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In the classical study of partial differential equations one requires a solution to be differentiable. While
intuitively this requirement seems necessary, in practice one often finds this to be too restrictive. In reality,
initial data is often discontinuous, or may have cusps, therefore, it is natural to develop the notion of a
non-smooth solution to a PDE. The theory of distributions was born out of these considerations. In this
paper we will focus on a particularly useful type of distribution the tempered distribution.

Tempered distributions will allow us to give a definition for the derivative of non-smooth functions such
as the Heaviside function, as well as help to make rigorous mathematical objects such as the dirac delta.
Additionally, in this paper we will briefly discuss the Fourier transform, how it is related to tempered
distributions, and its applications to solving PDEs.

1 Basic Definitions

To understand tempered distributions we must first understand a few basic definitions and spaces. To begin
we need the notion of a function space. A function space is a topological space whose elements are maps from
a common domain to a common codomain. These spaces often form structures such as vector spaces and
metric spaces and prove to be invaluable in fields such as harmonic analysis and partial differential equations.

Example 1. Let C(R) denote the set of all continuous functions from R — R. C'(R) is a function space.

Throughout the course of this paper we will be considering one function space in particular, the space
of Schwartz functions. Informally, these are infinitely differentiable functions whose derivatives decay faster
than any polynomial at infinity. A property which allows many functions to be integrated over R when
multiplied by a Schwartz function.

Definition 1. (Schwartz functions)
We denote the space

S(R) = {f € C*(R) : | fla,p < o0, Va, B € N} where | fla, = Squlwo‘f(ﬁ)(x)l} :

as the space of Schwartz functions.

The map || - |, is called a semi-norm as it has most of the properties of a norm, however this map is not
a true norm as it is possible for non-zero vectors to map to zero. Another useful property of the Schwartz
functions is the fact that they form a vector space structure under the standard operations of point-wise
addition and scalar multiplication. This additional structure allows us to take advantage of many theorems
of linear algebra, in particular, we can make sense of linear functions defined on 8§(R). Also note that S(R)
is closed under differentiation and multiplication by polynomials and bounded C'*°(R) functions.

Example 2. Let R > 0, then any C*°(R) function ¢(z) satisfying ¢(z) = 0 for |z| = R is Schwartz.



As with most spaces, these function spaces become more interesting when we define functions on them.
We call the map f a functional if

f:9Q — R, where Q is a function space.

Function spaces and functionals are the basis of the branch of mathematics known as functional analysis.
Example 3. Let I : C(R) — R be defined as I[u] = Sé u(z)dz. I is a functional.

We define the functional
If =g

d(f.g)= Y 2P
OC,BEN 1+ Hf_g|05,ﬂ
Clearly, d is well defined, because for any a > 0 we have 0 < 247 < 1 and we see
0 < Z 9—n—m

n,meN

is the product of two convergent geometric series. The space of Schwartz functions forms a metric space
when equipped with the metric d.

Lemma 1. The space of functions §(R) equipped with the metric d : $(R) x §(R) — R is a metric space.

Proof. To prove this is a metric space we must show that d satisfies the metric axioms. Let f,g,h € 8§(R)
then:

1. (Non-negativity) We have already shown the metric axiom d(f, g) = 0 holds.

2. (Identity of Indiscernibles) Since all of the terms of the sum are non-negative, d(f,g) = 0 implies
that every term in the sum must be zero. In particular, | f, gllo,0 = sup,egr |f(z) — g(x)| = 0 and thus
f(z) = g(z) for all z € R. Conversely, if f = g then ||f — g|a,s = 0 so all the terms of d are 0 and thus

d(f,g) = 0.

3. (Symmetry) Since |f = gla,s = SuPyeg |29 D (f — g)]| = sup,eg [+° D (g — )] = g — flla,g, we have d
is symmetric.

J
1+x

|f =hlas  _ _If =3glas + g = hlas
L+ |f = hla,p Tl If = glas +llg—hlas
If = glap g =hlas
T14[f—glas 1+ ]g—hlas’

4. (Triangle Inequality) Since is an increasing function, for the «, 8 term of d(f, h) we have:

the last inequality follows since the denominators are less than or equal to 1+ | f —gl«,5+|g—h|. Notice
the last two terms together are the «, 5 term of d(f, g) + d(g, h). Since the «, 8 term of d(f, h) is less
than or equal to the corresponding term of d( f, g)+d(g, h) for all o, 8, we have d(f, h) < d(f, g)+d(g,h).
Therefore the triangle inequality will holds for d.

O



This metric is constructed such that for any sequence of Schwartz functions (f,)%_, we have that f,
converges to f € §(R) with respect to the metric d if and only if lim,, e || f — f|a,s = 0 for any «, 5 € N.
Thus, showing convergence in 8§(R) it suffices to do computations with | - |4 5. Furthermore, when proving
properties about tempered distributions we take advantage of the rapid decay of Schwartz functions to move
limits inside integrals over R. We can do this because on any finite compact interval we have convergence
in the sup norm metric which implies uniform convergence on that interval. Furthermore, since Schwartz
functions decay so rapidly we know for any two Schwartz functions beyond a certain interval they will be 5
close to zero for any € > 0 meaning they are at most ¢ close to each other. Thus, given a convergent sequence
of functions it is possible to take a large enough interval (on which the sequence converges uniformly) so
that outside the functions are so close together that they also converge uniformly. We omit a rigorous proof
for brevity.

Now we come to the main definition, that of a tempered distribution.

Definition 2. (Tempered Distributions)
Let T : $(R) — R be a functional. We say T is a tempered distribution if it is both linear and continuous.

We know that S(R) is a vector space, consequently we know from topology that the space of all continuous
linear functionals on S(R) is closed under the standard operations of addition and scalar multiplication. We
adopt the notation S’(R) for the space of tempered distributions. We remark that in general the set of linear
and continuous functionals on a vector space is called the continuous dual of the space.

Example 4. Consider the object §, defined for ¢ € S(R) by §[¢] = ©(0). We claim that this object is a
tempered distribution . Let ¢, 1 € §(R) and ¢ € R. To check for linearity notice

[ + 1] = ( +9)(0) = (0) +9(0) = d[¢] + 8[¥].

For homogeneity we have

8[ew] = (ep)(0) = c- ¢(0) = cd[¢].

Continuity also follows easily. Let (¢,,)i_, be an arbitrary sequence of Schwartz functions that converges
to . Since the sequence of functions converges with respect to d we know that ¢, converges uniformly to
¢ € 8(R) because it must converge with respect to the || - |90 norm. Thus, é[@,] = ¢, (0) also converges to
©(0) as m — 0. As § is a linear continuous functional defined on 8§(R) it is a tempered distribution.

Example 5. We claim the function I : S(R) — R defined by the Riemann integral

1] - f p(2)do

0

is a tempered distribution. Since Schwartz functions are C*(R) they are continuous and so I is well defined.
Clearly I is also linear by the properties of the Riemann integral. To show I is continuous, let (@, )%, be
an arbitrary sequence of Schwartz functions such that ¢,, — ¢ € S(R) with respect to |- |a,5. Then ¢, — ¢
uniformly and consequently

lim I[p,] = lim | ¢np(z)dz = f lim @, (x)dz = J p(x)dx = I[p].

Therefore, I is a tempered distribution.

Example 6. Let f be a function such that fi is integrable on R for all ¢ € S(R). Then we denote the
tempered distribution induced by f as Ty : §(R) — R and define it as

Ty(p) = fRf<x>so<x>dx.



The proof that T is indeed a tempered distribution is similar to Example 5.

2 Operations on Tempered Distributions

Differentiation

Next we turn our focus to defining a notion of differentiation for tempered distributions. To motivate this
definition we consider a tempered distribution of the form (6)

Tilel = | F@ota)da
where f’ denotes the derivative of f. Integration by parts yields

Ty [p] = f (@)l = f@)p@)|”, - fRf@)so'(m)dx . fRﬂx)so'(x)dx S

The boundary terms vanish due to the integrability of f¢ over R. Keeping this form in mind we define the
distributional derivative.

Definition 3. (Distributional Derivative)
Let T € 8'(R). We define the distributional derivative of T.

Lemma 2. Let T € S’(R) then T” is a tempered distribution.

Proof. Let ¢,1 € S(R), then we have linearity since

T'le+ 4] = -Tlle+ )] = =Tl + 4] = T[] = T[¥'] = T'[p] + T'[¢].

Now we will show continuity. Let ¢,, be a sequence of Schwartz functions that converges to ¢ with respect
to the metric d. Then by definition of d, |¢n — @|a.g = ¥, — ¢ |a,p—1 converges to 0 for all o, 8 = 1.
Consequently ¢!, converges to ¢’ with respect to d. Thus

lim T'[¢,] = lim —T[g,] = —T[¢'] = T'[¢]

n—o0 n—o0
since T' is continuous. Therefore T” is continuous and a tempered distribution. O

This definition allows us to make rigorous many common objects used in the study of differential equa-
tions and mathematical physics. Two of the most common examples of objects which are related through
the distributional derivative are the Heaviside function and the delta distribution.

Example 7. Let the Heaviside function, §(z) : R — R be defined as

_J0ifx e (~o0,0)
e(x)_{lifxe[o,oo)

This induces the distribution



Now we compute the derivative as:

- [ ) @rir =~ [ e = —pt)] = 0(0) =
R

Thus, in the sense of distributions the derivative of the Heaviside is the delta distribution.

Example 8. Let ¢ € S(R) consider the distribution differential equation
N =Ty.
Let U(x S ¥(€)d€. The distribution

Alp] = Tyle]

is a solution to the differential equation because

Mgl = - wax)so'(x)dx — Y(a)p()], + ij@ z)da = j e

Fourier Transform

z)dx = Ty[p].

One useful operation defined on the Schwartz functions is the Fourier transform. This function can be

thought of as the continuous analogue to the Fourier series.

Definition 4. (Fourier transform)
Let ¢ € 8(R). We define the function F: S(R) — S(R) as

and denote ¢ as the Fourier transform of .

We remark that the Fourier transform of a Schwartz function is always a Schwartz function. The proof
for this fact is nontrivial but we omit it here for brevity. Stronger still, the Fourier transform is also a
bijection from the Schwartz functions to themselves. Therefore, the Fourier transform has an inverse which

we denote by f .

Theorem 1. (Fourier Inversion Theorem) Let ¢ be a Schwartz function then the inverse of the Fourier

transform is

T p)e) = Bla) = 7= | stw)eay

Proof. Let ¢ and 9 be Schwartz functions such that

- jRJ@c)dm _1,

Then we have, by interchanging the limit and integral

1 A
lim —— € ”yd = —— | @(y)e™¥dy.
lim %J P(ey)® V= am JR Ply)e™dy

(1)



Moving the limit inside the integral is valid since v is Schwartz. Furthermore, by Fubini’s theorem we can
interchange the order of integration to obtain

zz _ m’ 1 —1
ili%\/T?J U(ey)p Ydy = h im \/7] U(e v (\/ﬂ JRgo(t)e ytdt) dy.

= limf o(t) (J ¢(6y)e_iy(t_z)dy> dt
e—0 R R
After the change of variables u = ey the last integral becomes

u du ~(t—a\ dt
. = (t—z) ™ 1 o
;HI(I) o(t) (J Y(u)e E > dt = 611H(1) p(t)y ( 6 ) =

Performing another change of variables v = (¢ — x)e and interchanging the limit and the integral we have
p(x) is equal to

lim o(x + ev)ih( J¢ (),

R

the limit passes to the argument of ¢ since ¢ is continuous. Thus the Fourier transform is invertible with
inverse given by (1).

O
Example 9. Let G : $(R) — 8(R) be defined as G(z) = e~ /2. The Fourier transform of G is given by
~ 1 2 .
G :—f e~ ey 2
- ©)

e—(x2/2+i9cy)/2dl,

© 2 \2 2
e~ @+iw)" /2=y /2 4.

ff

_6 —(z+1iy) /2d$

\/E

If we let z = x + 7y, then we obtain

Therefore, G(y) = G(y).

We can generalize this notion of the Fourier transform to tempered distributions by defining

F(T)[e) = Tle] = T[],

As with the Fourier transform of Schwartz functions, it can be shown that if 7' € S’(R) then §(T) € S'(R)
and furthermore, § is an isomorphism with inverse given by

§HD)[g] = Tle] = T[F],

for ¢ € S(R).



Example 10. Let § denote the delta distribution and ¢ € §(R). Consider

A~

dle] = o[¢]

_s [\/12? JR (p(x)e”ydx]

x)eldx

1
- 75 | #t
1
= JR Egp(m)dm =T [e]-

1
Thus, the Fourier transform of the delta distribution is the tempered distribution induced by ———. Unfor-

V2r

tunately we do not obtain the nice identity 5= T with our normalization of the Fourier transform, however
the convention we use is more convenient for solving PDEs.

One of the primary reason people work with Tempered distributions is the fact that the Fourier transform
is an isomorphism on the vector space of Tempered distributions. This is to say that the Fourier transform
is a function which maps 8'(R) to 8'(R), is linear, and is invertible.

Lemma 3. The Fourier transform is an isomorphism on 8'(R).

Proof. We have that the Fourier transform is a bijection from 8'(R) — 8’(R). Now we need to show linearity,
let 77 and T5 be tempered distributions then

(T1 + To)[p] =(Th + To)[@] = Tu[@] + To[@] = Tilep] + Tale]-

Therefore (Tl/—&-\Tg) = ﬁ + fg.

Convolutions

The last operation on tempered distributions we would like to discuss is convolutions. A convolution is a
binary operation which returns another function which is often viewed as a modification to one of the original
functions. These operations are used in Fourier analysis, partial differential equations, in the study of signals
and systems, as well as many branches of engineering.

Definition 5. Convolution of Schwartz functions
Let f, g be functions. We define their convolution as

Feotw) = [ Sy = g+ 7o)

In order for the convolution to be well defined we need f(x — y)g(y) to be integrable over R for all x,
clearly this holds if f and g are Schwartz. The commutativity of the convolution follows from a simple
change of variables. As with the previous operations, to define the convolution of a Schwartz function with
a tempered distribution we pass the convolution to the argument. Precisely, if ¢, ¢ € S(R) and T € S'(R)
then the convolution of ¥ and T is a distribution and acts on ¢ as

~

Y= T[o] = T[Y * ]

where )(z) = 1)(—z) is the reflection about 0. For this definition we use the fact that convolution of Schwartz
functions is Schwartz but do not prove it.



Example 11. This example will show the delta distribution acts as an identity for the convolution operation.
Let ¢, ¢ € S(R) then

Therefore we write ¥ % § = 1.

Theorem 2. (Derivative of a Convolution) Let ¢, € §(R). We have for any o € N

D¥(px9)(z) = (D) * ¥)(2) = (¢ * (D)) ()
Proof. Consider,

D? (o )(z) = D* |

o= y)Uly)dy = j Do(z — y)(y)dy

= JR(DOL‘P(m —y))Y(y)dy = (D) * ) (2). (Leibniz’ rule)

The interchange of derivatives and integral above is justified because ¢ and 1 are in the Schwartz class. We
also have the convolution operator is commutative so without loss of generality

D%(p # )(x) = D*(¢ * p)(x) = (D = @) (x)

From this the theorem follows. O

3 Applications to PDE

To make distributions useful to the theory of partial differential equations we must extend the Schwartz
space to R™. Before we proceed we will need the notion of a multi-index. An n dimensional mult-index o
is an n-tuple @ = (aq,...,05) € Nx ...N = N and the order of a is |ag + -+ + a|. Let o be an n
dimensional multi-index and x = (z1,...,2,) € R", then we define 2% = 27" ... 22", and for a sufficiently
differentiable function f : R™ — R, we define

ol £
f(a)(l‘)— J f()

B oxTt ... dxpn
Now we are ready to define S(R"™)

S(R") = {f € C*(R") : | fla,p < 0, Ve, 5 € N"} where | fla, = sup [2* P (x)].

zeR™

Notice that this definition coincides with the definition given at the beginning of Section 1 when n = 1.

There is a corresponding version of Lemma 1 for §(R™) but we will omit it. Therefore S(R™) is a topo-
logical vector space with continuous dual space S’'(R™) which we will call the tempered distributions. This
name is justified since this definition also coincides with our previous definition of tempered distributions
when n = 1. Before we look at any PDEs we need to extend differentiation to S'(R™). Let « € N” be a
multi-index and T € §'(R") then we define T(®)[¢] = (—1)lIT[p°].



Example 12. For this example we seek a tempered distribution U € S’(R?) which is a solution the partial
differential equation

Uit — Uz = 0. (wave equation)
We say U is a solution of the wave equation if

= Ulpu — @zz] = 0, for all p e S(R?).

Let us assume U is a tempered distribution induced by a function u : R? — R, then the previous equation
implies

j w(@, t)(pre (@, t) — Pz (@, t))dadt = 0, for all p € §'(R). (3)
R2
We claim v = F(z —t) + F(x + t) for any bounded function F : R? — R solves (3). Substituting, we obtain

| (P =0+ Pla+ 0)(oult) = punt 1) dade

To show that this is identically zero we will use a trick which exploits the fact that the delta distribution is
the identity under convolutions. First we need to introduce a mollifier x which satisfies

(i) x€Cg (R) = S(R")
(i7) J ) x(x)dr =1

x

(1) lim . E%X (6—2) p(x)dx = 0[p].

€—00

For brevity we define x(z) = x (£). We note that for even a non-differentiable function f the convolution,
f€ = xe * f is smooth because

D%(xe * f) = (DXe) * [-

Thus uf(z,t) = F¢(x —t) + F¢(x + t) is a classical solution of the wave equation and therefore

0=1m [ oz, t)(ugy(z,t) —us, (z,1))dxdt.

e—0 R2

Moving the limit inside the integral we get

0=lim | o(a,t)(ufy(@,1) - uS, (e, 1))dadt

e—0 R2
= hH(l) u‘ (SC, t) (‘ptt (Iv t) - Prx (QS, t))dxdt
€—> ]RQ
= J lim w(x, t) (pee (2, t) — Yoo (x, t))dadt
R2 €

= || e on(e.0) = pualo )i,

the second equality follows from performing integration by parts twice and the third equality holds because
the delta distributions is the identity under convolution. Thus, we have that U satisfies the differential
equation.



Using this example we can define non-smooth solutions to the wave equation. Consider the Weierstrass
function

W(z) = i b=k cos(bF )

k=0
—In(a)
In(b) ’

differentiable nowhere on its domain. However, in the distributional sense, by example (12) the function

3
where o = 0 < a <1 and b is defined so that ab < 1 + ?W One can verify that this function is

Wiz —t)+ W(x +1)
2

u(zx,t) =
is a solution to the wave equation with initial data

u(z,0) = W(x) VreR
u(2,0) =0 vz eR.

In this way we have defined a solution to the wave equation which is completely non-smooth at ¢ = 0 (and
for all but countably many values of ¢ after that).

4 Conclusion

In this paper we defined a space of functions, the Schwartz functions, and studied both that space as well as
it continuous dual space. We then defined some operations on Schwartz functions and tempered distributions
and showed how these objects can be used to allow non-smooth solutions to partial differential equations.

We intended this paper to give a brief overview of both the Schwartz functions and tempered distributions.
Distributions are foundational to many modern branches of mathematics and for answering age old question
in many other branches. These functions have many desirable integration and differentiation properties
which we can be exploited to solve problems and answer questions in a wide variety of pure and applied
mathematics.
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