

Technology Potential of Commercial Vehicle Transmissions

Matthew Busdiecker Principal Engineer, Vehicle Technology and Innovation

Heavy Duty Vehicle Efficiency Technical Workshop: Aligning Standards Internationally, Integration of Engines and Powertrains

San Francisco, CA October 22nd, 2013

© 2013 Eaton. All Rights Reserved.

Outline

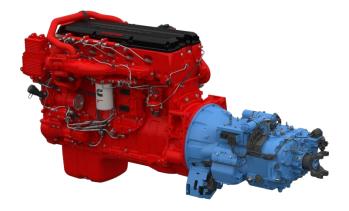
- Current state of transmission technology and market
- Approaches to fuel efficiency improvement
- Near term transmission opportunities 2014-2017
- New technology potential 2018 and beyond
- Certification options

* Note: This presentation describes Eaton's internal research and development activities, and does not imply any future product strategy, technology roadmap, or product release timing.

Current state of transmission technology and market in NA

- Transmission market structure
 - Linehaul
 - Manual 85%, AMT 15%, automation is growing: fuel economy & demographics
 - \$5,000 \$15,000 unit price
 - High mechanical efficiency: >95%, up to 98% in cruise gear
 - Vocational
 - Torque Converter Automatic 90%, AMT 10%
 - \$3000 \$15,000+ unit price (MD and HD specialty)
 - Mechanical efficiency: <85% -- 95%
 - Hybrids, few
 - \$25,000 \$100,000
 - Long payback period >3 years
 - · Narrow applications and subsidized cost

Eaton transmissions launching in 2014


Fuller Advantage: 2% fuel efficiency in linehaul

- Dry sump technology
- Reduced weight
- Optimized gearing
- Cooler and cooling lines removed
- Manual and AMT versions

Eaton-Cummins Alliance: 3-6% fuel efficiency in linehaul

- Deep AMT-ISX 15 integration
- Special ratios, improved shift logic, more time in DD
- Approx. 200 rpm engine downspeeding at cruise

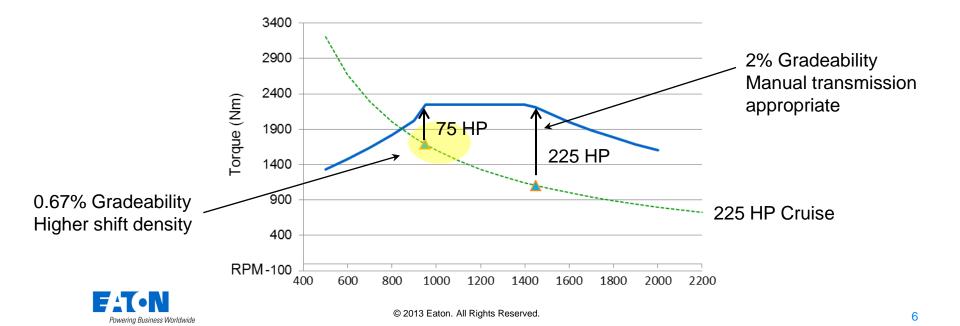
Approaches to fuel efficiency improvement

Class 8 Truck, Linehaul drive cycle

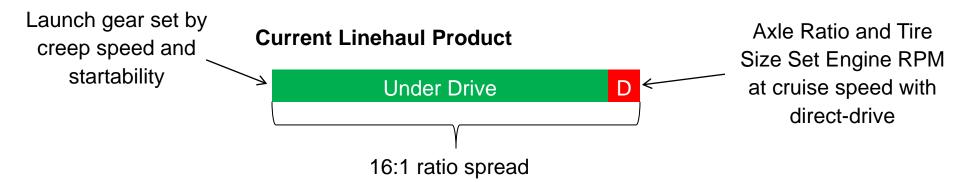
Target 50% Freight Fuel Efficiency Improvement

Current Technology 170 kW (227 hp) cruise

2020 Truck 112 kW (150 hp) cruise

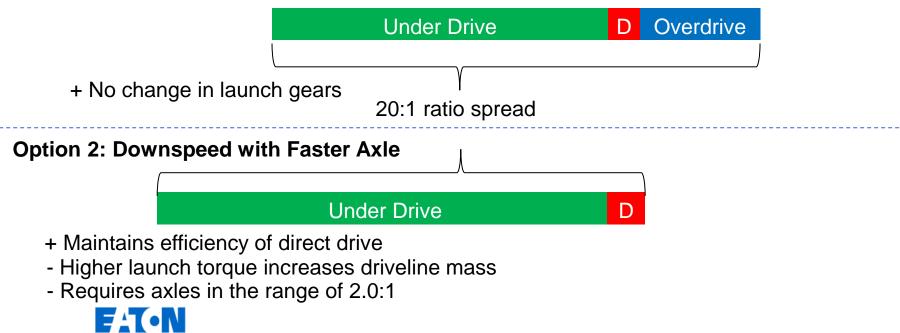

Component	Fuel Energy loss	Thermal Power loss	Improvement Target
Engine + accessory loads	60% (40% BTE)	255 kW	Engine increases to 50% BTE
Transmission	2%	3.4 kW	From 98% to 99.5 %
Axle	2%	3.4 kW	From 98 % to 99 %
Aerodynamic + RR losses	35%	162 kW	Decrease 20 - 30%
Braking	1%	1.7 kW	Somewhat increased due to less drag loss

 Pure transmission mechanical efficiency improvements can offer only minimal impact. Less than 2%

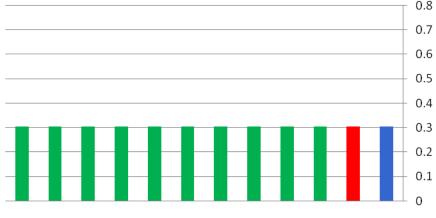


Approaches to fuel efficiency improvement

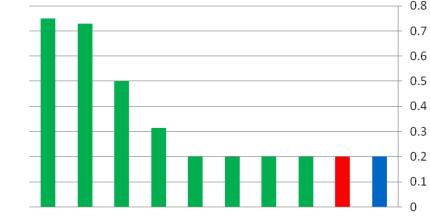
- Transmission can enable new engine technologies. Improved engine transmission integration is the major avenue for future powertrain improvement:
 - Downspeeding
 - Reduce engine operation in low efficiency areas by:
 - Minimizing shift transients
 - · Making more intelligent shift decisions



Downspeeding Increases Ratio Spread Design Trade-offs in size, mass and efficiency


Option 1: Downspeed with Overdrive: reduces engine RPM at cruise

Powering Business Worldwide



Progressive Gear Ratios Smarter Gearing: More Ratio Spread without adding speeds

Typical 12-speed AMT with Overdrive added (13-speed)

Progressive Step 11-speed

Same Overall Ratio Spread!

- + Progressive ratio steps allow smaller steps in the cruise gears without adding speeds
- + Eliminate skip-shifting during fast launches (light load / down hill)
- Wider engine speed range during launch

Increasing Ratio Spread with smaller steps sizes at cruise do NOT require more gears Not All 12-speeds are created equal!

Eaton Hybrid Electric Power Systems

Total Miles Accumulated: over 400 million Fuel Savings: 11 million gallons Emissions Reduction: 110,000 metric tons Units in Operation: approaching 6,500

Powering Business Worldwide

© 2013 Eaton. All Rights Reserved.

MD Hybrid concept architectures

The challenge: 2-3 year payback based on value of saved fuel

Improve fuel efficiency – hybrid architecture

•Lower cost components – hybrid architecture

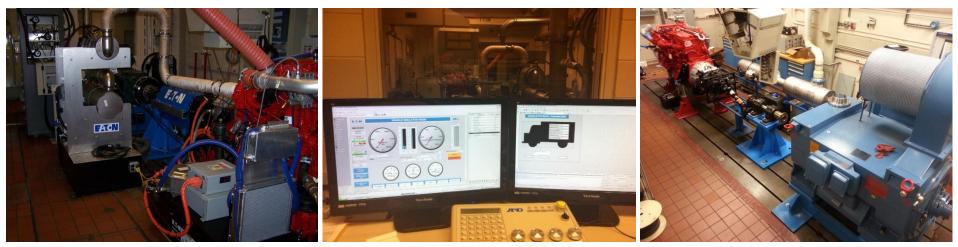
•Lower battery cost: leasing model, downsize through intelligence

Case for the Heavy Duty Hybrid

Decreasing Cd & RR vs. time means more regen energy available

Next Gen Architecture

Turbo-compounding


Electrification

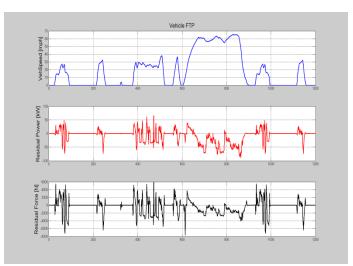
- 44kW motor
- 8kWh battery
- 5-10% time coasting/braking
- 4% average fuel economy (6 mpg)
- 660 gal/ year = \$2640/ year
- \$45,000 / system

- 90kW motor
- 23kWh battery
- 15-30% time coasting/braking
- 15% average fuel economy (9 mpg)
- 1660 gal/ year = \$6640/ year
- \$20,000 / system (500/kWh)

Powertrain testing MD and HD Powertrain Dynamometers

Medium duty cell: HV trans + ISB

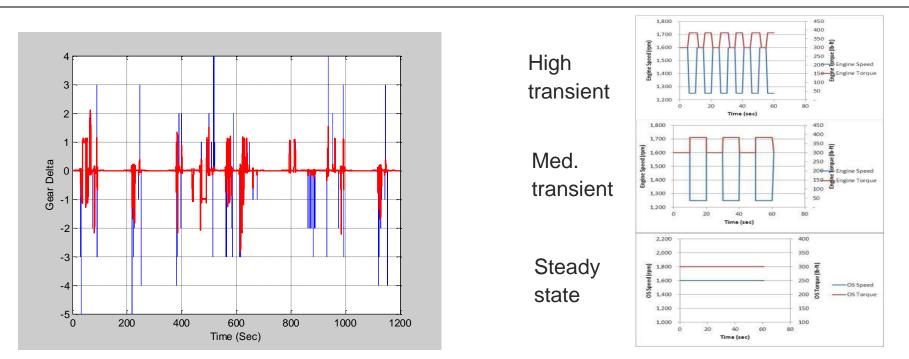
- Simulation: vehicle, road, driver
- Heavy Duty: Fuller Advantage + 15L ISX


- Simulated vehicle with real engine & transmission
- Fully exercises real engine and transmission controls
- Quantifies engine-transmission deep integration optimization
- Vehicle simulations: multiple drive cycles and vehicle configurations
- MD and HD cells build with similar configuration to: SwRI, EPA, ORNL
- Eaton engine test cell update costs: \$600k capital, \$300k labor

Powertrain testing Test procedure development for GHG Phase 2

 $\mathsf{vFTP}\,\mathsf{PV}\mathsf{AMT}$

6-Speed MD Transmission



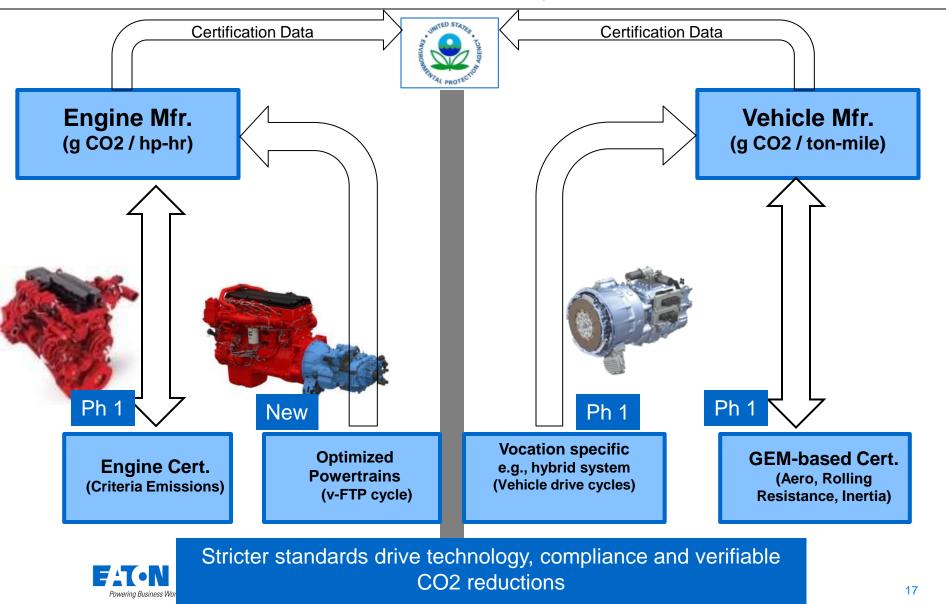
18 Speed transmission

- MD cell operating for ~ 1 year
- HD cell is now in commissioning process
- We have been successful in running various vehicle cycles on MD-AMT, and MD-hybrid transmissions
- Results are repeatable
- We have been working to demonstrate the feasibility of powertrain based test procedures for GHG Phase 2

Motivation for powertrain testing

- Gear Cmd delta between simple gear selection strategy, and actual control model on 18 speed AMT
- With more integrated engine and transmission it is difficult to accurately capture powertrain behavior without real control models

Conclusions


- 1. Transmission technology is a key enabler to significant CO2 reduction
 - 2014-2018: Deep transmission-engine integration driving moderate downspeeding, and increased automation in linehaul:
 - 3-6% improvement in linehaul; 8-12% improvement in vocational
 - 2020 and beyond: Significant penetration of power shifting, enabling engine downspeeding and optimization
- 2. Hybrid affordability realized through deep integration with the transmission
 - Vehicle load improvements present significant opportunity for HD hybrids
- 3. Powertrain certification drives CO2 reductions
 - Recognizes and rewards deep integration and justifies controls investments
 - Objective and verifiable: drives compliance and enforcement
 - Low cost: \$600k capital upgrade for both powertrain and vehicle HILS in same framework

Regulatory structure

Achieve EPA objectives in maintaining the Phase 1 framework

