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ABSTRACT

Temporal Dependency Structure Modeling

A dissertation presented to the Faculty of the
Graduate School of Arts and Sciences of Brandeis University
Waltham, Massachusetts

by Yuchen Zhang

An important task in understanding the meaning of natural language text is to represent and un-
derstand the temporal information in the text. Time expressions, events that happened at some
time points, and temporal relations between these time expressions and events are the three ba-
sic temporal information commonly present in texts. A well designed machine-readable temporal
representation is crucial for representing and understanding these information efficiently. Most
fundamental research on temporal information modeling has been representing temporal relations
in a pair-wise manner — the temporal relation between pairs of time expressions and/or events are
explicitly and separately modeled. This stream of representations faces a few challenges. First,
human annotation for this representation is laborious and on some level arbitrary. Second, compu-
tation on this representation is expensive and inefficient on scalability. Third, due to the nature of
temporal transitivity,annotations (human or computational) harbor potential conflicts on temporal

relations.

In this dissertation, we introduce a new temporal representation to address these challenges — the
Temporal Dependency Tree (TDT) structure. A Temporal Dependency Tree represents temporal
information in a text as a single dependency tree. Time expressions and events are represented
as nodes on the tree, while temporal relations are represented as edges. A TDT explicitly models
n temporal relations for a text with n time expressions and events, reducing human annotation
labor, computation complexity, and temporal transitivity conflicts. As a proof-of-concept, we per-

formed annotation experiments on the TDT representation to show stable and high inter-annotator



agreements. To support further linguistic study on TDT and automatic system training, we built an
expert-annotated TDT corpus (on two domains: news and narratives). One step closer to automatic
temporal information modeling and understanding, we built a competitive Temporal Dependency
Parser that parses time expressions and events in a text into a Temporal Dependency Tree structure.
Finally, to collect larger amount of TDT data more efficiently, and further support the training of
better temporal dependency parsers, we experimented with crowdsourcing approaches and built a

TDT corpus with high agreements through crowdsourcing.
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Chapter 1

Introduction

1.1 Motivations

Natural Language Understanding (NLU) aims at understanding the meaning of natural language
text. One important component of the meaning of a text is the temporal information in it. Recog-
nizing time expressions, anchoring events on a timeline, and understanding the temporal relations
between events and temporal expressions are some fundamental parts of understanding the mean-
ing of a text. Moreover, automatic detection of such temporal information is important to many
downstream applications in Natural Language Processing (NLP) and Artificial Intelligence (Al)
that include but are not limited to story timeline construction, question answering, text summariza-

tion, information extraction, and others.

To enable computers to automatically extract and work with such temporal information, a machine
readable temporal representation is necessary. The dominant approach in prior work on temporal

information modeling adopts a pair-wise approach: for pairs of time expressions and/or events



Chapter 1. Introduction

in a text, the system models whether there exists a temporal relation between them and what the
relation is. This temporal relation is selected from a pre-defined finite set of temporal relation
categories. For example, for the following three events A, B, and C, a pair-wise approach models

all three pairs of temporal relations: B before A, A before C, and B before C.

(1): A.John went into the florist shop.
B. He had promised Mary some flowers.

C. He picked out three red roses, two white ones and one pale pink

Representative work in this vein includes TimeML [Pustejovsky et al., 2003a], a rich temporal
relation markup language that is based on and extends Allen’s Interval Algebra [Allen, 1984].
TimeML has been further enriched and extended for annotation in other domains [O’Gorman et al.,
2016, Styler IV et al., 2014a, Mostafazadeh et al., 2016]. Corpora annotated with these schemes
[Pustejovsky et al., 2003b, O’Gorman et al., 2016] are shown to have stable Inter-Annotator Agree-

ments, validating the temporal relations proposed in the TimeML.

Accordingly, automatic systems working with this pair-wise representation usually solves a clas-
sification problem: given an individual pair of time expressions and/or events, the system predicts
whether they are temporally related and which specific relation holds between them. Represen-
tative pair-wise temporal relation classification systems include the participating systems in a se-
ries of TempEval shared tasks [Verhagen et al., 2007a, Verhagen et al., 2010a, UzZaman et al.,
2012, Bethard et al., 2015a, Bethard et al., 2016a, Bethard et al., 2017] and others [Bethard et al.,
2007, Chambers et al., 2007].

As shown in the previous example, one inherent issue with the pair-wise representation is redun-
dancy. From B before A and A before C, we can naturally infer that B is before C' without

explicitly modeling this temporal relation. Unfortunately, redundancy leaves room for conflicts.

2



1.1. Motivations

As each pair of event is independently classified, it opens the door for annotators or automatic
systems to produce conflicting temporal relations within a text. One such scenario is if the human
annotator or the system annotates the relations between the three pairs as B before A, A before
C, and B after C'. Another way to view pair-wise models is as a graph-based representation with
potential cycles. And temporal relations on a cycle in this graph can conflict with each other (e.g.

A before B, B before C, and A after C).

One possible way to alleviate such conflicts in automatic predictions is by enforcing global con-
straints to ensure temporal transitivity [Verhagen, 2004, Chambers and Jurafsky, 2008a, Ning
et al., 2018a, Allen, 1984]. However, applying global constraints requires a fully connected graph.
Namely, given a text with n time expressions and events, (g) temporal relations need to be explic-
itly annotated. This approach will quickly get impractical with longer texts for human annotators,

making it hard to produce such training data for machine learning based systems.

To solve the issues of redundancy and conflicts in a pair-wise temporal representation, and to
reduce the computational complexity of global constraints, we propose a new temporal representa-
tion in which temporal information in text is modeled as a dependency structure. More specifically,
this structure is a single-rooted dependency tree for the entire text. Time expressions and events
are represented as nodes in the tree, and temporal relations are represented as edges between them.
We call this representation a Temporal Dependency Tree (TDT) Structure. Figure 1.1 gives a small
example text and its Temporal Dependency Tree structure, where time expressions are represented
as orange nodes, events as green nodes, some pre-defined meta blue nodes (see more at §3), and

temporal relations on edges.

Prior work on structured models for temporal information in text include the Temporal Discourse

Model (TDM) for narrative structures [Mani and Pustejovsky, 2004], the Narrative Container
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Example text:
He was born ; in Jdtwas ,a tough

time for his family. Later, he started o3

school at the Central Elementary. He
won,, a school prize in

ROOT
A en kp
resent
DCT _Ref

t1:1918 t2:1929
includes l l includes

before

Figure 1.1: Example text and temporal dependency tree. Meta nodes are shown in blue, time ex-
pressions in orange, and events in green. TDT also includes meta nodes “Past_Ref,” “Future_Ref,”
and “Atemporal” which are not shown here.

model for temporal information [Pustejovsky and Stubbs, 2011], the Temporal Dependency Struc-
ture for narrative events [Bethard et al., 2012], and the Multi-axis Annotation Scheme for Event
Temporal Relations [Ning et al., 2018b]. These temporal models are described in details in 2.2.3.1,
and comparisons between our proposed TDT structure and these models are discussed in details in

224.

Before going into details of the design of a TDT structure (which will be fully described in Chapter
3), we would like to first briefly summarize its potential benefits as follows. For TDT annotation,
since an annotator does not have to annotate all pairs of events and time expressions in a text,
annotating long texts becomes practical. Given a text with n time expressions and events, only n
temporal relations need to be explicitly modeled in a TDT. Moreover, TDT guarantees an acyclic
tree structure, which leaves no room for cyclic temporal conflicts. From the point of view of

linguistic annotation, this alleviates potential inconsistencies when annotators pick a subset of (’2‘)

4



1.1. Motivations

relations to annotate using each individual’s judgement. From a computational perspective, a TDT
eliminates potential conflicts in predicted temporal relations (more on this in Chapter 3). Although
a TDT is not modeling all possible pairs of temporal relations, additional temporal relations can
still be inferred along the paths of the temporal dependency tree or through the ordering of time
expressions. And just as pair representations and graph representations, a dependency tree is also
a very well studied structure in NLP. It’s amenable to a wide range of parsing algorithms, and is

easy to use in downstream applications.

The Temporal Dependency Structure has its roots from the computational linguistic research on
on Temporal Anaphora [Reichenbach, 1947, Partee, 1973, Partes, 1984, Hinrichs, 1986, Webber,
1988, Bohnemeyer, 2009]. In research on temporal anaphora, a temporal relation is modeled as
an anaphoric relation where an event or time expression is the antecedent of another event or time

expression (the anaphor). The antecedent is called the Reference Time of the anaphor. And the

temporal location of the anaphor can only be interpreted with respect to its antecedent (i.e. its
reference time). When applying this theory practically to our data, we define the antecedent of an
anaphor time expression or event as the reference time with respect to which the temporal location

of the anaphor can be most precisely determined. With this definition, there will only be one

antecedent for each anaphor (i.e. one reference time for each time expression or event). Then, by
representing a (reference time, anaphor) pair as a (parent node, child node) pair on the tree, we will

arrive at a TDT structure that naturally fulfills the formal requirements of a valid dependency tree.

Literature on Temporal Anaphora is reviewed in Section 2.1, and detailed specifications on Tem-
poral Dependency Tree Structure are introduced in Chapter 3. As a proof-of-concept and also in
order to facilitate research on automatic TDT parsers, we developed annotation guidelines for TDT
and annotated a TDT corpus in Chinese. To compare the different temporal structures between dif-

ferent domains, this corpus covers articles from two domains: news reports and narrative fairy

5
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tales. Having proved through our annotation experiments that TDT is an intuitive structure that
can be annotated with high inter-annotator agreements, we further developed automatic parsers for
TDT. We hope these parsers will benefit downstream applications by providing structural temporal

information.

The annotation process of our TDT corpus consists of several rounds of annotator training before
the actual annotation effort was carried out, and an expert adjudication pass at the end. Annotator
training and expert annotation provide high quality data at the cost of time and expense. Therefore,
we are interested in developing an approach to crowdsourcing TDT annotations. Crowdsourcing is
usually used to collect data on relatively straightforward tasks such as speech transcription, “copy-
ing online info into a form”, or “identifying a smiley face”. Compared to most crowdsourcing
tasks, a temporal dependency tree structure is a very complex concept, and to collect TDT an-
notations through crowdsourcing is a very challenging task. Therefore, we studied the feasibility
of using crowdsourcing to collect TDT annotations, built an English TDT corpus through crowd-
sourcing with high Inter-Annotator Agreements, and experimented with parsers on this English

TDT data.

In summary, this thesis introduces a structured representation for temporal information in text — the
Temporal Dependency Tree Structure, presents data collection effort for this structure, introduces
the first statistical parsers for this structure, and provides analysis and discussions on collected

annotations and trained parsers.

1.2 Contributions

The main contributions of this thesis are summarized in this section.



1.2. Contributions

Structured Interpretation of Temporal Relations

This thesis describes our research on interpreting temporal relations in text in a structured man-
ner. In this research, we developed a structured representation for temporal relations in text — the

Temporal Dependency Tree Structure .

First of all, we designed refined classifications for time expressions and events, the basic temporal
units in text. These classifications are tailored to the specific task of temporal relation representa-
tion. Features closely related to temporal relations are clearly distinguished and represented. For
example, whether or not a time expression can be temporally located on the timeline is an impor-
tant feature about whether or not this time expression participates in temporal relations with other
time expressions or events. Therefore, this feature is well represented in our classification for time
expressions. And aspect, modality, and eventuality type of an event are important features about
how this event interacts with other time expressions and events temporally. Hence, these features

are clearly represented in our classification for events as well.

Second, we integrated the concept of reference time from the temporal anaphora theory into our
temporal relation representation. Instead of explicitly modeling the temporal relation between
every pair of time expressions and events (which models (g‘) temporal relations for a text with
n temporal units), we identify a single reference time for each time expression and event, and
only explicitly model the temporal relation between each temporal unit and its reference time (n
temporal relations for a text with n temporal units). Temporal relations between other pairs of

temporal units are implicitly modeled and can be inferred through the structure of our model.

Third, the integration of reference time enabled us to design a structured representation for tem-
poral relations among basic temporal units in text — the Temporal Dependency Structure. This

representation uses the dependency tree structure as the formal object and represent time expres-

7
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sions and events as the nodes on the tree and temporal relations as the edges on the tree. Each
parent-child pair on the tree represents a temporal relation between a temporal unit and its refer-

ence time.

Finally, we developed detailed annotation guidelines for Temporal Dependency Structure, and
annotated a corpus of 235 Chinese documents in two domains: news and narrative — the Temporal
Dependency Tree (TDT) corpus. High and stable inter-annotator agreements on this corpus serve
as a proof-of-concept for Temporal Dependency Structures, and the corpus also facilitates future

research on automatic temporal structure modeling.

Detailed descriptions on design of the Temporal Dependency Structure, our annotation schemes,

and statistics on the TDT corpus are presented in Chapter 3.

Automatic Temporal Dependency Structure Parsing

We present the first temporal dependency tree parser in this thesis.

In this research, we developed an end-to-end temporal dependency tree parser. This parser takes a
raw text as input, utilizes a neural sequence labeling model to extract events and time expressions,
and arrange these events and time expressions in a temporal dependency tree structure based on a

neural ranking model.

For comparison, we also developed a strong baseline parser using the logistic regression model and
extensive feature engineering, and a few variants of the neural model. These parsers are evaluated
on our TDT corpus. Experiments show that both our neural and logistic regression parsers can
learn and parse temporal dependency tree structures reasonly well. Considering the observation

that different domains (news v.s. narrative) have very different temporal structural patterns, we

8



1.2. Contributions

show that the neural models hold stronger learning abilities than the logistic regression model and
are more adaptive across different domains. Analysis over system output temporal dependency

trees are discussed as well.

Detailed descriptions on design of the neural parser and the baseline parsers, our experimental

setups, results, and analysis are presented in Chapter 4.

Crowdsourcing Temporal Dependency Structure Annotations

In this thesis, we present a preliminary study on a crowdsourcing approach to efficiently and effec-

tively collect temporal dependency tree annotations.

Since TDT annotation is a very challenging task in a crowdsourcing setup, we designed a crowd-
sourcing approach which treats the annotation of a complex TDT as two sub-tasks: (1) reference
time recognition, and (2) temporal relation identification between every temporal unit and its ref-
erence time. Using this approach, we built an English TDT corpus on top of the Timebank. For
comparison, we also annotated a subset of this corpus with expert annotators. Annotation ex-
periments show that high Inter-Annotator Agreements can be collected for both subtasks (>80%
for IAAs between crowdsoucing workers and experts, and JAAs among crowdsourcing workers).
Statistical and linguistic analysis are performed to better understand crowdsourced TDTs, and to
compare the differences between crowdsourced and expert-annotated TDTs. We also experimented
with our temporal dependency tree parsers on this corpus, achieving comparable results to parsers
trained on expert-annotated corpora. Another experiment comparing parsers trained on gold TDTs
and parsers trained on crowdsourced TDTs shows that crowdsourcing is an effective approach to
collect TDT data. Issues with this crowdsourcing approach are discussed as well, and although the

results of this study is still preliminary, it shows promising directions for future research.

9
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Detailed descriptions on design of the crowdsourcing approach, crowdsourcing sub-tasks, corpus

analysis, and parsing experiments are presented in Chapter 5.

10



Chapter 2

Background on Temporal Information

Modeling

This chapter will give a background review on prior temporal information modeling research
mostly related to our work. The earlier work on temporal information modeling dates back to
the 1940s and have gone through a linguistically oriented period when mostly theoretical models
on specific temporal phenomena were presented. Important concepts that our work is built upon
such as reference time, temporal anaphora, etc. were introduced in the research from this period.
We will review these classic work in Section 2.1, with a focus on linguistic theories on temporal
anaphora. In the late 1990s and early 2000s, research on temporal information modeling started
to focus on data-driven approaches, where corpora of temporal entities (time expressions, events,
etc.) and temporal relations were annotated and further automatically predicted. We will review

these modern work in Section 2.2, with a focus on their annotation schemes and automatic systems.
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2.1 Linguistic Theories on Temporal Anaphora

The notion of Reference Time is a long-developed concept. Reichenbach first introduced reference
time as part of his conception of fense in his influential work Elements of Symbolic Logic [Re-
ichenbach, 1947]. Reichenbach claims that there are nine tenses in English: simple past, present,
and future tense, past, present, and future perfect tense, and posterior past, present, and future
tense (e.g. would, was going to, is going to, will be going to, etc.). Semantically Reichenbach
claims that each tense specifies temporal relations among exactly three times particular to a tensed
clause/event: the event time (ET), the reference time (RT), and the speech time (ST). More intu-

itively, consider the example below:

(2): A.John went over to Mary’s house.

B. On the way, he had stopped by the flower shop for some roses.

Since the event “went” happened before the speech time, we have ET; = RT; < ST; and the event
“stopped” happened before “went”, taking “went” as its reference time, we have ET; < RTy < ST

and RT; = RTs.

Building upon Reichenbach’s conception of reference time, several researchers studied the anaphoric
nature of tense in analogy to definite NP and pronoun anaphora. [McCawley, 1971] first explicitly
discussed that tense is anaphoric like a definite pronoun. They proposed that the event described in
one clause serves as the antecedent of the event described in the next, but that it may be related to
the event by being either at the same time or “shortly after” it. [Partee, 1973] also discussed the sim-
ilarities between tense and definite pronouns in detail, and further discussed anaphoric difference
between tense and pronouns in [Partee, 1984]. [Steedman, 1982], [Hinrichs, 1986], and others also

argued that Reichenbach’ s conception of reference time (RT) is anaphoric. In [Hinrichs, 1986],
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Hinrichs makes the simplifying assumption that in a sequence of simple past sentences, the tem-
poral order of events described cannot contradict the order they occur in the text, and focuses on
whether the second event follows the previous one or overlaps it. Hinrichs takes advantage of the
Aktionsart of a tensed clause, i.e. its Vendlerian classification as accomplishment, achievement,
activity, or state (including progressives), and proposes that given a sequence of two accomplish-
ments or achievements, the second event follows the first one, and given a sequence with at least
one activity or state, the two events will be interpreted as overlapping each other. Furthermore,
[Webber, 1987] discussed examples where tense behaves differently than pronouns anaphorically
and proposed that tense is better viewed by analogy with definite NPs rather than with pronouns.
[Webber, 1987] also proposed the theory that when processing a narrative text, a listener is build-
ing up a representation of the speaker’s view of the events and situations being described and of
their relationship to one another. This representation was denoted as an event/situation structure
(e/s structure). Webber viewed tense and relative temporal adverbials as specifying positions in an
evolving e/s structure, and the particular positions they can specify depend on the current context,
and the current context only makes a few positions accessible. However, there may be more than
one position in the e/s structure which tense can specify and which the new event or situation can
attach to. Moreover, [Webber, 1987] introduced Temporal Focus (TF) that grounds the context-
dependency of tense: At any point N in the discourse, there is always one node in the e/s structure
that provides a context for the interpretation of the reference time of the next clause/event, and this
node is the temporal focus of the discourse. To track the movement of temporal focus through the
progress of a discourse, [Webber, 1987] further proposed four heuristics to manage the temporal
focus of a discourse: one Focus Maintenance Heuristic to keep the current temporal focus, two
Embedded Discourse Heuristics to switch the current temporal focus to the reference time of an

embedded clause/event, and one Focus Resumption Heuristic to return to an earlier temporal focus.
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More intuitively, consider the example below:

(3): A.Iwas; at Mary’s house yesterday.
B. We talked about her brother.
C. He spent 5 weeks in Alaska with two friends.
D. They made a successful assault on Denali.

E. Mary was; very proud of him.

Event “talked” in sentence B kept the temporal focus of event “was;” in sentence A, while event
“spent” in sentence C switched to a new temporal focus, and event “was;” in sentence E returned

to the earlier temporal focus as “talked” and “was;”.

[Webber, 1987] also pointed out that not only tense can be interpreted anaphorically, temporal
adverbs should also behave in a similar manner and are anaphoric too. In a later work, [Webber,
1988] refined her theory on temporal focus and focus management heursitics and proposed the
notion Discourse Anaphors as expressions with the following two properties: (1) they specify
entities in an evolving model of the discourse that the listener is constructing; and (2) the particular
entity specified depends on another entity in that part of the evolving “discourse model” that the
listener is currently attending to. She discussed examples and how definite pronouns, NPs, and

tense share these two properties.

There was also a few work on implementing rule-based systems to distinguish temporal relations
between an event and its reference time. [Hitzeman et al., 1995] follows the research line which
assumes that by default an event will occur just after a preceding event, while a state will overlap
with a preceding event [Kamp, 1979, Hinrichs, 1981, Partee, 1984], and considers exceptions
when there is a rhetorical relationship between the two events such as causation, elaboration, or

enablement, and the temporal defaults can be overridden, resulting in many possible temporal
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relations between two consecutive events. [Hitzeman et al., 1995] proposed a set of constraints
that can be used to reduce ambiguities when identifying the temporal relation. These constraints
include tense of the two events, cue words such as “because”, time expressions, aspects of the two

events, and temporal centering.

2.2 Computational Approaches on Temporal Information Mod-

eling

2.2.1 Computational Temporal Modeling Specifications — TimeML

Pre-TimeML Research on Temporal Information Modeling

The Message Understanding Conferences (MUC) included limited annotation of time expressions
and temporal information about events. The named entity subtasks of MUC-6 and MUC-7 required
the identification of absolute (MUC6) and relative (MUCT7) time expressions, however none of
these tasks places events on a timeline or relates events temporally to each other. Follow-up work
developed a thorough set of guidelines for annotating time expressions [Ferro et al., 2001]. [Setzer,
2002] developed an annotation guideline for time expressions, events, and temporal relations, and
annotated a small amount of data in a pilot study. These early guidelines were combined and

further developed into the TimeML specification.
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TimeML

TimeML [Pustejovsky et al., 2003a] is the most widely used specification markup language for
events, time expressions, and temporal relations in natural language text. TimeML has evolved
through a few versions. Now publicly available are version 1.1, 1.2, and 1.2.1. Some changes have
been made through these versions. For example, some attributes are added/removed/changed on
certain annotation objects, and some new relation types or values are added to certain attributes.
However, the basics of the TimeML framework stays the same, and in this section, we will give a
brief introduction on TimeML and discuss similarities and differences between TimeML and our

proposed Temporal Dependency Structure scheme.

In TimeML, four major data structures are modeled: EVENT, TIMEX3, SIGNAL, and LINK.
EVENT models situations that happen or occur. An Event can be punctual or last for a period
of time, and includes predicates describing states or circumstances in which something obtains or
holds true. Every EVENT is annotated with its grammatical tense (past, present, future, none) and
aspect (progressive, perfective, progressive_perfective, none). One event type out of a set of eight
pre-defined types (Occurrence, State, Reporting, Intentional-State, Intentional-Action, Aspectual,
Perception, Modal) is also annotated. The TIMEX3 tagset is used to annotate explicit temporal ex-
pressions. It is an extension on the TIMEX [Setzer, 2002] and TIMEX?2 [Ferro et al., 2001] tagset.
Three types of temporal expressions are annotated: Date, Time, and Duration. TIMEX3 also dis-
tinguishes temporal expressions based on the level of specification they represent. Some Fully
Specified Temporal Expressions are: June 11, 1989; Summer, 2002; etc. And some Underspeci-
fied Temporal Expressions are: Monday, next month, last year, two days ago, etc. Examples for
Durations are: three months, two years, etc. The function of temporal expressions in the document

(such as creation_time, publication_time, etc.) is also annotated on each TIMEX3. Similar to our
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Temporal Dependency Structure model, a TIMEX3 has an attribute “anchor time” and an attribute
“anchor event” that can be annotated by annotators, and a temporal relation can be annotated be-
tween the anchor time/event and this TIMEX3. Utilizing Temporal Functions, TIMEX3 allows
delayed computation of the actual value of the temporal expressions in a document. TimeML also
annotates SIGNALs. A SIGNAL is usually a section of text (typically function words) that indi-
cate how temporal objects are related to each other. For example, temporal prepositions (e.g. on,
during), temporal connectives (e.g. when), subordinators (e.g. if), polarity indicators (e.g. not, no,

none), temporal quantifications (e.g. twice, three times) are annotated as SIGNALSs.

The LINK tagset in TimeML is used to annotated various relations between the temporal elements
in a document, and the temporal orderings between the events in a document. Three types of
LINKSs are annotated: Temporal Link (TLINK), Aspectual Link (ALINK), and Subordination Link
(SLINK). Temporal Links are annotated between pairs of events or pairs of one event and one time.
Following [Allen, 1984], TimeML annotates a fine-grained set of temporal relations: before, after,
includes, is_included, holds, simultaneous, immediate_after, immediate_before, identity, begins,
ends, begun_by, and ended_by. Subordination Links are annotated on pairs of events. The fol-
lowing types of subordination relations are modeled: Modal, Factive, Counterfactive, Evidential,
Negative Evidential, and Negative. Aspectual Links are annotated between an aspectual event and
its argument event. The aspectual relations modeled in this scheme are: Initiation, Culmination,

Termination, and Continuation.

TimeML is the first and most comprehensive temporal information markup language that (1) sys-
tematically identifies events and anchors them in time, (a.k.a. time-stamping of events); (2) orders
events in text with respect to one another, both intrasentential and intersentential; (3) reasons with
under-specified temporal expressions, and allows for delayed interpretations of them; and (4) rea-

sons about the persistence of events, (i.e. how long an event or the outcome of an event lasts).
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2.2.2 Pair-wise Temporal Relation Modeling

2.2.2.1 Pair-wise Temporal Relation Schemes and Corpora

Timebank, AQUAINT_TimeML

Most pair-wise temporal relation annotation schemes are rooted from the TimeML specifications.
Many corpora are annotated based on TimeML and automatic systems are developed and trained
on these datasets. The TimeBank 1.1 corpus [Pustejovsky et al., 2003b] is an illustration and proof
of concept of the TimeML specifications. It was created in the early days of TimeML and follows
the 1.1 version of the specifications. The text sources for Timebank 1.1 is from a wide variety of
media sources in the news domain. It contains texts from the Document Understanding Confer-
ence (DUC) corpus, Automatic Content Extraction (ACE) program texts, and the Penn Treebank
texts (i.e. Wall Street Journal newswire texts). It was annotated partly by experts and partly by
non-experts who were trained first and their annotations were reviewed by experts afterwards. The
annotation process consists of a preprocessing stage followed by an actual human annotation stage.
Both stages utilize many automation tools. The preprocessing stage does automatic temporal ex-
pression recognition, automatic event recognition, and automatic labeling of event tense, aspects,
etc. During the human annotation stage, the results from the preprocessing stage are manually
checked and full annotations are added. Automatic temporal closure and graphic visualization
are performed to assist human annotation. Timebank 1.1 consists of 300 news documents in to-
tal (68,555 words). The basic corpus statistics for Timebank 1.1 are presented in Table 2.1 and

Table 2.2.

The Timebank 1.2 Corpus' follows the newer TimeML specifications version 1.2.1. The annotation

'http://www.timeml.org/timebank/documentation-1.2.html
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Tag | Count
Event | 7,571
Timex | 1,423

Signal | 2,212
Total | 11,206

Table 2.1: Number of events, timex, and signals in Timebank 1.1.

Link Type | Count | %
Tlink 5,132 | 62.2
Slink 2,857 | 34.7
Alink 253 | 3.1
Total 8,242 | 100

Table 2.2: Distribution of TLINK, SLINK, and ALINK in Timebank 1.1.

was performed on news articles from Automatic Content Extraction (ACE) program texts and the
Penn Treebank2 Wall Street Journal texts. The annotation process for Timebank 1.2 is similar
to Timebank 1.1, except that all annotations are performed by expert annotators for this version.
Timebank 1.2 contains 183 news articles in total (61,000 words). The basic corpus statistics for

Timebank 1.2 are illustrated in Table 2.3 and Table 2.4.

Tag | Count
Event | 7,935
Timex | 1,414
Signal | 688
Total | 10,038

Table 2.3: Number of events, timex, and signals in Timebank 1.2.

Inter-Annotator Agreements are computed on two expert annotations on a subset of ten documents
in Timebank 1.2. Exact match F-score is used as the IAA metric. Table 2.5 shows the IAA scores

for each annotation object.

The AQUAINT_TimeML corpus is another corpus annotated with TimeML scheme 1.2.1. It con-

sists of news reports from four topics in the novelty track of the Text REtrival Conference (TREC)
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Link Type | Count | %
Tlink 6,418 | 66.7
Slink 2,932 | 30.5
Alink 265 | 2.8
Total 9,615 | 100

Table 2.4: Distribution of TLINK, SLINK, and ALINK in Timebank 1.2.

Annotation Type | F
Timex3 .83
Event 18
Signal 17
Tlink 55
Slink .85
Alink 81

Table 2.5: IAAs of Timebank 1.2 annotations.

2003 and 20042. The four topics are: Kenya Tanzania Embassy bombings; Elian Gonzalez Cuba;
NATO, Poland, Czech Republic, Hungary; and, Slepian abortion murder. These particular sources
were chosen because they offered text rich with temporal information both in the form of temporal
expressions and events that could be anchored or ordered in time. AQUAINT_TimeML contains
73 news reports in total (35,000 words). Basic statistics of this corpus are shown in Table 2.6 and
Table 2.7. However, this corpus was annotated with single expert annotations only, and no IAAs

are reported.

Tag Count
Event 4,432
Timex 605
Signal 268
Total 5,305

Makeinstance | 4,432

Table 2.6: Number of events, timex, and signals in AQUAINT_TimeML.

>The novelty track of TREC 2003 and 2004 use documents from the AQUAINT collection: https://
catalog.ldc.upenn.edu/LDC2002T31 (Advanced Question-Answering for Intelligence), collected by re-
searchers at UPenn.
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Link Type | Count | %
Tlink 5,365 | 87.8
Slink 675 | 11.0
Alink 71 1.2
Total 6,111 | 100

Table 2.7: Distribution of TLINK, SLINK, and ALINK in AQUAINT_TimeML.

TempEval Tasks

The TempEval tasks are a series of SemEval shared tasks aimed at automatic temporal information
modeling, including time expression and event recognition, and temporal relation identification.
Through these tasks, a number of automatic temporal relation systems were developed. We will
give a brief description of the tasks in this section, and overview their participating systems and

other automatic temporal systems in the following sections.

Through the course of a decade (2007~2017), six TempEval tasks were held in total. The first three
of them focus on the domain of news reports [ Verhagen et al., 2007a, Verhagen et al., 2010a, Verha-
gen et al., 2010a], and the second half focus on the clinical domain [Bethard et al., 2015a, Bethard
et al., 2016a, Bethard et al., 2017]. The first TempEval task [Verhagen et al., 2007a] was held in
2007. This was the first time temporal information processing was evaluated in a shared task setup.
To implement a straightforward evaluation, they broke down the full task of temporal information
processing into three smaller subtasks that allow pairwise evaluation of temporal relations. The
three subtasks are: (A) for each event, classify the temporal relation between it and all timex in the
sentence; (B) for each event, classify the temporal relation between it and the Document Creation
Time (DCT); and (C) for each pair of main events from two consecutive sentences, classify the
temporal relation between them. The annotation scheme used in this task is a simplified version
of TimeML. Namely, a subset of TimeML tag set (TIMEX3, EVENT, and TLINK) was used, and

a simplified temporal relation set was implemented (only six temporal relations are distinguished
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in TempEval-1: Before, After, Overlap, Before-or-Overlap, Overlap-or-After, Vague). Modified
Timebank1.2 (using the simplified TimeML scheme) served as the training data, and newly an-
notated news data was used as the test set. TempEval-1 initiated a years-long effort in temporal
information processing research and contributed to very straightforward and manageable temporal
evaluations. Some limitations are that this task focused on temporal relation identification and
didn’t include time expression and event identification as part of the evaluation. Moreover, only
a subset of events (events whose stem occurs 20 times or more in Timebank) are included in this

task.

Some of the limitations of TempEval-1 were addressed in TempEval-2 [Verhagen et al., 2010a].
Although the same simplified TimeML scheme was applied for data annotation for TempEval-2,
this second TempEval task covered subtasks on time expression and event identification, including
time expression extraction, classification, and normalization, and event extraction and classifica-
tion. It also extended the number of evaluations on temporal relation identification, including
all three subtasks from TempEval-1, and the temporal relation between two events in a sentence
where one syntactically dominates the other. Another major contribution of TempEval-2 is that it
extended the task from English-only to six different languages: English, Spanish, French, Italian,
Chinese, and Korean. Although the final participating systems only focused on two languages (En-
glish and Spanish), the multilingual temporal annotations collected in this task supported a number

of future research efforts.

Both TempEval-1 and TempEval-2 utilized gold Timebank1.2 as their main training data (and a
small number of newly annotated news articles as the test data). TempEval-3 [UzZaman et al.,
2012] was the first time the gold AQUAINT temporal corpus, and a large automatically system-
annotated temporal corpus were added as parts of the training data. The inclusion of these new

corpora resulted in a training dataset that is ten times bigger, yet only a small portion of it was gold
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standard. The system-annotated “silver” temporal corpus was generated by applying then state-of-
the-art temporal systems [Llorens et al., 2010, Llorens et al., 2013, UzZaman and Allen, 2010] on
Gigaword [Parker et al., 2011]. Participating systems’ results show that this “silver” training data
doesn’t help timex extraction or temporal relation classification, but is useful for event extraction.
TempEval-3 also provided a “platinum” test dataset, which has higher Inter-Annotator Agreement
(IAA) scores than previous test sets and existing TimeML corpora. Another major difference in
TempEval-3 was that the full set of TimeML temporal relations was used (instead of the simplified
six relations). And end-to-end temporal relation identification was for the first time evaluated,
where participants were given raw texts and need to perform timex, event identification together
with temporal relation identification. TempEval-3 also included both English and Spanish, using

the revised and finalized Spanish Timebank1.0 as training and test data for Spanish.

While all data annotated and used in the first three TempEval tasks are within the domain of news
reports, the following TempEval tasks focused on data in the clinical domain. Clinical TempEval
2015 [Bethard et al., 2015a] utilized a modified/extended version of TimeML developed by the
THYME project [Styler IV et al., 2014a, Styler IV et al., 2014b]. The extensions were specialized
for the clinical domain, such as new timex types for words indicating particular clinical temporal
locations. For example, in the following clinical notes, “postoperative” is a TIMEX3 of type

PrePostExp, indicating the temporal location after the “operation” event.

(4): The patient did not have any postoperative bleeding.

New event attributes were also added to represent special features of clinical events. For example,
for event “slight nausea”, the DEGREE attribute of this event should be LITTLE. One limitation
of this modified TimeML scheme is that it only models two types of temporal relations: the “con-

tain” TLINKS, and the temporal relations between events and the DCT. That is, temporal relations
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29 ¢

between events such as “before”, “after”, and “overlap” are not modeled under this scheme. The
annotation of this clinical temporal corpus was carried out through the THYME project [Styler IV
et al., 2014a, Styler IV et al., 2014b]. Their data source was clinical notes and pathology reports
from colon cancer patients at Mayo Clinic. The corpus contains 293 documents for training, and
147 documents for test. Nine subtasks were evaluated in total, including timex extraction and
classification, event extraction and labeling, and temporal relation identification between events
and the DCT, and between events and/or timex with the “contain” TLINKSs. They also performed
evaluations on both end-to-end setup, and temporal relation only setup with gold timex and event

available.

Based on the first clinical TempEval, Clinical TempEval 2016 [Bethard et al., 2016a] added more
data (151 documents) for participants, included more participating systems, and reported major
performance improvements both on timex/event recognition and temporal relation identification,

although the latter remained a challenging problem.

Clinical TempEval 2017 aimed at answering the question: how well can temporal systems trained
on one medical condition perform on a different medical condition. In other words, this TempEval
task inquires how domain adaptation techniques can be applied to analyze temporal information
on a new medical condition that doesn’t have much annotated training data. Original data on colon
cancer patients was provided as the main domain, and new clinical records from brain cancer
patients were added as the new domain. Evaluation setups include (1) both training and testing on
the main domain, (2) training on the main domain and testing on the new domain, and (3) training
on both domains and testing on the new domain. Since temporal information modeling is already
a quite complicated task, only a few domain adaptation techniques were applied in participating
systems, and their results show that developing temporal systems that work across different medical

conditions was still a very challenging task.
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Table 2.8 summarizes the basic information for the six TempEval tasks.

Year Domain Language Data Tasks
. modified Timebank1.2, )
2007 news English new gold data for test 3 tasks: temp rel only
English: modified Timebank1.2, e
2010 news 6 languages Spanish: Spanish Timebank 6 tasks: timex, event, & temp rel
English: modified Timebank1.2,
English & AQUAINT, new auto silver data, 5 tasks: timex, event, temp rel,
2013 news . .
Spanish new platinum data for test; & end-to-end
Spanish: Spanish Timebank1.0
.. . THY.ME corpus (train + dev) 9 tasks: timex, event, temp rel,
2015 clinical  English (clinical records of colon cancer
. .. & end-to-end
patients from Mayo Clinic)
2016 clinical  English THYME corpus (train + dev + tes) (same 9 tasks as above)
(colon cancer records)
2017 clinical  English THYME corpus (same 9 tasks as above)

(colon + brain cancer records)

Table 2.8: Six TempEval tasks summaries.

2.2.2.2 Comparisons between Pair-wise Models and TDT

As mentioned before, Timebank annotation guidelines specify temporal relation annotations be-
tween events and times in a pair-wise fashion. Pairs of events and time expressions in a document
are considered and the ones that annotators regard as having temporal relations are annotated with a
TLINK. Therefore, theoretically a maximum of (;L) possible temporal relations could be annotated

for a document with n events and temporal expressions, however, practically annotators would
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pick much less pairs. In contrast, we propose to model temporal relations in a document in a more
structured way. For each document, we build a dependency tree structure that represents events and
times as nodes and temporal relations among them as edges. This is the main difference between
pair-wise models and our proposed temporal relation representation model. Our structured model
has the advantage of lower annotation complexity. The TIMEX3 attributes “anchor time/event” in
TimeML is very similar to our parent-child structures in a temporal dependency tree. However,

TimeML only models these anchors for TIMEX3s, not EVENTS, and their annotation is optional.

Another difference between TimeML and our scheme is our different treatment to temporal ex-
pressions. TimeML annotates explicit temporal expressions, including expressions that are not
actually temporal locations (i.e. not anchorable on a timeline). For example, in the following sen-
tence A, “three months” is an explicit temporal expression and should be annotated as a Duration
in TimeML. However, this expression is not describing a temporal location on a timeline. In our
design, we focus more on the time-stamping of events and/or times. However, non-temporal loca-
tion time expressions are not helpful for anchoring events and/or times (e.g. the example sentence
A below). Some examples of temporal location time expressions are as follows. The temporal
location of the time expression “3 days after New Years Eve” in sentence B is January 3rd on the
year of the Document Creation Time. And the temporal location of the second time expression “10

minutes later” in sentence C is 8:10am on the date of the DCT.

(5): A. This procedure usually takes three months.

B. He left 3 days after New Years Eve.

C. He arrived at 8:00am. 10 minutes later, the class began.

Moreover, among temporal location time expressions, we propose a more detailed categorization

of temporal expressions. Instead of recognizing fully specified temporal expressions from un-
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derspecified ones, we distinguish if a temporal expression is “absolute” or “relative”, and if it is
“concrete” or “vague” (see Chapter 3 Section 3.2 for detailed explanations and examples). These
two distinctions not only make temporal expressions form consistent tree structures in our pro-
posed temporal dependency trees, and also make downstream temporal expression normalization

easier.

Additionally, to make our first stage annotation experiments efficient, we also simplified over
TimeML on certain aspects. For example, we don’t annotate SLINK, ALINK, and SIGNALS;
we apply less annotations on temporal expressions and events (instead of annotating tense, aspect,
and event type on every event, we only annotate one event type from a specially designed set that
covers these three aspects); we use a simplified temporal relation set and don’t explicitly represent

magnitudes; and we are not explicitly modeling event coreference yet.

2.2.2.3 Automatic Pair-wise Temporal Relation Identification Systems

Rule-based and Statistical Machine Learning Systems

The TempEval shared tasks have inspired a large number of research efforts on automatic com-
putational modeling for temporal relation and information. Some of the early temporal systems
focused on rule-based approaches. [Hagege and Tannier, 2007] utilized a rule-based deep syntac-
tic analyzer for temporal expression identification, and a rule-based linguistic analyzer for temporal
relation identification. [Strotgen and Gertz, 2010] built the system HeidelTime, one of the state-of-
the-art systems for time expression extraction and normalization. It is a rule-based system mainly
using regular expression patterns for the extraction of time expressions as well as knowledge re-
sources and linguistic clues for their normalization. The later improved version of Heidel Time was

extended to 13 languages with hand-crafted resources, and even more languages with automati-
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cally created resources [Strotgen et al., 2013, Strotgen et al., 2014, Li et al., 2014, Manfredi et al.,
2014, Strotgen and Gertz, 2015]. [Saquete, 2010] deployed a rule-based system using knowledge
databases for time expression identification. [Chang and Manning, 2013] built a rule-based time
expression tagger based on regular expression patterns over tokens. [Zavarella and Tanev, 2013]
utilized finite-state rule cascades to recognize and classify time expressions and events. [Tissot

et al., 2015] built its in-house rule-based systems for clinical temporal modeling.

Many systems integrated rule-based components together with statistical models. [Min et al.,
2007], on one hand, took advantage of a syntactic pattern matching tool and deployed hand-crafted
finite state rules for temporal expression labeling and normalization, and utilized heuristics, a lexi-
con, and lexical features such as lemmas, parts of speech, and WordNet senses for event detection.
On the other hand, they also engineered various syntactic and semantic features for its statistical
models for temporal relation identification. [Puscasu, 2007] implemented a rule-based temporal
reasoning mechanism for intra-sentence temporal relations. It leveraged the process of sentence-
level syntactic tree generation to perform bottom-up propagation of temporal relations between
syntactic constituents. Heuristics were used for temporal conflict resolution. Inter-sentence tem-
poral relation identification, however, were identified with both heuristics and statistical models.
[Vicente-Diez et al., 2010] used rules plus simple statistics to tackle time expression extraction,
classification, and normalization in Spanish text. [Grover et al., 2010] utilized a rule-based syn-
tactic analyzer, and experimented with both rule-based and logistic regression models for time and
event identification. [Kolya et al., 2010] built rule-based systems for time and event identification
and employed CRF models for temporal relation identification. [Kolomiyets and Moens, 2010]
focused on time expression and used a logistic regression model for extraction and a rule-based
system for normalization. To extend positive annotations in the corpus, they also exploited seman-

tically similar words automatically obtained from a large un-annotated textual corpus. [Derczynski
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and Gaizauskas, 2010] employed a rule-based system for time expression identification, and a lo-
gistic regression classifier for temporal relation identification, using features such as associated
temporal signal words. [Chambers, 2013] used both logistic regression classifiers and rule-based
systems for the whole pipeline of temporal information modeling. [Filannino et al., 2013] uti-
lized CRF models for time expression extraction and an off-the-shelf rule-based system for their
normalization. [Cohan et al., 2016] built CRF and logistic regression models using lexical, mor-
phological, syntactic, dependency, and clinical domain specific features, combined with pattern
matching rules. [Sarath et al., 2016] experimented with an ensemble of rule-based and statistical
model using lexical, syntactic, and morphological features. [Grouin and Moriceau, 2016] incor-
porated the rule-based system Heidel-Time from [Strotgen et al., 2013] into its CRF models with
lexical, morphological, and word cluster features. [Barros et al., 2016] utilized both SVM models
with lexical and morphological features and rule-based extensions to Stanford CoreNLP [Manning
et al., 2014]. [MacAvaney et al., 2017] built ensembles of CRFs, rules, and decision trees using
character n-grams, lexical, word clusters, word embeddings, parts of speech, syntactic, dependency
tree paths, semantic role, and UMLS concept types as features. [Lamurias et al., 2017] combined

CRFs and rules with character n-grams, words, parts of speech, and UMLS concept types features.

A number of pure statistical temporal systems have been developed as well, with the most com-
monly used models being SVMs, CRFs, Decision Trees, Structured Perceptrons, and Logistic
Regression models. [Bethard and Martin, 2007] trained standard SVM models for temporal rela-
tion identification using syntactic features and gold Timebank label features. [Cheng et al., 2007]
utilized features from dependency parsing trees and built a sequence labeling model for temporal
relation identification. [Hepple et al., 2007] took advantage of the off-the-shelf machine learning
suite WEKA and used a classification model with lexical and Timebank label features. [Llorens

et al., 2010] implemented the system TIPSem, one of the state-of-the-art systems in temporal
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modeling on both English and Spanish. TIPSem utilized CRF models with semantic role features.
A comparison experiment between TIPSem with and without semantic features showed that se-
mantic information is very important for time expression identification. TIPSem was also used
to generate silver training data for a later clinical TempEval. [UzZaman and Allen, 2010] em-
ployed systems that use a combination of deep semantic parsing, Markov Logic Networks, and
CRF models to tackle the entire temporal pipeline of time, event, and temporal relation identifi-
cation. [Ha et al., 2010] built a statistical system using Markov Logic in combination with rich
lexical relation features as well as lexical and syntactic features. [Jung and Stent, 2013] aimed
at time expression and event identification with logistic regression classifiers, and experimented
with various sets of features, including basic lexical features, rich syntactic features, and rich se-
mantic features. [Bethard, 2013] built a pipeline of statistical models, each with a small set of
simple morpho-syntactic features, for the complete pipeline of time, event, and temporal relation
identification. [Kolya et al., 2013] employed CRF models for each part of the temporal process-
ing pipeline, using various features based on different lexical, syntactic and semantic information,
extracted with Stanford CoreNLP and WordNet-based tools. [Kolomiyets and Moens, 2013] used
logistic regression models for time expression and event identification, and deployed a shift-reduce
temporal dependency parser [Kolomiyets et al., 2012] in a pair-wise temporal relation identifica-
tion scenario. This is a temporal dependency parser that is comparable to our proposed temporal
dependency representation, and is described in greater detail in Section 2.2.3.2. [Laokulrat et al.,
2013] built logistic regression classifiers for temporal relation classification and exploited features
extracted from a deep syntactic parser, including paths between event words in phrase structure
trees and their path lengths, and paths between event words in predicate argument structures and
their subgraphs. [Velupillai et al., 2015] participated in the Clinical TempEvals and their supervised

classifiers used features generated by the Apache clinical Text Analysis and Knowledge Extraction
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System (cTAKES?). [Tissot et al., 2015] built supervised classifiers using SVM models. [Chikka,
2016] experimented with CRF and SVM models. [Hansart et al., 2016] built CRF models with lex-
ical features. [Lin et al., 2015] and [Leeuwenberg and Moens, 2016] also utilized the cTAKES with
additional feature engineering. [Tourille et al., 2016] experimented with SVM models either using
lexical, syntactic, and structural features or using word embeddings with no hand-crafted features.
[Abdulsalam et al., 2016] built CRFs and SVMs using lexical, morphological, syntactic, character
pattern, character n-gram, and gazetteer features. [Lee et al., 2016] implemented SVMs using lex-
ical, morphological, syntactic, discourse, and word representation features. [Caselli and Morante,
2016] built CRFs with morpho-syntactic, lexical, UMLS*, and DBpedia® features. [Leeuwenberg
and Moens, 2017] combined SVMs with structured perceptrons using word and part of speech fea-
tures, as well as preliminary domain adaptation techniques for data in the clinical domain. [Huang
et al., 2017] built and ensemble of SVMs and CRFs with word n-grams, parts of speech, named

entities, dependency trees, and UMLS concept types as features.

Neural Systems

Later temporal systems started to utilize neural models more often. [Fries, 2016] implemented
recurrent neural networks with word embeddings for end-to-end time expression, event, and tem-
poral relation identification. [Chikka, 2016] and [Li and Huang, 2016] also used neural models
for both end-to-end and temporal relation identification only on the clinical domain. [Sarath et al.,
2017] built and ensemble of CRFs, rules, neural networks, and decision tree using character n-
grams, word n-grams, word embeddings, verb tense, section headers, and sentence embeddings

as features. [Tourille et al., 2017] combined recurrent neural networks with character and word

3https://ctakes.apache.org
4Unified Medical Language System
Shttps://wiki.dbpedia.org/
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embeddings and SVMs with lexical and part of speech features, as well as preliminary domain
adaptation techniques for the clinical domain. [Long et al., 2017] built an ensemble of rules,
SVMs, and recurrent and convolutional neural networks with words, word embeddings, and verb

tense as features for temporal information processing in the clinical domain.

A representative work on neural systems for pair-wise temporal relation extraction is described in
[Dligach et al., 2017], which empirically shows that CNNs and LSTMs can be successfully used
for temporal relation extraction (establishing state-of-the-art results), without manually engineered
features (with only word tokens and/or pos tags). [Dligach et al., 2017] claims that the vast ma-
jority of systems in temporal information extraction challenges, such as the i2b2 [Sun et al., 2013]
and Clinical TempEval tasks [Bethard et al., 2015b, Bethard et al., 2016b], used classifiers with a
large number of manually engineered features, which experience a significant accuracy drop when
applied to out-of-domain data [Wu et al., 2014, McClosky et al., 2010, Daumé III, 2009, Blitzer
et al., 2006]. Therefore, they proposed two neural architectures for temporal relation extraction:
a convolutional neural network CNN [LeCun et al., 1998] and a long short term memory neu-
ral network LSTM [Hochreiter and Schmidhuber, 1997], which require minimum manual feature
engineering. They also proposed a new simple method to mark the positions of the relation argu-
ments: XML tags are used to mark the positions (e.g. <el> diagnosed </el>, <t> may of 2010

</t>). This representation of relation argument positions can be used directly by neural models.

More specifically, with a concatenation of n words and/or POS embeddings of dimension d as the
input representation, they built separate models for event-time relations and event-event relations.
Standard split Clinical TempEval 2016 corpus is used as their experimental data, focusing only on
the “contains” relation, and the THYME system [Lin et al., 2015], an SVM classifier with hand-
engineered linguistic features which achieved the highest performance on Clinical TempEval 2015

test set [Lin et al., 2016], is used as the baseline. They re-trained two versions of this baseline
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system on their own experimental data: one with the full set of features, and one with only word
tokens as features. Different sets of experiments are conducted to compare their systems against

the baseline systems, on all events or on medical events only.

They discovered that CNN with only word tokens as features is the best performing model among
their neural models; for event-time “contains” relations, neural models in general outperform the
traditional feature-based baseline model, but for event-event “contains” relations, none of their
neural models outperform the baseline; when only considering medical events, their best neural
model (CNN with word tokens) outperforms baseline on both event-time relations and event-event
relations; and their proposed new simple encoding for relation argument positions outperform the
previous encoding method (position embeddings). They also discussed that CNN with only POS
tags as features outperforming the feature-based baseline suggests that POS tags alone is enough
for this task when coupled with neural models; CNN models outperform LSTM models on this
task; and the reasons that their neural models don’t perform as well as the baselines might be:
event-event relations are much more difficult than event-time relation, and the class imbalance
issues. The relation:none-relation ratio for event-event relations is 1:15, and the baseline system is

tuned with class specific weights that help it deal with class imbalance.

2.2.3 Temporal Structure Modeling

2.2.3.1 Temporal Structure Schemes and Corpora

Although structured interpretation of temporal relations in discourse is a long-developed concept
(as introduced in § 2.1), only a few works have been done on the design of annotation schemes of

temporal structures, the actual annotation on data, and the construction of scalable corpora. Here
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we give a brief introduction to related work in this area.

Temporal Dependency Structure for Narrative Events

[Bethard et al., 2012] introduced a new temporal relation annotation scheme different from all
pair-wise schemes — annotating events in a narrative story as a temporal dependency tree structure.
In their scheme, annotators were instructed to link each event in the story to a single nearby event,
similar to what has been observed in reading comprehension studies [Johnson-Laird, 1980, Brewer
and Lichtenstein, 1982]. When there were several reasonable nearby events to choose from, the
annotators were instructed to choose the temporal relation that was easiest to infer from the text

(e.g. preferring relations with explicit cue words like before).

They experimented with a few different scheme designs. On event annotation, they did three
different annotation schemes: (1) TimeML event identification rules; (2) TimeML events without
events in direct speech and negated, modal, or hypothetical events; and (3) all events in (2) without
light verbs and aspectual verbs. On temporal relation annotation, they did two different annotation
schemes on two relation label sets: (1) Before, After, Overlap; and (2) Before, After, Includes,
IsIncluded, Identity, Overlap. 20 stories are annotated with these different annotation schemes.
And using Krippendorff’s nominal Alpha [Krippendorff, 2004, Hayes and Krippendorff, 2007]
as the inter-annotation agreement (IAA) measure, their experimental annotations show that event
recognition scheme (3) obtains the highest IAA, and relation label set (1) gets higher IAA than
relation set (2). They then performed annotation on 100 fables using the best event scheme (3) and
the more detailed relation label set (2). And 0.856, 0.822, and 0.700 IAAs are reported respectively

for event recognition, event links, and event ordering relation labels.

[Bethard et al., 2012] shows that temporal relations between events in narrative stories can be
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accurately annotated as a form of temporal dependency structure, where all events in the plot are
connected by a single spanning tree. Additionally, pointing out that the problem of prior work on
temporal relation annotation is that they generate disconnected timelines, [Bethard et al., 2012]
claims that their annotation scheme guarantees a connected dependency tree, therefore connected

timelines.

However, [Bethard et al., 2012] only did annotations on narrative stories, and only worked with
events, while we propose a more complete scheme on different types of text (both narrative stories
and reporting news), and cover both events and time expressions in the temporal dependency tree
structure. [Bethard et al., 2012] requires annotators to link each event in a story to a single nearby
event with which the temporal relation is the easiest to infer, using the annotators’ own judgment,
while we require annotators to find the reference time for each event and time expression, using

the well-developed linguistic concept of temporal anaphora.

Multi-axis Annotation Scheme for Event Temporal Relations

Another structured representation of temporal relations among events is presented in [Ning et al.,
2018b]. They proposed a multi-axis annotation scheme to capture temporal structures among
events. Under the observation that not all pairs of events should be annotated a temporal rela-
tion, [Ning et al., 2018b] proposed to model events on different axes, and only events on the same
axis should be considered temporally. More specifically, they proposed to have eventive events
on the main axis, INTENTION and OPINION events on an orthogonal axis, HYPOTHESIS and
GENERIC events on a parallel axis, NEGATION events not on any axis, and STATIC and RE-
CURRENT events on the OTHER axis. Their annotation process is as follows: (1) classify if

an event is anchorable to a given axis (i.e. an event type classification step); (2) annotate every
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pair of events on a given axis; (3) repeat on every axis. This model allows annotators to focus on
only comparable pairs, avoiding situations where annotators are forced to relate event pairs that
have none or very vague temporal relations. “Orthogonal Axes” is a novel design in this scheme.
Intersection events of two orthogonal axes can be compared to events on both axes, and can some-
times bridge events, especially for INTENTIONS and OPINION events. They also observed that
in previous annotation work, event end-points are a major source of annotation disagreements, and

proposed annotation on start-points only.

A pilot expert annotation experiment shows a great improvement in IAA (.6 to .8 Cohen’s Kappa)
when using their annotation scheme. They used crowdsourcing to annotate the entire Timebank-
Dense with their annotation scheme, and showed good ACC (accuracy compared to expert anno-
tation) and WAWA (Worker Agreement with Aggregate) scores. A comparison on the 1.8k event
pairs that their annotation and the original Timebank-Dense annotation have in common shows
that: the two annotations have a high agreement level, and due to the interval-splitting technique,
their annotation has more specific temporal relation labels for the “vague” relations in Timebank-

Dense.

They also trained two baseline temporal relation recognition systems (an averaged perceptron sys-
tem). One on their annotations and the other on the original Timebank-Dense annotations. They

reported better results on their annotations over the original annotations.

[Ning et al., 2018b] focuses only on temporal relations among events, excluding time expressions
which play an important role in inferring temporal relations. [Zhang and Xue, 2018b] includes
both time expressions and events in their temporal structure. [Ning et al., 2018b] models tempo-
ral relations between events on one axis pair-wisely, not capturing the structural relations among

them. Additionally, “vague” temporal relations (which are usually annotated between events on
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different axes) are left un-attended in their scheme. They define the process of “axis projection” to
be projecting events across different axes, and through this projection, figuring out the temporal re-
lations between them. However, due to difficulties in this projection, they focus only on same-axis
relations in the current stage. This leaves temporal relations across different axes un-interpreted.
[Zhang and Xue, 2018b] models the temporal relations in a text in one simple structure using which

temporal relations between every pair of time expressions and/or events can be inferred.

Temporal Discourse Models (TDM) for Narrative Events

[Mani and Pustejovsky, 2004] proposed the Temporal Discourse Models (TDM) — tree-structured
representations for the temporal structures of narratives. Nodes in the tree represents abstract
events (interpreted as pairs of time points), and the temporal relations represented in the tree are
“temporal inclusion” relations and temporal ordering relations are represetned as a separated set of

constraints. More specifically, a TDM is a pair {7, C'}, where:

e T'is arooted, unordered, directed tree with nodes N = { EU A}, where a pair of parent-child

represents a “temporal inclusion” relation.

o F is the set of events mentioned in the text.

o Ais a set of abstract events.
e ('is a set of temporal ordering constraints, using the ordering relations: < and C,,;,,.

o < represents temporal precedence.

o C,.in represents minimal inclusion (for States only, see below for further explanation).

Consider the following example:
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(6): A.John went into the florist shop.
B. He had promised Mary some flowers.
C. She said she wouldn’t forgive him if he forgot.

D. So he picked out three red roses.

The TDM tree for this discourse is:

Ey

e

E4 E; Ep

/N

Ez Ec

And the TDM constraints for this discourse are: C': {Ep < Ec, Ec < Ea, E4 < Ep}, where E,

and FE are abstract events, and F4 ~ Ep are events corresponding to sentence A ~ D.

[Mani and Pustejovsky, 2004] focuses only on temporal relations among events in narratives, while
our proposed representation includes both time expressions and events in their temporal structure,
and supports both narrative stories and news reports. TDMs represents “temporal inclusion” re-
lations in its tree structure, and temporal precedence relations in a separated set of constraints.
This approach models temporal relations in two different representations, which could potentially
add difficulties for automatic systems, and doesn’t explicitly model the “overlap” temporal rela-

tion. We propose to include all of the basic temporal relations (“before”, “after”, “overlap”, and

“includes”) together in one consistent tree structure.

[Mani and Pustejovsky, 2004] proposed a special treatment for stative events (i.e. States), whose
temporal relation with other States or Events are often not very explicitly stated. For example, in
the following discourse, it can be inferred with certainty that at the same time that 4 happened,

Ep was true. However, it is possible that the State E'p extends before and/or after /4. TDM
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13

chooses not to capture such information, and only represents that Fp is “minimally” (i.e. “at

least”) included in £'4. The TDM tree and constraints for this example are shown below.

(7): A. John walked home.

B. He was feeling great.

TDM tree:

TDM Constraints: C': {Ep Cpin Ea}.

This approach of handling stative events is similar to our temporal structure design. However, we
utilize the “overlap” relation and tend not to model a temporal inclusion relation if it is unclear
in the context, and all information is represented on the tree structure. For the above example,
our Temporal Dependency Tree (TDT) structure would be as follows (see Chapter 3 for more

introduction on TDTs).

ROOT

PAST

E4
‘ overlap
Egp
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Narrative Containers

Narrative Containers is another structured representation for temporal information in text. [Puste-
jovsky and Stubbs, 2011] first proposed the notions of narrative containers and narrative times.
In short, the narrative container of a document is an assumed time window before DCT of the
document. And the size of the window is dependent on the genre of the article. For example, a
daily news papers’ narrative container is one day leading up to the release time of the news pa-
per; newswire articles’ narrative containers are maybe about 2~10 hours; and monthly journals’
narrative containers are roughly one month, etc. The narrative time of a document is the current
temporal anchor for events in the text, set by a time expression or an event; and it can change
as the reader moves through the narrative. For example, the first snippet below is from an article
published on the Wall Street Journal. Since Wall Street Journal is a daily newspaper, its assumed
narrative container size is one day. Therefore, the event “adopted(el)” is highly likely to have hap-
pened on 10-25-1989, the 1-day time period leading up to the DCT of this document. An example
for narrative times is presented in the second text. Three time expressions function as narrative
times: DCT (t0), Sunday (t1), and earlier this month (t2). As the reader goes through the text,
its narrative time shifts and events are contained by according narrative times (el, e4 are in the

container tl; e2, e3, e5, and e6 are in the container t2).

(8): A.DCT:

1 Philip Morris Cos., New York, adopted,; a defense measure designed to make a hostile

takeover prohibitively expensive.

B. DCT:

President Obama paid,; tribute to 29 workers killed,, in an explosion.; at a West
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Virginia coal mine , saying., they died.s; “in pursuit of the American
dream.” The blast.s at the Upper Big Branch Mine was the worst U.S. mine disaster in

nearly 40 years.

The Narrative Containers Model was later extended and adapted to the clinical domain in the
THYME project [Miller et al., 2013]. THYME annotation guidelines recognizes four narrative
containers regarding the DCT of a document: before DCT, overlap DCT, before and overlap DCT,
and after DCT. It also allows time expressions and events in the text to function as narrative contain-
ers (merging the notion narrative container and narrative time). And lastly, on top of the temporal

container relations, temporal ordering relations are modeled as well.

2.2.3.2 Automatic Temporal Structure Parsing Systems

[Kolomiyets et al., 2012] is one of the very few work on automatic temporal structure parsing.
Based on the temporal dependency structure introduced by [Bethard et al., 2012], they built two
temporal dependency parsers using traditional dependency parsing techniques. These parsers are
trained and evaluated on the corpus developed in [Bethard et al., 2012], 100 fable stories. (See

Section2.2.3.1 for more descriptions on this dependency structure and corpus.)

More specifically, they built a Shift-Reduce Parser (SRP), using the Covington set of transitions
[Covington, 2001] as it allows for parsing non-projective trees; and a Graph-Based Parser, using
Maximum Spanning Tree (MST) [Georgiadis, 2003] with the Chu-Liu-Edmonds algorithm [Chu
and Liu, 1965, Edmonds, 1967], with Margin Infused Relaxed Algorithm (MIRA) [Crammer and
Singer, 2003, Crammer et al., 2006] for predicting edge scores. These two parsers are evaluated
against two baseline systems: LinearSeq, linking all events in linear order with BEFORE relation;

and ClassifySeq, linking all events in linear order, with a trained pair-wise classifier to predict the
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relation. And they used Unlabeled/Labeled Attachment Score (UAS/LAS) and Unlabeled/Labeled

Tree Edit Distance Scores (UTEDS/LTEDS) as the evaluation metrics.

Their experimental results show that the two traditional parsers both match or beat the two base-
lines on unlabeled evalutations, and both outperform the two baselines on labeled evaluations.
They discovered that ClassifySeq works basically identical with LinearSeq, showing that simple
pair-wise classifier was unable to learn anything beyond predicting all relations as BEFORE. They
also showed that SRP performs better than MST on labeled evaluation, likely because SRP allows

for features describing previous parse decisions.

[Kolomiyets et al., 2012] built two temporal structure parsers based on the temporal dependency
structures introduced in [Bethard et al., 2012], which captures only the temporal relations among
events. Our parsers, on the other hand, are based on the temporal dependency structures introduced
in [Zhang and Xue, 2018b], which includes both time expressions and events. [Kolomiyets et al.,
2012] developed traditional statistical parsers specifically for narrative domain with extensive fea-
ture engineerings. We proposed more broad-coverage neural parsers with minimal domain-specific
feature engineerings. These parsers are experimented and validated on two domains: narrative
discourses in fairy tales and reporting discourses in the news domain. Experimental results in
[Kolomiyets et al., 2012] show that their statistical parsers are better at temporal relation label pre-
diction than a simple baseline, but didn’t provide a significant improvement on temporal structure
prediction, indicating that temporal structure is a more difficult task. Our proposed neural parsers
significantly improved the performance on both temporal relation classification and temporal struc-

ture parsing.
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2.2.4 A Comparative Analysis of Existing Temporal Models

This section gives an overview of different types temporal models described in the previous sec-
tions and discusses a comparative analysis of major similarities and differences between these tem-
poral models. Particularly, our comparative analysis will focus on the following temporal models
with accompanying annotated corpora (if any): TimeML (Timebank, Timebank-Dense), Multi-
axis Temporal Model (MATRES), Narrative Containers (THYME), Temporal Discourse Model,

Temporal Dependency Tree structure (Chinese and English TDT corpora).

In order to give a qualitative and intuitive comparison, we would like to examine the different tem-
poral models annotated on the same document. Timebank-Dense is the most commonly annotated
corpus among these temporal models. Therefore we picked the shortest document from Timebank-
Dense (€a980120.1830.045) and collected its temporal model annotations on all of these temporal
models except for TDM and NC which we annotated ourselves according to their guidelines. The
document is presented as follows in (9), with TimeML Timex3s marked in orange, TimeML events
in blue, and TimeML signals in green. Figure 2.1 ~ Figure 2.6 illustrate different temporal models

for this document.

(9): DCT:

The Pentagon said,; it will re-examine,, the question.;; are the remains inside the

Tomb of the Unknown from the Vietnam War, in fact, known.5?

CBS News first reported.g that the tomb may contain.; the remains of Air Force

pilot Michael Blassie.

There was a suspicion.s the body was.o, Blassie because his uniform and ID card were

found.g near the body in Vietnam. But , they were lost.;o. Blassie’s mother
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wants,.;; the remains in the tomb tested.;» for DNA.

el?7

e20

el8

Figure 2.1: Timebank annotation for document (9).

Figure 2.1 and Figure 2.2 represent the annotations in Timebank and Timebank-Dense respec-
tively. Red edges and edge labels in Figure 2.2 represent differences between the two annota-
tions. In Timebank, annotators were allowed to pick temporal related event/time pairs with their
own judgement and annotate relations for those pairs only. In Timebank-Dense, every pair of
event/time in two adjacent sentence are required to be annotated with a temporal relation. As
shown in the figures, while annotators consider only a few pairs of event/time hold valid temporal
relations in Timebank, the Timebank-Dense guidelines greatly increased the number annotated re-
lations, rendering a more laborious annotation yet more complete coverage. Both Timebank and
Timebank-Dense are representative pair-wise models. As seen in the figures, pair-wise models are
computationally represented as graphs. Timebank models each text as a partially-connected graph
with some disconnected nodes/subgraphs, while Timebank-Dense models each text as a partially-

connected graph with no disconnected subgraphs.
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Figure 2.2: Timebank-Dense annotation for document (9).
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Figure 2.3: MATRES annotation for document (9).

Figure 2.3 illustrates an example for Multi-axis Temporal Model from the MATRES corpus. As
shown in the figure, the Multi-axis Temporal Model is also a partially-connected graph for a piece

of text, with disconnected nodes/subgraphs. However, on top of the graph structure, Multi-axis
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Model also structures certain disconnected subgraphs on different axes. Note that this model

doesn’t cover temporal relations with regards to time expressions.
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Figure 2.4: TDM annotation for document (9) (our own annotation).

Figure 2.4 shows the temporal structure of the same document in a Temporal Discourse Model.
Unlike previous graph models, a TDM models temporal information in the text as a tree structure,
with events in the text and some abstract events as nodes, and “temporal inclusion” relation as
edges. Temporal ordering relations are modeled as a separate set of constraints. Like the Multi-

axis Model, TDM doesn’t model temporal relations with regards to time expressions.

Figure 2.5 illustrates the temporal structure of the same document in a Narrative Container model.
With a few DCT related abstract nodes, this model is also a partially-connected graph with some
disconnected nodes/subgraphs. It represents time expressions and events on nodes, temporal “con-
tain” relations on edges between narrative containers and events, and temporal ordering relations

on edges among events within the same narrative container. One event can also belong to multiple
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Figure 2.5: Narrative Container annotation for document (9) (our own annotation).
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Figure 2.6: TDT annotation for document (9).

narrative containers.

Lastly, our TDT model of the same document is represented in Figure 2.6. It is an acyclic tree
structure with a few abstract nodes on the top layers. It represents time expressions and events on

nodes, and temporal anaphora and temporal relations on edges.

47



Chapter 2. Background on Temporal Information Modeling

For a quantitative comparison, we compiled statistics and annotation agreements of these corpora
in the following tables. Table 2.9 illustrates statistics on number of documents, timex, events, and
temporal relations on these corpora. For MATRES, statistics on orthogonal axes (i.e. intention
and opinion axes) are in round parentheses, while the other statistics are for the main axis only.
THYME (total) is the entire THYME corpus, including both colon and brain cancer domains, and
THYME (1st release) is the first released THYME data introduced in [Styler IV et al., 2014b], a

subset of THYME corpus including only some of the colon cancer data.

Table 2.10 and Table 2.11 give the inter-annotator agreements for each corpus. Please note that
these numbers are not necessarily directly comparable since they sometimes evaluate different spe-
cific agreements. The F1 scores here are computed with picking one expert as the gold standard,
and for temporal relations evaluations, this F1 should be the same with P and R. The kappa scores
here are either Cohen’s kappa or Fleiss’ kappa depending on the number of annotators involved.
Crowdsourcing worker accuracies are computed against expert annotations, and WAWA is Worker
Agreement With Aggregate measure among crowdsource workers. For MATRES corpus, all agree-
ments reported here are for the main-axis only, and expert agreements are computed on a subset of
Timebank-Dense (100 events and 400 relations), while crowd worker agreements are computed on

Timebank-Dense.

Here we look at two different evaluations. The first evaluation is annotators’ agreement on deter-
mining the pair of event/time that needs a temporal relation annotation (Table 2.10). This measure
is slightly different for different models. Specifically, for Timebank and TB-Dense, these numbers
evaluate annotators’ agreements on judging if a temporal relation should be annotated between a

given pair of timex/events. For MATRES, they evaluate annotators’ agreements on whether an
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2.2. Computational Approaches on Temporal Information Modeling

Temporal Model Corpus Domain #Docs #Timex # Events # TemP oral
Relations
TimeML Timebank news 183 1,414 7,935 6,418
Timebank-Dense news 36 289 1,729 12,715
Multiaxis MATRES news 276 - 5,453* 13,577*

) MATRES * *
(TB-Dense) 36 - 544%* (69) 1,673* (128)
annotations news 183 1414 7935 7,935 %

NC on Timebank
THYME (total) .. 1,186 14,440 127,736 30,545 sk
TAYME clinical notes
107 1,426 15,769 7,935
(1st release)
Remedia, grade school
THM BRC, CBC *=* reading materials 1,200+ ) ) )
. news 115 1,167 4,807 5,974
TDT Chinese TDT fairy tales 120 131 10,976 11,107
English TDT news 183 1,414 2,691 4,105

Table 2.9: Corpora Statistics. (* Stats on main axis only; numbers in parentheses are for orthog-
onal axes. ** Brandeis Reading Comprehension corpus, and Canadian Broadcasting Corporation
corpus. *** This statistic is not reported in their paper; however, it should be the same number
as the number events according to their annotation approach. **** This number reports only the
“contains” relation.)

Temporal Model Corpus FIEXPI?:;Spa gg’g d ‘2,);,)1:]‘(;25
. Timebank .55 - - -
TimeML Timebank-Dense - - - -
Multi-axis MATRES - .85 .86 .79
annotations
on Timebank
NC THYME (total) - - - -
THYME (1st release) .50 - - -
TDM Remedia, BRC, CBC - - - -
Chinese TDT (news) .86 - - -
TDT Chinese TDT (fairy tales) | .83 - - -
English TDT - - .82 .81

Table 2.10: IAAs on Pair Extraction Annotations.

event is anchorable on a given axis. For NC, they evaluate annotators’ agreements on selecting the
narrative container or narrative time for a given event. For TDT, they evaluate annotators’ agree-
ments on selecting the reference time / parent for a given event. The second evaluation is temporal

relation annotation when pairs of time/event are given (Table 2.11). This measure is slightly dif-
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Chapter 2. Background on Temporal Information Modeling

Temporal Model Corpus FlExperts Kappa glgg d W‘;};]l:{;;
. Timebank 77 71 - -
TimeML Timebank-Dense .65~.72 .56~.64 - -
Multi-axis MATRES .90 .84 .88 .81
annotations
NC on Timebank ) (74 ) )
THYME (total) ({.66}) ({.80*}) [.52] [.71%] - - -
THYME (1st release) (.45) ({.56}) [.72] - - -
TDM Remedia, BRC, CBC - - - -
Chinese TDT (news) 79) - - -
TDT Chinese TDT (fairy tales) (.72) - - -
English TDT - - .83(.53) .85(.52)

Table 2.11: IAAs on Temporal Relation Annotations. These numbers evaluate annotators’ agree-
ments on labeling the temporal relation between a given pair of timex/events. (Numbers in paren-
theses are NOT relation only evaluations; they evaluate both pair extraction & relation labeling
together. Numbers in square brackets report only temporal relations with respect to DCT. Num-
bers in curly brackets report only on the “contains” temporal relation. * These numbers report
agreements between annotator majority and adjudicator.)

ferent for different models as well. For some corpora, agreement on temporal relation only is not
available and instead the evaluation for both pair extraction and relation labeling together are given.
These numbers are presented in round parentheses. THYME annotation was mainly focused on

event-document temporal relations (marked in square brackets in the table) and “contains” relation

between events and times (marked in curly brackets).
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Chapter 3

Structured Interpretation of Temporal

Relations

3.1 Introduction

Understanding temporal relations between events and temporal expressions in a natural language
text is a fundamental part of understanding the meaning of text. Automatic detection of temporal
relations also enhances downstream natural language applications such as story timeline construc-
tion, question answering, text summarization, information extraction, and others. Due to its poten-
tial, temporal relation detection has received a significant amount of interest in the NLP community

in recent years.

Most of the research attention has been devoted to defining the “semantic” aspect of this problem
— the identification of a set of semantic relations between pairs of events, between an event and a

time expression, or between pairs of time expressions. Representative work in this vein includes
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TimeML [Pustejovsky et al., 2003a], a rich temporal relation markup language that is based on and
extends Allen’s Interval Algebra [Allen, 1984]. TimeML has been further enriched and extended
for annotation in other domains [O’Gorman et al., 2016, Styler IV et al., 2014a, Mostafazadeh
et al., 2016]. Corpora annotated with these schemes [Pustejovsky et al., 2003b, O’Gorman et al.,
2016] are shown to have stable inter-annotator agreements, validating the temporal relations pro-
posed in the TimeML. Through a series of TempEval shared tasks [Verhagen et al., 2007a, Verha-
gen et al., 2010a, UzZaman et al., 2012, Bethard et al., 2015a, Bethard et al., 2016a, Bethard et al.,
2017], there has also been significant amount of research on building automatic systems aimed at

predicting temporal relations.

Less attention, however, has been given to the “structural” aspect of temporal relation modeling
— answering the question of which other events or time expressions a given time expression or
event depends on for the interpretation of its temporal location. Having an answer to this question
is important to both linguistic annotation and computational modeling. From the point of view
of linguistic annotation, without an answer to this question, an annotator is faced with the choice
of: (i) labeling the relation between this event/time expression with all other events and time
expressions, or (ii) choosing another event/time expression with which the event/time expression
in question has the most salient temporal relation. (i) is impractical for any textual document that is
longer than a small number of sentences. Without a solid linguistic foundation, adopting (ii) could
lead to inconsistent and incomplete annotation as annotators may not agree on which temporal

relations are the most salient.

From a computational perspective, without knowing which time expressions and events are related
to each other, an automatic system has to make a similar choice to predict the temporal relations
between either all pairs of events and time expressions, or only a subset of the temporal relations.

If it chooses to do the former, there will be (g) pairs for n events and time expressions. Not only
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3.1. Introduction

is this computationally expensive, there could be conflicting predictions due to the transitivity of
temporal relations (e.g. “A before B" and “B before C" imply “A before C", which a pair-wise
approach may make conflicting predictions) and additional steps are necessary to resolve such

conflicts [Chambers and Jurafsky, 2008b, Yoshikawa et al., 2009, Do et al., 2012].

We propose a novel annotation approach to address this dilemma. Specifically we propose to
build a dependency tree structure for the entire document where the nodes of the tree are events
and time expressions, as well as a few pre-defined “meta” nodes that are not anchored to a span
of text in the document. The building blocks of this dependency structure are pairs of events
and time expressions in which the child event/time expression depends on its parent event/time
expression for its temporal interpretation. The dependency relation is based on the well-established
notion of temporal anaphora where an event or time expression can only be interpreted with respect
to its reference time [Reichenbach, 1947, Partee, 1973, Partes, 1984, Hinrichs, 1986, Webber,
1988, Bohnemeyer, 2009]. In each dependency relation in our dependency structure, the parent
is the antecedent and the child is the anaphor that depends on its antecedent for its temporal

interpretation. Consider the following examples:

(10): He arrived on Thursday. He got here at 8:00am.

(11): He arrived at school, walked to his classroom, and then the class began.

In (10), the antecedent is “Thursday” while “8:00am” is the anaphor. We won’t know when exactly
he arrived unless we know the 8:00am is on Thursday. In this sense, “8:00am” depends on “Thurs-
day” for its temporal interpretation. We define the antecedent of an event as a time expression or
event with reference to which the temporal location of the anaphor event can be most precisely
determined. In (11), the antecedent for the event “the class began” is “walked to his classroom” in

the sense that the most specific temporal location for the event “the class began” is after he walked
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to the classroom. Although “the class began” is also after “he arrived at school”, the temporal

location we can determine based on that is not as precise.

In order for the events and time expressions to form a dependency tree, one key assumption we
make is there is exactly one antecedent event/time expression for each anaphor. This ensures that

there is exactly one head for each dependent, a key formal condition for a dependency tree.

Once this dependency structure is acquired, manually or automatically, additional temporal rela-
tions may be inferred based on the transitive property of temporal relations, but we argue that this
dependency structure is an intuitive starting point that makes annotation as well as the computa-

tional modeling more constrained and tractable.

We annotate a corpus of 235 documents with temporal dependency structures, with 48 documents
double-annotated to evaluate inter-annotator agreement. The annotated data are chosen from two
different genres, news data from the Xinhua newswire portion of the Chinese TreeBank [Xue
et al., 2005] and Wikipedia news data used for CONLL Shared Task on Shallow Discourse Parsing
in 2016 [Xue et al., 2016], and narrative story data from Grimm fairy tales. The two genres are
chosen because the temporal structure of texts from those two genres unfolds in very different
ways: news reports are primarily in report discourse mode in the sense of [Smith, 2003] while
Grimm fairy tales are primarily in narrative mode and time advances in those two genres in very
different ways, as we will discuss in more details in Section 3.3.2.2. We report a stable and high
inter-annotator agreement for both genres, which validates the intuitiveness of our approach. This

corpus is publicly available.!

The main contributions of this chapter are:

e We propose a novel and comprehensive temporal dependency structure to capture temporal

Thttps://github.com/yuchenz/structured_temporal_relations_corpus
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relations in text.

e We analyze different types of time expressions in depth and propose a novel definition, as

far as we know, for the reference time of a time expression (§3.2.2.1).

e We produce an annotated corpus with this temporal structure that covers two very different
genres, news and narratives and achieved high inter-annotator agreements for each genre.
An analysis of the annotated data show that temporal structures are very genre-dependent, a

conclusion that has implications for how the temporal structure of a text can be parsed.

3.2 Temporal Structure Annotation Scheme

In our annotation scheme, a temporal dependency tree structure is defined as a 4-tuple (7', £, N, L),
where 7' is a set of time expressions, F is a set of events, and [V is a set of pre-defined “meta” nodes
not anchored to a span of text in the document. 7', F/, N form the nodes in the dependency structure,
and L is the set of edges in the tree. Figure 3.1 gives an example TDT. Detailed descriptions for

each set are in the following subsections.

3.2.1 Nodes in the temporal dependency tree

The nodes in a temporal dependency tree includes time expressions, events, and a set of pre-defined

nodes. We elaborate on each type of nodes below:
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Figure 3.1: An example TDT.

3.2.1.1 Time Expressions

TimeML [Pustejovsky et al., 2003a] treats all temporal expressions as markable units and classi-

fies them into three categories: fully specified temporal expressions (“June 11, 1989, “Summer,

2 13 v 13

2002”); underspecified temporal expressions (“Monday”, “next month”, “last year”, “two days

99 ¢

ago”); and durations (“three months”, “two years”). The purpose of our dependency structure an-
notation is to find all time expressions that can serve as a reference time for other events or time
expressions. We observe that while the first two TimeML categories of time expressions can serve
as reference times, the last category, “durations”, typically don’t serve as reference times, unless
they are modified by expressions like “ago” or “later”. For example, the “10 minutes” in (12) can

serve as a reference time because it can be located in a timeline as a duration from 8:00 to 8:10,

while the “10 minutes” in (13) can’t serve as a reference time.

(12): He arrived at 8:00am. 10 minutes later, the class began.

(13): It usually takes him 10 minutes to bike to school.

56



3.2. Temporal Structure Annotation Scheme

Therefore, in our annotation scheme, we make the distinction between time expressions that can
be used as reference times and the ones that cannot. The former includes fully specified temporal
expressions, underspecified temporal expressions, as well as time durations modified by “later” or
“ago”. The latter include unmodified durations. In our annotation, only the former are considered

to be valid nodes in our time expression set 7.

3.2.1.2 Events

We adopt a broad definition of events following [Pustejovsky et al., 2003a], where “an event is
any situation (including a process or a state) that happens, occurs, or holds to be true or false dur-
ing some time point (punctual) or time interval (durative).” Based on this definition, unless stated
explicitly, events for us include both eventive and stative situations. Adopting the minimal span
approach along the lines of [O’Gorman et al., 2016], only the headword of an event is labeled in
actual annotation. Since different events tend to have different temporal behaviors in how they
relate to other events or time expressions[Wuyun, 2016], we also assign a coarse event classifi-
cation label to each event before linking them to other other events or time expressions to form
a dependency structure. Adapting the inventory of situation entity types from [Smith, 2003] and

from [Zhang and Xue, 2014], we define the following eight categories for events.

e An Event is a process that happens or occurs. It is the only eventive type in this classification

set that advances the time in a text. An example event is “I went to school yesterday”.

e A State is a situation that holds during some time interval. It is stative and describes some
property or state of an object, a situation, or the world. For example, “she was very shy”

describes a state.

57



Chapter 3. Structured Interpretation of Temporal Relations

The remaining event types are all statives that describe an eventive process.

A Habitual event describes the state of a regularly repeating event, as in “I go to the gym

three times a week”.

An Ongoing event describes an event in progress, as in “she was walking by right then”.

A Completed event describes the completed state of an event, as in “She’s finished her talk

already”.

A Modalized event describes the capability, possibility, or necessity of an event, as in “I

have to go”.

A Generic Habitual event is a Habitual event for generic subjects, as in “The earth goes

around the sun”.

A Generic State is a state that hold for a generic subject, as in “Naked mole rats don’t have

hairs”.

All valid events from a document, represented by their headwords, form the event set E.

3.2.1.3 Pre-defined Meta Nodes

In order to provide valid reference times for all events and time expressions, and to form a complete

tree structure, we designate the following pre-defined nodes for the set N.

ROOT is the root node of the temporal dependency tree and every document has one ROOT

node.

It is the parent of (i) all other pre-defined nodes, and (ii) absolute concrete time expressions

(Example 20, see §3.2.2.1 for more on time expression classification). The meta node DCT is
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the Document Creation Time, a.k.a. Speech Time. Following [Pustejovsky et al., 2003a], we
define meta nodes PRESENT_REF, PAST_REF, FUTURE_REF as the general reference times
respectively for generic present, past, and future times. Lastly, ATEMPORAL is designated as

the parent node for atemporal events, such as timeless generic statements (Example 21).

These generic reference times are necessary for time expressions and events that don’t have a more
specific reference time in the text as their parents. For example, it is common to start a narrative
story with a few descriptive statements in past tense without a specific time (Example 14), or a
general time expression referring to the past (Example 15). Both cases take “Past_Ref” as their

parent.

(14): It was a snowy night. [Past_Ref]

(15): Once upon the time, ... [Past_Ref]

It is worth noting that “DCT” and “Present_Ref” are not interchangeable. “DCT” is usually a very
specific time-stamp such as “2018-02-15:00:00:00”, while “Present_Ref” is a general temporal lo-
cation reference. We use “DCT” as the parent for relative concrete time expressions. For instance,
in Example 19 below, the reference time for “last year” is “DCT” rather than “Present_Ref”,
because with the knowledge of DCT being, for example “2018-02-15:00:00:00”, the temporal lo-
cation of “last year” can be determined as “2017”. Therefore, we designate that the interpretation
of the temporal location of “last year” is dependent on “DCT”, and “DCT” should be the parent
of “last year”. Yet for vague time expressions, such as Example 16, their antecedent should be

“Present_Ref” . More details on time expression classification are described in §3.2.2.1.

(16):  China annual economic output results have grown increasingly smooth in recent years.

[Present_Ref]
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(17):  Economists who try to estimate actual growth tend to come up with lower numbers.
[Present_Ref]

(18): China will remain a trade partner as important to Japan as the United States in the future.
[Future_Ref]

(19): The economy expanded 6.9 percent lastiar. [DCT]

(20): A trend of gradual growth began in 2011. [ROOT]

(21): The earth goes around the sun. [Atemporal]

3.2.2 Edges in the temporal dependency tree

As we discussed above, each dependency relation consists of an antecedent and an anaphor, with
the antecedent being the parent and the anaphor being the child. Based on the well-established no-
tion of temporal anaphora [Reichenbach, 1947, Partee, 1973, Partes, 1984, Hinrichs, 1986, Webber,
1988, Bohnemeyer, 2009], we assume each event or time expression in the dependency tree has
only one antecedent (i.e. one reference time), which is necessary to form the dependency tree. In
this section, we will first discuss what can serve as a reference time for time expressions in our
annotation scheme, then we will discuss what can be a reference time for events. All links between

events/time expressions and their reference times form our link set L.

3.2.2.1 Reference Times for Time Expressions

In previous work such as the TimeBank [Pustejovsky et al., 2003a] the temporal relations be-

tween time expressions are annotated with temporal ordering relations such as “before”, “after”,

or “overlap” just like events in a pair-wise without considering the dependencies between them.
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For example, consider the three time expressions “2003”, “March”, and “next year” in (22), using

a pair-wise annotation approach, three temporal relations will be extracted:

(2003, includes, March)
(2003, before, next year)

(March, before, next year)

(22): The economy expanded 6.6 percent in 2003;, reaching its peak 7.1 percent in March;,. The

growth rate doubled in the next year;s.

We argue that the sole purpose for annotating temporal relations between time expressions is to
properly “interpret” time expressions that “depend” on another time expression for their interpre-
tation. In the context of time expressions, “interpretation” means normalizing time expressions
in a format that allows the ordering between the time expressions to be automatically computed.
Time expression normalization is necessary in many applications. For example, in a question an-
swering system, our model needs to be able to answer “2004” when it is asked “Which year did
China’s export rate double?”, instead of answering “next year” which is uninterpretable taken out
of the original context. In order for the time expressions to be properly interpreted, it is important
to annotate the dependency between “March” and its reference time “2004” because the former
depends on the latter for its interpretation. Similarly, it is also important to establish the depen-
dency between “next year” and its reference time “2004” as we won’t know which year is “next
year” until we know it is with reference to “2004”. With these dependencies identified and the
time expressions normalized, the temporal relations between all pairs of time expressions in a text
can be automatically computed, and explicit annotation of the temporal relation between all pairs
of time expressions will not be necessary. For example, with “March” normalized to “2003-03”

and “next year” normalized to “2004”, the relation between 2003-03 and 2004 can be automati-
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cally computed. We argue that this notion of reference time for time expressions is intuitive and
easy to define. Annotating temporal dependency relations between each pair of time expression
and its parent (i.e. finding the reference time for each time expression) is also more efficient than

annotating the temporal ordering between all pairs of time expressions.

Based on these considerations, we propose a novel definition of the reference time for time expres-

sions:

Definition 3.2.1 Time expression A is the reference time for time expression B, if B depends on A

for its temporal location interpretation.

In other words, a time expression can depend solely on its reference time to be interpreted and
normalized. We use a generic Depend-on label for these relations. Take the following (23) as an
example, annotators only need to determine that the temporal interpretation of ‘8am” depends on
“Thursday”. With “Thursday” normalized to, for example, “2003-04-05”, we can then compute
a normalized time “2003-04-05:08:00:00” for “8am”, and easily compute the temporal ordering

between them: (“2003-04-05" includes “2003-04-05:08:00:007).

(23): He arrived on Thursday. He got here at 8:00am.

We now consider the question of what types of nodes can serve as the reference time or antecedent
for a time expression. First, since a time expression relies on its reference time for its temporal
interpretation, naturally an event cannot serve as its reference time. Second, since some time
expressions (e.g., “2003”) can be interpreted (and normalized) on its own without any additional
information, while others can not, further categorization of time expressions is needed to precisely
specify which time expressions need a reference time for their interpretation and which do not, and

what time expressions can serve as reference times and which do not.
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Time Expressions

Locatable Time Expressions Unlocatable
Taxonomy .
Concrete Vacue Time
Absolute Relative £ Expressions
today,
Examples | May 2015 last Monday ... two days later nowadays every month
Possible DCT Present_Ref,
Reference ROOT ’ Past_Ref, -
. another Concrete
Times Future_Ref

Table 3.1: Taxonomy of time expressions in our annotation scheme, with examples and possible
reference times.

First, we make the distinction between Concrete and Vague time expressions. A Concrete Time
Expression is a time expression that can be located onto a timeline as an exact time point or inter-
val, e.g. “June 11, 19897, “today”. Their starting and ending temporal boundaries on the timeline

2 ¢ 99 ¢

can be determined. A Vague Time Expression (e.g., “nowadays”, “recent years”, “once upon the
time”) expresses the concept of (or a period in) general past, general present, or general future,
without specific temporal location boundaries. The reference time for Vague time expressions are

the pre-defined nodes PRESENT_REF, PAST_REF, and FUTURE_REFR.

Concrete time expressions are further classified into Absolute Time Expressions and Relative
Time Expressions, corresponding to fully-specified (“June 11, 19897, “Summer, 2002”) and un-
derspecified temporal expressions (“Monday”, “Next month”, “Last year”, “Two days ago”) in
[Pustejovsky et al., 2003a] respectively. Relative concrete time expressions take either DCT or
another concrete time expression as their reference time. Absolute concrete time expressions can
be normalized independently and don’t need a reference time. Therefore, we stipulate that their
parent in the dependent tree is the pre-defined node ROOT. For example, “1995”, “20th century”

29 46

are absolute concrete time expressions, while “today”, “last year”, “the future three years”, “Jan-

99 ¢

uary 20th”, “next Wednesday” are relative concrete time expressions, and “recent years”, “in the
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99 <¢ 29 <<

past a few years”, “nowadays”, “once upon the time” are vague time expressions.

An example of a concrete relative time expression having a concrete absolute temporal expression
as its reference time is given in (22) . Consider the time expression “March”. In order to be able
to interpret it and normalize it into a valid temporal location on a timeline, we need to establish
“2003" is its reference time. Then it is possible to normalize it into a formal representation as

“2003-03”.

Lastly, in order to form a complete tree structure, all pre-defined nodes (except for ROOT) take
ROOT as their parent. A complete taxonomy of time expressions in our annotation scheme with
examples and their possible reference times is illustrated in Table 3.1. Note that in our framework,
we simply exclude unlocatable time expressions, instead of linking them to the pre-defined meta

node “Atemporal”, which is designated as the parent for atemporal events.

3.2.2.2 Reference Times for Events

The reference time for an event is a time expression or pre-defined node or another event with
respect to which the most specific temporal location of the event in question can be determined.
Unlike time expressions, for which the possible reference times can only be other time expressions
or pre-defined nodes, the possible reference times for events are not as restrictive and can be any of
the three categories. The dependency relation that we use to characterize the relationship between

the reference time / antecedent and an event is a temporal relation between them.

Definition 3.2.2 Time expression/pre-defined node/event A is the reference time for event B, if A is
the most specific temporal location which B depends on for its own temporal location interpreta-

tion.
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There has been significant amount of work attempting to characterize the temporal relationship
between events, and between time expressions and events. One of the first attempts to model
temporal relations is Allen’s Interval Algebra theory [Allen, 1984]. This theory introduced a set
of distinct and exhaustive temporal relations that can hold between two time intervals, which are
further adapted and extended in [Pustejovsky et al., 2003a], THYME [Styler IV et al., 2014a], etc.
[Mostafazadeh et al., 2016] gives a detailed comparison of these temporal relations sets. Mindful
of the need to produce consistent annotation, and in line with the practice of some prior work
such as the TempEval evaluations [Verhagen et al., 2007b, Verhagen et al., 2009, Verhagen et al.,
2010b], we adopt a simplified set of 4 temporal relations to characterize the relationship between
an event and its reference time. The set of temporal relations we use with their mappings to their

corresponding TimeML temporal relations are shown shown in Table 3.2.

Our Scheme TimeML

Before Before, IBefore

After -

Overlap Ends, Begins, Identity, Simultaneous
Includes During

Table 3.2: Our temporal relation set for events with mappings to TimeML’s set.

Although an event can in principle take a time expression, another event, or a pre-defined node
as its antecedent, different types of events have different tendencies as to the types of antecedents
they take. An eventive event usually takes either a time expression, another eventive event, or DCT
as its reference time. They advance the time in the narrative of a text, so it usually has a (time
expression, Includes, event) relation with its antecedent, or a (event, Before, event) relation. For
example, in (10) the time expression “Thursday” has “Includes” relation with the event “arrived”,

and the time expression “8:00am” has an “Includes” relation with the event “got here”. And in
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Taxonom Events
y Eventive Stative Generic
Examples He arrived. He was holding a book. | Planets go around stars.
. timex, DCT, timex, DCT,
Possible : .
eventive event, eventive event,
Reference . . Atemporal
Times statbve-cvent stative event,
Past/Future_Ref | Past/Present/Future_Ref

Table 3.3: Taxonomy of events in our annotation scheme, with examples and possible reference
times.

(11) the event “arrived” has a “Before” relation with the event “walked”.

A stative event can take a time expression, another event, or a pre-defined node (except for ROOT)
as its reference time. It generally describes a state that holds during the time indicated by its
antecedent time expression, event, or generic time. It usually has an “Overlap” relation with their
reference times. For example, in (13) the event “takes” is a stative Habitual event, which describes a
state of the present situation for “him”, so its reference time is the pre-defined node “Present_Ref”,

and has an “Overlaps” relation with “Present_Ref”.

An eventive event rarely takes a stative event as its reference time. As discussed above, we pick the
most specific temporal location as the reference time for an event. Since more specific temporal
locations are usually available (such as another eventive event), a stative event rarely serves as
the reference time for an eventive event. Table 3.3 shows some of the most common event-parent

scenarios.

Please see Appendix A: our annotation guidelines on time expression and event recognition, clas-
sification, and reference time resolution, for a complete account of specifications, examples, and

special rules for special scenarios.
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3.2. Temporal Structure Annotation Scheme

3.2.3 Full Temporal Structure Examples

We present a full example temporal dependency structure for a short news report paragraph (24),
as illustrated in Figure 3.2, and another one for a narrative passage (25), as illustrated in Figure 3.3.
Subscript e denotes eventive events, ¢ denotes time expressions, and s denotes stative events. Please
note that in our framework, nominalized events (e.g. “competition” in (24)) and events in relative
clauses (e.g. “designed” in (24)) are currently not included in the scope of this work. Given six
pre-defined meta nodes (blue in the figures), locatable time expressions (orange), and main events
(green) in a text, an annotator will determine the most specific reference time for each time and
event, and assign a temporal relation between the time/event and its parent. For example, when
considering the “not completed” event in (24), we can see that it’s a state that holds during the
“left” event and also within the “1966” time period. However, “left” is determined to the final
reference time for “not completed” because it’s more specific than “1966”, and locates the “not
completed” state to a more accurate temporal location on the timeline. After all, according to only
this piece of text, we can not tell whether or not “his plans for the interior of the building” was

“completed” after he “left” but before the end of “1966”.

(24):  Jorn Utzon, the Danish architect who designed the Sydney Opera House, has died.; in

Copenhagen. Born in 1918;;, Mr Utzon was inspired.3 by Scandinavian functionalism in archi-

tecture, but made a number of inspirational trips.4, including to Mexico and Morocco. In 1957;,,

Mr Utzon’s now-iconic shell-like design for the Opera House unexpectedly won.; a state gov-
ernment competition for the site on Bennelong Point on Sydney Harbour. However, he left.g the

project in 1966,3. His plans for the interior of the building were not completeds;. The Sydney

Opera House iss; one of the world’s most classic modern buildings and a landmark Australian
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structure. It was declared.; a UNESCO World Heritage site last year;,. >

depend-on depend-on
/ / \\ \

depend on Present_Ref

\
d d- .
JUPEER R M includes, L epend-on / x \ ncludes

i » last year 19.1 8 19|57 1 9|66

|
Temporal Relations includesl includesl includes, includesy
AW

befor

Events

Figure 3.2: An example full temporal dependency structure for news paragraph (24).

(25): There was,; once;; a man who had seven sons, and still he had,, no daughter, however much
he wished,s for one. At length his wife again gave.; him hope of a child, and when it came,., into
the world it was,, a girl. The joy was,; great, but the child wasg sickly and small, and had to be
privately baptizeds; on account of its weakness. The father sent., one of the boys in haste to the
spring to fetch water for the baptism. The other six went.; with him, and as each of them wanted
to be first to fill it, the jug fell.g into the well. There they stood.s and did not know,y what to do,
and none of them dared to 20510 home. As they still did not return, the father grew,; impatient, and
said.s, they have certainly forgotten,;; it while playing some game, the wicked boys. He became.q

afraid that the girl would have to die without being baptized.?

The two examples provide a sharp contrast between the typical temporal dependency structures
for newswire documents and narrative stories, with the former generally having a flat and shallow

structure and the latter having a narrow and deep structure.

2From a news report on The Telegraph
3From Grimm’s fairy tale The Seven Ravens
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Pre-defined

depend-on Meta Nodes

‘depend-on

once

includes

&before

gave
overlap Events

before

Figure 3.3: An example full temporal dependency structure for narrative paragraph (25).

3.3 Corpus Description and Analysis

3.3.1 Annotation Process

We use a two-pass annotation process for this project. In the first pass, annotators do temporal ex-
pression recognition and classification, and then reference time resolution for all time expressions.
The purpose of this pass is to mark out all possible reference times realized by time expressions

and recognize their internal temporal relations, in order to provide a backbone structure for the
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final dependency tree. In the second pass, event recognition and classification, and then reference
time resolutions for all events are annotated, completing the final temporal dependency structure

of the entire document.

3.3.2 Annotation Analysis

3.3.2.1 Corpus

A corpus of 115 news articles, sampled from Chinese TempEval2 data [Verhagen et al., 2010a]
and Wikinews data, * and 120 story articles, sampled from Chinese Grimm fairy tales, > are com-
piled and annotated. 20% of the documents are double annotated by native Chinese speakers.

Table 3.4 presents the detailed statistics. High and stable inter-annotator agreements are reported

in Table 3.5.
#Docs # Sentences # Tokens # Timex # Events
Single 91 2,271 45,132 901 3,758
News Double 24 570 11,132 265 1,047
Total 115 2,841 56,264 1,166 4,805
Single 96 2,903 77,299 92 8,362
Narratives Double 24 797 17,456 40 1,952
Total 120 3,700 94,755 132 10,314

Table 3.4: Corpus annotation statistics. (7imex stands for time expressions.)

On event annotation, our work is comparable to the annotation work in [Kolomiyets et al., 2012].
They report inter-annotator agreements of 0.86, 0.82, and 0.70 on event recognition, unlabeled

relations, and labeled relations respectively on a narrative data. We argue that the comparable

4zh.wikinews.org
Shttps://www.grimmstories.com/zh/grimm_tonghua/index
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or better agreements on narratives as shown in Table 3.5 show that incorporating the notion of
linguistic temporal anaphora helps annotators make more consistent decisions. High (above 90%)
agreements on time expression recognition and parsing indicate that our new definition of the
reference time for time expressions is clear and easy for annotators to operate on. While event
annotations receive lower agreements than time expressions on both genres, they are in general

easier on news than on narratives, especially for event reference time resolution and edge labeling.

News | Narratives

Recognition 97 I.

Timex Classification 95 94
Parsing .93 .94

Recognition | .94* 3%

Event Classification 77 75
Relations (unlabeled) .86 .83
Relations (labeled) .79 72

Table 3.5: Inter-Annotator Agreement F scores on 20% of the annotations. (* This annotation
focuses on main events only, excluding nominalized events and events in relative clauses.)

3.3.2.2 Analysis Across Different Genres

During our annotation, we discovered that narrative texts are very different from news with re-
spect to their temporal structures. First, news texts are usually organized with abundant temporal
locations, while narrative texts tend to start with a few temporal locations setting the scene and
proceed with only events. As shown in Table 3.4, around 20% (1166) nodes in the news data are
time expressions and 80% (4805) are event nodes, while in the narrative data the ratio of time
expressions to events are 1% / 99% (132/10314). Table 3.6 shows that news articles have a higher
portion (51%) of relative concrete time expressions, while narrative stories tend to use more (67%)

vague time expressions.
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Second, descriptive statements are more common in news data than in narratives, while long chains
of time advancing eventives are more common in narratives. We can see from Table 3.7 that
in news data only 30% events are eventive, leaving the rest 70% stative descriptions, while in
narrative data over half of the events (51%) are eventive. From Table 3.8 we can also see that the
major temporal relation in news is “overlap” (54%), representing dominative stative statements in
reporting discourse mode, while narrative texts are dominated by the “before” relation (53%), with

eventive statements advancing the story line.

Timex type News | Narratives
Absolute Concrete | 313 (27%) | 16 (14%)
Relative Concrete | 598 (51%) | 20 (17%)
Vague 256 (22%) | 79 (67%)

Table 3.6: Distribution of time expression types.

Event type News | Narratives
Event 1457 (30%) | 5594 (51%)
State 1802 (37%) | 3366 (31%)

Habitual 102 (2%) 459 (4%)
Modalized 321 (7%) 458 (4%)
Completed 1041 (22%) 900 (8%)

Ongoing Event 80 2%) 175 2%)
Generic State 1 (0%) 17 (0%)
Generic Habitual 2 (0%) 5 (0%)

Table 3.7: Distribution of event types.

Another difference is that statives serve different major roles in news and narrative texts. News
tend to have deep branches of overlapping statives with a time expression, DCT, or a general
present/past/future reference time as their parent (descriptive statements as discussed above). Nar-

rative texts have much less such long stative branches, however, they tend to have numerous short
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Edge label News | Narratives
Includes 1096 (18%) 157 (1%)
Before(After) 507 (8%) | 5885 (53%)
Overlap 3246 (54%) | 4914 (44%)
Depend-on | 1125 (19%) 151 (1%)

Table 3.8: Distribution of temporal relations.

Pre-defined Time Eventive Stative
Node Expression Event Event
Time Expression | 1078 (92%) | 89 (8%) 0 0
News Eventive Event 103 9%) | 290 (26%) | 716 (65%) 0
Stative Event 149 8%) | 192 (11%) | 432 (24%) | 1029 (57%)
Time Expression | 95 (83%) 20 (17%) 0 0
Narratives  Eventive Event 20 (0%) 25 (1%) | 4875 (99%) 0
Stative Event 25 (1%) 74 (2%) | 1655 (49%) | 1612 (48%)

Table 3.9: Distribution of parent types for each child type. Rows represent child types, and columns
represent parent types.

branches of statives with an eventive event as their parent. These statives serve as the event’s

2 13 2 (13

accompanying situations. For example, in (25) “was,y”, “wasg;”, “wasgs”, and “baptiseds;” are
accompanying statives to “came.,”’, describing the baby and the family and the situation they were
in at that time. For each type of node, we compiled the distribution of its possible types of parent,
shown in Table 3.9. It’s worth noting that more than twice as much statives in news have a stative
parent (57%) than the ones having an eventive parent (24%), contributing to deep stative branches,

while in narratives a much higher percentage of statives directly depend on an eventive (49%),

contributing to a large number of short stative branches.

These different temporal properties of news and narratives further result in shallow dependency
structures for news texts with larger number of branches on the root node, yet deep structures
for narrative texts with fewer but long branches. These differences are illustrated intuitively on

Figure 3.2 and Figure 3.3.
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3.4 Conclusion

In this chapter, we introduced a new representation to model temporal information in a document —
the Temporal Dependency Tree (TDT) structure representation. We argue that this structure is lin-
guistically intuitive, and is amenable to computational modeling. High and stable inter-annotator
agreements in our annotation experiments provide further evidence supporting our structured ap-
proach to temporal interpretation. In addition, a significant number of documents covering two
genres have been annotated. This corpus is publicly available for research on temporal relation

analysis, story timeline construction, as well as numerous other applications.
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Chapter 4

Temporal Structure Parsing

4.1 Introduction

In this chapter, taking advantage of our data set annotated with temporal dependency structures in
Chapter 3, we develop a neural temporal dependency structure parser using minimal hand-crafted
linguistic features. One of the advantages of neural network based models is that they are readily
adaptable to new domains without further domain-specific feature engineering. We demonstrate
this advantage by evaluating our temporal dependency parser on data from two domains: news
reports and narrative stories. Our results show that our model beats a strong logistic regression
baseline. Direct comparison with existing models is impossible because the only similar dataset
used in previous work [Kolomiyets et al., 2012] that we are aware of is not available to us, but we

show that our models are competitive against similar systems reported in the literature.

The main contributions of this chapter are:
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e We design and build the first end-to-end neural temporal dependency parser. The parser is
based on a novel neural ranking model that takes a raw text as input, extracts events and time
expressions, and arranges them in a temporal dependency structure.

e We evaluate the parser by performing experiments on data from two domains: news reports
and narrative stories, and show that our parser is competitive against similar parsers. We also
show the two domains have very different temporal structural patterns, an observation that

we believe will be very valuable to future temporal parser development.

The rest of the chapter is organized as follows. In Section 4.2, we discuss related work and position
our work in the literature context. We describe our end-to-end pipeline system in Section 4.3. The
neural sequence labeling model for time expression and event recognition are described in Section
4.4, and details of the neural ranking model for temporal structure parsing are discussed in Section
4.5. In Section 4.6 we present and discuss our experimental results and we conclude this chapter

in Section 4.7.

4.2 Related Work

4.2.1 Related Work on Temporal Relation Modeling

There is a significant amount of research on temporal relation extraction [Bethard et al., 2007,
Bethard, 2013, Chambers and Jurafsky, 2008a, Chambers et al., 2014]. Most of the previous
work models temporal relation extraction as pair-wise classification between individual pairs of
events and/or time expressions. Some of the models also add a global reasoning step to local pair-

wise classification, typically using Integer Linear Programming, to exploit the transitivity property
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of temporal relations [Chambers and Jurafsky, 2008a]. Such a pair-wise classification approach
is often dictated by the way the data is annotated. In most of the widely used temporal data
sets [Pustejovsky et al., 2003b, Chambers et al., 2014, Styler IV et al., 2014a, O’Gorman et al.,
2016, Mostafazadeh et al., 2016], temporal relations between individual pairs of events and/or time

expressions are annotated independently of one another.

Our work is most closely related to that of [Kolomiyets et al., 2012], which also treats temporal
relation modeling as temporal dependency structure parsing. However, their dependency structure,
as described in [Bethard et al., 2012], is only over events, excluding time expressions which are an
important source of temporal information, and it also excludes states, which makes the temporal
dependency structure incomplete. We instead choose to develop our model based on the data set
described in [Zhang and Xue, 2018c], which introduces a more comprehensive and linguistically
grounded annotation scheme for temporal dependency structures. This structure includes both
events and time expressions, and uses the linguistic notion of temporal anaphora to guide the
annotation of the temporal dependency structure. Since in this temporal dependency structure
each paraent-child pair is considered to be an instance of temporal anaphora, the parent is also
called the antecedent and the child is also referred to as the anaphor. The corpus consists of data

from two domains: news reports and narrative stories.

4.2.2 Related Work on Neural Dependency Parsing

Most prior work on neural dependency parsing is aimed at syntactic dependency parsing, i.e. pars-
ing a sentence into a dependency tree that represents the syntactic relations among the words.
Recent work on dependency parsing typically uses transition-based or graph-based architectures

combined with contextual vector representations learned with recurrent neural networks (e.g. Bi-

77



Chapter 4. Temporal Structure Parsing

LSTMs) [Kiperwasser and Goldberg, 2016].

In temporal dependency parsing, for each event or time expression, there is more than one other
event or time expression that can serve as its reference time, while the most closely related one
is selected as the gold standard reference time parent. This naturally falls into a ranking process

where all possible reference times are ranked and the best is selected.

In this sense our neural ranking model for temporal dependency parsing is closely related to the
neural ranking model for coreference resolution described in [Lee et al., 2017], both of which
extract related spans of words (entity mentions for coreference resolution, and events or time ex-
pressions for temporal dependency parsing). However, our temporal dependency parsing model
differs from Lee et al’s coreference model in that, on one hand, the ranking model for coreference
only needs to output the best candidate for each individual pairing and cluster all pairs that are
coreferent to each other, while on the other hand, our ranking model for temporal dependency
parsing needs to rank not only the candidate antecedents but also the relations between the an-
tecedent and the anaphor. In addition, the model also adds connectivity and acyclic constraints in

the decoding process to guarantee a tree-structured output.

4.3 A Pipeline System

We build a two-stage pipeline system to tackle this temporal structure parsing problem. The first
stage performs event and time expression identification. In this stage, given a text as input, spans of
words that indicate events or time expressions are identified and categorized. We model this stage
as a sequence labeling process. A standard Bi-LSTM sequence model coupled with BIO labels is

applied here. Word representations are the concatenation of word and POS tag embeddings.
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The second stage performs the actual temporal structure parsing by identifying the antecedent
for each time expression and event, and identifying the temporal relation between them. In this
stage, given events and time expressions identified in the first stage as input, the model outputs a
temporal dependency tree in which each child node is an event or time expression that is temporally
related to another event or time expression or pre-defined meta node as its parent node. This
stage is modeled as a ranking process: for each node, a finite set of neighboring nodes are first
selected as its candidate parents. These candidates are then ranked with a neural network model
and the highest ranking candidate is selected as its parent. We use a ranking model because it is
simple, more intuitive, easier to train, and the learned model rarely makes mistakes that violate the

structural constraint of a tree.

4.4 Stagel: Neural Sequence Labeling Model

We use a neural sequence labeling model for the first stage: time expression and event identifi-
cation. For each sentence, a standard Bi-LSTM sequence model with BIO labeling is applied.
The concatenation of word and POS tag embeddings are used as word representations. Model

architecture is illustrated in Figure 4.1.
The Forward Computation is:
x), = [wy, posy]
x; = BiLSTM (xy,)

hk = tcmh(W1 - T + bl)

o = softmaz(h;)
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output layer (o)
hidden layer (h)

Bi-LSTM (x*)

word embedding +
pos embedding

)
SO0
S5m0

concatenation (x)
w1l POS1 ...... Wwk-1 POSk-1 wk POSk Wk+1 POSK+1  eeeeee Wn POSn

He ... took a trip ...

Figure 4.1: Neural Sequence Labeling Model Architecture.

Let D be the training data set of S sentences, N, the number of words in sentence D,, and y; the
gold BIO label for word 7. The Learning process for our neural sequence labeling model tries to

optimize the following cost function:

s
C= —logHP(yl, ey YN | Ds)
5w,
= —log [[ ][ P(»:ID.)
S NSS 1

=2_ > —logP(ylDy)

For each training example 7, cross-entropy loss is minimized:

L = —logP(y;| Ds)

exploy,]

5, explo,]

where the concatenation of o, forms o; as described in the forward computation equations above.
2
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4.5 Stage2: Neural Ranking Model

4.5.1 Model Description

We use a neural ranking model for the parsing stage. For each time expression or event node ¢
in a text, a group of candidate parent nodes (time expressions, events, or pre-defined meta nodes)
are selected. In practice, we select a window from the beginning of the text to two sentences after
node 7, and select all nodes in this window and all pre-defined meta nodes as the candidate parents
if node 7 is an event. Since the parent of a time expression can only be a pre-defined meta node
or another time expression as described in [Zhang and Xue, 2018c], we select all time expressions
in the same window and all pre-defined meta nodes as the candidate parents if node ¢ is a time
expression. Let y; be a candidate parent of node 4, a score is then computed for each pair of
(1, y;).Through ranking, the candidate with the highest score is then selected as the final parent for

node <.

Model architecture is shown in Figure 4.2. Word embeddings are used as word representations (e.g.
wy). A Bi-LSTM sequence layer is built on each word over the entire text, computing Bi-LSTM
output vectors for each word (e.g. wy};). The node representation for each time expression or event
is the summation of the Bi-LSTM output vectors of all words in the text span (e.g. «;). The pair
representation for node ¢ and one of its candidates y, is the concatenation of the Bi-LSTM output
vectors of these two nodes g;,» = [x;, T,/], which is then sent through a Multi-Layer Perceptron
to compute a score for this pair s; ;. Finally all pair scores of the current node ¢ are concatenated
into vector ¢;, and taking so ftmax on it generates the final distribution o;, which is the probability

distribution of each candidate being the parent of node <.
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output layer (o)

concatenated scores (sc) |

pair scores (sp)
hidden layer (h)

T 5

e
i

pair representation (g)

node representation (x)

Bi-LSTM (w*)

word embedding (w)

Figure 4.2: Neural Ranking Model Architecture.

L1 T] [ | [ 1]

efffﬁ?

Wk Wk+1 Wn

took a

x; is the current child node, and x,, ¢y, ., T4

are the candidate parent nodes for x;. Arrows from Bi-LSTM layer to x,, ®p, ., T4 are not

shown.

Formally, the Forward Computation is:

w} = BiLSTM (wy)

_ * * *
x; = sum(wy_;, wy, wk+1)

Giy, = [Ti, ]

hiy = tanh(Wy -

gi,yg + bl)

Si,y; = W2 . hi,y; + b2

C;, = [Si,ly . Sm‘_l, Si,i—i—l; ooy Sijitt

0; = softmaz(c;)
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4.5.2 Learning

Let D be the training data set of K texts, /Vy, the number of nodes in text Dy, and y; the gold parent
for node 7. Our neural model is trained to maximize P(yy, ..., yn, | Dy ) over the whole training set.

More specifically, the cost function is defined as follows:

K
C = —logHP(yl, s YN, | Di)
k
K Ny
= _ZOQHHP(yi|Dk)
ki
K N,

= Z Z —logP(yi| Dy.)

For each training example, cross-entropy loss is minimized:

L = —logP(y;|Dy,)

exp|Siy,]

= —log
5, canlsiy]

where s; ,, is the score for child-candidate pair (4, y;) as described in Section 4.5.1.

4.5.3 Decoding

During decoding, the parser constructs the temporal dependency tree incrementally by identifying
the parent node for each event or time expression in textual order. To ensure the output parse is
a valid dependency tree, two constraints are applied in the decoding process: (i) there can only

be one parent for each node, and (ii) descendants of a node cannot be its parent to avoid cycles.
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Candidates violating these constraints are omitted from the ranking process.'

4.5.4 Temporal Relation Labeling

The neural model described above generates an unlabeled temporal dependency tree, with each
parent being the most salient reference time for the child. However it doesn’t model the spe-
cific temporal relation (e.g. “before”, “overlap”) between a parent and a child. We extend this
basic architecture to both identify parent-child pairs and predict their temporal relations. In this
new model, instead of ranking child-candidate pairs (i, y;), we rank child-candidate-relation tuples
(1, 9., l.), where [}, is the kth relation in the pre-defined set of possible temporal relation labels L.
We compute this ranking by re-defining the pair score s; ;. Here, pair score s;,, is no longer a
scaler score but a vector s; s of size |L|, where s;,/[k] is the scaler score for y; being the parent of
i with temporal relation .. Accordingly, the lengths of ¢; and o; are number of candidates * |L|.

Finally, the tuple (i, y;, [x) associated with the highest score in o; predicts that ¥/ is the parent for i

with temporal relation label /.

4.5.5 Variations of the Basic Neural Model

4.5.5.1 Linguistically Enriched Models

A variation of the basic neural model is a model that takes a few linguistic features as input explic-

itly. In this model, we extend the pair representation g; ,; with local features: g; ,; = [x;, Ty, gzﬁi,y;].

! An alternative decoding approach would be to perform a global search for a Maximum Spanning Tree. However,
due to the nature of temporal structures, our greedy decoding process rarely hits the constraints.
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Time and event type feature: Stage 1 of the pipeline not only extracts text spans that are time
expressions or events, but also labels them with pre-defined categories of different types of time
expressions and events. Readers are referred to [Zhang and Xue, 2018c] for the full category
list. Through a careful examination of the data, we notice that time expressions or events are
selective as to what types of time expression or events can be their parent. In other words, the
category of the child time expression or event has a strong indication on which candidate can be
its parent. For example, a time expression’s parent can only be another time expression or a pre-
defined meta node, and can never be an event; and an eventive event’s parent is almost certainly
another eventive event, and is highly unlikely to be a stative event. Therefore, we include the
time expression and event type information predicted by stage 1 in this model as a feature. More
formally, we represent a time/event type as a fixed-length embedding ¢, and concatenate it to the

pair representation g; ,» = [x;, Ty, ti, t,].

Distance features: Distance information can be useful for predicting the parent of a child. In-
tuitively, candidates that are closer to the child are more likely to be the actual parent. Through
data examination, we also find that a high percentage of nodes have parents in close proximity.
Therefore, we include two distance features in this model: the node distance between a candidate

and the child nd, ,/, and whether they are in the same sentence ss; /. One-hot representations are

s o)
(BT

used for both features to represent according conditions listed in Table 4.1.

The final pair representation for our linguistically enriched model is as follows:

Giy, = [Ti, Ty, ti, by, nd;y, 88;,]
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conditions for feature ndi,yg:

i.node_id — y..node_id = 1

i.node_id — y..node_id > 1 and i.sent_id = y..sent_id
i.node_id — yi.node_id > 1 and i.sent_id # y..sent_id
i.node_id — y;.node_id < 1

conditions for feature ss; ,:

i.sent_id = y;.sent_id

i.sent_id # yi.sent_id

Table 4.1: Conditions for node distance and same sentence features.

4.5.5.2 Attention Model on Time and Event Representation

In the basic neural model, a straight-forward sum-pooling is used as the multi-word time expression
and event representation. However, multi-word event expressions usually have meaning-bearing
head words. For example, in the event “took a trip”, “trip” is more representative than “took’ and
“a”. Therefore, we add an attention mechanism [Bahdanau et al., 2014] over the Bi-LSTM output

vectors in each multi-word expression to learn a task-specific notion of headedness [Lee et al.,

2017]:

a; = tanh(W - wy)

- explay
Wit = ZNENDG) o]
k=START(i) “TP|k
. —END() «
i = 2ut=START(i) Wit " Wy

where ; is a weighted sum of Bi-LSTM output vectors in span ¢. The weights w;; are automati-

cally learned. The final pair representation for our attention model is as follows:

gi,yg = [CL‘Z‘, wy;.) t;, ty§7 ndi,yga Ssz',yga L, my;]
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This model variation is also beneficial in an end-to-end system, where time expression and event
spans are automatically extracted in Stage 1. When extracted spans are not guaranteed correct
time expressions and events, an attention layer on a slightly larger context of an extracted span has
a better chance of finding representative head words than a sum-pooling layer strictly on words

within a event or time expression span.

4.5.5.3 Contextualized Word Embeddings for Word Representation

In our previous neural model variations, BILSTM output vectors are used as word embeddings,
which are trained together with the rest of the neural network on given training data. This may not
give optimal word representations in situations where the training data size is limited. Therefore,
another model variation we experimented with is to add pre-trained contextualized word embed-
dings, in addition to BiILSTM output vectors, as word representations. We used pre-trained Chinese
BERT embeddings from Google?, and extended word representation w; as a concatenation of the

two embeddings:

wj, = [BiLSTM (wy), BERT (wy)]

where BE RT (wy,) is the BERT word embedding for word k; and weighted sum of the last 4 layers

of BERT with tuned weights are implemented.

nttps://github.com/google-research/bert/blob/master/multilingual.md
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4.6 Experiments

4.6.1 Data

All of our experiments are conducted on the datasets described in [Zhang and Xue, 2018c]. This
is a temporal dependency structure corpus in Chinese. It covers two domains: news reports and
narrative fairy tales. It consists of 115 news articles sampled from Chinese TempEval2 datasets
[Verhagen et al., 2010a] and Chinese Wikipedia News?, and 120 fairy tale stories sampled from
Grimm Fairy Tales*. 20% of this corpus, distributed evenly on both domains, are double annotated
with high inter-annotator agreements. We use this part of the data as our development and test

datasets, and the remaining 80% as our training dataset.

4.6.2 Baseline Systems

We build two baseline systems to compare with our neural model. The first is a simple baseline
which links every time expression or event to its immediate previous time expression or event.
According to our data, if only position information is considered, the most likely parent for a child
is its immediate previous time expression or event. This baseline uses the most common temporal
relation edge label in the training datasets, i.e. “overlap” for news data, and “before” for grimm

data.

The second baseline is a more competitive baseline for stage 2 in the pipeline. It takes the output
of the first stage as input, and uses a similar ranking architecture but with logistic regression clas-

sifiers instead of neural classifiers. The purpose of this baseline is to compare our neural models

Shttps://zh.wikinews.org
*https://www.grimmstories.com/zh/grimm_tonghua/index
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against a traditional statistical model under otherwise similar settings. We conduct robust feature
engineering on this logistic regression model to make sure it is a strong benchmark to compete

against. Table 4.2 lists the features and feature combinations used in this model.

time type and event type features:

i.type and y.type

if i.type = absolute time and y..type = root

if i.type = time and y,.type = root

are i.type and y,.type time, eventive, or stative

are i.type and y..type root, time, or event

are i.type and y..type root, time, eventive, or stative

if i.type = y..type = event and y.type = state,
for all y between i and v/

distance features:

if i.sent_id = yl.sent_id

i.node_id — y}.node_id

if i.node_id — y}.node_id = 1

combination features:

if i.type = state and i.sent_id # yi.sent_id

if i.type = state and i.node_id — y}.node_id = 1

if i.type = y.type = event and
i.node_id — y;.node_id = 1

if i.type = state and y..type = event and
i.node_id — yi.node_id = 1 and
i.node_id_in_sent = 1 and
1.sent_id # 1

other features:

if 7 and y; are in quotation marks

Table 4.2: Features in the logistic regression system.

4.6.3 Evaluation

We perform two types of evaluations for our systems. First, we evaluate the stages of the pipeline

and the entire pipeline, i.e. end-to-end systems where both time expression and event recognition,

89



Chapter 4. Temporal Structure Parsing

as well as temporal dependency structures are automatically predicted. Our models are compared
against the two strong baselines described in Section 4.6.2. These evaluations are described in

Section 4.6.3.1.

The second evaluation focuses only on the temporal relation structure parsing part of our pipeline
(i.e. Stage 2), using gold standard time expression and event spans and labels. Since most previous
work on temporal relation identification use gold standard time expression and event spans, this
evaluation gives us some sense of how our models perform against models reported in previous
work even though a strict comparison is impossible because different data sets are used. These

evaluations are described in Section 4.6.3.2.

All neural networks in this chapter are implemented in Python with the DyNet library [Neubig
et al., 2017]. The code is publicly available. For Stage 1, all models are trained with Adam
optimizer with early stopping and learning rate 0.001. The dimensions of word embeddings, POS
tag embeddings, Bi-LSTM output vectors, and MLP hidden layers are tuned on the dev set to 256,
32, 256, and 256 respectively. POS tags in Stage 1 are acquired using the joint POS tagger from
[Wang and Xue, 2014]. The tagger is trained on Chinese Treebank 7.0 [Xue et al., 2010]. For Stage
2, the dimensions of word embeddings, time/event type embeddings, Bi-LSTM output vectors, and
MLP hidden layers are tuned on the dev set to 32, 16, 32, and 32 respectively. The optimizer is

Adam with early stopping and learning rate 0.001.

4.6.3.1 End-to-End System Evaluation

Stage 1: Time and Event Recognition

For Stage 1 in the pipeline, we perform BIO tagging with the full set of time expression and
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event types (i.e. a 11-way classification on all extracted spans). Extracted spans will be nodes in
the final dependency tree, and time/event types will support features in the next stage. We evaluate
Stage 1 performance using 10-fold cross-validation of the entire data set. We use the “exact match”
evaluation metrics for BIO sequence labeling tasks, and compute precision, recall, and f-score for

each label type.

We first ignore fine-grained time/event types and only evaluate unlabeled span detection and
time/event binary classification to show how well our system identify events and time expres-
sions, and how well our system distinguishes time expressions from events. Table 4.3 shows the
cross-validation results on these two evaluations. Span detection and event recognition show sim-
ilar performance on both news and narrative domains. Time expressions have a higher recognition
rate than events in news data, which is consistent with the observation that time expressions usu-
ally have a more limited vocabulary and more strict lexical patterns. On the other hand, due to
the scarcity of time expressions in the Grimm data, time expression recognition in this domain has
a very high precision but low recall, which results in a much lower f-score than news. We also
put prior TempEval evaluation results in the table for a rough qualitative comparison. Please note
that TempEval time expressions and events are of different definitions than times and events in our

framework, hence these numbers are not directly comparable.

Labeled evaluation on full set time/event type classification are reported in Table 4.4. Time ex-
pressions have higher recognition rates than events on both domains, and dominant event types
(“event”, “state”, etc.) have relatively higher and more stable recognition rates than other types.
Event types with very few training instances, such as “modalized event” (<7%), achieve lower

and more unstable recognition rates. Other types with less than 2% instances achieve close to 0

recognition f-scores, and are not reported in this table.

91



Chapter 4. Temporal Structure Parsing

evaluated news grimm
label p r f | p r f
all span 81 74 78 | 83 74 78
time 83 81 .82|.97 .62 .76
event 81 73 77| .83 74 .78

TempEval-2 time* | 90 .82 .86 | - - -
TempEval-2 event* | 92 .85 .88 | - - -
TempEval-3 time* | 91 .89 90| - - -
TempEval-3 event* | .81 .81 .81 | - - -

Table 4.3: Stage 1 cross-validation on span detection and binary time/event recognition, with qual-
itative comparison with TempEval results. (* TempEval results reported here are the best per-
formance for each task on English in each TempEval. TempEval-1 doesn’t have time and event
detection tasks. Later TempEvals are on clinical domain and relatively less comparable. Both
TempEval 2 and 3 are on news domain only.)

time/event type news grimm
vague time 7 .82

concrete absolute .67 -

concrete relative .75 -

event .61 77
state .65 .61
completed .62 .26
modalized 46 31

Table 4.4: Stage 1 cross-validation f-scores on full set time/event type recognition.

Stage 2: Temporal Dependency Parsing

For Stage 2 in the pipeline, we conduct experiments on the six systems described above: a sim-
ple baseline, a logistic regression baseline, a basic neural model, a linguistically enriched neural
model, an attention neural model, and a model with contextualized word embeddings. All models
are trained on automatic spans and time/event types generated by Stage 1 using 10-fold cross-

validation, with gold standard edges (and edge labels) mapped onto the auto spans. Evaluations
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news grimm
model unlabeled f labeled f | unlabeled f labeled f
dev test dev test | dev test dev test
temporal Basel.ine—sin}pl.e 64 68 47 43 .78 .79 .39 .39
relation Basehne-logl.stlc Sl 79 63 54 .74 74 .60 .63
parsing Neural-bgsw g8 75 67 57 .72 74 .60 .63
with Neural—enrlcl}ed .80 78 .67 .59 | .76 7 .63 .65
gold spans Neural-attention | .83 .81 76 70 |79 79 .66 .68
Neural-BERT | .83 83 .77 .74 | .78 .80 .66 .68
Baseline-simple | .39 40 26 25 | 44 47 27 25
end-to-end | Baseline-logistic | .36 .34 .24 22 | 43 49 33 .37
systems Neural-basic 37 36 21 231 .42 45 33 35
with Neural-enriched | .51 S22 32 354 49 33 .37
auto spans | Neural-attention | .54 .54 36 39 | .44 49 35 .39
Neural-BERT | .61 .52 40 38| .51 .51 42 41

Table 4.5: Stage 2 results (f-scores) with gold spans and timex/event labels (top), and automatic
spans and timex/event labels generated by stage 1 (bottom).

in Stage 2 are against gold standard spans and edges, and evaluation metrics are precision, recall,
and f-score on (child, parent) tuples for unlabeled trees, and (child, relation, parent) triples for

labeled trees.

Bottom rows in Table 4.5 report the end-to-end performance of our six systems on both domains.
On both labeled and unlabeled parsing, our basic neural model with only lexical input performs
comparable to the logistic regression model. And our enriched neural model with only three simple
linguistic features outperforms both the logistic regression model and the basic neural model on
news, improving the performance by more than 10%. However, our models only slightly improve
the unlabeled parsing over the simple baseline on narrative Grimm data. This is probably due to (1)
it is a very strong baseline to link every node to its immediate previous node, since in an narrative
discourse linear temporal sequences are very common; and (2) most events breaking the temporal
linearity in a narrative discourse are implicit stative descriptions which are harder to model with

only lexical and distance features. Moreover, attention mechanism improves temporal relation la-
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beling on both domains, with both gold and automatic time and event spans. Finally, adding BERT
contextualized word embeddings helps in certain experimental settings but the improvements are

not consistent across the board.

4.6.3.2 Temporal Relation Evaluation

To facilitate comparison with previous work where gold events are used as parser input, we report
our results on temporal dependency parsing with gold time expression and event spans in Table 4.5
(top rows). These results are in the same ballpark as what is reported in previous work on temporal
relation extraction. The best performance in [Kolomiyets et al., 2012] are 0.84 and 0.65 f-scores
for unlabeled and labeled parses, achieved by temporal structure parsers trained and evaluated on
narrative children’s stories. Our best performing model (Neural-attention) reports 0.81 and 0.70 f-
scores on unlabeled and labeled parses respectively, showing similar performance. It is important
to note, however, that these two works use different data sets, and are not directly comparable.
Finally, parsing accuracy with gold time/event spans as input is substantially higher than that with

predicted spans, showing the effects of error propagation.

4.7 Conclusion

In this chapter, we present the first end-to-end neural temporal dependency parser. We evaluate the
parser with both gold standard and automatically recognized time expressions and events. In both
experimental settings, the parser outperforms two strong baselines and shows competitive results

against prior temporal systems.

Our experimental results show that the model performance drops significantly when automatically
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predicted event and time expressions are used as input instead of gold standard ones, indicating an
error propagation problem. Therefore, in future work we plan to develop joint models that simul-

taneously extract events and time expressions, and parse their temporal dependency structure.
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Chapter 5

Crowdsourcing Temporal Structure

Annotations

5.1 Introduction

In Chapter 3 we have shown that, by providing annotators with detailed guidelines and training
them in multiple iterations, the TDT representation can be annotated with high inter-annotator
agreement by experts. Chapter 4 further shows that a neural ranking model can be successfully
trained on the corpus. However, this “traditional” approach to annotation is time-consuming and
expensive. The question we want to answer in this chapter is whether TDT annotation can be
performed with crowdsourcing methods, an approach that has gained popularity as a means to

acquire linguistically annotated data quickly and cost-effectively for NLP research.

Crowdsourcing has been used to annotate data for a wide range of NLP tasks, including question

answering, word similarity, text entailment, word sense disambiguation, machine translation, in-
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formation extraction, summarization, semantic role labeling, etc. [Snow et al., 2008, Finin et al.,
2010, Zaidan and Callison-Burch, 2011, Lloret et al., 2013, Rajpurkar et al., 2018]. The key to ac-
quiring high quality data via crowdsourcing is to make sure that the tasks are intuitive or can be de-
composed into intuitive subtasks. In this chapter, we present a preliminary study on crowdsourcing
TDT annotations, and show that it is possible to acquire high quality temporal dependency struc-
tures through crowdsourcing, and that a temporal dependency parser can be successfully trained

on crowdsourced TDTs.

Example text:
He was borne1 in LIt was,, a tough

time for his family. Later, he started 5

school at the Central Elementary. He
won , a school prize in

ROOT
A en OD\A
DCT Present
_Ref

t1:1918 t2:1929
includes l l includes

before

Figure 5.1: Example text and temporal dependency tree. Meta nodes are shown in blue, time ex-
pressions in orange, and events in green. TDT also includes meta nodes “Past_Ref,” “Future_Ref,”
and “Atemporal” which are not shown here.

The rest of the chapter is organized as follows. We first explain in detail how we set up this
dependency tree crowdsourcing annotation task (§5.2). Annotation experiments (§5.3) show that
it is hard to get good inter-annotator agreement when annotating temporal dependency structures
in a single step, but when temporal dependency structures are broken into smaller subtasks, high

inter-annotator agreement can be achieved. We also experiment with automatic TDT parsers on
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this new data, and show that our annotation can support the training of statistical parsers, including
an attention-based neural model (§5.4). We discuss related work (§5.5) and conclude with future

work (§5.6).

In this preliminary work, we: (1) introduced an effective approach to crowdsource structured tem-
poral annotations, a relatively complex annotation task; (2) built an English temporal dependency
tree corpus through crowdsourcing, with high agreements among workers; and (3) experimented

with automatic temporal dependency parsers on this new corpus and report competitive results.

5.2 Crowdsourcing Tasks Setup

5.2.1 Data Setup

Our TDT annotations are performed on top of the TimeBank corpus [Pustejovsky et al., 2003b],
with time expressions and events already extracted. Following [Zhang and Xue, 2018c], we focus
only on events that are matrix verbs in a sentence. In order to extract matrix verbs, we use the gold
constituent trees for the part of TimeBank whose gold trees are available in Penn Treebank, and
parse the rest of TimeBank with the Berkeley Neural Parser [Kitaev and Klein, 2018], trained on

Penn Treebank. All time expressions in TimeBank are kept.

To facilitate quality control in crowdsourcing and agreement evaluation, we distinguish two subsets
of the TimeBank dataset: (1) TB-small is a small subset of 10 short Wall Street Journal news docu-
ments with 59 matrix verbs. (2) TB-dense consists of the same 36 documents as in the TimeBank-
Dense corpus [Cassidy et al., 2014]. It contains 654 matrix verbs. TB-small and TB-dense are

annotated by both crowd workers and experts.
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5.2.2 Annotation Tasks

We set up two annotation tasks. The first is full temporal dependency tree annotation, where crowd
workers need to annotate both the dependency tree structure and the temporal relations between
each parent and child. The second is relation-only annotation, where crowd workers are given the
gold temporal dependency trees and their job is just to label the temporal relation for each parent-
child pair. Although the first task generates both the structure of a TDT and the temporal relations
on the edges, we still want to set up the second task as an evaluation analysis to compare temporal

relation annotation accuracies in our framework with prior work.

5.2.3 Crowdsourcing Design

For task one, the full temporal dependency tree annotation, in order to simplify the questions/instructions
to crowd workers, we split the task of annotating a full dependency tree into (1) finding the “par-
ent” for each individual event, and then (2) deciding the temporal relation between the “parent”
and the event. A crowd worker is given a text with a highlighted target event and a list of candidate
parent time expresisons and events. The job of the crowd worker is to select one parent from the
given list of candidates, and label the temporal relation between the parent and the target event.
For task two, relation-only annotation, a crowd worker is presented a text with the target event and

its parent highlighted. The job of the worker is to decide the temporal relation between the two.

For quality control, we perform a qualifying test on both annotation tasks. Any crowd worker
who wants to work on these tasks needs to complete annotations on TB-small and reach at least
70% accuracy against the expert gold annotation. We also perform a surviving test on the relation-

only annotation task. Crowd workers have to maintain at least a cumulative accuracy of 70% for
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their annotation. Workers with a lower accuracy will get blocked from the task and all of their
annotations will be discarded. Every annotation is completed by at least 3 annotators and the

majority vote is the final annotation.

At the end of this chapter, Figure 5.2 and Figure 5.3 give examples on crowdsourcing questions

for full structure relation annotation and for relation only annotation respectively.

5.3 Annotation Experiments

We perform the crowdsourcing tasks on the full TimeBank corpus. Crowd worker accuracies
against our expert gold annotations on TB-dense and worker agreements on TB-dense and the
entire TimeBank data are reported in Table 5.1. The crowd worker accuracy (ACC) is computed
against the gold TB-dense annotations, showing how consistent crowd worker annotations are with
expert annotations. Worker Agreements With Aggragate (WAWA) [Ning et al., 2018b] represents
the agreements among crowd workers themselves, showing how consistent their annotations are
with each other. Although the accuracy and agreement for full temporal dependency structure
annotation are relatively low, high accuracies and agreements are achieved for both the subtasks of

structure annotation and relation-only annotation (above 80%).

Full | Structure | Relation
TB-Dense ACC .53 .82 .83
TB-Dense WAWA | .54 .81 .85
TB WAWA 52 .81 -

Table 5.1: Crowd worker accuracies (ACC) on gold TB-dense and worker agreements (WAWA)
on TB-dense and full TimeBank.

Statistics on our corpus and other similar TimeBank-based temporal relation corpora are presented

in Table 5.2. As the number of temporal relations is linear to the number of events and time ex-
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pressions in a text, fewer temporal relations need to be annotated in our corpus. In comparison,
MATRES [Ning et al., 2018b] only annotates verb events in a document while TB-dense annotates
a larger number of time expressions and events in a much smaller number of documents. Our cor-
pus retains the full set of TimeBank time expressions and covers comparable number of events as
MATRES. We pay $0.01 for each individual annotation and the entire TimeBank TDT annotation

cost about $300 in total.

Docs | Timex | Events | Rels

TimeBank | 183 | 1,414 | 7,935 | 6,418
TB-Dense | 36 289 1,729 | 12,715
MATRES | 275 - 1,790 | 13,577
This work | 183 | 1,414 | 2,691 | 4,105

Table 5.2: Documents, timex, events, and temporal relation statistics in various temporal corpora.

5.3.1 Crowdsourcing Error Analysis

In order to understand the TDT annotations collected through crowdsourcing more intuitively, we
compare them with expert annotations and discuss some error analysis in this section. This analysis
is based on the 36 documents from Timebank-Dense that are TDT-annotated both by experts and

crowdsourcing workers. Major error types regarding an event’s parent include the followings.
Parent Error #1: Overlap Parent Mismatch

In this error, crowdsourcing workers and experts picked different temporal units as the parent for
an event. However, the two temporal units actually hold an “overlap” temporal relation and refer to
the same temporal location on the timeline. For example, in Text (26) below (event is highlighted
in blue, parents are highlighted in orange), the event “helping” happens overlapping this “week”

as well as DCT. In this example, experts and crowdsource workers agree on the parent’s temporal
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location (around this “week” or around DCT), however they picked different timex in the text to
represent that temporal location as the specific parent. Text (27) gives another example, the event
“learned” overlaps the timex “today”. Both indicate the same temporal location on the timeline
before which the event “taken” happened. This type of disagreements is settled in the annotation

guidelines by specific rules, which are, however, not easily transferable to crowdsourcing workers.

(26): Text: On the other hand, it’s turning out to be another very bad financial week for Asia. The
financial assistance from the World Bank and the International Monetary Fund are not helping.

overlap

Gold: DCT <™ helping; DCT <™ week

overlap

Crowd: DCT <™ yeek 2% helping

(27): Text: Finally today we learned that the space agency has taken a giant leap forward.

before

Gold: today QP Jearned £ taken

bef 1
Crowd: today < taken; today & Jearned

Parent Error #2: DCT v.s. Close-by Timex Error

For an event that has a timex very close-by both in the text (e.g. in the same sentence or adjacent
sentences) and on the timeline (e.g. the event happened right before/after the timex), crowdsource
workers tend to pick the timex as the event’s parent. However, in many cases the DCT is a more
specific parent for the event. For example, in Text (28) below, although “hit a five year low”
happened indeed after the “five years”, it mostly describes what happened just now around the
time of DCT. And in Text (29), although “it’s time to reposition” before the “couple of years” of

changing, it is actually describing that “it’s time now (DCT)”.

(28): Text: In Singapore, stocks hit a five year low.
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overlap

Gold: DCT <—— hit

after .
Crowd: five year & hit

(29): Text: I think that the mood is fairly gloomy, and I think it’s not going to change for a couple
of years. So for Hong Kong, it’s time as investment bankers like to say, to reposition.
overlap .

Gold: DCT +—— time

before .
Crowd: a couple of years <—— time

Parent Error #3: Not Most Specific Parent Error

This error type is a more general form of the last one. In this error, crowdsource workers pick a
temporally related parent for an event, but it is not the most specific temporal location the event
depends on. For example, in Text (30) below, “you can get seventy percent discounts” in the
temporal location “the past three months”. It is indeed before DCT, but is also a more specific
temporal location than merely “before DCT”. In Text (31), “saw an explosion” happened first,
then “tries to raise” happened, and then “asks the eastwind pilot” happened last. “tries to raise” is

a more specific temporal location than “saw an explosion”.

(30): Text: But in the past three months stocks have plunged, interest rates have soared and the
downturn all across Asia means that people are not spending here. Hotels are only thirty percent
full. You can get seventy percent discounts at the shopping malls.

Gold: the past three months ki get

before

Crowd: DCT +—— get

(31): Text: We just saw an explosion up ahead of us here about sixteen thousand feet or some-
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thing like that. It just went down. The controller at Boston center tries to raise TWA eight hundred.
There is no response. Later, the controller asks the eastwind pilot for more details.

. af
Gold: tries <~ asks

after
Crowd: saw <— asks

Parent Error #4: Intentional Event Error

This category of errors is in regard to future intentional events that haven’t happened yet (usually
realized in the form of verb infinitives). Some intention events are incorrectly identified as parents,
some intention events’ temporal locations are incorrectly identified. In Text (32) below, “raise” is
an intentional event that the controller at Boston center was trying to do. It’s unclear whether or
not it actually happened after the “trying” event, and is not a valid temporal location to serve as a
parent. In Text (33), “demise” was “predicted” but not realized. It doesn’t indicate a valid temporal

location and cannot serve as a parent.

(32): Text: The controller at Boston center tries to raise TWA eight hundred. TWA eight hundred,
if you hear center, ident.
after

Gold: tries <— hear

. after
Crowd: raise <— hear

(33): Text: People have predicted his demise so many times, and the US has tried to hasten it on
several occasions. Time and again, he endures.
Gold: predicted & endures

. overlap
Crowd: demise <—— endures
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Parent Error #5: Quoted Event Error

For quoted events with a timex attached with it, crowdsource workers tend to pick the timex as
the parent. However, this is not always necessarily true. For example, in the following text (34),
Saddam “said” he will do the event “begin” on timex “Friday”. It doesn’t mean the event “begin”

actually happens on “Friday”.

(34): Text: In a letter to President Hashemi Rafsanjani of Iran, Saddam said he will begin with-
drawing troops from Iranian territory on Friday and release Iranian prisoners of war.
Gold: said & begin

Crowd: Friday Qe begin

Parent Error #6: Aspectual Event Error

This category regards aspect events (begin, continue, etc.). Crowdsource workers tend to skip
aspect events as possible parents or annotate incorrect temporal relations for them. For example, in
the following text (35), crowdsource workers didn’t consider “begin” as a valid parent candidate.
Please note that, with a finer temporal relation set, “withdrawing” should be “overlap_after” to
“begin”. However, we are using a coarse temporal relation label set, and such aspectual relations

are annotated only as “after”” according to our annotation guidelines.

(35): Text: In a letter to President Hashemi Rafsanjani of Iran, Saddam said he will begin with-
drawing troops from Iranian territory on Friday and release Iranian prisoners of war.
Gold: begin et withdrawing

. f . .
Crowd: said <~ withdrawing

105



Chapter 5. Crowdsourcing Temporal Structure Annotations

Major error types regarding an event’ s temporal relation with its parent include the followings.
Relation Error #1: Completed Event Error

For completed events, crowdsource workers tend to consider the temporal location of the “com-
pleted” state rather than the temporal location of the “happening” of the event. For example, in
Text (36), the state of “having backed out” overlaps with “Now”, while the happening of “backing
out” was before “Now”. And in Text (37), the state of “having become” overlaps with “say (i.e.

DCT)”, while the happening of “becoming” happened before “say”.

(36): Text: Now with new construction under way, three of his buyers have backed out.

before

Gold: Now <——— backed

overlap

Crowd: Now <——— backed

(37): Text: Many NASA watchers say female astronauts have become part of the agency’s rou-
tine.
Gold: say LI pecome

overlap
Crowd: say <—— become

Relation Error #2: Modalized Event Error

For modalized events, crowdsource workers tend to consider the temporal location of the “happen-
ing” of the event, rather than the temporal location of the “state” the modalized event expresses
(e.g. ability, willingness, obligation, etc. to do something). For example, in Text (38), the state
of “she can’t find buyers” overlaps with the state of her “owning” eight properties. The actual

“finding” event hasn’t happened yet. And in Text (39), the state of “no one should doubt” overlaps
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with him saying the sentence, while the actual “doubting” event might or might not have happened

and its temporal location is not of interest here.

(38): Text: Pamela owns eight condominiums here. She can’t find buyers.
overlap

Gold: owns «—— find

after
Crowd: owns <— find

(39): Text: “No one should doubt our staying power or determination.” he said.
Gold: said <™ doubt

.. af
Crowd: said << doubt

There is also a small percentage of other errors, such as close-by timex that’s not temporal related
to the event incorrectly annotated as the parent, or text with inherent ambiguities. For example,
the following sentence (40) has a PP-attachment ambiguity. While experts read it as the naming
happens in December, crowdsource workers read it as the mission happens in December and the

naming happens beforehand.

(40): Text: Air Force Lieutenant Colonel Eileen Collins will be named commander of the Space
Shuttle Columbia for a mission in December.
Gold: December M named

before
Crowd: December <—— named

These error types that crowdsource workers have highly agree with disagreements our expert an-

notators had during the process of designing our TDT annotation guidelines and through the pilot
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annotation experiments on our Chinese TDT corpus. Most of these errors — such as completed
events errors, DCT v.s. clost-by timex errors, etc. — can be eliminated with trained annotators
through guidelines and rules. However, with untrained crowdsource workers who are not familiar
with linguistic concepts such as modalized events, these rules prove to be challenging to imple-

ment.

5.4 System Experiments

Experiment 1: Sanity Check and Corpus Baselines

In order to perform a sanity check on our crowdsourced corpus and provide baseline results for fu-
ture bench-marking, the first experiment we conducted was applying our state-of-the-art attention-
based neural temporal dependency parser [Zhang and Xue, 2018a]’ on this new corpus, including

crowdsourced and expert annotated data.

Our training data consists of two parts concatenated together. The first part is the crowdsourced
temporal dependency annotations over the TimeBank documents (excluding documents that are in
the dev and test sets in the TimeBank-Dense corpus?). The second part is our expert-annotated
TDTs on the TimeBank-Dense training set documents. The parser is tuned and evaluated on our
expert TDT annotations on the TimeBank-Dense dev and test sets, respectively. This neural model
is the same with the Neural-Attention model as described in Chapter 4. It represents words with
bi-LSTM vectors and uses an attention-based machenism to represent multi-word time expressions

and events.

"https://github.com/yuchenz/tdp_ranking
2Standard TimeBank-Dense train/dev/test split can be found in [Cassidy et al., 2014].
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We also experiment with two baseline parsers from [Zhang and Xue, 2018a]: (1) a simple baseline
that takes an event’s immediate previous time expresion or event as its parent and assigns the
majority “overlap” as the temporal relation between them; and (2) a logistic regression model that
represents time expressions and events with their time/event type features, lexical features, and

distance features.

The first three rows in Table 5.3 show the performance of these systems on our data with both
the large crowdsourced corpus and the small expert-annotated corpus. “Zhang-2018 Simple” and
“Zhang-2018 Neural” rows are the performance of the simple baseline and their best neural system
on expert-annotated Chinese news data, as reported in [Zhang and Xue, 2018a]. Comparing the
simple baseline performance on the two data sets, we can tell that Chinese news data set has a

higher proportion of linear overlap relations and thus a higher majority baseline than English.

Struture | Structure +
Model -only F | Relation F
dev | test | dev | test
Simple Baseline 43 | 42 ] 15| .18
LogReg Baseline | .64 | .70 | .36 | .39
Neural Model g5 .79 | 53 .60

Zhang-2018 Simple | .64 | .68 | .47 43
Zhang-2018 Neural | .83 | .81 | .76 | .70

Table 5.3: Parsing results of the simple baseline, logistic regression baseline, and the neural tem-
poral dependency model.

Comparing the neural model performance on the two languages, we can see that the off-the-shelf
neural parser performs comparably on the two languages even though the Chinese data sets are
annotated with carefully trained annotators. The performance difference on full structure + relation
parsing is greater (0.60 v.s. 0.70 f-scores on test set). This is likely due to error propagation through
crowdsourcing in a two-staged annotation setup. On the other hand, comparable structure-only

parsing performance (0.79 v.s. 0.81 f-scores on test set) shows that our crowdsourced data provide
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consistent temporal information that can be learned with statistical models.

Comparisons between the logistic regression baseline and the neural model show that the neural
model adapts better to new data sets (and a different language) than the logistic regression model

with manually-crafted language-specific features.

Experiment 2: Annotation Quality Check

In order to check the quality of our new corpus from a system’s perspective and how effective
the approach of crowdsourcing is for collecting large temporal dependency tree data for system
training, we performed this experiment for a comparison between TDT parsers trained on gold

data V.S. TDT parsers trained on crowdsourced data.

Models are trained on three different data settings. For the first data setting, we used the standard
Timebank-Dense data split for training, dev, and test sets, and used only expert-annotated TDT an-
notations. In other words, systems are trained and tuned with small gold training and dev data, and
evaluated against gold test data. For the second data setting, we split our crowdsourced Timebank
TDT annotations into training, dev, and test set, using the same documents as in Timebank-Dense
dev set for dev, and the same documents as in Timebank-Dense test set for test. The rest documents
are the training set. Therefore, systems are trained and tuned with large crowdsourced data, and
evaluated against gold test data. For the third data setting, we used crowdsourced TDT annotations
on Timebank-Dense only, with the same train/dev/test data split. The purpose of this experiment
is to have a direct comparison on how well parsers can be trained using the same amount of expert

data V.S. crowdsourced data.

Experimental results for both logistic regression and neural model are illustrated in Table 5.4. It’s

evidently shown that across the board, a large crowdsourced training/dev dataset is very helpful on
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improving parser performances over a small gold training/dev dataset. Moreover, even only on a
small dataset, TDT parsers can be trained to perform basically as well on crowdsourced annotations

as on expert annotations.

Structure + | Structure
Model Training / Dev Data Relation F -only F
dev | test | dev | test

Baseline - 15 18 43 | 42
Gold, Small 28 .34 46 | 49
Crowdsourced, Small 28 .33 45 | .51

LogReg

Crowdsourced, Large .30 .35 S50 | .53
Crowd Large + Gold Small | .36 | .39 .64 | .70
Gold, Small 42 | 45 .60 | .60
Crowdsourced, Small 41 47 .60 | .59
Crowdsourced, Large 49 | 53 | .66 | .69
Crowd Large + Gold Small | .53 60 | .75 | .79

Neural

Table 5.4: Comparison between TDT parsers trained on gold data V.S. TDT parsers trained on
crowdsourced data.

5.5 Related Work

Although crowdsourcing is widely used in other NLP tasks, there have been only a few temporal
relation annotation tasks via crowdsourcing. The first attempt on crowdsourcing temporal relation
annotations is described in [Snow et al., 2008]. They selected a restricted subset of verb events from
TimeBank and performed strict before/after temporal relation annotation through crowdsourcing.
They reported high agreements showing that simple temporal relations are crowdsourceable. [Ng
and Kan, 2012] adopts the TimeBank temporal representation, and crowdsourced temporal an-
notations on news articles crawled from news websites. Their experiments show that the large

crowdsourced data improved classifier performance significantly. However, both of these works

111



Chapter 5. Crowdsourcing Temporal Structure Annotations

focused on pair-wise temporal relations and didn’t experiment with crowdsourcing more complex

temporal structures.

[Ning et al., 2018b] proposes a “multi-axis” representation of temporal relations in a text, and
annotates this representation on the TempEval-3 corpus through crowdsourcing. They argue that
events need to be annotated on different “axes” according to their eventuality types, and for events
on the same axis, pair-wise temporal relations are annotated. Their annotation task is broken down
to two smaller subtasks too. In the first subtask, crowd workers annotate whether an event is on a
given axis. In the second subtask, crowd workers annotate the temporal relations between pairs of
events on the same axis. The main differences between their work and ours are as follows. First,
they only model events, excluding time expressions which are important temporal units in text
too. Second, our temporal dependency tree representation is very different from their multi-axis
temporal representation, which requires different crowdsourcing task designs. In their first subtask,
crowd workers need to distinguish different eventuality types, while our annotation experiments
show that crowd workers can also consistently recognize “parents” as defined in [Zhang and Xue,

2018c] for given events.

5.6 Conclusion and Future Work

In this chapter, we introduce a preliminary study on a crowdsourcing approach for acquiring anno-
tations on a relatively complex NLP concept — temporal dependency structures. We build the first
English temporal dependency tree corpus on top of TimeBank through high quality crowdsourc-
ing. Our system experiments show that competitive temporal dependency parsers can be trained
on our newly collected data. Errors and issues with this preliminary crowdsourcing approach are

discussed, showing promising future directions of research.
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Read this text, and describe when the blue-highlighted event happens using either an orange-highlighted time or a green-
highlighted event:

Wall Street Journal

Long columns of Iraqi prisoners of war could be seen.327] trudging[.3z97 through the desert toward the allied rear.
U.S. commanders said[.3317 5,500 Iraqi prisoners were takenp.332] in the first hours of the ground war, though some military officials later said the total may hav
e climbed above 8,000.

The U.5. hopes[e3za] its troops will drive.sss; Iragi forces out of Kuwait quickly , leaving much of Iraq's offensive military equipment destroyed or abandoned in
Kuwait.

It expects[.343) that tens of thousands of Iraqi soldiers will surrender[.344; to the U.S. and its allies over the

If the allies succeed, 23457 Saddam Hussein will have plunged his country first into a fruitless war against Iran and then into 2 humiliating
war against the U.5. and the allies to defend his congquest of Kuwait, leaving much of his country's military establishment and modern infrastructure in ruins.

Meanwhile, the U.S. hopes, (=355 economic sanctions and an international arms embargo will remaingesss) in effect until Iraq pays war reparations to Kuwait to ¢
over war damages.

Question:

1. When does the bl i i ed event r in[.35s7 happen? Pick one of the following ways to describe it.
(If there is no green-highlighted events in the text, ignore option D, E, and F.)

A. The blue event happens during or around the orange time:

B. The blue event happens before the orange time:

C. The blue event happens after the orange time:

D. The blue event happens before the green event:

E. The blue event happens after the green event:

F. The blue event happens around the same time with the green event:

G. I can not describe when the blue event happens using any of the orange times or green events,

Note:
1. If you can use more than one of the above ways to describe when the blue event happens, pick the time or event that is the closest to the blue event

in time, or the one that feels the most natural to you. Pick ONLY ONE option.
2. If there is no green-highlighted events in the text, ignore option D, E, and F.

Figure 5.2: Example crowdsourcing question for full structure and relation annotation. Crowd-
source workers will read this passage, recognizing the event in question (blue), all time expres-
sions (orange), and candidate event parents (green). Then they will consider when the blue event
happens, and with which time expression or candidate parent event they can describe it the best.
For example, if a crowdsource worker decides that “remain” happens after “hopes”, then he will
pick the option (E.) and copy “hopes,[e356]” into the blank text box under option E.
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Read this text, and answer the following question:
Wall Street Journal 19980227152]

Live from Atalanta, good evening Lynne Russell, CNN headline news.

New evidence is suggesting[q4] that a series of bombings in Atalanta and last month[es] 's explosion at an Alabama women's clinic might be related.
Pierre Thomas has the |atest.

Atlanta nineteen ninety-six.[ras)
A bomb blast shocks[e11] the Olympic games.
One person Is killed.[e127

Question:
1. Which one of the following descriptions is true?

A. The event "killed.[212]" happens during or around the same time with "shocks[el11]".
B. The event "killed.[e12]" happens before "shocks[el11]".
C. The event "killed.[e12]" happens after "shocks[e11]".

Figure 5.3: Example crowdsourcing question for relation only annotation. Crowdsource workers
will read this passage, recognizing the two events in question. Then they will consider the temporal
relation between the two events, and pick the according option.
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Conclusion and Future Directions

6.1 Conclusion

In this thesis, we present research around various aspects of temporal information modeling: from

temporal representation, to temporal structure data collection, then to automatic temporal parsers.

To overcome the issues of redundancy and conflicts in pair-wise temporal relation representations
without introducing computationally expensive global constraints, we designed a novel representa-
tion to model temporal information in text — the Temporal Dependency Tree (TDT) Structure. We
show that this structure is linguistically intuitive, and is amenable to computational modeling. As
a proof-of-concept and resource for further research, we built a TDT corpus of 235 documents in
Chinese, covering two domains: news and narratives. High and stable inter-annotator agreements
in our annotation experiments provide further evidence supporting this structured interpretation
of temporal relations. This corpus is publicly available for future research on temporal relation

analysis, story timeline construction, as well as numerous other applications.
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To enable computers to automatically learn and parse TDT structures, we built the first end-to-
end neural temporal dependency parser. This parser was evaluated with both gold standard and
automatically recognized time expressions and events. In both experimental settings, the parser

outperforms two strong baselines and shows competitive results against prior temporal systems.

In order to collect TDT data more effectively and efficiently, we proposed a preliminary crowd-
sourcing approach to acquire TDT annotations. Since TDT structure is a very complex structure
for crowdsourcing workers, this approach was specially designed to simplify complicated linguistic
concepts in TDT and the task in general. This approach was evaluated by crowdsourcing annotation
experiments on English Timebank corpus. We show that high quality TDT structure annotations
can be collected through our specially-designed crowdsourcing approach. To build English TDT
resource, we collected English TDT annotations on top of the Timebank corpus (183 documents
in total) using this crowdsourcing approach. Finally, we extended our neural TDT parser to the
English TDT corpus. System experiments show that our parser can be easily applied to English
TDT parsing without much modification. Although these results are still preliminary, they show

promising directions of future research.

Temporal information modeling, including but not limited to temporal representation, temporal
corpora, and temporal parsing, is a very important task to natural language understanding. How-
ever, it’s still a growing field of research and we still have a long way to go in order to put such
technique to practice. We summarize the promising future directions related to temporal informa-
tion modeling in the rest of this chapter, in the hope that these ideas will inspire researchers in this

field and lead to further improvements.
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6.2 Future Directions

6.2.1 Chinese Temporal Machine Reading Comprehension with TDT

Machine Reading Comprehension tasks have attracted a large amount of research interest in recent
years. From cloze-style MRC tasks [Cui et al., 2016, Cui et al., 2017, Zheng et al., 2019], to span-
extraction MRC tasks [Cui et al., 2018, Shao et al., 2018, Yao et al., 2019], and to multi-document
open-domain MRC tasks [He et al., 2018, Li et al., 2016], researchers have been interested in
building better and larger MRC corpora in English, Chinese and other languages, as well as de-
veloping and improving better MRC systems. Since Temporal Dependency Tree structure models
events and temporal relations in a computational efficient representation, we are curious to see if it

helps Machine Reading Comprehension (MRC) tasks regarding temporal-related questions.

In this work, we propose to apply TDT structure onto single-document span-extraction MRC,
focusing on temporal-related questions only. From existing Chinese MRC datasets, we collected
5,637 temporal-related (context, question, answer) tuples (see Table 6.1). Questions asking about

when something happens (e.g. questions containing “when”) are filtered out as temporal-related

questions.
Dataset # Temporal Qs | # Qs
CMRC-2018 [Cui et al., 2018] 798 14k
DRCD [Shao et al., 2018] 1,537 33k
SMART [Yao et al., 2019] 3,302 39k
Total 5,637 86k

Table 6.1: Statistics on temporal questions in existing MRC datasets.

With proper data preprocessing (word segmentation, event and time expression extraction, and

TDT parsing), we propose to build a system that (1) matches the event mentioned in a question to an
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event in the context through data-driven or heuristic approaches, and (2) finds the time expression
for the event through a heuristic-based temporal reasoning process on TDT. To evaluate this system,
we will compare its performance with existing (already trained) MRC systems’ performance on a

set of temporal-related questions.

6.2.2 Chinese Temporal MRC Dataset Construction with TDT

A preliminary search on temporal-related MRC questions shows that although there are abundant
corpora on MRC tasks, the amount of temporal-related questions is very limited. Within the a
few span-extraction MRC datasets we have looked at, temporal-related questions only take up
around 6.5% of the entire data (see Table 6.1). This small data size could potentially limit the
research and development of temporal-oriented MRC systems. Therefore, we propose to construct
a Chinese Temporal MRC dataset using existing annotations on our TDT corpus. We propose
to (1) build a heuristic-based tool that generates full event descriptions based on an event anchor
on TDT (either extractive or abstractive descriptions, probably with the help of syntactic parsing
trees); (2) generate temporal-related questions and answers regarding these events using heuristic
methods; and (3) provide baseline results by applying existing MRC systems (already trained) on

this dataset.

6.2.3 Life Events / Historical Events Timeline Construction with TDT

Timeline Summarization or Storyline Construction is the task of organizing crucial milestones of
a news story in a temporal order. Most prior research focused on multi-document summarization,

and aimed at summarizing a large number of short news reports on the same topic, to construct a
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timeline of the news story. In these tasks, the Document Creation Times are usually mainly used
as the timestamps on the timeline. There have been little single-document timeline construction
tasks. However, for articles that are temporally-organized in nature, such as a person’s life events
descriptions (e.g. Einstein’s “Early Life” descriptions on Wikipedia) or historical events descrip-
tions (e.g. descriptions of the Battle of Midway on Wikipedia), a timeline list of events is a concise
summarization of the article, a clear representation of the historical time period, and can potentially

help human comprehension of the person or the history.

In this work, we propose to apply TDT structure onto temporally-organized articles, such personal
life biographies, historical event descriptions, etc., to construct a timeline of major events hap-
pened in a certain historical event, or a person’s certain period of lifetime. We propose to (1) dump
relevant data from Wikipedia (i.e. articles on celebrity life descriptions, or historical event descrip-
tions), and manually select a small set of articles; (2) preprocess data with word segmentation,
time expression and event extraction, and TDT parsing; and (3) build a heuristic-based system that
generates full event descriptions based on an event anchor on TDT (either extractive or abstrac-
tive descriptions, probably needs the help of syntactic parsing trees), and converts a TDT into a

timeline list of events.

6.3 Other Future Directions

Our experimental results of the neural TDT parser on the Chinese TDT corpus show that the model
performance drops significantly when automatically predicted event and time expressions are used
as input instead of gold standard ones, indicating an issue of error propagation. A joint model that
simultaneously extracts events and time expressions, as well as parses their temporal dependency

structures will alleviate the error propagation problem, and indicates a possible research direction.
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Parsing experiments on our Chinese TDT corpus show that our parsers perform much better on
the news data than the narrative stories. Since our parsers are trained on two domains separately,
Domain Adaptation techniques are potentially useful here for leveraging data on multiple domains

to train better parsers for narrative stories, and for building cross-domain TDT parsers.

Lastly, since our expert-annotated Chinese TDT data and crowdsourced English TDT data are
relatively small corpora, future directions also include more TDT data crowdsourcing. Larger

TDT corpora will support further TDT parser development and improvements.
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Appendix A

A.1 Chinese Temporal Dependency Tree Annotation Guidelines

A.1.1 Time Expression Recognition

The first pass of annotation is to mark out spans that are time expressions (timex), which are the
backbones of the final temporal dependency parses. For Grimm and Wikinews data, annotation
from scratch is needed. For TempEval2 data, its originally annotated timex are adopted first, then

small modifications are applied and some missing timex are added, too.

Some rules to help marking out timex spans are:

1. Two or more timex that are next to (or very close to) each other and express one temporal
location that is the reference time for nearby events should be merged into one span and

marked as one timex.
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o RENFEHAWE

o 19974 &4 [ RITIRZ RS IR L1 5L H
o 1994%F11 H 18 H il £ 5h THIHEN 5 KT
o HFE—FE+—HA

o SHAPIEE

o “LIVHH (—I/\RE—NNEE)

o _TittZiHIHA

2. Timex that are durations with a temporal aspect marker should be merged with the marker

to form a complete temporal location.

o TLEFEHI]
o FECAHERRAFEESE RN EL

3. A name that is specifically given to refer to a period of time on the timeline should be marked

as a timex.

o /NI HAIA]
o [ R

A.1.2 Time Expression Classification

The second pass of annotation is to give every timex a label, making some characteristics about

the timex explicit, which will be helpful for downstream annotations.
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In this labeling task, we make a distinction between timex that are temporal locations and the ones
that are not. We define a timex that can be located on the timeline, and express a starting and an
ending temporal boundary as a temporal location. For example, “19974, “—Z+— H1{j”, “H
BI”, A, “ -8 w17, <209 #F 2 J57 are all temporal locations, but “&E:F5”, <35,
“HIHR B, “HbRiE — & KRET 22209 £ are all NOT temporal locations. As shown here,
two timex with the same lexical words can express both a temporal location and a non-temporal
location, depending on their context. When considering whether a timex is a temporal location,
look at both the timex itself and its context, and consider the following rules to help you make the
distinction. The final goal of this annotation project is to find a reference time for each event, so we
only care about the timex that can temporally locate to a span on the timeline. Therefore, we give
all non-temporal location timex the label “Timex-Ignore”, not considering them as valid reference

times for events.

Some rules to help making the distinction between temporal locations and non-temporal locations

are:

1. A timex that expresses the concept of a duration of time that can not be anchored to the

timeline is labeled “Timex-Ignore”.
o WATHENA, THH—IGE T+ A, R R R R0 H T
R4 T HAA
o FEIH AN A
o GEAHILKFIEA L
o KIIRBRAIE T AT 5% BRI
2. A timex that expresses a unit time for measurement that can not be anchored to the timeline
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is labeled “Timex-Ignore”.

o BHFEHVE LKA UL

o & HHFRIRAIFE E

o FFI2AMRR LN, FrBld TR A2t/
o BAH I XWTTEN R HE

o ML T XIS i LRI B

3. A timex that’s an ordinal is labeled “Timex-Ignore”.

4. A timex that expresses a phase of a generic process is labeled “Timex-Ignore”.
o HEHA LT PIREE SR AT

5. Timex that refer to events as temporal locations are “Timex-Ignore”. These events will be

marked, and surrounding events will be temporally located based on these events.

o BEWH, HREFIFRMEBHMEEERZAZ AR, NP RERET.
o HUEWIHA, Fr 3% B JAKEEE HRETMC K THIERE, HaoK
AT PR R EEE -

6. Timex such as “X4 B, “HRES”, “ANA >, “HAE]”, etc. that are referring to other events are
“Timex-Ignore”. The temporal locations between these events will be represented by their

relations between each other, rather than their relations with these timex.

o BRI, Tr R B JAKEREE HRETC R THEIERE, HFoK
AT EE M EE . SNEEN&REREY RE BEERHEL S - BER
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Ja I T TR REPIRES - A, SFT5H EER I A8 & 5 Rk 1 Sk
B A A T 03, EEW—h . S, EEESILY, PO,
Ll @) 38K, AR, TRERE R ER], HERTER AT 7 BT L 2 -
RIS EIRL TR 5 R IR T2 - WARRFE, IINBRE—H LT, &
PLEHE -

For timex that are temporal locations, we make another two distinctions. The first distinction
is between concrete timex and vague timex. Concrete timex are timex that express a specific
temporal location. For example, “19974F, “75 & L F #5>, “21 H” are all concrete timex.
Their starting and ending temporal boundaries on the timeline can be determined. We consider
both exact boundaries and loose boundaries as valid temporal location boundaries. For example,
“19974F” has exact starting and ending temporal boundaries as 1997-01-01:00:00:00 and 1997-
12-31:24:59:59, while “7~ T4 HHA” has loose temporal boundaries as, depending on different
people’s interpretation of “F %A, maybe 1963 to 1967. Usually a concrete timex that has exact
temporal boundaries plus a timex indicating the sub-part in it is considered a concrete timex with
loose boundaries. For example, K, < EA, < H K2, “E R, <A can all be attached to
the end of a concrete timex forming another concrete timex. Vague timex are timex that express
the concept of (or a period in) general past, general present, or general future, without specific

temporal location boundaries. Some examples are *“ H i, “UT JLEE”, “MHI”, “H—K".

The second distinction is made only among concrete timex. It’s between absolute concrete timex
and relative concrete timex. Absolute timex are timex that contain all information needed to be
located on the timeline. For example, “19974F, “/N A", « < J\F1 HH[H] are all absolute
timex. One can easily find their starting and ending temporal boundaries on the timeline without

help from other spans of text. Relative timex are timex that need the help from other timex to
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interpret their temporal locations. For example, “4 %7, “— 2+ — A7, “if & = are all
relative timex. “% s temporal location is dependent on the Document Creation Time (DCT)
which is usually a metadata of the yyyy-mm-dd format. The timex itself “%> %> only expresses
the meaning “in the same year with DCT”. If, for example, the year of DCT is 1997, we can
then interpret “4-4" as 1997 on the timeline. Similarly, “—Z +— H {/}” expresses “January to
November in the year of DCT”, and “itf 2 =%F expresses “the past three years before the year of
DCT”. Timex other than DCT can be the reference timex as well. For example, in the following

discourse,

o AR - BN, FREEERFE BTN, TIHA9HEES AR, 24905 - 5
I FER—EPVOIERE L, SFELHLILIRFAR, 26 H BEOERA -

“11H29H”, depending on DCT (which for example is 2008-12-01), will be interpreted as 2008-
11-29, and “26 H”, depending on “11 29 H”, will then be interpreted as 2008-11-26.

These two distinctions help with the next pass of annotation, the annotation of timex parses, in (1)
determining whether a timex needs a reference time (relative timex do and absolute timex don’t),
and (2) whether the timex needs a general past/present/future reference time, or a specific timex or

DCT reference time (concrete timex need a specific one and vague timex need a general one).

For future work, these two distinctions will also help with timex normalization. Vague timex’s
normalizations are merely their general reference time, concrete absolute timex’s normalizations
can be computed using their lexical words, and concrete relative timex’s normalizations can be

computed using their lexical words together with their reference time’s normalization.

In other words, this pass of annotation is a four-way classification task. The four categories are:

vague timex, concrete absolute timex, concrete relative timex, and timex that are not temporal
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locations and need to be ignored. The four labels we use are:

Timex-Concrete Absolute

o Timex-ConcreteRelative

Timex-VagueRelative

Timex-Ignore

Here we consider all vague timex as relative because they depend on either a general past/present/future
reference time or another vague timex to be located on the timeline. Examples for vague timex de-
pending on another vague timex are most seen in narrative stories. For example, in the following

discourse,

o NBIE—PHREHS . (H20ME RANERME RS EMER T ERE, s
TEIEANERLT o B —RANEIGESRRN, 1BE] T — (2L

“M I is a vague timex that depends on general past, and “/H —K”, depending on “M Hij”, will
be interpreted as a temporal location that spans one day’s length on the timeline in the general past

section.

Some examples for different time expression categories are:

A.1.3 Time Expression Reference Time Resolution

The third pass of the annotation is to find the reference time for each relative timex. Vague
timex’s reference times can be general past/present/future, or another vague timex. Concrete rel-

ative timex’s reference timex can be DCT, or another concrete timex. No further annotations are
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Absolute Relative

X—F, 5F, FFE, T A=,

Concrere | V99T TVBIEL, | FETAY, R R, SE-F+ AL,
1995 Jig*, /N TR | b afaE, AR 1 H20H, —=+— A1,

210, JLAWI*, Ef=

Vague - HAj, Bl &L, I, [FIEF, ET, B—K

Table A.1: Some examples for different timex types.

needed on concrete absolute timex and ignored timex. For each reference time/timex pair, annotate
a link from the reference time to the timex, representing the relation of the timex depending on the

reference time to be located temporally, so no link label is needed.

Following TimeML, we use symbols PAST_REF, PRESENT_REF, and FUTURE_REF to denote

general past/present/future. Some example vague timex of these reference times are:

e PAST REF: Hfi, i3,

e PRESENT_REF: HAJ, I, 54, i JL&, L H,

e FUTURE_REF: A 40K, F3E,

After annotating the reference time for each relative timex, an automatic process will take place to
build the final timex parse, which links DCT, general past/present/future, and all concrete absolute
timex directly to a ROOT node, forming a complete tree structure which can be used in future work

for timex normalization and timeline structure building.

An example of the final parse is illustrated in the following figure. (We also have an ATEMPORAL

node linked as a child of the ROOT. It will be used in the last pass of annotation, event parsing.)

The possible reference time/node for different type of timex is summarized in the following table.
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Absolute Relative

Concrete | ROOT DCT, or another Concrete Timex
PAST_REF, PRESENT_REEF,

FUTURE_REEF, or another vague timex

Vague -

Table A.2: Possible reference times or nodes for different types of timex.

A.1.4 Event Recognition

The fourth pass of annotation is to mark out spans that are events. In this stage, two decisions need
to be made during annotation: (1) whether something should be considered as an event; and (2)

what exact span of words should be marked to designate the event.

Adapting from TimeML event annotation guidelines, we consider occurrences, actions, processes,
or event states which deserve a place upon a timeline as events. However, in this task, we only work
with a subset of the events defined as markables in TimeML — events that are the main predicates
in a sentence and a limited set of subordinate clauses. These events’ syntactic realizations are
mostly verbs with a few exceptions of nominalizations, nouns, and adjectives described more later.
The reasons that we select this subset of events are that (1) main predicates advance the temporal
progress of a narrative or reporting discourse, and their temporal relations are dependent to one
another, forming the temporal structure we are trying to capture in this task; and (2) other events
(e.g. events in relative clauses) are merely mentions of a temporal location that are independent of
other events or timex in the discourse, thusly independent to the structure we are trying to build,

and marking those events and locating them on a timeline is out of the scope of this work.

Decision 1: What are considered as events?

More specifically, the following predicates are considered markable events in our task:
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1. The main predicates of a sentence/independent clause

One sentence usually has one main predicate. If there are two main predicates joined by

coordinating conjunctions, both are markable events.
o M EH IR . A H ST R AKFRIZIHE R RRET R AR
AE TR, S REM (event) -

o RETIEHAN B CHRBIRLE IR EE, KR (even) 2 E IR X F L
HIRIN, 5% 3 (event) Bl AR R EE -

o KN RERTA, RIEMIERAMREREBRTL, Z(event)= HiH EHF
B G S m A E PSS -

2. Predicates in adverbial clauses (serving as time)

o AT (event) PRIUEE BIRHIE/S . NS IEH JT RN L5 5 il A F AR S
R E R KR RIES:, FURAERITISL (event) BIRAFHCI— A ITTHF
225, DRI ALl SR PRt T 4H -

3. Nouns in adverbials serving as temporal locations

o E[E(event) WM, EPUEF IR BT ERRASIER, NHRE
&

o fili(event) JEWIHA, 7 3% & ERETERE FE/REDHIC 10 THIEHE,
For XA T R E S E R

On the other hand, the following predicates are NOT considered markable events in our task:

1. Predicates in noun clauses (serving as subjects and objects)
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o SHE[EFRELATHNE T = RBUK A 115 (event) VR(NOT event) H HIBFLE « X
0 T8 533t R SEAT (NOT event) $RAT AR IE 4 & Bk I B AIHUE (NOT event) i3
% 75 R R

o MEMIERATH CHIEHIR K EFMLIFHNOT event) 2%, R AFH EIAL IR
AR, R AP FEERIEAISE « KR ENOT evenym B, RRTE
FNOT event) e El 3 A B R BOR =ML, & = Hi P E BRI 22 5 57 18 1 1Y)
HYMESS -

Two exceptions for predicates in noun clauses are:

First, when the noun clause is serving as the object of a reporting verb, such as “¥gH”, “17”,

“Z¢HH”, the main predicates in the noun clause are considered markable events.

o | REINERATH KM T ANFEH(event) , SLATHIN L 5 MK HIE & (event) T
ENI LR SRS, BEEHRE, DEEZRBERRE, RFmIH S0

Second, when the noun clause is serving as the subject or object of the main verb “/&”

whose purpose is only to emphasize the noun clause, the main predicates in the noun clause
are considered markable events. In such cases, the main verb “4&” is not considered as an

event.

o T NE/R—EAIZNOT event) , « J\ T HAB] A E AR FMF B EJE Ai(event) T
M ~ PRV Ta) N il X B RS FAS Ry, DAE B AR V& 5 PR A Bl b (X
AR (event) | FFALATHAE -

2. Predicates in adverbial clauses (serving as purpose, reason, condition, place) to do: consider

adverbial clauses serving as concession, results, comparison, and manner
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o T IRBINER B L METENIG H(event) , SELITHI TR 5 & 1k 2 (event) H
T 5E3(NOT event) X1 TH SRR E, HEFENOT event) BHIFIF, B 1L(NOT
event) EZFX ML, 1€ (NOT event) I LHA S HIEFEAFE

o FEAE2000ESLHN(NOT event) A4 E N A= BB AT EICH BFE, -
3. Predicates in relative clauses

o FHHE HFITEEIZ(NOT event) ~ IAZ|(NOT event) 2 4t FL4E i £ AR IKCF A 27
(Wt RGEHTERAR _HIE, SREMN.

Decision 2: What exact span of words to mark?

Generally the verb of a predicate is marked to designate the event. A few exceptions are as follows:

1. In Chinese, there are cases where the verb in a predicate is dropped. For such cases, simply
mark the object as the event. HA], 2EANEM LHHANHOL AL, (=R —FH)
EAE =T 2K, NEARTHZTT -

2. For negated verbs, mark the negation and the main verb together as one event. 5 [E /A 7] 7E
WARTHEE LA . LATRIEE S IRHIEE . R IEE TR TR S el AH
e S 2 R B BRI RS RIS, AT IR L BRI IR — B T T2
7, RITPRF R 4R L S PRes st i 4H -

3. For modalized verbs, mark the modalized verb only as the event. kG, ERRETE
FHREENRRRRESGT,

4. For cases with an aspectual verb followed by a main verb, mark the aspectual verb and the

main verb as separate events.

132



A.l. Chinese Temporal Dependency Tree Annotation Guidelines

5. For predicates that are expressed as “light verb + nominalized/main verb”, mark the nomi-

nalized/main verb only. The light verb is not considered as an event.

¢ B+ nominalized/main verb:

- LIt

- AT ERIIHR TR
e f¥i+ main verb:

— EPUR R a1 MR
o 747+ nominalized event:

- HFiT R EEET A B

e Other verbs are not considered as light verbs (e.g. WIS, RE, etc.)

Note that for news data (TempEval2 and Wikinews), the news titles and date lines should be

ignored.

A.1.5 Event Classification

The fifth pass of annotation is to give each event a label, marking their eventuality types explicitly
to help the next stage, event reference time resolution. Following previous work on this topic,
we define this stage an eight way classification problem. The eight categories are: Event, Com-
pleted Event, Modalized Event, State, Habitual, Ongoing Event, Generic State, Generic Habitual.

Classification is based on both the verb itself and its context.

The main distinction that needs to be made clear here is between eventive events and stative events.

If an event is emphasizing a process/change of state, it belongs to the Event category. If an event
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is describing a property/state of an entity or the world, it is a stative event. Stative events include
verbs that are inherently states, for example “B”, “}&”, which belong to the State category; and
also verbs that are usually used to express an eventive event, but converted to a stative event by
emphasizing the result, progressing, possibility, and regularity of the event, which correspondingly
map to CompletedEvent, OngoingEvent, ModalizedEvent, and Habitual. In other words, all cate-
gories except for Event are stative, describing a property or state of an entity or the world. The key

is to make clear which aspect of the event is emphasized.

Please note that in this guidelines, I use the initial-capitalized “Event” to denote the eventuality
category “Event”, and all-lower-case “event” to denote all event markables which can be any one

of the eight categories.

1. Event

Predicates that emphasize a change of state with eventive verbs are given the label Event.

The following types of events are usually considered as Event.

e An event that is somebody reporting something is mostly emphasizing the processing

of reporting, and hence Event.
_ peOple + "i%ﬂ_‘_{", vvﬁ%lv’ "i«H”, nj:gﬁn, né!%_yan, etC.

2. Completed Event

Predicates that emphasize the result of changing with eventive verbs are given the label
Completed Event. These events describe a state more than a change or a process. The

following types of events are usually considered as Completed Event.

e An event that has happened on / has been done by a group of entities is mostly empha-

sizing the result of this group of entities having had the experience, hence Completed
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Event.
— FHEAAKIL SR S — I [ 2 4y B BRI P
- EJLERE WA RRLETZHR ML .
- < J\IHE], A ESAES N AR -
e A comparison of states is usually Completed Event.
-t fEEL
= <\ A P E I O S AOA — R E =%, e R gk — 1
Pl
e A predicate with ©, £, &, T, Alis more likely to be a Completed Event.
- B, BT TERE, SERK ete.
- EBAE], EFE, 8T T, ete.
- FONEF AR GRS I EB A F EEF EJENA DI, — M 2EE
B IR T OR SRR TR -
- HA, FTE5E-C AR E SRR T 5 5 PRI il 5 A0 B2 T H R
EEA
e Predicates with the format *’/H+ nominalized verb”

- L7t

3. Modalized Events:

Predicates with modal verbs are Modalized events.
o W, EMMAETSEENENEEERET T, -

o 155l B IR B IR T SLAR A 7 L B TR AL BB LA
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Please note that we don’t consider future events as modalized events. Future events are

labeled as regular events with “Event”, “State”, “Habitual”, etc. labels.

An exception is with the verb “JA”. When used as “A]7X”, which is ubiquitous in news data,

consider it as State instead of ModalizedEvent.

o % (timex) SEFRA AN T Al 1A (state) —F/\{ZETT, HE K (completed) H 7
ZTHEIS-

. State

Predicates that are describing the state of some entity or the state of the world with stative
verbs are given the label State. The following types of events are usually considered as

States.

e Predicates with inherently stative verbs are States.

Some common stative verbs are:

&, B, N, &, A, et

SCFF, T, RER, WGW, etc.

W, T, T, A, DU, AT, TR, B, etc.
e, 74, ete.

ik, IR, ete.

Some examples:

- RETHREABN LIRS W MEXNE £Z{23TT -
— B G 7 ROTIE A AT I RE R A 5 A F X AR I A I
LA A1 5 AR E AKX A1 [X 5 (A5 THI O o516
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— W EPRE S RFAT—E, R ETTITZE, R XEE5 %
fe, ERARILIAR . ”
e Predicates that are a single adjective with the verb dropped are usually States. They

usually have the POS tag VA.
— EEER - an f
e Predicates with their verbs dropped and only having the object are mostly States.
- HEl2ENEMLHE 5 AL A Z T(state) , X =R —F Byt
K (state) = 2K, ML ZHZ T (state) -
e Predicates that describe the property of an entity or the world that happens every year,

every month, every day, ‘-, every second, etc. are States.
- FEEHEKEZ/\
e Negated events are mostly describing a state of not doing something, hence State.
- BEA A LRS-
- SEATRIEE GIKFIE S, #8850 I T RN L5 5 4k b A 5 9 0
BB S EORRES, LR ERTRY &I IR —F BT
B, BRITRF RS ARl O SEFRZET 1 4H -
e An event that is some news, articles, papers, etc. reporting something is mostly empha-
sizing the statement of the reported content, hence State:
— news, articles, papers + "F&I/R", "SR, ", "TRH", "IRIE", etc.

— NP+ verb

5. Habitual

Predicates that describe a regularly repeated event are Habituals. The following types of

events are common Habitual events.
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e In sentences where the events in the main clause are conditioned on the events in a time
adverbial clause, both are Habituals.
- ARERIME L MU — B T F22%, H R 48 L B SE PRt
~ ?E‘ ©

=R

e Predicates that describe an action or behavior that’s done repetitively in a given period

of time are considered Habituals.

— TRYIN~ BN FE 5 b ) H R, R i A 7 ) R G T % R R T
&
- <J\A A, EREFEN T ZHZ5E R TS E PR -

6. Ongoing Events
Predicates whose verbs are modified by “1E££”, “H ", “H 2", etc. are usually Ongoing
Events.

7. Generic State

State events with generic subjects are Generic State.

8. Generic Habitual

Habitual events with generic subjects are Generic Habitual.

A.1.6 Event Reference Time Resolution

The sixth and last pass of annotation is to find the reference time for each event, forming a final

parse tree with the children nodes temporally dependent on their parent nodes.
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An event’s reference time can be either a time or another event. When an event’s reference time is a
time, i.e. DCT, PAST_REF, PRESENT_ REF, FUTURE_ REEF, or a timex in the text, annotate a link
from the time to the event. Most relations between a time and an event are “happened at/around”,
so no link label is needed for these links. However, for some rare cases that are timex + “LPA”,
“DLHI”, etc., for example “19974F DL 3K, we label the link between the timex (“19974F”) and
the events happened after (“LAR) or before (“LAF™) the timex as “before” or “after”. When an
event’s reference time is another event in the text, we annotate a link from the reference time event
to the current event, and give a link label to this relation. Possible relations between events are:

“before”, “includes”, “overlap”, and “after”. Here “overlap” is undirected while the other three are

directed.

An event is linked to ATEMPORAL if it can’t be temporally located or it holds true for the entire
timeline. Events are linked to the most specific reference time available (i.e. the lowest node in
the parse). For example, if there’s a link “DCT —3 H 18 H”, then an event happened on that day
should be linked to “3H 18 H” instead of DCT, and another event that happened right after that
should be linked to the first event instead of “3H 18 H”.

In this pass of annotation, we start by reading each event in their linear order in the sentences. By
default, we assume these events’ temporal locations are in the same linear order. Therefore, we

start with a parse that looks like a linked list:

el —before/overlap —e2 —before/overlap —e3 —before/overlap —> -

—before/overlap —en

While reading through the events, we look for some events that are “temporal location changers”.

There are two types of temporal location changers. The first type we call it “temporal location
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jumpers”. They usually change the linear advance of time by referring to a timex or PRESENT _ref
/ PAST_ref / FUTURE_ref / atemporal. They are events that jump onto a different temporal loca-
tion on the timeline. Therefore, a parse with a temporal location jumper would look like this if the

“jumping” is caused by referring to a timex:

timex1 —el —before/overlap —--—em

timex2 —em+1 —before/overlap —--—en

or this if the “jumping” is caused by referring to PRESENT ref / PAST_ref / FUTURE_ref /

Atemporal:

timex1 —el —before/overlap = -—em

PAST_ref —em+1 —before/overlap —-—en

The second type we call it “temporal location advancers”. They usually advance the time by
mentioning an event that happened a little bit later than a previously mentioned event. If all events
happen in the same order with their mentions in the discourse, a parse with temporal location

advancer would look like the same with our assumption:

el —before/overlap —e2 —before/overlap —e3 —before/overlap —> -

—before/overlap —en

When an event advances a temporal location that has several events overlapping on it, the parse

with temporal location advancer would look like this:

140



A.l. Chinese Temporal Dependency Tree Annotation Guidelines

el —overlap —e2 —overlap —-—overlap —~em

ek(1<=k<=m) —before —em+1 —before/overlap — - --—before/overlap —en

Here, ek is the most related event (usually the last em) to em+1.

In conclusion, events that break the original linear order in the discourse, i.e. temporal location

changers, are listed in Table A.3.

Events that refer to a different timex

Events that refer to
Present/Past/Future_Ref/Atemporal

Events that refer to a previously mentioned event
(not immediate previous one)

Events that happen after an immediate
previously mentioned event

Temporal Location Jumpers

Temporal Location Advancers

Table A.3: Common events that are temporal location jumpers and advancers.

All events that are NOT temporal location changers are linked to their immediate previous event

and labeled “overlap”. For example,

o HR(timex) , MAERGRHAZT Ry 2 E5FEPREE K E EHH LB
BRI JEORE B DR AT SE S5 0T &7 BT N 248 (T (event) | [A]HE L K2 PN 3 20 1y 40
A (event) S E R SEATISME T = REBURIHE -

Links: 4 RK—%1T—overlap > /144

o EfF(timex) | RAEENINTH F H DA (state) W H 23T, 2 H(state) &4 H H
BERE D2\t BR—BS S K —F RN THE 22 BN Al #
A2\ TLLEJEstate) i1 TR 5 H H -

Links: E&F—ik—overlap — 57— overlap — &

141



Appendix . Appendix A

o Hiii(timex) & NFIN LR AL AL i (state) , (L =HR—H R ALAtA (state)
=hZx, NEARTHZT(state) -

Links: “HA]” >“AHZ J5” —overlap 1A~ —overlap >“ _H £ /7”

o JENME, AT (timex) KRB RSNE T HE K R (event) , TAEIEACELINT « BRI
TSN B ARl NZF AN 51 5 i (state) T HH 24 KE % -

Links: IE5F— % FE—overlap — 5

A.1.7 Specifications on Some Common Scenarios

1. Q: If an event advances the time after a series of overlapping events, which previously men-

tioned event do I use as the reference time?

A: Use the most closely related event (usually the last event). For example,

o S R(timex) , HPERGRHS RO 5FBTRERSIEG ED LA
P28 Mt OB S BRAITAT L ST &7 22T MM 254 T (event) |, [A] HEIR S A b 25
T J4B(event) SEE R SATHI/NA B = REURHEE - KT 45+t H (timex) 7E
A S AN LB 5 DR UE 4B S i B A (event) MRS RS SR TE AR A -

R His more closely related to 41 #Athen %47, so — Links: 4 K—%54T—overlap —

28— before — il 1.

2. For scenarios with reporting events, (1) the reporting event’s reference time should be either
a timex in the text, PRESENT ref, or a previously mentioned reporting event that happens
either before or overlap with the current reporting event; and (2) the reported content events
should take the reporting event as their reference time, and be linked to the reporting event

99 ¢

with “before”, “after”, or “overlap”, depending on if the reporting happens before, after, or at
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around the same time with the content events. Timex inside the reporting content are ignored
because (1) a loose temporal relation is captured here by labeling the before/after/overlap
relations between the content events and the reporting event, and (2) the reporting event is
the main event that advances the progress of time in the discourse and hence our interests to
build into the final parse, while reported content events might be some isolated points on the

timeline that are out of the scope of this work.

An example of a reporting event is as follows:

o TREINETAZTH KM T NTE H(event) , SEATHN L 5 & Ml & (state) 9 T
SEMN LR SMNE, BEEHRE, EEZRBRL, REmIS 51
R A -

The links are: PRESENT_REF —*f5 > —overlap —>*“/&”.

3. For scenarios with time adverbial clauses, if both events inside the time adverbial clause and
in the main clause are Habituals, meaning when A happens B happens, then link the main
clause predicate to the temporal adverbial clause predicate with “overlap”; if the sentence is
not describing habitual activities, then link events in the main clause to events in the time

adverbial clause with according relation labels. For example,

o LiT(event) PRIUEE B MKHIE 5, 8 XX IE® BN TR 5 14 M AN BAE
W (state) 53 OBMEFIECEE RIS RIES, RIETER 1T 57 (habitual) 5 BKAS
W B (habitual) — & JCHIFEET, KITRHEEE (event) {B)k FISEFREZ ST L HH -

The links are: FUTURE_REF —*“/NHAEHC; “NHEAEHC —after —<SE177 “ AN EAENC
—overlap —>“HL” —overlap — 1% 3L”; “UTH” —overlap —“{FEE”.
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4. Note that NOT all timex marked out in the discourse will serve as a reference time. There will
be timex that don’t have any events linked to them. For example, timex governed by reporting
verbs are ignored and are not the reference time for any events. Some other examples are as

follows:

o Y& FIHEANKPHIEGE

o TR BRI AR FAEEE] T 2 4 EFRFEAT L 58K

o TECDEME T RRLEFEAMAES, HETHE T HLWERERIT
il

o H1990FHEE I 1M EDR

o TV GG K Hit £ TR KSR

5. For cases with an aspectual verb followed by a main verb, both are marked out as separate

events. We link the aspectual verb to the main verb as an “overlap” relation.
. 57, “fF 1, “R¥F”, etc. —overlap —>an event

6. If there are two adjacent timex expressing the same temporal location, link events to the first

one.

o cg. | AR\ A(timex)’HHE] (—LIL—Z2—JLLEF(timex)) HF LAk
R BHE L P (state) ~ 3 et IF (state) -

J\ Fi—includes —H—overlap —%F

7. For cases with “timex + DA, LU, etc., for example:

e timex LI, state/event: timex —before — state/event
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e timex LLH], state/event: timex — after —state/event

8. For scenarios with adverbial “Tilit”, “ffi1t”, etc., don’t consider them as events. For exam-

ple:

o 4 (timex) SEPRFI AN E T AT A (state) —F/\Z3ET0, K (completed) 7 43
ZHTEIN .
StE—iE—overlap —~ 1K

o T4 (timex) LAV E* AT B (state) —T ZH Lt Ti2TE, HHK(completed)
[P

A FE—ik—overlap —> ¥ K

9. For cases with the pattern “eventl -, §2§, LA, £, etc. ---event2”, consider these two

events closely related, and parse them as:
e cventl —before/overlap —event2

10. For quotes that are not preceded or governed by a reporting verb, annotated them as regular

events outside a quote. For example,

o “ MEEXRILHN K (event) £ H . FH A F AR IT AN, FLE AR A%
“Gi(event) T AT G 4L - I14 (timex) , FATHCOIF AR BEJE1 0 0 07 3f
BB E AT EHEE ik (state) — T ALK, it (state) 5o 8 A F LA TATTHY
TENGERE - » XRESZEAREXBZEAERESRAE ) U= TES
W R —BiE -

Here, events “JIJSE”, “SE25”, «ik”, “HE1d” are in a quote without a reporting verb, so simply

link them as if they were not in a quote:
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PAST_REF —l3E—overlap —3£45; {14 —1A—>overlap — 1 ;
11. Most events’ reference times should be before the events in the discourse. For example,

o EIRBIHEAAMBEFEAHLERY, WELRXBIHH =g+, K&
B —+=fr, SERBEAA=FTHAZ N

link “PRESENT _ref — % Hi; #—7" instead of “I— % H—overlap —>H".

Predicates that express the pass of a period of time are not considered as events. For example,
e 19399 9A1H, AFHMENALIN=, JHia T ARINAER ANRFTRE
KT RIS IR R AR, 1245 5 5.

o XX FHEFTEEAENRIBMERILIET-4 0 0 7 A
Hep, OV ERISE B T BN, L2 8 0 0 75N

o BRI (not event) , BRUNZET T B - b~ 5075 - IS RIEIZS .
here, #1Zis expressing the passing of half a century and is not considered as an event.

12. Consider modalized events with “Z”, “EL3K”, etc. as events on their happening temporal

locations, instead of states of reporting temporal locations. For example:

o RIEEH, TEVEMREGTLEN, ZiEHE MES . MU /I RES R E
WIS E « X PrE e A T B Aok, EEE AT IRIIA 2,

link “E FH—overlap —2& 1 —before =R #” instead of “E Fl—overlap —>Z& 1k —overlap

I,
13. Special treatment for narrative discourses
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e Time expressions
— past_ref — Ml
— MHi—includes >H—K
- H—R—before >3 . K—before =5 =K
e Posit events in the past by default.
— past_ref —>first event in the document
e Time advancing events/states vs. non-time-advancing states

— Time advancing events/states form the main timeline, and they are linked to each

other by “before/overlap”.

— Non-time-advancing states form the branch timelines, and they are linked to the

main timeline by “overlap/after”.

BANGARXIRG, Mg ...

=k

e Imperatives in quotes — not events
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