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ABSTRACT

Temporal Dependency Structure Modeling

A dissertation presented to the Faculty of the
Graduate School of Arts and Sciences of Brandeis University

Waltham, Massachusetts

by Yuchen Zhang

An important task in understanding the meaning of natural language text is to represent and un-

derstand the temporal information in the text. Time expressions, events that happened at some

time points, and temporal relations between these time expressions and events are the three ba-

sic temporal information commonly present in texts. A well designed machine-readable temporal

representation is crucial for representing and understanding these information efficiently. Most

fundamental research on temporal information modeling has been representing temporal relations

in a pair-wise manner – the temporal relation between pairs of time expressions and/or events are

explicitly and separately modeled. This stream of representations faces a few challenges. First,

human annotation for this representation is laborious and on some level arbitrary. Second, compu-

tation on this representation is expensive and inefficient on scalability. Third, due to the nature of

temporal transitivity,annotations (human or computational) harbor potential conflicts on temporal

relations.

In this dissertation, we introduce a new temporal representation to address these challenges – the

Temporal Dependency Tree (TDT) structure. A Temporal Dependency Tree represents temporal

information in a text as a single dependency tree. Time expressions and events are represented

as nodes on the tree, while temporal relations are represented as edges. A TDT explicitly models

n temporal relations for a text with n time expressions and events, reducing human annotation

labor, computation complexity, and temporal transitivity conflicts. As a proof-of-concept, we per-

formed annotation experiments on the TDT representation to show stable and high inter-annotator

v



agreements. To support further linguistic study on TDT and automatic system training, we built an

expert-annotated TDT corpus (on two domains: news and narratives). One step closer to automatic

temporal information modeling and understanding, we built a competitive Temporal Dependency

Parser that parses time expressions and events in a text into a Temporal Dependency Tree structure.

Finally, to collect larger amount of TDT data more efficiently, and further support the training of

better temporal dependency parsers, we experimented with crowdsourcing approaches and built a

TDT corpus with high agreements through crowdsourcing.
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Chapter 1

Introduction

1.1 Motivations

Natural Language Understanding (NLU) aims at understanding the meaning of natural language

text. One important component of the meaning of a text is the temporal information in it. Recog-

nizing time expressions, anchoring events on a timeline, and understanding the temporal relations

between events and temporal expressions are some fundamental parts of understanding the mean-

ing of a text. Moreover, automatic detection of such temporal information is important to many

downstream applications in Natural Language Processing (NLP) and Artificial Intelligence (AI)

that include but are not limited to story timeline construction, question answering, text summariza-

tion, information extraction, and others.

To enable computers to automatically extract and work with such temporal information, a machine

readable temporal representation is necessary. The dominant approach in prior work on temporal

information modeling adopts a pair-wise approach: for pairs of time expressions and/or events

1



Chapter 1. Introduction

in a text, the system models whether there exists a temporal relation between them and what the

relation is. This temporal relation is selected from a pre-defined finite set of temporal relation

categories. For example, for the following three events A, B, and C, a pair-wise approach models

all three pairs of temporal relations: B before A, A before C, and B before C.

(1): A. John went into the florist shop.

B. He had promised Mary some flowers.

C. He picked out three red roses, two white ones and one pale pink

Representative work in this vein includes TimeML [Pustejovsky et al., 2003a], a rich temporal

relation markup language that is based on and extends Allen’s Interval Algebra [Allen, 1984].

TimeML has been further enriched and extended for annotation in other domains [O’Gorman et al.,

2016, Styler IV et al., 2014a, Mostafazadeh et al., 2016]. Corpora annotated with these schemes

[Pustejovsky et al., 2003b, O’Gorman et al., 2016] are shown to have stable Inter-Annotator Agree-

ments, validating the temporal relations proposed in the TimeML.

Accordingly, automatic systems working with this pair-wise representation usually solves a clas-

sification problem: given an individual pair of time expressions and/or events, the system predicts

whether they are temporally related and which specific relation holds between them. Represen-

tative pair-wise temporal relation classification systems include the participating systems in a se-

ries of TempEval shared tasks [Verhagen et al., 2007a, Verhagen et al., 2010a, UzZaman et al.,

2012, Bethard et al., 2015a, Bethard et al., 2016a, Bethard et al., 2017] and others [Bethard et al.,

2007, Chambers et al., 2007].

As shown in the previous example, one inherent issue with the pair-wise representation is redun-

dancy. From B before A and A before C, we can naturally infer that B is before C without

explicitly modeling this temporal relation. Unfortunately, redundancy leaves room for conflicts.

2



1.1. Motivations

As each pair of event is independently classified, it opens the door for annotators or automatic

systems to produce conflicting temporal relations within a text. One such scenario is if the human

annotator or the system annotates the relations between the three pairs as B before A, A before

C, and B after C. Another way to view pair-wise models is as a graph-based representation with

potential cycles. And temporal relations on a cycle in this graph can conflict with each other (e.g.

A before B, B before C, and A after C).

One possible way to alleviate such conflicts in automatic predictions is by enforcing global con-

straints to ensure temporal transitivity [Verhagen, 2004, Chambers and Jurafsky, 2008a, Ning

et al., 2018a, Allen, 1984]. However, applying global constraints requires a fully connected graph.

Namely, given a text with n time expressions and events,
(
n
2

)
temporal relations need to be explic-

itly annotated. This approach will quickly get impractical with longer texts for human annotators,

making it hard to produce such training data for machine learning based systems.

To solve the issues of redundancy and conflicts in a pair-wise temporal representation, and to

reduce the computational complexity of global constraints, we propose a new temporal representa-

tion in which temporal information in text is modeled as a dependency structure. More specifically,

this structure is a single-rooted dependency tree for the entire text. Time expressions and events

are represented as nodes in the tree, and temporal relations are represented as edges between them.

We call this representation a Temporal Dependency Tree (TDT) Structure. Figure 1.1 gives a small

example text and its Temporal Dependency Tree structure, where time expressions are represented

as orange nodes, events as green nodes, some pre-defined meta blue nodes (see more at §3), and

temporal relations on edges.

Prior work on structured models for temporal information in text include the Temporal Discourse

Model (TDM) for narrative structures [Mani and Pustejovsky, 2004], the Narrative Container

3



Chapter 1. Introduction

Example text:
He was borne1 in 1918t1. It wase2 a tough 
time for his family. Later, he startede3 
school at the Central Elementary. He 
wone4 a school prize in 1929t2. 

e1:born

t1:1918
includes

t2:1929

e4:won

includes

e2:was

overlap

e3:started

before

depend-on

ROOT

DCT
Present

_Ref

Figure 1.1: Example text and temporal dependency tree. Meta nodes are shown in blue, time ex-
pressions in orange, and events in green. TDT also includes meta nodes “Past_Ref,” “Future_Ref,”
and “Atemporal” which are not shown here.

model for temporal information [Pustejovsky and Stubbs, 2011], the Temporal Dependency Struc-

ture for narrative events [Bethard et al., 2012], and the Multi-axis Annotation Scheme for Event

Temporal Relations [Ning et al., 2018b]. These temporal models are described in details in 2.2.3.1,

and comparisons between our proposed TDT structure and these models are discussed in details in

2.2.4.

Before going into details of the design of a TDT structure (which will be fully described in Chapter

3), we would like to first briefly summarize its potential benefits as follows. For TDT annotation,

since an annotator does not have to annotate all pairs of events and time expressions in a text,

annotating long texts becomes practical. Given a text with n time expressions and events, only n

temporal relations need to be explicitly modeled in a TDT. Moreover, TDT guarantees an acyclic

tree structure, which leaves no room for cyclic temporal conflicts. From the point of view of

linguistic annotation, this alleviates potential inconsistencies when annotators pick a subset of
(
n
2

)
4



1.1. Motivations

relations to annotate using each individual’s judgement. From a computational perspective, a TDT

eliminates potential conflicts in predicted temporal relations (more on this in Chapter 3). Although

a TDT is not modeling all possible pairs of temporal relations, additional temporal relations can

still be inferred along the paths of the temporal dependency tree or through the ordering of time

expressions. And just as pair representations and graph representations, a dependency tree is also

a very well studied structure in NLP. It’s amenable to a wide range of parsing algorithms, and is

easy to use in downstream applications.

The Temporal Dependency Structure has its roots from the computational linguistic research on

on Temporal Anaphora [Reichenbach, 1947, Partee, 1973, Partes, 1984, Hinrichs, 1986, Webber,

1988, Bohnemeyer, 2009]. In research on temporal anaphora, a temporal relation is modeled as

an anaphoric relation where an event or time expression is the antecedent of another event or time

expression (the anaphor). The antecedent is called the Reference Time of the anaphor. And the

temporal location of the anaphor can only be interpreted with respect to its antecedent (i.e. its

reference time). When applying this theory practically to our data, we define the antecedent of an

anaphor time expression or event as the reference time with respect to which the temporal location

of the anaphor can be most precisely determined. With this definition, there will only be one

antecedent for each anaphor (i.e. one reference time for each time expression or event). Then, by

representing a (reference time, anaphor) pair as a (parent node, child node) pair on the tree, we will

arrive at a TDT structure that naturally fulfills the formal requirements of a valid dependency tree.

Literature on Temporal Anaphora is reviewed in Section 2.1, and detailed specifications on Tem-

poral Dependency Tree Structure are introduced in Chapter 3. As a proof-of-concept and also in

order to facilitate research on automatic TDT parsers, we developed annotation guidelines for TDT

and annotated a TDT corpus in Chinese. To compare the different temporal structures between dif-

ferent domains, this corpus covers articles from two domains: news reports and narrative fairy
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tales. Having proved through our annotation experiments that TDT is an intuitive structure that

can be annotated with high inter-annotator agreements, we further developed automatic parsers for

TDT. We hope these parsers will benefit downstream applications by providing structural temporal

information.

The annotation process of our TDT corpus consists of several rounds of annotator training before

the actual annotation effort was carried out, and an expert adjudication pass at the end. Annotator

training and expert annotation provide high quality data at the cost of time and expense. Therefore,

we are interested in developing an approach to crowdsourcing TDT annotations. Crowdsourcing is

usually used to collect data on relatively straightforward tasks such as speech transcription, “copy-

ing online info into a form”, or “identifying a smiley face”. Compared to most crowdsourcing

tasks, a temporal dependency tree structure is a very complex concept, and to collect TDT an-

notations through crowdsourcing is a very challenging task. Therefore, we studied the feasibility

of using crowdsourcing to collect TDT annotations, built an English TDT corpus through crowd-

sourcing with high Inter-Annotator Agreements, and experimented with parsers on this English

TDT data.

In summary, this thesis introduces a structured representation for temporal information in text – the

Temporal Dependency Tree Structure, presents data collection effort for this structure, introduces

the first statistical parsers for this structure, and provides analysis and discussions on collected

annotations and trained parsers.

1.2 Contributions

The main contributions of this thesis are summarized in this section.

6



1.2. Contributions

Structured Interpretation of Temporal Relations

This thesis describes our research on interpreting temporal relations in text in a structured man-

ner. In this research, we developed a structured representation for temporal relations in text – the

Temporal Dependency Tree Structure .

First of all, we designed refined classifications for time expressions and events, the basic temporal

units in text. These classifications are tailored to the specific task of temporal relation representa-

tion. Features closely related to temporal relations are clearly distinguished and represented. For

example, whether or not a time expression can be temporally located on the timeline is an impor-

tant feature about whether or not this time expression participates in temporal relations with other

time expressions or events. Therefore, this feature is well represented in our classification for time

expressions. And aspect, modality, and eventuality type of an event are important features about

how this event interacts with other time expressions and events temporally. Hence, these features

are clearly represented in our classification for events as well.

Second, we integrated the concept of reference time from the temporal anaphora theory into our

temporal relation representation. Instead of explicitly modeling the temporal relation between

every pair of time expressions and events (which models
(
n
2

)
temporal relations for a text with

n temporal units), we identify a single reference time for each time expression and event, and

only explicitly model the temporal relation between each temporal unit and its reference time (n

temporal relations for a text with n temporal units). Temporal relations between other pairs of

temporal units are implicitly modeled and can be inferred through the structure of our model.

Third, the integration of reference time enabled us to design a structured representation for tem-

poral relations among basic temporal units in text – the Temporal Dependency Structure. This

representation uses the dependency tree structure as the formal object and represent time expres-
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Chapter 1. Introduction

sions and events as the nodes on the tree and temporal relations as the edges on the tree. Each

parent-child pair on the tree represents a temporal relation between a temporal unit and its refer-

ence time.

Finally, we developed detailed annotation guidelines for Temporal Dependency Structure, and

annotated a corpus of 235 Chinese documents in two domains: news and narrative – the Temporal

Dependency Tree (TDT) corpus. High and stable inter-annotator agreements on this corpus serve

as a proof-of-concept for Temporal Dependency Structures, and the corpus also facilitates future

research on automatic temporal structure modeling.

Detailed descriptions on design of the Temporal Dependency Structure, our annotation schemes,

and statistics on the TDT corpus are presented in Chapter 3.

Automatic Temporal Dependency Structure Parsing

We present the first temporal dependency tree parser in this thesis.

In this research, we developed an end-to-end temporal dependency tree parser. This parser takes a

raw text as input, utilizes a neural sequence labeling model to extract events and time expressions,

and arrange these events and time expressions in a temporal dependency tree structure based on a

neural ranking model.

For comparison, we also developed a strong baseline parser using the logistic regression model and

extensive feature engineering, and a few variants of the neural model. These parsers are evaluated

on our TDT corpus. Experiments show that both our neural and logistic regression parsers can

learn and parse temporal dependency tree structures reasonly well. Considering the observation

that different domains (news v.s. narrative) have very different temporal structural patterns, we

8



1.2. Contributions

show that the neural models hold stronger learning abilities than the logistic regression model and

are more adaptive across different domains. Analysis over system output temporal dependency

trees are discussed as well.

Detailed descriptions on design of the neural parser and the baseline parsers, our experimental

setups, results, and analysis are presented in Chapter 4.

Crowdsourcing Temporal Dependency Structure Annotations

In this thesis, we present a preliminary study on a crowdsourcing approach to efficiently and effec-

tively collect temporal dependency tree annotations.

Since TDT annotation is a very challenging task in a crowdsourcing setup, we designed a crowd-

sourcing approach which treats the annotation of a complex TDT as two sub-tasks: (1) reference

time recognition, and (2) temporal relation identification between every temporal unit and its ref-

erence time. Using this approach, we built an English TDT corpus on top of the Timebank. For

comparison, we also annotated a subset of this corpus with expert annotators. Annotation ex-

periments show that high Inter-Annotator Agreements can be collected for both subtasks (>80%

for IAAs between crowdsoucing workers and experts, and IAAs among crowdsourcing workers).

Statistical and linguistic analysis are performed to better understand crowdsourced TDTs, and to

compare the differences between crowdsourced and expert-annotated TDTs. We also experimented

with our temporal dependency tree parsers on this corpus, achieving comparable results to parsers

trained on expert-annotated corpora. Another experiment comparing parsers trained on gold TDTs

and parsers trained on crowdsourced TDTs shows that crowdsourcing is an effective approach to

collect TDT data. Issues with this crowdsourcing approach are discussed as well, and although the

results of this study is still preliminary, it shows promising directions for future research.
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Chapter 1. Introduction

Detailed descriptions on design of the crowdsourcing approach, crowdsourcing sub-tasks, corpus

analysis, and parsing experiments are presented in Chapter 5.
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Chapter 2

Background on Temporal Information

Modeling

This chapter will give a background review on prior temporal information modeling research

mostly related to our work. The earlier work on temporal information modeling dates back to

the 1940s and have gone through a linguistically oriented period when mostly theoretical models

on specific temporal phenomena were presented. Important concepts that our work is built upon

such as reference time, temporal anaphora, etc. were introduced in the research from this period.

We will review these classic work in Section 2.1, with a focus on linguistic theories on temporal

anaphora. In the late 1990s and early 2000s, research on temporal information modeling started

to focus on data-driven approaches, where corpora of temporal entities (time expressions, events,

etc.) and temporal relations were annotated and further automatically predicted. We will review

these modern work in Section 2.2, with a focus on their annotation schemes and automatic systems.
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Chapter 2. Background on Temporal Information Modeling

2.1 Linguistic Theories on Temporal Anaphora

The notion of Reference Time is a long-developed concept. Reichenbach first introduced reference

time as part of his conception of tense in his influential work Elements of Symbolic Logic [Re-

ichenbach, 1947]. Reichenbach claims that there are nine tenses in English: simple past, present,

and future tense, past, present, and future perfect tense, and posterior past, present, and future

tense (e.g. would, was going to, is going to, will be going to, etc.). Semantically Reichenbach

claims that each tense specifies temporal relations among exactly three times particular to a tensed

clause/event: the event time (ET), the reference time (RT), and the speech time (ST). More intu-

itively, consider the example below:

(2): A. John went over to Mary’s house.

B. On the way, he had stopped by the flower shop for some roses.

Since the event “went” happened before the speech time, we have ET1 = RT1 < ST; and the event

“stopped” happened before “went”, taking “went” as its reference time, we have ET2 < RT2 < ST

and RT1 = RT2.

Building upon Reichenbach’s conception of reference time, several researchers studied the anaphoric

nature of tense in analogy to definite NP and pronoun anaphora. [McCawley, 1971] first explicitly

discussed that tense is anaphoric like a definite pronoun. They proposed that the event described in

one clause serves as the antecedent of the event described in the next, but that it may be related to

the event by being either at the same time or “shortly after” it. [Partee, 1973] also discussed the sim-

ilarities between tense and definite pronouns in detail, and further discussed anaphoric difference

between tense and pronouns in [Partee, 1984]. [Steedman, 1982], [Hinrichs, 1986], and others also

argued that Reichenbach’s conception of reference time (RT) is anaphoric. In [Hinrichs, 1986],
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2.1. Linguistic Theories on Temporal Anaphora

Hinrichs makes the simplifying assumption that in a sequence of simple past sentences, the tem-

poral order of events described cannot contradict the order they occur in the text, and focuses on

whether the second event follows the previous one or overlaps it. Hinrichs takes advantage of the

Aktionsart of a tensed clause, i.e. its Vendlerian classification as accomplishment, achievement,

activity, or state (including progressives), and proposes that given a sequence of two accomplish-

ments or achievements, the second event follows the first one, and given a sequence with at least

one activity or state, the two events will be interpreted as overlapping each other. Furthermore,

[Webber, 1987] discussed examples where tense behaves differently than pronouns anaphorically

and proposed that tense is better viewed by analogy with definite NPs rather than with pronouns.

[Webber, 1987] also proposed the theory that when processing a narrative text, a listener is build-

ing up a representation of the speaker’s view of the events and situations being described and of

their relationship to one another. This representation was denoted as an event/situation structure

(e/s structure). Webber viewed tense and relative temporal adverbials as specifying positions in an

evolving e/s structure, and the particular positions they can specify depend on the current context,

and the current context only makes a few positions accessible. However, there may be more than

one position in the e/s structure which tense can specify and which the new event or situation can

attach to. Moreover, [Webber, 1987] introduced Temporal Focus (TF) that grounds the context-

dependency of tense: At any point N in the discourse, there is always one node in the e/s structure

that provides a context for the interpretation of the reference time of the next clause/event, and this

node is the temporal focus of the discourse. To track the movement of temporal focus through the

progress of a discourse, [Webber, 1987] further proposed four heuristics to manage the temporal

focus of a discourse: one Focus Maintenance Heuristic to keep the current temporal focus, two

Embedded Discourse Heuristics to switch the current temporal focus to the reference time of an

embedded clause/event, and one Focus Resumption Heuristic to return to an earlier temporal focus.
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More intuitively, consider the example below:

(3): A. I was1 at Mary’s house yesterday.

B. We talked about her brother.

C. He spent 5 weeks in Alaska with two friends.

D. They made a successful assault on Denali.

E. Mary was5 very proud of him.

Event “talked” in sentence B kept the temporal focus of event “was1” in sentence A, while event

“spent” in sentence C switched to a new temporal focus, and event “was5” in sentence E returned

to the earlier temporal focus as “talked” and “was1”.

[Webber, 1987] also pointed out that not only tense can be interpreted anaphorically, temporal

adverbs should also behave in a similar manner and are anaphoric too. In a later work, [Webber,

1988] refined her theory on temporal focus and focus management heursitics and proposed the

notion Discourse Anaphors as expressions with the following two properties: (1) they specify

entities in an evolving model of the discourse that the listener is constructing; and (2) the particular

entity specified depends on another entity in that part of the evolving “discourse model” that the

listener is currently attending to. She discussed examples and how definite pronouns, NPs, and

tense share these two properties.

There was also a few work on implementing rule-based systems to distinguish temporal relations

between an event and its reference time. [Hitzeman et al., 1995] follows the research line which

assumes that by default an event will occur just after a preceding event, while a state will overlap

with a preceding event [Kamp, 1979, Hinrichs, 1981, Partee, 1984], and considers exceptions

when there is a rhetorical relationship between the two events such as causation, elaboration, or

enablement, and the temporal defaults can be overridden, resulting in many possible temporal
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relations between two consecutive events. [Hitzeman et al., 1995] proposed a set of constraints

that can be used to reduce ambiguities when identifying the temporal relation. These constraints

include tense of the two events, cue words such as “because”, time expressions, aspects of the two

events, and temporal centering.

2.2 Computational Approaches on Temporal Information Mod-

eling

2.2.1 Computational Temporal Modeling Specifications – TimeML

Pre-TimeML Research on Temporal Information Modeling

The Message Understanding Conferences (MUC) included limited annotation of time expressions

and temporal information about events. The named entity subtasks of MUC-6 and MUC-7 required

the identification of absolute (MUC6) and relative (MUC7) time expressions, however none of

these tasks places events on a timeline or relates events temporally to each other. Follow-up work

developed a thorough set of guidelines for annotating time expressions [Ferro et al., 2001]. [Setzer,

2002] developed an annotation guideline for time expressions, events, and temporal relations, and

annotated a small amount of data in a pilot study. These early guidelines were combined and

further developed into the TimeML specification.
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TimeML

TimeML [Pustejovsky et al., 2003a] is the most widely used specification markup language for

events, time expressions, and temporal relations in natural language text. TimeML has evolved

through a few versions. Now publicly available are version 1.1, 1.2, and 1.2.1. Some changes have

been made through these versions. For example, some attributes are added/removed/changed on

certain annotation objects, and some new relation types or values are added to certain attributes.

However, the basics of the TimeML framework stays the same, and in this section, we will give a

brief introduction on TimeML and discuss similarities and differences between TimeML and our

proposed Temporal Dependency Structure scheme.

In TimeML, four major data structures are modeled: EVENT, TIMEX3, SIGNAL, and LINK.

EVENT models situations that happen or occur. An Event can be punctual or last for a period

of time, and includes predicates describing states or circumstances in which something obtains or

holds true. Every EVENT is annotated with its grammatical tense (past, present, future, none) and

aspect (progressive, perfective, progressive_perfective, none). One event type out of a set of eight

pre-defined types (Occurrence, State, Reporting, Intentional-State, Intentional-Action, Aspectual,

Perception, Modal) is also annotated. The TIMEX3 tagset is used to annotate explicit temporal ex-

pressions. It is an extension on the TIMEX [Setzer, 2002] and TIMEX2 [Ferro et al., 2001] tagset.

Three types of temporal expressions are annotated: Date, Time, and Duration. TIMEX3 also dis-

tinguishes temporal expressions based on the level of specification they represent. Some Fully

Specified Temporal Expressions are: June 11, 1989; Summer, 2002; etc. And some Underspeci-

fied Temporal Expressions are: Monday, next month, last year, two days ago, etc. Examples for

Durations are: three months, two years, etc. The function of temporal expressions in the document

(such as creation_time, publication_time, etc.) is also annotated on each TIMEX3. Similar to our
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Temporal Dependency Structure model, a TIMEX3 has an attribute “anchor time” and an attribute

“anchor event” that can be annotated by annotators, and a temporal relation can be annotated be-

tween the anchor time/event and this TIMEX3. Utilizing Temporal Functions, TIMEX3 allows

delayed computation of the actual value of the temporal expressions in a document. TimeML also

annotates SIGNALs. A SIGNAL is usually a section of text (typically function words) that indi-

cate how temporal objects are related to each other. For example, temporal prepositions (e.g. on,

during), temporal connectives (e.g. when), subordinators (e.g. if), polarity indicators (e.g. not, no,

none), temporal quantifications (e.g. twice, three times) are annotated as SIGNALs.

The LINK tagset in TimeML is used to annotated various relations between the temporal elements

in a document, and the temporal orderings between the events in a document. Three types of

LINKs are annotated: Temporal Link (TLINK), Aspectual Link (ALINK), and Subordination Link

(SLINK). Temporal Links are annotated between pairs of events or pairs of one event and one time.

Following [Allen, 1984], TimeML annotates a fine-grained set of temporal relations: before, after,

includes, is_included, holds, simultaneous, immediate_after, immediate_before, identity, begins,

ends, begun_by, and ended_by. Subordination Links are annotated on pairs of events. The fol-

lowing types of subordination relations are modeled: Modal, Factive, Counterfactive, Evidential,

Negative Evidential, and Negative. Aspectual Links are annotated between an aspectual event and

its argument event. The aspectual relations modeled in this scheme are: Initiation, Culmination,

Termination, and Continuation.

TimeML is the first and most comprehensive temporal information markup language that (1) sys-

tematically identifies events and anchors them in time, (a.k.a. time-stamping of events); (2) orders

events in text with respect to one another, both intrasentential and intersentential; (3) reasons with

under-specified temporal expressions, and allows for delayed interpretations of them; and (4) rea-

sons about the persistence of events, (i.e. how long an event or the outcome of an event lasts).
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2.2.2 Pair-wise Temporal Relation Modeling

2.2.2.1 Pair-wise Temporal Relation Schemes and Corpora

Timebank, AQUAINT_TimeML

Most pair-wise temporal relation annotation schemes are rooted from the TimeML specifications.

Many corpora are annotated based on TimeML and automatic systems are developed and trained

on these datasets. The TimeBank 1.1 corpus [Pustejovsky et al., 2003b] is an illustration and proof

of concept of the TimeML specifications. It was created in the early days of TimeML and follows

the 1.1 version of the specifications. The text sources for Timebank 1.1 is from a wide variety of

media sources in the news domain. It contains texts from the Document Understanding Confer-

ence (DUC) corpus, Automatic Content Extraction (ACE) program texts, and the Penn Treebank

texts (i.e. Wall Street Journal newswire texts). It was annotated partly by experts and partly by

non-experts who were trained first and their annotations were reviewed by experts afterwards. The

annotation process consists of a preprocessing stage followed by an actual human annotation stage.

Both stages utilize many automation tools. The preprocessing stage does automatic temporal ex-

pression recognition, automatic event recognition, and automatic labeling of event tense, aspects,

etc. During the human annotation stage, the results from the preprocessing stage are manually

checked and full annotations are added. Automatic temporal closure and graphic visualization

are performed to assist human annotation. Timebank 1.1 consists of 300 news documents in to-

tal (68,555 words). The basic corpus statistics for Timebank 1.1 are presented in Table 2.1 and

Table 2.2.

The Timebank 1.2 Corpus1 follows the newer TimeML specifications version 1.2.1. The annotation

1http://www.timeml.org/timebank/documentation-1.2.html
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Tag Count
Event 7,571
Timex 1,423
Signal 2,212
Total 11,206

Table 2.1: Number of events, timex, and signals in Timebank 1.1.

Link Type Count %
Tlink 5,132 62.2
Slink 2,857 34.7
Alink 253 3.1
Total 8,242 100

Table 2.2: Distribution of TLINK, SLINK, and ALINK in Timebank 1.1.

was performed on news articles from Automatic Content Extraction (ACE) program texts and the

Penn Treebank2 Wall Street Journal texts. The annotation process for Timebank 1.2 is similar

to Timebank 1.1, except that all annotations are performed by expert annotators for this version.

Timebank 1.2 contains 183 news articles in total (61,000 words). The basic corpus statistics for

Timebank 1.2 are illustrated in Table 2.3 and Table 2.4.

Tag Count
Event 7,935
Timex 1,414
Signal 688
Total 10,038

Table 2.3: Number of events, timex, and signals in Timebank 1.2.

Inter-Annotator Agreements are computed on two expert annotations on a subset of ten documents

in Timebank 1.2. Exact match F-score is used as the IAA metric. Table 2.5 shows the IAA scores

for each annotation object.

The AQUAINT_TimeML corpus is another corpus annotated with TimeML scheme 1.2.1. It con-

sists of news reports from four topics in the novelty track of the Text REtrival Conference (TREC)
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Link Type Count %
Tlink 6,418 66.7
Slink 2,932 30.5
Alink 265 2.8
Total 9,615 100

Table 2.4: Distribution of TLINK, SLINK, and ALINK in Timebank 1.2.

Annotation Type F
Timex3 .83
Event .78
Signal .77
Tlink .55
Slink .85
Alink .81

Table 2.5: IAAs of Timebank 1.2 annotations.

2003 and 20042. The four topics are: Kenya Tanzania Embassy bombings; Elian Gonzalez Cuba;

NATO, Poland, Czech Republic, Hungary; and, Slepian abortion murder. These particular sources

were chosen because they offered text rich with temporal information both in the form of temporal

expressions and events that could be anchored or ordered in time. AQUAINT_TimeML contains

73 news reports in total (35,000 words). Basic statistics of this corpus are shown in Table 2.6 and

Table 2.7. However, this corpus was annotated with single expert annotations only, and no IAAs

are reported.

Tag Count
Event 4,432
Timex 605
Signal 268
Total 5,305

Makeinstance 4,432

Table 2.6: Number of events, timex, and signals in AQUAINT_TimeML.

2The novelty track of TREC 2003 and 2004 use documents from the AQUAINT collection: https://
catalog.ldc.upenn.edu/LDC2002T31 (Advanced Question-Answering for Intelligence), collected by re-
searchers at UPenn.
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Link Type Count %
Tlink 5,365 87.8
Slink 675 11.0
Alink 71 1.2
Total 6,111 100

Table 2.7: Distribution of TLINK, SLINK, and ALINK in AQUAINT_TimeML.

TempEval Tasks

The TempEval tasks are a series of SemEval shared tasks aimed at automatic temporal information

modeling, including time expression and event recognition, and temporal relation identification.

Through these tasks, a number of automatic temporal relation systems were developed. We will

give a brief description of the tasks in this section, and overview their participating systems and

other automatic temporal systems in the following sections.

Through the course of a decade (2007∼2017), six TempEval tasks were held in total. The first three

of them focus on the domain of news reports [Verhagen et al., 2007a, Verhagen et al., 2010a, Verha-

gen et al., 2010a], and the second half focus on the clinical domain [Bethard et al., 2015a, Bethard

et al., 2016a, Bethard et al., 2017]. The first TempEval task [Verhagen et al., 2007a] was held in

2007. This was the first time temporal information processing was evaluated in a shared task setup.

To implement a straightforward evaluation, they broke down the full task of temporal information

processing into three smaller subtasks that allow pairwise evaluation of temporal relations. The

three subtasks are: (A) for each event, classify the temporal relation between it and all timex in the

sentence; (B) for each event, classify the temporal relation between it and the Document Creation

Time (DCT); and (C) for each pair of main events from two consecutive sentences, classify the

temporal relation between them. The annotation scheme used in this task is a simplified version

of TimeML. Namely, a subset of TimeML tag set (TIMEX3, EVENT, and TLINK) was used, and

a simplified temporal relation set was implemented (only six temporal relations are distinguished
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in TempEval-1: Before, After, Overlap, Before-or-Overlap, Overlap-or-After, Vague). Modified

Timebank1.2 (using the simplified TimeML scheme) served as the training data, and newly an-

notated news data was used as the test set. TempEval-1 initiated a years-long effort in temporal

information processing research and contributed to very straightforward and manageable temporal

evaluations. Some limitations are that this task focused on temporal relation identification and

didn’t include time expression and event identification as part of the evaluation. Moreover, only

a subset of events (events whose stem occurs 20 times or more in Timebank) are included in this

task.

Some of the limitations of TempEval-1 were addressed in TempEval-2 [Verhagen et al., 2010a].

Although the same simplified TimeML scheme was applied for data annotation for TempEval-2,

this second TempEval task covered subtasks on time expression and event identification, including

time expression extraction, classification, and normalization, and event extraction and classifica-

tion. It also extended the number of evaluations on temporal relation identification, including

all three subtasks from TempEval-1, and the temporal relation between two events in a sentence

where one syntactically dominates the other. Another major contribution of TempEval-2 is that it

extended the task from English-only to six different languages: English, Spanish, French, Italian,

Chinese, and Korean. Although the final participating systems only focused on two languages (En-

glish and Spanish), the multilingual temporal annotations collected in this task supported a number

of future research efforts.

Both TempEval-1 and TempEval-2 utilized gold Timebank1.2 as their main training data (and a

small number of newly annotated news articles as the test data). TempEval-3 [UzZaman et al.,

2012] was the first time the gold AQUAINT temporal corpus, and a large automatically system-

annotated temporal corpus were added as parts of the training data. The inclusion of these new

corpora resulted in a training dataset that is ten times bigger, yet only a small portion of it was gold
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standard. The system-annotated “silver” temporal corpus was generated by applying then state-of-

the-art temporal systems [Llorens et al., 2010, Llorens et al., 2013, UzZaman and Allen, 2010] on

Gigaword [Parker et al., 2011]. Participating systems’ results show that this “silver” training data

doesn’t help timex extraction or temporal relation classification, but is useful for event extraction.

TempEval-3 also provided a “platinum” test dataset, which has higher Inter-Annotator Agreement

(IAA) scores than previous test sets and existing TimeML corpora. Another major difference in

TempEval-3 was that the full set of TimeML temporal relations was used (instead of the simplified

six relations). And end-to-end temporal relation identification was for the first time evaluated,

where participants were given raw texts and need to perform timex, event identification together

with temporal relation identification. TempEval-3 also included both English and Spanish, using

the revised and finalized Spanish Timebank1.0 as training and test data for Spanish.

While all data annotated and used in the first three TempEval tasks are within the domain of news

reports, the following TempEval tasks focused on data in the clinical domain. Clinical TempEval

2015 [Bethard et al., 2015a] utilized a modified/extended version of TimeML developed by the

THYME project [Styler IV et al., 2014a, Styler IV et al., 2014b]. The extensions were specialized

for the clinical domain, such as new timex types for words indicating particular clinical temporal

locations. For example, in the following clinical notes, “postoperative” is a TIMEX3 of type

PrePostExp, indicating the temporal location after the “operation” event.

(4): The patient did not have any postoperative bleeding.

New event attributes were also added to represent special features of clinical events. For example,

for event “slight nausea”, the DEGREE attribute of this event should be LITTLE. One limitation

of this modified TimeML scheme is that it only models two types of temporal relations: the “con-

tain” TLINKs, and the temporal relations between events and the DCT. That is, temporal relations
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between events such as “before”, “after”, and “overlap” are not modeled under this scheme. The

annotation of this clinical temporal corpus was carried out through the THYME project [Styler IV

et al., 2014a, Styler IV et al., 2014b]. Their data source was clinical notes and pathology reports

from colon cancer patients at Mayo Clinic. The corpus contains 293 documents for training, and

147 documents for test. Nine subtasks were evaluated in total, including timex extraction and

classification, event extraction and labeling, and temporal relation identification between events

and the DCT, and between events and/or timex with the “contain” TLINKs. They also performed

evaluations on both end-to-end setup, and temporal relation only setup with gold timex and event

available.

Based on the first clinical TempEval, Clinical TempEval 2016 [Bethard et al., 2016a] added more

data (151 documents) for participants, included more participating systems, and reported major

performance improvements both on timex/event recognition and temporal relation identification,

although the latter remained a challenging problem.

Clinical TempEval 2017 aimed at answering the question: how well can temporal systems trained

on one medical condition perform on a different medical condition. In other words, this TempEval

task inquires how domain adaptation techniques can be applied to analyze temporal information

on a new medical condition that doesn’t have much annotated training data. Original data on colon

cancer patients was provided as the main domain, and new clinical records from brain cancer

patients were added as the new domain. Evaluation setups include (1) both training and testing on

the main domain, (2) training on the main domain and testing on the new domain, and (3) training

on both domains and testing on the new domain. Since temporal information modeling is already

a quite complicated task, only a few domain adaptation techniques were applied in participating

systems, and their results show that developing temporal systems that work across different medical

conditions was still a very challenging task.
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Table 2.8 summarizes the basic information for the six TempEval tasks.

Year Domain Language Data Tasks

2007 news English
modified Timebank1.2,
new gold data for test 3 tasks: temp rel only

2010 news 6 languages
English: modified Timebank1.2,
Spanish: Spanish Timebank 6 tasks: timex, event, & temp rel

2013 news
English &
Spanish

English: modified Timebank1.2,
AQUAINT, new auto silver data,
new platinum data for test;
Spanish: Spanish Timebank1.0

5 tasks: timex, event, temp rel,
& end-to-end

2015 clinical English
THYME corpus (train + dev)
(clinical records of colon cancer
patients from Mayo Clinic)

9 tasks: timex, event, temp rel,
& end-to-end

2016 clinical English
THYME corpus (train + dev + test)
(colon cancer records) (same 9 tasks as above)

2017 clinical English
THYME corpus
(colon + brain cancer records) (same 9 tasks as above)

Table 2.8: Six TempEval tasks summaries.

2.2.2.2 Comparisons between Pair-wise Models and TDT

As mentioned before, Timebank annotation guidelines specify temporal relation annotations be-

tween events and times in a pair-wise fashion. Pairs of events and time expressions in a document

are considered and the ones that annotators regard as having temporal relations are annotated with a

TLINK. Therefore, theoretically a maximum of
(
n
2

)
possible temporal relations could be annotated

for a document with n events and temporal expressions, however, practically annotators would
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pick much less pairs. In contrast, we propose to model temporal relations in a document in a more

structured way. For each document, we build a dependency tree structure that represents events and

times as nodes and temporal relations among them as edges. This is the main difference between

pair-wise models and our proposed temporal relation representation model. Our structured model

has the advantage of lower annotation complexity. The TIMEX3 attributes “anchor time/event” in

TimeML is very similar to our parent-child structures in a temporal dependency tree. However,

TimeML only models these anchors for TIMEX3s, not EVENTs, and their annotation is optional.

Another difference between TimeML and our scheme is our different treatment to temporal ex-

pressions. TimeML annotates explicit temporal expressions, including expressions that are not

actually temporal locations (i.e. not anchorable on a timeline). For example, in the following sen-

tence A, “three months” is an explicit temporal expression and should be annotated as a Duration

in TimeML. However, this expression is not describing a temporal location on a timeline. In our

design, we focus more on the time-stamping of events and/or times. However, non-temporal loca-

tion time expressions are not helpful for anchoring events and/or times (e.g. the example sentence

A below). Some examples of temporal location time expressions are as follows. The temporal

location of the time expression “3 days after New Years Eve” in sentence B is January 3rd on the

year of the Document Creation Time. And the temporal location of the second time expression “10

minutes later” in sentence C is 8:10am on the date of the DCT.

(5): A. This procedure usually takes three months.

B. He left 3 days after New Years Eve.

C. He arrived at 8:00am. 10 minutes later, the class began.

Moreover, among temporal location time expressions, we propose a more detailed categorization

of temporal expressions. Instead of recognizing fully specified temporal expressions from un-
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derspecified ones, we distinguish if a temporal expression is “absolute” or “relative”, and if it is

“concrete” or “vague” (see Chapter 3 Section 3.2 for detailed explanations and examples). These

two distinctions not only make temporal expressions form consistent tree structures in our pro-

posed temporal dependency trees, and also make downstream temporal expression normalization

easier.

Additionally, to make our first stage annotation experiments efficient, we also simplified over

TimeML on certain aspects. For example, we don’t annotate SLINK, ALINK, and SIGNALS;

we apply less annotations on temporal expressions and events (instead of annotating tense, aspect,

and event type on every event, we only annotate one event type from a specially designed set that

covers these three aspects); we use a simplified temporal relation set and don’t explicitly represent

magnitudes; and we are not explicitly modeling event coreference yet.

2.2.2.3 Automatic Pair-wise Temporal Relation Identification Systems

Rule-based and Statistical Machine Learning Systems

The TempEval shared tasks have inspired a large number of research efforts on automatic com-

putational modeling for temporal relation and information. Some of the early temporal systems

focused on rule-based approaches. [Hagège and Tannier, 2007] utilized a rule-based deep syntac-

tic analyzer for temporal expression identification, and a rule-based linguistic analyzer for temporal

relation identification. [Strötgen and Gertz, 2010] built the system HeidelTime, one of the state-of-

the-art systems for time expression extraction and normalization. It is a rule-based system mainly

using regular expression patterns for the extraction of time expressions as well as knowledge re-

sources and linguistic clues for their normalization. The later improved version of HeidelTime was

extended to 13 languages with hand-crafted resources, and even more languages with automati-
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cally created resources [Strötgen et al., 2013, Strötgen et al., 2014, Li et al., 2014, Manfredi et al.,

2014, Strötgen and Gertz, 2015]. [Saquete, 2010] deployed a rule-based system using knowledge

databases for time expression identification. [Chang and Manning, 2013] built a rule-based time

expression tagger based on regular expression patterns over tokens. [Zavarella and Tanev, 2013]

utilized finite-state rule cascades to recognize and classify time expressions and events. [Tissot

et al., 2015] built its in-house rule-based systems for clinical temporal modeling.

Many systems integrated rule-based components together with statistical models. [Min et al.,

2007], on one hand, took advantage of a syntactic pattern matching tool and deployed hand-crafted

finite state rules for temporal expression labeling and normalization, and utilized heuristics, a lexi-

con, and lexical features such as lemmas, parts of speech, and WordNet senses for event detection.

On the other hand, they also engineered various syntactic and semantic features for its statistical

models for temporal relation identification. [Puşcaşu, 2007] implemented a rule-based temporal

reasoning mechanism for intra-sentence temporal relations. It leveraged the process of sentence-

level syntactic tree generation to perform bottom-up propagation of temporal relations between

syntactic constituents. Heuristics were used for temporal conflict resolution. Inter-sentence tem-

poral relation identification, however, were identified with both heuristics and statistical models.

[Vicente-Díez et al., 2010] used rules plus simple statistics to tackle time expression extraction,

classification, and normalization in Spanish text. [Grover et al., 2010] utilized a rule-based syn-

tactic analyzer, and experimented with both rule-based and logistic regression models for time and

event identification. [Kolya et al., 2010] built rule-based systems for time and event identification

and employed CRF models for temporal relation identification. [Kolomiyets and Moens, 2010]

focused on time expression and used a logistic regression model for extraction and a rule-based

system for normalization. To extend positive annotations in the corpus, they also exploited seman-

tically similar words automatically obtained from a large un-annotated textual corpus. [Derczynski
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and Gaizauskas, 2010] employed a rule-based system for time expression identification, and a lo-

gistic regression classifier for temporal relation identification, using features such as associated

temporal signal words. [Chambers, 2013] used both logistic regression classifiers and rule-based

systems for the whole pipeline of temporal information modeling. [Filannino et al., 2013] uti-

lized CRF models for time expression extraction and an off-the-shelf rule-based system for their

normalization. [Cohan et al., 2016] built CRF and logistic regression models using lexical, mor-

phological, syntactic, dependency, and clinical domain specific features, combined with pattern

matching rules. [Sarath et al., 2016] experimented with an ensemble of rule-based and statistical

model using lexical, syntactic, and morphological features. [Grouin and Moriceau, 2016] incor-

porated the rule-based system Heidel-Time from [Strötgen et al., 2013] into its CRF models with

lexical, morphological, and word cluster features. [Barros et al., 2016] utilized both SVM models

with lexical and morphological features and rule-based extensions to Stanford CoreNLP [Manning

et al., 2014]. [MacAvaney et al., 2017] built ensembles of CRFs, rules, and decision trees using

character n-grams, lexical, word clusters, word embeddings, parts of speech, syntactic, dependency

tree paths, semantic role, and UMLS concept types as features. [Lamurias et al., 2017] combined

CRFs and rules with character n-grams, words, parts of speech, and UMLS concept types features.

A number of pure statistical temporal systems have been developed as well, with the most com-

monly used models being SVMs, CRFs, Decision Trees, Structured Perceptrons, and Logistic

Regression models. [Bethard and Martin, 2007] trained standard SVM models for temporal rela-

tion identification using syntactic features and gold Timebank label features. [Cheng et al., 2007]

utilized features from dependency parsing trees and built a sequence labeling model for temporal

relation identification. [Hepple et al., 2007] took advantage of the off-the-shelf machine learning

suite WEKA and used a classification model with lexical and Timebank label features. [Llorens

et al., 2010] implemented the system TIPSem, one of the state-of-the-art systems in temporal
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modeling on both English and Spanish. TIPSem utilized CRF models with semantic role features.

A comparison experiment between TIPSem with and without semantic features showed that se-

mantic information is very important for time expression identification. TIPSem was also used

to generate silver training data for a later clinical TempEval. [UzZaman and Allen, 2010] em-

ployed systems that use a combination of deep semantic parsing, Markov Logic Networks, and

CRF models to tackle the entire temporal pipeline of time, event, and temporal relation identifi-

cation. [Ha et al., 2010] built a statistical system using Markov Logic in combination with rich

lexical relation features as well as lexical and syntactic features. [Jung and Stent, 2013] aimed

at time expression and event identification with logistic regression classifiers, and experimented

with various sets of features, including basic lexical features, rich syntactic features, and rich se-

mantic features. [Bethard, 2013] built a pipeline of statistical models, each with a small set of

simple morpho-syntactic features, for the complete pipeline of time, event, and temporal relation

identification. [Kolya et al., 2013] employed CRF models for each part of the temporal process-

ing pipeline, using various features based on different lexical, syntactic and semantic information,

extracted with Stanford CoreNLP and WordNet-based tools. [Kolomiyets and Moens, 2013] used

logistic regression models for time expression and event identification, and deployed a shift-reduce

temporal dependency parser [Kolomiyets et al., 2012] in a pair-wise temporal relation identifica-

tion scenario. This is a temporal dependency parser that is comparable to our proposed temporal

dependency representation, and is described in greater detail in Section 2.2.3.2. [Laokulrat et al.,

2013] built logistic regression classifiers for temporal relation classification and exploited features

extracted from a deep syntactic parser, including paths between event words in phrase structure

trees and their path lengths, and paths between event words in predicate argument structures and

their subgraphs. [Velupillai et al., 2015] participated in the Clinical TempEvals and their supervised

classifiers used features generated by the Apache clinical Text Analysis and Knowledge Extraction
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System (cTAKES3). [Tissot et al., 2015] built supervised classifiers using SVM models. [Chikka,

2016] experimented with CRF and SVM models. [Hansart et al., 2016] built CRF models with lex-

ical features. [Lin et al., 2015] and [Leeuwenberg and Moens, 2016] also utilized the cTAKES with

additional feature engineering. [Tourille et al., 2016] experimented with SVM models either using

lexical, syntactic, and structural features or using word embeddings with no hand-crafted features.

[Abdulsalam et al., 2016] built CRFs and SVMs using lexical, morphological, syntactic, character

pattern, character n-gram, and gazetteer features. [Lee et al., 2016] implemented SVMs using lex-

ical, morphological, syntactic, discourse, and word representation features. [Caselli and Morante,

2016] built CRFs with morpho-syntactic, lexical, UMLS4, and DBpedia5 features. [Leeuwenberg

and Moens, 2017] combined SVMs with structured perceptrons using word and part of speech fea-

tures, as well as preliminary domain adaptation techniques for data in the clinical domain. [Huang

et al., 2017] built and ensemble of SVMs and CRFs with word n-grams, parts of speech, named

entities, dependency trees, and UMLS concept types as features.

Neural Systems

Later temporal systems started to utilize neural models more often. [Fries, 2016] implemented

recurrent neural networks with word embeddings for end-to-end time expression, event, and tem-

poral relation identification. [Chikka, 2016] and [Li and Huang, 2016] also used neural models

for both end-to-end and temporal relation identification only on the clinical domain. [Sarath et al.,

2017] built and ensemble of CRFs, rules, neural networks, and decision tree using character n-

grams, word n-grams, word embeddings, verb tense, section headers, and sentence embeddings

as features. [Tourille et al., 2017] combined recurrent neural networks with character and word

3https://ctakes.apache.org
4Unified Medical Language System
5https://wiki.dbpedia.org/
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embeddings and SVMs with lexical and part of speech features, as well as preliminary domain

adaptation techniques for the clinical domain. [Long et al., 2017] built an ensemble of rules,

SVMs, and recurrent and convolutional neural networks with words, word embeddings, and verb

tense as features for temporal information processing in the clinical domain.

A representative work on neural systems for pair-wise temporal relation extraction is described in

[Dligach et al., 2017], which empirically shows that CNNs and LSTMs can be successfully used

for temporal relation extraction (establishing state-of-the-art results), without manually engineered

features (with only word tokens and/or pos tags). [Dligach et al., 2017] claims that the vast ma-

jority of systems in temporal information extraction challenges, such as the i2b2 [Sun et al., 2013]

and Clinical TempEval tasks [Bethard et al., 2015b, Bethard et al., 2016b], used classifiers with a

large number of manually engineered features, which experience a significant accuracy drop when

applied to out-of-domain data [Wu et al., 2014, McClosky et al., 2010, Daumé III, 2009, Blitzer

et al., 2006]. Therefore, they proposed two neural architectures for temporal relation extraction:

a convolutional neural network CNN [LeCun et al., 1998] and a long short term memory neu-

ral network LSTM [Hochreiter and Schmidhuber, 1997], which require minimum manual feature

engineering. They also proposed a new simple method to mark the positions of the relation argu-

ments: XML tags are used to mark the positions (e.g. <e1> diagnosed </e1>, <t> may of 2010

</t>). This representation of relation argument positions can be used directly by neural models.

More specifically, with a concatenation of n words and/or POS embeddings of dimension d as the

input representation, they built separate models for event-time relations and event-event relations.

Standard split Clinical TempEval 2016 corpus is used as their experimental data, focusing only on

the “contains” relation, and the THYME system [Lin et al., 2015], an SVM classifier with hand-

engineered linguistic features which achieved the highest performance on Clinical TempEval 2015

test set [Lin et al., 2016], is used as the baseline. They re-trained two versions of this baseline
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system on their own experimental data: one with the full set of features, and one with only word

tokens as features. Different sets of experiments are conducted to compare their systems against

the baseline systems, on all events or on medical events only.

They discovered that CNN with only word tokens as features is the best performing model among

their neural models; for event-time “contains” relations, neural models in general outperform the

traditional feature-based baseline model, but for event-event “contains” relations, none of their

neural models outperform the baseline; when only considering medical events, their best neural

model (CNN with word tokens) outperforms baseline on both event-time relations and event-event

relations; and their proposed new simple encoding for relation argument positions outperform the

previous encoding method (position embeddings). They also discussed that CNN with only POS

tags as features outperforming the feature-based baseline suggests that POS tags alone is enough

for this task when coupled with neural models; CNN models outperform LSTM models on this

task; and the reasons that their neural models don’t perform as well as the baselines might be:

event-event relations are much more difficult than event-time relation, and the class imbalance

issues. The relation:none-relation ratio for event-event relations is 1:15, and the baseline system is

tuned with class specific weights that help it deal with class imbalance.

2.2.3 Temporal Structure Modeling

2.2.3.1 Temporal Structure Schemes and Corpora

Although structured interpretation of temporal relations in discourse is a long-developed concept

(as introduced in § 2.1), only a few works have been done on the design of annotation schemes of

temporal structures, the actual annotation on data, and the construction of scalable corpora. Here
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we give a brief introduction to related work in this area.

Temporal Dependency Structure for Narrative Events

[Bethard et al., 2012] introduced a new temporal relation annotation scheme different from all

pair-wise schemes – annotating events in a narrative story as a temporal dependency tree structure.

In their scheme, annotators were instructed to link each event in the story to a single nearby event,

similar to what has been observed in reading comprehension studies [Johnson-Laird, 1980, Brewer

and Lichtenstein, 1982]. When there were several reasonable nearby events to choose from, the

annotators were instructed to choose the temporal relation that was easiest to infer from the text

(e.g. preferring relations with explicit cue words like before).

They experimented with a few different scheme designs. On event annotation, they did three

different annotation schemes: (1) TimeML event identification rules; (2) TimeML events without

events in direct speech and negated, modal, or hypothetical events; and (3) all events in (2) without

light verbs and aspectual verbs. On temporal relation annotation, they did two different annotation

schemes on two relation label sets: (1) Before, After, Overlap; and (2) Before, After, Includes,

IsIncluded, Identity, Overlap. 20 stories are annotated with these different annotation schemes.

And using Krippendorff’s nominal Alpha [Krippendorff, 2004, Hayes and Krippendorff, 2007]

as the inter-annotation agreement (IAA) measure, their experimental annotations show that event

recognition scheme (3) obtains the highest IAA, and relation label set (1) gets higher IAA than

relation set (2). They then performed annotation on 100 fables using the best event scheme (3) and

the more detailed relation label set (2). And 0.856, 0.822, and 0.700 IAAs are reported respectively

for event recognition, event links, and event ordering relation labels.

[Bethard et al., 2012] shows that temporal relations between events in narrative stories can be
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accurately annotated as a form of temporal dependency structure, where all events in the plot are

connected by a single spanning tree. Additionally, pointing out that the problem of prior work on

temporal relation annotation is that they generate disconnected timelines, [Bethard et al., 2012]

claims that their annotation scheme guarantees a connected dependency tree, therefore connected

timelines.

However, [Bethard et al., 2012] only did annotations on narrative stories, and only worked with

events, while we propose a more complete scheme on different types of text (both narrative stories

and reporting news), and cover both events and time expressions in the temporal dependency tree

structure. [Bethard et al., 2012] requires annotators to link each event in a story to a single nearby

event with which the temporal relation is the easiest to infer, using the annotators’ own judgment,

while we require annotators to find the reference time for each event and time expression, using

the well-developed linguistic concept of temporal anaphora.

Multi-axis Annotation Scheme for Event Temporal Relations

Another structured representation of temporal relations among events is presented in [Ning et al.,

2018b]. They proposed a multi-axis annotation scheme to capture temporal structures among

events. Under the observation that not all pairs of events should be annotated a temporal rela-

tion, [Ning et al., 2018b] proposed to model events on different axes, and only events on the same

axis should be considered temporally. More specifically, they proposed to have eventive events

on the main axis, INTENTION and OPINION events on an orthogonal axis, HYPOTHESIS and

GENERIC events on a parallel axis, NEGATION events not on any axis, and STATIC and RE-

CURRENT events on the OTHER axis. Their annotation process is as follows: (1) classify if

an event is anchorable to a given axis (i.e. an event type classification step); (2) annotate every
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pair of events on a given axis; (3) repeat on every axis. This model allows annotators to focus on

only comparable pairs, avoiding situations where annotators are forced to relate event pairs that

have none or very vague temporal relations. “Orthogonal Axes” is a novel design in this scheme.

Intersection events of two orthogonal axes can be compared to events on both axes, and can some-

times bridge events, especially for INTENTIONS and OPINION events. They also observed that

in previous annotation work, event end-points are a major source of annotation disagreements, and

proposed annotation on start-points only.

A pilot expert annotation experiment shows a great improvement in IAA (.6 to .8 Cohen’s Kappa)

when using their annotation scheme. They used crowdsourcing to annotate the entire Timebank-

Dense with their annotation scheme, and showed good ACC (accuracy compared to expert anno-

tation) and WAWA (Worker Agreement with Aggregate) scores. A comparison on the 1.8k event

pairs that their annotation and the original Timebank-Dense annotation have in common shows

that: the two annotations have a high agreement level, and due to the interval-splitting technique,

their annotation has more specific temporal relation labels for the “vague” relations in Timebank-

Dense.

They also trained two baseline temporal relation recognition systems (an averaged perceptron sys-

tem). One on their annotations and the other on the original Timebank-Dense annotations. They

reported better results on their annotations over the original annotations.

[Ning et al., 2018b] focuses only on temporal relations among events, excluding time expressions

which play an important role in inferring temporal relations. [Zhang and Xue, 2018b] includes

both time expressions and events in their temporal structure. [Ning et al., 2018b] models tempo-

ral relations between events on one axis pair-wisely, not capturing the structural relations among

them. Additionally, “vague” temporal relations (which are usually annotated between events on
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different axes) are left un-attended in their scheme. They define the process of “axis projection” to

be projecting events across different axes, and through this projection, figuring out the temporal re-

lations between them. However, due to difficulties in this projection, they focus only on same-axis

relations in the current stage. This leaves temporal relations across different axes un-interpreted.

[Zhang and Xue, 2018b] models the temporal relations in a text in one simple structure using which

temporal relations between every pair of time expressions and/or events can be inferred.

Temporal Discourse Models (TDM) for Narrative Events

[Mani and Pustejovsky, 2004] proposed the Temporal Discourse Models (TDM) – tree-structured

representations for the temporal structures of narratives. Nodes in the tree represents abstract

events (interpreted as pairs of time points), and the temporal relations represented in the tree are

“temporal inclusion” relations and temporal ordering relations are represetned as a separated set of

constraints. More specifically, a TDM is a pair {T,C}, where:

• T is a rooted, unordered, directed tree with nodesN = {E∪A}, where a pair of parent-child
represents a “temporal inclusion” relation.

◦ E is the set of events mentioned in the text.

◦ A is a set of abstract events.

• C is a set of temporal ordering constraints, using the ordering relations: < and ⊆min.

◦ < represents temporal precedence.

◦ ⊆min represents minimal inclusion (for States only, see below for further explanation).

Consider the following example:
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(6): A. John went into the florist shop.

B. He had promised Mary some flowers.

C. She said she wouldn’t forgive him if he forgot.

D. So he picked out three red roses.

The TDM tree for this discourse is:

E0

EDE1

ECEB

EA

And the TDM constraints for this discourse are: C : {EB < EC , EC < EA, EA < ED}, where E0

and E1 are abstract events, and EA ∼ ED are events corresponding to sentence A ∼ D.

[Mani and Pustejovsky, 2004] focuses only on temporal relations among events in narratives, while

our proposed representation includes both time expressions and events in their temporal structure,

and supports both narrative stories and news reports. TDMs represents “temporal inclusion” re-

lations in its tree structure, and temporal precedence relations in a separated set of constraints.

This approach models temporal relations in two different representations, which could potentially

add difficulties for automatic systems, and doesn’t explicitly model the “overlap” temporal rela-

tion. We propose to include all of the basic temporal relations (“before”, “after”, “overlap”, and

“includes”) together in one consistent tree structure.

[Mani and Pustejovsky, 2004] proposed a special treatment for stative events (i.e. States), whose

temporal relation with other States or Events are often not very explicitly stated. For example, in

the following discourse, it can be inferred with certainty that at the same time that EA happened,

EB was true. However, it is possible that the State EB extends before and/or after EA. TDM
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chooses not to capture such information, and only represents that EB is “minimally” (i.e. “at

least”) included in EA. The TDM tree and constraints for this example are shown below.

(7): A. John walked home.

B. He was feeling great.

TDM tree:

E0

EA

EB

TDM Constraints: C : {EB ⊆min EA}.

This approach of handling stative events is similar to our temporal structure design. However, we

utilize the “overlap” relation and tend not to model a temporal inclusion relation if it is unclear

in the context, and all information is represented on the tree structure. For the above example,

our Temporal Dependency Tree (TDT) structure would be as follows (see Chapter 3 for more

introduction on TDTs).

ROOT

PAST

EA

EB

overlap
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Narrative Containers

Narrative Containers is another structured representation for temporal information in text. [Puste-

jovsky and Stubbs, 2011] first proposed the notions of narrative containers and narrative times.

In short, the narrative container of a document is an assumed time window before DCT of the

document. And the size of the window is dependent on the genre of the article. For example, a

daily news papers’ narrative container is one day leading up to the release time of the news pa-

per; newswire articles’ narrative containers are maybe about 2∼10 hours; and monthly journals’

narrative containers are roughly one month, etc. The narrative time of a document is the current

temporal anchor for events in the text, set by a time expression or an event; and it can change

as the reader moves through the narrative. For example, the first snippet below is from an article

published on the Wall Street Journal. Since Wall Street Journal is a daily newspaper, its assumed

narrative container size is one day. Therefore, the event “adopted(e1)” is highly likely to have hap-

pened on 10-25-1989, the 1-day time period leading up to the DCT of this document. An example

for narrative times is presented in the second text. Three time expressions function as narrative

times: DCT (t0), Sunday (t1), and earlier this month (t2). As the reader goes through the text,

its narrative time shifts and events are contained by according narrative times (e1, e4 are in the

container t1; e2, e3, e5, and e6 are in the container t2).

(8): A. DCT: 10-26-1989t0

1 Philip Morris Cos., New York, adoptede1 a defense measure designed to make a hostile

takeover prohibitively expensive.

B. DCT: April 25, 2010 7:04 p.m. EDTt0

President Obama paide1 tribute Sundayt1 to 29 workers killede2 in an explosione3 at a West
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Virginia coal mine earlier this montht2, sayinge4 they diede5 “in pursuit of the American

dream.” The blaste6 at the Upper Big Branch Mine was the worst U.S. mine disaster in

nearly 40 years.

The Narrative Containers Model was later extended and adapted to the clinical domain in the

THYME project [Miller et al., 2013]. THYME annotation guidelines recognizes four narrative

containers regarding the DCT of a document: before DCT, overlap DCT, before and overlap DCT,

and after DCT. It also allows time expressions and events in the text to function as narrative contain-

ers (merging the notion narrative container and narrative time). And lastly, on top of the temporal

container relations, temporal ordering relations are modeled as well.

2.2.3.2 Automatic Temporal Structure Parsing Systems

[Kolomiyets et al., 2012] is one of the very few work on automatic temporal structure parsing.

Based on the temporal dependency structure introduced by [Bethard et al., 2012], they built two

temporal dependency parsers using traditional dependency parsing techniques. These parsers are

trained and evaluated on the corpus developed in [Bethard et al., 2012], 100 fable stories. (See

Section2.2.3.1 for more descriptions on this dependency structure and corpus.)

More specifically, they built a Shift-Reduce Parser (SRP), using the Covington set of transitions

[Covington, 2001] as it allows for parsing non-projective trees; and a Graph-Based Parser, using

Maximum Spanning Tree (MST) [Georgiadis, 2003] with the Chu-Liu-Edmonds algorithm [Chu

and Liu, 1965, Edmonds, 1967], with Margin Infused Relaxed Algorithm (MIRA) [Crammer and

Singer, 2003, Crammer et al., 2006] for predicting edge scores. These two parsers are evaluated

against two baseline systems: LinearSeq, linking all events in linear order with BEFORE relation;

and ClassifySeq, linking all events in linear order, with a trained pair-wise classifier to predict the
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relation. And they used Unlabeled/Labeled Attachment Score (UAS/LAS) and Unlabeled/Labeled

Tree Edit Distance Scores (UTEDS/LTEDS) as the evaluation metrics.

Their experimental results show that the two traditional parsers both match or beat the two base-

lines on unlabeled evalutations, and both outperform the two baselines on labeled evaluations.

They discovered that ClassifySeq works basically identical with LinearSeq, showing that simple

pair-wise classifier was unable to learn anything beyond predicting all relations as BEFORE. They

also showed that SRP performs better than MST on labeled evaluation, likely because SRP allows

for features describing previous parse decisions.

[Kolomiyets et al., 2012] built two temporal structure parsers based on the temporal dependency

structures introduced in [Bethard et al., 2012], which captures only the temporal relations among

events. Our parsers, on the other hand, are based on the temporal dependency structures introduced

in [Zhang and Xue, 2018b], which includes both time expressions and events. [Kolomiyets et al.,

2012] developed traditional statistical parsers specifically for narrative domain with extensive fea-

ture engineerings. We proposed more broad-coverage neural parsers with minimal domain-specific

feature engineerings. These parsers are experimented and validated on two domains: narrative

discourses in fairy tales and reporting discourses in the news domain. Experimental results in

[Kolomiyets et al., 2012] show that their statistical parsers are better at temporal relation label pre-

diction than a simple baseline, but didn’t provide a significant improvement on temporal structure

prediction, indicating that temporal structure is a more difficult task. Our proposed neural parsers

significantly improved the performance on both temporal relation classification and temporal struc-

ture parsing.
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2.2.4 A Comparative Analysis of Existing Temporal Models

This section gives an overview of different types temporal models described in the previous sec-

tions and discusses a comparative analysis of major similarities and differences between these tem-

poral models. Particularly, our comparative analysis will focus on the following temporal models

with accompanying annotated corpora (if any): TimeML (Timebank, Timebank-Dense), Multi-

axis Temporal Model (MATRES), Narrative Containers (THYME), Temporal Discourse Model,

Temporal Dependency Tree structure (Chinese and English TDT corpora).

In order to give a qualitative and intuitive comparison, we would like to examine the different tem-

poral models annotated on the same document. Timebank-Dense is the most commonly annotated

corpus among these temporal models. Therefore we picked the shortest document from Timebank-

Dense (ea980120.1830.045) and collected its temporal model annotations on all of these temporal

models except for TDM and NC which we annotated ourselves according to their guidelines. The

document is presented as follows in (9), with TimeML Timex3s marked in orange, TimeML events

in blue, and TimeML signals in green. Figure 2.1∼ Figure 2.6 illustrate different temporal models

for this document.

(9): DCT: 1998-01-20t13

The Pentagon saide1 todayt14 it will re-examinee2 the questione17 are the remains inside the

Tomb of the Unknown from the Vietnam War, in fact, knowne5?

CBS News first reportede6 last nightt15 that the tomb may containe7 the remains of Air Force

pilot Michael Blassie.

There was a suspicione18 the body wase20 Blassie because his uniform and ID card were

founde9 near the body in Vietnam. But subsequentlys20, they were loste10. Blassie’s mother
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nowt16 wantse11 the remains in the tomb testede12 for DNA.

t14
t15
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b
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a
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Figure 2.1: Timebank annotation for document (9).

Figure 2.1 and Figure 2.2 represent the annotations in Timebank and Timebank-Dense respec-

tively. Red edges and edge labels in Figure 2.2 represent differences between the two annota-

tions. In Timebank, annotators were allowed to pick temporal related event/time pairs with their

own judgement and annotate relations for those pairs only. In Timebank-Dense, every pair of

event/time in two adjacent sentence are required to be annotated with a temporal relation. As

shown in the figures, while annotators consider only a few pairs of event/time hold valid temporal

relations in Timebank, the Timebank-Dense guidelines greatly increased the number annotated re-

lations, rendering a more laborious annotation yet more complete coverage. Both Timebank and

Timebank-Dense are representative pair-wise models. As seen in the figures, pair-wise models are

computationally represented as graphs. Timebank models each text as a partially-connected graph

with some disconnected nodes/subgraphs, while Timebank-Dense models each text as a partially-

connected graph with no disconnected subgraphs.
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Figure 2.2: Timebank-Dense annotation for document (9).
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Figure 2.3: MATRES annotation for document (9).

Figure 2.3 illustrates an example for Multi-axis Temporal Model from the MATRES corpus. As

shown in the figure, the Multi-axis Temporal Model is also a partially-connected graph for a piece

of text, with disconnected nodes/subgraphs. However, on top of the graph structure, Multi-axis
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Model also structures certain disconnected subgraphs on different axes. Note that this model

doesn’t cover temporal relations with regards to time expressions.

t14 t15 t16

e2

e5

e6

e7 e9 e10
e11 e12

e17

e18

e20

t0

e1

E0

E1
E2 E3

E4

{e1 < e2,  e17 ⊆ e2, e5 ⊆ e17, 
e6 < e1,  e7 ⊆ e6,  

e9 < e18,  e20 ⊆ e18,  e18 < e10,  e10 < e6,  
e10 < e11,  e11 < e12}

Figure 2.4: TDM annotation for document (9) (our own annotation).

Figure 2.4 shows the temporal structure of the same document in a Temporal Discourse Model.

Unlike previous graph models, a TDM models temporal information in the text as a tree structure,

with events in the text and some abstract events as nodes, and “temporal inclusion” relation as

edges. Temporal ordering relations are modeled as a separate set of constraints. Like the Multi-

axis Model, TDM doesn’t model temporal relations with regards to time expressions.

Figure 2.5 illustrates the temporal structure of the same document in a Narrative Container model.

With a few DCT related abstract nodes, this model is also a partially-connected graph with some

disconnected nodes/subgraphs. It represents time expressions and events on nodes, temporal “con-

tain” relations on edges between narrative containers and events, and temporal ordering relations

on edges among events within the same narrative container. One event can also belong to multiple
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Figure 2.5: Narrative Container annotation for document (9) (our own annotation).
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Figure 2.6: TDT annotation for document (9).

narrative containers.

Lastly, our TDT model of the same document is represented in Figure 2.6. It is an acyclic tree

structure with a few abstract nodes on the top layers. It represents time expressions and events on

nodes, and temporal anaphora and temporal relations on edges.
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For a quantitative comparison, we compiled statistics and annotation agreements of these corpora

in the following tables. Table 2.9 illustrates statistics on number of documents, timex, events, and

temporal relations on these corpora. For MATRES, statistics on orthogonal axes (i.e. intention

and opinion axes) are in round parentheses, while the other statistics are for the main axis only.

THYME (total) is the entire THYME corpus, including both colon and brain cancer domains, and

THYME (1st release) is the first released THYME data introduced in [Styler IV et al., 2014b], a

subset of THYME corpus including only some of the colon cancer data.

Table 2.10 and Table 2.11 give the inter-annotator agreements for each corpus. Please note that

these numbers are not necessarily directly comparable since they sometimes evaluate different spe-

cific agreements. The F1 scores here are computed with picking one expert as the gold standard,

and for temporal relations evaluations, this F1 should be the same with P and R. The kappa scores

here are either Cohen’s kappa or Fleiss’ kappa depending on the number of annotators involved.

Crowdsourcing worker accuracies are computed against expert annotations, and WAWA is Worker

Agreement With Aggregate measure among crowdsource workers. For MATRES corpus, all agree-

ments reported here are for the main-axis only, and expert agreements are computed on a subset of

Timebank-Dense (100 events and 400 relations), while crowd worker agreements are computed on

Timebank-Dense.

Here we look at two different evaluations. The first evaluation is annotators’ agreement on deter-

mining the pair of event/time that needs a temporal relation annotation (Table 2.10). This measure

is slightly different for different models. Specifically, for Timebank and TB-Dense, these numbers

evaluate annotators’ agreements on judging if a temporal relation should be annotated between a

given pair of timex/events. For MATRES, they evaluate annotators’ agreements on whether an
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Temporal Model Corpus Domain # Docs # Timex # Events # Temporal
Relations

TimeML Timebank news 183 1,414 7,935 6,418
Timebank-Dense news 36 289 1,729 12,715

Multi-axis MATRES news 276 - 5,453* 13,577*
MATRES

(TB-Dense) 36 - 544* (69) 1,673* (128)

NC

annotations
on Timebank news 183 1,414 7,935 7,935 ***

THYME (total) clinical notes 1,186 14,440 127,736 30,545 ****
THYME

(1st release) 107 1,426 15,769 7,935

TDM
Remedia,

BRC, CBC **
grade school

reading materials 1,200+ - - -

TDT Chinese TDT news 115 1,167 4,807 5,974
fairy tales 120 131 10,976 11,107

English TDT news 183 1,414 2,691 4,105

Table 2.9: Corpora Statistics. (* Stats on main axis only; numbers in parentheses are for orthog-
onal axes. ** Brandeis Reading Comprehension corpus, and Canadian Broadcasting Corporation
corpus. *** This statistic is not reported in their paper; however, it should be the same number
as the number events according to their annotation approach. **** This number reports only the
“contains” relation.)

Temporal Model Corpus Experts Crowd Workers
F1 Kappa ACC WAWA

TimeML Timebank .55 - - -
Timebank-Dense - - - -

Multi-axis MATRES - .85 .86 .79

NC

annotations
on Timebank - - - -

THYME (total) - - - -
THYME (1st release) .50 - - -

TDM Remedia, BRC, CBC - - - -

TDT
Chinese TDT (news) .86 - - -

Chinese TDT (fairy tales) .83 - - -
English TDT - - .82 .81

Table 2.10: IAAs on Pair Extraction Annotations.

event is anchorable on a given axis. For NC, they evaluate annotators’ agreements on selecting the

narrative container or narrative time for a given event. For TDT, they evaluate annotators’ agree-

ments on selecting the reference time / parent for a given event. The second evaluation is temporal

relation annotation when pairs of time/event are given (Table 2.11). This measure is slightly dif-
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Temporal Model Corpus Experts Crowd Workers
F1 Kappa ACC WAWA

TimeML Timebank .77 .71 - -
Timebank-Dense .65∼.72 .56∼.64 - -

Multi-axis MATRES .90 .84 .88 .81

NC

annotations
on Timebank - (.74) - -

THYME (total) ({.66}) ({.80*}) [.52] [.71*] - - -
THYME (1st release) (.45) ({.56}) [.72] - - -

TDM Remedia, BRC, CBC - - - -

TDT
Chinese TDT (news) (.79) - - -

Chinese TDT (fairy tales) (.72) - - -
English TDT - - .83 (.53) .85 (.52)

Table 2.11: IAAs on Temporal Relation Annotations. These numbers evaluate annotators’ agree-
ments on labeling the temporal relation between a given pair of timex/events. (Numbers in paren-
theses are NOT relation only evaluations; they evaluate both pair extraction & relation labeling
together. Numbers in square brackets report only temporal relations with respect to DCT. Num-
bers in curly brackets report only on the “contains” temporal relation. * These numbers report
agreements between annotator majority and adjudicator.)

ferent for different models as well. For some corpora, agreement on temporal relation only is not

available and instead the evaluation for both pair extraction and relation labeling together are given.

These numbers are presented in round parentheses. THYME annotation was mainly focused on

event-document temporal relations (marked in square brackets in the table) and “contains” relation

between events and times (marked in curly brackets).
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Chapter 3

Structured Interpretation of Temporal

Relations

3.1 Introduction

Understanding temporal relations between events and temporal expressions in a natural language

text is a fundamental part of understanding the meaning of text. Automatic detection of temporal

relations also enhances downstream natural language applications such as story timeline construc-

tion, question answering, text summarization, information extraction, and others. Due to its poten-

tial, temporal relation detection has received a significant amount of interest in the NLP community

in recent years.

Most of the research attention has been devoted to defining the “semantic” aspect of this problem

– the identification of a set of semantic relations between pairs of events, between an event and a

time expression, or between pairs of time expressions. Representative work in this vein includes
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TimeML [Pustejovsky et al., 2003a], a rich temporal relation markup language that is based on and

extends Allen’s Interval Algebra [Allen, 1984]. TimeML has been further enriched and extended

for annotation in other domains [O’Gorman et al., 2016, Styler IV et al., 2014a, Mostafazadeh

et al., 2016]. Corpora annotated with these schemes [Pustejovsky et al., 2003b, O’Gorman et al.,

2016] are shown to have stable inter-annotator agreements, validating the temporal relations pro-

posed in the TimeML. Through a series of TempEval shared tasks [Verhagen et al., 2007a, Verha-

gen et al., 2010a, UzZaman et al., 2012, Bethard et al., 2015a, Bethard et al., 2016a, Bethard et al.,

2017], there has also been significant amount of research on building automatic systems aimed at

predicting temporal relations.

Less attention, however, has been given to the “structural” aspect of temporal relation modeling

– answering the question of which other events or time expressions a given time expression or

event depends on for the interpretation of its temporal location. Having an answer to this question

is important to both linguistic annotation and computational modeling. From the point of view

of linguistic annotation, without an answer to this question, an annotator is faced with the choice

of: (i) labeling the relation between this event/time expression with all other events and time

expressions, or (ii) choosing another event/time expression with which the event/time expression

in question has the most salient temporal relation. (i) is impractical for any textual document that is

longer than a small number of sentences. Without a solid linguistic foundation, adopting (ii) could

lead to inconsistent and incomplete annotation as annotators may not agree on which temporal

relations are the most salient.

From a computational perspective, without knowing which time expressions and events are related

to each other, an automatic system has to make a similar choice to predict the temporal relations

between either all pairs of events and time expressions, or only a subset of the temporal relations.

If it chooses to do the former, there will be
(
n
2

)
pairs for n events and time expressions. Not only
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is this computationally expensive, there could be conflicting predictions due to the transitivity of

temporal relations (e.g. “A before B" and “B before C" imply “A before C", which a pair-wise

approach may make conflicting predictions) and additional steps are necessary to resolve such

conflicts [Chambers and Jurafsky, 2008b, Yoshikawa et al., 2009, Do et al., 2012].

We propose a novel annotation approach to address this dilemma. Specifically we propose to

build a dependency tree structure for the entire document where the nodes of the tree are events

and time expressions, as well as a few pre-defined “meta” nodes that are not anchored to a span

of text in the document. The building blocks of this dependency structure are pairs of events

and time expressions in which the child event/time expression depends on its parent event/time

expression for its temporal interpretation. The dependency relation is based on the well-established

notion of temporal anaphora where an event or time expression can only be interpreted with respect

to its reference time [Reichenbach, 1947, Partee, 1973, Partes, 1984, Hinrichs, 1986, Webber,

1988, Bohnemeyer, 2009]. In each dependency relation in our dependency structure, the parent

is the antecedent and the child is the anaphor that depends on its antecedent for its temporal

interpretation. Consider the following examples:

(10): He arrived on Thursday. He got here at 8:00am.

(11): He arrived at school, walked to his classroom, and then the class began.

In (10), the antecedent is “Thursday” while “8:00am” is the anaphor. We won’t know when exactly

he arrived unless we know the 8:00am is on Thursday. In this sense, “8:00am” depends on “Thurs-

day” for its temporal interpretation. We define the antecedent of an event as a time expression or

event with reference to which the temporal location of the anaphor event can be most precisely

determined. In (11), the antecedent for the event “the class began” is “walked to his classroom” in

the sense that the most specific temporal location for the event “the class began” is after he walked
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to the classroom. Although “the class began” is also after “he arrived at school”, the temporal

location we can determine based on that is not as precise.

In order for the events and time expressions to form a dependency tree, one key assumption we

make is there is exactly one antecedent event/time expression for each anaphor. This ensures that

there is exactly one head for each dependent, a key formal condition for a dependency tree.

Once this dependency structure is acquired, manually or automatically, additional temporal rela-

tions may be inferred based on the transitive property of temporal relations, but we argue that this

dependency structure is an intuitive starting point that makes annotation as well as the computa-

tional modeling more constrained and tractable.

We annotate a corpus of 235 documents with temporal dependency structures, with 48 documents

double-annotated to evaluate inter-annotator agreement. The annotated data are chosen from two

different genres, news data from the Xinhua newswire portion of the Chinese TreeBank [Xue

et al., 2005] and Wikipedia news data used for CoNLL Shared Task on Shallow Discourse Parsing

in 2016 [Xue et al., 2016], and narrative story data from Grimm fairy tales. The two genres are

chosen because the temporal structure of texts from those two genres unfolds in very different

ways: news reports are primarily in report discourse mode in the sense of [Smith, 2003] while

Grimm fairy tales are primarily in narrative mode and time advances in those two genres in very

different ways, as we will discuss in more details in Section 3.3.2.2. We report a stable and high

inter-annotator agreement for both genres, which validates the intuitiveness of our approach. This

corpus is publicly available.1

The main contributions of this chapter are:

• We propose a novel and comprehensive temporal dependency structure to capture temporal
1https://github.com/yuchenz/structured_temporal_relations_corpus
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relations in text.

• We analyze different types of time expressions in depth and propose a novel definition, as

far as we know, for the reference time of a time expression (§3.2.2.1).

• We produce an annotated corpus with this temporal structure that covers two very different

genres, news and narratives and achieved high inter-annotator agreements for each genre.

An analysis of the annotated data show that temporal structures are very genre-dependent, a

conclusion that has implications for how the temporal structure of a text can be parsed.

3.2 Temporal Structure Annotation Scheme

In our annotation scheme, a temporal dependency tree structure is defined as a 4-tuple (T,E,N, L),

where T is a set of time expressions,E is a set of events, andN is a set of pre-defined “meta” nodes

not anchored to a span of text in the document. T ,E,N form the nodes in the dependency structure,

and L is the set of edges in the tree. Figure 3.1 gives an example TDT. Detailed descriptions for

each set are in the following subsections.

3.2.1 Nodes in the temporal dependency tree

The nodes in a temporal dependency tree includes time expressions, events, and a set of pre-defined

nodes. We elaborate on each type of nodes below:
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Figure 3.1: An example TDT.

3.2.1.1 Time Expressions

TimeML [Pustejovsky et al., 2003a] treats all temporal expressions as markable units and classi-

fies them into three categories: fully specified temporal expressions (“June 11, 1989”, “Summer,

2002”); underspecified temporal expressions (“Monday”, “next month”, “last year”, “two days

ago”); and durations (“three months”, “two years”). The purpose of our dependency structure an-

notation is to find all time expressions that can serve as a reference time for other events or time

expressions. We observe that while the first two TimeML categories of time expressions can serve

as reference times, the last category, “durations", typically don’t serve as reference times, unless

they are modified by expressions like “ago” or “later”. For example, the “10 minutes” in (12) can

serve as a reference time because it can be located in a timeline as a duration from 8:00 to 8:10,

while the “10 minutes” in (13) can’t serve as a reference time.

(12): He arrived at 8:00am. 10 minutes later, the class began.

(13): It usually takes him 10 minutes to bike to school.
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Therefore, in our annotation scheme, we make the distinction between time expressions that can

be used as reference times and the ones that cannot. The former includes fully specified temporal

expressions, underspecified temporal expressions, as well as time durations modified by “later” or

“ago”. The latter include unmodified durations. In our annotation, only the former are considered

to be valid nodes in our time expression set T .

3.2.1.2 Events

We adopt a broad definition of events following [Pustejovsky et al., 2003a], where “an event is

any situation (including a process or a state) that happens, occurs, or holds to be true or false dur-

ing some time point (punctual) or time interval (durative).” Based on this definition, unless stated

explicitly, events for us include both eventive and stative situations. Adopting the minimal span

approach along the lines of [O’Gorman et al., 2016], only the headword of an event is labeled in

actual annotation. Since different events tend to have different temporal behaviors in how they

relate to other events or time expressions[Wuyun, 2016], we also assign a coarse event classifi-

cation label to each event before linking them to other other events or time expressions to form

a dependency structure. Adapting the inventory of situation entity types from [Smith, 2003] and

from [Zhang and Xue, 2014], we define the following eight categories for events.

• An Event is a process that happens or occurs. It is the only eventive type in this classification

set that advances the time in a text. An example event is “I went to school yesterday”.

• A State is a situation that holds during some time interval. It is stative and describes some

property or state of an object, a situation, or the world. For example, “she was very shy”

describes a state.

57



Chapter 3. Structured Interpretation of Temporal Relations

The remaining event types are all statives that describe an eventive process.

• A Habitual event describes the state of a regularly repeating event, as in “I go to the gym

three times a week”.

• An Ongoing event describes an event in progress, as in “she was walking by right then”.

• A Completed event describes the completed state of an event, as in “She’s finished her talk

already”.

• A Modalized event describes the capability, possibility, or necessity of an event, as in “I

have to go”.

• A Generic Habitual event is a Habitual event for generic subjects, as in “The earth goes

around the sun”.

• A Generic State is a state that hold for a generic subject, as in “Naked mole rats don’t have

hairs”.

All valid events from a document, represented by their headwords, form the event set E.

3.2.1.3 Pre-defined Meta Nodes

In order to provide valid reference times for all events and time expressions, and to form a complete

tree structure, we designate the following pre-defined nodes for the set N .

ROOT is the root node of the temporal dependency tree and every document has one ROOT

node. It is the parent of (i) all other pre-defined nodes, and (ii) absolute concrete time expressions

(Example 20, see §3.2.2.1 for more on time expression classification). The meta node DCT is
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the Document Creation Time, a.k.a. Speech Time. Following [Pustejovsky et al., 2003a], we

define meta nodes PRESENT_REF, PAST_REF, FUTURE_REF as the general reference times

respectively for generic present, past, and future times. Lastly, ATEMPORAL is designated as

the parent node for atemporal events, such as timeless generic statements (Example 21).

These generic reference times are necessary for time expressions and events that don’t have a more

specific reference time in the text as their parents. For example, it is common to start a narrative

story with a few descriptive statements in past tense without a specific time (Example 14), or a

general time expression referring to the past (Example 15). Both cases take “Past_Ref” as their

parent.

(14): It was a snowy night. [Past_Ref]

(15): Once upon the time, ... [Past_Ref]

It is worth noting that “DCT” and “Present_Ref” are not interchangeable. “DCT” is usually a very

specific time-stamp such as “2018-02-15:00:00:00”, while “Present_Ref” is a general temporal lo-

cation reference. We use “DCT” as the parent for relative concrete time expressions. For instance,

in Example 19 below, the reference time for “last year” is “DCT” rather than “Present_Ref”,

because with the knowledge of DCT being, for example “2018-02-15:00:00:00”, the temporal lo-

cation of “last year” can be determined as “2017”. Therefore, we designate that the interpretation

of the temporal location of “last year” is dependent on “DCT”, and “DCT” should be the parent

of “last year”. Yet for vague time expressions, such as Example 16, their antecedent should be

“Present_Ref” . More details on time expression classification are described in §3.2.2.1.

(16): China annual economic output results have grown increasingly smooth in recent years.

[Present_Ref]
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(17): Economists who try to estimate actual growth tend to come up with lower numbers.

[Present_Ref]

(18): China will remain a trade partner as important to Japan as the United States in the future.

[Future_Ref]

(19): The economy expanded 6.9 percent last year. [DCT]

(20): A trend of gradual growth began in 2011. [ROOT]

(21): The earth goes around the sun. [Atemporal]

3.2.2 Edges in the temporal dependency tree

As we discussed above, each dependency relation consists of an antecedent and an anaphor, with

the antecedent being the parent and the anaphor being the child. Based on the well-established no-

tion of temporal anaphora [Reichenbach, 1947, Partee, 1973, Partes, 1984, Hinrichs, 1986, Webber,

1988, Bohnemeyer, 2009], we assume each event or time expression in the dependency tree has

only one antecedent (i.e. one reference time), which is necessary to form the dependency tree. In

this section, we will first discuss what can serve as a reference time for time expressions in our

annotation scheme, then we will discuss what can be a reference time for events. All links between

events/time expressions and their reference times form our link set L.

3.2.2.1 Reference Times for Time Expressions

In previous work such as the TimeBank [Pustejovsky et al., 2003a] the temporal relations be-

tween time expressions are annotated with temporal ordering relations such as “before”, “after”,

or “overlap” just like events in a pair-wise without considering the dependencies between them.
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For example, consider the three time expressions “2003”, “March”, and “next year” in (22), using

a pair-wise annotation approach, three temporal relations will be extracted:

(2003, includes, March)

(2003, before, next year)

(March, before, next year)

(22): The economy expanded 6.6 percent in 2003t1, reaching its peak 7.1 percent in Marcht2. The

growth rate doubled in the next yeart3.

We argue that the sole purpose for annotating temporal relations between time expressions is to

properly “interpret” time expressions that “depend” on another time expression for their interpre-

tation. In the context of time expressions, “interpretation” means normalizing time expressions

in a format that allows the ordering between the time expressions to be automatically computed.

Time expression normalization is necessary in many applications. For example, in a question an-

swering system, our model needs to be able to answer “2004” when it is asked “Which year did

China’s export rate double?”, instead of answering “next year” which is uninterpretable taken out

of the original context. In order for the time expressions to be properly interpreted, it is important

to annotate the dependency between “March” and its reference time “2004” because the former

depends on the latter for its interpretation. Similarly, it is also important to establish the depen-

dency between “next year” and its reference time “2004” as we won’t know which year is “next

year” until we know it is with reference to “2004”. With these dependencies identified and the

time expressions normalized, the temporal relations between all pairs of time expressions in a text

can be automatically computed, and explicit annotation of the temporal relation between all pairs

of time expressions will not be necessary. For example, with “March” normalized to “2003-03”

and “next year” normalized to “2004”, the relation between 2003-03 and 2004 can be automati-
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cally computed. We argue that this notion of reference time for time expressions is intuitive and

easy to define. Annotating temporal dependency relations between each pair of time expression

and its parent (i.e. finding the reference time for each time expression) is also more efficient than

annotating the temporal ordering between all pairs of time expressions.

Based on these considerations, we propose a novel definition of the reference time for time expres-

sions:

Definition 3.2.1 Time expression A is the reference time for time expression B, if B depends on A

for its temporal location interpretation.

In other words, a time expression can depend solely on its reference time to be interpreted and

normalized. We use a generic Depend-on label for these relations. Take the following (23) as an

example, annotators only need to determine that the temporal interpretation of ‘8am” depends on

“Thursday”. With “Thursday” normalized to, for example, “2003-04-05”, we can then compute

a normalized time “2003-04-05:08:00:00” for “8am”, and easily compute the temporal ordering

between them: (“2003-04-05” includes “2003-04-05:08:00:00”).

(23): He arrived on Thursday. He got here at 8:00am.

We now consider the question of what types of nodes can serve as the reference time or antecedent

for a time expression. First, since a time expression relies on its reference time for its temporal

interpretation, naturally an event cannot serve as its reference time. Second, since some time

expressions (e.g., “2003”) can be interpreted (and normalized) on its own without any additional

information, while others can not, further categorization of time expressions is needed to precisely

specify which time expressions need a reference time for their interpretation and which do not, and

what time expressions can serve as reference times and which do not.
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Taxonomy

Time Expressions
Locatable Time Expressions Unlocatable

Time
Expressions

Concrete
Vague

Absolute Relative

Examples May 2015
today,

last Monday ... two days later nowadays every month

Possible
Reference

Times
ROOT

DCT,
another Concrete

Present_Ref,
Past_Ref,

Future_Ref
-

Table 3.1: Taxonomy of time expressions in our annotation scheme, with examples and possible
reference times.

First, we make the distinction between Concrete and Vague time expressions. A Concrete Time

Expression is a time expression that can be located onto a timeline as an exact time point or inter-

val, e.g. “June 11, 1989”, “today”. Their starting and ending temporal boundaries on the timeline

can be determined. A Vague Time Expression (e.g., “nowadays”, “recent years”, “once upon the

time”) expresses the concept of (or a period in) general past, general present, or general future,

without specific temporal location boundaries. The reference time for Vague time expressions are

the pre-defined nodes PRESENT_REF, PAST_REF, and FUTURE_REF.

Concrete time expressions are further classified into Absolute Time Expressions and Relative

Time Expressions, corresponding to fully-specified (“June 11, 1989”, “Summer, 2002”) and un-

derspecified temporal expressions (“Monday”, “Next month”, “Last year”, “Two days ago”) in

[Pustejovsky et al., 2003a] respectively. Relative concrete time expressions take either DCT or

another concrete time expression as their reference time. Absolute concrete time expressions can

be normalized independently and don’t need a reference time. Therefore, we stipulate that their

parent in the dependent tree is the pre-defined node ROOT. For example, “1995”, “20th century”

are absolute concrete time expressions, while “today”, “last year”, “the future three years”, “Jan-

uary 20th”, “next Wednesday” are relative concrete time expressions, and “recent years”, “in the
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past a few years”, “nowadays”, “once upon the time” are vague time expressions.

An example of a concrete relative time expression having a concrete absolute temporal expression

as its reference time is given in (22) . Consider the time expression “March”. In order to be able

to interpret it and normalize it into a valid temporal location on a timeline, we need to establish

“2003" is its reference time. Then it is possible to normalize it into a formal representation as

“2003-03”.

Lastly, in order to form a complete tree structure, all pre-defined nodes (except for ROOT) take

ROOT as their parent. A complete taxonomy of time expressions in our annotation scheme with

examples and their possible reference times is illustrated in Table 3.1. Note that in our framework,

we simply exclude unlocatable time expressions, instead of linking them to the pre-defined meta

node “Atemporal”, which is designated as the parent for atemporal events.

3.2.2.2 Reference Times for Events

The reference time for an event is a time expression or pre-defined node or another event with

respect to which the most specific temporal location of the event in question can be determined.

Unlike time expressions, for which the possible reference times can only be other time expressions

or pre-defined nodes, the possible reference times for events are not as restrictive and can be any of

the three categories. The dependency relation that we use to characterize the relationship between

the reference time / antecedent and an event is a temporal relation between them.

Definition 3.2.2 Time expression/pre-defined node/event A is the reference time for event B, if A is

the most specific temporal location which B depends on for its own temporal location interpreta-

tion.
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There has been significant amount of work attempting to characterize the temporal relationship

between events, and between time expressions and events. One of the first attempts to model

temporal relations is Allen’s Interval Algebra theory [Allen, 1984]. This theory introduced a set

of distinct and exhaustive temporal relations that can hold between two time intervals, which are

further adapted and extended in [Pustejovsky et al., 2003a], THYME [Styler IV et al., 2014a], etc.

[Mostafazadeh et al., 2016] gives a detailed comparison of these temporal relations sets. Mindful

of the need to produce consistent annotation, and in line with the practice of some prior work

such as the TempEval evaluations [Verhagen et al., 2007b, Verhagen et al., 2009, Verhagen et al.,

2010b], we adopt a simplified set of 4 temporal relations to characterize the relationship between

an event and its reference time. The set of temporal relations we use with their mappings to their

corresponding TimeML temporal relations are shown shown in Table 3.2.

Our Scheme TimeML
Before Before, IBefore
After -
Overlap Ends, Begins, Identity, Simultaneous
Includes During

Table 3.2: Our temporal relation set for events with mappings to TimeML’s set.

Although an event can in principle take a time expression, another event, or a pre-defined node

as its antecedent, different types of events have different tendencies as to the types of antecedents

they take. An eventive event usually takes either a time expression, another eventive event, or DCT

as its reference time. They advance the time in the narrative of a text, so it usually has a (time

expression, Includes, event) relation with its antecedent, or a (event, Before, event) relation. For

example, in (10) the time expression “Thursday” has “Includes” relation with the event “arrived”,

and the time expression “8:00am” has an “Includes” relation with the event “got here”. And in
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Taxonomy Events
Eventive Stative Generic

Examples He arrived. He was holding a book. Planets go around stars.

Possible
Reference

Times

timex, DCT,
eventive event,
stative event

Past/Future_Ref

timex, DCT,
eventive event,
stative event,

Past/Present/Future_Ref

Atemporal

Table 3.3: Taxonomy of events in our annotation scheme, with examples and possible reference
times.

(11) the event “arrived” has a “Before” relation with the event “walked”.

A stative event can take a time expression, another event, or a pre-defined node (except for ROOT)

as its reference time. It generally describes a state that holds during the time indicated by its

antecedent time expression, event, or generic time. It usually has an “Overlap” relation with their

reference times. For example, in (13) the event “takes” is a stative Habitual event, which describes a

state of the present situation for “him”, so its reference time is the pre-defined node “Present_Ref”,

and has an “Overlaps” relation with “Present_Ref”.

An eventive event rarely takes a stative event as its reference time. As discussed above, we pick the

most specific temporal location as the reference time for an event. Since more specific temporal

locations are usually available (such as another eventive event), a stative event rarely serves as

the reference time for an eventive event. Table 3.3 shows some of the most common event-parent

scenarios.

Please see Appendix A: our annotation guidelines on time expression and event recognition, clas-

sification, and reference time resolution, for a complete account of specifications, examples, and

special rules for special scenarios.

66



3.2. Temporal Structure Annotation Scheme

3.2.3 Full Temporal Structure Examples

We present a full example temporal dependency structure for a short news report paragraph (24),

as illustrated in Figure 3.2, and another one for a narrative passage (25), as illustrated in Figure 3.3.

Subscript e denotes eventive events, t denotes time expressions, and s denotes stative events. Please

note that in our framework, nominalized events (e.g. “competition” in (24)) and events in relative

clauses (e.g. “designed” in (24)) are currently not included in the scope of this work. Given six

pre-defined meta nodes (blue in the figures), locatable time expressions (orange), and main events

(green) in a text, an annotator will determine the most specific reference time for each time and

event, and assign a temporal relation between the time/event and its parent. For example, when

considering the “not completed” event in (24), we can see that it’s a state that holds during the

“left” event and also within the “1966” time period. However, “left” is determined to the final

reference time for “not completed” because it’s more specific than “1966”, and locates the “not

completed” state to a more accurate temporal location on the timeline. After all, according to only

this piece of text, we can not tell whether or not “his plans for the interior of the building” was

“completed” after he “left” but before the end of “1966”.

(24): Jorn Utzon, the Danish architect who designed the Sydney Opera House, has diede1 in

Copenhagen. Borne2 in 1918t1, Mr Utzon was inspirede3 by Scandinavian functionalism in archi-

tecture, but made a number of inspirational tripse4, including to Mexico and Morocco. In 1957t2,

Mr Utzon’s now-iconic shell-like design for the Opera House unexpectedly wone5 a state gov-

ernment competition for the site on Bennelong Point on Sydney Harbour. However, he lefte6 the

project in 1966t3. His plans for the interior of the building were not completeds1. The Sydney

Opera House iss2 one of the world’s most classic modern buildings and a landmark Australian
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structure. It was declarede7 a UNESCO World Heritage site last yeart4. 2

ROOT

DCT

last year

inspired

born

made…trips

declaredhas 
died

1957

is

Present_Ref

won

1918 1966

left

includes

includes includes

before

before

includes

depend-on

depend-on

includes

depend-on

includes

not completed

overlap

depend-on Pre-defined 
Meta Nodes

Time Expressions

Events

Temporal Relations 

Figure 3.2: An example full temporal dependency structure for news paragraph (24).

(25): There wass1 oncet1 a man who had seven sons, and still he hads2 no daughter, however much

he wisheds3 for one. At length his wife again gavee1 him hope of a child, and when it camee2 into

the world it wass4 a girl. The joy wass5 great, but the child wass6 sickly and small, and had to be

privately baptizeds7 on account of its weakness. The father sente4 one of the boys in haste to the

spring to fetch water for the baptism. The other six wente5 with him, and as each of them wanted

to be first to fill it, the jug felle6 into the well. There they stoods8 and did not knows9 what to do,

and none of them dared to gos10 home. As they still did not return, the father grewe7 impatient, and

saide8, they have certainly forgottens11 it while playing some game, the wicked boys. He becamee9

afraid that the girl would have to die without being baptized.3

The two examples provide a sharp contrast between the typical temporal dependency structures

for newswire documents and narrative stories, with the former generally having a flat and shallow

structure and the latter having a narrow and deep structure.
2From a news report on The Telegraph
3From Grimm’s fairy tale The Seven Ravens
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ROOT

Past_Ref

once

was-s1

went

sent

fell

gave

wished

came
had

stood

became

said

grew

was-s4

was-s5

was-s6

baptised

know

go

forgotten

before

before

includes

overlap

overlapoverlap

overlap

overlap

overlap

overlap

overlap

overlap

before

before

before

before

before

before

before

depend-on

depend-on

Pre-defined
Meta Nodes

Time Expressions

Events

Figure 3.3: An example full temporal dependency structure for narrative paragraph (25).

3.3 Corpus Description and Analysis

3.3.1 Annotation Process

We use a two-pass annotation process for this project. In the first pass, annotators do temporal ex-

pression recognition and classification, and then reference time resolution for all time expressions.

The purpose of this pass is to mark out all possible reference times realized by time expressions

and recognize their internal temporal relations, in order to provide a backbone structure for the
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final dependency tree. In the second pass, event recognition and classification, and then reference

time resolutions for all events are annotated, completing the final temporal dependency structure

of the entire document.

3.3.2 Annotation Analysis

3.3.2.1 Corpus

A corpus of 115 news articles, sampled from Chinese TempEval2 data [Verhagen et al., 2010a]

and Wikinews data, 4 and 120 story articles, sampled from Chinese Grimm fairy tales, 5 are com-

piled and annotated. 20% of the documents are double annotated by native Chinese speakers.

Table 3.4 presents the detailed statistics. High and stable inter-annotator agreements are reported

in Table 3.5.

# Docs # Sentences # Tokens # Timex # Events
Single 91 2,271 45,132 901 3,758

News Double 24 570 11,132 265 1,047
Total 115 2,841 56,264 1,166 4,805

Single 96 2,903 77,299 92 8,362
Narratives Double 24 797 17,456 40 1,952

Total 120 3,700 94,755 132 10,314

Table 3.4: Corpus annotation statistics. (Timex stands for time expressions.)

On event annotation, our work is comparable to the annotation work in [Kolomiyets et al., 2012].

They report inter-annotator agreements of 0.86, 0.82, and 0.70 on event recognition, unlabeled

relations, and labeled relations respectively on a narrative data. We argue that the comparable

4zh.wikinews.org
5https://www.grimmstories.com/zh/grimm_tonghua/index
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or better agreements on narratives as shown in Table 3.5 show that incorporating the notion of

linguistic temporal anaphora helps annotators make more consistent decisions. High (above 90%)

agreements on time expression recognition and parsing indicate that our new definition of the

reference time for time expressions is clear and easy for annotators to operate on. While event

annotations receive lower agreements than time expressions on both genres, they are in general

easier on news than on narratives, especially for event reference time resolution and edge labeling.

News Narratives

Timex
Recognition .97 1.

Classification .95 .94
Parsing .93 .94

Event

Recognition .94* .93*
Classification .77 .75

Relations (unlabeled) .86 .83
Relations (labeled) .79 .72

Table 3.5: Inter-Annotator Agreement F scores on 20% of the annotations. (* This annotation
focuses on main events only, excluding nominalized events and events in relative clauses.)

3.3.2.2 Analysis Across Different Genres

During our annotation, we discovered that narrative texts are very different from news with re-

spect to their temporal structures. First, news texts are usually organized with abundant temporal

locations, while narrative texts tend to start with a few temporal locations setting the scene and

proceed with only events. As shown in Table 3.4, around 20% (1166) nodes in the news data are

time expressions and 80% (4805) are event nodes, while in the narrative data the ratio of time

expressions to events are 1% / 99% (132/10314). Table 3.6 shows that news articles have a higher

portion (51%) of relative concrete time expressions, while narrative stories tend to use more (67%)

vague time expressions.
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Second, descriptive statements are more common in news data than in narratives, while long chains

of time advancing eventives are more common in narratives. We can see from Table 3.7 that

in news data only 30% events are eventive, leaving the rest 70% stative descriptions, while in

narrative data over half of the events (51%) are eventive. From Table 3.8 we can also see that the

major temporal relation in news is “overlap” (54%), representing dominative stative statements in

reporting discourse mode, while narrative texts are dominated by the “before” relation (53%), with

eventive statements advancing the story line.

Timex type News Narratives
Absolute Concrete 313 (27%) 16 (14%)
Relative Concrete 598 (51%) 20 (17%)

Vague 256 (22%) 79 (67%)

Table 3.6: Distribution of time expression types.

Event type News Narratives
Event 1457 (30%) 5594 (51%)
State 1802 (37%) 3366 (31%)

Habitual 102 (2%) 459 (4%)
Modalized 321 (7%) 458 (4%)
Completed 1041 (22%) 900 (8%)

Ongoing Event 80 (2%) 175 (2%)
Generic State 1 (0%) 17 (0%)

Generic Habitual 2 (0%) 5 (0%)

Table 3.7: Distribution of event types.

Another difference is that statives serve different major roles in news and narrative texts. News

tend to have deep branches of overlapping statives with a time expression, DCT, or a general

present/past/future reference time as their parent (descriptive statements as discussed above). Nar-

rative texts have much less such long stative branches, however, they tend to have numerous short
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Edge label News Narratives
Includes 1096 (18%) 157 (1%)

Before(After) 507 (8%) 5885 (53%)
Overlap 3246 (54%) 4914 (44%)

Depend-on 1125 (19%) 151 (1%)

Table 3.8: Distribution of temporal relations.

Pre-defined
Node

Time
Expression

Eventive
Event

Stative
Event

Time Expression 1078 (92%) 89 (8%) 0 0
News Eventive Event 103 (9%) 290 (26%) 716 (65%) 0

Stative Event 149 (8%) 192 (11%) 432 (24%) 1029 (57%)
Time Expression 95 (83%) 20 (17%) 0 0

Narratives Eventive Event 20 (0%) 25 (1%) 4875 (99%) 0
Stative Event 25 (1%) 74 (2%) 1655 (49%) 1612 (48%)

Table 3.9: Distribution of parent types for each child type. Rows represent child types, and columns
represent parent types.

branches of statives with an eventive event as their parent. These statives serve as the event’s

accompanying situations. For example, in (25) “wass4”, “wass5”, “wass6”, and “baptiseds7” are

accompanying statives to “camee2”, describing the baby and the family and the situation they were

in at that time. For each type of node, we compiled the distribution of its possible types of parent,

shown in Table 3.9. It’s worth noting that more than twice as much statives in news have a stative

parent (57%) than the ones having an eventive parent (24%), contributing to deep stative branches,

while in narratives a much higher percentage of statives directly depend on an eventive (49%),

contributing to a large number of short stative branches.

These different temporal properties of news and narratives further result in shallow dependency

structures for news texts with larger number of branches on the root node, yet deep structures

for narrative texts with fewer but long branches. These differences are illustrated intuitively on

Figure 3.2 and Figure 3.3.
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3.4 Conclusion

In this chapter, we introduced a new representation to model temporal information in a document –

the Temporal Dependency Tree (TDT) structure representation. We argue that this structure is lin-

guistically intuitive, and is amenable to computational modeling. High and stable inter-annotator

agreements in our annotation experiments provide further evidence supporting our structured ap-

proach to temporal interpretation. In addition, a significant number of documents covering two

genres have been annotated. This corpus is publicly available for research on temporal relation

analysis, story timeline construction, as well as numerous other applications.
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Temporal Structure Parsing

4.1 Introduction

In this chapter, taking advantage of our data set annotated with temporal dependency structures in

Chapter 3, we develop a neural temporal dependency structure parser using minimal hand-crafted

linguistic features. One of the advantages of neural network based models is that they are readily

adaptable to new domains without further domain-specific feature engineering. We demonstrate

this advantage by evaluating our temporal dependency parser on data from two domains: news

reports and narrative stories. Our results show that our model beats a strong logistic regression

baseline. Direct comparison with existing models is impossible because the only similar dataset

used in previous work [Kolomiyets et al., 2012] that we are aware of is not available to us, but we

show that our models are competitive against similar systems reported in the literature.

The main contributions of this chapter are:
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• We design and build the first end-to-end neural temporal dependency parser. The parser is

based on a novel neural ranking model that takes a raw text as input, extracts events and time

expressions, and arranges them in a temporal dependency structure.

• We evaluate the parser by performing experiments on data from two domains: news reports

and narrative stories, and show that our parser is competitive against similar parsers. We also

show the two domains have very different temporal structural patterns, an observation that

we believe will be very valuable to future temporal parser development.

The rest of the chapter is organized as follows. In Section 4.2, we discuss related work and position

our work in the literature context. We describe our end-to-end pipeline system in Section 4.3. The

neural sequence labeling model for time expression and event recognition are described in Section

4.4, and details of the neural ranking model for temporal structure parsing are discussed in Section

4.5. In Section 4.6 we present and discuss our experimental results and we conclude this chapter

in Section 4.7.

4.2 Related Work

4.2.1 Related Work on Temporal Relation Modeling

There is a significant amount of research on temporal relation extraction [Bethard et al., 2007,

Bethard, 2013, Chambers and Jurafsky, 2008a, Chambers et al., 2014]. Most of the previous

work models temporal relation extraction as pair-wise classification between individual pairs of

events and/or time expressions. Some of the models also add a global reasoning step to local pair-

wise classification, typically using Integer Linear Programming, to exploit the transitivity property
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of temporal relations [Chambers and Jurafsky, 2008a]. Such a pair-wise classification approach

is often dictated by the way the data is annotated. In most of the widely used temporal data

sets [Pustejovsky et al., 2003b, Chambers et al., 2014, Styler IV et al., 2014a, O’Gorman et al.,

2016, Mostafazadeh et al., 2016], temporal relations between individual pairs of events and/or time

expressions are annotated independently of one another.

Our work is most closely related to that of [Kolomiyets et al., 2012], which also treats temporal

relation modeling as temporal dependency structure parsing. However, their dependency structure,

as described in [Bethard et al., 2012], is only over events, excluding time expressions which are an

important source of temporal information, and it also excludes states, which makes the temporal

dependency structure incomplete. We instead choose to develop our model based on the data set

described in [Zhang and Xue, 2018c], which introduces a more comprehensive and linguistically

grounded annotation scheme for temporal dependency structures. This structure includes both

events and time expressions, and uses the linguistic notion of temporal anaphora to guide the

annotation of the temporal dependency structure. Since in this temporal dependency structure

each paraent-child pair is considered to be an instance of temporal anaphora, the parent is also

called the antecedent and the child is also referred to as the anaphor. The corpus consists of data

from two domains: news reports and narrative stories.

4.2.2 Related Work on Neural Dependency Parsing

Most prior work on neural dependency parsing is aimed at syntactic dependency parsing, i.e. pars-

ing a sentence into a dependency tree that represents the syntactic relations among the words.

Recent work on dependency parsing typically uses transition-based or graph-based architectures

combined with contextual vector representations learned with recurrent neural networks (e.g. Bi-
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LSTMs) [Kiperwasser and Goldberg, 2016].

In temporal dependency parsing, for each event or time expression, there is more than one other

event or time expression that can serve as its reference time, while the most closely related one

is selected as the gold standard reference time parent. This naturally falls into a ranking process

where all possible reference times are ranked and the best is selected.

In this sense our neural ranking model for temporal dependency parsing is closely related to the

neural ranking model for coreference resolution described in [Lee et al., 2017], both of which

extract related spans of words (entity mentions for coreference resolution, and events or time ex-

pressions for temporal dependency parsing). However, our temporal dependency parsing model

differs from Lee et al’s coreference model in that, on one hand, the ranking model for coreference

only needs to output the best candidate for each individual pairing and cluster all pairs that are

coreferent to each other, while on the other hand, our ranking model for temporal dependency

parsing needs to rank not only the candidate antecedents but also the relations between the an-

tecedent and the anaphor. In addition, the model also adds connectivity and acyclic constraints in

the decoding process to guarantee a tree-structured output.

4.3 A Pipeline System

We build a two-stage pipeline system to tackle this temporal structure parsing problem. The first

stage performs event and time expression identification. In this stage, given a text as input, spans of

words that indicate events or time expressions are identified and categorized. We model this stage

as a sequence labeling process. A standard Bi-LSTM sequence model coupled with BIO labels is

applied here. Word representations are the concatenation of word and POS tag embeddings.
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The second stage performs the actual temporal structure parsing by identifying the antecedent

for each time expression and event, and identifying the temporal relation between them. In this

stage, given events and time expressions identified in the first stage as input, the model outputs a

temporal dependency tree in which each child node is an event or time expression that is temporally

related to another event or time expression or pre-defined meta node as its parent node. This

stage is modeled as a ranking process: for each node, a finite set of neighboring nodes are first

selected as its candidate parents. These candidates are then ranked with a neural network model

and the highest ranking candidate is selected as its parent. We use a ranking model because it is

simple, more intuitive, easier to train, and the learned model rarely makes mistakes that violate the

structural constraint of a tree.

4.4 Stage1: Neural Sequence Labeling Model

We use a neural sequence labeling model for the first stage: time expression and event identifi-

cation. For each sentence, a standard Bi-LSTM sequence model with BIO labeling is applied.

The concatenation of word and POS tag embeddings are used as word representations. Model

architecture is illustrated in Figure 4.1.

The Forward Computation is:

xk = [wk,posk]

x∗
k = BiLSTM(xk)

hk = tanh(W1 · xk + b1)

ok = softmax(hi)
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word embedding +
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Bi-LSTM (x*)

hidden layer (h)
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took a trip…… ……He .
POS1 POSk-1 POSk POSk+1 POSn

Figure 4.1: Neural Sequence Labeling Model Architecture.

Let D be the training data set of S sentences, Ns the number of words in sentence Ds, and yi the

gold BIO label for word i. The Learning process for our neural sequence labeling model tries to

optimize the following cost function:

C = −log
S∏
s

P (y1, ..., yNs|Ds)

= −log
S∏
s

Ns∏
i

P (yi|Ds)

=
S∑
s

Ns∑
i

−logP (yi|Ds)

For each training example i, cross-entropy loss is minimized:

L = −logP (yi|Ds)

= −log exp[oyi ]∑
y′i
exp[oy′i ]

where the concatenation of oy′i forms oi as described in the forward computation equations above.

80



4.5. Stage2: Neural Ranking Model

4.5 Stage2: Neural Ranking Model

4.5.1 Model Description

We use a neural ranking model for the parsing stage. For each time expression or event node i

in a text, a group of candidate parent nodes (time expressions, events, or pre-defined meta nodes)

are selected. In practice, we select a window from the beginning of the text to two sentences after

node i, and select all nodes in this window and all pre-defined meta nodes as the candidate parents

if node i is an event. Since the parent of a time expression can only be a pre-defined meta node

or another time expression as described in [Zhang and Xue, 2018c], we select all time expressions

in the same window and all pre-defined meta nodes as the candidate parents if node i is a time

expression. Let y′i be a candidate parent of node i, a score is then computed for each pair of

(i, y′i).Through ranking, the candidate with the highest score is then selected as the final parent for

node i.

Model architecture is shown in Figure 4.2. Word embeddings are used as word representations (e.g.

wk). A Bi-LSTM sequence layer is built on each word over the entire text, computing Bi-LSTM

output vectors for each word (e.g. w∗
k ). The node representation for each time expression or event

is the summation of the Bi-LSTM output vectors of all words in the text span (e.g. xi). The pair

representation for node i and one of its candidates y′i is the concatenation of the Bi-LSTM output

vectors of these two nodes gi,y′i
= [xi,xy′i

], which is then sent through a Multi-Layer Perceptron

to compute a score for this pair si,y′i . Finally all pair scores of the current node i are concatenated

into vector ci, and taking softmax on it generates the final distribution oi, which is the probability

distribution of each candidate being the parent of node i.
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…
…

…
…

word embedding (w)

pair representation (g)

concatenated scores (sc)

wkw1 wn

Bi-LSTM (w*)

hidden layer (h)

pair scores (sp)

output layer (o)

…… ……wk-1 wk+1

node representation (x) xi

took a trip…… ……He .
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Figure 4.2: Neural Ranking Model Architecture. xi is the current child node, and xa, xb, xc, xd

are the candidate parent nodes for xi. Arrows from Bi-LSTM layer to xa, xb, xc, xd are not
shown.

Formally, the Forward Computation is:

w∗
k = BiLSTM(wk)

xi = sum(w∗
k−1,w

∗
k ,w

∗
k+1)

gi,y′i
= [xi,xy′i

]

hi,y′i
= tanh(W1 · gi,y′i

+ b1)

si,y′i = W2 · hi,y′i
+ b2

ci = [si,1, ..., si,i−1, si,i+1, ..., si,i+t]

oi = softmax(ci)
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4.5.2 Learning

Let D be the training data set of K texts, Nk the number of nodes in text Dk, and yi the gold parent

for node i. Our neural model is trained to maximize P (y1, ..., yNk
|Dk) over the whole training set.

More specifically, the cost function is defined as follows:

C = −log
K∏
k

P (y1, ..., yNk
|Dk)

= −log
K∏
k

Nk∏
i

P (yi|Dk)

=
K∑
k

Nk∑
i

−logP (yi|Dk)

For each training example, cross-entropy loss is minimized:

L = −logP (yi|Dk)

= −log exp[si,yi ]∑
y′i
exp[si,y′i ]

where si,y′i is the score for child-candidate pair (i, y′i) as described in Section 4.5.1.

4.5.3 Decoding

During decoding, the parser constructs the temporal dependency tree incrementally by identifying

the parent node for each event or time expression in textual order. To ensure the output parse is

a valid dependency tree, two constraints are applied in the decoding process: (i) there can only

be one parent for each node, and (ii) descendants of a node cannot be its parent to avoid cycles.
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Candidates violating these constraints are omitted from the ranking process.1

4.5.4 Temporal Relation Labeling

The neural model described above generates an unlabeled temporal dependency tree, with each

parent being the most salient reference time for the child. However it doesn’t model the spe-

cific temporal relation (e.g. “before”, “overlap”) between a parent and a child. We extend this

basic architecture to both identify parent-child pairs and predict their temporal relations. In this

new model, instead of ranking child-candidate pairs (i, y′i), we rank child-candidate-relation tuples

(i, y′i, lk), where lk is the kth relation in the pre-defined set of possible temporal relation labels L.

We compute this ranking by re-defining the pair score si,y′i . Here, pair score si,y′i is no longer a

scaler score but a vector si,y′i of size |L|, where si,y′i [k] is the scaler score for y′i being the parent of

i with temporal relation lk. Accordingly, the lengths of ci and oi are number of candidates ∗ |L|.

Finally, the tuple (i, y′i, lk) associated with the highest score in oi predicts that y′i is the parent for i

with temporal relation label lk.

4.5.5 Variations of the Basic Neural Model

4.5.5.1 Linguistically Enriched Models

A variation of the basic neural model is a model that takes a few linguistic features as input explic-

itly. In this model, we extend the pair representation gi,y′i
with local features: gi,y′i

= [xi,xy′i
, φi,y′i

].

1An alternative decoding approach would be to perform a global search for a Maximum Spanning Tree. However,
due to the nature of temporal structures, our greedy decoding process rarely hits the constraints.
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Time and event type feature: Stage 1 of the pipeline not only extracts text spans that are time

expressions or events, but also labels them with pre-defined categories of different types of time

expressions and events. Readers are referred to [Zhang and Xue, 2018c] for the full category

list. Through a careful examination of the data, we notice that time expressions or events are

selective as to what types of time expression or events can be their parent. In other words, the

category of the child time expression or event has a strong indication on which candidate can be

its parent. For example, a time expression’s parent can only be another time expression or a pre-

defined meta node, and can never be an event; and an eventive event’s parent is almost certainly

another eventive event, and is highly unlikely to be a stative event. Therefore, we include the

time expression and event type information predicted by stage 1 in this model as a feature. More

formally, we represent a time/event type as a fixed-length embedding t, and concatenate it to the

pair representation gi,y′i
= [xi,xy′i

, ti, ty′i ].

Distance features: Distance information can be useful for predicting the parent of a child. In-

tuitively, candidates that are closer to the child are more likely to be the actual parent. Through

data examination, we also find that a high percentage of nodes have parents in close proximity.

Therefore, we include two distance features in this model: the node distance between a candidate

and the child ndi,y′i
, and whether they are in the same sentence ssi,y′i . One-hot representations are

used for both features to represent according conditions listed in Table 4.1.

The final pair representation for our linguistically enriched model is as follows:

gi,y′i
= [xi,xy′i

, ti, ty′i ,ndi,y′i
, ssi,y′i ]
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conditions for feature ndi,y′i
:

i.node_id− y′i.node_id = 1
i.node_id− y′i.node_id > 1 and i.sent_id = y′i.sent_id
i.node_id− y′i.node_id > 1 and i.sent_id 6= y′i.sent_id
i.node_id− y′i.node_id < 1
conditions for feature ssi,y′i:
i.sent_id = y′i.sent_id
i.sent_id 6= y′i.sent_id

Table 4.1: Conditions for node distance and same sentence features.

4.5.5.2 Attention Model on Time and Event Representation

In the basic neural model, a straight-forward sum-pooling is used as the multi-word time expression

and event representation. However, multi-word event expressions usually have meaning-bearing

head words. For example, in the event “took a trip”, “trip” is more representative than “took” and

“a”. Therefore, we add an attention mechanism [Bahdanau et al., 2014] over the Bi-LSTM output

vectors in each multi-word expression to learn a task-specific notion of headedness [Lee et al.,

2017]:

αt = tanh(W ·w∗t )

wi,t =
exp[αt]∑END(i)

k=START (i) exp[αk]

x̂i =
∑END(i)

t=START (i)wi,t ·w∗t

where x̂i is a weighted sum of Bi-LSTM output vectors in span i. The weights wi,t are automati-

cally learned. The final pair representation for our attention model is as follows:

gi,y′i
= [xi,xy′i

, ti, ty′i ,ndi,y′i
, ssi,y′i , x̂i, x̂y′i

]
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This model variation is also beneficial in an end-to-end system, where time expression and event

spans are automatically extracted in Stage 1. When extracted spans are not guaranteed correct

time expressions and events, an attention layer on a slightly larger context of an extracted span has

a better chance of finding representative head words than a sum-pooling layer strictly on words

within a event or time expression span.

4.5.5.3 Contextualized Word Embeddings for Word Representation

In our previous neural model variations, BiLSTM output vectors are used as word embeddings,

which are trained together with the rest of the neural network on given training data. This may not

give optimal word representations in situations where the training data size is limited. Therefore,

another model variation we experimented with is to add pre-trained contextualized word embed-

dings, in addition to BiLSTM output vectors, as word representations. We used pre-trained Chinese

BERT embeddings from Google2, and extended word representation w∗
k as a concatenation of the

two embeddings:

w∗
k = [BiLSTM(wk), BERT (wk)]

whereBERT (wk) is the BERT word embedding for word k; and weighted sum of the last 4 layers

of BERT with tuned weights are implemented.

2https://github.com/google-research/bert/blob/master/multilingual.md
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4.6 Experiments

4.6.1 Data

All of our experiments are conducted on the datasets described in [Zhang and Xue, 2018c]. This

is a temporal dependency structure corpus in Chinese. It covers two domains: news reports and

narrative fairy tales. It consists of 115 news articles sampled from Chinese TempEval2 datasets

[Verhagen et al., 2010a] and Chinese Wikipedia News3, and 120 fairy tale stories sampled from

Grimm Fairy Tales4. 20% of this corpus, distributed evenly on both domains, are double annotated

with high inter-annotator agreements. We use this part of the data as our development and test

datasets, and the remaining 80% as our training dataset.

4.6.2 Baseline Systems

We build two baseline systems to compare with our neural model. The first is a simple baseline

which links every time expression or event to its immediate previous time expression or event.

According to our data, if only position information is considered, the most likely parent for a child

is its immediate previous time expression or event. This baseline uses the most common temporal

relation edge label in the training datasets, i.e. “overlap” for news data, and “before” for grimm

data.

The second baseline is a more competitive baseline for stage 2 in the pipeline. It takes the output

of the first stage as input, and uses a similar ranking architecture but with logistic regression clas-

sifiers instead of neural classifiers. The purpose of this baseline is to compare our neural models

3https://zh.wikinews.org
4https://www.grimmstories.com/zh/grimm_tonghua/index
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against a traditional statistical model under otherwise similar settings. We conduct robust feature

engineering on this logistic regression model to make sure it is a strong benchmark to compete

against. Table 4.2 lists the features and feature combinations used in this model.

time type and event type features:
i.type and y′i.type
if i.type = absolute time and y′i.type = root
if i.type = time and y′i.type = root
are i.type and y′i.type time, eventive, or stative
are i.type and y′i.type root, time, or event
are i.type and y′i.type root, time, eventive, or stative
if i.type = y′i.type = event and ŷ.type = state,

for all ŷ between i and y′i
distance features:
if i.sent_id = y′i.sent_id
i.node_id− y′i.node_id
if i.node_id− y′i.node_id = 1
combination features:
if i.type = state and i.sent_id 6= y′i.sent_id
if i.type = state and i.node_id− y′i.node_id = 1
if i.type = y′i.type = event and

i.node_id− y′i.node_id = 1
if i.type = state and y′i.type = event and

i.node_id− y′i.node_id = 1 and
i.node_id_in_sent = 1 and
i.sent_id 6= 1

other features:
if i and y′i are in quotation marks

Table 4.2: Features in the logistic regression system.

4.6.3 Evaluation

We perform two types of evaluations for our systems. First, we evaluate the stages of the pipeline

and the entire pipeline, i.e. end-to-end systems where both time expression and event recognition,
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as well as temporal dependency structures are automatically predicted. Our models are compared

against the two strong baselines described in Section 4.6.2. These evaluations are described in

Section 4.6.3.1.

The second evaluation focuses only on the temporal relation structure parsing part of our pipeline

(i.e. Stage 2), using gold standard time expression and event spans and labels. Since most previous

work on temporal relation identification use gold standard time expression and event spans, this

evaluation gives us some sense of how our models perform against models reported in previous

work even though a strict comparison is impossible because different data sets are used. These

evaluations are described in Section 4.6.3.2.

All neural networks in this chapter are implemented in Python with the DyNet library [Neubig

et al., 2017]. The code is publicly available. For Stage 1, all models are trained with Adam

optimizer with early stopping and learning rate 0.001. The dimensions of word embeddings, POS

tag embeddings, Bi-LSTM output vectors, and MLP hidden layers are tuned on the dev set to 256,

32, 256, and 256 respectively. POS tags in Stage 1 are acquired using the joint POS tagger from

[Wang and Xue, 2014]. The tagger is trained on Chinese Treebank 7.0 [Xue et al., 2010]. For Stage

2, the dimensions of word embeddings, time/event type embeddings, Bi-LSTM output vectors, and

MLP hidden layers are tuned on the dev set to 32, 16, 32, and 32 respectively. The optimizer is

Adam with early stopping and learning rate 0.001.

4.6.3.1 End-to-End System Evaluation

Stage 1: Time and Event Recognition

For Stage 1 in the pipeline, we perform BIO tagging with the full set of time expression and
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event types (i.e. a 11-way classification on all extracted spans). Extracted spans will be nodes in

the final dependency tree, and time/event types will support features in the next stage. We evaluate

Stage 1 performance using 10-fold cross-validation of the entire data set. We use the “exact match”

evaluation metrics for BIO sequence labeling tasks, and compute precision, recall, and f-score for

each label type.

We first ignore fine-grained time/event types and only evaluate unlabeled span detection and

time/event binary classification to show how well our system identify events and time expres-

sions, and how well our system distinguishes time expressions from events. Table 4.3 shows the

cross-validation results on these two evaluations. Span detection and event recognition show sim-

ilar performance on both news and narrative domains. Time expressions have a higher recognition

rate than events in news data, which is consistent with the observation that time expressions usu-

ally have a more limited vocabulary and more strict lexical patterns. On the other hand, due to

the scarcity of time expressions in the Grimm data, time expression recognition in this domain has

a very high precision but low recall, which results in a much lower f-score than news. We also

put prior TempEval evaluation results in the table for a rough qualitative comparison. Please note

that TempEval time expressions and events are of different definitions than times and events in our

framework, hence these numbers are not directly comparable.

Labeled evaluation on full set time/event type classification are reported in Table 4.4. Time ex-

pressions have higher recognition rates than events on both domains, and dominant event types

(“event”, “state”, etc.) have relatively higher and more stable recognition rates than other types.

Event types with very few training instances, such as “modalized event” (<7%), achieve lower

and more unstable recognition rates. Other types with less than 2% instances achieve close to 0

recognition f-scores, and are not reported in this table.
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evaluated news grimm
label p r f p r f

all span .81 .74 .78 .83 .74 .78
time .83 .81 .82 .97 .62 .76
event .81 .73 .77 .83 .74 .78

TempEval-2 time* .90 .82 .86 - - -
TempEval-2 event* .92 .85 .88 - - -
TempEval-3 time* .91 .89 .90 - - -
TempEval-3 event* .81 .81 .81 - - -

Table 4.3: Stage 1 cross-validation on span detection and binary time/event recognition, with qual-
itative comparison with TempEval results. (* TempEval results reported here are the best per-
formance for each task on English in each TempEval. TempEval-1 doesn’t have time and event
detection tasks. Later TempEvals are on clinical domain and relatively less comparable. Both
TempEval 2 and 3 are on news domain only.)

time/event type news grimm
vague time .77 .82

concrete absolute .67 -
concrete relative .75 -

event .61 .77
state .65 .61

completed .62 .26
modalized .46 .31

Table 4.4: Stage 1 cross-validation f-scores on full set time/event type recognition.

Stage 2: Temporal Dependency Parsing

For Stage 2 in the pipeline, we conduct experiments on the six systems described above: a sim-

ple baseline, a logistic regression baseline, a basic neural model, a linguistically enriched neural

model, an attention neural model, and a model with contextualized word embeddings. All models

are trained on automatic spans and time/event types generated by Stage 1 using 10-fold cross-

validation, with gold standard edges (and edge labels) mapped onto the auto spans. Evaluations
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model
news grimm

unlabeled f labeled f unlabeled f labeled f
dev test dev test dev test dev test

temporal
relation
parsing

with
gold spans

Baseline-simple .64 .68 .47 .43 .78 .79 .39 .39
Baseline-logistic .81 .79 .63 .54 .74 .74 .60 .63

Neural-basic .78 .75 .67 .57 .72 .74 .60 .63
Neural-enriched .80 .78 .67 .59 .76 .77 .63 .65
Neural-attention .83 .81 76 .70 .79 .79 .66 .68

Neural-BERT .83 .83 .77 .74 .78 .80 .66 .68

end-to-end
systems

with
auto spans

Baseline-simple .39 .40 .26 .25 .44 .47 .27 .25
Baseline-logistic .36 .34 .24 .22 .43 .49 .33 .37

Neural-basic .37 .36 .21 .23 .42 .45 .33 .35
Neural-enriched .51 .52 .32 .35 .44 .49 .33 .37
Neural-attention .54 .54 .36 .39 .44 .49 .35 .39

Neural-BERT .61 .52 .40 .38 .51 .51 .42 .41

Table 4.5: Stage 2 results (f-scores) with gold spans and timex/event labels (top), and automatic
spans and timex/event labels generated by stage 1 (bottom).

in Stage 2 are against gold standard spans and edges, and evaluation metrics are precision, recall,

and f-score on 〈child, parent〉 tuples for unlabeled trees, and 〈child, relation, parent〉 triples for

labeled trees.

Bottom rows in Table 4.5 report the end-to-end performance of our six systems on both domains.

On both labeled and unlabeled parsing, our basic neural model with only lexical input performs

comparable to the logistic regression model. And our enriched neural model with only three simple

linguistic features outperforms both the logistic regression model and the basic neural model on

news, improving the performance by more than 10%. However, our models only slightly improve

the unlabeled parsing over the simple baseline on narrative Grimm data. This is probably due to (1)

it is a very strong baseline to link every node to its immediate previous node, since in an narrative

discourse linear temporal sequences are very common; and (2) most events breaking the temporal

linearity in a narrative discourse are implicit stative descriptions which are harder to model with

only lexical and distance features. Moreover, attention mechanism improves temporal relation la-
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beling on both domains, with both gold and automatic time and event spans. Finally, adding BERT

contextualized word embeddings helps in certain experimental settings but the improvements are

not consistent across the board.

4.6.3.2 Temporal Relation Evaluation

To facilitate comparison with previous work where gold events are used as parser input, we report

our results on temporal dependency parsing with gold time expression and event spans in Table 4.5

(top rows). These results are in the same ballpark as what is reported in previous work on temporal

relation extraction. The best performance in [Kolomiyets et al., 2012] are 0.84 and 0.65 f-scores

for unlabeled and labeled parses, achieved by temporal structure parsers trained and evaluated on

narrative children’s stories. Our best performing model (Neural-attention) reports 0.81 and 0.70 f-

scores on unlabeled and labeled parses respectively, showing similar performance. It is important

to note, however, that these two works use different data sets, and are not directly comparable.

Finally, parsing accuracy with gold time/event spans as input is substantially higher than that with

predicted spans, showing the effects of error propagation.

4.7 Conclusion

In this chapter, we present the first end-to-end neural temporal dependency parser. We evaluate the

parser with both gold standard and automatically recognized time expressions and events. In both

experimental settings, the parser outperforms two strong baselines and shows competitive results

against prior temporal systems.

Our experimental results show that the model performance drops significantly when automatically
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predicted event and time expressions are used as input instead of gold standard ones, indicating an

error propagation problem. Therefore, in future work we plan to develop joint models that simul-

taneously extract events and time expressions, and parse their temporal dependency structure.
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Chapter 5

Crowdsourcing Temporal Structure

Annotations

5.1 Introduction

In Chapter 3 we have shown that, by providing annotators with detailed guidelines and training

them in multiple iterations, the TDT representation can be annotated with high inter-annotator

agreement by experts. Chapter 4 further shows that a neural ranking model can be successfully

trained on the corpus. However, this “traditional” approach to annotation is time-consuming and

expensive. The question we want to answer in this chapter is whether TDT annotation can be

performed with crowdsourcing methods, an approach that has gained popularity as a means to

acquire linguistically annotated data quickly and cost-effectively for NLP research.

Crowdsourcing has been used to annotate data for a wide range of NLP tasks, including question

answering, word similarity, text entailment, word sense disambiguation, machine translation, in-
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formation extraction, summarization, semantic role labeling, etc. [Snow et al., 2008, Finin et al.,

2010, Zaidan and Callison-Burch, 2011, Lloret et al., 2013, Rajpurkar et al., 2018]. The key to ac-

quiring high quality data via crowdsourcing is to make sure that the tasks are intuitive or can be de-

composed into intuitive subtasks. In this chapter, we present a preliminary study on crowdsourcing

TDT annotations, and show that it is possible to acquire high quality temporal dependency struc-

tures through crowdsourcing, and that a temporal dependency parser can be successfully trained

on crowdsourced TDTs.

Example text:
He was borne1 in 1918t1. It wase2 a tough 
time for his family. Later, he startede3 
school at the Central Elementary. He 
wone4 a school prize in 1929t2. 

e1:born

t1:1918
includes

t2:1929

e4:won

includes

e2:was

overlap

e3:started

before

depend-on

ROOT

DCT
Present

_Ref

Figure 5.1: Example text and temporal dependency tree. Meta nodes are shown in blue, time ex-
pressions in orange, and events in green. TDT also includes meta nodes “Past_Ref,” “Future_Ref,”
and “Atemporal” which are not shown here.

The rest of the chapter is organized as follows. We first explain in detail how we set up this

dependency tree crowdsourcing annotation task (§5.2). Annotation experiments (§5.3) show that

it is hard to get good inter-annotator agreement when annotating temporal dependency structures

in a single step, but when temporal dependency structures are broken into smaller subtasks, high

inter-annotator agreement can be achieved. We also experiment with automatic TDT parsers on
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this new data, and show that our annotation can support the training of statistical parsers, including

an attention-based neural model (§5.4). We discuss related work (§5.5) and conclude with future

work (§5.6).

In this preliminary work, we: (1) introduced an effective approach to crowdsource structured tem-

poral annotations, a relatively complex annotation task; (2) built an English temporal dependency

tree corpus through crowdsourcing, with high agreements among workers; and (3) experimented

with automatic temporal dependency parsers on this new corpus and report competitive results.

5.2 Crowdsourcing Tasks Setup

5.2.1 Data Setup

Our TDT annotations are performed on top of the TimeBank corpus [Pustejovsky et al., 2003b],

with time expressions and events already extracted. Following [Zhang and Xue, 2018c], we focus

only on events that are matrix verbs in a sentence. In order to extract matrix verbs, we use the gold

constituent trees for the part of TimeBank whose gold trees are available in Penn Treebank, and

parse the rest of TimeBank with the Berkeley Neural Parser [Kitaev and Klein, 2018], trained on

Penn Treebank. All time expressions in TimeBank are kept.

To facilitate quality control in crowdsourcing and agreement evaluation, we distinguish two subsets

of the TimeBank dataset: (1) TB-small is a small subset of 10 short Wall Street Journal news docu-

ments with 59 matrix verbs. (2) TB-dense consists of the same 36 documents as in the TimeBank-

Dense corpus [Cassidy et al., 2014]. It contains 654 matrix verbs. TB-small and TB-dense are

annotated by both crowd workers and experts.
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5.2.2 Annotation Tasks

We set up two annotation tasks. The first is full temporal dependency tree annotation, where crowd

workers need to annotate both the dependency tree structure and the temporal relations between

each parent and child. The second is relation-only annotation, where crowd workers are given the

gold temporal dependency trees and their job is just to label the temporal relation for each parent-

child pair. Although the first task generates both the structure of a TDT and the temporal relations

on the edges, we still want to set up the second task as an evaluation analysis to compare temporal

relation annotation accuracies in our framework with prior work.

5.2.3 Crowdsourcing Design

For task one, the full temporal dependency tree annotation, in order to simplify the questions/instructions

to crowd workers, we split the task of annotating a full dependency tree into (1) finding the “par-

ent” for each individual event, and then (2) deciding the temporal relation between the “parent”

and the event. A crowd worker is given a text with a highlighted target event and a list of candidate

parent time expresisons and events. The job of the crowd worker is to select one parent from the

given list of candidates, and label the temporal relation between the parent and the target event.

For task two, relation-only annotation, a crowd worker is presented a text with the target event and

its parent highlighted. The job of the worker is to decide the temporal relation between the two.

For quality control, we perform a qualifying test on both annotation tasks. Any crowd worker

who wants to work on these tasks needs to complete annotations on TB-small and reach at least

70% accuracy against the expert gold annotation. We also perform a surviving test on the relation-

only annotation task. Crowd workers have to maintain at least a cumulative accuracy of 70% for
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their annotation. Workers with a lower accuracy will get blocked from the task and all of their

annotations will be discarded. Every annotation is completed by at least 3 annotators and the

majority vote is the final annotation.

At the end of this chapter, Figure 5.2 and Figure 5.3 give examples on crowdsourcing questions

for full structure relation annotation and for relation only annotation respectively.

5.3 Annotation Experiments

We perform the crowdsourcing tasks on the full TimeBank corpus. Crowd worker accuracies

against our expert gold annotations on TB-dense and worker agreements on TB-dense and the

entire TimeBank data are reported in Table 5.1. The crowd worker accuracy (ACC) is computed

against the gold TB-dense annotations, showing how consistent crowd worker annotations are with

expert annotations. Worker Agreements With Aggragate (WAWA) [Ning et al., 2018b] represents

the agreements among crowd workers themselves, showing how consistent their annotations are

with each other. Although the accuracy and agreement for full temporal dependency structure

annotation are relatively low, high accuracies and agreements are achieved for both the subtasks of

structure annotation and relation-only annotation (above 80%).

Full Structure Relation
TB-Dense ACC .53 .82 .83

TB-Dense WAWA .54 .81 .85
TB WAWA .52 .81 -

Table 5.1: Crowd worker accuracies (ACC) on gold TB-dense and worker agreements (WAWA)
on TB-dense and full TimeBank.

Statistics on our corpus and other similar TimeBank-based temporal relation corpora are presented

in Table 5.2. As the number of temporal relations is linear to the number of events and time ex-
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pressions in a text, fewer temporal relations need to be annotated in our corpus. In comparison,

MATRES [Ning et al., 2018b] only annotates verb events in a document while TB-dense annotates

a larger number of time expressions and events in a much smaller number of documents. Our cor-

pus retains the full set of TimeBank time expressions and covers comparable number of events as

MATRES. We pay $0.01 for each individual annotation and the entire TimeBank TDT annotation

cost about $300 in total.

Docs Timex Events Rels
TimeBank 183 1,414 7,935 6,418
TB-Dense 36 289 1,729 12,715
MATRES 275 - 1,790 13,577
This work 183 1,414 2,691 4,105

Table 5.2: Documents, timex, events, and temporal relation statistics in various temporal corpora.

5.3.1 Crowdsourcing Error Analysis

In order to understand the TDT annotations collected through crowdsourcing more intuitively, we

compare them with expert annotations and discuss some error analysis in this section. This analysis

is based on the 36 documents from Timebank-Dense that are TDT-annotated both by experts and

crowdsourcing workers. Major error types regarding an event’s parent include the followings.

Parent Error #1: Overlap Parent Mismatch

In this error, crowdsourcing workers and experts picked different temporal units as the parent for

an event. However, the two temporal units actually hold an “overlap” temporal relation and refer to

the same temporal location on the timeline. For example, in Text (26) below (event is highlighted

in blue, parents are highlighted in orange), the event “helping” happens overlapping this “week”

as well as DCT. In this example, experts and crowdsource workers agree on the parent’s temporal
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location (around this “week” or around DCT), however they picked different timex in the text to

represent that temporal location as the specific parent. Text (27) gives another example, the event

“learned” overlaps the timex “today”. Both indicate the same temporal location on the timeline

before which the event “taken” happened. This type of disagreements is settled in the annotation

guidelines by specific rules, which are, however, not easily transferable to crowdsourcing workers.

(26): Text: On the other hand, it’s turning out to be another very bad financial week for Asia. The

financial assistance from the World Bank and the International Monetary Fund are not helping.

Gold: DCT
overlap←−−− helping; DCT

overlap←−−− week

Crowd: DCT
overlap←−−− week

overlap←−−− helping

(27): Text: Finally today we learned that the space agency has taken a giant leap forward.

Gold: today
overlap←−−− learned before←−−− taken

Crowd: today before←−−− taken; today
overlap←−−− learned

Parent Error #2: DCT v.s. Close-by Timex Error

For an event that has a timex very close-by both in the text (e.g. in the same sentence or adjacent

sentences) and on the timeline (e.g. the event happened right before/after the timex), crowdsource

workers tend to pick the timex as the event’s parent. However, in many cases the DCT is a more

specific parent for the event. For example, in Text (28) below, although “hit a five year low”

happened indeed after the “five years”, it mostly describes what happened just now around the

time of DCT. And in Text (29), although “it’s time to reposition” before the “couple of years” of

changing, it is actually describing that “it’s time now (DCT)”.

(28): Text: In Singapore, stocks hit a five year low.
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Gold: DCT
overlap←−−− hit

Crowd: five year after←−− hit

(29): Text: I think that the mood is fairly gloomy, and I think it’s not going to change for a couple

of years. So for Hong Kong, it’s time as investment bankers like to say, to reposition.

Gold: DCT
overlap←−−− time

Crowd: a couple of years before←−−− time

Parent Error #3: Not Most Specific Parent Error

This error type is a more general form of the last one. In this error, crowdsource workers pick a

temporally related parent for an event, but it is not the most specific temporal location the event

depends on. For example, in Text (30) below, “you can get seventy percent discounts” in the

temporal location “the past three months”. It is indeed before DCT, but is also a more specific

temporal location than merely “before DCT”. In Text (31), “saw an explosion” happened first,

then “tries to raise” happened, and then “asks the eastwind pilot” happened last. “tries to raise” is

a more specific temporal location than “saw an explosion”.

(30): Text: But in the past three months stocks have plunged, interest rates have soared and the

downturn all across Asia means that people are not spending here. Hotels are only thirty percent

full. You can get seventy percent discounts at the shopping malls.

Gold: the past three months
overlap←−−− get

Crowd: DCT before←−−− get

(31): Text: We just saw an explosion up ahead of us here about sixteen thousand feet or some-
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thing like that. It just went down. The controller at Boston center tries to raise TWA eight hundred.

There is no response. Later, the controller asks the eastwind pilot for more details.

Gold: tries after←−− asks

Crowd: saw after←−− asks

Parent Error #4: Intentional Event Error

This category of errors is in regard to future intentional events that haven’t happened yet (usually

realized in the form of verb infinitives). Some intention events are incorrectly identified as parents,

some intention events’ temporal locations are incorrectly identified. In Text (32) below, “raise” is

an intentional event that the controller at Boston center was trying to do. It’s unclear whether or

not it actually happened after the “trying” event, and is not a valid temporal location to serve as a

parent. In Text (33), “demise” was “predicted” but not realized. It doesn’t indicate a valid temporal

location and cannot serve as a parent.

(32): Text: The controller at Boston center tries to raise TWA eight hundred. TWA eight hundred,

if you hear center, ident.

Gold: tries after←−− hear

Crowd: raise after←−− hear

(33): Text: People have predicted his demise so many times, and the US has tried to hasten it on

several occasions. Time and again, he endures.

Gold: predicted after←−− endures

Crowd: demise
overlap←−−− endures
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Parent Error #5: Quoted Event Error

For quoted events with a timex attached with it, crowdsource workers tend to pick the timex as

the parent. However, this is not always necessarily true. For example, in the following text (34),

Saddam “said” he will do the event “begin” on timex “Friday”. It doesn’t mean the event “begin”

actually happens on “Friday”.

(34): Text: In a letter to President Hashemi Rafsanjani of Iran, Saddam said he will begin with-

drawing troops from Iranian territory on Friday and release Iranian prisoners of war.

Gold: said after←−− begin

Crowd: Friday
overlap←−−− begin

Parent Error #6: Aspectual Event Error

This category regards aspect events (begin, continue, etc.). Crowdsource workers tend to skip

aspect events as possible parents or annotate incorrect temporal relations for them. For example, in

the following text (35), crowdsource workers didn’t consider “begin” as a valid parent candidate.

Please note that, with a finer temporal relation set, “withdrawing” should be “overlap_after” to

“begin”. However, we are using a coarse temporal relation label set, and such aspectual relations

are annotated only as “after” according to our annotation guidelines.

(35): Text: In a letter to President Hashemi Rafsanjani of Iran, Saddam said he will begin with-

drawing troops from Iranian territory on Friday and release Iranian prisoners of war.

Gold: begin after←−− withdrawing

Crowd: said after←−− withdrawing
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Major error types regarding an event’s temporal relation with its parent include the followings.

Relation Error #1: Completed Event Error

For completed events, crowdsource workers tend to consider the temporal location of the “com-

pleted” state rather than the temporal location of the “happening” of the event. For example, in

Text (36), the state of “having backed out” overlaps with “Now”, while the happening of “backing

out” was before “Now”. And in Text (37), the state of “having become” overlaps with “say (i.e.

DCT)”, while the happening of “becoming” happened before “say”.

(36): Text: Now with new construction under way, three of his buyers have backed out.

Gold: Now before←−−− backed

Crowd: Now
overlap←−−− backed

(37): Text: Many NASA watchers say female astronauts have become part of the agency’s rou-

tine.

Gold: say before←−−− become

Crowd: say
overlap←−−− become

Relation Error #2: Modalized Event Error

For modalized events, crowdsource workers tend to consider the temporal location of the “happen-

ing” of the event, rather than the temporal location of the “state” the modalized event expresses

(e.g. ability, willingness, obligation, etc. to do something). For example, in Text (38), the state

of “she can’t find buyers” overlaps with the state of her “owning” eight properties. The actual

“finding” event hasn’t happened yet. And in Text (39), the state of “no one should doubt” overlaps
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with him saying the sentence, while the actual “doubting” event might or might not have happened

and its temporal location is not of interest here.

(38): Text: Pamela owns eight condominiums here. She can’t find buyers.

Gold: owns
overlap←−−− find

Crowd: owns after←−− find

(39): Text: “No one should doubt our staying power or determination.” he said.

Gold: said
overlap←−−− doubt

Crowd: said after←−− doubt

There is also a small percentage of other errors, such as close-by timex that’s not temporal related

to the event incorrectly annotated as the parent, or text with inherent ambiguities. For example,

the following sentence (40) has a PP-attachment ambiguity. While experts read it as the naming

happens in December, crowdsource workers read it as the mission happens in December and the

naming happens beforehand.

(40): Text: Air Force Lieutenant Colonel Eileen Collins will be named commander of the Space

Shuttle Columbia for a mission in December.

Gold: December
overlap←−−− named

Crowd: December before←−−− named

These error types that crowdsource workers have highly agree with disagreements our expert an-

notators had during the process of designing our TDT annotation guidelines and through the pilot
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annotation experiments on our Chinese TDT corpus. Most of these errors – such as completed

events errors, DCT v.s. clost-by timex errors, etc. – can be eliminated with trained annotators

through guidelines and rules. However, with untrained crowdsource workers who are not familiar

with linguistic concepts such as modalized events, these rules prove to be challenging to imple-

ment.

5.4 System Experiments

Experiment 1: Sanity Check and Corpus Baselines

In order to perform a sanity check on our crowdsourced corpus and provide baseline results for fu-

ture bench-marking, the first experiment we conducted was applying our state-of-the-art attention-

based neural temporal dependency parser [Zhang and Xue, 2018a]1 on this new corpus, including

crowdsourced and expert annotated data.

Our training data consists of two parts concatenated together. The first part is the crowdsourced

temporal dependency annotations over the TimeBank documents (excluding documents that are in

the dev and test sets in the TimeBank-Dense corpus2). The second part is our expert-annotated

TDTs on the TimeBank-Dense training set documents. The parser is tuned and evaluated on our

expert TDT annotations on the TimeBank-Dense dev and test sets, respectively. This neural model

is the same with the Neural-Attention model as described in Chapter 4. It represents words with

bi-LSTM vectors and uses an attention-based machenism to represent multi-word time expressions

and events.

1https://github.com/yuchenz/tdp_ranking
2Standard TimeBank-Dense train/dev/test split can be found in [Cassidy et al., 2014].
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We also experiment with two baseline parsers from [Zhang and Xue, 2018a]: (1) a simple baseline

that takes an event’s immediate previous time expresion or event as its parent and assigns the

majority “overlap” as the temporal relation between them; and (2) a logistic regression model that

represents time expressions and events with their time/event type features, lexical features, and

distance features.

The first three rows in Table 5.3 show the performance of these systems on our data with both

the large crowdsourced corpus and the small expert-annotated corpus. “Zhang-2018 Simple” and

“Zhang-2018 Neural” rows are the performance of the simple baseline and their best neural system

on expert-annotated Chinese news data, as reported in [Zhang and Xue, 2018a]. Comparing the

simple baseline performance on the two data sets, we can tell that Chinese news data set has a

higher proportion of linear overlap relations and thus a higher majority baseline than English.

Model
Struture
-only F

Structure +
Relation F

dev test dev test
Simple Baseline .43 .42 .15 .18
LogReg Baseline .64 .70 .36 .39

Neural Model .75 .79 .53 .60
Zhang-2018 Simple .64 .68 .47 .43
Zhang-2018 Neural .83 .81 .76 .70

Table 5.3: Parsing results of the simple baseline, logistic regression baseline, and the neural tem-
poral dependency model.

Comparing the neural model performance on the two languages, we can see that the off-the-shelf

neural parser performs comparably on the two languages even though the Chinese data sets are

annotated with carefully trained annotators. The performance difference on full structure + relation

parsing is greater (0.60 v.s. 0.70 f-scores on test set). This is likely due to error propagation through

crowdsourcing in a two-staged annotation setup. On the other hand, comparable structure-only

parsing performance (0.79 v.s. 0.81 f-scores on test set) shows that our crowdsourced data provide
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consistent temporal information that can be learned with statistical models.

Comparisons between the logistic regression baseline and the neural model show that the neural

model adapts better to new data sets (and a different language) than the logistic regression model

with manually-crafted language-specific features.

Experiment 2: Annotation Quality Check

In order to check the quality of our new corpus from a system’s perspective and how effective

the approach of crowdsourcing is for collecting large temporal dependency tree data for system

training, we performed this experiment for a comparison between TDT parsers trained on gold

data V.S. TDT parsers trained on crowdsourced data.

Models are trained on three different data settings. For the first data setting, we used the standard

Timebank-Dense data split for training, dev, and test sets, and used only expert-annotated TDT an-

notations. In other words, systems are trained and tuned with small gold training and dev data, and

evaluated against gold test data. For the second data setting, we split our crowdsourced Timebank

TDT annotations into training, dev, and test set, using the same documents as in Timebank-Dense

dev set for dev, and the same documents as in Timebank-Dense test set for test. The rest documents

are the training set. Therefore, systems are trained and tuned with large crowdsourced data, and

evaluated against gold test data. For the third data setting, we used crowdsourced TDT annotations

on Timebank-Dense only, with the same train/dev/test data split. The purpose of this experiment

is to have a direct comparison on how well parsers can be trained using the same amount of expert

data V.S. crowdsourced data.

Experimental results for both logistic regression and neural model are illustrated in Table 5.4. It’s

evidently shown that across the board, a large crowdsourced training/dev dataset is very helpful on
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improving parser performances over a small gold training/dev dataset. Moreover, even only on a

small dataset, TDT parsers can be trained to perform basically as well on crowdsourced annotations

as on expert annotations.

Model Training / Dev Data
Structure + Structure
Relation F -only F
dev test dev test

Baseline - .15 .18 .43 .42

LogReg

Gold, Small .28 .34 .46 .49
Crowdsourced, Small .28 .33 .45 .51
Crowdsourced, Large .30 .35 .50 .53

Crowd Large + Gold Small .36 .39 .64 .70

Neural

Gold, Small .42 .45 .60 .60
Crowdsourced, Small .41 .47 .60 .59
Crowdsourced, Large .49 .53 .66 .69

Crowd Large + Gold Small .53 .60 .75 .79

Table 5.4: Comparison between TDT parsers trained on gold data V.S. TDT parsers trained on
crowdsourced data.

5.5 Related Work

Although crowdsourcing is widely used in other NLP tasks, there have been only a few temporal

relation annotation tasks via crowdsourcing. The first attempt on crowdsourcing temporal relation

annotations is described in [Snow et al., 2008]. They selected a restricted subset of verb events from

TimeBank and performed strict before/after temporal relation annotation through crowdsourcing.

They reported high agreements showing that simple temporal relations are crowdsourceable. [Ng

and Kan, 2012] adopts the TimeBank temporal representation, and crowdsourced temporal an-

notations on news articles crawled from news websites. Their experiments show that the large

crowdsourced data improved classifier performance significantly. However, both of these works
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focused on pair-wise temporal relations and didn’t experiment with crowdsourcing more complex

temporal structures.

[Ning et al., 2018b] proposes a “multi-axis” representation of temporal relations in a text, and

annotates this representation on the TempEval-3 corpus through crowdsourcing. They argue that

events need to be annotated on different “axes” according to their eventuality types, and for events

on the same axis, pair-wise temporal relations are annotated. Their annotation task is broken down

to two smaller subtasks too. In the first subtask, crowd workers annotate whether an event is on a

given axis. In the second subtask, crowd workers annotate the temporal relations between pairs of

events on the same axis. The main differences between their work and ours are as follows. First,

they only model events, excluding time expressions which are important temporal units in text

too. Second, our temporal dependency tree representation is very different from their multi-axis

temporal representation, which requires different crowdsourcing task designs. In their first subtask,

crowd workers need to distinguish different eventuality types, while our annotation experiments

show that crowd workers can also consistently recognize “parents” as defined in [Zhang and Xue,

2018c] for given events.

5.6 Conclusion and Future Work

In this chapter, we introduce a preliminary study on a crowdsourcing approach for acquiring anno-

tations on a relatively complex NLP concept – temporal dependency structures. We build the first

English temporal dependency tree corpus on top of TimeBank through high quality crowdsourc-

ing. Our system experiments show that competitive temporal dependency parsers can be trained

on our newly collected data. Errors and issues with this preliminary crowdsourcing approach are

discussed, showing promising future directions of research.
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Figure 5.2: Example crowdsourcing question for full structure and relation annotation. Crowd-
source workers will read this passage, recognizing the event in question (blue), all time expres-
sions (orange), and candidate event parents (green). Then they will consider when the blue event
happens, and with which time expression or candidate parent event they can describe it the best.
For example, if a crowdsource worker decides that “remain” happens after “hopes”, then he will
pick the option (E.) and copy “hopes,[e356]” into the blank text box under option E.
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Figure 5.3: Example crowdsourcing question for relation only annotation. Crowdsource workers
will read this passage, recognizing the two events in question. Then they will consider the temporal
relation between the two events, and pick the according option.
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Conclusion and Future Directions

6.1 Conclusion

In this thesis, we present research around various aspects of temporal information modeling: from

temporal representation, to temporal structure data collection, then to automatic temporal parsers.

To overcome the issues of redundancy and conflicts in pair-wise temporal relation representations

without introducing computationally expensive global constraints, we designed a novel representa-

tion to model temporal information in text – the Temporal Dependency Tree (TDT) Structure. We

show that this structure is linguistically intuitive, and is amenable to computational modeling. As

a proof-of-concept and resource for further research, we built a TDT corpus of 235 documents in

Chinese, covering two domains: news and narratives. High and stable inter-annotator agreements

in our annotation experiments provide further evidence supporting this structured interpretation

of temporal relations. This corpus is publicly available for future research on temporal relation

analysis, story timeline construction, as well as numerous other applications.
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To enable computers to automatically learn and parse TDT structures, we built the first end-to-

end neural temporal dependency parser. This parser was evaluated with both gold standard and

automatically recognized time expressions and events. In both experimental settings, the parser

outperforms two strong baselines and shows competitive results against prior temporal systems.

In order to collect TDT data more effectively and efficiently, we proposed a preliminary crowd-

sourcing approach to acquire TDT annotations. Since TDT structure is a very complex structure

for crowdsourcing workers, this approach was specially designed to simplify complicated linguistic

concepts in TDT and the task in general. This approach was evaluated by crowdsourcing annotation

experiments on English Timebank corpus. We show that high quality TDT structure annotations

can be collected through our specially-designed crowdsourcing approach. To build English TDT

resource, we collected English TDT annotations on top of the Timebank corpus (183 documents

in total) using this crowdsourcing approach. Finally, we extended our neural TDT parser to the

English TDT corpus. System experiments show that our parser can be easily applied to English

TDT parsing without much modification. Although these results are still preliminary, they show

promising directions of future research.

Temporal information modeling, including but not limited to temporal representation, temporal

corpora, and temporal parsing, is a very important task to natural language understanding. How-

ever, it’s still a growing field of research and we still have a long way to go in order to put such

technique to practice. We summarize the promising future directions related to temporal informa-

tion modeling in the rest of this chapter, in the hope that these ideas will inspire researchers in this

field and lead to further improvements.
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6.2 Future Directions

6.2.1 Chinese Temporal Machine Reading Comprehension with TDT

Machine Reading Comprehension tasks have attracted a large amount of research interest in recent

years. From cloze-style MRC tasks [Cui et al., 2016, Cui et al., 2017, Zheng et al., 2019], to span-

extraction MRC tasks [Cui et al., 2018, Shao et al., 2018, Yao et al., 2019], and to multi-document

open-domain MRC tasks [He et al., 2018, Li et al., 2016], researchers have been interested in

building better and larger MRC corpora in English, Chinese and other languages, as well as de-

veloping and improving better MRC systems. Since Temporal Dependency Tree structure models

events and temporal relations in a computational efficient representation, we are curious to see if it

helps Machine Reading Comprehension (MRC) tasks regarding temporal-related questions.

In this work, we propose to apply TDT structure onto single-document span-extraction MRC,

focusing on temporal-related questions only. From existing Chinese MRC datasets, we collected

5,637 temporal-related (context, question, answer) tuples (see Table 6.1). Questions asking about

when something happens (e.g. questions containing “when”) are filtered out as temporal-related

questions.

Dataset # Temporal Qs # Qs
CMRC-2018 [Cui et al., 2018] 798 14k

DRCD [Shao et al., 2018] 1,537 33k
SMART [Yao et al., 2019] 3,302 39k

Total 5,637 86k

Table 6.1: Statistics on temporal questions in existing MRC datasets.

With proper data preprocessing (word segmentation, event and time expression extraction, and

TDT parsing), we propose to build a system that (1) matches the event mentioned in a question to an
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event in the context through data-driven or heuristic approaches, and (2) finds the time expression

for the event through a heuristic-based temporal reasoning process on TDT. To evaluate this system,

we will compare its performance with existing (already trained) MRC systems’ performance on a

set of temporal-related questions.

6.2.2 Chinese Temporal MRC Dataset Construction with TDT

A preliminary search on temporal-related MRC questions shows that although there are abundant

corpora on MRC tasks, the amount of temporal-related questions is very limited. Within the a

few span-extraction MRC datasets we have looked at, temporal-related questions only take up

around 6.5% of the entire data (see Table 6.1). This small data size could potentially limit the

research and development of temporal-oriented MRC systems. Therefore, we propose to construct

a Chinese Temporal MRC dataset using existing annotations on our TDT corpus. We propose

to (1) build a heuristic-based tool that generates full event descriptions based on an event anchor

on TDT (either extractive or abstractive descriptions, probably with the help of syntactic parsing

trees); (2) generate temporal-related questions and answers regarding these events using heuristic

methods; and (3) provide baseline results by applying existing MRC systems (already trained) on

this dataset.

6.2.3 Life Events / Historical Events Timeline Construction with TDT

Timeline Summarization or Storyline Construction is the task of organizing crucial milestones of

a news story in a temporal order. Most prior research focused on multi-document summarization,

and aimed at summarizing a large number of short news reports on the same topic, to construct a
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timeline of the news story. In these tasks, the Document Creation Times are usually mainly used

as the timestamps on the timeline. There have been little single-document timeline construction

tasks. However, for articles that are temporally-organized in nature, such as a person’s life events

descriptions (e.g. Einstein’s “Early Life” descriptions on Wikipedia) or historical events descrip-

tions (e.g. descriptions of the Battle of Midway on Wikipedia), a timeline list of events is a concise

summarization of the article, a clear representation of the historical time period, and can potentially

help human comprehension of the person or the history.

In this work, we propose to apply TDT structure onto temporally-organized articles, such personal

life biographies, historical event descriptions, etc., to construct a timeline of major events hap-

pened in a certain historical event, or a person’s certain period of lifetime. We propose to (1) dump

relevant data from Wikipedia (i.e. articles on celebrity life descriptions, or historical event descrip-

tions), and manually select a small set of articles; (2) preprocess data with word segmentation,

time expression and event extraction, and TDT parsing; and (3) build a heuristic-based system that

generates full event descriptions based on an event anchor on TDT (either extractive or abstrac-

tive descriptions, probably needs the help of syntactic parsing trees), and converts a TDT into a

timeline list of events.

6.3 Other Future Directions

Our experimental results of the neural TDT parser on the Chinese TDT corpus show that the model

performance drops significantly when automatically predicted event and time expressions are used

as input instead of gold standard ones, indicating an issue of error propagation. A joint model that

simultaneously extracts events and time expressions, as well as parses their temporal dependency

structures will alleviate the error propagation problem, and indicates a possible research direction.
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Chapter 6. Conclusion and Future Directions

Parsing experiments on our Chinese TDT corpus show that our parsers perform much better on

the news data than the narrative stories. Since our parsers are trained on two domains separately,

Domain Adaptation techniques are potentially useful here for leveraging data on multiple domains

to train better parsers for narrative stories, and for building cross-domain TDT parsers.

Lastly, since our expert-annotated Chinese TDT data and crowdsourced English TDT data are

relatively small corpora, future directions also include more TDT data crowdsourcing. Larger

TDT corpora will support further TDT parser development and improvements.
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Appendix A

A.1 Chinese Temporal Dependency Tree Annotation Guidelines

A.1.1 Time Expression Recognition

The first pass of annotation is to mark out spans that are time expressions (timex), which are the

backbones of the final temporal dependency parses. For Grimm and Wikinews data, annotation

from scratch is needed. For TempEval2 data, its originally annotated timex are adopted first, then

small modifications are applied and some missing timex are added, too.

Some rules to help marking out timex spans are:

1. Two or more timex that are next to (or very close to) each other and express one temporal

location that is the reference time for nearby events should be merged into one span and

marked as one timex.
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• 去年下半年月月逆差

• 1997年全年的累计顺差额降到微不足道的数目

• 从1994年11月18日破土动工到锥炉点火成功

• 今年一至十一月份

• 今明两年

• “七五”期间（一九八六至一九九零年）

• 二十世纪初期

2. Timex that are durations with a temporal aspect marker should be merged with the marker

to form a complete temporal location.

• 五年前

• 中国已经确定未来五年高技术研究重点

3. A name that is specifically given to refer to a period of time on the timeline should be marked

as a timex.

• “八五”期间

• 战国时期

A.1.2 Time Expression Classification

The second pass of annotation is to give every timex a label, making some characteristics about

the timex explicit, which will be helpful for downstream annotations.
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In this labeling task, we make a distinction between timex that are temporal locations and the ones

that are not. We define a timex that can be located on the timeline, and express a starting and an

ending temporal boundary as a temporal location. For example, “1997年”, “一至十一月份”, “目

前”, “从前”, “二十世纪初期”, “20分钟之后” are all temporal locations, but “每秒”, “连年”,

“初期患者”, “他标注一篇大概需要20分钟” are all NOT temporal locations. As shown here,

two timex with the same lexical words can express both a temporal location and a non-temporal

location, depending on their context. When considering whether a timex is a temporal location,

look at both the timex itself and its context, and consider the following rules to help you make the

distinction. The final goal of this annotation project is to find a reference time for each event, so we

only care about the timex that can temporally locate to a span on the timeline. Therefore, we give

all non-temporal location timex the label “Timex-Ignore”, not considering them as valid reference

times for events.

Some rules to help making the distinction between temporal locations and non-temporal locations

are:

1. A timex that expresses the concept of a duration of time that can not be anchored to the

timeline is labeled “Timex-Ignore”.

• 仅用了十三个月，工期比一期缩短了十八个月，比世界建设最快的同类项目还

提前了五个月

• 为期十五年的“八六三”计划

• 每年都有几次历时半月以上

• 长期发展慢的电子类产品发展加速

2. A timex that expresses a unit time for measurement that can not be anchored to the timeline
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is labeled “Timex-Ignore”.

• 每年都有几次历时半月以上

• 每月只需交纳极低的租金

• 年产12万吨聚氯乙烯,年产量超过设计能力百分之七十八

• 我们自己开发的计算机每秒计算速度

• 扭转了对外贸易连年逆差的形势

3. A timex that’s an ordinal is labeled “Timex-Ignore”.

• 并连续第三年实现顺差

4. A timex that expresses a phase of a generic process is labeled “Timex-Ignore”.

• 晚期乙肝疾病往往会转化为肝癌

5. Timex that refer to events as temporal locations are “Timex-Ignore”. These events will be

marked, and surrounding events will be temporally located based on these events.

• 建国初期，重庆是中共中央西南局和西南军政委员会所在地，为中央直辖市。

• 战后初期，苏、美、英、法四大国据据“雅尔塔协议”划分了势力范围，并分区

占领了德国及其首都。

6. Timex such as “当时”, “那时”, “不久”, “期间”, etc. that are referring to other events are

“Timex-Ignore”. The temporal locations between these events will be represented by their

relations between each other, rather than their relations with these timex.

• 战后初期，苏、美、英、法四大国据据“雅尔塔协议”划分了势力范围，并分区

占领了德国及其首都。当时德国的最高决策当局是“盟国管制委员会”。德国此
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后长期处于无权和被分裂的状态。不久，美苏两国在欧洲的较量使原来的反法

西斯联盟发生了分裂，德国也一分为二。在西边，美国组织北约，扶植西德，

以“遏制”苏联；在东边，苏联组建华约集团，把东德建成对付西方的桥头堡。

分裂的德国成了东西方冷战对峙的前线。从那时起，欧洲政局无一日安宁，危

机重重。

For timex that are temporal locations, we make another two distinctions. The first distinction

is between concrete timex and vague timex. Concrete timex are timex that express a specific

temporal location. For example, “1997年”, “六十年代中期”, “21日” are all concrete timex.

Their starting and ending temporal boundaries on the timeline can be determined. We consider

both exact boundaries and loose boundaries as valid temporal location boundaries. For example,

“1997年” has exact starting and ending temporal boundaries as 1997-01-01:00:00:00 and 1997-

12-31:24:59:59, while “六十年代中期” has loose temporal boundaries as, depending on different

people’s interpretation of “中期”, maybe 1963 to 1967. Usually a concrete timex that has exact

temporal boundaries plus a timex indicating the sub-part in it is considered a concrete timex with

loose boundaries. For example, “初”, “初期”, “月末”, “年底”, “中期” can all be attached to

the end of a concrete timex forming another concrete timex. Vague timex are timex that express

the concept of (or a period in) general past, general present, or general future, without specific

temporal location boundaries. Some examples are “目前”, “近几年”, “从前”, “有一天”.

The second distinction is made only among concrete timex. It’s between absolute concrete timex

and relative concrete timex. Absolute timex are timex that contain all information needed to be

located on the timeline. For example, “1997年”, “六十年代中期”, “‘八五’期间” are all absolute

timex. One can easily find their starting and ending temporal boundaries on the timeline without

help from other spans of text. Relative timex are timex that need the help from other timex to
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interpret their temporal locations. For example, “今年”, “一至十一月份”, “过去三年” are all

relative timex. “今年”’s temporal location is dependent on the Document Creation Time (DCT)

which is usually a metadata of the yyyy-mm-dd format. The timex itself “今年” only expresses

the meaning “in the same year with DCT”. If, for example, the year of DCT is 1997, we can

then interpret “今年” as 1997 on the timeline. Similarly, “一至十一月份” expresses “January to

November in the year of DCT”, and “过去三年” expresses “the past three years before the year of

DCT”. Timex other than DCT can be the reference timex as well. For example, in the following

discourse,

• 约恩·乌松，丹麦籍的著名建筑设计师，于11月29日在睡梦中病逝，享年90岁。乌

松近年来一直被心脏病困扰，今年还做过几次手术，26日曾经心脏病发。

“11月29日”, depending on DCT (which for example is 2008-12-01), will be interpreted as 2008-

11-29, and “26日”, depending on “11月29日”, will then be interpreted as 2008-11-26.

These two distinctions help with the next pass of annotation, the annotation of timex parses, in (1)

determining whether a timex needs a reference time (relative timex do and absolute timex don’t),

and (2) whether the timex needs a general past/present/future reference time, or a specific timex or

DCT reference time (concrete timex need a specific one and vague timex need a general one).

For future work, these two distinctions will also help with timex normalization. Vague timex’s

normalizations are merely their general reference time, concrete absolute timex’s normalizations

can be computed using their lexical words, and concrete relative timex’s normalizations can be

computed using their lexical words together with their reference time’s normalization.

In other words, this pass of annotation is a four-way classification task. The four categories are:

vague timex, concrete absolute timex, concrete relative timex, and timex that are not temporal
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locations and need to be ignored. The four labels we use are:

• Timex-ConcreteAbsolute

• Timex-ConcreteRelative

• Timex-VagueRelative

• Timex-Ignore

Here we consider all vague timex as relative because they depend on either a general past/present/future

reference time or another vague timex to be located on the timeline. Examples for vague timex de-

pending on another vague timex are most seen in narrative stories. For example, in the following

discourse,

• 从前有一个家境贫穷，但是心地善良的小姑娘和母亲过着孤苦伶丁的生活，她们总

是吃不饱肚子。有一天小姑娘走进森林，遇到了一位老婆婆。

“从前” is a vague timex that depends on general past, and “有一天”, depending on “从前”, will

be interpreted as a temporal location that spans one day’s length on the timeline in the general past

section.

Some examples for different time expression categories are:

A.1.3 Time Expression Reference Time Resolution

The third pass of the annotation is to find the reference time for each relative timex. Vague

timex’s reference times can be general past/present/future, or another vague timex. Concrete rel-

ative timex’s reference timex can be DCT, or another concrete timex. No further annotations are
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Absolute Relative

Concrete
1997年, “八五”期间,

1995年底*,六十年代中期*

这一年,今年,上年,过去三年,
去年7月份,去年下半年,今年一至十一月份,
上半年,本世纪末*, 1月20日,一至十一月份,

21日,九月初*,星期三
Vague - 日前,目前,近几年,现,同时,从前,有一天

Table A.1: Some examples for different timex types.

needed on concrete absolute timex and ignored timex. For each reference time/timex pair, annotate

a link from the reference time to the timex, representing the relation of the timex depending on the

reference time to be located temporally, so no link label is needed.

Following TimeML, we use symbols PAST_REF, PRESENT_REF, and FUTURE_REF to denote

general past/present/future. Some example vague timex of these reference times are:

• PAST_REF:日前,过去,

• PRESENT_REF:目前,现,近年,近几年,近日,

• FUTURE_REF:本世纪末,将来,

After annotating the reference time for each relative timex, an automatic process will take place to

build the final timex parse, which links DCT, general past/present/future, and all concrete absolute

timex directly to a ROOT node, forming a complete tree structure which can be used in future work

for timex normalization and timeline structure building.

An example of the final parse is illustrated in the following figure. (We also have an ATEMPORAL

node linked as a child of the ROOT. It will be used in the last pass of annotation, event parsing.)

The possible reference time/node for different type of timex is summarized in the following table.
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Absolute Relative
Concrete ROOT DCT, or another Concrete Timex

Vague -
PAST_REF, PRESENT_REF,

FUTURE_REF, or another vague timex

Table A.2: Possible reference times or nodes for different types of timex.

A.1.4 Event Recognition

The fourth pass of annotation is to mark out spans that are events. In this stage, two decisions need

to be made during annotation: (1) whether something should be considered as an event; and (2)

what exact span of words should be marked to designate the event.

Adapting from TimeML event annotation guidelines, we consider occurrences, actions, processes,

or event states which deserve a place upon a timeline as events. However, in this task, we only work

with a subset of the events defined as markables in TimeML – events that are the main predicates

in a sentence and a limited set of subordinate clauses. These events’ syntactic realizations are

mostly verbs with a few exceptions of nominalizations, nouns, and adjectives described more later.

The reasons that we select this subset of events are that (1) main predicates advance the temporal

progress of a narrative or reporting discourse, and their temporal relations are dependent to one

another, forming the temporal structure we are trying to capture in this task; and (2) other events

(e.g. events in relative clauses) are merely mentions of a temporal location that are independent of

other events or timex in the discourse, thusly independent to the structure we are trying to build,

and marking those events and locating them on a timeline is out of the scope of this work.

Decision 1: What are considered as events?

More specifically, the following predicates are considered markable events in our task:
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1. The main predicates of a sentence/independent clause

One sentence usually has one main predicate. If there are two main predicates joined by

coordinating conjunctions, both are markable events.

• 由中国自主设计建设、达到当今世界先进技术水平的安阳彩色显像管玻壳有限

公司二期工程，今天建成(event)。

• 能否把我们自己的高技术及其产业搞上去，关系(event)到中国现代化建设事业

的成败，关系(event)到中华民族的兴衰。

• 大力发展高技术，尽快形成我国强大的民族高技术产业，是(event)当前中国科

技界和经济界面临的迫切任务。

2. Predicates in adverbial clauses (serving as time)

• 实行(event)保证金台帐制度后，海关对正常开展加工贸易的企业不再征收与进

口料件税款等值的风险保证金，只是在银行设立(event)台帐时收取一百元的手

续费，因而将减轻企业的实际经济负担。

3. Nouns in adverbials serving as temporal locations

• 建国(event)初期，重庆是中共中央西南局和西南军政委员会所在地，为中央直

辖市。

• 战(event)后初期，苏、美、英、法四大国据据“雅尔塔协议”划分了势力范围，

并分区占领了德国及其首都。

On the other hand, the following predicates are NOT considered markable events in our task:

1. Predicates in noun clauses (serving as subjects and objects)
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• 今年国家实行外经贸三大政策调整包括(event)调低(NOT event)出口退税率、对

加工贸易进口料件实行(NOT event)银行保证金台帐制度和取消(NOT event)进

口设备免税优惠。

• 能否把我们自己的高技术及其产业搞(NOT event)上去，关系到中国现代化建设

事业的成败，关系到中华民族的兴衰。大力发展(NOT event)高技术，尽快形

成(NOT event)我国强大的民族高技术产业，是当前中国科技界和经济界面临的

迫切任务。

Two exceptions for predicates in noun clauses are:

First, when the noun clause is serving as the object of a reporting verb, such as “指出”, “说”,

“表明”, the main predicates in the noun clause are considered markable events.

• 广东省外经贸委有关负责人指出(event)，实行加工贸易台帐制度是(event)为了

完善对加工贸易的监管，堵塞管理漏洞，防止国家税收流失，促进加工贸易的

健康发展。

Second, when the noun clause is serving as the subject or object of the main verb “是”

whose purpose is only to emphasize the noun clause, the main predicates in the noun clause

are considered markable events. In such cases, the main verb “是” is not considered as an

event.

• 尤为值得一提的是(NOT event)，“八五”期间中国的对外开放已形成(event)了

从沿海、沿江向内陆边远地区梯次推进的格局，以往经济相对落后的内陆地区

如今也掀起(event)了开放的热潮。

2. Predicates in adverbial clauses (serving as purpose, reason, condition, place) to do: consider

adverbial clauses serving as concession, results, comparison, and manner
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• 广东省外经贸委有关负责人指出(event) ，实行加工贸易台帐制度是(event) 为

了完善(NOT event)对加工贸易的监管，堵塞(NOT event)管理漏洞，防止(NOT

event)国家税收流失，促进(NOT event)加工贸易的健康发展。

• 要在2000年实现(NOT event)人均国内生产总值五千美元的目标,…

3. Predicates in relative clauses

• 由中国自主设计建设(NOT event)、达到(NOT event)当今世界先进技术水平的安

阳彩色显像管玻壳有限公司二期工程，今天建成。

Decision 2: What exact span of words to mark?

Generally the verb of a predicate is marked to designate the event. A few exceptions are as follows:

1. In Chinese, there are cases where the verb in a predicate is dropped. For such cases, simply

mark the object as the event. 目前，全省从事加工贸易人数五百多万,仅“三来一补”的

企业就达三万多家，从业人员二百多万。

2. For negated verbs, mark the negation and the main verb together as one event. 跨国公司在

山东投资势头不减。实行保证金台帐制度后，海关对正常开展加工贸易的企业不再

征收与进口料件税款等值的风险保证金，只是在银行设立台帐时收取一百元的手续

费，因而将减轻企业的实际经济负担。

3. For modalized verbs, mark the modalized verb only as the event. 投产后，它既可生产与

彩电配套的彩色显像管玻壳，…

4. For cases with an aspectual verb followed by a main verb, mark the aspectual verb and the

main verb as separate events.
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5. For predicates that are expressed as “light verb + nominalized/main verb”, mark the nomi-

nalized/main verb only. The light verb is not considered as an event.

• 有+ nominalized/main verb:

– 有上升

– 有二十个重点项目竣工投产

• 使+ main verb:

– 使四大类产品形成了规模经济

• 进行+ nominalized event:

– 进行企业改造和发展

• Other verbs are not considered as light verbs (e.g. 获得,发生, etc.)

Note that for news data (TempEval2 and Wikinews), the news titles and date lines should be

ignored.

A.1.5 Event Classification

The fifth pass of annotation is to give each event a label, marking their eventuality types explicitly

to help the next stage, event reference time resolution. Following previous work on this topic,

we define this stage an eight way classification problem. The eight categories are: Event, Com-

pleted Event, Modalized Event, State, Habitual, Ongoing Event, Generic State, Generic Habitual.

Classification is based on both the verb itself and its context.

The main distinction that needs to be made clear here is between eventive events and stative events.

If an event is emphasizing a process/change of state, it belongs to the Event category. If an event
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is describing a property/state of an entity or the world, it is a stative event. Stative events include

verbs that are inherently states, for example “有”, “是”, which belong to the State category; and

also verbs that are usually used to express an eventive event, but converted to a stative event by

emphasizing the result, progressing, possibility, and regularity of the event, which correspondingly

map to CompletedEvent, OngoingEvent, ModalizedEvent, and Habitual. In other words, all cate-

gories except for Event are stative, describing a property or state of an entity or the world. The key

is to make clear which aspect of the event is emphasized.

Please note that in this guidelines, I use the initial-capitalized “Event” to denote the eventuality

category “Event”, and all-lower-case “event” to denote all event markables which can be any one

of the eight categories.

1. Event

Predicates that emphasize a change of state with eventive verbs are given the label Event.

The following types of events are usually considered as Event.

• An event that is somebody reporting something is mostly emphasizing the processing

of reporting, and hence Event.

– people + "表示", "显示", "说", "指出", "强调", etc.

2. Completed Event

Predicates that emphasize the result of changing with eventive verbs are given the label

Completed Event. These events describe a state more than a change or a process. The

following types of events are usually considered as Completed Event.

• An event that has happened on / has been done by a group of entities is mostly empha-

sizing the result of this group of entities having had the experience, hence Completed
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Event.

– 香港的长江实业等一批财团纷纷到珠海落户。

– 近几年台湾厂商也在广东设立七千多家加工企业。

– “八五”期间，中国共批准外商投资项目…

• A comparison of states is usually Completed Event.

– 比…提高...,比…增长…

– “八五”期间中国进出口总额达一点零一万亿美元，比“七五”时期增长一倍

以上。

• A predicate with已,到,至,了,成is more likely to be a Completed Event.

– 成为,成了,形成,完成, etc.

– 已渗入到,上升至,创下了, etc.

– 中外经济技术合作与交流已渗入到中国经济生活的各个领域，一个全国范

围的大开放格局初步形成。

– 其中，将于今年七月在全国实施的加工贸易保障金制度成为港澳客商的关

注焦点。

• Predicates with the format “有+ nominalized verb”

– 有上升

3. Modalized Events:

Predicates with modal verbs are Modalized events.

• 投产后，它既可生产与彩电配套的彩色显像管玻壳，…

• 住房制度改革要着眼于建立福利分配货币化的新机制。
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Please note that we don’t consider future events as modalized events. Future events are

labeled as regular events with “Event”, “State”, “Habitual”, etc. labels.

An exception is with the verb “达”. When used as “可达”, which is ubiquitous in news data,

consider it as State instead of ModalizedEvent.

• 全年(timex)实际利用外资预计可达(state)二十八亿美元，增长(completed)百分

之十五点六。

4. State

Predicates that are describing the state of some entity or the state of the world with stative

verbs are given the label State. The following types of events are usually considered as

States.

• Predicates with inherently stative verbs are States.

Some common stative verbs are:

– 是,有,为,居,占, etc.

– 支持,接近,显露,欢迎, etc.

– 认为,估计,预计,期望,以期,可望,预示,有望, etc.

– 准备,计划, etc.

– 达,达到, etc.

Some examples:

– 去年广东省整个加工贸易出口值达四百多亿美元。

– 目前从该基金中拿出十万美元正在进行中国晖春边境合作区环境评估项

目，以期对外资大规模进入这个地区提供环境方面的咨询。
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– “欢迎国际社会同我们一道，共同推进图们江开发事业，促进区域经济发

展，造福东北亚人民。”

• Predicates that are a single adjective with the verb dropped are usually States. They

usually have the POS tag VA.

– 速度快、效益好

• Predicates with their verbs dropped and only having the object are mostly States.

– 目前全省从事加工贸易人数五百多万(state) ，仅“ 三来一补” 的企业就

达(state)三万多家，从业人员二百多万(state)。

• Predicates that describe the property of an entity or the world that happens every year,

every month, every day,…, every second, etc. are States.

– 年均增长百分之八

• Negated events are mostly describing a state of not doing something, hence State.

– 跨国公司在山东投资势头不减。

– 实行保证金台帐制度后，海关对正常开展加工贸易的企业不再征收与进口

料件税款等值的风险保证金，只是在银行设立台帐时收取一百元的手续

费，因而将减轻企业的实际经济负担。

• An event that is some news, articles, papers, etc. reporting something is mostly empha-

sizing the statement of the reported content, hence State:

– news, articles, papers + "表示", "显示", "说", "指出", "强调", etc.

– 为…所+ verb

5. Habitual

Predicates that describe a regularly repeated event are Habituals. The following types of

events are common Habitual events.
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• In sentences where the events in the main clause are conditioned on the events in a time

adverbial clause, both are Habituals.

– 只是在银行设立台帐时收取一百元的手续费，因而将减轻企业的实际经济

负担。

• Predicates that describe an action or behavior that’s done repetitively in a given period

of time are considered Habituals.

– 深圳、惠州成为电子工业的出口基地，两市生产的电脑元器件大量销往世

界各地。

– “八五”期间，国民经济更加广泛的参与国际分工与国际交换。

6. Ongoing Events

Predicates whose verbs are modified by “正在”, “日益”, “日臻”, etc. are usually Ongoing

Events.

7. Generic State

State events with generic subjects are Generic State.

8. Generic Habitual

Habitual events with generic subjects are Generic Habitual.

A.1.6 Event Reference Time Resolution

The sixth and last pass of annotation is to find the reference time for each event, forming a final

parse tree with the children nodes temporally dependent on their parent nodes.
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An event’s reference time can be either a time or another event. When an event’s reference time is a

time, i.e. DCT, PAST_REF, PRESENT_REF, FUTURE_REF, or a timex in the text, annotate a link

from the time to the event. Most relations between a time and an event are “happened at/around”,

so no link label is needed for these links. However, for some rare cases that are timex + “以来”,

“以前”, etc., for example “1997年以来”, we label the link between the timex (“1997年”) and

the events happened after (“以来”) or before (“以前”) the timex as “before” or “after”. When an

event’s reference time is another event in the text, we annotate a link from the reference time event

to the current event, and give a link label to this relation. Possible relations between events are:

“before”, “includes”, “overlap”, and “after”. Here “overlap” is undirected while the other three are

directed.

An event is linked to ATEMPORAL if it can’t be temporally located or it holds true for the entire

timeline. Events are linked to the most specific reference time available (i.e. the lowest node in

the parse). For example, if there’s a link “DCT→3月18日”, then an event happened on that day

should be linked to “3月18日” instead of DCT, and another event that happened right after that

should be linked to the first event instead of “3月18日”.

In this pass of annotation, we start by reading each event in their linear order in the sentences. By

default, we assume these events’ temporal locations are in the same linear order. Therefore, we

start with a parse that looks like a linked list:

e1→before/overlap→e2→before/overlap→e3→before/overlap→…

→before/overlap→en

While reading through the events, we look for some events that are “temporal location changers”.

There are two types of temporal location changers. The first type we call it “temporal location
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jumpers”. They usually change the linear advance of time by referring to a timex or PRESENT_ref

/ PAST_ref / FUTURE_ref / atemporal. They are events that jump onto a different temporal loca-

tion on the timeline. Therefore, a parse with a temporal location jumper would look like this if the

“jumping” is caused by referring to a timex:

timex1→e1→before/overlap→…→em

timex2→em+1→before/overlap→…→en

or this if the “jumping” is caused by referring to PRESENT_ref / PAST_ref / FUTURE_ref /

Atemporal:

timex1→e1→before/overlap→…→em

PAST_ref→em+1→before/overlap→…→en

The second type we call it “temporal location advancers”. They usually advance the time by

mentioning an event that happened a little bit later than a previously mentioned event. If all events

happen in the same order with their mentions in the discourse, a parse with temporal location

advancer would look like the same with our assumption:

e1→before/overlap→e2→before/overlap→e3→before/overlap→…

→before/overlap→en

When an event advances a temporal location that has several events overlapping on it, the parse

with temporal location advancer would look like this:
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e1→overlap→e2→overlap→…→overlap→em

ek(1<=k<=m)→before→em+1→before/overlap→…→before/overlap→en

Here, ek is the most related event (usually the last em) to em+1.

In conclusion, events that break the original linear order in the discourse, i.e. temporal location

changers, are listed in Table A.3.

Temporal Location Jumpers

Events that refer to a different timex
Events that refer to
Present/Past/Future_Ref/Atemporal
Events that refer to a previously mentioned event
(not immediate previous one)

Temporal Location Advancers
Events that happen after an immediate
previously mentioned event

Table A.3: Common events that are temporal location jumpers and advancers.

All events that are NOT temporal location changers are linked to their immediate previous event

and labeled “overlap”. For example,

• 今天(timex) ，由中国贸易促进会广东分会与香港中华总商会联合主办的“ 九六税

改及进口原料台帐制执行实务研讨会” 在广州举行(event) ，向港澳及内地客商介

绍(event)今年国家将实行的外经贸三大政策调整。

Links: 今天→举行→overlap→介绍

• 去年(timex)广东省整个加工贸易出口值达(state)四百多亿美元，约占(state)全省出口

总值的百分之八十。其中一般贸易的一半、来料加工的百分之百和外商投资企业的

百分之八十以上属(state)加工贸易出口。

Links: 去年→达→overlap→占→overlap→属
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• 目前(timex)全省从事加工贸易人数五百多万(state)，仅“三来一补”的企业就达(state)

三万多家，从业人员二百多万(state)。

Links: “目前”→“五百多万”→overlap→“达”→overlap→“二百多万”

• 据介绍，近年(timex)来广东省对外经贸迅速发展(event)，而包括来料加工、进料加

工和外商投资企业从事的加工贸易占(state)了相当大的份额。

Links: 近年→发展→overlap→占

A.1.7 Specifications on Some Common Scenarios

1. Q: If an event advances the time after a series of overlapping events, which previously men-

tioned event do I use as the reference time?

A: Use the most closely related event (usually the last event). For example,

• 今天(timex)，由中国贸易促进会广东分会与香港中华总商会联合主办的“九六

税改及进口原料台帐制执行实务研讨会”在广州举行(event)，向港澳及内地客

商介绍(event)今年国家将实行的外经贸三大政策调整。将于今年七月(timex)在

全国实施的加工贸易保证金台帐制度成为(event)港澳客商的关注焦点。

成为is more closely related to介绍then举行, so – Links: 今天→举行→overlap→

介绍→before→成为.

2. For scenarios with reporting events, (1) the reporting event’s reference time should be either

a timex in the text, PRESENT_ref, or a previously mentioned reporting event that happens

either before or overlap with the current reporting event; and (2) the reported content events

should take the reporting event as their reference time, and be linked to the reporting event

with “before”, “after”, or “overlap”, depending on if the reporting happens before, after, or at
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around the same time with the content events. Timex inside the reporting content are ignored

because (1) a loose temporal relation is captured here by labeling the before/after/overlap

relations between the content events and the reporting event, and (2) the reporting event is

the main event that advances the progress of time in the discourse and hence our interests to

build into the final parse, while reported content events might be some isolated points on the

timeline that are out of the scope of this work.

An example of a reporting event is as follows:

• 广东省外经贸委有关负责人指出(event)，实行加工贸易台帐制度是(state)为了

完善对加工贸易的监管，堵塞管理漏洞，防止国家税收流失，促进加工贸易的

健康发展。

The links are: PRESENT_REF→“指出”→overlap→“是”.

3. For scenarios with time adverbial clauses, if both events inside the time adverbial clause and

in the main clause are Habituals, meaning when A happens B happens, then link the main

clause predicate to the temporal adverbial clause predicate with “overlap”; if the sentence is

not describing habitual activities, then link events in the main clause to events in the time

adverbial clause with according relation labels. For example,

• 实行(event) 保证金台帐制度后，海关对正常开展加工贸易的企业不再征

收(state)与进口料件税款等值的风险保证金，只是在银行设立(habitual)台帐时

收取(habitual)一百元的手续费，因而将减轻(event)企业的实际经济负担。

The links are: FUTURE_REF→“不再征收”; “不再征收”→after→“实行” “不再征收”

→overlap→“收取”→overlap→“设立”; “收取”→overlap→“减轻”.
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4. Note that NOT all timex marked out in the discourse will serve as a reference time. There will

be timex that don’t have any events linked to them. For example, timex governed by reporting

verbs are ignored and are not the reference time for any events. Some other examples are as

follows:

• 当今世界先进技术水平的显像管

• 硬件配置和软件应用都达到了当今国际同行业先进水平

• 中国已经确定了未来五年高技术研究重点，并着手制定下世纪的高科技研究计

划

• 比1990年提高了十个百分点

• 工业产品的制造水平比过去有了很大提高

5. For cases with an aspectual verb followed by a main verb, both are marked out as separate

events. We link the aspectual verb to the main verb as an “overlap” relation.

• “开始”, “停止”, “保持”, etc. →overlap→an event

6. If there are two adjacent timex expressing the same temporal location, link events to the first

one.

• e.g. 广东“八五(timex)”期间（一九九一至一九九五年(timex)）电子工业新兴产业

发展速度快(state)、效益好(state)。

八五→includes→快→overlap→好

7. For cases with “timex +以来,以前”, etc., for example:

• timex以来，state/event: timex→before→state/event
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• timex以前，state/event: timex→after→state/event

8. For scenarios with adverbial “预计”, “估计”, etc., don’t consider them as events. For exam-

ple:

• 全年(timex)实际利用外资预计可达(state)二十八亿美元，增长(completed)百分

之十五点六。

全年→达→overlap→增长

• 全市今年(timex)工业总产值预计达(state)一千二百五十五亿元，增长(completed)

百分之十七点五。

今年→达→overlap→增长

9. For cases with the pattern “event1…使,导致,以,去做, etc. …event2”, consider these two

events closely related, and parse them as:

• event1→before/overlap→event2

10. For quotes that are not preceded or governed by a reporting verb, annotated them as regular

events outside a quote. For example,

• “ 中国国家气象局购买(event) 美国克雷公司的大型计算机，克雷公司只卖

给(event)我们两台处理器。如今(timex)，我们自己开发的‘曙光１０００’计

算机每秒最大计算速度已达(state)二十五亿次，超过(state)克雷公司卖给我们的

计算机速度。”这是国务委员兼国家科委主任宋健今天在“八六三计划”工作会

议上讲的一段话。

Here, events “购买”, “卖给”, “达”, “超过” are in a quote without a reporting verb, so simply

link them as if they were not in a quote:
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PAST_REF→购买→overlap→卖给;如今→达→overlap→超过;

11. Most events’ reference times should be before the events in the discourse. For example,

• 重庆科技人才优势在中国西部比较突出，现有各类科研机构三百四十个，大专

院校二十三所，各类科技人才三十五万多人。

link “PRESENT_ref→突出;现→有” instead of “现→突出→overlap→有”.

Predicates that express the pass of a period of time are not considered as events. For example,

• １９３９年９月１日，希特勒军队进攻波兰，开始了给欧洲和世界人民带来巨

大痛苦的第二次世界大战，迄今正好５５年。

• 这次战争中包括德国在内的欧洲国家共死亡４００万人。

• 其中，苏联为战胜德国侵略者作出了巨大牺牲，伤亡近２８００万人。

• 半个世纪转瞬逝去(not event)，欧洲经历了热战、冷战、动荡、冲突和剧变。

here,逝去is expressing the passing of half a century and is not considered as an event.

12. Consider modalized events with “要”, “要求”, etc. as events on their happening temporal

locations, instead of states of reporting temporal locations. For example:

• 宋健重申，在淮河流域范围内，禁止新建小造纸、小化工、小制革等污染严重

的项目。对所有向淮河流域河流排污的企业，要进行限期治理，

link “重申→overlap→禁止→before→治理” instead of “重申→overlap→禁止→overlap

→治理”.

13. Special treatment for narrative discourses
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• Time expressions

– past_ref→从前

– 从前→includes→有一天

– 有一天→before→第二天→before→第三天

• Posit events in the past by default.

– past_ref→first event in the document

• Time advancing events/states vs. non-time-advancing states

– Time advancing events/states form the main timeline, and they are linked to each

other by “before/overlap”.

– Non-time-advancing states form the branch timelines, and they are linked to the

main timeline by “overlap/after”.

男人觉得这很好，他说：“......”

• Imperatives in quotes – not events
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