

Situation	Shear Rate Range	Examples
Sedimentation of fine powders in liquids	10 ⁻⁶ to 10 ⁻³	Medicines, Paints, Salad dressin
Leveling due to surface tension	10 ⁻² to 10 ⁻¹	Paints, Printing inks
Draining off surfaces under gravity	10 ⁻¹ to 10 ¹	Toilet bleaches, paints, coatings
Extruders	10° to 102	Polymers, foods
Chewing and Swallowing	101 to 102	Foods
Dip coating	101 to 102	Confectionery, paints
Mixing and stirring	101 to 103	Liquids manufacturing
Pipe Flow	10° to 103	Pumping liquids, blood flow
Brushing	103 to 104	Painting
Rubbing	10 ⁴ to 10 ⁵	Skin creams, lotions
High-speed coating	10 ⁴ to 10 ⁶	Paper manufacture
Spraying	10 ⁵ to 10 ⁶	Atomization, spray drying
Lubrication	10 ³ to 10 ⁷	Bearings, engines

		F	
ARES Technical Specfications			
	ARES-LS2	ARES-LS1	ARES
Motor	High Performance LS	High Performance LS	Standard HR
Torque Range	2 µN.m - 200 mN.m	0.2 µN.m - 100 mN.m	2 µN.m - 200 mN.r
Strain Amplitude	5 µrad - 500 mrad	5 µrad - 500 mrad	5 µrad - 500 mrad
Angular Velocity Range	2 E-6 - 200 rad/s	2 E-6 - 200 rad/s	1 E-3 - 100 rad/s
Angular Frequency	1 E-5 - 500 rad/s	1 E-5 - 200 rad/s	1 E-5 - 500 rad/s
Norma/Axial Force Range	0.002 - 20 N	0.002 - 20 N	0.01 - 20 N
ARES Technical Specifications	ARES-RES	ARES-RDA	1
	Standard HR	Standard HR	1
Motor	0.2 µN m = 100 mN m	20 µN m = 200 mN m	
Torque Range	5 urad - 500 mrad	5 urad - 500 mrad	
Strain Amplitude	- 1 E-3 - 100 rad/e	1 E-3 - 100 mildu	1
Angular Velocity Range	1 E-3 - 100 180/S	1 E-3 - 100 Iad/s	4
Angular Eroguonov	1 E-5 - 200 rad/s	1 E-5 - 500 rad/s	4
Angular i requency		/ woritative	

Speci	fications	
Maximum Force	35 N	18 N
Minimum Force	0.001 N	0.0001 N
Force Resolution	0.0001 N	0.00001 N
Strain Resolution	1 nanometer	1 nanometer
Modulus Range	10E3 to 3x10E12 Pa	10E3 to 3x10E12 Pa
Modulus Precision	+/- 1%	+/- 1%
Tan δ Sensitivity	0.0001	0.0001
Tan δ Resolution	0.00001	0.00001
Frequency Range	2xE ⁻⁵ to 80 Hz	0.01 to 200 Hz
Dynamic Sample Deformation Range	+/- 0.5 to 1,500 µm	+/- 0.5 to 10,000 µr
Temperature Range	-150 to 600°C	-150 to 600°C
Heating Rate	0.1 to 60°C/min	0.1 to 20°C/min
Cooling Rate	0.1 to 60°C/min	0.1 to 10°C/min
Isothermal Stability	+/- 0.1°C	+/- 0.1°C
Time/Temperature Superposition	Yes	Yes

Clamp Type	To Increase Stiffness	To Decrease Stiffness
Tension Film	Decrease length or increase width. If possible increase thickness.	Increase length or decr width. If possible dec thickness.
Tension Fiber	Decrease length or increase diameter if possible.	Increase length or decidiameter if possible.
Dual/Single Cantilever	Decrease length or increase width. If possible increase thickness. Note: L/T≥ 10	Increase length or decr width,, If possible dec thickness. Note: L/T≥ 10
Three Point Bending	Decrease length or increase width. If possible increase thickness.	Increase length or decr width. If possible dec thickness.
Compression-circular sample	Decrease thickness or Increase diameter.	Increase thickness o decrease diameter.
Shear Sandwich	Decrease thickness or Increase length and width	Increase thickness or Decrease length and w
Torsion	Increase thickness Decrease length	Decrease thickness Increase length

DN	DMA Clamping Guide		
Sample	Clamp	Sample Dimensions	
High modulus metals or composites	3-point Bend Dual/single Cant. Torsion	L/T> 10 if possible	
Unreinforced thermoplastics or thermosets	Single Cantilever, Torsion	L/T >10 if possible	
Brittle solid (ceramics)	3-point Bend, Dual Cant. Torsion	L/T>10 if possible	
Elastomers	Dual Cantilever Single Cantilever Shear Sandwich Tension	L/T>20 for T <tg L/T>10 for T<tg (only for T> Tg) T<2 mm W<5 mm</tg </tg 	
Films/Fibers	Tension	L 10-20 mm T<2 mm	
Supported Systems	8 mm Dual Cantilever	minimize sample, put foil on clamps	

ce Control -	• Parameters
Static Force	Force Track (autostrain)
0.01 N	120 to 150%
0.001 N	120%
0.001 to 0.01 N	125%
1 N	125 to 150%
1N B	150 to 200% Can use constant static force
	Static Force Optimized 0.001 N 0.001 N 0.001 N 0.001 N 1 N 1N

	e-Training Courses
•	Variety of courses that can be taken off our website
۰	These course include:
	 QuickStart Courses that tell you how to get started running your instrument – These are Free!!
	 Advanced Courses build on the basics and talk about advanced features and options
۰	These are available as recorded courses that you can take 24/7
۰	Also available "Live" (see website for details)

