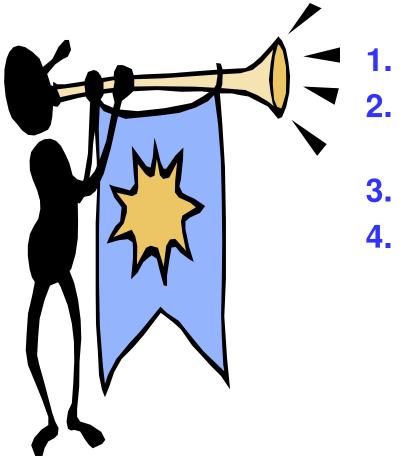
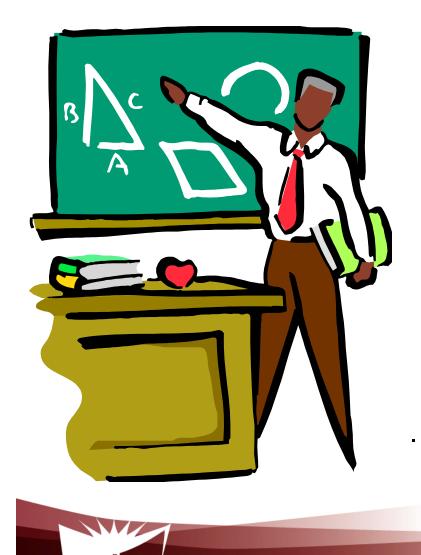


Chapter III – 4G Long Term Evolution (LTE) and Evolved Packet Core (EPC)


http://users.encs.concordia.ca/~glitho/

Concordia Institute for Information Systems Engineering

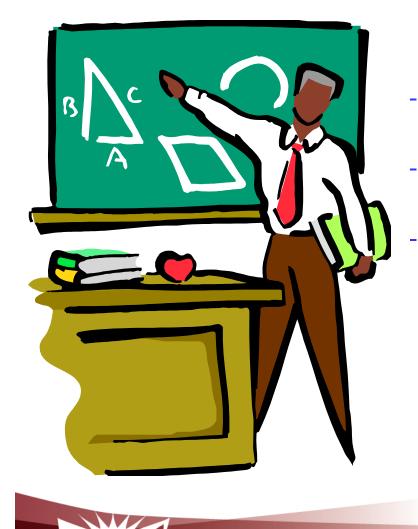

Outline

- EPC architectures (Basic and advanced)
- 3. Mobility management in EPC
- 4. QoS management in EPC

LTE

LTE (Long Term Evolution) : Radio access network

- 4G Transport
 - LTE:
 - Radio access network known also known as Evolved -UTRAN
 - Base stations called eNodeB
 - OFDM technology
 - IP
 - UDP/TCP/ SCTP (a more reliable alternative to TCP)


LTE

- LTE (Long Term Evolution)
- Bandwidth
 - Downlink: XXX Mbits/s (Peak rates up to 300 Mbits/s)

Telecommunication Services Engineering (TSE) Lab EPC architectures

- Principles
- **Basic architecture**
- More advanced architectures

EPC architecture

Evolved Packet Core (EPC)

- Above LTE 4G transport
 - Can accommodate other radio access networks such as:
 - Legacy 3GPP radio access
 - GPRS (2.5G), UTRAN (3G), HSPA (3.5G)
 - Non 3GPP radio access
 - Wimax
 - Wifi
 - CDMA 2000

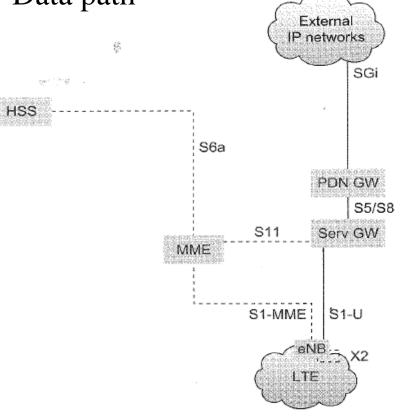
EPC - architecture

Key principles

1. Flat architecture

As few entities/nodes as possible

- 2. Clean separation between control / signalling path and data path Note:
 - signalling has a very broad meaning and does not mean multimedia session signalling in this context
 - Means control of data path



EPC Basic architecture

Basic EPC architecture for LTE (Reference 1)

- . Dotted lines: Signalling/control path
- . Solid lines: Data path

EPC Basic architecture

Evolved Packet Core (EPC)

The few nodes

- Signalling / control path **HSS**
- Subscriber data base

Mobility Management Entity (MME)

- Controls the EnodeB (Base stations)
- Interacts with the HSS
 - Find out if for instance the user is allowed to use the EPC network
- Mobility (To be discussed in details later in the chapter)
- Security

EPC – basic architecture

Evolved Packet Core (EPC): The few nodes

Signalling / control path

HSS

Mobility Management Entity (MME)

A note on the protocols

- SCTP (Stream Control Transport Protocol) used by MME for reliability reasons
 - SCTP is a more reliable alternative to TCP
 - Multi homing
 - Four way handshaking
- Diameter over SCTP is used for interactions with the HSS

EPC – Basic architecture

Evolved Packet Core (EPC): The few nodes

Data path

PDN Gateway

Gateway towards external networks / nodes such as:

- Internet
- Application servers
- IMS
- Other service delivery platforms

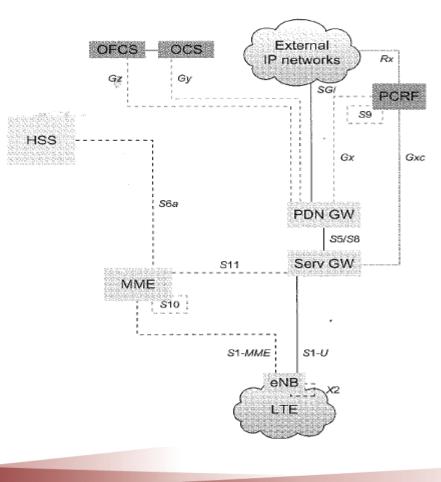
EPC Basic architecture

Evolved Packet Core (EPC): The few nodes

Data path

- Serving Gateway ("The heart", "The switch" ...) Belongs to both signalling/control path and data path On the signalling/control path
- Control the MME
- Control the MME
- Mark "packets" for QoS differentiation purpose (To be discussed later in the chapter)

On the data path


Buffers data as appropriate

EPC – A more advanced architecture

A more advanced EPC architecture for LTE (Reference 1)

- . Dotted lines: Signalling/control path
- . Solid lines: Data path

EPC – A more advanced architecture

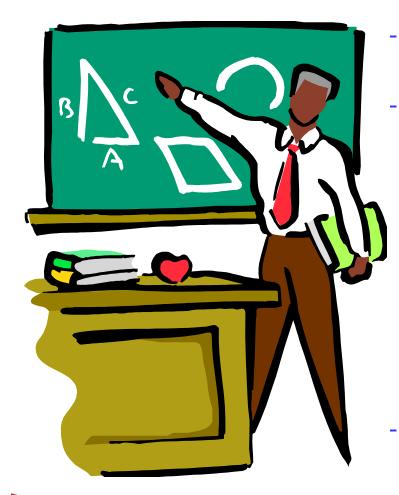
Evolved Packet Core (EPC)

- A more advanced architecture: The new entities
 - 2. Policy and Charging Rule Function (PCRF)

Policy: Treatment a specific IP flow shall receive QoS management (preferential treatment) Charging (e.g. on-line credit card verification)

EPC – A more advanced architecture

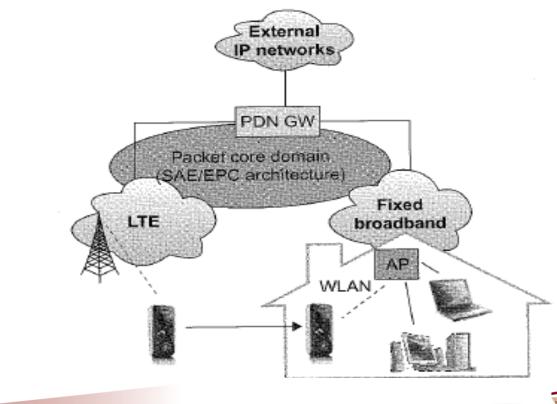
Evolved Packet Core (EPC)


A more advanced architecture: The new entities

Online charging system (OCS) and offline charging system (OFCS) Interact with PDN gateways for charging purpose Based on parameters such as:

- Time
- Volume
- Event

Telecommunication Services Engineering (TSE) Lab Mobility management in EPC


- A scenario
- Background information on mobile IP
 - Mobile IPv4 (MIPv4)
 - Mobile IPv6 (MIPv6)
 - Other mobile IP protocols relevant to EPC
 - Proxy Mobile IPv6 (PMIPv6)
 - Dual Stack Mobile IPv6 (DSMIPv6)
- Mobility management mechanisms in EPC

Mobility management scenario

Evolved Packet Core (EPC)

Mobility management: scenario

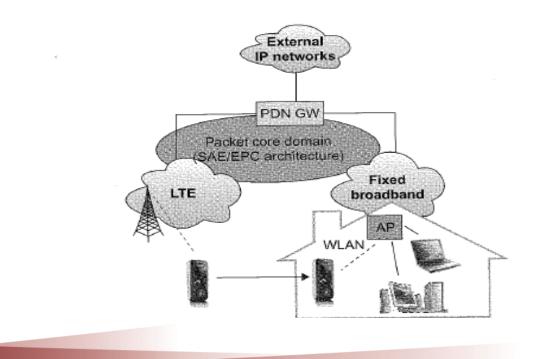
Mobility management scenario

Evolved Packet Core (EPC)

Mobility management: scenario

- Assumption:
 - 1. User-equipment (end-user device) supports both LTE and WLAN
 - 2. End-user move from outdoors (i.e. LTE) indoors (i.e. WLAN connected to fixed broadband)

Problem:


How to maintain sessions (i.e. on-going skype session, video on demand session)

Solution: Mobile IP (IPv6 version)

Mobility management scenario

 Draw the full mobility sequence diagram when the user moves outdoors to indoors assuming that PMIPv6 is used.

- Mobile IPv4
 - Key concepts
 - Mobile host (MH)
 - Two IP addresses
 - Home address (HoA)
 - Care of (COA) address
 - Two new entities
 - Home agent (HA)
 - Foreign agent (FA)

- Mobile IPv4
 - Key phases
 - Agent discovery
 - Registration
 - Routing

MIPv4

Mobile IPv4

- Agent discovery (i.e. Need to detect MH has changed point of attachment)
 - Agent advertisements transmitted periodically by HA and FA
 - Extension of Internet Control Message Protocol (ICMP)
 - Detection may be based on lifetime field of the router advertisement
 - ICMP
 - » Reports when something unexpected happens / Test Internet
 - » Ex: destination unreachable, time
 - exceeded, echo/echo reply

- Mobile IPv4
 - Registration
 - Goal: Make HA aware of the whereabouts of MH
 - May (or may not) go through FA
 - Two messages (carried over UDP)
 - Registration request
 - Registration reply

- Mobile IPv4
 - Routing
 - HA
 - 1. Intercepts packets sent to MH home address
 - » Gratuitous Address Resolution Protocol (ARP) packets
 - » ARP address maps IP address on MAC address
 - » Gratuitous ARP packets enables the redirections to HA of all packets sent to MH home address

- Mobile IPv4
 - Routing
 - HA
 - 1. Tunnels packets to CoA
 - » End of tunnel
 - » MH
 - » Or
 - » FA

- Mobile IPv6
 - Same fundamental principles as Mobile IPv4
 - Some differences
 - 1. No foreign agent (FA)
 - » IPv6 MH acquire their CoA without the assistance of FA
 - 2. HA discovery done using anycast
 - » More efficient than the broadcast used in Mobile IPv4

- Mobile IPv6
 - Key concepts
 - Mobile host (MH)
 - Two IP addresses
 - Home address (HoA)
 - Care of (COA) address
 - 1 new entity
 - Home agent (HA)

Mobile IPv6

- Mobile IPv6
 - Three phases
 - Bootstrapping (Corresponds to the agent discovery phase of MIPv4)
 - Registration
 - Routing

- Mobile IPv6
 - Three phases
 - Bootstrapping (Corresponds to the agent discovery phase of MIPv4)
 - Static configuration
 - Anycast
 - » Packet routed to the nearest node of the anycast group
 - One HoA acquired, home link detection procedure performed to figure out if host is in its home domain

- Mobile IPv6
 - Three phases
 - Registration (when outside home domain)
 - Mobile Binding Update message sent by host to Home Agent
 - Parameters (HoA and CoA)

Mobile IPv6

- Mobile IPv6
 - Three phases
 - Routing
 - Bidirectional tunnel between HA and Host
 - » HA intercepts received packets and forward them to host
 - » Host sends all packets to HA which forwards them to the right destination
- Note: Unlike IPv4 triangular routing is not permitted (i.e. Host sent directly packets without going through HA, while all received packets go through home agent)

- Proxy mobile IPv6 (PMIPv6)
 - Network based mobility management mechanism unlike the other mobile IP protocols that are host based.

- Proxy mobile IPv6 (PMIPv6)
 - Differences between network based mobility and host based mobility:
 - Host based mobility
 - Host detects when it attaches to another networks and sends corresponding messages to home network
 - Requires mobility management in hosts

- Proxy mobile IPv6 (PMIPv6)
 - Differences between network based mobility and host based mobility:
 - Network based mobility
 - An entity insides the network detects when host is attached to another network
 - The entity interacts with other entities in the network to ensure smooth mobility
 - No software mobility required in hosts

- Proxy mobile IPv6 (PMIPv6)
 - Entities
 - Mobile Access Gateway (MAG)
 - Part of access network
 - Detects host when host attaches to a new network
 - Local Mobility Anchor (LMA)
 - » Act as home agent
 - MAG and LMA interact without host involvement to ensure smooth mobility management

Other protocols: DSMIPv6

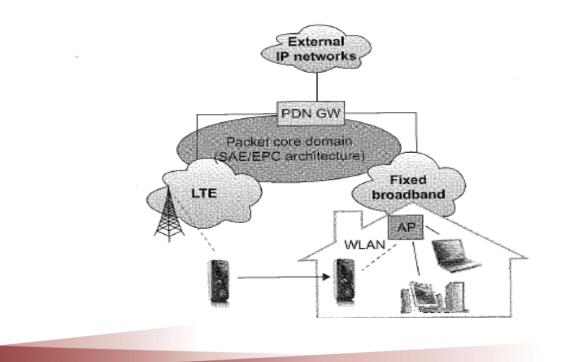
- Dual Stack mobile IPv6 (DSMIPv6)
 - Enhancements to home agent to enable the support of mobile IPv4 in addition to the support of PMIPv6
 - Hosts may be IPv4 or IPv6
 - MAG support IPv4 and IPv6
 - Rather complex mechanisms

Other protocols: DSPMIPv6

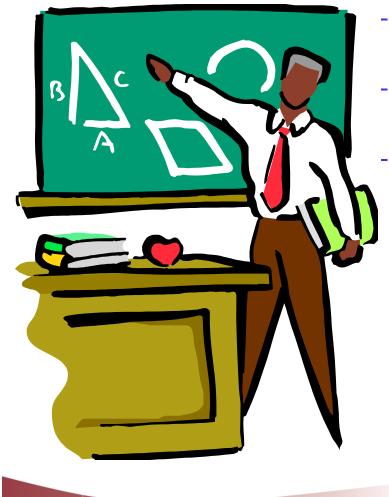
- Dual Stack Proxy mobile IPv6 (DSPMIPv6)
 - Enhancements to LMA and MAG to enable the support of mobile IPv4 in addition to the support of PMIPv6
 - Hosts may be IPv4 or IPv6
 - MAG support IPv4 and IPv6
 - Rather complex mechanisms

Mobility management in EPC

- Preference for network based management protocols although host based management protocols are allowed.
- DSMIPv6 and DSPMIPv6 are the future proof protocols


Mobility management in EPC

 Local Mobility Anchor (LMA) located on the PDN Gateway


Mobility management in EPC

 Draw the full mobility sequence diagram when the user moves outdoors to indoors assuming that PMIPv6 is used.

Telecommunication Services Engineering (TSE) Lab QOS management in EPC

- **Basics of QoS**
- QoS concepts in EPC
 - **QoS mechanisms in EPC**

Basics of QoS Integrated Service Architecture - IntServ

Provide end to end QoS guarantees Service classes

1. Guaranteed service

- Hard guarantee on delay and bandwidth
- Parameters provided by application
 - Peak rate
 - Packet size
 - Burst size

2. Controlled load

- Softer version of guaranteed service
- Guarantee that the QoS is equivalent to what it would have been if the network is not overloaded
- May not meet some of the hard requirements (e.g. delay)

Telecommunication Services Engineering (TSE) Lab Basics of QoS Integrated Service Architecture - IntServ Requirements on each router in the path:

- 1. Policing
- 2. Admission control
- 3. Classification
- 4. Queuing and scheduling

Telecommunication Services Engineering (TSE) Lab Basics of QoS Resource Reservation Protocol - RSVP

Soft state signaling protocol used in InServ for unidirectional resource reservation

Rely on two messages:

PATH

- Propagated from sender to receiver

RESV

- Propagated in the opposite direction

Telecommunication Services Engineering (TSE) Lab Basics of QoS Integrated Services Architecture - IntServ Disadvantages

- Require major new software and firmware in routers
- Major overhead due to flows management
 - Flows are quite similar to telephone calls
 - Set up
 - Tear down

Basics of QoS Differentiated services - DiffServ

Aim at addressing IntServ drawbacks by focusing on traffic aggregates instead of individual flows:

Scalability

- No need for router to maintain flow states
- No for refreshment messages due soft-state

Lack of general applicability

- Work even if every router in the path does not support it

No need for applications to support new APIs

Telecommunication Services Engineering (TSE) Lab Basics of QoS-Differentiated services - DiffServ

Fundamental principle: A code point – Differentiated service code point (DSCP) to tell routers how to treat a packet relatively to other packets

Per hop behaviour (PHB)

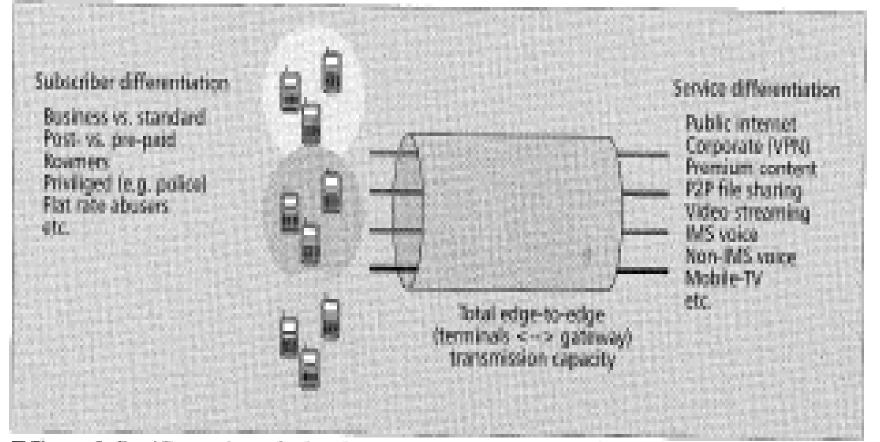
- Default
- Expedited forwarding
- Assured forwarding

Routers use PHB to drop/ prioritize packets on their output queue

QoS concepts in EPC (High Level)

Key objective: Avoid the traditional over provisioning of telecommunication networks

Enable a cost effective differentiation between:


- Services
- Subscribers groups of a same service
- Subscribers and so on

Telecommunication Services Engineering (TSE) Lab QoS concepts in EPC (High Level)

From reference 2

High Level QoS concepts in EPC

Bearer:

packet flow that receives the same forwarding treatment

- Scheduling
- Queue management

Guaranteed bit rate (GBR) bearers

- Congestion related packet losses will not occur

Non Guaranteed bit rate (Non GBR) bearers

- Congestion related packet may occur

QoS mechanisms in EPC (High Level)

Key nodes:

- Gateways (Serving gateways and PDN gateways)
- PCRF

Other nodes may also be involved (e.g. LTE)

QoS mechanisms in EPC (High Level)

Examples of mechanisms

- Control plane signaling

PCRF sends information to the gateways about how to handle packet flows from subscribers

- Bearer level function

LTE may implementation admission control

- DSCP Level Function (DiffServ)

References

- 1. M. Olsson and al. SAE and the Evolved Packet Core, Wiley 2009 (Selected chapters)
- 2. IEEE Communications Magazine, Special issue on LTE / EPC, February 2009
- 3. B. Carpenter and K. Nichols, Differentiated Services in the Internet, Proceedings of the IEEE, September 2002

