequality 
may not hold and an increase in the common precision of information may 
have the opposite effect by giving the rival firms so much information as 
to decrease the marginal profitability to the firm’s investment in cost 
reduction. 

How soon will we get the investment F(L*) decreasing in the precision 
of the information? To get an analytic answer is quite messy but simula- 
tions with the canonical example F(A) = yl -E, where y and E are positive 
parameters, suggest that this phenomenon occurs as early as n = 5 for some 
parameter configurations. Figure 5 shows A* as a function of t for n = 8, 
/? = 2, E = 5, y = 0.002, p= 2, and V(E) = 1. I nvestment in cost reduction is 
first increasing and then decreasing with the precision of information, 
peaking at a value of r between 0 and 1. 

c I I I I _ 
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1.0 t 

FIG. 5. The equilibrium 1 in the cost reduction model as a function of I when F(A) = yl es 
and n=8, /1=2, p=2, V(a)=l, y=O.O02, and &=5. 
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5. PLANT DESIGN 

In this model a firm faces a total cost function C(x; 2) = c(J.)x + Ax*. c( .) 
satisfies APD (see Fig. 2). By the choice of I the firm trades off the slope 
(21) with the intercept (c(A)) of marginal production cost (see Fig. 3). The 
A parameter may be interpreted as a design parameter of the production 
plant, which is chosen at a first stage. 

The game proceeds as before. Firms choose (noncooperatively) their 
levels of the I parameter first and then, contingent on the choices made, 
they compete in quantities and a Bayesian-Cournot equilibrium obtains. 
We will restrict attention to symmetric subgame perfect equilibria of this 
two-stage game. As usual we check first that for any contemplated devia- 
tion of firm 1 from the candidate equilibrium technological position 1 a 
unique Bayesian-Cournot equilibrium is obtained at the second stage with 
firm 1 producing according to .v,( .) and the other firms according to 4;(. ). 
To ensure positive production for any choices of 1, and 1 we will assume 
that demand is large enough relative to the intercepts of the marginal cost 
functions. In particular we will assume that ,U - nF> 0. This implies that 
Ey, and Ej are positive. Lemma 3 describes the equilibrium strategies. 
They can be decomposed into two terms: the first term, as in the cost 
reduction model, plus an additional term reflecting the intercept of the 
marginal cost schedules. 

LEMMA 3. Given t E [0, 1] and n firm in the market with choices 
(A,, 1, . . . . x), all nonnegative, there is a unique Bayesian-Cournot equilibrium 
(y,(.), .C(.), . . . . j(.)), where 

.I’,@,)=-u(s,)+d, and j(s,~=~.(s,)+Z j#l, 

with x1(. ) and z?( .) as in the cost reduction model and 

d, = [c(%(n- ~)P-c(~,)(~X+~B)I/~,, 

a= CC(;~,)D-~C(~)(B+~,)I/~~, and 

Proof. Standard and similar to the proof of Lemma 1. 

Remark. It is easily checked that p - n? > 0 is a sufficient condition for 
expected equilibrium outputs 
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to be positive. In the symmetric case, where 1, = 2 = 2 equilibrium output 
equals y(s,) = a(s, - p) + y, where expected output jj is given by 

j= (p - c)(21+ /?)/6, where d = 21(22 + (n + 2)/?) + (n + l)/?‘. 

From Lemma 3 we get the payoff to firm 1 at the first stage if the firm 
chooses I., and the rivals 1: 

Let ~(2) = c”(A)/lc’(1)[; that is, ?( .) is the absolute index of convexity of 
c( .). Given the parameters ~1, /?, and n we will say that J( .) is large enough 
if 

?(A)2 max 
i 
n k’(O)1 Ic’(O)l +I ___ - 
p-n2 ’ p-c j? I 

for all A 2 0. 

Proposition 4 characterizes the (symmetric) SPE of the game under this 
assumption. 

PROPOSITION 4. Zf the absolute index of convexity of c( .) is large enough 
then there is a unique symmetric subgame perfect equilibrium. Zf w(0) > 0 the 
equilibrium 1 is the unique solution to 

o(A)= -[AV(a)+H]=O, 

where H= y(y(n - l)b’+ 2(/?+ A)(21 + np)(j+ c’))/D. If o(O) > 0, then 
2 > 0 and w’(i) < 0. Otherwise, R = 0. 

Proof: In the Appendix we show 

(i) If Y(A) zn /c’(O)(/(p -nF) for all 120 then P,(1,, 1) is strongly 
quasiconcave in 1, for all 120. Let ~(~)=(aP~/an,)l,,=,=,. 

(ii) If r(n) 2 lc’(O)l/(p -2) + S/b then o(n) -CO for ;1 large enough 
and o’ < 0, provided that o = 0. If o(O) > 0 then there will be a unique 
symmetric equilibrium I> 0. Otherwise, the unique symmetric equilibrium 
is R = 0. 

(iii) -o(n)=AV(a)+H, where A=(l+d)a’/t and H=y*(1+6) 
+c’(A)j(l +J/2/2). Q.E.D. 

EXAMPLE. Let c(1) = Ce 6i, then T(jl) = 6 and /c’(O)1 = SC. In order for 
the convexity assumption on ?( .) to be satisfied we need .H 222nF and 
6 2 5(p - C)/(p - 2C)fi. 

Under what circumstances will the equilibrium be interior? It seems 
plausible to conjecture that at least two factors will play an important role: 
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c’(O), the slope at zero of the function which gives the trade-off between the 
slope and the intercept of marginal costs, and V(a), the variance of 
demand. If lc’(O)1 is high and V(a) is low, firms will choose a positive I, 
since by increasing J. from zero they can reduce substantially the intercept 
of marginal costs and there is not much basic uncertainty in the model. In 
fact, in the Appendix it is checked that a sufficient condition for w(O) > 0, 
and therefore fi > 0, is that 

Ic’(O,l > 
(p-?)2+Q(n)V(a) 3n- 1 

p-F 2n(n+ 1)/l 

where 

Like in the cost reduction model, we can decompose changes in the 
degree of uncertainty between flexibility and strategic effects. The 
rationalization of the decomposition comes again from the open loop 
benchmark. Firm 1, by selecting a strategy (A,, zl( .)) when the rival firms 
select (1, z’( . )), faces a payoff 

E [( a-Pz,(s~,-B 1 3s,) ZI(SI) 1’1 > 1 
-ECc(~,)z,(s,)+~(z,(s,))*l. 

With symmetry the flexibility effect will be 

= - [c'(A)J+E(y(s,))*] 

TABLE II 

Plant Design Model SP Equilibrium (2, y( ‘)) 

Technology: o(A) = - [A V(a) + H] = 0; 

Production: y(s,) = a(s, - p) + bp + d, where 

A, O, b, and d are as in Table I replacing I* by 1, 

H = j(j(n - 1 ,pz + 2(fi i- 1)(2X + n@)(ji + c’(&))/D, 

j=bp+d,and 

d= -(2fl+/?)c(;Z)/D 
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and the strategic effect, 

405 

am,) us= -P(n - 1) Ey(s,) a~ 1 - 
= - A; V(a)+&?+;$(A) [ 1 ) 

where v( .) is the symmetric Bayesian-Cournot equilibrium when all firms 
choose 1, = 1. 

A key observation is that the terms which involve the information 
parameters in the equations characterizing of and us are both the same 
than in the cost reduction case, namely a’V(cc)/t for wf and da’V(a)/t for 
0’. Therefore, the decomposition into flexibity and strategic effects and the 
comparative static properties of the interior equilibria of the plant design 
model, with respect to changes in the information structure, will be 
identical to the cost reduction model. Proposition 2 holds as stated and 
Proposition 5 restates Proposition 3 for the plant design case. 

PROPOSITION 5. Under the assumption of Propostion 4, if the equilibrium 
calls for a positive choice of the flexibility parameter A, say 1, A will be 
decreasing with the variance of the demand intercept provided the signals are 
informative and with the precision of the information if 212 /I( t(n - 1) - 2). 

6. EXTENSIONS 

The models in this article are quite specific in their assumptions: risk 
neutral firms, quadratic payoffs, alline information structure, Cournot 
competition at the market stage, and the timing of the information. Many 
variations and extensions could be thought of. Let us mention a few. 

Firms could receive information twice: first, before making the 
technological choice and, second, before production decisions are made. 
Information should be more accurate at the second stage. In this situation, 
if first stage choices are observable, firms may try to infer information from 
the actions of the rivals and signalling becomes then a possibility.9 
A further complication would be to make information acquisition 
endogenous. Firms should decide how much information to purchase at 
each stage. 

The phenomena studied in this paper are not exclusive of oligopolistic 
situations. What would happen if firms had no market power? In a large 
market where firms are negligible open loop and subgame perfect equilibria 
will coincide” and the strategic commitment effect will disappear. Further, 

9 Gal-Or [ 151 analyzes an R & D competition model where this type of signalling occurs. 
“’ Fudenberg and Levine [ 133 analyze this issue. 
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the same market process may aggregate private information. These issues 
are explored in Vives [27, and 281. 

Bertrand competition at the market stage will modify the results with 
respect to the value of flexibility since it changes the nature of the strategic 
interaction. The effect of an increased precision of information of rival firms 
on the equilibrium strategy of a firm is opposite to the one in the Cournot 
world (see Vives [25]). Therefore we may conjecture that received 
common wisdom about the relationship between uncertainty and flexibility 
holds in the Bertrand world. The general results on the value of strategic 
commitment should be robust with respect to the competition mode. Risk 
aversion may make the firms turn conservative with increases in uncer- 
tainty and therefore make them invest less in cost reduction, for example. 
If the degree of risk aversion is high enough more uncertainty could be 
associated in general with less flexible positions and a lower degree of 
commitment being chosen. A similar phenomenon is described by Porter 
and Spence [22] in the capacity expansion process of the corn wet milling 
industry. These issues are still awaiting further research. 

7. CONCLUDING REMARKS 

We have analyzed how changes in the precision of information and in 
the basic uncertainty in demand or cost conditions affect the technological 
choices of firms in an oligopoly framework. The questions involved in the 
common wisdom ideas stated in the Introduction were: 

(1) Will more uncertainty induce firms to choose a more flexible 
technological position? 

(2) How will an increase in uncertainty affect the strategic position- 
ing of the production technology for the market battle? 

With respect to the first question we have found that an increase in basic 
uncertainty leads the firms to seek a more flexible technological position 
provided the signals are informative. Nevertheless, an increase in the 
common precision need not be associated with more flexible technological 
positions and in fact the opposite can be true if the precision of the infor- 
mation is good enough and the number of firms in the industry is large 
enough. I1 Thus the common presumption that the expectation of more 
informative signals will lead firms to choose more flexible initial positions, 
to take advantage of the improved accuracy of information, will only hold 
when the number of firms in the market is not too large. The presumption 
always will be true when the number of firms is no more than three in our 

” See Vives 1271 for an analysis of the limit case with a continuum of tirms. 
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model, in particular for the monopoly case. Otherwise, when the aggregate 
precision in the market is high, a further increase in precision may decrease 
the marginal profitability of adding flexibility to a firm since it gives too 
much information accuracy to the rival firms. Therefore oligopolistic 
interaction is seen to change the conclusions reached when analyzing the 
monopoly case. 

With respect to the second question we have concluded that an increase 
in uncertainty always raises the value of strategic commitment for 
risk-neutral firms. Therefore the suspicion that the importance of strategic 
commitment may fade under uncertainty is shown not to be well founded. 
This, we think, adds to the robustness of the results obtained in the 
certainty literature on capacity commitment. 

APPENDIX 

Notation 

a, =(2(8+X)-/It)t/Dl 

ii = (2(/3 + A,) - p) t/D* 

D, =2(8+/2,)(2(/?+X)+(n-2)/b)-(n-l)fi*t’ 

a=a,IL, =X=1 

D=D,II, =x=2 

A = (2(n - 1) p2t2)/D 

A, = (1 + 2(n - 1) P*t’/D,) at/t 

A=A,(/I, =x=1 

E, = 2(p +1,)(2(/l + 1) + (n - 2) bt) + (n - 1) j2t2 

Ml = (B + 2, )(2X + NW2 

M=M,(A, =x=l. 

E=E,)1, =x=/I 
-- 

E/D=l+A,E/D=l+a 

g=2(/?+R)-pt 

h=2(fl+A)+(n-l)fi1 

n= -(2/I + p) c(A)/D 

y=bp++ 

H = .F(.P(n - 1 )p’ + 2(/? + A)(22 + n/3)(7 + c’(n)))/B. 

bl =a,l,=, 
9=lTil,=, 

B, =Dll,=, 
b=alr,, 
6=Dl,,l 

a=Al,=, 

B, =Allr=l 

B=AI,=, 

E, =E,l,=, 

,?=El,=, 

M/D=l+J/2 

s= gl,=, 

h=hl,=, 
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Proofs 

Proof of Proposition 1. Let P1(A1, X) = (/? + A,) E(x,(s,))’ - F(J.,). 
Assume that J(F”/(F’I) 5 6. 

(i) P,(l,, 1) is strongly quasiconcave in 1, for all a> 0. We show 
that 13P,/al, =0 implies that d*P,/lU:<O. 8Pl/dl, = Y,(n,,x)-F’(l,), 
where 

4 
=-7 l+ [ 

2(n - 1) /?*t* D V(a) 
1 

1 

+ b: 1+2@jf)B’) $1 
( 1 

and a,, b,, and D, are as in Lemmal, D, =DIJrzl. a*P,/al:= 
dY,/&I, -F” will be negative when aP,/aA, = Y, - F’=O if and only if 

We have assumed JI(F”/JF’()z6; we show now that I, laA,/a~,/A,I ~6 
for all t > 0, since this implies that A, laB,/an,/B, 1 < 6 (since B, = A, I,= 1). 
Rewriting the inequalities as 2, \&4,/8~, ( < 6 IA, 1, ,I1 laB,/al, ( -c 6 IB, ) 
(B, >O always and A, >O if t>O), we get that I,(laAr/an,( V(a)+ 
laB,,/a&) p*)<6()A,) V(a)+ IB, I p*) and therefore I, la!P,/a&/Y, 1~6, 
since 

ay, 
( 
aA -=- 

a4 x V(a)+$p* . 
1 1 > 

If t=O then A, =0 and Y, = -B,p*. 
We show now that ,I, JaA,/dll/AII ~6 for all t>O and x>O. Let E, = 

2(/?+1,)(2(/?+1)+(n-2)@)+(n-l)j?*t*, then A, =(2(fl+x)-fit)* 
tE,/D: and 

A aA,iab 
1 

I I Al 

= ;I 2(2(8 + 1) + (n - 2) Pt) ID, - 3E, I 
1 

DIEI 

=21.,C2(P+X)+(n-2)Btlc4(P+i.,)(2(P+~)+(n-2)B1)+4(n-1)B2t*l 
4(/l + 1,)’ [2(j? + X) + (n - 2) j?t]’ - (n - 1)2 f14t4 

< 24 MB + 1) + (n - 2) PI W + h)CW + 1) + (n - 2) Pt)l = 
3(8 + Al)* C2(P + 1) + (n - 2) PI2 

9 
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since (p + 2,)[2(P + 1) + (n - 2) fit] 2 P*(n - 1) t’. Therefore 

l aA,laJ, 
1 ! I 

< 16)L, 16 
Al 

<--66. 
=3(p+d,) 3 

(ii) The best response function of firm 1, BR ,(I), is decreasing in 1. 
BR,(X is the unique solution to (ZJP,/CY~,)(& I)= !P,(;I,, I)-F’(I,)=O: 

dBR, asqal -= - 
dX a?, /ai:’ 

We check that a!P,/aX < 0. As before, it is sutlicient to check that 
aA,/ax>O for all t>O, 

aA, 4a, -=- 
a;? tD, 

1 + 2(n - 1) p*t* 
Dl 

x(t-W+4b,)- 
2(n - l)(fl+ A,) p2t2a, 

Dl I 
aA 
‘>O if t-2(/?+l,)a, 2 

2(n - 1)(/I + ;1,) p2t2a, 

aX Dl 

But LHS 2 (n - 1) p*t’/D 2 RHS. The first inequality is true since 2(p + ;I,) 
[2(/I + 1) - Pt] - (n - 1) f12t2 5 D, and the second follows immediately. 

(iii) A, = infr BR,(X) and 2, =supr BR,(X) solve respectively 
(wiw~,, co) =0 and (aP,/ai,)(l,, 0) =O. To check this just notice 
that limr _ 0 Y/,(I,, 1) and limx+ m Y,(A,, 1) are both negative numbers. 

Let now ~(1) = - [A V(u) + Bp2] -F’(L). 

(iv) v’(1) -C 0 whenever cp(A) = 0. This is shown as in the proof of (i). 
It is sufhcient to show that A laA/aA/,4/ < 6. After some computations, we 
get that 

2 
2g+ 

2(n - 1) fl2t2 
gh+2(n-l)j?Y g 

where g = 2(/I + ,I) - fit and h = (/I + ,I) + (n - 1) Pt. Therefore, 

and 2 ((aA/iYA)/A( < 6. Q.E.D. 



410 XAVIER VIVES 

Proof of Proposition 2. Without loss of generality let p = 0. Then 

and -P=A$). 

Now, A = (2(n - 1) /?‘t’)/D and D = (2(fl+ A) - fit) t/a, a = t/(2(j + 1) + 
(n - 1) fit). We can rewrite A as 

Therefore. 

_ ys = 2(n + l)B’ a31/(cc) 

2(/?+A)-b’ ’ 

which is increasing in both u -’ and V(U), since t and a are both increasing 
in u-l and V(a). This takes care of (a). 

To show (b), let u < co. Noting that V(ct)(&/V(cc)) = t(1 -t) we get 

at a2 c 1 2 a(djt) at - V(a) =;+-- av(lY.) t at av(a) V(a) 

=; 1+(1-t) 
( 

2(j?+A)-(n-1)Bt 
2(/3 + A) + (n - 1) j?t 1 

a’2@+1)(2-t)+(n-1)j?t2 ,. =- 
t 2(/3+A)+(n-l)fit ’ 

Fix now V(U), then u - ’ moves as t. We obtain 

8 a2 

Cl 

2(P+I)-(n-1)Jt a ’ 
Zf =2(/?+A)+(n-1)pt f 0 

Therefore (a/tJt)[(a2/t) V(u)] >< 0 if and only if 2(/? + A) - (n - 1) fit 20. 
Q.E.D. 

Proof of Proposition 4. (i) If r(A) _2 n jc’(O)I/(fi - nF) then d2P,,/aE,~ < 0 
whenever dP,/al, = 0. Let J1 = Ey,(s,). Some computations yield that 
aP,/a1, = -[A,V(a)+~:(E,/d,)+c’(l,)(M,/~,)y,], where A, and E, 
are as in the proof of Proposition 1, E, = E, iI=, , and M, = 2(fl+ A,) 
(2x + nfi). Differentiating again with respect to J. r, we get 
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a*p, u: (2E, + 2(n - 1) p*t* 
xf=t 0: 

E; V(a) 

where primes denote derivative with respect to 1,. The FOC is 
~?P,/ak, = 0; we get, by substitution, 

1 
M, -+(l,,j, - 
B, 

(2/i @) (c’(E., ,,*). 
I 

The first term is negative if and only if 

E’,(E,+(n-l)f12t2)&M, -D,D,E,E, co. 

Multiplying by (p + A,) and dividing by M,, this expression equals 

[8(n- 1)~‘(/?+~,)‘(2(/?+I)+(n-2)/W+2(n- l)z~4t2(~+I”,)] 

x [t2(2Z+ n/l) - (2(P + X) + (n - 2) Bt)] + (n - 1)2 BY 

x [(n- 1)P?t2-2(~+~,)(2(P+X)+(n-2)~t)], 

which is negative since t2(2X + np) 5 2(p + 1) + (n - 2) fit and (n - 1) /12t2 
<2(/?+11,)(2(/?+1)+ (n-2) /?t). The second is negative if and only if 
(E, + (n - 1) f12M, -i?: < 0. The LHS equals -(n - I)* fi” < 0. The third 
term is negative provided that rl n Ic’(O)I/(p - nc), 

2X+./I c”(l,)j, -- D (c’(A,))* 

&g-J [r((2X+n&(~-C(A,))-(n- 1)/3,+(2X+nj?) Ic’(k,)l] 
1 

>‘c’(AJ (2X+qf(p-n+rt Jc’(O)(]>O, = 61 - 
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(ii) Let o(A)= (8P,/aA,)l,, =; =j,. If ?(A)? (l~‘(O)l/p-C)+ (5/p), then 
w(A) < 0 for I large enough and o’(A) < 0 provided that w(A) =O, 

a26 V(a)+j2~+c’(a)~~ 1 ) 

where j, a, E, D, 6, and M are as j,, a,, E,, D,, 6,) and M, letting 
A, = I= A. It r(A) is bounded away from zero it follows that -- 
lim,,, 1’ jc’(A)( = 0. It is easily seen that M/a, E/D, and E/D converge to 
a positive constant as I + cc and so do 12a2 and A2jj2. Therefore A2w(A) 
will be negative for A large, since the first two terms in A20(k) will be 
positive (and bounded away from zero) while the third will be negligible. 

We show now that o’ < 0 if w = 0. Let c = c(A), 

-o(A) = 
gh+2(n- l)/?‘P 

gh3 
fV(U) 

+(~-c)2(gh+2(n-l)p2)+(~-c)c’h(gh+(n-1)/IZ) 
gh3 

where g=2(/3+A)-fit, g=gl,=,, h=2(/?+A)+(n-l)/?t and /i=hl,=,; 

- o’(n)l FOC = 
gh+2(n-1)fi2t2 

gh3 1 V(a) 

+(~-C)c”h(gh+(n-l)fi2 
gh3 

+ 2C’(/A-c)(K2(n- 1)/P) 
gh3 

_ (c’)* h($ + (n - 1)p’) 
gh3 

+ 2’;;4c” (h2 - 2(n - l)fl’) 

+$$+gh+hh-gh-2(n-l)flit’), 

where we have used the FOC w(A) = 0 in deriving the last two terms. Now, 
the last term is nonnegative since h 1 h and 

hh&h2~(2A+(n+1)jIt)*_22(n-1)b2t2. 

The next to the last term is also nonnegative, since 

h’=(2A+(n+l)p)2~(n+l)*fl2~2(n-1)/?2. 
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The second term is larger than or equal to (((p-c) h(gh + (n - 1)fi2))/gh3) 
r (~‘1, which equals 

tgh+2(n- l)fi2t2 
gh’ 

V(bl)+(~-C)*(gh+2(n-l)p2) 
gh3 

using the FOC. It follows that the sum of the first two terms is larger than 
or equal to 

The sum of the first four terms is then no less than 

(/A-c)(c’I h($+(n-1)/12) 
gh3 

Let Z represent the expression in the brackets; then 

z>f--6+c’(O) 2,i;-lc’(o)I 5 -__ -__ - h p-c g= P-C p 

which is in turn positive, if our assumption is satisfied. 

CLAIM. o(O)>0 if 

k’(O)1 > 
(p-#+52(n) V(a) 3n- 1 

p-c 2n(n + 1)/3’ 

where 

Proof. From the proof of Proposition 5, 

-o(O)= r(24 v(a)+(p-q2-$ 
( > 

B’ 

- Ic’(O)l (p--Li)$P. 

Q.E.D. 

Now o(O)>0 if 
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4+2(n-2)t+(n- l)t* 
r(2-r)2(4+2(n-2)r-(n-l)r*)3 

This inequality is satisfied if our condition is satisfied. Q.E.D. 
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