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In the classical study of partial differential equations one requires a solution to be differentiable. While
intuitively this requirement seems necessary, in practice one often finds this to be too restrictive. In reality,
initial data is often discontinuous, or may have cusps, therefore, it is natural to develop the notion of a
non-smooth solution to a PDE. The theory of distributions was born out of these considerations. In this
paper we will focus on a particularly useful type of distribution the tempered distribution.

Tempered distributions will allow us to give a definition for the derivative of non-smooth functions such
as the Heaviside function, as well as help to make rigorous mathematical objects such as the dirac delta.
Additionally, in this paper we will briefly discuss the Fourier transform, how it is related to tempered
distributions, and its applications to solving PDEs.

1 Basic Definitions

To understand tempered distributions we must first understand a few basic definitions and spaces. To begin
we need the notion of a function space. A function space is a topological space whose elements are maps from
a common domain to a common codomain. These spaces often form structures such as vector spaces and
metric spaces and prove to be invaluable in fields such as harmonic analysis and partial differential equations.

Example 1. Let CpRq denote the set of all continuous functions from RÑ R. CpRq is a function space.

Throughout the course of this paper we will be considering one function space in particular, the space
of Schwartz functions. Informally, these are infinitely differentiable functions whose derivatives decay faster
than any polynomial at infinity. A property which allows many functions to be integrated over R when
multiplied by a Schwartz function.

Definition 1. (Schwartz functions)
We denote the space

SpRq “ tf P C8pRq : }f}α,β ă 8,@α, β P Nu where }f}α,β “ sup
xPR

|xαf pβqpxq|u .

as the space of Schwartz functions.

The map } ¨ }α,β is called a semi-norm as it has most of the properties of a norm, however this map is not
a true norm as it is possible for non-zero vectors to map to zero. Another useful property of the Schwartz
functions is the fact that they form a vector space structure under the standard operations of point-wise
addition and scalar multiplication. This additional structure allows us to take advantage of many theorems
of linear algebra, in particular, we can make sense of linear functions defined on SpRq. Also note that SpRq
is closed under differentiation and multiplication by polynomials and bounded C8pRq functions.

Example 2. Let R ą 0, then any C8pRq function ϕpxq satisfying ϕpxq “ 0 for |x| ě R is Schwartz.
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As with most spaces, these function spaces become more interesting when we define functions on them.
We call the map f a functional if

f : Ω Ñ R, where Ω is a function space.

Function spaces and functionals are the basis of the branch of mathematics known as functional analysis.

Example 3. Let I : CpRq Ñ R be defined as Irus “
ş1

0
upxqdx. I is a functional.

We define the functional

dpf, gq “
ÿ

α,βPN
2´α´β

}f ´ g}α,β
1` }f ´ g}α,β

.

Clearly, d is well defined, because for any a ą 0 we have 0 ă a
a`1 ă 1 and we see

0 ă
ÿ

n,mPN
2´n´m

is the product of two convergent geometric series. The space of Schwartz functions forms a metric space
when equipped with the metric d.

Lemma 1. The space of functions SpRq equipped with the metric d : SpRq ˆ SpRq Ñ R is a metric space.

Proof. To prove this is a metric space we must show that d satisfies the metric axioms. Let f, g, h P SpRq
then:

1. (Non-negativity) We have already shown the metric axiom dpf, gq ě 0 holds.

2. (Identity of Indiscernibles) Since all of the terms of the sum are non-negative, dpf, gq “ 0 implies
that every term in the sum must be zero. In particular, }f, g}0,0 “ supxPR |fpxq ´ gpxq| “ 0 and thus
fpxq “ gpxq for all x P R. Conversely, if f “ g then }f ´ g}α,β “ 0 so all the terms of d are 0 and thus
dpf, gq “ 0.

3. (Symmetry) Since }f ´ g}α,β “ supxPR |x
αDβpf ´ gq| “ supxPR |x

αDβpg ´ fq| “ }g ´ f}α,β , we have d
is symmetric.

4. (Triangle Inequality) Since x
1`x is an increasing function, for the α, β term of dpf, hq we have:

}f ´ h}α,β
1` }f ´ h}α,β

ď
}f ´ g}α,β ` }g ´ h}α,β

1` }f ´ g}α,β ` }g ´ h}α,β

ď
}f ´ g}α,β

1` }f ´ g}α,β
`

}g ´ h}α,β
1` }g ´ h}α,β

,

the last inequality follows since the denominators are less than or equal to 1`}f´g}α,β`}g´h}. Notice
the last two terms together are the α, β term of dpf, gq ` dpg, hq. Since the α, β term of dpf, hq is less
than or equal to the corresponding term of dpf, gq`dpg, hq for all α, β, we have dpf, hq ď dpf, gq`dpg, hq.
Therefore the triangle inequality will holds for d.
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This metric is constructed such that for any sequence of Schwartz functions pfnq
8
n“0 we have that fn

converges to f P SpRq with respect to the metric d if and only if limnÑ8 }fn ´ f}α,β “ 0 for any α, β P N.
Thus, showing convergence in SpRq it suffices to do computations with } ¨ }α,β . Furthermore, when proving
properties about tempered distributions we take advantage of the rapid decay of Schwartz functions to move
limits inside integrals over R. We can do this because on any finite compact interval we have convergence
in the sup norm metric which implies uniform convergence on that interval. Furthermore, since Schwartz
functions decay so rapidly we know for any two Schwartz functions beyond a certain interval they will be ε

2
close to zero for any ε ą 0 meaning they are at most ε close to each other. Thus, given a convergent sequence
of functions it is possible to take a large enough interval (on which the sequence converges uniformly) so
that outside the functions are so close together that they also converge uniformly. We omit a rigorous proof
for brevity.

Now we come to the main definition, that of a tempered distribution.

Definition 2. (Tempered Distributions)
Let T : SpRq Ñ R be a functional. We say T is a tempered distribution if it is both linear and continuous.

We know that SpRq is a vector space, consequently we know from topology that the space of all continuous
linear functionals on SpRq is closed under the standard operations of addition and scalar multiplication. We
adopt the notation S1pRq for the space of tempered distributions. We remark that in general the set of linear
and continuous functionals on a vector space is called the continuous dual of the space.

Example 4. Consider the object δ, defined for ϕ P SpRq by δrϕs “ ϕp0q. We claim that this object is a
tempered distribution . Let ϕ,ψ P SpRq and c P R. To check for linearity notice

δrϕ` ψs “ pϕ` ψqp0q “ ϕp0q ` ψp0q “ δrϕs ` δrψs.

For homogeneity we have

δrcϕs “ pcϕqp0q “ c ¨ ϕp0q “ cδrϕs.

Continuity also follows easily. Let pϕnq
8
n“0 be an arbitrary sequence of Schwartz functions that converges

to ϕ. Since the sequence of functions converges with respect to d we know that ϕn converges uniformly to
ϕ P SpRq because it must converge with respect to the } ¨ }0,0 norm. Thus, δrϕns “ ϕnp0q also converges to
ϕp0q as nÑ8. As δ is a linear continuous functional defined on SpRq it is a tempered distribution.

Example 5. We claim the function I : SpRq Ñ R defined by the Riemann integral

Irϕs “

ż 1

0

ϕpxqdx

is a tempered distribution. Since Schwartz functions are C8pRq they are continuous and so I is well defined.
Clearly I is also linear by the properties of the Riemann integral. To show I is continuous, let pϕnq

8
n“m be

an arbitrary sequence of Schwartz functions such that ϕn Ñ ϕ P SpRq with respect to } ¨ }α,β . Then ϕn Ñ ϕ
uniformly and consequently

lim
nÑ8

Irϕns “ lim
nÑ8

ż 1

0

ϕnpxqdx “

ż 1

0

lim
nÑ8

ϕnpxqdx “

ż 1

0

ϕpxqdx “ Irϕs.

Therefore, I is a tempered distribution.

Example 6. Let f be a function such that fϕ is integrable on R for all ϕ P SpRq. Then we denote the
tempered distribution induced by f as Tf : SpRq Ñ R and define it as

Tf pϕq “

ż

R
fpxqϕpxqdx.

3



The proof that Tf is indeed a tempered distribution is similar to Example 5.

2 Operations on Tempered Distributions

Differentiation

Next we turn our focus to defining a notion of differentiation for tempered distributions. To motivate this
definition we consider a tempered distribution of the form (6)

T 1f rϕs “

ż

R
f 1pxqϕpxqdx

where f 1 denotes the derivative of f . Integration by parts yields

Tf 1rϕs “

ż

R
f 1pxqϕpxqdx “ fpxqϕpxq

ˇ

ˇ

8

´8
´

ż

R
fpxqϕ1pxqdx “ ´

ż

R
fpxqϕ1pxqdx “ ´Tf rϕ

1s.

The boundary terms vanish due to the integrability of fϕ over R. Keeping this form in mind we define the
distributional derivative.

Definition 3. (Distributional Derivative)
Let T P S1pRq. We define the distributional derivative of T .

T 1rφs “ ´T rϕ1s.

Lemma 2. Let T P S1pRq then T 1 is a tempered distribution.

Proof. Let ϕ,ψ P SpRq, then we have linearity since

T 1rϕ` ψs “ ´T rpϕ` ψq1s “ ´T rϕ1 ` ψ1s “ ´T rϕ1s ´ T rψ1s “ T 1rϕs ` T 1rψs.

Now we will show continuity. Let ϕn be a sequence of Schwartz functions that converges to ϕ with respect
to the metric d. Then by definition of d, }ϕn ´ ϕ}α,β “ }ϕ1n ´ ϕ1}α,β´1 converges to 0 for all α, β ě 1.
Consequently ϕ1n converges to ϕ1 with respect to d. Thus

lim
nÑ8

T 1rϕns “ lim
nÑ8

´T rϕ1ns “ ´T rϕ
1s “ T 1rϕs

since T is continuous. Therefore T 1 is continuous and a tempered distribution.

This definition allows us to make rigorous many common objects used in the study of differential equa-
tions and mathematical physics. Two of the most common examples of objects which are related through
the distributional derivative are the Heaviside function and the delta distribution.

Example 7. Let the Heaviside function, θpxq : RÑ R be defined as

θpxq “

#

0 if x P p´8, 0q

1 if x P r0,8q
.

This induces the distribution

Hrϕs “

ż

R
θpxqϕpxqdx.
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Now we compute the derivative as:

H 1rϕs “ ´

ż

R
θpxqϕ1pxqdx “ ´

ż 8

0

ϕ1pxqdx “ ´ϕpxq
ˇ

ˇ

8

0
“ ϕp0q “ δrϕs.

Thus, in the sense of distributions the derivative of the Heaviside is the delta distribution.

Example 8. Let ψ P SpRq consider the distribution differential equation

Λ1 “ Tψ.

Let Ψpxq “
şx

x0
ψpξqdξ. The distribution

Λrϕs “ Tψrϕs

is a solution to the differential equation because

Λ1rϕs “ ´

ż

R
Ψpxqϕ1pxqdx “ ´Ψpxqϕpxq

ˇ

ˇ

R `

ż

R
ψpxqϕpxqdx “

ż

R
ψpxqϕpxqdx “ Tψrϕs.

Fourier Transform

One useful operation defined on the Schwartz functions is the Fourier transform. This function can be
thought of as the continuous analogue to the Fourier series.

Definition 4. (Fourier transform)
Let ϕ P SpRq. We define the function F : SpRq Ñ SpRq as

Fpϕqpyq “ pϕpyq “
1
?

2π

ż

R
ϕpxqe´ixydx

and denote pϕ as the Fourier transform of ϕ.

We remark that the Fourier transform of a Schwartz function is always a Schwartz function. The proof
for this fact is nontrivial but we omit it here for brevity. Stronger still, the Fourier transform is also a
bijection from the Schwartz functions to themselves. Therefore, the Fourier transform has an inverse which
we denote by qf .

Theorem 1. (Fourier Inversion Theorem) Let ϕ be a Schwartz function then the inverse of the Fourier
transform is

F´1pϕqpxq “ qϕpxq “
1
?

2π

ż

R
ϕpyqeixydy (1)

Proof. Let ϕ and ψ be Schwartz functions such that

ψp0q “

ż

R

pψpxqdx “ 1,

Then we have, by interchanging the limit and integral

lim
εÑ0

1
?

2π

ż

R
ψpεyqpϕpyqeixydy “

1
?

2π

ż

R
pϕpyqeixydy.
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Moving the limit inside the integral is valid since ψ is Schwartz. Furthermore, by Fubini’s theorem we can
interchange the order of integration to obtain

lim
εÑ0

1
?

2π

ż

R
ψpεyqpϕpyqeixydy “ lim

εÑ0

1
?

2π

ż

R
ψpεyqeixy

ˆ

1
?

2π

ż

R
ϕptqe´iytdt

˙

dy.

“ lim
εÑ0

ż

R
ϕptq

ˆ
ż

R
ψpεyqe´iypt´xqdy

˙

dt

After the change of variables u “ εy the last integral becomes

lim
εÑ0

ż

R
ϕptq

ˆ
ż

R
ψpuqe´i

u
ε pt´xq

du

ε

˙

dt “ lim
εÑ0

ż

R
ϕptq pψ

ˆ

t´ x

ε

˙

dt

ε
.

Performing another change of variables v “ pt ´ xqε and interchanging the limit and the integral we have
ϕpxq is equal to

lim
εÑ0

ż

R
ϕpx` εvq pψpvqdv “ ϕpxq

ż

R
pψpvqdv “ ϕpxq,

the limit passes to the argument of ϕ since ϕ is continuous. Thus the Fourier transform is invertible with
inverse given by (1).

Example 9. Let G : SpRq Ñ SpRq be defined as Gpxq “ e´x
2
{2. The Fourier transform of G is given by

pGpyq “
1
?

2π

ż

R
e´x

2
{2e´ixydx (2)

“
1
?

2π

ż 8

´8

e´px
2
{2`ixyq{2dx

“
1
?

2π

ż 8

´8

e´px`iyq
2
{2´y2{2dx

“
e´

y2

2

?
2π

ż 8

´8

e´px`iyq
2
{2dx

If we let z “ x` iy, then we obtain

pGpyq “
e´y

2
{2

?
2π

ż 8`iy

´8`iy

e´z
2
{2dz

“
e´y

2
{2

?
2π

¨
?

2π “ e´y
2
{2

Therefore, pGpyq “ Gpyq.

We can generalize this notion of the Fourier transform to tempered distributions by defining

FpT qrϕs “ pT rϕs “ T rpϕs.

As with the Fourier transform of Schwartz functions, it can be shown that if T P S1pRq then FpT q P S1pRq
and furthermore, F is an isomorphism with inverse given by

F´1pT qrϕs “ qT rϕs “ T rqϕs,

for ϕ P SpRq.
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Example 10. Let δ denote the delta distribution and ϕ P SpRq. Consider

pδrϕs “ δrpϕs

“ δ

„

1
?

2π

ż

R
ϕpxqe´ixydx



“
1
?

2π

ż

R
ϕpxqe0dx

“

ż

R

1
?

2π
ϕpxqdx “ T 1?

2π
rϕs.

Thus, the Fourier transform of the delta distribution is the tempered distribution induced by
1
?

2π
. Unfor-

tunately we do not obtain the nice identity pδ “ T1 with our normalization of the Fourier transform, however
the convention we use is more convenient for solving PDEs.

One of the primary reason people work with Tempered distributions is the fact that the Fourier transform
is an isomorphism on the vector space of Tempered distributions. This is to say that the Fourier transform
is a function which maps S1pRq to S1pRq, is linear, and is invertible.

Lemma 3. The Fourier transform is an isomorphism on S1pRq.

Proof. We have that the Fourier transform is a bijection from S1pRq Ñ S1pRq. Now we need to show linearity,
let T1 and T2 be tempered distributions then

{pT1 ` T2qrϕs “pT1 ` T2qrpϕs “ T1rpϕs ` T2rpϕs “ pT1rϕs ` pT2rϕs.

Therefore {pT1 ` T2q “ pT1 ` pT2.

Convolutions

The last operation on tempered distributions we would like to discuss is convolutions. A convolution is a
binary operation which returns another function which is often viewed as a modification to one of the original
functions. These operations are used in Fourier analysis, partial differential equations, in the study of signals
and systems, as well as many branches of engineering.

Definition 5. Convolution of Schwartz functions
Let f, g be functions. We define their convolution as

f ˚ gpxq “

ż 8

´8

fpx´ yqgpyqdy “ g ˚ fpxq.

In order for the convolution to be well defined we need fpx ´ yqgpyq to be integrable over R for all x,
clearly this holds if f and g are Schwartz. The commutativity of the convolution follows from a simple
change of variables. As with the previous operations, to define the convolution of a Schwartz function with
a tempered distribution we pass the convolution to the argument. Precisely, if ψ, φ P SpRq and T P S1pRq
then the convolution of ψ and T is a distribution and acts on φ as

ψ ˚ T rφs “ T r rψ ˚ ϕs

where rψpxq “ ψp´xq is the reflection about 0. For this definition we use the fact that convolution of Schwartz
functions is Schwartz but do not prove it.
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Example 11. This example will show the delta distribution acts as an identity for the convolution operation.
Let ψ, φ P SpRq then

ψ ˚ δrϕs “ δr rψ ˚ ϕs

“ δ

„
ż 8

´8

rψpx´ yqϕpyqdy



“ δ

„
ż 8

´8

ψpy ´ xqϕpyqdy



“

ż 8

´8

ψpyqϕpyqdy “ Tψrϕs.

Therefore we write ψ ˚ δ “ ψ.

Theorem 2. (Derivative of a Convolution) Let ϕ,ψ P SpRq. We have for any α P N

Dα
`

ϕ ˚ ψ
˘

pxq “
`

pDαϕq ˚ ψ
˘

pxq “
`

ϕ ˚ pDαψq
˘

pxq

Proof. Consider,

Dαpϕ ˚ ψqpxq “ Dα

ż

R
ϕpx´ yqψpyqdy “

ż

R
Dαϕpx´ yqψpyqdy

“

ż

R
pDαϕpx´ yqqψpyqdy “

`

pDαϕq ˚ ψ
˘

pxq. (Leibniz’ rule)

The interchange of derivatives and integral above is justified because ϕ and ψ are in the Schwartz class. We
also have the convolution operator is commutative so without loss of generality

Dαpϕ ˚ ψqpxq “ Dαpψ ˚ ϕqpxq “ pDαψ ˚ ϕqpxq

From this the theorem follows.

3 Applications to PDE

To make distributions useful to the theory of partial differential equations we must extend the Schwartz
space to Rn. Before we proceed we will need the notion of a multi-index. An n dimensional mult-index α
is an n-tuple α “ pα1, . . . , αnq P N ˆ . . .N “ Nn, and the order of α is |α1 ` ¨ ¨ ¨ ` αn|. Let α be an n
dimensional multi-index and x “ px1, . . . , xnq P Rn, then we define xα “ xα1

1 . . . xαnn , and for a sufficiently
differentiable function f : Rn Ñ R, we define

f pαqpxq “
B|α|fpxq

Bxα1
1 . . . Bxαnn

Now we are ready to define SpRnq

SpRnq “ tf P C8pRnq : }f}α,β ă 8,@α, β P Nnu where }f}α,β “ sup
xPRn

|xαf pβqpxq|.

Notice that this definition coincides with the definition given at the beginning of Section 1 when n “ 1.
There is a corresponding version of Lemma 1 for SpRnq but we will omit it. Therefore SpRnq is a topo-

logical vector space with continuous dual space S1pRnq which we will call the tempered distributions. This
name is justified since this definition also coincides with our previous definition of tempered distributions
when n “ 1. Before we look at any PDEs we need to extend differentiation to S1pRnq. Let α P Nn be a
multi-index and T P S1pRnq then we define T pαqrφs “ p´1q|α|T rϕαs.

8



Example 12. For this example we seek a tempered distribution U P S1pR2q which is a solution the partial
differential equation

Utt ´ Uxx “ 0. (wave equation)

We say U is a solution of the wave equation if

Uttrϕs “ Uxxrϕs

ùñ U rϕtt ´ ϕxxs “ 0, for all ϕ P SpR2q.

Let us assume U is a tempered distribution induced by a function u : R2 Ñ R, then the previous equation
implies

ż

R2

upx, tqpϕttpx, tq ´ ϕxxpx, tqqdxdt “ 0, for all ϕ P S1pRq. (3)

We claim u “ F px´ tq ` F px` tq for any bounded function F : R2 Ñ R solves (3). Substituting, we obtain

ż

R2

pF px´ tq ` F px` tqqpϕttpx, tq ´ ϕxxpx, tqqdxdt

To show that this is identically zero we will use a trick which exploits the fact that the delta distribution is
the identity under convolutions. First we need to introduce a mollifier χ which satisfies

piq χ P C80 pRq Ă SpRnq

piiq

ż

Rn
χpxqdx “ 1

piiiq lim
εÑ8

ż

Rn

1

ε2
χ
´ x

ε2

¯

ϕpxqdx “ δrϕs.

For brevity we define χεpxq “ χ
`

x
ε

˘

. We note that for even a non-differentiable function f the convolution,
f ε “ χε ˚ f is smooth because

Dαpχε ˚ fq “ pD
αχεq ˚ f.

Thus uεpx, tq “ F εpx´ tq ` F εpx` tq is a classical solution of the wave equation and therefore

0 “ lim
εÑ0

ż

R2

ϕpx, tqpuεttpx, tq ´ u
ε
xxpx, tqqdxdt.

Moving the limit inside the integral we get

0 “ lim
εÑ0

ż

R2

ϕpx, tqpuεttpx, tq ´ u
ε
xxpx, tqqdxdt

“ lim
εÑ0

ż

R2

uεpx, tqpϕttpx, tq ´ ϕxxpx, tqqdxdt

“

ż

R2

lim
εÑ0

uεpx, tqpϕttpx, tq ´ ϕxxpx, tqqdxdt

“

ż

R2

upx, tqpϕttpx, tq ´ ϕxxpx, tqqdxdt,

the second equality follows from performing integration by parts twice and the third equality holds because
the delta distributions is the identity under convolution. Thus, we have that U satisfies the differential
equation.

9



Using this example we can define non-smooth solutions to the wave equation. Consider the Weierstrass
function

W pxq “
8
ÿ

k“0

b´kα cospbkπxq

where α “
´lnpaq

lnpbq
, 0 ă a ă 1 and b is defined so that ab ă 1 `

3π

2
. One can verify that this function is

differentiable nowhere on its domain. However, in the distributional sense, by example (12) the function

upx, tq “
W px´ tq `W px` tq

2

is a solution to the wave equation with initial data

#

upx, 0q “W pxq @x P R
utpx, 0q “ 0 @x P R.

In this way we have defined a solution to the wave equation which is completely non-smooth at t “ 0 (and
for all but countably many values of t after that).

4 Conclusion

In this paper we defined a space of functions, the Schwartz functions, and studied both that space as well as
it continuous dual space. We then defined some operations on Schwartz functions and tempered distributions
and showed how these objects can be used to allow non-smooth solutions to partial differential equations.

We intended this paper to give a brief overview of both the Schwartz functions and tempered distributions.
Distributions are foundational to many modern branches of mathematics and for answering age old question
in many other branches. These functions have many desirable integration and differentiation properties
which we can be exploited to solve problems and answer questions in a wide variety of pure and applied
mathematics.
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