
Normal Stress and Strain

Problem 1.2-1 A solid circular post ABC (see figure) supports
a load P1 � 2500 lb acting at the top. A second load P2 is
uniformly distributed around the shelf at B. The diameters of 
the upper and lower parts of the post are dAB � 1.25 in. and 
dBC � 2.25 in., respectively. 

(a) Calculate the normal stress �AB in the upper part of the post. 
(b) If it is desired that the lower part of the post have the

same compressive stress as the upper part, what should be
the magnitude of the load P2?

Solution 1.2-1 Circular post in compression

1
Tension, Compression,
and Shear

1

A

B

C

P1

dAB

dBC

P2

P1 � 2500 lb

dAB � 1.25 in.

dBC � 2.25 in.

(a) NORMAL STRESS IN PART AB

(b) LOAD P2 FOR EQUAL STRESSES

��AB � 2040 psi

Solve for P2: P2 � 5600 lb

sBC �
P1 � P2

ABC

�
2500  lb � P2
�
4 (2.25  in.)2

sAB �
P1

AAB

�
2500  lb

�
4 (1.25  in.)2 � 2040  psi

ALTERNATE SOLUTION FOR PART (b)

∴ P2 � 2.24  P1 � 5600  lb

dBC

dAB

� 1.8

P1 � P2

dBC
2 �

P1

dAB
2   or   P2 � P1B ¢dBC

dAB

≤
2

� 1R

sAB �
P1

AAB

�
P1

�
4  dAB

2  �sBC �sAB

sBC �
P1 � P2

ABC

�
P1 � P2

�
4  dBC

2

A

B

C

P1

P2



Piston rod

5 mm

50 mm

225 mm

P = 40 N

Problem 1.2-2 Calculate the compressive stress �c in the circular
piston rod (see figure) when a force P � 40 N is applied to the
brake pedal. 

Assume that the line of action of the force P is parallel to the
piston rod, which has diameter 5 mm. Also, the other dimensions
shown in the figure (50 mm and 225 mm) are measured perpen-
dicular to the line of action of the force P.

Solution 1.2-2 Free-body diagram of brake pedal

Problem 1.2-3 A steel rod 110 ft long hangs inside a
tall tower and holds a 200-pound weight at its lower end
(see figure). 

If the diameter of the circular rod is 1⁄4 inch, calcu-
late the maximum normal stress �max in the rod, taking
into account the weight of the rod itself. (Obtain the
weight density of steel from Table H-1, Appendix H.)
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F � compressive force in piston rod

d � diameter of piston rod

� 5 mm

EQUILIBRIUM OF BRAKE PEDAL

F(50 mm) � P(275 mm) � 0

COMPRESSIVE STRESS IN PISTON ROD (d � 5 mm)

sc �
F

A
�

220 N
�
4 (5  mm)2 � 11.2  MPa

F � P¢275  mm

50  mm
≤� (40  N) ¢275

50
≤� 220  N

©MA � 0  �  �

50 mm

225 mm

P = 40 N

F

A

in.

200 lb

110 ft
1
4
—



Solution 1.2-3 Long steel rod in tension

Problem 1.2-4 A circular aluminum tube of length L � 400
mm is loaded in compression by forces P (see figure). The out-
side and inside diameters are 60 mm and 50 mm, respectively. A
strain gage is placed on the outside of the bar to measure normal
strains in the longitudinal direction. 

(a) If the measured strain is � � 550 � 10�6, what is the
shortening � of the bar? 

(b) If the compressive stress in the bar is intended to be 40
MPa, what should be the load P?

Solution 1.2-4 Aluminum tube in compression
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� 374.3 psi

�max� 374 psi � 4074 psi � 4448 psi

Rounding, we get

�max � 4450 psi

P

A
�

200  lb
�
4 (0.25  in.)2 � 4074  psi

gL � (490  lb�ft3) (110  ft)¢ 1

144
 

ft2

in.2
≤

smax �
W � P

A
� gL �

P

A
d

L

P = 200 lb

P � 200 lb

L � 110 ft

d � 1⁄4 in.

Weight density: � � 490 lb/ft3

W � Weight of rod

� �(Volume)

� �AL

Strain gage

L = 400 mm

PP

e� 550 � 10�6

L � 400 mm

d2 � 60 mm

d1 � 50 mm

(a) SHORTENING � OF THE BAR

� � eL � (550 � 10�6)(400 mm)

� 0.220 mm

(b) COMPRESSIVE LOAD P

� � 40 MPa

� 863.9 mm2

P � �A � (40 MPa)(863.9 mm2)

� 34.6 kN

A �
�

4
[d2

2� d1
2] �

�

4
[ (60  mm)2 � (50  mm)2]

Strain gage

PP



Problem 1.2-5 The cross section of a concrete pier that is loaded
uniformly in compression is shown in the figure. 

(a) Determine the average compressive stress �c in 
the concrete if the load is equal to 2500 k. 

(b) Determine the coordinates x� and y� of the point where the
resultant load must act in order to produce uniform normal
stress.

Solution 1.2-5 Concrete pier in compression
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O 16 in.20 in.

48 in.

y

x

16 in.

16 in.

16 in.

x
C

y
1

2

3

4

USE THE FOLLOWING AREAS:

A1 � (48 in.)(20 in.) � 960 in.2

A3 � (16 in.)(16 in.) � 256 in.2

A � A1 � A2 � A3 � A4

� (960 � 128 � 256 � 128) in.2

� 1472 in.2

A2 � A4 �
1

2
(16  in.) (16  in.) � 128  in.2

(a) AVERAGE COMPRESSIVE STRESS �c

P � 2500 k

(b) COORDINATES OF CENTROID C

(see Chapter 12, Eq. 12-7a)

� 2(25.333 in.)(128 in.2)

�(28 in.)(256 in.2)]

�15.8 in.

�
1

1472  in.2
 [ (10  in.) (960  in.2)

x �
1

A
 (x1 A1 � 2x2 A2 � x3 A3)

x �
© xi Ai

A
 

From  symmetry, y �
1

2
(48  in.) � 24  in.

sc �
P

A
�

2500  k

1472  in.2
� 1.70  ksi

O 16 in.20 in.

48 in.

y

x

16 in.

16 in.

16 in.

20 in.

Problem 1.2-6 A car weighing 130 kN when fully loaded 
is pulled slowly up a steep inclined track by a steel cable 
(see figure). The cable has an effective cross-sectional area 
of 490 mm2, and the angle � of the incline is 30°. 

Calculate the tensile stress �t in the cable.

Cable

�
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Solution 1.2-6 Car on inclined track

FREE-BODY DIAGRAM OF CAR

W � Weight of car

T � Tensile force in
cable

� � Angle of incline

A � Effective area of
cable

R1, R2 � Wheel reactions (no friction force between
wheels and rails)

EQUILIBRIUM IN THE INCLINED DIRECTION

T � W sin �

©FT � 0�Q�  b�  T � W sin � � 0

TENSILE STRESS IN THE CABLE

SUBSTITUTE NUMERICAL VALUES:

W � 130 kN � � 30�

A � 490 mm2

� 133 MPa

st �
(130  kN)(sin  30�)

490  mm2

st �
T

A
�

W sin �

A
�

W

R1

R2

Problem 1.2-7 Two steel wires, AB and BC, support a lamp
weighing 18 lb (see figure). Wire AB is at an angle � � 34°
to the horizontal and wire BC is at an angle � � 48°. Both
wires have diameter 30 mils. (Wire diameters are often
expressed in mils; one mil equals 0.001 in.) 

Determine the tensile stresses �AB and �BC in the 
two wires.

C

B

A

� �

Solution 1.2-7 Two steel wires supporting a lamp 

FREE-BODY DIAGRAM OF POINT B
SUBSTITUTE NUMERICAL VALUES:

�TAB(0.82904) � TBC(0.66913) � 0

TAB(0.55919) � TBC(0.74314) � 18 � 0

SOLVE THE EQUATIONS:

TAB � 12.163 lb TBC � 15.069 lb

TENSILE STRESSES IN THE WIRES

sBC �
TBC

A
� 21,300  psi

sAB �
TAB

A
� 17,200  psi

TAB TBC

W = 18 lb

y

x0

� �

EQUATIONS OF EQUILIBRIUM

�Fx � 0 � TAB cos � � TBC cos � � 0

�Fy � 0 TAB sin � � TBC sin � � W � 0

� � 34� � � 48�

d � 30 mils � 0.030 in.

A �
�d 2

4
� 706.9 � 10�6

 in.2



Problem 1.2-8 A long retaining wall is braced by wood
shores set at an angle of 30° and supported by concrete 
thrust blocks, as shown in the first part of the figure. The
shores are evenly spaced, 3 m apart. 

For analysis purposes, the wall and shores are idealized
as shown in the second part of the figure. Note that the base
of the wall and both ends of the shores are assumed to be
pinned. The pressure of the soil against the wall is assumed 
to be triangularly distributed, and the resultant force acting 
on a 3-meter length of the wall is F � 190 kN. 

If each shore has a 150 mm � 150 mm square cross sec-
tion, what is the compressive stress �c in the shores?
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Retaining
wall

Shore

30° 30°

Concrete
thrust
block

Soil

4.0 m

0.5 m

F

B

C

A

1.5 m

Solution 1.2-8 Retaining wall braced by wood shores

Wall

Shore

30°

4.0 m

F

B

C

A

1.5 m

0.5 m

F � 190 kN

A � area of one shore

A � (150 mm)(150 mm)

� 22,500 mm2

� 0.0225 m2

FREE-BODY DIAGRAM OF WALL AND SHORE

C � compressive force in wood shore

CH � horizontal component of C

CV � vertical component of C

CH � C cos 30�

CV � C sin 30�

SUMMATION OF MOMENTS ABOUT POINT A

�F(1.5 m)�CV (4.0 m)�CH (0.5 m) � 0

or

� (190 kN)(1.5 m) � C(sin 30�)(4.0 m) � C(cos 30�)(0.5 m) � 0

∴ C � 117.14 kN

COMPRESSIVE STRESS IN THE SHORES

�5.21 MPa

sc �
C

A
�

117.14  kN

0.0225  m2

©MA � 0  �  �

30°F

B

A
1.5 m

C
30°

AV

AH

CV

CH



Solution 1.2-9 Loading crane with girder and cable
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Problem 1.2-9 A loading crane consisting of a steel girder 
ABC supported by a cable BD is subjected to a load P
(see figure). The cable has an effective cross-sectional area 
A � 0.471 in2. The dimensions of the crane are H � 9 ft, 
L1 � 12 ft, and L2 � 4 ft. 

(a) If the load P � 9000 lb, what is the average tensile 
stress in the cable? 

(b) If the cable stretches by 0.382 in., what is the average
strain?

D

H

C

P

BA
Girder

Cable

L2L1

T � tensile force in cable

P � 9000 lb

D

H

C

P = 9000 lb

BA

L2L1

C

P = 9000 lb

BA

12 ft 4 ft

TH

T TV

H � 9 ft L1 � 12 ft

L2 � 4 ft A � effective area of cable

A � 0.471 in.2

P � 9000 lb

FREE-BODY DIAGRAM OF GIRDER

EQUILIBRIUM

TV (12 ft) � (9000 lb)(16 ft) � 0

TV � 12,000 lb

� 16,000 lb

TENSILE FORCE IN CABLE

� 20,000 lb

(a) AVERAGE TENSILE STRESS IN CABLE

(b) AVERAGE STRAIN IN CABLE

� � stretch of cable  � � 0.382 in.

e�
�

L
�

0.382  in.

(15  ft) (12  in.�ft)
� 2120 � 10�6

L � length  of  cable�L � �H 2� L1
2 � 15  ft

s�
T

A
�

20,000  lb

0.471  in.2
� 42,500  psi

T � �TH
2 � TV

2 � �(16,000  lb)2 � (12,000  lb)2

TH � (12,000  lb)¢12

9
≤

∴ TH � TV ¢12

9
≤

TH

TV

�
L1

H
�

12  ft

9  ft

©MA � 0  �  �



Problem 1.2-10 Solve the preceding problem if the load P � 32 kN; the
cable has effective cross-sectional area A � 481 mm2; the dimensions of
the crane are H � 1.6 m, L1 � 3.0 m, and L2 � 1.5 m; and the cable
stretches by 5.1 mm. Figure is with Prob. 1.2-9.
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Solution 1.2-10 Loading crane with girder and cable

FREE-BODY DIAGRAM OF GIRDER

EQUILIBRIUM

TV (3.0 m) � (32 kN)(4.5 m) � 0

TV � 48 kN

∴

� 90  kN

TH � (48 kN)¢3.0

1.6
≤

TH � TV ¢3.0

1.6
≤

TH

TV

�
L1

H
�

3.0  m

1.6  m

©MA � 0 ��

TENSILE FORCE IN CABLE

(a) AVERAGE TENSILE STRESS IN CABLE

(b) AVERAGE STRAIN IN CABLE

L � length of cable

� � stretch of cable

� � 5.1 mm

e�
�

L
�

5.1  mm

3.4  m
� 1500 � 10�6

L � �H 2� L1
2 � 3.4  m

s�
T

A
�

102  kN

481  mm2 � 212  MPa

� 102  kN

T � �TH
2 � TV

2� �(90  kN)2 � (48  kN)2

D

H

C

P = 32 kN

BA

L2L1

CBA

3.0 m 1.5 m

TH

T TV

P = 32 kN

T = tensile force  
       in cable

Problem 1.2-11 A reinforced concrete slab 8.0 ft square and 9.0 in.
thick is lifted by four cables attached to the corners, as shown in 
the figure. The cables are attached to a hook at a point 5.0 ft above 
the top of the slab. Each cable has an effective cross-sectional area 
A � 0.12 in2. 

Determine the tensile stress �t in the cables due to the weight of
the concrete slab. (See Table H-1, Appendix H, for the weight density
of reinforced concrete.)

Cables

Reinforced
concrete slab

H � 1.6 m L1� 3.0 m

L2 � 1.5 m A � effective area of cable

A � 481 mm2 P � 32 kN



Solution 1.2-11 Reinforced concrete slab supported by four cables
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H � height of hook above slab

L � length of side of square slab

t � thickness of slab

� � weight density of reinforced concrete

W � weight of slab � �L2t

D � length of diagonal of slab

DIMENSIONS OF CABLE AB

� L�2

Cable

B

L
L

A

W

H

t

T T T T

A

W TH

T

TV

B

A

H

LAB

D
2

L
2

=

LAB � length of cable

�BH 2�
L2

2

T � tensile force in a cable

Cable AB: 

(Eq. 1)

EQUILIBRIUM

�Fvert � 0 ↑�↓�

W � 4TV � 0

(Eq. 2)

COMBINE EQS. (1) & (2):

TENSILE STRESS IN A CABLE

A � effective cross-sectional area of a cable

SUBSTITUTE NUMERICAL VALUES AND OBTAIN �t :

H � 5.0 ft L � 8.0 ft t � 9.0 in. � 0.75 ft

� � 150 lb/ft3 A � 0.12 in.2

W � �L2t � 7200 lb

st �
W

4A
�1 � L2�2H2 � 22,600  psi

st �
T

A
�

W

4A
�1 � L2�2H2

T �
W

4
 

�H 2� L2�2
H

�
W

4
�1 � L2�2H 2

T ¢ H

�H2 � L2�2
≤�

W

4

TV �
W

4

TV � T ¢ H

�H 2� L2�2
≤

TV

T
�

H

LAB

Problem 1.2-12 A round bar ACB of length 2L (see figure) rotates about
an axis through the midpoint C with constant angular speed 	 (radians
per second). The material of the bar has weight density �. 

(a) Derive a formula for the tensile stress �x in the bar as a function of
the distance x from the midpoint C. 

(b) What is the maximum tensile stress �max?

CA B

L L

x

	

FREE-BODY DIAGRAM OF HOOK AT POINT A



Solution 1.3-1 Hanging wire of length L

Solution 1.2-12 Rotating Bar
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	 � angular speed (rad/s)

A � cross-sectional area

� � weight density

� mass density
g

g

Consider an element of mass dM at distance 
 from the
midpoint C. The variable 
 ranges from x to L.

dF � Inertia force (centrifugal force) of element of mass dM

(a) TENSILE STRESS IN BAR AT DISTANCE x

(b) MAXIMUM TENSILE STRESS

x � 0�smax �
g	2L2

2g
—

sx �
Fx

A
�
g	2

2g
(L2 � x 2) —

Fx � �
B

D

dF � �
L

x

g

g
 A	2jdj�

gA	2

2g
 (L2 � x 2)

dF � (dM)(j	2) �
g

g  A	2jdj

dM �
g

g  A  dj

C

B

L

x

	 dM


 d


D

We wish to find the axial force Fx in the bar at
Section D, distance x from the midpoint C.

The force Fx equals the inertia force of the part of
the rotating bar from D to B.

Mechanical Properties of Materials

Problem 1.3-1 Imagine that a long steel wire hangs vertically from a
high-altitude balloon. 

(a) What is the greatest length (feet) it can have without yielding if the
steel yields at 40 ksi? 

(b) If the same wire hangs from a ship at sea, what is the greatest
length? (Obtain the weight densities of steel and sea water from
Table H-1, Appendix H.)

W � total weight of steel wire

�S � weight density of steel

� 490 lb/ft3

�W � weight density of sea water

� 63.8 lb/ft3
(b) WIRE HANGING IN SEA WATER

F � tensile force at top of wire

 � 13,500  ft

�
40,000  psi

(490 � 63.8)lb�ft3 (144  in.2�ft2)

Lmax �
smax

gS � gW

 F � (gS � gW) AL�smax �
F

A
� (gS � gW)L

 � 11,800  ft

 Lmax �
smax

gS
�

40,000  psi

490  lb�ft3  (144  in.2�ft2)

L

A � cross-sectional area of wire

�max � 40 ksi (yield strength)

(a) WIRE HANGING IN AIR

W � �SAL

 smax �
W

A
� gSL



Problem 1.3-2 Imagine that a long wire of tungsten hangs vertically
from a high-altitude balloon.

(a) What is the greatest length (meters) it can have without breaking 
if the ultimate strength (or breaking strength) is 1500 MPa?

(b) If the same wire hangs from a ship at sea, what is the greatest
length? (Obtain the weight densities of tungsten and sea water
from Table H-1, Appendix H.)

Solution 1.3-2 Hanging wire of length L
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W � total weight of tungsten wire

�T � weight density of tungsten

� 190 kN/m3

�W � weight density of sea water

� 10.0 kN/m3

A � cross-sectional area of wire

�max � 1500 MPa (breaking strength)

(a) WIRE HANGING IN AIR

W � �TAL

�  7900  m

 Lmax �
smax

gT
�

1500  MPa

190  kN�m3

 smax �
W

A
� gTL

(b) WIRE HANGING IN SEA WATER

F � tensile force at top of wire

F � (�T��W)AL

 � 8300  m

 �
1500  MPa

(190 � 10.0)  kN�m3

 Lmax �
smax

gT � gW

 smax �
F

A
� (gT � gW)L

L

Problem 1.3-3 Three different materials, designated A, B,
and C, are tested in tension using test specimens having
diameters of 0.505 in. and gage lengths of 2.0 in. (see figure).
At failure, the distances between the gage marks are found to
be 2.13, 2.48, and 2.78 in., respectively. Also, at the failure
cross sections the diameters are found to be 0.484, 0.398, and
0.253 in., respectively. 

Determine the percent elongation and percent reduction
in area of each specimen, and then, using your own judgment,
classify each material as brittle or ductile.

Gage 
lengthP

P



Problem 1.3-4 The strength-to-weight ratio of a structural
material is defined as its load-carrying capacity divided by
its weight. For materials in tension, we may use a character-
istic tensile stress (as obtained from a stress-strain curve) 
as a measure of strength. For instance, either the yield 
stress or the ultimate stress could be used, depending upon
the particular application. Thus, the strength-to-weight ratio
RS/W for a material in tension is defined as

RS/W � �
�

�
�

in which � is the characteristic stress and � is the weight
density. Note that the ratio has units of length.

Using the ultimate stress �U as the strength parameter,
calculate the strength-to-weight ratio (in units of meters) 
for each of the following materials: aluminum alloy 
6061-T6, Douglas fir (in bending), nylon, structural steel
ASTM-A572, and a titanium alloy. (Obtain the material
properties from Tables H-1 and H-3 of Appendix H. When
a range of values is given in a table, use the average value.)

12 CHAPTER 1 Tension, Compression, and Shear

Percent elongation 

L0 � 2.0 in.

Percent elongation (Eq. 1)

where L1 is in inches.

� ¢ L1

2.0
� 1≤(100)

�
L1 � L0

L0
 (100) � ¢L1

L0
� 1≤100

d0 � initial diameter d1 � final diameter

Percent reduction in area 

(Eq. 2)

where d1 is in inches.

� B1 � ¢ d1

0.505
≤

2R (100)

A1

A0
� ¢d1

d0
≤

2

�d0 � 0.505  in.

 � ¢1 �
A1

A0
≤(100)

 Percent  reduction  in  area �
A0 � A1

A0
 (100)

2.0 in

PP
0.505 in

L1 d1 % Elongation % Reduction Brittle or 
Material (in.) (in.) (Eq. 1) (Eq. 2) Ductile?

A 2.13 0.484 6.5% 8.1% Brittle

B 2.48 0.398 24.0% 37.9% Ductile

C 2.78 0.253 39.0% 74.9% Ductile

Solution 1.3-4 Strength-to-weight ratio

The ultimate stress �U for each material is obtained
from Table H-3, Appendix H, and the weight density
� is obtained from Table H-1.

The strength-to-weight ratio (meters) is 

Values of �U, �, and RS/W are listed in the table.

RS�W �
sU(MPa)

g(kN�m3)
 (103)

�U � RS/W

(MPa) (kN/m3) (m)

Aluminum alloy 310 26.0 11.9 � 103

6061-T6
Douglas fir 65 5.1 12.7 � 103

Nylon 60 9.8 6.1 � 103

Structural steel 500 77.0 6.5 � 103

ASTM-A572
Titanium alloy 1050 44.0 23.9 � 103

Titanium has a high strength-to-weight ratio, which is
why it is used in space vehicles and high-performance
airplanes. Aluminum is higher than steel, which makes 
it desirable for commercial aircraft. Some woods are also
higher than steel, and nylon is about the same as steel.

Solution 1.3-3 Tensile tests of three materials
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Problem 1.3-5 A symmetrical framework consisting of three pin-
connected bars is loaded by a force P (see figure). The angle
between the inclined bars and the horizontal is � � 48°. The axial
strain in the middle bar is measured as 0.0713. 

Determine the tensile stress in the outer bars if they are
constructed of aluminum alloy having the stress-strain diagram
shown in Fig. 1-13. (Express the stress in USCS units.)

P

D

A B C
�

Solution 1.3-5 Symmetrical framework

Aluminum alloy

� � 48�

eBD � 0.0713

Use stress-strain diagram of Figure 1-13

L � length of bar BD

L1 � distance BC

� L cot � � L(cot 48�) � 0.9004 L

L2 � length of bar CD

� L csc � � L(csc 48�) � 1.3456 L

Elongation of bar BD � distance DE � eBDL

eBDL � 0.0713 L

L3 � distance CE

� � elongation of bar CD

� � L3 � L2 � 0.0538L

Strain in bar CD

From the stress-strain diagram of Figure 1-13:

s � 31  ksi

�
�

L2
�

0.0538L

1.3456L
� 0.0400

� 1.3994  L

� �(0.9004L)2 � L2(1 � 0.0713)2

L3 � �L1
2 � (L � eBD L)2

P

D

A B C
�

E

�

D

B C

L
L2

L3

�BDL



Problem 1.3-7 The data shown in the accompanying table were
obtained from a tensile test of high-strength steel. The test specimen 
had a diameter of 0.505 in. and a gage length of 2.00 in. (see figure for
Prob. 1.3-3). At fracture, the elongation between the gage marks was 
0.12 in. and the minimum diameter was 0.42 in. 

Plot the conventional stress-strain curve for the steel and determine
the proportional limit, modulus of elasticity (i.e., the slope of the initial
part of the stress-strain curve), yield stress at 0.1% offset, ultimate stress,
percent elongation in 2.00 in., and percent reduction in area.

14 CHAPTER 1 Tension, Compression, and Shear

Problem 1.3-6 A specimen of a methacrylate plastic is tested in tension
at room temperature (see figure), producing the stress-strain data listed in
the accompanying table. 

Plot the stress-strain curve and determine the proportional limit,
modulus of elasticity (i.e., the slope of the initial part of the stress-strain
curve), and yield stress at 0.2% offset. Is the material ductile or brittle?

P

P

STRESS-STRAIN DATA FOR PROBLEM 1.3-6

Stress (MPa) Strain

8.0 0.0032
17.5 0.0073
25.6 0.0111
31.1 0.0129
39.8 0.0163
44.0 0.0184
48.2 0.0209
53.9 0.0260
58.1 0.0331
62.0 0.0429
62.1 Fracture

Solution 1.3-6 Tensile test of a plastic

Using the stress-strain data given in the problem
statement, plot the stress-strain curve:

�PL � proportional limit �PL � 47 MPa

Modulus of elasticity (slope)   � 2.4 GPa

�Y � yield stress at 0.2% offset

�Y � 53 MPa

Material is brittle, because the strain after the
proportional limit is exceeded is relatively 
small. —

0

20

40

60
Stress
(MPa)

0.01 0.02 0.03 0.04
Strain

0.2% offset

slope ≈ 40 MPa
0.017 = 2.4 GPa

�Y
�PL

TENSILE-TEST DATA FOR PROBLEM 1.3-7

Load (lb) Elongation (in.)

1,000 0.0002
2,000 0.0006
6,000 0.0019

10,000 0.0033
12,000 0.0039
12,900 0.0043
13,400 0.0047
13,600 0.0054
13,800 0.0063
14,000 0.0090
14,400 0.0102
15,200 0.0130
16,800 0.0230
18,400 0.0336
20,000 0.0507
22,400 0.1108
22,600 Fracture
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Solution 1.3-7 Tensile test of high-strength steel

d0 � 0.505 in. L0 � 2.00 in.

CONVENTIONAL STRESS AND STRAIN

Load P Elongation � Stress �
(lb) (in.) (psi) Strain e

1,000 0.0002 5,000 0.00010
2,000 0.0006 10,000 0.00030
6,000 0.0019 30,000 0.00100

10,000 0.0033 50,000 0.00165
12,000 0.0039 60,000 0.00195
12,900 0.0043 64,500 0.00215
13,400 0.0047 67,000 0.00235
13,600 0.0054 68,000 0.00270
13,800 0.0063 69,000 0.00315
14,000 0.0090 70,000 0.00450
14,400 0.0102 72,000 0.00510
15,200 0.0130 76,000 0.00650
16,800 0.0230 84,000 0.01150
18,400 0.0336 92,000 0.01680
20,000 0.0507 100,000 0.02535
22,400 0.1108 112,000 0.05540
22,600 Fracture 113,000

s�
P

A0
�e�

�

L0

A0 �
�d0

2

4
� 0.200  in.2

150,000

100,000

50,000

0 0.0200 0.0400 0.0600

Stress
(psi)

Strain

70,000

60,000

50,000

0 0.0020 0.0040

Stress
(psi)

Strain

Slope ≈ 

 ≈  30 × 106 psi 

50,000 psi
0.00165

0.1% pffset

�YP ≈ 69,000 psi

�PL ≈ 65,000 psi

(0.1% offset)

�YP

�PL

STRESS-STRAIN DIAGRAM

ENLARGEMENT OF PART OF THE STRESS-STRAIN CURVE

RESULTS

Proportional limit � 65,000 psi

Modulus of elasticity (slope) � 30 � 106 psi

Yield stress at 0.1% offset � 69,000 psi

Ultimate stress (maximum stress)

� 113,000 psi

Percent elongation in 2.00 in.

Percent reduction in area

 � 31%

 �
0.200  in.2 � �

4 (0.42  in.)2

0.200  in.2
 (100)

 �
A0 � A1

A0
 (100)

 �
0.12  in.

2.00  in.
 (100) � 6%

 �
L1 � L0

L0
 (100)



Problem 1.4-2 A bar of length 2.0 m is made of a structural
steel having the stress-strain diagram shown in the figure. The
yield stress of the steel is 250 MPa and the slope of the initial
linear part of the stress-strain curve (modulus of elasticity) is 
200 GPa. The bar is loaded axially until it elongates 6.5 mm, 
and then the load is removed. 

How does the final length of the bar compare with its original
length? (Hint: Use the concepts illustrated in Fig. 1-18b.)

16 CHAPTER 1 Tension, Compression, and Shear

Elasticity, Plasticity, and Creep

Problem 1.4-1 A bar made of structural steel having the stress-
strain diagram shown in the figure has a length of 48 in. The yield
stress of the steel is 42 ksi and the slope of the initial linear part of
the stress-strain curve (modulus of elasticity) is 30 � 103 ksi. The
bar is loaded axially until it elongates 0.20 in., and then the load 
is removed. 

How does the final length of the bar compare with its original
length? (Hint: Use the concepts illustrated in Fig. 1-18b.)

  (ksi)

0

60

40

20

0.0020 0.0060.004

�

�

Solution 1.4-1 Steel bar in tension

�

�Y
A B

0 �R �B �

�E

L � 48 in.

Yield stress �Y � 42 ksi

Slope � 30 � 103 ksi

� � 0.20 in.

STRESS AND STRAIN AT POINT B

�B � �Y � 42 ksi

eB �
�

L
�

0.20  in.

48  in.
� 0.00417

ELASTIC RECOVERY eE

RESIDUAL STRAIN eR

eR � eB � eE � 0.00417�0.00140

� 0.00277

PERMANENT SET

eRL � (0.00277)(48 in.)

� 0.13 in.

Final length of bar is 0.13 in. greater than its original
length.

eE �
sB

Slope
�

42  ksi

30 � 103
 ksi

� 0.00140

    (MPa)

0

300

200

100

0.0020 0.0060.004

�

�
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Solution 1.4-2 Steel bar in tension

�

�Y
A B

0 �R �B �

�E

L � 2.0 m � 2000 mm

Yield stress �Y � 250 MPa

Slope � 200 GPa

� � 6.5 mm

ELASTIC RECOVERY eE

RESIDUAL STRAIN eR

eR � eB � eE � 0.00325�0.00125

�0.00200

Permanent set � eRL � (0.00200)(2000 mm)

� 4.0 mm

Final length of bar is 4.0 mm greater than its 
original length.

eE �
sB

Slope
�

250  MPa

200  GPa
� 0.00125

Problem 1.4-3 An aluminum bar has length L � 4 ft and
diameter d � 1.0 in. The stress-strain curve for the alu-
minum is shown in Fig. 1-13 of Section 1.3. The initial
straight-line part of the curve has a slope (modulus of elas-
ticity) of 10 � 106 psi. The bar is loaded by tensile forces 
P � 24 k and then unloaded. 

(a) What is the permanent set of the bar? 
(b) If the bar is reloaded, what is the proportional limit? 

(Hint: Use the concepts illustrated in Figs. 1-18b and
1-19.)

Solution 1.4-3 Aluminum bar in tension

�
�B

A

B

0 �R �B �

�E

L � 4 ft � 48 in.

d � 1.0 in.

P � 24 k

See Fig. 1-13 for stress-strain diagram

Slope from O to A is 10 � 106 psi.

STRESS AND STRAIN AT POINT B

From Fig. 1-13: eB � 0.04

ELASTIC RECOVERY eE

RESIDUAL STRAIN eR

eR � eB � eE � 0.04 � 0.0031 � 0.037

(Note: The accuracy in this result is very poor because 
eB is approximate.)

(a) PERMANENT SET

eRL � (0.037)(48 in.)

� 1.8 in.

(b) PROPORTIONAL LIMIT WHEN RELOADED

�B � 31 ksi

eE �
sB

Slope
�

31  ksi

10 � 106
 psi

� 0.0031

sB �
P

A
�

24  k
�
4 (1.0  in.)2 � 31  ksi

STRESS AND STRAIN AT POINT B

�B � �Y � 250 MPa

eB �  
�

L
�

6.5  mm

2000  mm
� 0.00325



Solution 1.4-4 Magnesium bar in tension
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Problem 1.4-4 A circular bar of magnesium alloy is 800 mm long. 
The stress-strain diagram for the material is shown in the figure. The 
bar is loaded in tension to an elongation of 5.6 mm, and then the load 
is removed. 

(a) What is the permanent set of the bar? 
(b) If the bar is reloaded, what is the proportional limit? 

(Hint: Use the concepts illustrated in Figs. 1-18b and 1-19.)

   (MPa)

0
0

200

100

0.005 0.010

�

�

�
(�PL)

2

(�PL)
1

A

B

0 �R �B �

�E

L � 800 mm

� � 5.6 mm

(�PL )1 � initial proportional limit

� 88 MPa (from stress-strain diagram)

(�PL )2 � proportional limit when the bar is
reloaded

INITIAL SLOPE OF STRESS-STRAIN CURVE

From �-e diagram:

At point A: (�PL )1 � 88 MPa

eA � 0.002

Problem 1.4-5 A wire of length L � 4 ft and diameter 
d � 0.125 in. is stretched by tensile forces P � 600 lb. 
The wire is made of a copper alloy having a stress-strain
relationship that may be described mathematically by the
following equation:

� � �
1

1

�

8,0

3

0

0

0

0

�

�
� 0 	 � 	 0.03 (� � ksi)

in which � is nondimensional and � has units of kips per
square inch (ksi). 

(a) Construct a stress-strain diagram for the material. 
(b) Determine the elongation of the wire due to the

forces P. 
(c) If the forces are removed, what is the permanent 

set of the bar? 
(d) If the forces are applied again, what is the proportional

limit?

STRESS AND STRAIN AT POINT B

From �-e diagram: �B � (�PL)2 � 170 MPa

ELASTIC RECOVERY eE

RESIDUAL STRAIN eR

eR � eB � eE � 0.007 � 0.00386

� 0.00314

(a) PERMANENT SET

eRL � (0.00314)(800 mm)

� 2.51 mm

(b) PROPORTIONAL LIMIT WHEN RELOADED

(�PL)2 � �B � 170 MPa

eE �
sB

Slope
�

(sPL)2

Slope
�

170  MPa

44  GPa
� 0.00386

eB �
�

L
�

5.6  mm

800  mm
� 0.007

Slope �
(sPL)1

eA
�

88  MPa

0.002
� 44  GPa



Solution 1.4-5 Wire stretched by forces P
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L � 4 ft � 48 in. d � 0.125 in.

P � 600 lb

COPPER ALLOY

(Eq. 1)

(a) STRESS-STRAIN DIAGRAM (From Eq. 1)

0 	 e 	 0.03  (s� ksi)s�
18,000e

1 � 300e

ALTERNATIVE FORM OF THE STRESS-STRAIN RELATIONSHIP

Solve Eq. (1) for e in terms of � :

(Eq. 2)

This equation may also be used when plotting the 
stress-strain diagram.

(b) ELONGATION � OF THE WIRE

From Eq. (2) or from the stress-strain diagram:

e � 0.0147

� � eL � (0.0147)(48 in.) � 0.71 in.

STRESS AND STRAIN AT POINT B (see diagram)

�B � 48.9 ksi eB � 0.0147

ELASTIC RECOVERY eE

RESIDUAL STRAIN eR

eR � eB � eE � 0.0147 � 0.0027 � 0.0120

(c) Permanent set � eRL � (0.0120)(48 in.)

� 0.58 in.

(d) Proportional limit when reloaded � �B

�B�49 ksi

eE �
sB

Slope
�

48.9  ksi

18,000  ksi
� 0.00272

s�
P

A
�

600  lb
�
4 (0.125  in.)2 � 48,900  psi � 48.9  ksi

0 	 s 	 54  ksi�(s� ksi)e�
s

18,000 � 300s

60

40

20

0
0.01 0.02 0.03

�

�R �B

�E = �B − �R 

� = 54 ksi

�B

�
(ksi)

B

INITIAL SLOPE OF STRESS-STRAIN CURVE

Take the derivative of � with respect to e:

∴ Initial slope�18,000 ksi

At  e� 0,   

ds

de
� 18,000  ksi

 �
18,000

(1 � 300e)2

 
ds

de
�

(1 � 300e)(18,000) � (18,000e)(300)

(1 � 300e)2

Linear Elasticity, Hooke’s Law, and Poisson’s Ratio

When solving the problems for Section 1.5, assume that the material behaves 
linearly elastically.

Problem 1.5-1 A high-strength steel bar used in a large crane has
diameter d � 2.00 in. (see figure). The steel has modulus of elasticity 
E � 29 � 106 psi and Poisson’s ratio � � 0.29. Because of clearance
requirements, the diameter of the bar is limited to 2.001 in. when it is
compressed by axial forces. 

What is the largest compressive load Pmax that is permitted?

P
d

P



Solution 1.5-1 Steel bar in compression
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STEEL BAR d � 2.00 in. Max. 
d � 0.001 in.

E � 29 � 106 psi � � 0.29

LATERAL STRAIN

AXIAL STRAIN

(shortening)

e� �
e¿
n

� �
0.0005

0.29
� � 0.001724

e¿ �
¢d

d
�

0.001  in.

2.00  in.
� 0.0005

AXIAL STRESS

� � Ee � (29 � 106 psi)(�0.001724)
��50.00 ksi (compression)

Assume that the yield stress for the high-strength
steel is greater than 50 ksi. Therefore, Hooke’s law is
valid.

MAXIMUM COMPRESSIVE LOAD

�157 k

Pmax �sA � (50.00  ksi)¢�
4
≤(2.00  in.)2

Problem 1.5-2 A round bar of 10 mm diameter is made of
aluminum alloy 7075-T6 (see figure). When the bar is stretched
by axial forces P, its diameter decreases by 0.016 mm. 

Find the magnitude of the load P. (Obtain the material prop-
erties from Appendix H.)

d = 10 mm

7075-T6

PP

Solution 1.5-2 Aluminum bar in tension

d � 10 mm 
d � 0.016 mm

(Decrease in diameter)

7075-T6

From Table H-2: E � 72 GPa � � 0.33

From Table H-3: Yield stress �Y � 480 MPa

LATERAL STRAIN

AXIAL STRAIN

� 0.004848 (Elongation)

e� �
�e¿
n

�
0.0016

0.33

e¿ �
¢d

d
�

�0.016  mm

10  mm
� �0.0016

AXIAL STRESS

� � Ee � (72 GPa)(0.004848)

� 349.1 MPa (Tension)

Because � < �Y, Hooke’s law is valid.

LOAD P (TENSILE FORCE)

� 27.4 kN

P �sA � (349.1  MPa)¢�
4
≤(10  mm)2

Problem 1.5-3 A nylon bar having diameter d1 � 3.50 in. is placed inside 
a steel tube having inner diameter d2 � 3.51 in. (see figure). The nylon bar 
is then compressed by an axial force P. 

At what value of the force P will the space between the nylon bar and 
the steel tube be closed? (For nylon, assume E � 400 ksi and � � 0.4.)

d2d1

Steel
tube

Nylon
bar



Solution 1.5-3 Nylon bar inside steel tube
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COMPRESSION

d1�3.50 in. 
d1 � 0.01 in.

d2�3.51 in.

Nylon: E � 400 ksi � � 0.4

LATERAL STRAIN

e¿ �
0.01  in.

3.50  in.
� 0.002857

e¿ �
¢d1

d1
 (Increase  in  diameter)

AXIAL STRAIN

(Shortening)

AXIAL STRESS

� � Ee � (400 ksi)(�0.007143)

��2.857 ksi

(Compressive stress)

Assume that the yield stress is greater than � and
Hooke’s law is valid.

FORCE P (COMPRESSION)

� 27.5 k

P �sA � (2.857  ksi)¢�
4
≤(3.50  in.)2

e� �
e¿
n

� �
0.002857

0.4
� �0.007143

d2d1

Problem 1.5-4 A prismatic bar of circular cross section is loaded
by tensile forces P (see figure). The bar has length L � 1.5 m and
diameter d � 30 mm. It is made of aluminum alloy with modulus
of elasticity E � 75 GPa and Poisson’s ratio � � 1⁄3. 

If the bar elongates by 3.6 mm, what is the decrease in
diameter 
d? What is the magnitude of the load P?

d PP

L

Solution 1.5-4 Aluminum bar in tension

L � 1.5 m d � 30 mm

E � 75 GPa � � 1⁄3

� � 3.6 mm (elongation)

AXIAL STRAIN

LATERAL STRAIN

��0.0008

(Minus means decrease in diameter)

e¿ � � ne� �(1
3) (0.0024)

e�
�

L
�

3.6  mm

1.5  m
� 0.0024

DECREASE IN DIAMETER


d � e�d � (0.0008)(30 mm) � 0.024 mm

AXIAL STRESS

� � Ee � (75 GPa)(0.0024)

�180 MPa

(This stress is less than the yield stress, so Hooke’s law 
is valid.)

LOAD P (TENSION)

�127 kN

P �sA � (180  MPa)¢�
4
≤(30  mm)2



Problem 1.5-5 A bar of monel metal (length L � 8 in.,
diameter d � 0.25 in.) is loaded axially by a tensile force 
P � 1500 lb (see figure from Prob. 1.5-4). Using the data in

Table H-2, Appendix H, determine the increase in length of
the bar and the percent decrease in its cross-sectional area.
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Solution 1.5-5 Bar of monel metal in tension

L � 8 in. d � 0.25 in. P � 1500 lb

From Table H-2: E � 25,000 ksi � � 0.32

AXIAL STRESS

Assume � is less than the proportional limit, so that
Hooke’s law is valid.

AXIAL STRAIN

INCREASE IN LENGTH

� � e L � (0.001222)(8 in.) � 0.00978 in.

LATERAL STRAIN

DECREASE IN DIAMETER

 � 0.0000978  in.

 ¢d � �e¿d � � (0.0003910)(0.25  in.)

 � �0.0003910
 e¿ � � ne� �(0.32)(0.001222)

e�
s

E
�

30,560  psi

25,000  ksi
� 0.001222

� 30,560  psis�
P

A
�

1500  lb
�
4 (0.25  in.)2

DECREASE IN CROSS-SECTIONAL AREA

Original area: 

Final area: 

Decrease in area: 


A � A0 � A1

PERCENT DECREASE IN AREA

� 0.078%

�
(0.0000978)(0.4999)

(0.25)2  (100)

 Percent �
¢A

A0
 (100) �

(¢d)(2d � ¢d)

d 2  (100)

¢A �
�

4
(¢d)(2d � ¢d)

A1 �
�

4
[d2 � 2d¢d � (¢d)2 ]

A1 �
�

4
(d � ¢d)2

A0 �
�d 2

4

Problem 1.5-6 A tensile test is peformed on a brass specimen
10 mm in diameter using a gage length of 50 mm (see figure).
When the tensile load P reaches a value of 20 kN, the distance
between the gage marks has increased by 0.122 mm.

(a) What is the modulus of elasticity E of the brass? 
(b) If the diameter decreases by 0.00830 mm, what is

Poisson’s ratio?

10 mm

PP
50 mm



Problem 1.5-7 A hollow steel cylinder is compressed by a force P
(see figure). The cylinder has inner diameter d1 � 3.9 in., outer diameter 
d2 � 4.5 in., and modulus of elasticity E � 30,000 ksi. When the force P
increases from zero to 40 k, the outer diameter of the cylinder increases 
by 455 � 10�6 in.

(a) Determine the increase in the inner diameter.  
(b) Determine the increase in the wall thickness. 
(c) Determine Poisson’s ratio for the steel.
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Solution 1.5-6 Brass specimen in tension

d � 10 mm Gage length L � 50 mm

P � 20 kN � � 0.122 mm 
d � 0.00830 mm

AXIAL STRESS

Assume � is below the proportional limit so that
Hooke’s law is valid.

AXIAL STRAIN

e�
�

L
�

0.122  mm

50  mm
� 0.002440

s�
P

A
�

20  kN
�
4 (10  mm)2 � 254.6  MPa

(a) MODULUS OF ELASTICITY

(b) POISSON’S RATIO

e� � �e


d � e�d � �ed

n�
¢d

ed
�

0.00830  mm

(0.002440)(10  mm)
� 0.34

E �
s

e
�

254.6  MPa

0.002440
� 104  GPa

P

d1

d2

Solution 1.5-7 Hollow steel cylinder

d1 � 3.9 in.

d2 � 4.5 in.

t � 0.3 in.

E � 30,000 ksi

P � 40 k (compression)


d2 � 455 � 10�6 in. (increase)

LATERAL STRAIN

(a) INCREASE IN INNER DIAMETER

(b) INCREASE IN WALL THICKNESS

 � 30 � 10�6  in.

 ¢t � e¿t � (0.0001011)(0.3  in.)

 � 394 � 10�6  in.

 ¢d1 � e¿d1 � (0.0001011)(3.9  in.)

e¿ �
¢d2

d2
�

455 � 10�6
 in.

4.5  in.
� 0.0001011

(c) POISSON’S RATIO

Axial stress: 

(compression)

(�  �Y; Hooke’s law is valid)

Axial strain:

 � 0.30

 n�
e¿
e

�
0.0001011

0.000337

 � 0.000337

 e�
s

E
�

10.105  ksi

30,000  ksi

 � 10.105  ksi

 s�
P

A
�

40  k

3.9584  in.2
 

 � 3.9584  in.2

 A �
�

4
[d2

2 � d1
2 ] �

�

4
[ (4.5  in.)2 � (3.9  in.)2 ]

s�
P

Ad2d1

t



Problem 1.5-8 A steel bar of length 2.5 m with a 
square cross section 100 mm on each side is subjected 
to an axial tensile force of 1300 kN (see figure). Assume
that E � 200 GPa and v � 0.3.

Determine the increase in volume of the bar.
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100 mm100 mm

1300 kN

2.5 m

1300 kN

Solution 1.5-8 Square bar in tension

Find increase in volume.

Length: L � 2.5 m � 2500 mm

Side: b � 100 mm

Force: P � 1300 kN

E � 200 GPa � � 0.3

AXIAL STRESS

Stress � is less than the yield stress, so Hooke’s law
is valid.

AXIAL STRAIN

INCREASE IN LENGTH

 � 1.625  mm

 ¢L � eL � (650 � 10�6) (2500  mm)

 � 650 � 10�6

 e�
s

E
�

130  MPa

200  GPa

s�
1300  kN

(100  mm)2 � 130  MPa

s�  
P

A
�

P

b2

DECREASE IN SIDE DIMENSION

FINAL DIMENSIONS

FINAL VOLUME

INITIAL VOLUME

V � Lb2 � 25,000,000 mm3

INCREASE IN VOLUME


V � V1�V � 6490 mm3

V1 � L1b1
2 � 25,006,490  mm3

 b1 � b � ¢b � 99.9805  mm

 L1 � L � ¢L � 2501.625  mm

 � 0.0195 mm

 ¢b � e¿b � (195 � 10�6) (100  mm)

 e¿ � ne� 195 � 10�6



Solution 1.6-1 Angle bracket bolted to a column
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Shear Stress and Strain

Problem 1.6-1 An angle bracket having thickness t � 0.5 in. is attached
to the flange of a column by two 5⁄8-inch diameter bolts (see figure). A
uniformly distributed load acts on the top face of the bracket with a
pressure p � 300 psi. The top face of the bracket has length L � 6 in. and
width b � 2.5 in.

Determine the average bearing pressure �b between the angle bracket
and the bolts and the average shear stress �aver in the bolts. (Disregard
friction between the bracket and the column.)

t

L

p

b

Two bolts

d � 0.625 in.

t � thickness of angle � 0.5 in.

b � 2.5 in.

L � 6.0 in.

p � pressure acting on top of the bracket

� 300 psi

F � resultant force acting on the bracket

� pbL � (300 psi) (2.5 in.) (6.0 in.) � 4.50 k

BEARING PRESSURE BETWEEN BRACKET AND BOLTS

Ab � bearing area of one bolt

� dt � (0.625 in.) (0.5 in.) � 0.3125 in.2

AVERAGE SHEAR STRESS IN THE BOLTS

As � Shear area of one bolt

taver �
F

2As

�
4.50  k

2(0.3068  in.2)
� 7.33  ksi

�
�

4
d2 �

�

4
(0.625  in.)2 � 0.3068  in.2

sb �
F

2Ab

�
4.50  k

2(0.3125  in.2)
� 7.20  ksit

L

F

b



Solution 1.6-2 Three plates joined by two rivets
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t � thickness of plates � 16 mm

d � diameter of rivets � 20 mm

P � 50 kN

�ULT � 180 MPa (for shear in the rivets)

(a) MAXIMUM BEARING STRESS ON THE RIVETS

Maximum stress occurs at the middle plate.

 � dt

 Ab � bearing  area  for  one  rivet

(b) ULTIMATE LOAD IN SHEAR

Let A � cross-sectional area of one rivet

or, P � �d2�

At the ultimate load:

 � 226  kN

 PULT � �d 2tULT � �(20  mm)2(180  MPa)

Shear  stress t�
P�4
A

�
P

4(�d 2

4 )
�

P

�d 2

Shear  force  on  one  rivet �
P

4

Shear  force  on  two  rivets �
P

2

 � 78.1  MPa

 sb �
P

2Ab

�
P

2dt
�

50  kN

2(20  mm)(16  mm)

P

P/2

P/2

P

P

t

Problem 1.6-3 A bolted connection between a vertical
column and a diagonal brace is shown in the figure. The
connection consists of three 5⁄8-in. bolts that join two 1⁄4-in. 
end plates welded to the brace and a 5⁄8-in. gusset plate 
welded to the column. The compressive load P carried 
by the brace equals 8.0 k. 

Determine the following quantities: 
(a) The average shear stress �aver in the bolts, and 
(b) The average bearing stress �b between the gusset plate

and the bolts. (Disregard friction between the plates.)

P

Column

End plates
for brace

Gusset
plate

Brace

Problem 1.6-2 Three steel plates, each 16 mm thick, are joined
by two 20-mm diameter rivets as shown in the figure. 

(a) If the load P � 50 kN, what is the largest bearing stress
acting on the rivets? 

(b) If the ultimate shear stress for the rivets is 180 MPa, what
force Pult is required to cause the rivets to fail in shear?
(Disregard friction between the plates.)

P

P/2

P/2

P

P



Solution 1.6-3 Diagonal brace
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3 bolts in double shear

P � compressive force in brace � 8.0 k

d � diameter of bolts � 5⁄8 in. � 0.625 in.

t1 � thickness of gusset plate 

� 5⁄8 in. � 0.625 in.

t2 � thickness of end plates 

� 1⁄4 in. � 0.25 in.

(a) AVERAGE SHEAR STRESS IN THE BOLTS

A � cross-sectional area of one bolt

V � shear force acting on one bolt

(b) AVERAGE BEARING STRESS AGAINST GUSSET PLATE

Ab � bearing area of one bolt

� t1d � (0.625 in.)(0.625 in.) � 0.3906 in.2

F � bearing force acting on gusset plate from
one bolt

sb �
P

3Ab

�
8.0  k

3(0.3906  in.2)
� 6830  psi

�
P

3

� 4350  psi

taver �
V

A
�

P

6A
�

8.0  k

6(0.3068  in.2)

�
1

3
 ¢P

2
≤�

P

6

�
�d2

4
� 0.3068  in.2

Gusset
plate

End plates

P

P

Problem 1.6-4 A hollow box beam ABC of length L is
supported at end A by a 20-mm diameter pin that passes through
the beam and its supporting pedestals (see figure). The roller
support at B is located at distance L/3 from end A. 

(a) Determine the average shear stress in the pin due to a load
P equal to 10 kN. 

(b) Determine the average bearing stress between the pin and
the box beam if the wall thickness of the beam is equal to
12 mm.

— —

Box beam

Box beam
P

CA

 Pin at support A

B

2L
3

L
3



Solution 1.6-4 Hollow box beam
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P � 10 kN

d � diameter of pin � 20 mm

t � wall thickness of box beam � 12 mm

(a) AVERAGE SHEAR STRESS IN PIN

Double shear

(b) AVERAGE BEARING STRESS ON PIN

sb �
2P

2(dt)
�

P

dt
� 41.7  MPa

taver �
2P

2¢�
4

d2≤
�

4P

�d2 � 31.8  MPa

— —

P

CA B

2L
3

L
3

2P

R = 2P

R
2

= P
R
2

= P

Problem 1.6-5 The connection shown in the figure consists of
five steel plates, each 3⁄16 in. thick, joined by a single 1⁄4-in.
diameter bolt. The total load transferred between the plates is 
1200 lb, distributed among the plates as shown. 

(a) Calculate the largest shear stress in the bolt, disregarding
friction between the plates. 

(b) Calculate the largest bearing stress acting against the bolt.

360 lb

480 lb

360 lb

600 lb

600 lb

Solution 1.6-5 Plates joined by a bolt

d � diameter of bolt � 1⁄4 in.

t � thickness of plates � 3⁄16 in.

FREE-BODY DIAGRAM OF BOLT

(a) MAXIMUM SHEAR STRESS IN BOLT

(b) MAXIMUM BEARING STRESS

Fmax � maximum force applied by a plate
against the bolt

Fmax � 600 lb

sb �
Fmax

dt
� 12,800  psi

tmax �
Vmax

�d2

4

�
4Vmax

�d2 � 7330  psi

A
B
B
A

A
B
B
A

360 lb

480 lb

360 lb

600 lb

600 lb

Section A � A: V � 360 lb

Section B � B: V � 240 lb

Vmax � max. shear force in bolt

� 360 lb



Problem 1.6-6 A steel plate of dimensions 2.5 � 1.2 � 0.1 m is
hoisted by a cable sling that has a clevis at each end (see figure).
The pins through the clevises are 18 mm in diameter and are
located 2.0 m apart. Each half of the cable is at an angle of 32°
to the vertical. 

For these conditions, determine the average shear stress �aver
in the pins and the average bearing stress �b between the steel
plate and the pins.
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2.0 m

Steel plate
(2.5 × 1.2 × 0.1 m)

Cable sling

32°32°

Clevis

P

Solution 1.6-6 Steel plate hoisted by a sling

Dimensions of plate: 2.5 � 1.2 � 0.1 m

Volume of plate: V � (2.5) (1.2) (0.1) m � 0.300 m3

Weight density of steel: � � 77.0 kN/m3

Weight of plate: W � �V � 23.10 kN

d � diameter of pin through clevis �18 mm

t � thickness of plate � 0.1 m � 100 mm

FREE-BODY DIAGRAMS OF SLING AND PIN

TENSILE FORCE T IN CABLE

�Fvertical � 0 ↑� ↓
�

SHEAR STRESS IN THE PINS (DOUBLE SHEAR)

� 26.8 MPa

BEARING STRESS BETWEEN PLATE AND PINS

Ab � bearing area

� td

� 7.57 MPa

sb �
T

td
�

13.62 kN

(100  mm)(18  mm)

taver �
T

2Apin
�

13.62  kN

2(�
4 ) (18  mm)2

T �
W

2 cos 32�
�

23.10  kN

2 cos 32�
� 13.62  kN

T cos  32� �
W

2
� 0

2.0 m

Cable

32°32°

P = W

H H
W
2

W
2

W
2

T 32°

H
Pin



Problem 1.6-7 A special-purpose bolt of shank diameter d � 0.50 in.
passes through a hole in a steel plate (see figure). The hexagonal head 
of the bolt bears directly against the steel plate. The radius of the circum-
scribed circle for the hexagon is r � 0.40 in. (which means that each side
of the hexagon has length 0.40 in.). Also, the thickness t of the bolt head
is 0.25 in. and the tensile force P in the bolt is 1000 lb. 

(a) Determine the average bearing stress �b between the hexagonal
head of the bolt and the plate. 

(b) Determine the average shear stress �aver in the head of the bolt.
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P

d

t

Steel plate

2r

Solution 1.6-7 Bolt in tension

d � 0.50 in.

r � 0.40 in.

t � 0.25 in.

P � 1000 lb

(a) BEARING STRESS BETWEEN BOLT HEAD AND PLATE

Ab� bearing area

Ab� area of hexagon minus area of bolt

Ab �

� 0.4157 in.2�0.1963 in.2

� 0.2194 in.2

(b) SHEAR STRESS IN HEAD OF BOLT

As � shear area As � �dt

� 2550 psi

taver �
P

As

�
P

�dt
�

1000  lb

�(0.50  in.) (0.25  in.)

sb �
P

Ab

�
1000  lb

0.2194  in.2
� 4560  psi

3

2
(0.40  in.)2( �3) � ¢�

4
≤(0.50  in.)2

�
3r2�3

2
�

�d2

4

P

d

t

2r

2r

r

Area of one 
equilateral triangle

Area of hexagon

�
3r2�3

2

�
r2�3

4

Problem 1.6-8 An elastomeric bearing pad consisting of two
steel plates bonded to a chloroprene elastomer (an artificial
rubber) is subjected to a shear force V during a static loading test
(see figure). The pad has dimensions a � 150 mm and b � 250
mm, and the elastomer has thickness t � 50 mm. When the force
V equals 12 kN, the top plate is found to have displaced laterally
8.0 mm with respect to the bottom plate. 

What is the shear modulus of elasticity G of the chloroprene?

a

b

V

t



Solution 1.6-8 Bearing pad subjected to shear
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V � 12 kN

Width of pad: a � 150 mm

Length of pad: b � 250 mm

d � 8.0 mm

G �
t

g
�

0.32  MPa

0.16
� 2.0  MPa

gaver �
d

t
�

8.0  mm

50  mm
� 0.16

taver �
V

ab
�

12  kN

(150  mm)(250  mm)
� 0.32  MPa

V

t = 50 mm

d = 8.0 mm

�

b = 250 mm

Problem 1.6-9 A joint between two concrete slabs A and B
is filled with a flexible epoxy that bonds securely to the
concrete (see figure). The height of the joint is h � 4.0 in., its
length is L � 40 in., and its thickness is t � 0.5 in. Under the
action of shear forces V, the slabs displace vertically through
the distance d � 0.002 in. relative to each other. 

(a) What is the average shear strain �aver in the epoxy?
(b) What is the magnitude of the forces V if the shear

modulus of elasticity G for the epoxy is 140 ksi?
t

h

A

BL

t

d

h
V

V

A B

Solution 1.6-9 Epoxy joint between concrete slabs

h � 4.0 in.

t � 0.5 in.

L � 40 in.

d � 0.002 in.

G � 140 ksi

(a) AVERAGE SHEAR STRAIN

(b) SHEAR FORCES V

Average shear stress : �aver � G�aver

V � �aver(hL) � G�aver(hL)

� (140 ksi)(0.004)(4.0 in.)(40 in.)

� 89.6 k

gaver �
d

t
� 0.004

t

d

h
V

V

A B



Problem 1.6-10 A flexible connection consisting of rubber
pads (thickness t � 9 mm) bonded to steel plates is shown in the
figure. The pads are 160 mm long and 80 mm wide. 

(a) Find the average shear strain �aver in the rubber if the
force P � 16 kN and the shear modulus for the rubber is
G � 1250 kPa. 

(b) Find the relative horizontal displacement � between the
interior plate and the outer plates.
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P—
2

P—
2

P

Rubber pad

Rubber pad

Section X-X

X

t = 9 mm

X

80 mm

t = 9 mm

160 mm

Solution 1.6-10 Rubber pads bonded to steel plates

Rubber pads: t � 9 mm

Length L � 160 mm

Width b � 80 mm

G � 1250 kPa

P � 16 kN

(a) SHEAR STRESS AND STRAIN IN THE RUBBER PADS

(b) HORIZONTAL DISPLACEMENT

� � �avert � (0.50)(9 mm) � 4.50 mm

gaver �
taver

G
�

625  kPa

1250  kPa
� 0.50

taver �
P�2
bL

�
8  kN

(80  mm)(160  mm)
� 625  kPa

P—
2

P—
2

P

Thickness t

Rubber pad

Problem 1.6-11 A spherical fiberglass buoy used in an
underwater experiment is anchored in shallow water by a
chain [see part (a) of the figure]. Because the buoy is posi-
tioned just below the surface of the water, it is not expected
to collapse from the water pressure. The chain is attached to
the buoy by a shackle and pin [see part (b) of the figure].
The diameter of the pin is 0.5 in. and the thickness of the
shackle is 0.25 in. The buoy has a diameter of 60 in. and
weighs 1800 lb on land (not including the weight of 
the chain). 

(a) Determine the average shear stress �aver in the pin.
(b) Determine the average bearing stress �b between the

pin and the shackle.

(a)

(b)

d Pin

Shackle



Solution 1.6-11 Submerged buoy
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d � diameter of buoy

� 60 in.

T � tensile force in chain

dp � diameter of pin

� 0.5 in.

t � thickness of shackle

� 0.25 in.

W � weight of buoy

� 1800 lb

�W � weight density of sea water

� 63.8 lb/ft3

FREE-BODY DIAGRAM OF BUOY

T

t

dp

T

W

FB FB � buoyant force of water pressure
(equals the weight of the
displaced sea water)

V � volume of buoy

FB � �W V � 4176 lb

�
�d 3

6
� 65.45  ft3

EQUILIBRIUM

T � FB�W � 2376 lb

(a) AVERAGE SHEAR STRESS IN PIN

Ap � area of pin

(b) BEARING STRESS BETWEEN PIN AND SHACKLE

Ab � 2dpt � 0.2500 in.2

sb �
T

Ab

� 9500  psi

taver �
T

2Ap

� 6050  psi

Ap �
�

4
dp

2 � 0.1963  in.2

Problem 1.6-12 The clamp shown in the figure is used 
to support a load hanging from the lower flange of a steel
beam. The clamp consists of two arms (A and B) joined 
by a pin at C. The pin has diameter d � 12 mm. Because
arm B straddles arm A, the pin is in double shear.

Line 1 in the figure defines the line of action of the
resultant horizontal force H acting between the lower
flange of the beam and arm B. The vertical distance from
this line to the pin is h � 250 mm. Line 2 defines the line
of action of the resultant vertical force V acting between
the flange and arm B. The horizontal distance from this
line to the centerline of the beam is c � 100 mm. The
force conditions between arm A and the lower flange are
symmetrical with those given for arm B.

Determine the average shear stress in the pin at C
when the load P � 18 kN.

Arm A Arm B

Line 2

Line 1

P

C

c

Arm A

h
P



Solution 1.6-12 Clamp supporting a load P
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FREE-BODY DIAGRAM OF CLAMP

h � 250 mm

c � 100 mm

P � 18 kN

From vertical equilibrium:

d � diameter of pin at C �12 mm

FREE-BODY DIAGRAMS OF ARMS A AND B

V �
P

2
� 9  kN

H H

V V

Arm
A

Arm
B

C

P

h

c

H H

V = 

C

P

h

c
P
2

C

P
2

H H
P
2

V = 
P
2

Arm
A

Arm
B

Vc�Hh � 0

FREE-BODY DIAGRAM OF PIN

H �
Vc

h
�

Pc

2h
� 3.6  kN

©MC � 0  �  �

P
4

P
2

P
4

H
2

H

H
2

(from half of arm B)

(from arm A)

(from other half of arm B)

SHEAR FORCE F IN PIN

P
4

H
2

F

� 4.847 kN

AVERAGE SHEAR STRESS IN THE PIN

taver �
F

Apin
�

F
�d2

4

� 42.9  MPa

F �B¢P4 ≤2 � ¢H
2
≤

2



Problem 1.6-13 A specially designed wrench is used to twist 
a circular shaft by means of a square key that fits into slots (or
keyways) in the shaft and wrench, as shown in the figure. The
shaft has diameter d, the key has a square cross section of
dimensions b � b, and the length of the key is c. The key fits
half into the wrench and half into the shaft (i.e., the keyways
have a depth equal to b/2). 

Derive a formula for the average shear stress �aver in the 
key when a load P is applied at distance L from the center of 
the shaft. 

Hints: Disregard the effects of friction, assume that the
bearing pressure between the key and the wrench is uniformly
distributed, and be sure to draw free-body diagrams of the
wrench and key.
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Shaft

Lever

Key

c

P

L
b

d

Solution 1.6-13 Wrench with keyway 

FREE-BODY DIAGRAM OF WRENCH

With friction disregarded, the bearing pressures
between the wrench and the shaft are radial.
Because the bearing pressure between the wrench
and the key is uniformly distributed, the force F
acts at the midpoint of the keyway.

(Width of keyway � b/2)

F �
4PL

2d � b

PL � F ¢d
2

�
b

4
≤� 0

©MC � 0 � �

P

L

b
2

F

C

d
2

b
4

+

d

FREE-BODY DIAGRAM OF KEY

Fb
2

F

b

Plane of shear

 �
4PL

bc(2d � b)

 taver �
F

bc



Problem 1.6-15 A shock mount constructed as shown in the 
figure is used to support a delicate instrument. The mount consists
of an outer steel tube with inside diameter b, a central steel bar of
diameter d that supports the load P, and a hollow rubber cylinder
(height h) bonded to the tube and bar. 

(a) Obtain a formula for the shear stress � in the rubber at a
radial distance r from the center of the shock mount. 

(b) Obtain a formula for the downward displacement � of the
central bar due to the load P, assuming that G is the shear
modulus of elasticity of the rubber and that the steel tube 
and bar are rigid.

Problem 1.6-14 A bicycle chain consists of a series of small
links, each 12 mm long between the centers of the pins (see
figure). You might wish to examine a bicycle chain and observe
its construction. Note particularly the pins, which we will
assume to have a diameter of 2.5 mm. 

In order to solve this problem, you must now make two
measurements on a bicycle (see figure): (1) the length L of 
the crank arm from main axle to pedal axle, and (2) the radius 
R of the sprocket (the toothed wheel, sometimes called the 
chainring). 

(a) Using your measured dimensions, calculate the tensile
force T in the chain due to a force F � 800 N applied 
to one of the pedals. 

(b) Calculate the average shear stress �aver in the pins.
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12 mm
2.5 mm

Links Pin

F
T

L

R

Sprocket

Chain

Solution 1.6-14 Bicycle chain

F � force applied to pedal�800 N

L � length of crank arm

R � radius of sprocket

MEASUREMENTS (FOR AUTHOR’S BICYCLE)

(1) L � 162 mm (2) R � 90 mm

(a) TENSILE FORCE T IN CHAIN

�Maxle � 0 FL � TR

Substitute numerical values:

T �
FL

R

(b) SHEAR STRESS IN PINS

Substitute numerical values:

taver �
2(800  N)(162  mm)

�(2.5  mm)2(90  mm)
� 147  MPa

 �
2FL

�d2R

 taver �
T�2
Apin

�
T

2(�d 2

4 )
�

2T

�d 2

T �
(800  N)(162  mm)

90  mm
� 1440  N

12 mm
d = 2.5 mm

Pin

T
2

T
2

T
2

T
2

F
T

L

R

Sprocket

Chain

Steel tube

Steel bar

Rubber

r

d

P

b

h
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Solution 1.6-15 Shock mount

r � radial distance
from center of
shock mount to
element of
thickness dr

(a) SHEAR STRESS � AT RADIAL DISTANCE r

As � shear area at distance r

Steel tube

Rubber
cylinder

dr

r
d

b

d

P

b

h

�

� 2�rh

(b) DOWNWARD DISPLACEMENT �

� � shear strain at distance r

d� � downward displacement for element dr 

� �
P

2�hG
 ln 

b

d

b�2

d�2
� �

P

2�hG �
b�2

d�2

dr
r

�
P

2�hG
[ ln r]

� � �d� � �
b�2

d�2

Pdr

2�rhG

d� � gdr �
Pdr

2�rhG

g�
t

G
�

P

2�rhG

t�
P

As

�
P

2�rh

Allowable Stresses and Allowable Loads

Problem 1.7-1 A bar of solid circular cross section is loaded in tension by
forces P (see figure). The bar has length L � 16.0 in. and diameter d � 0.50
in. The material is a magnesium alloy having modulus of elasticity 
E � 6.4 � 106 psi. The allowable stress in tension is �allow � 17,000 psi,
and the elongation of the bar must not exceed 0.04 in. 

What is the allowable value of the forces P?

d
PP

L

Solution 1.7-1 Magnesium bar in tension

L � 16.0 in.

d � 0.50 in.

E � 6.4 � 106 psi

�allow � 17,000 psi �max � 0.04 in.

MAXIMUM LOAD BASED UPON ELONGATION

emax �
�max

L
�

0.04  in.

16  in.
� 0.00250

�max � E�max � (6.4 � 106 psi)(0.00250)

� 16,000 psi

MAXIMUM LOAD BASED UPON TENSILE STRESS

ALLOWABLE LOAD

Elongation governs.

Pallow � 3140 lb

 � 3340  lb

 Pmax �sallow A � (17,000  psi)¢�
4
≤(0.50  in.)2

 � 3140  lb

 Pmax �smax A � (16,000  psi)¢�
4
≤(0.50  in.)2

d
PP

L



Problem 1.7-3 A tie-down on the deck of a sailboat consists of a bent
bar bolted at both ends, as shown in the figure. The diameter dB of the
bar is 1⁄4 in., the diameter dW of the washers is 7⁄8 in., and the thickness t
of the fiberglass deck is 3⁄8 in. 

If the allowable shear stress in the fiberglass is 300 psi, and the
allowable bearing pressure between the washer and the fiberglass is 
550 psi, what is the allowable load Pallow on the tie-down?
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Problem 1.7-2 A torque T0 is transmitted between two flanged shafts 
by means of four 20-mm bolts (see figure). The diameter of the bolt circle
is d � 150 mm.

If the allowable shear stress in the bolts is 90 MPa, what is the 
maximum permissible torque? (Disregard friction between the flanges.)

d
T0

T0

Solution 1.7-2 Shafts with flanges

T0 � torque transmitted by bolts

dB � bolt diameter � 20 mm

d � diameter of bolt circle

� 150 mm

�allow � 90 MPa

F � shear force in one bolt

T0 � 4F ¢d
2
≤� 2Fd

ALLOWABLE SHEAR FORCE IN ONE BOLT

MAXIMUM TORQUE

T0 � 2Fd � 2(28.27 kN)(150 mm)

� 8.48 kN�m

 � 28.27  kN

 F � tallowAbolt � (90  MPa)¢�
4
≤(20  mm)2

d

F

F F

F

t

P

dB dB

dW dW

Solution 1.7-3 Bolts through fiberglass

ALLOWABLE LOAD BASED UPON SHEAR STRESS IN

FIBERGLASS

	allow � 300 psi

Shear area As � �dWt

 � (300  psi)(�)¢7
8

 in.≤¢3
8

 in.≤
 
P1

2
� tallow As � tallow(�dWt)

P1 � 619 lb

ALLOWABLE LOAD BASED UPON BEARING PRESSURE

�b � 550 psi

Bearing area 

ALLOWABLE LOAD

Bearing pressure governs.

Pallow � 607 lb

P2 � 607  lb

 � 303.7  lb

B ¢7
8

 in.≤
2

� ¢1
4

 in.≤
2R 

P2

2
�sb Ab � (550  psi)¢�

4
≤

Ab �
�

4
(dW

2 � dB
2 )

 
P1

2
� 309.3 lb

t

dB

dW

P
2

Fiberglass

t �
3

8
 in.

dW �
7

8
 in.

dB �
1

4
 in.
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Problem 1.7-4 An aluminum tube serving as a compression brace in the fuselage of a small
airplane has the cross section shown in the figure. The outer diameter of the tube is d � 25 mm
and the wall thickness is t � 2.5 mm. The yield stress for the aluminum is �Y � 270 MPa and
the ultimate stress is �U � 310 MPa. 

Calculate the allowable compressive force Pallow if the factors of safety with respect to the
yield stress and the ultimate stress are 4 and 5, respectively.

d

t

Solution 1.7-4 Aluminum tube in compression

d � 25 mm

t � 2.5 mm

d0 � inner diameter

� 20 mm

Atube �
�

4
(d 2� d0

2) � 176.7  mm2

YIELD STRESS


Y � 270 MPa

F.S. � 4

The ultimate stress governs.

ALLOWABLE COMPRESSIVE FORCE

Pallow � �allow Atube � (62 MPa )(176.7 mm2)

�11.0 kN

 � 67.5  MPa

 sallow �
270  MPa

4

d

t ULTIMATE STRESS


U � 310 MPa

F.S. � 5

 � 62  MPa

 sallow �
310  MPa

5

Problem 1.7-5 A steel pad supporting heavy machinery rests
on four short, hollow, cast iron piers (see figure). The ultimate
strength of the cast iron in compression is 50 ksi. The outer
diameter of the piers is d � 4.5 in. and the wall thickness is 
t � 0.40 in. 

Using a factor of safety of 3.5 with respect to the ultimate
strength, determine the total load P that may be supported by
the pad. 

t

d

Solution 1.7-5 Cast iron piers in compression

Four piers


U � 50 ksi

n � 3.5

sallow �
sU

n
�

50  ksi

3.5
� 14.29  ksi

d0 � d � 2t � 3.7 in.

P1 � allowable load on one pier

� �allow A � (14.29 ksi)(5.152 in.2)

� 73.62 k

Total load P � 4P1 � 294 k

 � 5.152  in.2

 A �
�

4
(d2 � do

2) �
�

4
[ (4.5  in.)2 � (3.7  in.)2 ]

d

t

d � 4.5 in.

t � 0.4 in.
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Problem 1.7-6 A long steel wire hanging from a balloon car-
ries a weight W at its lower end (see figure). The 4-mm diameter
wire is 25 m long. 

What is the maximum weight Wmax that can safely be car-
ried if the tensile yield stress for the wire is �Y � 350 MPa and a
margin of safety against yielding of 1.5 is desired? (Include the
weight of the wire in the calculations.)

L
d

W

Solution 1.7-6 Wire hanging from a balloon

d � 4.0 mm

L � 25 m

�Y � 350 MPa

Margin of safety � 1.5

Factor of safety � n � 2.5

sallow �
sY

n
� 140  MPa

Total load P � Wmax � W0 � 
allow A

Wmax � 1740  N

 � 1759.3  N � 24.2  N � 1735.1  N

 � (140  MPa)¢�
4
≤(4.0  mm)2 � 24.19  N

 � (140  MPa)¢�d2

4
≤� 24.19  N

 Wmax �sallow A � W0

 � 24.19  N

 W0 � (77.0  kN�m3)¢�
4
≤(4.0  mm)2(25  m)

L
d

W

Weight density of steel: � � 77.0 kN/m3

Weight of wire: 

W0 � gAL � g ¢�d 2

4
≤(L)
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Problem 1.7-7 A lifeboat hangs from two ship’s davits, as shown
in the figure. A pin of diameter d � 0.80 in. passes through each
davit and supports two pulleys, one on each side of the davit. 

Cables attached to the lifeboat pass over the pulleys and wind
around winches that raise and lower the lifeboat. The lower parts of
the cables are vertical and the upper parts make an angle � � 15°
with the horizontal. The allowable tensile force in each cable is
1800 lb, and the allowable shear stress in the pins is 4000 psi. 

If the lifeboat weighs 1500 lb, what is the maximum weight
that should be carried in the lifeboat?

T T

Davit

Pulley

Pin

Cable

   = 15°�

Solution 1.7-7 Lifeboat supported by four cables

FREE-BODY DIAGRAM OF ONE PULLEY

Pin diameter d � 0.80 in.

T � tensile force in one cable

Tallow � 1800 lb

�allow � 4000 psi

W � weight of lifeboat

�1500 lb

�Fhoriz � 0 RH � T cos 15� � 0.9659T

�Fvert � 0 RV � T � T sin 15� � 0.7412T

V � shear force in pin

V � �(RH)2 � (RV)2 � 1.2175T

Pin

Pulley

T

15°

RV

RH

ALLOWABLE TENSILE FORCE IN ONE CABLE BASED

UPON SHEAR IN THE PINS

ALLOWABLE FORCE IN ONE CABLE BASED UPON

TENSION IN THE CABLE

T2 � Tallow � 1800 lb

MAXIMUM WEIGHT

Shear in the pins governs.

Tmax � T1 � 1652 lb

Total tensile force in four cables

� 4Tmax � 6608 lb

Wmax � 4Tmax�W

� 6608 lb�1500 lb

� 5110 lb

V � 1.2175T�T1 �
Vallow

1.2175
� 1652  lb

� 2011  lb

Vallow � tallow Apin � (4000  psi)¢�
4
≤(0.80  in.)2
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Solution 1.7-8 Pin connection for a ship’s spar

Spar: d2 � 80 mm

d1 � 70 mm

Pin:    d � 25 mm

Plates: t � 12 mm

ALLOWABLE LOAD P BASED UPON COMPRESSION

IN THE SPAR

�c � 70 MPa

�1178.1 mm2

P1 � �cAc � (70 MPa )(1178.1 mm2) � 82.5 kN

Ac �
�

4
(d2

2 � d1
2) �

�

4
[ (80  mm)2 � (70  mm)2]

Plate

Spar

P

Pin

ALLOWABLE LOAD P BASED UPON SHEAR IN THE PIN

(DOUBLE SHEAR)

�allow � 45 MPa

P2 � �allow As � (45 MPa )(981.7 mm2) � 44.2 kN

ALLOWABLE LOAD P BASED UPON BEARING

�b � 110 MPa

Ab � 2dt � 2(25 mm)(12 mm) � 600 mm2

P3 � �bAb � (110 MPa )(600 mm2) � 66.0 kN

ALLOWABLE COMPRESSIVE LOAD IN THE SPAR

Shear in the pin governs.

Pallow � 44.2 kN

As � 2 ¢�d 2

4
≤�

�

2
(25  mm)2 � 981.7  mm2

Problem 1.7-9 What is the maximum possible value of the
clamping force C in the jaws of the pliers shown in the figure 
if a � 3.75 in., b � 1.60 in., and the ultimate shear stress in 
the 0.20-in. diameter pin is 50 ksi? 

What is the maximum permissible value of the applied 
load P if a factor of safety of 3.0 with respect to failure of 
the pin is to be maintained?

baP

P

Pin

Problem 1.7-8 A ship’s spar is attached at the base of a mast 
by a pin connection (see figure). The spar is a steel tube of outer
diameter d2 � 80 mm and inner diameter d1 � 70 mm. The steel
pin has diameter d � 25 mm, and the two plates connecting the 
spar to the pin have thickness t � 12 mm. 

The allowable stresses are as follows: compressive stress in 
the spar, 70 MPa; shear stress in the pin, 45 MPa; and bearing 
stress between the pin and the connecting plates, 110 MPa.

Determine the allowable compressive force Pallow in 
the spar.

Mast

Connecting
plate

Spar

P
Pin
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Problem 1.7-10 A metal bar AB of weight W is suspended by a
system of steel wires arranged as shown in the figure. The diameter
of the wires is 2 mm, and the yield stress of the steel is 450 MPa.

Determine the maximum permissible weight Wmax for a factor
of safety of 1.9 with respect to yielding. 1.75 m

A

W

B

1.75 m

0.75 m 0.75 m
2.5 m

Solution 1.7-9 Forces in pliers 

FREE-BODY DIAGRAM OF ONE ARM

C � clamping force

R � reaction at pin

a � 3.75 in.

b � 1.60 in.

d � diameter of pin

� 0.20 in.

�Fvert � 0 ↑� ↓� P � C � R � 0

R � P � C � P ¢1 �
a

b
≤� C ¢1 �

b
a
≤

C �
Pa

b
�P �

Cb
a
�C

P
�

a

b

©Mpin � 0����Cb � Pa � 0

ba
P

Pin

R

C

V � shear force in pin (single shear)

MAXIMUM CLAMPING FORCE Cult

�ult � 50 ksi

Vult � �ult Apin

�1571 lb 

�1100 lb

MAXIMUM LOAD Pult

ALLOWABLE LOAD Pallow

�157 lb

Pallow �
Pult

n
�

469.8  lb

3.0

Pult �
Vult

1 �
a

b

�
1571  lb

1 �
3.75  in.

1.60  in.

� 469.8  lb

Cult �
Vult

1 �
b
a

�
1571  lb

1 �
1.60  in.

3.75  in.

� (50  ksi)¢�
4
≤(0.20  in.)2

V � R�∴ C �
V

1 �
b
a

�and    P �
V

1 �
a

b
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Solution 1.7-10 Bar AB suspended by steel wires

7b

A W B

7b

3b 3b
10 b

E

C D

F

b = 0.25 m

FREE-BODY DIAGRAM OF POINT A

LAC � LEC � �(3b)2 � (7b)2 � b�58

FREE-BODY DIAGRAM OF WIRE ACE

A

TAC

CAB

W
2

 CAB �
3W

14

 ©Fhoriz � 0�TAC ¢ 3b

b�58
≤� CAB

 TAC �
W�58

14

 ©Fvert � 0�TAC ¢ 7b

b�58
≤ �

W

2

W
2

W
2

CAB

CAB

TCD

E

C

A

�Fhoriz � 0

TCD � 2CAB

�
3W

7

ALLOWABLE TENSILE FORCE IN A WIRE

d � 2 mm �Y � 450 MPa F.S. � 1.9

MAXIMUM TENSILE FORCES IN WIRES

Force in wire AC is larger.

MAXIMUM ALLOWABLE WEIGHT W

� 1370 N

Wmax �
14  TAC

�58
�

14  Tallow

�58
�

14

�58
 (744.1  N)

TCD �
3W

7
�TAC �

W�58

14

 � ¢450  MPa

1.9
≤¢�

4
≤(2  mm)2 � 744.1  N

 Tallow �
sYA

n
�

sY ¢�d 2

4
≤

n

Problem 1.7-11 Two flat bars loaded in tension by forces P
are spliced using two rectangular splice plates and two 5⁄8-in.
diameter rivets (see figure). The bars have width b � 1.0 in.
(except at the splice, where the bars are wider) and thickness 
t � 0.4 in. The bars are made of steel having an ultimate stress 
in tension equal to 60 ksi. The ultimate stresses in shear and
bearing for the rivet steel are 25 ksi and 80 ksi, respectively.

Determine the allowable load Pallow if a safety factor 
of 2.5 is desired with respect to the ultimate load that can 
be carried. (Consider tension in the bars, shear in the rivets, 
and bearing between the rivets and the bars. Disregard friction
between the plates.)

PP

b = 1.0 in.

t = 0.4 in.

Splice plate

PP

Bar
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Solution 1.7-11 Splice between two flat bars

ULTIMATE LOAD BASED UPON TENSION IN THE BARS

Cross-sectional area of bars:

A � bt b � 1.0 in. t � 0.4 in.

A � 0.40 in.2

P1 � �ultA � (60 ksi)(0.40 in.2) � 24.0 k

ULTIMATE LOAD BASED UPON SHEAR IN THE RIVETS

Double shear d � diameter of rivets

d � 5⁄8 in. AR � area of rivets

AR �
�d 2

4
�

�

4
 ¢5

8
 in.≤

2

� 0.3068  in.2

ULTIMATE LOAD BASED UPON BEARING

Ab � bearing area � dt

ULTIMATE LOAD

Shear governs. Pult � 15.34 k

ALLOWABLE LOAD

Pallow �
Pult

n
�

15.34  k

2.5
� 6.14  k

P3 �sbAb � (80  ksi)¢5
8

 in.≤(0.4  in.) � 20.0  k

 � 15.34  k

 P2 � tult(2AR) � 2(25  ksi)(0.3068  in.2)PP t 

Problem 1.7-12 A solid bar of circular cross section
(diameter d) has a hole of diameter d/4 drilled laterally
through the center of the bar (see figure). The allowable
average tensile stress on the net cross section of the bar 
is �allow. 

(a) Obtain a formula for the allowable load Pallow that 
the bar can carry in tension. 

(b) Calculate the value of Pallow if the bar is made of brass
with diameter d � 40 mm and �allow � 80 MPa.

(Hint: Use the formulas of Case 15, Appendix D.)

d

d
PP

d—
4

d—
4

Solution 1.7-12 Bar with a hole

CROSS SECTION OF BAR

(a) ALLOWABLE LOAD IN TENSION

Pallow � �allow A � 0.5380d2 �allow

(b) SUBSTITUTE NUMERICAL VALUES

�allow � 80 MPa d � 40 mm

Pallow � 68.9 kN

 �
d2

2
 ¢arc cos 

1

4
�

�15

16
≤� 0.5380 d 2

 A � 2 ¢d
2
≤

2B arc cos 
1

4
�

¢d
8
≤ ¢d

8
�15≤

(d�2)2 R

d

d—
4

From Case 15, Appendix D:

b �Br2 � ¢d
8
≤

2

� dB15

64
�

d

8
�15

r �
d

2
�a �

d

8

A � 2r2 ¢� �
ab

r2 ≤

 � arc cos ¢1
4
≤

 � � arc cos 
d�8
r
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Problem 1.7-13 A solid steel bar of diameter d1 � 2.25 in. has a 
hole of diameter d2 � 1.125 in. drilled through it (see figure). A steel
pin of diameter d2 passes through the hole and is attached to supports.

Determine the maximum permissible tensile load Pallow in the 
bar if the yield stress for shear in the pin is �Y � 17,000 psi, the yield
stress for tension in the bar is �Y � 36,000 psi, and a factor of safety of
2.0 with respect to yielding is required. (Hint: Use the formulas of
Case 15, Appendix D.)

P

d1
d1

d2

Solution 1.7-13 Bar with a hole

d1 � 2.25 in.

d2 � 1.125 in.

From Case 15, Appendix D:

� � arc cos 
d2�2
d1�2

� arc cos 
d2

d1

r �
d1

2
� 1.125  in.

A � 2r2 ¢� �
ab

r2 ≤

ALLOWABLE LOAD BASED ON TENSION IN THE BAR

ALLOWABLE LOAD BASED ON SHEAR IN THE PIN

Double shear

ALLOWABLE LOAD

Shear in the pin governs.

Pallow � 16.9 k

 � 16.9  k

 P2 �
tY

n
 As �

17,000  psi

2.0
 (1.9880  in.)2

 � 1.9880  in.2

 As � 2Apin � 2 ¢�d2
2

4
≤�

�

2
 (1.125  in.)2

 � 28.0  k

 P1 �
sY

n
 A �

36,000  psi

2.0
 (1.5546  in.2)

d1

d2

C
a

r
�

 � 1.5546  in.2

B1.0472 �
(0.5625  in.) (0.9743  in.)

(1.125  in.)2 R A � 2(1.125  in.)2

A � 2r2¢� �
ab

r2 ≤
b � �r2 � a2 � 0.9743  in.

a �
d2

2
� 0.5625  in.

d2

d1
�

1.125  in.

2.25  in.
�

1

2
   � � arc cos 

1

2
� 1.0472  rad

Problem 1.7-14 The piston in an engine is attached to a connecting rod
AB, which in turn is connected to a crank arm BC (see figure). The piston
slides without friction in a cylinder and is subjected to a force P (assumed
to be constant) while moving to the right in the figure. The connecting
rod, which has diameter d and length L, is attached at both ends by pins.
The crank arm rotates about the axle at C with the pin at B moving in a
circle of radius R. The axle at C, which is supported by bearings, exerts 
a resisting moment M against the crank arm.

(a) Obtain a formula for the maximum permissible force Pallow
based upon an allowable compressive stress �c in the connect-
ing rod. 

(b) Calculate the force Pallow for the following data: 
�c � 160 MPa, d � 9.00 mm, and R � 0.28L.

P
A

B
d C

M

Connecting rodCylinder Piston

RL

C
a

r b

�
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Solution 1.7-14 Piston and connecting rod

P
A

B

C
M

R
L

�

d � diameter of rod AB

FREE-BODY DIAGRAM OF PISTON

The maximum allowable force P occurs when cos �
has its smallest value, which means that � has its
largest value.

LARGEST VALUE OF �

P

RP

C

�

P � applied force (constant)

C � compressive force in connecting rod

RP � resultant of reaction forces between cylinder
and piston (no friction)

�Fhoriz � 0 S� �d  P � C cos � � 0

P � C cos �

MAXIMUM COMPRESSIVE FORCE C IN CONNECTING ROD

Cmax � 
c Ac

in which Ac � area of connecting rod

MAXIMUM ALLOWABLE FORCE P

 � sc Ac cos �

 P � Cmax cos �

Ac �
�d2

4

A

L

B

R

CL2 − R2

�

The largest value of � occurs when point B is the
farthest distance from line AC. The farthest distance
is the radius R of the crank arm.

Therefore,

Also, 

(a) MAXIMUM ALLOWABLE FORCE P

(b) SUBSTITUTE NUMERICAL VALUES

�c � 160 MPa d � 9.00 mm

R � 0.28L R/L � 0.28

Pallow � 9.77 kN

 �sc ¢�d 2

4
≤B1 � ¢R

L
≤

2

 Pallow � sc  Ac  cos �

cos � �
�L2 � R2

L
�B1 � ¢R

L
≤

2

AC � �L2 � R2

BC � R
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Solution 1.8-1 Aluminum tube in tension

P � 34 k

t � 0.375 in.

�allow � 9000 psi

 P �sallow  A � �t(d � t)sallow

 � �t(d � t)

 A �
�

4
[d2 � (d � 2t)2 ] �

�

4
(4t)(d � t)

SOLVE FOR d:

SUBSTITUTE NUMERICAL VALUES:

 dmin � 3.58  in.

 � 3.207  in. � 0.375  in.

 dmin �
34  k

�(0.375  in.) (9000  psi)
� 0.375  in.

d �
P

�tsallow
� t

P P

d

Problem 1.8-2 A steel pipe having yield stress �Y � 270 MPa 
is to carry an axial compressive load P � 1200 kN (see figure). 
A factor of safety of 1.8 against yielding is to be used.

If the thickness t of the pipe is to be one-eighth of its outer
diameter, what is the minimum required outer diameter dmin?

P

d

t =
d
8
—

Solution 1.8-2 Steel pipe in compression

P � 1200 kN


Y � 270 MPa

n � 1.8

�allow � 150 MPa

SOLVE FOR d:

SUBSTITUTE NUMERICAL VALUES:

dmin � 8B 1200  kN

7�  (150  MPa)
� 153  mm  

d2 �
64  P

7�sallow
�d � 8B P

7�sallow

d

t =
d
8
—

P �sallow A �
7�d2

64
 sallow

A �
�

4
Bd 2� ¢d �

d

4
≤

2R �
7�d 2

64

Design for Axial Loads and Direct Shear

Problem 1.8-1 An aluminum tube is required to transmit an axial
tensile force P � 34 k (see figure). The thickness of the wall of the
tube is to be 0.375 in. 

What is the minimum required outer diameter dmin if the allowable
tensile stress is 9000 psi?

P P

d



Problem 1.8-3 A horizontal beam AB supported by an
inclined strut CD carries a load P � 2500 lb at the position
shown in the figure. The strut, which consists of two bars,
is connected to the beam by a bolt passing through the
three bars meeting at joint C. 

If the allowable shear stress in the bolt is 14,000 psi,
what is the minimum required diameter dmin of the bolt?
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P

D

C
B

A

3 ft

Beam AB

Strut CD

Bolt

4 ft 4 ft



Solution 1.8-3 Beam ACB supported by a strut CD

REACTION AT JOINT D

(RD)H �
8

3
 P

©MA � 0 ��      � P(8 ft) � (RD)H (3 ft) � 0

FCD � compressive force in strut � RD

SHEAR FORCE ACTING ON BOLT

REQUIRED AREA AND DIAMETER OF BOLT

SUBSTITUTE NUMERICAL VALUES:

P � 2500 lb �allow � 14,000 psi

d2 � 0.3789 in.2

dmin � 0.616  in.

A �
V
tallow

�
5P

3tallow
�A �

�d2

4
�d2 �

20P

3�tallow

V �
FCD

2
�

5P

3

FCD � (RD)H ¢54≤� ¢5
4
≤ ¢8P

3
≤�

10P

3

FREE-BODY DIAGRAM

P

D

C
B

A

3 ft

4 ft 4 ft

(RD)H

(RD)V

(RD)H D

(RD)V
RD

�

D

C

3 ft

4 ft

5 ft

A
�



Problem 1.8-4 Two bars of rectangular cross section (thickness 
t � 15 mm) are connected by a bolt in the manner shown in 
the figure. The allowable shear stress in the bolt is 90 MPa and 
the allowable bearing stress between the bolt and the bars is 
150 MPa. 

If the tensile load P � 31 kN, what is the minimum required
diameter dmin of the bolt?
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PP

P
t

P
t

Solution 1.8-4 Bolted connection

One bolt in double shear. 

P � 31 kN

	allow � 90 MPa


b � 150 MPa

t � 15 mm

Find minimum diameter of bolt.

BASED UPON SHEAR IN THE BOLT

BASED UPON BEARING BETWEEN PLATE AND BOLT

MINIMUM DIAMETER OF BOLT

Shear governs.

dmin � 14.8  mm

d �
P

tsb

�d2 �
31  kN

(15  mm) (150  MPa)
� 13.8  mm

Abearing �
P
sb

�dt �
P
sb

 � 14.8  mm

 d1 �B 2P
�tallow

�B 2(31  kN)

�(90  MPa)

d2 �
2P

�tallow

Abolt �
P

2tallow
� 

�d2

4
�

P

2tallow

P
t

P
t



Solution 1.8-5 Bolted connection
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One bolt in double shear.

P � 1800 lb

	allow � 12,000 psi


b � 20,000 psi

t � 5⁄16 in.

Find minimum diameter of bolt.

BASED UPON SHEAR IN THE BOLT

BASED UPON BEARING BETWEEN PLATE AND BOLT

MINIMUM DIAMETER OF BOLT

Shear governs.

dmin � 0.309  in.

d �
P

tsb

�d2 �
1800  lb

( 5
16  in.) (20,000  psi)

� 0.288  in.

Abearing �
P
sb

�dt �
P
sb

d1 �B 2P
�tallow

�B 2(1800  lb)

�(12,000  psi)
� 0.309  in.

d2 �
2P

�tallow

Abolt �
P

2tallow
��d2

4
�

P

2tallow

P
t

P
t

Problem 1.8-6 A suspender on a suspension bridge consists of a
cable that passes over the main cable (see figure) and supports the
bridge deck, which is far below. The suspender is held in position by 
a metal tie that is prevented from sliding downward by clamps around
the suspender cable. 

Let P represent the load in each part of the suspender cable, and
let � represent the angle of the suspender cable just above the tie.
Finally, let �allow represent the allowable tensile stress in the metal tie.

(a) Obtain a formula for the minimum required cross-sectional area
of the tie. 

(b) Calculate the minimum area if P � 130 kN, � � 75°, and 
�allow � 80 MPa.

P P

Collar Suspender

TieClamp

Main 
cable

��

Problem 1.8-5 Solve the preceding problem if the bars have
thickness t � 5⁄16 in., the allowable shear stress is 12,000 psi, the
allowable bearing stress is 20,000 psi, and the load P � 1800 lb.
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Solution 1.8-6 Suspender tie on a suspension bridge

F � tensile force in
cable above tie

P � tensile force in
cable below tie

�allow � allowable tensile
stress in the tie

FORCE TRIANGLE

(a) MINIMUM REQUIRED AREA OF TIE

(b) SUBSTITUTE NUMERICAL VALUES:

P � 130 kN � � 75� �allow � 80 MPa

Amin � 435  mm2

Amin �
T
sallow

�
P  cot  u

sallow

T � P  cot  u

cot  u�
T

P

P P

��

Tie

FF

FREE-BODY DIAGRAM OF HALF THE TIE

Note: Include a small amount of the cable in the
free-body diagram

T � tensile force in the tie

P

F

T

F

�

P

T

Problem 1.8-7 A square steel tube of length L � 20 ft and
width b2 � 10.0 in. is hoisted by a crane (see figure). The
tube hangs from a pin of diameter d that is held by the cables
at points A and B. The cross section is a hollow square with
inner dimension b1 � 8.5 in. and outer dimension b2 � 10.0
in. The allowable shear stress in the pin is 8,700 psi, and the
allowable bearing stress between the pin and the tube is
13,000 psi.

Determine the minimum diameter of the pin in order to
support the weight of the tube. (Note: Disregard the rounded
corners of the tube when calculating its weight.)

Square
tube

L

b2

A B

b1

d

b2

Pin

A B

d

Square
tube



Solution 1.8-7 Tube hoisted by a crane
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T T

b1 d

b2

T � tensile force in cable

W � weight of steel tube

d � diameter of pin

b1 � inner dimension of tube
� 8.5 in.

b2 � outer dimension of tube
� 10.0 in.

L � length of tube � 20 ft

�allow � 8,700 psi

�b � 13,000 psi

DIAMETER OF PIN BASED UPON SHEAR

Double shear. 2�allow Apin � W

d2 � 0.1382 in.2 d1 � 0.372 in.

DIAMETER OF PIN BASED UPON BEARING


b(b2 � b1) d � W

(13,000 psi)(10.0 in. � 8.5 in.) d � 1,889 lb
d2 � 0.097 in.

MINIMUM DIAMETER OF PIN

Shear governs.

dmin � 0.372  in.

2(8,700  psi)¢�d 2

4
≤� 1889  lb

 � 1,889  lb

¢ 1 

144 
 
ft2

in.
≤(20  ft)� (490  lb�ft3) (27.75  in.2)

 W � gs  AL

WEIGHT OF TUBE

�s � weight density of steel

� 490 lb/ft3

� 27.75  in.

 � b2
2 � b1

2 � (10.0  in.)2 � (8.5  in.)2

 A � area  of  tube

Solution 1.8-8 Tube hoisted by a crane

T T

b1 d

b2

T � tensile force in cable

W � weight of steel tube

d � diameter of pin

b1 � inner dimension of tube

� 210 mm

b2 � outer dimension of tube

� 250 mm

L � length of tube

� 6.0 m

A � area of tube

W � �sAL � (77.0 kN/m3)(18,400 mm2)(6.0 m)

� 8.501 kN

DIAMETER OF PIN BASED UPON SHEAR

Double shear. 2�allow Apin � W

d1 � 9.497 mm

DIAMETER OF PIN BASED UPON BEARING


b(b2 � b1)d � W

(90 MPa )(40 mm)d � 8.501 kN d2 � 2.361 mm

MINIMUM DIAMETER OF PIN

Shear governs. dmin � 9.50  mm

2(60  MPa)¢�
4
≤d 2� 8.501  kN�d 2� 90.20  mm2

A � b2
2 � b1

2 � 18,400  mm2

�allow � 60 MPa

�b � 90 MPa

WEIGHT OF TUBE

�s � weight density of steel

� 77.0 kN/m3

Problem 1.8-8 Solve the preceding problem if the length L of the tube is 6.0 m,
the outer width is b2 � 250 mm, the inner dimension is b1 � 210 mm, the allow-
able shear stress in the pin is 60 MPa, and the allowable bearing stress is 90 MPa.



Problem 1.8-9 A pressurized circular cylinder has a sealed cover plate
fastened with steel bolts (see figure). The pressure p of the gas in the cylinder
is 290 psi, the inside diameter D of the cylinder is 10.0 in., and the diameter dB
of the bolts is 0.50 in. 

If the allowable tensile stress in the bolts is 10,000 psi, find the number
n of bolts needed to fasten the cover.
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p

D

Cover plate

Steel bolt

Cylinder

Solution 1.8-9 Pressurized cylinder

p � 290 psi

D � 10.0 in.

db � 0.50 in.

�allow � 10,000 psi

n � number of bolts

F � total force acting on the cover plate from
the internal pressure

F � p ¢�D2

4
≤

NUMBER OF BOLTS

P � tensile force in one bolt

P � �allow Ab

SUBSTITUTE NUMERICAL VALUES:

Use  12  bolts

n �
(290  psi)(10  in.)2

(0.5  in.)2(10,000  psi)
� 11.6

n �
pD2

db
2 sallow

sallow �
P

Ab

�
�pD2

(4n)(�
4 )db

2 �
pD2

ndb
2

Ab � area  of  one  bolt �
�

4
db

2

P �
F
n

�
�pD2

4n
p

D

Bolt



Solution 1.8-10 Tubular post with guy cables
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d2 � outer diameter

d1 � inner diameter

t � wall thickness

� 15 mm

T � tensile force in a cable

� 110 kN


allow � 35 MPa

AREA OF POST

� �t(d2 � t)

EQUATE AREAS AND SOLVE FOR d2:

SUBSTITUTE NUMERICAL VALUES:

(d2)min � 131  mm

d2 �
2T cos 30�

�tsallow
� t

2T cos 30�

sallow
� �t(d2 � t)

A �
�

4
(d2

2 � d1
2) �

�

4
[d2

2 � (d2 � 2t)2 ]

30° 30°

T T

P

d2

P � compressive force in post

� 2T cos 30�

REQUIRED AREA OF POST

A �
P
sallow

�
2T cos 30�

sallow

Problem 1.8-11 A cage for transporting workers and supplies on a
construction site is hoisted by a crane (see figure). The floor of the cage 
is rectangular with dimensions 6 ft by 8 ft. Each of the four lifting cables
is attached to a corner of the cage and is 13 ft long. The weight of the
cage and its contents is limited by regulations to 9600 lb. 

Determine the required cross-sectional area AC of a cable if the
breaking stress of a cable is 91 ksi and a factor of safety of 3.5 with
respect to failure is desired.

Problem 1.8-10 A tubular post of outer diameter d2 is guyed by two
cables fitted with turnbuckles (see figure). The cables are tightened 
by rotating the turnbuckles, thus producing tension in the cables and
compression in the post. Both cables are tightened to a tensile force 
of 110 kN. Also, the angle between the cables and the ground is 60°,
and the allowable compressive stress in the post is �c � 35 MPa. 

If the wall thickness of the post is 15 mm, what is the minimum
permissible value of the outer diameter d2?

60° 60°

Cable

Turnbuckle

Post
d2



Solution 1.8-11 Cage hoisted by a crane
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W

B

A

b c

Dimensions of cage:

b � 6 ft c � 8 ft

Length of a cable: L � 13 ft

Weight of cage and contents:

W � 9600 lb

Breaking stress of a cable:

�ult � 91 ksi

Factor of safety: n � 3.5

GEOMETRY OF ONE CABLE (CABLE AB)

Point B is above the midpoint of the cage

h � height from A to B

b

2
� 3  ft�c

2
� 4  ft

sallow �
sult

n
�

91  ksi

3.5
� 26,000  psi

(13 ft)2 � (3 ft)2 � (4 ft)2 � h2

Solving, h � 12 ft

FORCE IN A CABLE

T � force in one cable (cable AB)

TV � vertical component of T

(Each cable carries the same load.)

REQUIRED AREA OF CABLE

(Note: The diameter of the cable cannot be
calculated from the area AC, because a cable does not
have a solid circular cross section. A cable consists
of several strands wound together. For details, see
Section 2.2.)

AC �
T
sallow

�
2,600  lb

26,000  psi
� 0.100  in.2

T �
13

12
TV � 2600  lb

T

TV

�
L

h
�

13  ft

12  ft

∴ TV �
W

4
�

9600  lb

4
� 2400  lb

From  geometry:�L2 � ¢b
2
≤

2

� ¢c

2
≤

2

� h2

h

A

B
L = 13 ft

b
2

c
2

TV

A

T



Solution 1.8-12 Hollow circular column
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d � 250 mm

P � 750 kN

�allow � 55 MPa (compression in column)

t � thickness of column

D � diameter of base plate


b � 11.5 MPa (allowable pressure on concrete)

(a) THICKNESS t OF THE COLUMN

(Eq. 1)t2 � dt �
P

�sallow
� 0

�t2 � �td �
P
sallow

� 0

�t(d � t) �
P
sallow

�
�

4
(4t)(d � t) � �t(d � t)

A �
P
sallow

�A �
�d2

4
�

�

4
(d � 2t)2

SUBSTITUTE NUMERICAL VALUES IN EQ. (1):

(Note: In this eq., t has units of mm.)

t2 � 250 t � 4,340.6 � 0

Solve the quadratic eq. for t:

(b) DIAMETER D OF THE BASE PLATE

For the column, Pallow � �allow A

where A is the area of the column with t � 20 mm.

A � �t(d � t) Pallow � �allow �t(d � t)

Dmin � 297  mm

D2 � 88,000  mm2�D � 296.6  mm

�
4(55  MPa)(20  mm)(230  mm)

11.5  MPa

D2 �
4sallowt(d � t)

sb

�D2

4
�
sallow�t(d � t)

sb

Area  of  base  plate �
�D2

4
�

Pallow

sb

Use t � 20  mm

t � 18.77  mm�tmin � 18.8  mm

t2 � 250 t �
(750 � 103 N)

�(55  N�mm2)
� 0

P

t

D

d

Problem 1.8-12 A steel column of hollow circular cross sec-
tion is supported on a circular steel base plate and a concrete
pedestal (see figure). The column has outside diameter d �
250 mm and supports a load P � 750 kN.

(a) If the allowable stress in the column is 55 MPa, what is
the minimum required thickness t? Based upon your result,
select a thickness for the column. (Select a thickness that
is an even integer, such as 10, 12, 14, . . ., in units of
millimeters.)

(b) If the allowable bearing stress on the concrete pedestal is
11.5 MPa, what is the minimum required diameter D of
the base plate if it is designed for the allowable load Pallow
that the column with the selected thickness can support?

Column

Base plate

P P

t

D

d



Solution 1.8-13 Bar with pin connection
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Width of bar b � 2 in.

Thickness t � 0.25 in.

�allow � 20 ksi

�allow � 11.5 ksi

d � diameter of pin (inches)

P � axial load (pounds)

ALLOWABLE LOAD BASED UPON TENSION IN BAR

P1 � �allow Anet � �allow(b � d)t

� (20,000 psi)(2 in. � d)(0.25 in.)

� 5,000(2 � d) � 10,000 � 5,000d Eq. (1)

ALLOWABLE LOAD BASED UPON SHEAR IN PIN

Double shear

Eq. (2)� (11,500  psi)¢�d 2

2
≤� 18,064d 2

P2 � 2tallow ¢�d2

4
≤� tallow ¢�d2

2
≤

GRAPH OF EQS. (1) AND (2)

(a) MAXIMUM LOAD OCCURS WHEN P1 	 P2

10,000 � 5,000d � 18,064d2

or 18,064d 2 � 5,000d � 10,000 � 0

Solve quadratic equation:

(b) MAXIMUM LOAD

Substitute d � 0.6184 in. into Eq. (1) or

Eq. (2):

Pmax � 6910  lb

d � 0.6184  in.�dm � 0.618  in.

t
P

d

0

Load P
(lb)

20,000

10,000
Pmax

0.5 1.0dm

Diameter d (in.)

P1

P2

Eq.(2)
Eq.(1)

Problem 1.8-14 A flat bar of width b � 60 mm and thickness 
t � 10 mm is loaded in tension by a force P (see figure). The bar is
attached to a support by a pin of diameter d that passes through a hole 
of the same size in the bar. The allowable tensile stress on the net cross
section of the bar is �T � 140 MPa, the allowable shear stress in the 
pin is �S � 80 MPa, and the allowable bearing stress between the pin 
and the bar is �B � 200 MPa.

(a) Determine the pin diameter dm for which the load P will be a
maximum. 

(b) Determine the corresponding value Pmax of the load.

d b

t

P

P

Problem 1.8-13 A bar of rectangular cross section is subjected to an
axial load P (see figure). The bar has width b � 2.0 in. and thickness 
t � 0.25 in. A hole of diameter d is drilled through the bar to provide 
for a pin support. The allowable tensile stress on the net cross section 
of the bar is 20 ksi, and the allowable shear stress in the pin is 11.5 ksi. 

(a) Determine the pin diameter dm for which the load P will be 
a maximum. 

(b) Determine the corresponding value Pmax of the load.

d b

t

P

P



Solution 1.8-14 Bar with a pin connection
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b � 60 mm

t � 10 mm

d � diameter of hole and pin

�T � 140 MPa

�S � 80 MPa

�B � 200 MPa

UNITS USED IN THE FOLLOWING CALCULATIONS:

P is in kN

� and � are in N/mm2 (same as MPa)

b, t, and d are in mm

TENSION IN THE BAR

PT � �T (Net area) � �t(t)(b � d)

� 1.40 (60 � d) (Eq. 1)

� (140  MPa)(10  mm)(60  mm � d)¢ 1

1000
≤

SHEAR IN THE PIN

� 0.040 �d2 � 0.12566d2 (Eq. 2)

BEARING BETWEEN PIN AND BAR

PB � �B td

� 2.0 d (Eq. 3)

GRAPH OF EQS. (1), (2), AND (3)

(a) PIN DIAMETER dm

PT � PB or 1.40(60 � d) � 2.0 d

Solving, 

(b) LOAD Pmax

Substitute dm into Eq. (1) or Eq. (3):

Pmax � 49.4  kN

dm �
84.0

3.4
 mm � 24.7  mm

� (200  MPa)(10  mm)(d)¢ 1

1000
≤

� 2(80  MPa)¢�
4
≤(d2)¢ 1

1000
≤

PS � 2tS Apin � 2tS ¢�d 2

4
≤

d b

t

P

P

d

0
0

d
 (mm)

100

75

50

25

10 20 30 40

P (kN)

PT Tension Sh
ea

rP S

Bearing
PB

Pmax

Eq.(3) Eq.(1)
Eq.(2) dm



Problem 1.8-15 Two bars AC and BC of the same material support
a vertical load P (see figure). The length L of the horizontal bar is
fixed, but the angle � can be varied by moving support A vertically
and changing the length of bar AC to correspond with the new
position of support A. The allowable stresses in the bars are the 
same in tension and compression.

We observe that when the angle � is reduced, bar AC becomes
shorter but the cross-sectional areas of both bars increase (because
the axial forces are larger). The opposite effects occur if the angle �
is increased. Thus, we see that the weight of the structure (which is
proportional to the volume) depends upon the angle �. 

Determine the angle � so that the structure has minimum weight
without exceeding the allowable stresses in the bars. (Note: The
weights of the bars are very small compared to the force P and may
be disregarded.)
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L
P

A

B
C

θ

Solution 1.8-15 Two bars supporting a load P

T � tensile force in bar AC

C � compressive force in bar BC

AREAS OF BARS

LENGTHS OF BARS

LAC �
L

cos u
�LBC � L

ABC �
C
sallow

�
C

sallow tan u

AAC �
T
sallow

�
P

sallow sin u

©Fhoriz � 0�C �
P

tan u

©Fvert � 0�T �
P

sin u

WEIGHT OF TRUSS

� � weight density of material

W � �(AACLAC � ABCLBC)

Eq. (1)

�, P, L, and �allow are constants

W varies only with �

Let 

Eq. (2)

GRAPH OF EQ. (2):

W

k
�

1 � cos2u

sin u cos u
   (Nondimensional)

k �
gPL

sallow
  (k has units of force)

�
gPL

sallow
 ¢ 1 � cos2u

sin u  cos u
≤

�
gPL

sallow
 ¢ 1

sin u  cos u
�

1

tan u
≤

L
P

A

B
C

θ
P

T

C
C

θ

Joint C

0

3

6

9

12

30° 60° 90°
�

W
k
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ANGLE � THAT MAKES W A MINIMUM

Use Eq. (2)

Let 

SET THE NUMERATOR 	 0 AND SOLVE FOR �:

�sin2� cos2� � sin2� � cos2� � cos4� � 0

Replace sin2� by 1 � cos2�:

�(1 � cos2�)(cos2�) � 1 � cos2� � cos2� � cos4� � 0

Combine terms to simplify the equation:

u� 54.7�

1 � 3 cos2u� 0�cos u�
1

�3

�
�sin2u cos2u� sin2u� cos2u� cos4u

sin2u cos2u

df

du
�

(sin u cos u) (2) (cos u) (�sin u) � (1 � cos2u) (�sin2u� cos2u)

sin2u cos2u

df

du
� 0

f �
1 � cos2u

sin u  cos u
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Changes in Lengths of Axially Loaded Members

Problem 2.2-1 The T-shaped arm ABC shown in the figure 
lies in a vertical plane and pivots about a horizontal pin at A. 
The arm has constant cross-sectional area and total weight W. 
A vertical spring of stiffness k supports the arm at point B.

Obtain a formula for the elongation � of the spring due 
to the weight of the arm.

Solution 2.2-1 T-shaped arm

2
Axially Loaded Members

bb

A B C

k

b

FREE-BODY DIAGRAM OF ARM F � tensile force in the spring

� � elongation of the spring

� �
F

k
�

4W

3k

F �
4W

3

F(b) �
W

3
 ¢b

2
≤�

W

3
 ¢3b

2
≤�

W

3
(2b) � 0

©MA � 0  �  �

bb

A B C
F

W
3

W
3

W
3

Problem 2.2-2 A steel cable with nominal diameter 25 mm (see Table 
2-1) is used in a construction yard to lift a bridge section weighing 38 kN,
as shown in the figure. The cable has an effective modulus of elasticity 
E � 140 GPa. 

(a) If the cable is 14 m long, how much will it stretch when the load is
picked up? 

(b) If the cable is rated for a maximum load of 70 kN, what is the factor
of safety with respect to failure of the cable?



Solution 2.2-2 Bridge section lifted by a cable
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A � 304 mm2

(from Table 2-1)

W � 38 kN

E � 140 GPa

L � 14 m

(a) STRETCH OF CABLE

 � 12.5  mm

 � �
WL

EA
�

(38  kN)(14  m)

(140  GPa)(304  mm2)

(b) FACTOR OF SAFETY

PULT � 406 kN (from Table 2-1)

Pmax � 70 kN

n �
PULT

Pmax
�

406  kN

70  kN
� 5.8

Problem 2.2-3 A steel wire and a copper wire have equal lengths and
support equal loads P (see figure). The moduli of elasticity for the steel
and copper are Es � 30,000 ksi and Ec � 18,000 ksi, respectively. 

(a) If the wires have the same diameters, what is the ratio of the
elongation of the copper wire to the elongation of the steel wire? 

(b) If the wires stretch the same amount, what is the ratio of the
diameter of the copper wire to the diameter of the steel wire?

P

Steel
wire

P

Copper 
wire

Solution 2.2-3 Steel wire and copper wire

P

Steel
wire

P

Copper 
wire

Equal lengths and equal 
loads

Steel: Es � 30,000 ksi

Copper: Ec � 18,000 ksi

(a) RATIO OF ELONGATIONS

(EQUAL DIAMETERS)

 
�c

�s

�
Es

Ec

�
30

18
� 1.67  

 �c �
PL

Ec  A
��s �

PL

EsA

(b) RATIO OF DIAMETERS (EQUAL ELONGATIONS)

dc
2

ds
2 �

Es

Ec

  �
dc

ds

�BEs

Ec

�B30

18
� 1.29  

Ec  ¢�
4
≤  dc

2 � Es  ¢�
4
≤  ds

2

�c � �s�
PL

Ec  Ac

�
PL

Es  As

 or�EcAc� EsAs



Problem 2.2-4 By what distance h does the cage shown in the
figure move downward when the weight W is placed inside it? 

Consider only the effects of the stretching of the cable, which
has axial rigidity EA � 10,700 kN. The pulley at A has diameter 
dA � 300 mm and the pulley at B has diameter dB � 150 mm.
Also, the distance L1 � 4.6 m, the distance L2 � 10.5 m, and 
the weight W � 22 kN. (Note: When calculating the length of the
cable, include the parts of the cable that go around the pulleys at 
A and B.)
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L1

L2

A

B

W

Cage

Solution 2.2-4 Cage supported by a cable

L1

L2

A

B

W

dA � 300 mm

dB � 150 mm

L1 � 4.6 m

L2 � 10.5 m

EA � 10,700 kN

W � 22 kN

LENGTH OF CABLE

� 4,600 mm � 21,000 mm � 236 mm � 236 mm

� 26,072 mm

ELONGATION OF CABLE

LOWERING OF THE CAGE

h � distance the cage moves downward

h �
1

2
 � � 13.4  mm  

� �
TL

EA
�

(11  kN)(26,072  mm)

(10,700  kN)
� 26.8  mm

L � L1 � 2L2 �
1

4
(�dA) �

1

2
(�dB)

TENSILE FORCE IN CABLE

T �
W

2
� 11  kN

Problem 2.2-5 A safety valve on the top of a tank containing
steam under pressure p has a discharge hole of diameter d (see
figure). The valve is designed to release the steam when the
pressure reaches the value pmax. 

If the natural length of the spring is L and its stiffness is k, 
what should be the dimension h of the valve? (Express your 
result as a formula for h.)

h

p

d



Solution 2.2-5 Safety valve
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h

d

h � height of valve (compressed length of the
spring)

d � diameter of discharge hole

p � pressure in tank

pmax � pressure when valve opens

L � natural length of spring (L > h)

k � stiffness of spring

FORCE IN COMPRESSED SPRING

F � k(L � h) (From Eq. 2-1a)

PRESSURE FORCE ON SPRING

EQUATE FORCES AND SOLVE FOR h:

 h � L �
�pmax  d2

4k
�

 F � P�k(L � h) �
�pmax  d2

4

P � pmax  ¢�d2

4
≤

Problem 2.2-6 The device shown in the figure consists of a
pointer ABC supported by a spring of stiffness k � 800 N/m. 
The spring is positioned at distance b � 150 mm from the pinned
end A of the pointer. The device is adjusted so that when there 
is no load P, the pointer reads zero on the angular scale. 

If the load P � 8 N, at what distance x should the load be
placed so that the pointer will read 3° on the scale?

k

0
A B

P

C
x

b

Solution 2.2-6 Pointer supported by a spring

FREE-BODY DIAGRAM OF POINTER

Let � � angle of rotation of pointer

SUBSTITUTE NUMERICAL VALUES:

� � 3�

� 118  mm  

x �
(800  N�m)(150  mm)2

8  N
 tan  3�

tan  � �
�

b
�

Px

kb2�   x �
kb2

P
 tan  �  

�Px � (k�)b � 0�or�� �
Px

kb

©MA � 0���

F = k�

A B

P

C

x

b

P � 8 N

k � 800 N/m

b � 150 mm

� � displacement of spring

F � force in spring

� k�



Problem 2.2-7 Two rigid bars, AB and CD, rest on a smooth
horizontal surface (see figure). Bar AB is pivoted end A and
bar CD is pivoted at end D. The bars are connected to each
other by two linearly elastic springs of stiffness k. Before the
load P is applied, the lengths of the springs are such that the
bars are parallel and the springs are without stress.

Derive a formula for the displacement �C at point C when
the load P is acting. (Assume that the bars rotate through very
small angles under the action of the load P.)
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b
b

b

B

D

A

C

P

Solution 2.2-7 Two bars connected by springs

A

b b B

C
b b D

P

A b b B

C

b b

D

P

F1 F2

F1 F2

A B

C D

�B
2

�B

�C
2�C

k � stiffness of springs

�C � displacement at point C due to load P

FREE-BODY DIAGRAMS

DISPLACEMENT DIAGRAMS

F1 � tensile force in first spring

F2 � compressive force in second spring

EQUILIBRIUM

©MA � 0 �bF1 � 2bF2  � 0 F1 � 2F2

©MD � 0 2bP � 2bF1 � bF2 � 0 F2 � 2F1 � 2P

Solving, F1 �
4P

3
�F2 �

2P

3

���

�B � displacement of point B

�C � displacement of point C

�1 � elongation of first spring

�2 � shortening of second spring

SOLVE THE EQUATIONS:

Eliminate �B and obtain �C :

�C �
20P

9k
 

¢2 � ¢2��B �
�C

2
�

2P

3k

¢1 � ¢1��C �
�B

2
�

4P

3k

Also,�¢1 �
F1

k
�

4P

3k
;�¢2 �

F2

k
�

2P

3k

� �B �
�C

2

� �C �
�B

2



Problem 2.2-8 The three-bar truss ABC shown in the figure has a span
L � 3 m and is constructed of steel pipes having cross-sectional area 
A � 3900 mm2 and modulus of elasticity E � 200 GPa. A load P acts
horizontally to the right at joint C.

(a) If P � 650 kN, what is the horizontal displacement of joint B?
(b) What is the maximum permissible load Pmax if the displacement of

joint B is limited to 1.5 mm?
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L

A B
45° 45°

PC

Solution 2.2-8 Truss with horizontal load

L

A
B

45° 45°

PC

L
2
—

RB

FBC

FAB

RB = 

B

L � 3 m

A � 3900 mm2

E � 200 GPa

FREE-BODY DIAGRAM OF JOINT B

Force triangle:

©MA � 0�gives�RB �
P

2

From force triangle,

(a) HORIZONTAL DISPLACEMENT �B

P � 650 kN

(b) MAXIMUM LOAD Pmax

�max � 1.5 mm

� 780  kN  

Pmax � (650  kN)  ¢ 1.5  mm

1.25  mm
≤

Pmax

�max
�

P

�
�Pmax � P  ¢�max

�
≤

� 1.25  mm  

�
(650  kN)(3  m)

2(200  GPa)(3900  mm2)

�B �
FAB  LAB

EA
�

PL

2EA

FAB �
P

2
 (tension)

P
2

FBC

FAB



Problem 2.2-9 An aluminum wire having a diameter 
d � 2 mm and length L � 3.8 m is subjected to a tensile
load P (see figure). The aluminum has modulus of
elasticity E � 75 GPa. 

If the maximum permissible elongation of the wire 
is 3.0 mm and the allowable stress in tension is 60 MPa,
what is the allowable load Pmax?
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P
dP

  L 

Solution 2.2-9 Aluminum wire in tension

P
dP

  L 

d � 2 mm

L � 3.8 m

E � 75 GPa

MAXIMUM LOAD BASED UPON ELONGATION

�max � 3.0  mm�� �
PL

EA

A �
�d2

4
� 3.142  mm2

� 186 N

MAXIMUM LOAD BASED UPON STRESS

� 189 N

ALLOWABLE LOAD

Elongation  governs.�Pmax � 186  N  

Pmax � Asallow � (3.142  mm2)(60  MPa)

sallow � 60  MPa�s�
P

A

�
(75  GPa)(3.142  mm2)

3.8  m
 (3.0  mm)

Pmax �
EA

L
 �max

Problem 2.2-10 A uniform bar AB of weight W � 25 N is supported
by two springs, as shown in the figure. The spring on the left has
stiffness k1 � 300 N/m and natural length L1 � 250 mm. The
corresponding quantities for the spring on the right are k2 � 400 N/m
and L2 � 200 mm. The distance between the springs is L � 350 mm,
and the spring on the right is suspended from a support that is distance
h � 80 mm below the point of support for the spring on the left.

At what distance x from the left-hand spring should a load 
P � 18 N be placed in order to bring the bar to a horizontal position?

P

W

x

h

L

A

k1
L1 k2

L2

B



Solution 2.2-10 Bar supported by two springs
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P

x

A

�1

k1
k2

L2

B

W

�2

L1

h

L
2
—L

2
—

Reference line

W � 25 N

k1 � 300 N/m

k2 � 400 N/m

L � 350 mm

h � 80 mm

P � 18 N

NATURAL LENGTHS OF SPRINGS

L1 � 250 mm L2 � 200 mm

OBJECTIVE

Find distance x for bar AB to be horizontal.

FREE-BODY DIAGRAM OF BAR AB

(Eq. 1)

c� T�

F1 � F2 � P � W � 0 (Eq. 2)

SOLVE EQS. (1) AND (2):

SUBSTITUTE NUMERICAL VALUES:

UNITS: Newtons and meters

ELONGATIONS OF THE SPRINGS

BAR AB REMAINS HORIZONTAL

Points A and B are the same distance below the
reference line (see figure above).

or 0.250 � 0.10167 � 0.17143 x
� 0.080 � 0.200 � 0.12857 x � 0.031250

SOLVE FOR x:

0.300 x � 0.040420 x � 0.1347 m

x � 135  mm  

∴ L1 � �1 � h � L2 � �2

�2 �
F2

k2
�

F2

400
� 0.12857x � 0.031250

�1 �
F1

k1
�

F1

300
� 0.10167 � 0.17143x

F2 � (18)¢ x

0.350
≤� 12.5 � 51.429x � 12.5

F1 � (18)¢1 �
x

0.350
≤� 12.5 � 30.5 � 51.429x

F1 � P¢1 �
x

L
≤�

W

2
�F2 �

Px

L
�

W

2

©Fvert � 0

F2L � PX �
WL

2
� 0

©MA � 0  �  �

P

x

A B

W

F1 F2

L
2
— L

2
—



Problem 2.2-11 A hollow, circular, steel column (E � 30,000 ksi) is
subjected to a compressive load P, as shown in the figure. The column
has length L � 8.0 ft and outside diameter d � 7.5 in. The load P � 85 k. 

If the allowable compressive stress is 7000 psi and the allowable
shortening of the column is 0.02 in., what is the minimum required wall
thickness tmin?
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P

d

t

L

Solution 2.2-11 Column in compression

P

d

t

L

P � 85 k

E � 30,000 ksi

L � 8.0 ft

d � 7.5 in.

�allow � 7,000 psi

�allow � 0.02 in.

REQUIRED AREA BASED UPON ALLOWABLE STRESS

s�
P

A
�A �

P
sallow

�
85  k 

7,000  psi
� 12.14  in.2 

REQUIRED AREA BASED UPON ALLOWABLE SHORTENING

SHORTENING GOVERNS

Amin � 13.60 in.2

MINIMUM THICKNESS tmin

SUBSTITUTE NUMERICAL VALUES

tmin � 0.63  in.  

tmin �
7.5  in. 

2
�B¢7.5  in.

2
≤

2

�
13.60  in.2

�

tmin �
d

2
�B¢d2≤2 �

Amin

�

t �
d

2
�B¢d2≤2 �

A
�
�or

�Bd 2�
4A
�

(d � 2t)2 � d 2�
4A
�
�or�d � 2t

� � (d � 2t)24A
�

� d 2

A �
�

4
[d 2� (d � 2t)2 ]�or

� 13.60  in.2

� �
PL

EA
�A �

PL

E�allow
�

(85  k)(96  in.)

(30,000  ksi)(0.02  in.)



Problem 2.2-12 The horizontal rigid beam ABCD is
supported by vertical bars BE and CF and is loaded by
vertical forces P1 � 400 kN and P2 � 360 kN acting at 
points A and D, respectively (see figure). Bars BE and CF are
made of steel (E � 200 GPa) and have cross-sectional areas
ABE � 11,100 mm2 and ACF � 9,280 mm2. The distances
between various points on the bars are shown in the figure. 

Determine the vertical displacements �A and �D of points
A and D, respectively.
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A

P1 = 400 kN P2 = 360 kN

B C

1.5 m 1.5 m

2.4 m

0.6 m

2.1 m

D

F

E

Solution 2.2-12 Rigid beam supported by vertical bars

A

P1 = 400 kN P2 = 360 kN

B C

1.5 m 1.5 m

2.4 m

0.6 m

2.1 m

D

F

E

ABE � 11,100 mm2

ACF � 9,280 mm2

E � 200 GPa

LBE � 3.0 m

LCF � 2.4 m

P1 � 400 kN; P2 � 360 kN

FREE-BODY DIAGRAM OF BAR ABCD

SHORTENING OF BAR BE

SHORTENING OF BAR CF

DISPLACEMENT DIAGRAM

� 0.600  mm

�CF �
FCF  LCF

EACF

�
(464  kN)(2.4  m)

(200  GPa)(9,280  mm2)

� 0.400  mm

�BE �
FBE  LBE

EABE

�
(296  kN)(3.0  m)

(200  GPa)(11,100  mm2)

A

P1 = 400 kN FBE FCF P2 = 360 kN

B C

1.5 m 1.5 m 2.1 m
D

(400 kN)(1.5 m) � FCF(1.5 m) � (360 kN)(3.6 m) � 0

FCF � 464 kN

(400 kN)(3.0 m) � FBE(1.5 m) � (360 kN)(2.1 m) � 0

FBE � 296 kN

©MC � 0  �  �

©MB � 0  ��

A B C1.5 m 1.5 m 2.1 m D

�A
�BE

�CF

�D

�BE � �A � �CF � �BE or �A � 2�BE � �CF

(Downward)

(Downward)

� 0.880  mm  

 �
12

5
(0.600  mm) �

7

5
(0.400  mm)

 or��D �
12

5
 �CF �

7

5
 �BE

�D � �CF �
2.1

1.5
(�CF � �BE)

� 0.200  mm  

�A � 2(0.400  mm) � 0.600  m



Problem 2.2-13 A framework ABC consists of two rigid
bars AB and BC, each having length b (see the first part of
the figure). The bars have pin connections at A, B, and C
and are joined by a spring of stiffness k. The spring is
attached at the midpoints of the bars. The framework has a
pin support at A and a roller support at C, and the bars are
at an angle � to the hoizontal.

When a vertical load P is applied at joint B (see the
second part of the figure) the roller support C moves to 
the right, the spring is stretched, and the angle of the bars
decreases from � to the angle �.

Determine the angle � and the increase � in the
distance between points A and C. (Use the following data;
b � 8.0 in., k � 16 lb/in., � � 45°, and P � 10 lb.)
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� �

k

A C

B

b
2
—

b
2
—

b
2
—

b
2
—

A C

B

��

P

Solution 2.2-13 Framework with rigid bars and a spring

� �

k

A C

B

b
2
—

b
2
—

b
2
—

b
2
—

L1

A C

B

��

P

L2

C

B

�

P

P
2
—

F

L2
 2
—

F

h
2
— P

2
—

h
2
—

h

WITH NO LOAD

L1 � span from A to C

� 2b cos �

S1 � length of spring

�
L1

2
� b  cos  �

WITH LOAD P

L2 � span from A to C

� 2b cos �

S2 � length of spring

FREE-BODY DIAGRAM OF BC

�
L2

2
� b  cos  u

h � height from C to B � b sin �

F � force in spring due to load P

or P cos � � F sin � (Eq. 1)
P

2
 ¢L2

2
≤� F ¢h

2
≤� 0

©MB � 0  �  �

L2

2
� b  cos  u

(Continued)



74 CHAPTER 2 Axially Loaded Members

DETERMINE THE ANGLE �

�S � elongation of spring

� S2 � S1 � b(cos � � cos �)

For the spring: F � k(�S )

F � bk(cos � � cos �)

Substitute F into Eq. (1):

P cos � � bk(cos � � cos �)(sin �)

(Eq. 2)

This equation must be solved numerically for the
angle �.

DETERMINE THE DISTANCE �

� � L2 � L1 � 2b cos � � 2b cos �

� 2b(cos � � cos �)

or�P

bk
 cot  u� cos  u� cos  � � 0  

From Eq. (2): 

Therefore,

(Eq. 3)

NUMERICAL RESULTS

b � 8.0 in. k � 16 lb/in. � � 45� P � 10 lb

Substitute into Eq. (2):

0.078125 cot � � cos � � 0.707107 � 0 (Eq. 4)

Solve Eq. (4) numerically:

Substitute into Eq. (3):

� � 1.78  in.  

u� 35.1�  

 �
2P

b
 cot  u�

 � � 2b ¢cos  u� cos  u�
P  cot  u

bk
≤

cos  � � cos  u�
P  cot  u

bk

Problem 2.2-14 Solve the preceding problem for the following data:
b � 200 mm, k � 3.2 kN/m, � � 45°, and P � 50 N.

Solution 2.2-14 Framework with rigid bars and a spring

See the solution to the preceding problem.

Eq. (2):

Eq. (3): � �
2P

k
 cot  u

P

bk
 cot  u� cos  u� cos  � � 0

NUMERICAL RESULTS

b � 200 mm k � 3.2 kN/m � � 45� P � 50 N

Substitute into Eq. (2):

0.078125 cot � � cos � � 0.707107 � 0 (Eq. 4)

Solve Eq. (4) numerically:

Substitute into Eq. (3):

� � 44.5  mm  

u� 35.1�  



Changes in Lengths under Nonuniform Conditions

Problem 2.3-1 Calculate the elongation of a copper bar 
of solid circular cross section with tapered ends when it is
stretched by axial loads of magnitude 3.0 k (see figure). 

The length of the end segments is 20 in. and the length 
of the prismatic middle segment is 50 in. Also, the diameters 
at cross sections A, B, C, and D are 0.5, 1.0, 1.0, and 0.5 in.,
respectively, and the modulus of elasticity is 18,000 ksi.
(Hint: Use the result of Example 2-4.)
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A B
C

D

3.0 k20 in.

20 in.
3.0 k

50 in.

Solution 2.3-1 Bar with tapered ends

A B
C

D

3.0 k20 in.

20 in.
3.0 k

50 in.

dA � dD � 0.5 in. P � 3.0 k

dB � dC � 1.0 in. E � 18,000 ksi

END SEGMENT (L � 20 in.)

From Example 2-4: 

� 0.008488  in.�1 �
4(3.0  k)(20  in.)

�(18,000  ksi)(0.5  in.) (1.0  in.)

� �
4PL

�E  dA  dB

MIDDLE SEGMENT (L � 50 in.)

ELONGATION OF BAR

� 2(0.008488 in.) � (0.01061 in.)

� 0.0276  in.  

� � a NL

EA
� 2�1 � �2

� 0.01061in.

�2 �
PL

EA
�

(3.0  k)(50  in.)

(18,000  ksi)(�
4 ) (1.0  in.)2

Problem 2.3-2 A long, rectangular copper bar under a tensile load P
hangs from a pin that is supported by two steel posts (see figure). The
copper bar has a length of 2.0 m, a cross-sectional area of 4800 mm2, 
and a modulus of elasticity Ec � 120 GPa. Each steel post has a height 
of 0.5 m, a cross-sectional area of 4500 mm2, and a modulus of elasticity
Es � 200 GPa.

(a) Determine the downward displacement � of the lower end of the
copper bar due to a load P � 180 kN. 

(b) What is the maximum permissible load Pmax if the displacement 
� is limited to 1.0 mm?

P

Steel
post

Copper
bar



Solution 2.3-2 Copper bar with a tensile load
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P

Steel
post

Copper
bar

Ls

Lc

Lc � 2.0 m

Ac � 4800 mm2

Ec � 120 GPa

Ls � 0.5 m

As � 4500 mm2

Es � 200 GPa

(a) DOWNWARD DISPLACEMENT � (P � 180 kN)

(b) MAXIMUM LOAD Pmax (�max � 1.0 mm)

Pmax � (180  kN) ¢ 1.0  mm

0.675  mm
≤ �  267  kN

Pmax

P
�

�max

�
�Pmax � P ¢�max

�
≤

�  0.675  mm 

� � �c � �s � 0.625  mm �  0.050  mm 

� 0.050  mm

�s �
(P�2)Ls

Es  As

�
(90  kN)(0.5  m)

(200  GPa)(4500  mm2)

� 0.625  mm

�c �
PLc

Ec  Ac

�
(180  kN)(2.0  m)

(120  GPa)(4800  mm2)

Problem 2.3-3 A steel bar AD (see figure) has a cross-sectional area 
of 0.40 in.2 and is loaded by forces P1 � 2700 lb, P2 � 1800 lb, and 
P3 � 1300 lb. The lengths of the segments of the bar are a � 60 in., 
b � 24 in., and c � 36 in. 

(a) Assuming that the modulus of elasticity E � 30 � 106 psi, 
calculate the change in length � of the bar. Does the bar elongate
or shorten? 

(b) By what amount P should the load P3 be increased so that the 
bar does not change in length when the three loads are applied?

a b c

B

P1 P2
P3

A C D

Solution 2.3-3 Steel bar loaded by three forces

B

P1 P2 P3

A C D

60 in. 24 in. 36 in.

A � 0.40 in.2 P1 � 2700 lb P2 � 1800 lb

P3 � 1300 lb E � 30 � 106 psi

AXIAL FORCES

NAB � P1 � P2 � P3 � 3200 lb

NBC � P2 � P3 � 500 lb

NCD � �P3 � �1300 lb

(a) CHANGE IN LENGTH

�  0.0131  in. (elongation)

� (1300  lb)(36  in.)]� (500  lb)(24  in.)

�
1

(30 � 106
 psi) (0.40  in.2)

[(3200  lb)(60  in.)

�
1

EA
 (NABLAB � NBCLBC � NCDLCD)

� �  a  
NiLi

EiAi



Problem 2.3-4 A rectangular bar of length L has a slot in
the middle half of its length (see figure). The bar has width
b, thickness t, and modulus of elasticity E. The slot has
width b/4. 

(a) Obtain a formula for the elongation � of the bar due
to the axial loads P. 

(b) Calculate the elongation of the bar if the material is
high-strength steel, the axial stress in the middle
region is 160 MPa, the length is 750 mm, and the
modulus of elasticity is 210 GPa.
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(b) INCREASE IN P3 FOR NO CHANGE IN LENGTH

P � increase in force P3

The force P must produce a shortening equal to 0.0131 in.
in order to have no change in length.

P � 1310  lb 

�
P(120  in.)

(30 � 106
 psi) (0.40  in.2)

∴  0.0131  in. � � �
PL

EA

b
4
—

L
4
—

L
4
—

L
2
—

b t

P

P

Solution 2.3-4 Bar with a slot

b
4
—

b PP

L
2
—L

4
— L

4
—

t � thickness L � length of bar

(a) ELONGATION OF BAR

�
PL

Ebt
 ¢1

4
�

4

6
�

1

4
≤�

7PL

6Ebt

� � a  
NiLi

EAi

�
P(L�4)

E(bt)
�

P(L�2)

E(3
4bt)

�
P(L�4)

E(bt)

STRESS IN MIDDLE REGION

Substitute into the equation for �:

(b) SUBSTITUTE NUMERICAL VALUES:

� �
7(160  MPa)(750  mm)

8 (210  GPa)
� 0.500  mm 

s� 160  MPa�L � 750  mm�E � 210  GPa

�
7sL

8E

� �
7PL

6Ebt
�

7L

6E
 ¢ P

bt
≤�

7L

6E
 ¢3s

4
≤

s�
P

A
�

P

(3
4bt)

�
4P

3 bt
�or     

P

bt
�

3s

4

P

120 in.
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b
4
—

b PP

L
2
—L

4
— L

4
—

t � thickness L � length of bar

(a) ELONGATION OF BAR

�  
PL

Ebt
¢1
4

�
4

6
�

1

4
≤�

7PL

6Ebt
 

� � a  
NiLi

EAi

�
P(L�4)

E(bt)
�

P(L�2)

E (3
4  bt)

�
P(L�4)

E(bt)

STRESS IN MIDDLE REGION

SUBSTITUTE INTO THE EQUATION FOR �:

(b) SUBSTITUTE NUMERICAL VALUES:

� �
7(24,000  psi)(30  in.)

8(30 � 106
 psi)

� 0.0210  in. 

E � 30 � 106
 psi

s� 24,000  psi�L � 30  in.

�
7sL

8E

� �
7PL

6Ebt
�

7L

6E
 ¢ P

bt
≤�

7L

6E
 ¢3s

4
≤

s�
P

A
�

P

(3
4  bt)

�
4P

3bt
�or� 

P

bt
�

3s

4

Problem 2.3-6 A two-story building has steel columns AB in the first
floor and BC in the second floor, as shown in the figure. The roof load P1
equals 400 kN and the second-floor load P2 equals 720 kN. Each column
has length L � 3.75 m. The cross-sectional areas of the first- and second-
floor columns are 11,000 mm2 and 3,900 mm2, respectively. 

(a) Assuming that E � 206 GPa, determine the total shortening �AC
of the two columns due to the combined action of the loads P1
and P2. 

(b) How much additional load P0 can be placed at the top of the
column (point C) if the total shortening �AC is not to exceed 
4.0 mm?

P1 = 400 kN

P2 = 720 kN
B

A

C

L = 3.75 m

L = 3.75 m

Solution 2.3-6 Steel columns in a building

P1 = 400 kN

P2 = 720 kNB

A

C

L

L

L � length of each 
column

� 3.75 m

E � 206 GPa

AAB � 11,000 mm2

ABC � 3,900 mm2

(a) SHORTENING �AC OF THE TWO COLUMNS

�AC � 3.72  mm

� 1.8535  mm � 1.8671  mm � 3.7206  mm

�
(400  kN)(3.75  m)

(206  GPa)(3,900  mm2)

�  
(1120  kN)(3.75  m)

(206  GPa)(11,000  mm2)
�

�AC � a  
Ni  Li

Ei  Ai

�
NAB  L

EAAB

�
NBC  L

EABC

Problem 2.3-5 Solve the preceding problem if the axial stress in the
middle region is 24,000 psi, the length is 30 in., and the modulus of
elasticity is 30 � 106 psi. 

Solution 2.3-5 Bar with a slot



Problem 2.3-7 A steel bar 8.0 ft long has a circular cross 
section of diameter d1 � 0.75 in. over one-half of its length 
and diameter d2 � 0.5 in. over the other half (see figure). The 
modulus of elasticity E � 30 � 106 psi. 

(a) How much will the bar elongate under a tensile load 
P � 5000 lb? 

(b) If the same volume of material is made into a bar of 
constant diameter d and length 8.0 ft, what will be the 
elongation under the same load P?
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(b) ADDITIONAL LOAD P0 AT POINT C

(�AC)max � 4.0 mm

�0 � additional shortening of the two columns
due to the load P0

�0 � (�AC)max � �AC � 4.0 mm � 3.7206 mm

� 0.2794 mm

Also, �0 �
P0  L

EAAB

�
P0  L

EABC

�
P0  L

E
¢ 1

AAB

�
1

ABC

≤

Solve for P0:

SUBSTITUTE NUMERICAL VALUES:

P0 � 44,200  N � 44.2  kN

ABC � 3,900 � 10�6
 m2

L � 3.75  m� AAB � 11,000 � 10�6
 m2

�0 � 0.2794 � 10�3
 mE � 206 � 109

 N�m2

P0 �
E�0

L
 ¢ AAB  ABC

AAB � ABC

≤

d1 = 0.75 in.

P

d2 = 0.50 in.

4.0 ft 4.0 ft

P = 5000 lb

Solution 2.3-7 Bar in tension

d1 = 0.75 in.

P

d2 = 0.50 in.

4.0 ft 4.0 ft

P = 5000 lb

P � 5000 lb

E � 30 � 106 psi

L � 4 ft � 48 in.

(a) ELONGATION OF NONPRISMATIC BAR

� 0.0589  in. 

� B 1
�
4 (0.75  in)2 �

1
�
4 (0.50  in.)2 R

� �
(5000  lb)(48  in.)

30 �  106
 psi

� � a  
Ni  Li

Ei  Ai

�
PL

E a
1

Ai

(b) ELONGATION OF PRISMATIC BAR OF SAME VOLUME

Original bar: Vo � A1L � A2L � L(A1 � A2)

Prismatic bar: Vp � Ap(2L)

Equate volumes and solve for Ap:

Vo � Vp L(A1 � A2) � Ap(2L)

NOTE: A prismatic bar of the same volume will
always have a smaller change in length than will a
nonprismatic bar, provided the constant axial load
P, modulus E, and total length L are the same.

� 0.0501  in.

� �
P(2L)

EAp

�
(5000  lb)(2)(48  in.)

(30 � 106
 psi) (0.3191  in.2)

�  
�

8
[ (0.75  in.)2 � (0.50  in.)2 ] � 0.3191  in.2

Ap �
A1 � A2

2
�

1

2
 ¢�

4
≤ (d1

2 � d2
2)



Solution 2.3-8 Bar with a hole
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d2d1

L
4

P P

— L
4

— L
2

—

d

d � diameter of hole

SHORTENING � OF THE BAR

(Eq. 1)

NUMERICAL VALUES (DATA):

� � maximum allowable shortening of the bar
� 8.0 mm

�
PL

�E
 ¢ 1

d1
2 � d2 �

1

d1
2 �

2

d2
2≤

�
P

EC L �4
�

4
(d1

2 � d2)
�

L �4
�

4
d1

2

�
L�2
�

4
d2

2
S

� � a  
Ni  Li

Ei  Ai

�
P

E
 a  

Li

Ai

P � 110 kN L � 1.2 m E � 4.0 GPa

d1 � 100 mm

dmax � maximum allowable diameter of the hole

d2 � 60 mm

SUBSTITUTE NUMERICAL VALUES INTO EQ. (1) FOR �
AND SOLVE FOR d � dmax:

UNITS: Newtons and meters

�

dmax � 23.9  mm 

d � 0.02387  m

d2 � 569.81 � 10�6
 m2

� 761.598 � 100 � 555.556 � 106.042
1

0.01 � d2

761.598 �
1

0.01 � d2 �
1

0.01
�

2

0.0036

B 1

(0.1)2 � d2 �
1

(0.1)2 �
2

(0.06)2 R
0.008 �

(110,000)(1.2)

�(4.0 � 109)

Problem 2.3-9 A wood pile, driven into the earth, supports a load P entirely
by friction along its sides (see figure). The friction force f per unit length of pile
is assumed to be uniformly distributed over the surface of the pile. The pile has
length L, cross-sectional area A, and modulus of elasticity E.

(a) Derive a formula for the shortening � of the pile in terms of P, L, E, 
and A. 

(b) Draw a diagram showing how the compressive stress �c varies throughout
the length of the pile.

L

P

f

Problem 2.3-8 A bar ABC of length L consists of two parts
of equal lengths but different diameters (see figure). Segment
AB has diameter d1 � 100 mm and segment BC has diameter
d2 � 60 mm. Both segments have length L/2 � 0.6 m. A
longitudinal hole of diameter d is drilled through segment AB
for one-half of its length (distance L/4 � 0.3 m). The bar is
made of plastic having modulus of elasticity E � 4.0 GPa.
Compressive loads P � 110 kN act at the ends of the bar. 

If the shortening of the bar is limited to 8.0 mm, what 
is the maximum allowable diameter dmax of the hole?

d2

d1

L
4

P P

A B
C

— L
4

— L
2

—



Solution 2.3-9 Wood pile with friction

SECTION 2.3 Changes in Lengths under Nonuniform Conditions 81

FROM FREE-BODY DIAGRAM OF PILE:

(Eq. 1)

(a) SHORTENING � OF PILE:

At distance y from the base:

©Fvert � 0�c�   T��fL � P � 0�f �
P

L

N(y) � axial force N(y) � fy (Eq. 2)

(b) COMPRESSIVE STRESS �c IN PILE

At the base (y � 0): �c � 0

See the diagram above.

At  the  top(y � L):  sc �
P

A

sc �
N(y)

A
�

fy

A
�

Py

AL

� �
PL

2EA

� � �
L

0

d� �
f

EA �
L

0

ydy �
fL2

2EA
�

PL

2EA

d� �
N(y) dy

EA
�

fy dy

EA

L

y

P

f

dy f = 
P
L

�c = 
Py

AL

P
A

0

Compressive stress
in pile

Friction force
per unit
length of pile

Problem 2.3-10 A prismatic bar AB of length L, cross-sectional area A, modulus
of elasticity E, and weight W hangs vertically under its own weight (see figure). 

(a) Derive a formula for the downward displacement �C of point C, located 
at distance h from the lower end of the bar. 

(b) What is the elongation �B of the entire bar? 
(c) What is the ratio � of the elongation of the upper half of the bar to the

elongation of the lower half of the bar?

L

h

B

A

C

Solution 2.3-10 Prismatic bar hanging vertically

W � Weight of bar

(a) DOWNWARD

DISPLACEMENT �C

Consider an element at
distance y from the
lower end.

(b) ELONGATION OF BAR (h � 0)

(c) RATIO OF ELONGATIONS

Elongation of lower half of bar:

b�
�upper

�lower
�

3�8
1�8

� 3

�lower � �B � �upper �
WL

2EA
�

3WL

8EA
�

WL

8EA

�upper �
3WL

8EA

Elongation  of  upper  half  of  bar  ¢h �
L

2
≤:

�B �
WL

2EA
L

h

y

B

A

C

dy

�C �
W

2EAL
(L2 � h2)

�
W

2EAL
(L2 � h2)�C � �

L

h

d� � �
L

h

Wydy

EAL

N(y) �
Wy

L
�d� �

N(y)dy

EA
�

Wydy

EAL



Problem 2.3-11 A flat bar of rectangular cross section, length
L, and constant thickness t is subjected to tension by forces 
P (see figure). The width of the bar varies linearly from b1 at 
the smaller end to b2 at the larger end. Assume that the angle 
of taper is small.

(a) Derive the following formula for the elongation of the
bar:

� � �
Et(b

P

2

L
� b1)
� ln �

b
b

2

1

�

(b) Calculate the elongation, assuming L � 5 ft, t � 1.0 in., 
P � 25 k, b1 � 4.0 in., b2 � 6.0 in., and E � 30 � 106 psi.
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P

P

t

b1

b2

L

Solution 2.3-11 Tapered bar (rectangular cross section)

P

dx
x

P

L0 L

0 b1 b b2

t � thickness (constant)

(Eq. 1)

(a) ELONGATION OF THE BAR

(Eq. 2) �
PL0

Eb1t
 ln x �

L0

L0�L

�
PL0

Eb1t
  ln 

L0 � L

L0

 � � �
L0�L

L0

d� �
PL0

Eb1t
�

L0�L

L0

dx
x

 d� �
Pdx

EA(x)
�

PL0  dx

Eb1tx

A(x) � bt � b1t ¢ x

L0
≤

b � b1¢ x

L0
≤�b2 � b1¢L0 � L

L0
≤

(Eq. 3)

(Eq. 4)

Substitute Eqs. (3) and (4) into Eq. (2):

(Eq. 5)

(b) SUBSTITUTE NUMERICAL VALUES:

L � 5 ft � 60 in. t � 10 in.

P � 25 k b1 � 4.0 in.

b2 � 6.0 in. E � 30 � 106 psi

From  Eq.  (5):  � � 0.010  in.

� �
PL

Et(b2 � b1)
 ln  

b2

b1

Solve  Eq.  (3) for  L0:    L0 � L ¢ b1

b2 � b1
≤

From  Eq.  (1):  

L0 � L

L0
�

b2

b1



Problem 2.3-12 A post AB supporting equipment in a laboratory is
tapered uniformly throughout its height H (see figure). The cross
sections of the post are square, with dimensions b � b at the top
and 1.5b � 1.5b at the base.

Derive a formula for the shortening � of the post due to the
compressive load P acting at the top. (Assume that the angle of
taper is small and disregard the weight of the post itself.)

Solution 2.3-12 Tapered post
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H

P

A

B

A b

b

B 1.5b

1.5b

Square cross sections

b � width at A

1.5b � width at B

by � width at distance y

Ay � cross-sectional area at distance y

� (by)
2 �

b2

H2 (H � 0.5y)2

�
b

H
(H � 0.5y)

� b � (1.5b � b)
y

H

SHORTENING OF ELEMENT dy

SHORTENING OF ENTIRE POST

�
2PH

3Eb2

�
PH2

Eb2 B� 1

(0.5)(1.5H)
�

1

0.5H
R

� �
PH2

Eb2 B� 1

(0.5)(H � 0.5y)
R

0

H

From  Appendix  C:  � dx

(a � bx)2 � �
1

b(a � bx)

� � �d� �
PH2

Eb2 �
H

0

dy

(H � 0.5y)2

d� �
Pdy

EAy

�
Pdy

E  ¢ b2

H 2≤  (H � 0.5y)2

P

A

B

y

dy

b

by

1.5 b

H



Problem 2.3-13 A long, slender bar in the shape of a right circular cone
with length L and base diameter d hangs vertically under the action of its
own weight (see figure). The weight of the cone is W and the modulus of
elasticity of the material is E.

Derive a formula for the increase � in the length of the bar due to 
its own weight. (Assume that the angle of taper of the cone is small.)

Solution 2.3-13 Conical bar hanging vertically
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d

L

ELEMENT OF BAR

W�weight of cone

ELONGATION OF ELEMENT dy

ELONGATION OF CONICAL BAR

� � �d� �
4W

�d 2 EL �
L

0

y  dy �
2WL

�  d2 E

d� �
Ny  dy

E  Ay

�
Wy  dy

E  ABL
�

4W

�  d 2
 EL

 y dy

d

y
L

dy
dy

Ny

Ny

TERMINOLOGY

Ny � axial force acting on element dy

Ay � cross-sectional area at element dy

AB � cross-sectional area at base of cone

V � volume of cone

Vy � volume of cone below element dy

Wy � weight of cone below element dy

Ny � Wy

�
Vy

V
(W) �

AyyW

ABL

�
1

3
 Ay  y

�
1

3
AB  L

�
�  d2

4



Problem 2.3-14 A bar ABC revolves in a horizontal plane about a
vertical axis at the midpoint C (see figure). The bar, which has length 
2L and cross-sectional area A, revolves at constant angular speed �. 
Each half of the bar (AC and BC) has weight W1 and supports a weight 
W2 at its end.

Derive the following formula for the elongation of one-half of the 
bar (that is, the elongation of either AC or BC):

� � �
3
L
g

2

E
�

A

2

� (W1 � 3W2)

in which E is the modulus of elasticity of the material of the bar and 
g is the acceleration of gravity.

Solution 2.3-14 Rotating bar
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A C B
�

L L

W2 W1 W1 W2

C
B

�

L

W1 W2

x

F(x)

dx
d��

� � angular speed     

A � cross-sectional area

E � modulus of elasticity

g � acceleration of gravity

F(x) � axial force in bar at distance x from point C

Consider an element of length dx at distance x from
point C.

To find the force F(x) acting on this element, we
must find the inertia force of the part of the bar from
distance x to distance L, plus the inertia force of the
weight W2.

Since the inertia force varies with distance from
point C, we now must consider an element of 
length d� at distance �, where � varies from x to L.

Acceleration of element � ��2

Centrifugal force produced by element

� (mass)(acceleration) �
W1�

2

gL
 jdj

Mass  of  element  dj�
dj

L
¢W1

g
≤

Centrifugal force produced by weight W2

AXIAL FORCE F(x)

ELONGATION OF BAR BC

�
L2�2

3gEA
(W1 � 3W2)

 �
W1L

2�2

3gEA
�

W2L
2�2

gEA

�
W2L�2

gEA
 �

L

0

 dx �
W1�

2

2gLEA
B �L

0

L2
 dx � �

L

0

x2
 dxR

� �
L

0

W1�
2

2gLEA
(L2 � x2)dx � �

L

0

W2L�2dx

gEA

 � � �
L

0

F(x)  dx

EA

 �
W1�

2

2gL
(L2 � x2) �

W2L�2

g

 F(x) � �
j�L

j�x

W1�
2

gL
 jdj�

W2L�2

g

� ¢W2

g
≤(L�2)



Problem 2.3-15 The main cables of a suspension bridge 
[see part (a) of the figure] follow a curve that is nearly parabolic
because the primary load on the cables is the weight of the bridge
deck, which is uniform in intensity along the horizontal. Therefore,
let us represent the central region AOB of one of the main cables
[see part (b) of the figure] as a parabolic cable supported at points 
A and B and carrying a uniform load of intensity q along the
horizontal. The span of the cable is L, the sag is h, the axial rigidity
is EA, and the origin of coordinates is at midspan.

(a) Derive the following formula for the elongation of cable
AOB shown in part (b) of the figure:

� � �
8
q
h
L
E

3

A
� (1 � �

1
3
6
L
h
2

2

�)

(b) Calculate the elongation � of the central span of one of 
the main cables of the Golden Gate Bridge, for which the
dimensions and properties are L � 4200 ft, h � 470 ft, 
q � 12,700 lb/ft, and E � 28,800,000 psi. The cable
consists of 27,572 parallel wires of diameter 0.196 in.

Hint: Determine the tensile force T at any point in the cable
from a free-body diagram of part of the cable; then determine 
the elongation of an element of the cable of length ds; finally,
integrate along the curve of the cable to obtain an equation for 
the elongation �.

Solution 2.3-15 Cable of a suspension bridge
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BA

O

L
2

q

y

(b)

(a)

x

h 

— L
2
—

Equation of parabolic curve:

dy

dx
�

8hx

L2

y �
4hx2

L2

BA

O

L
2

q

y

x

h 

— L
2
—

D

B

O

L
2

q

y

x

h 

—

D
H

VB

HB

FREE-BODY DIAGRAM OF HALF OF CABLE

©Fhorizontal � 0

(Eq. 1)

©Fvertical � 0

(Eq. 2)VB �
qL

2

HB � H �
qL2

8h

H �
qL2

8h

� Hh �
qL

2
¢L

4
≤� 0

©MB � 0  ��
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FREE-BODY DIAGRAM OF SEGMENT DB OF CABLE

©Fhoriz � 0 TH � HB

(Eq. 3)

� qx (Eq. 4)

TENSILE FORCE T IN CABLE

(Eq. 5)

ELONGATION d� OF AN ELEMENT OF LENGTH ds

(Eq. 6) � dxB1 �
64h2x2

L4

 � dxB1 � ¢8hx

L2 ≤2
 ds � �(dx)2 � (dy)2 � dx  B1 � ¢dy

dx
≤2

d� �
Tds

EA

�
qL2

8hB1 �
64h2x2

L4

T � �TH
2 � TV

2 �B¢qL2

8h
≤2 � (qx)2

TV � VB � q ¢L
2

� x≤�
qL

2
�

qL

2
� qx

©Fvert � 0�VB � TV � q ¢L
2

� x≤� 0

�
qL2

8h

(a) ELONGATION � OF CABLE AOB

Substitute for T from Eq. (5) and for ds
from Eq. (6):

For both halves of cable:

(Eq. 7)

(b) GOLDEN GATE BRIDGE CABLE

L � 4200 ft h � 470 ft
q � 12,700 lb/ft E � 28,800,000 psi

27,572 wires of diameter d � 0.196 in.

Substitute into Eq. (7):

� � 133.7  in � 11.14  ft  

A � (27,572)¢�
4
≤(0.196  in.)2 � 831.90  in.2

� �
qL3

8hEA
 ¢1 �

16h2

3L2 ≤
� �

2

EA �
L�2

0

qL2

8h
 ¢1 �

64h2x2

L4 ≤  dx

� �
1

EA �qL2

8h
 ¢1 �

64h2x2

L4 ≤  dx

� � �d� � �T  ds

EA

B

L

2

q

y

x

h − 

—

D

0

x
− x

TH �

4hx2

L2

4hx2

L2

HB

VB

T TV

D

T

TH

�

TV

dy

dxT

T

ds



Statically Indeterminate Structures

Problem 2.4-1 The assembly shown in the figure consists of a brass
core (diameter d1 � 0.25 in.) surrounded by a steel shell (inner diameter
d2 � 0.28 in., outer diameter d3 � 0.35 in.). A load P compresses the 
core and shell, which have length L � 4.0 in. The moduli of elasticity 
of the brass and steel are Eb � 15 � 106 psi and Es � 30 � 106 psi,
respectively. 

(a) What load P will compress the assembly by 0.003 in.?
(b) If the allowable stress in the steel is 22 ksi and the allowable 

stress in the brass is 16 ksi, what is the allowable compressive 
load Pallow? (Suggestion: Use the equations derived in 
Example 2-5.)

Solution 2.4-1 Cylindrical assembly in compression
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P

Steel shell
Brass core

d3

d1

d2

L

P

Steel shell

Brass core

d3

d1

d2

L

d1 � 0.25 in. Eb�15 � 106 psi

d2 � 0.28 in. Es�30 � 106 psi

(a) DECREASE IN LENGTH (� � 0.003 in.)

Use Eq. (2-13) of Example 2-5.

P � (Es  As � Eb  Ab)¢�

L
≤

� �
PL

Es  As � Eb  Ab

�or

L � 4.0  in.�Ab �
�

4
d1

2� 0.04909  in.2

d3 � 0.35  in.�As �
�

4
(d3

2 � d2
2) � 0.03464  in.2

Substitute numerical values:

(b) ALLOWABLE LOAD

�s�22 ksi �b�16 ksi

Use Eqs. (2-12a and b) of Example 2-5.

For steel:

For brass:

Steel  governs.�Pallow � 1300  lb

Ps � (1.776 � 106
 lb)¢ 16  ksi

15 � 106
 psi
≤� 1890  lb

sb �
PEb

Es  As � Eb  Ab

�Ps � (Es  As � Eb  Ab)
sb

Eb

Ps � (1.776 � 106
 lb)¢ 22  ksi

30 � 106
 psi
≤� 1300  lb

ss �
PEs

Es  As � Eb  Ab

�Ps � (Es  As � Eb  Ab)
ss

Es

� 1330  lb

P � (1.776 � 106
 lb)¢0.003  in.

4.0  in.
≤

 � 1.776 � 106
 lb

� (15 � 106
 psi) (0.04909  in.2)

 Es  As � Eb  Ab � (30 � 106
 psi) (0.03464  in.2)



Problem 2.4-2 A cylindrical assembly consisting of a brass core and 
an aluminum collar is compressed by a load P (see figure). The length 
of the aluminum collar and brass core is 350 mm, the diameter of the 
core is 25 mm, and the outside diameter of the collar is 40 mm. Also, the
moduli of elasticity of the aluminum and brass are 72 GPa and 100 GPa,
respectively. 

(a) If the length of the assembly decreases by 0.1% when the load 
P is applied, what is the magnitude of the load? 

(b) What is the maximum permissible load Pmax if the allowable
stresses in the aluminum and brass are 80 MPa and 120 MPa,
respectively? (Suggestion: Use the equations derived in 
Example 2-5.)

Solution 2.4-2 Cylindrical assembly in compression
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Aluminum collar

Brass core

25 mm

40 mm

P

350 mm

A
B

db

da

P

350 mm

A � aluminum

B � brass

L � 350 mm

da �40 mm

db � 25 mm

�765.8 mm2

(a) DECREASE IN LENGTH

(� � 0.1% of L � 0.350 mm)

Use Eq. (2-13) of Example 2-5.

� 490.9  mm2

Ea � 72  GPa�Eb � 100  GPa�Ab �
�

4
db

2

Aa �
�

4
(da

2 � db
2)

Substitute numerical values:

Ea Aa � Eb Ab � (72 GPa)(765.8 mm2)
�(100 GPa)(490.9 mm2)

� 55.135 MN � 49.090 MN

� 104.23 MN

(b) ALLOWABLE LOAD

�a � 80 MPa �b � 120 MPa

Use Eqs. (2-12a and b) of Example 2-5.

For aluminum:

For brass:

Aluminum  governs.�Pmax � 116  kN

Pb � (104.23  MN)¢120  MPa

100  GPa
≤� 125.1  kN

sb �
PEb

Ea Aa� Eb Ab

�Pb � (Ea  Aa � Eb  Ab)¢sb

Eb

≤

Pa � (104.23  MN)¢80  MPa

72  GPa
≤� 115.8  kN

sa �
PEa

Ea Aa � Eb Ab

�Pa � (Ea Aa� Eb Ab)¢sa

Ea

≤

� 104.2  kN  

P � (104.23  MN)¢0.350  mm

350  mm
≤

P � (Ea  Aa � Eb  Ab)¢�

L
≤

� �
PL

Ea  Aa � Eb Ab

�or



Problem 2.4-3 Three prismatic bars, two of material A and one of material B,
transmit a tensile load P (see figure). The two outer bars (material A) are identical.
The cross-sectional area of the middle bar (material B) is 50% larger than the
cross-sectional area of one of the outer bars. Also, the modulus of elasticity of
material A is twice that of material B.

(a) What fraction of the load P is transmitted by the middle bar?
(b) What is the ratio of the stress in the middle bar to the stress in the outer

bars?
(c) What is the ratio of the strain in the middle bar to the strain in the outer

bars?

Solution 2.4-3 Prismatic bars in tension
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A

A

B
P

A

A

B
P

FREE-BODY DIAGRAM OF END PLATE

EQUATION OF EQUILIBRIUM

©Fhoriz� 0 PA � PB � P � 0 (1)

EQUATION OF COMPATIBILITY

�A � �B (2)

FORCE-DISPLACEMENT RELATIONS

AA � total area of both outer bars

(3)

Substitute into Eq. (2):

(4)

SOLUTION OF THE EQUATIONS

Solve simultaneously Eqs. (1) and (4):

(5)

Substitute into Eq. (3):

(6)� � �A � �B �
PL

EA AA � EB AB

PA �
EA AAP

EA AA � EB AB

�PB �
EB ABP

EA AA � EB AB

PA  L

EA  AA

 �
PB  L

EB  AB

�A �
PA  L

EA  AA

��B �
PB  L

EB  AB

STRESSES:

(7)

(a) LOAD IN MIDDLE BAR

(b) RATIO OF STRESSES

(c) RATIO OF STRAINS

All bars have the same strain

Ratio � 1

sB

sA
�

EB

EA

�
1

2

∴
PB

P
�

1

¢EA

EB

≤ ¢AA

AB

≤� 1

�
1

8

3
� 1

�
3

11

Given:  

EA

EB

� 2�
AA

AB

�
1 � 1

1.5
�

4

3

PB

P
�

EB AB

EA AA � EB AB

�
1

EA AA

EB AB

� 1

sB �
PB

AB

�
EBP

EA AA � EB AB

sA �
PA

AA

�
EAP

EA AA � EB ABP

PA
2

PB
PA
2



Problem 2.4-4 A bar ACB having two different cross-sectional areas A1
and A2 is held between rigid supports at A and B (see figure). A load P
acts at point C, which is distance b1 from end A and distance b2 from 
end B. 

(a) Obtain formulas for the reactions RA and RB at supports A and B,
respectively, due to the load P. 

(b) Obtain a formula for the displacement �C of point C. 
(c) What is the ratio of the stress �1 in region AC to the stress �2 in 

region CB?

Solution 2.4-4 Bar with intermediate load
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C B

b1

A1

b2

A
A2

P

C B

b1 b2

A1 A2

A
P

FREE-BODY DIAGRAM

EQUATION OF EQUILIBRIUM

©Fhoriz � 0 RA � RB � P (Eq. 1)

EQUATION OF COMPATIBILITY

�AC � elongation of AC

�CB � shortening of CB

�AC � �CB (Eq. 2)

FORCE DISPLACEMENT RELATIONS

(Eqs. 3&4)

(a) SOLUTION OF EQUATIONS

Substitute Eq. (3) and Eq. (4) into Eq. (2):

(Eq. 5)
RA  b1

EA1
�

RB  b2

EA2

�AC �
RA b1

EA1
��CB �

RB b2

EA2

Solve Eq. (1) and Eq. (5) simultaneously:

(b) DISPLACEMENT OF POINT C

(c) RATIO OF STRESSES

(Note that if b1 � b2, the stresses are numerically
equal regardless of the areas A1 and A2.)

s1

s2
�

b2

b1

s1 �
RA

A1
 (tension)�s2 �

RB

A2
 (compression)

�C � �AC �
RA  b1

EA1
�

b1  b2  P

E(b1  A2 � b2  A1)

RA �
b2 A1  P

b1  A2 � b2  A1
�RB �

b1 A2  P

b1  A2 � b2  A1

C B

RA

RB
A

P



Problem 2.4-5 Three steel cables jointly support a load of 12 k (see
figure). The diameter of the middle cable is 3⁄4 in. and the diameter of each
outer cable is 1⁄2 in. The tensions in the cables are adjusted so that each
cable carries one-third of the load (i.e., 4 k). Later, the load is increased
by 9 k to a total load of 21 k. 

(a) What percent of the total load is now carried by the middle cable? 
(b) What are the stresses �M and �O in the middle and outer cables,

respectively? (Note: See Table 2-1 in Section 2.2 for properties 
of cables.)

Solution 2.4-5 Three cables in tension
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P

1
2

in.

1
2

in.

3
4

in.

AREAS OF CABLES (from Table 2-1)

Middle cable: AM � 0.268 in.2

Outer cables: AO � 0.119 in.2

(for each cable)

FIRST LOADING

P1 � 12 k 

SECOND LOADING

P2 � 9 k (additional load)

EQUATION OF EQUILIBRIUM

©Fvert � 0 2PO � PM � P2 � 0 (1)

EQUATION OF COMPATIBILITY

�M � �O (2)

¢Each  cable  carries  

P1

3
 or  4  k.≤

FORCE-DISPLACEMENT RELATIONS

(3, 4)

SUBSTITUTE INTO COMPATIBILITY EQUATION:

(5)

SOLVE SIMULTANEOUSLY EQS. (1) AND (5):

FORCES IN CABLES

Middle cable: Force � 4 k � 4.767 k � 8.767 k

Outer cables: Force � 4 k � 2.117 k � 6.117 k

(for each cable)

(a) PERCENT OF TOTAL LOAD CARRIED BY MIDDLE CABLE

(b) STRESSES IN CABLES (� � P/A)

Outer  cables:    sO �
6.117  k

0.119  in.2
� 51.4  ksi

Middle  cable:  sM �
8.767  k

0.268  in.2
� 32.7  ksi

Percent �
8.767  k

21  k
(100%) � 41.7%

� 2.117  k

 Po � P2  ¢ Ao

AM � 2AO

≤� (9  k)¢0.119  in.2

0.506  in.2
≤

� 4.767  k

 PM � P2  ¢ AM

AM � 2AO

≤� (9  k)¢0.268  in.2

0.506  in.2
≤

PML

EAM

�
POL

EAO

�
PM

AM

�
PO

AO

�M �
PML

EAM

��O �
PoL

EAo

P2 = 9 k

PO POPM



Problem 2.4-6 A plastic rod AB of length L � 0.5 m has a 
diameter d1 � 30 mm (see figure). A plastic sleeve CD of length 
c � 0.3 m and outer diameter d2 � 45 mm is securely bonded 
to the rod so that no slippage can occur between the rod and the
sleeve. The rod is made of an acrylic with modulus of elasticity 
E1 � 3.1 GPa and the sleeve is made of a polyamide with 
E2 � 2.5 GPa. 

(a) Calculate the elongation � of the rod when it is pulled by
axial forces P � 12 kN. 

(b) If the sleeve is extended for the full length of the rod, 
what is the elongation? 

(c) If the sleeve is removed, what is the elongation?

Solution 2.4-6 Plastic rod with sleeve
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L

c bb

P P

A BC D

d1 d2

L

c bb

P P

A BC Dd1 d1
d2

P � 12 kN d1 � 30 mm b � 100 mm

L � 500 mm d2 � 45 mm c � 300 mm

Rod:   E1 � 3.1 GPa

Sleeve: E2 � 2.5 GPa

E1A1 � E2A2 � 4.400 MN

(a) ELONGATION OF ROD

(From Eq. 2-13 of Example 2-5)

� � 2�AC � �CD � 1.91  mm

 � 0.81815  mm

 Part  CD:  �CD �
Pc

E1A1E2A2

 Part  AC:  �AC �
Pb

E1A1
� 0.5476  mm

Sleeve:  A2 �
�

4
(d2

2� d1
2) � 883.57  mm2

Rod:  A1 �
�d1

2

4
� 706.86  mm2

(b) SLEEVE AT FULL LENGTH

(c) SLEEVE REMOVED

� �
PL

E1A1
� 2.74  mm

� 1.36  mm

� � �CD  ¢L
c
≤� (0.81815  mm)  ¢500  mm

300  mm
≤



Problem 2.4-7 The axially loaded bar ABCD shown in the figure is held
between rigid supports. The bar has cross-sectional area A1 from A to C
and 2A1 from C to D. 

(a) Derive formulas for the reactions RA and RD at the ends of the bar. 
(b) Determine the displacements �B and �C at points B and C,

respectively. 
(c) Draw a diagram in which the abscissa is the distance from the 

left-hand support to any point in the bar and the ordinate is the
horizontal displacement � at that point.

Solution 2.4-7 Bar with fixed ends
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A B

A1 1.5A1

C

P

D

L
4

— L
4

— L
2

—

FREE-BODY DIAGRAM OF BAR

EQUATION OF EQUILIBRIUM

©Fhoriz � 0 RA � RD � P
(Eq. 1)

EQUATION OF COMPATIBILITY

�AB � �BC � �CD � 0 (Eq. 2)

Positive means elongation.

FORCE-DISPLACEMENT EQUATIONS

(Eqs. 3, 4)

(Eq. 5)

SOLUTION OF EQUATIONS

Substitute Eqs. (3), (4), and (5) into Eq. (2):

(Eq. 6)
RAL

4EA1
�

(RA � P)(L)

4EA1
�

RDL

4EA1
� 0

�CD � �
RD(L�2)

E(2A1)

�AB �
RA(L �4)

EA1
��BC �

(RA � P)(L �4)

EA1

(a) REACTIONS

Solve simultaneously Eqs. (1) and (6):

(b) DISPLACEMENTS AT POINTS B AND C

(c) DISPLACEMENT DIAGRAM

�
PL

12EA1
 (To  the  right)

�C � ��CD� �
RDL

4EA1

�B � �AB �
RAL

4EA1
�

PL

6EA1
 (To  the  right)

RA �
2P

3
�RD �

P

3A B

A1
2A1

C

P

D

L
4

— L
4

— L
2

—

RDRA

Displacement

Distance from
end AL

4
— L

2
— L0

A B C D

PL
6EA1
——

PL
12EA1
——



Problem 2.4-8 The fixed-end bar ABCD consists of three prismatic
segments, as shown in the figure. The end segments have cross-
sectional area A1 � 840 mm2 and length L1 � 200 mm. The middle
segment has cross-sectional area A2 � 1260 mm2 and length L2 � 250
mm. Loads PB and PC are equal to 25.5 kN and 17.0 kN, respectively. 

(a) Determine the reactions RA and RD at the fixed supports. 
(b) Determine the compressive axial force FBC in the middle

segment of the bar. 

Solution 2.4-8 Bar with three segments
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A1 A1A2

A D
B C

PB PC

L1 L1L2

A1
A1A2

A D
B C

PB PC

L1 L1L2

PB � 25.5 kN PC � 17.0 kN

L1 � 200 mm L2 � 250 mm

A1 � 840 mm2 A2 � 1260 mm2

m � meter

SOLUTION OF EQUATIONS

Substitute Eqs. (3), (4), and (5) into Eq. (2):

Simplify and substitute PB � 25.5 kN:

(Eq. 6)

(a) REACTIONS RA AND RD

Solve simultaneously Eqs. (1) and (6).

From (1): RD � RA � 8.5 kN

Substitute into (6) and solve for RA:

(b) COMPRESSIVE AXIAL FORCE FBC

FBC � PB � RA � PC � RD � 15.0  kN

RD � RA � 8.5  kN � 2.0  kN

RA � 10.5 kN

RA ¢674.603  

1
m
≤� 7083.34  

kN
m

� 5,059.53  

kN
m

RA ¢436.508  

1
m
≤� RD ¢238.095  

1
m
≤

�
PB

E
 ¢198.413  

1
m
≤�

RD

E
 ¢238.095  

1
m
≤� 0

RA

E
 ¢238.095 

1
m
≤�

RA

E
 ¢198.413  

1
m
≤

FREE-BODY DIAGRAM

EQUATION OF EQUILIBRIUM

©Fhoriz � 0 S
�

d�

PB � RD � PC � RA � 0 or 

RA � RD � PB � PC � 8.5 kN (Eq. 1)

EQUATION OF COMPATIBILITY

�AD � elongation of entire bar

�AD � �AB � �BC � �CD � 0 (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eq. 3)

(Eq. 4)

(Eq. 5)�CD �
RDL1

EA1
�

RD

E
 ¢238.095  

1
m
≤

�
RA

E
 ¢198.413  

1
m
≤�

PB

E
 ¢198.413  

1
m
≤

�BC �
(RA � PB)L2

EA2

�AB �
RAL1

EA1
�

RA

E
 ¢238.095  

1
m
≤

A DB C

PB PCRA RD



Problem 2.4-9 The aluminum and steel pipes shown in the figure are
fastened to rigid supports at ends A and B and to a rigid plate C at their
junction. The aluminum pipe is twice as long as the steel pipe. Two equal
and symmetrically placed loads P act on the plate at C. 

(a) Obtain formulas for the axial stresses �a and �s in the aluminum
and steel pipes, respectively. 

(b) Calculate the stresses for the following data: P � 12 k, cross-sectional
area of aluminum pipe Aa � 8.92 in.2, cross-sectional area of steel
pipe As � 1.03 in.2, modulus of elasticity of aluminum Ea � 10 � 106

psi, and modulus of elasticity of steel Es � 29 � 106 psi.

Solution 2.4-9 Pipes with intermediate loads
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P

C

P

B

A Steel pipe

Aluminum
pipe

2L

L

Pipe 1 is steel.
Pipe 2 is aluminum.

EQUATION OF EQUILIBRIUM

©Fvert � 0 RA � RB � 2P (Eq. 1)

EQUATION OF COMPATIBILITY

�AB � �AC � �CB � 0 (Eq. 2)

(A positive value of � means elongation.)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4))�AC �
RAL

Es As

��BC � �
RB(2L)

Ea Aa

SOLUTION OF EQUATIONS

Substitute Eqs. (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

(Eqs. 6, 7)

(a) AXIAL STRESSES

(Eq. 8)

(compression)

(Eq. 9)

(tension)

(b) NUMERICAL RESULTS

P � 12 k Aa � 8.92 in.2 As � 1.03 in.2

Ea � 10 � 106 psi Es � 29 � 106 psi

Substitute into Eqs. (8) and (9):

ss � 9,350  psi  (tension)

sa � 1,610  psi  (compression)

Steel:  ss �
RA

As

�
4Es P

Ea Aa � 2Es As

Aluminum:  sa �
RB

Aa

�
2EaP

Ea Aa � 2Es As

RA �
4Es  As P

Ea  Aa � 2Es  As

�RB �
2Ea  Aa P

Ea  Aa � 2Es  As

RAL

Es  As

�
RB(2L)

Ea  Aa

� 0
P

C

P

B

A

2L

L
1

2

P

C

P

B

A

RA

RB

EsAs

Ea Aa



Problem 2.4-10 A rigid bar of weight W � 800 N hangs from three
equally spaced vertical wires, two of steel and one of aluminum (see figure).
The wires also support a load P acting at the midpoint of the bar. The
diameter of the steel wires is 2 mm, and the diameter of the aluminum wire
is 4 mm.

What load Pallow can be supported if the allowable stress in the 
steel wires is 220 MPa and in the aluminum wire is 80 MPa? (Assume 
Es � 210 GPa and Ea � 70 GPa.)

Solution 2.4-10 Rigid bar hanging from three wires
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P

Rigid bar
of weight W

S A S

STEEL WIRES

ds � 2 mm �s � 220 MPa Es � 210 GPa

ALUMINUM WIRES

dA � 4 mm �A � 80 MPa

EA � 70 GPa

FREE-BODY DIAGRAM OF RIGID BAR

EQUATION OF EQUILIBRIUM

©Fvert � 0

2Fs � FA � P � W � 0 (Eq. 1)

EQUATION OF COMPATIBILITY

�s � �A (Eq. 2)

FORCE DISPLACEMENT RELATIONS

(Eqs. 3, 4)�s �
Fs L

Es As

�    �A �
FAL

EAAA

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

(Eq. 6)

(Eq. 7)

STRESSES IN THE WIRES

(Eq. 8)

(Eq. 9)

ALLOWABLE LOADS (FROM EQS. (8) AND (9))

(Eq. 10)

(Eq. 11)

SUBSTITUTE NUMERICAL VALUES INTO EQS. (10) AND (11):

PA � 1713 N

Ps � 1504 N

Steel  governs.�Pallow � 1500  N

AA �
�

4
 (4  mm)2 � 12.5664  mm2

As �
�

4
 (2  mm)2 � 3.1416  mm2

Ps �
ss

Es

(EAAA � 2Es As) � W

PA �
sA

EA

(EAAA � 2Es As) � W

ss �
Fs

As

�
(P � W)Es

EAAA � 2Es As

sA �
FA

AA

�
(P � W)EA

EAAA � 2Es As

Fs � (P � W)¢ Es As

EAAA � 2Es As

≤
FA � (P � W)¢ EAAA

EAAA � 2Es As

≤

Fs L

Es As

�
FAL

EAAA

P

S A S

W = 800 N

P + W

FS FA FS



Problem 2.4-11 A bimetallic bar (or composite bar) of square cross
section with dimensions 2b � 2b is constructed of two different metals
having moduli of elasticity E1 and E2 (see figure). The two parts of the
bar have the same cross-sectional dimensions. The bar is compressed by
forces P acting through rigid end plates. The line of action of the loads
has an eccentricity e of such magnitude that each part of the bar is
stressed uniformly in compression. 

(a) Determine the axial forces P1 and P2 in the two parts of the bar. 
(b) Determine the eccentricity e of the loads. 
(c) Determine the ratio �1/�2 of the stresses in the two parts of the bar.

Solution 2.4-11 Bimetallic bar in compression
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2b

P

e

b
b

b
b

P

e
E1

E2

2b

b2

b
b

P2

P1

P2

P1
E1

E2

E1

E2

FREE-BODY DIAGRAM

(Plate at right-hand end)

EQUATIONS OF EQUILIBRIUM

©F � 0 P1 � P2 � P (Eq. 1)

(Eq. 2)

EQUATION OF COMPATIBILITY

�2 � �1

(Eq. 3)
P2L

E2A
�

P1L

E1A
�or�

P2

E2
�

P1

E1

©M � 0  �  ��Pe � P1¢b2≤� P2¢b2≤� 0

(a) AXIAL FORCES

Solve simultaneously Eqs. (1) and (3):

(b ECCENTRICITY OF LOAD P

Substitute P1 and P2 into Eq. (2) and solve for e:

(c) RATIO OF STRESSES

s1 �
P1

A
�s2 �

P2

A
�
s1

s2
�

P1

P2
�

E1

E2

e �
b(E2 � E1)

2(E2 � E1)

P1 �
PE1

E1 � E2
�P2 �

PE2

E1 � E2

P2

P1

e
P

b
2

b
2



Problem 2.4-12 A circular steel bar ABC (E = 200 GPa) has cross-
sectional area A1 from A to B and cross-sectional area A2 from B to C
(see figure). The bar is supported rigidly at end A and is subjected to 
a load P equal to 40 kN at end C. A circular steel collar BD having 
cross-sectional area A3 supports the bar at B. The collar fits snugly at 
B and D when there is no load.

Determine the elongation �AC of the bar due to the load P. 
(Assume L1� 2L3 � 250 mm, L2 � 225 mm, A1 � 2A3 � 960 mm2,
and A2 � 300 mm2.)

Solution 2.4-12 Bar supported by a collar
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A1

A3

A2

L3

L1

L2

P

C

D

B

A

FREE-BODY DIAGRAM OF BAR ABC AND COLLAR BD

EQUILIBRIUM OF BAR ABC

©Fvert � 0 RA � RD � P � 0 (Eq. 1)

COMPATIBILITY (distance AD does not change)

�AB(bar) � �BD(collar) � 0 (Eq. 2)

(Elongation is positive.)

FORCE-DISPLACEMENT RELATIONS

Substitute into Eq. (2):

(Eq. 3)
RAL1

EA1
�

RDL3

EA3
� 0

�AB �
RAL1

EA1
�  �BD � �

RDL3

EA3

SOLVE SIMULTANEOUSLY EQS. (1) AND (3):

CHANGES IN LENGTHS (Elongation is positive)

ELONGATION OF BAR ABC

�AC � �AB � �AC

SUBSTITUTE NUMERICAL VALUES:

P � 40 kN E � 200 GPa

L1 � 250 mm

L2 � 225 mm

L3 � 125 mm

A1 � 960 mm2

A2 � 300 mm2

A3 � 480 mm2

RESULTS:

RA � RD � 20 kN

�AB � 0.02604 mm

�BC � 0.15000 mm

�AC � �AB � �AC � 0.176  mm

�AB �
RAL1

EA1
�

PL1L3

E(L1A3 � L3A1)
�  �BC �

PL2

EA2

RA �
PL3A1

L1A3 � L3A1
�RD �

PL1A3

L1A3 � L3A1

A1

A2

L1

L2

P

C

RD

B

A

A3
L3

D

B

RD

RD

RA



Problem 2.4-13 A horizontal rigid bar of weight W � 7200 lb is
supported by three slender circular rods that are equally spaced (see
figure). The two outer rods are made of aluminum (E1 � 10 � 106 psi)
with diameter d1 � 0.4 in. and length L1 � 40 in. The inner rod is
magnesium (E2 � 6.5 � 106 psi) with diameter d2 and length L2. The
allowable stresses in the aluminum and magnesium are 24,000 psi and
13,000 psi, respectively. 

If it is desired to have all three rods loaded to their maximum
allowable values, what should be the diameter d2 and length L2 of 
the middle rod?

Solution 2.4-13 Bar supported by three rods
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W = weight of rigid bar

d1d1

d2

L2

L1

BAR 1 ALUMINUM

E1 � 10 � 106 psi

d1 � 0.4 in.

L1 � 40 in.

�1 � 24,000 psi

BAR 2 MAGNESIUM

E2 � 6.5 � 106 psi

d2 � ? L2 � ?

�2 � 13,000 psi

FREE-BODY DIAGRAM OF RIGID BAR

EQUATION OF EQUILIBRIUM

©Fvert � 0

2F1 � F2 � W � 0 (Eq. 1)

FULLY STRESSED RODS

F1 � �1A1 F2 � �2A2

Substitute into Eq. (1):

Diameter d1 is known; solve for d2:

(Eq. 2)d2
2 �

4W
�s2

�
2s1d2

2

s2

2s1¢�d1
2

4
≤�s2¢�d2

2

4
≤� W

A1 �
�d1

2

4
�          A2 �

�d2
2

4

SUBSTITUTE NUMERICAL VALUES:

EQUATION OF COMPATIBILITY

�1 � �2 (Eq. 3)

FORCE-DISPLACEMENT RELATIONS

(Eq. 4)

(Eq. 5)

Substitute (4) and (5) into Eq. (3):

Length L1 is known; solve for L2:

(Eq. 6)

SUBSTITUTE NUMERICAL VALUES:

 � 48.0  in.

 L2 � (40  in.)¢24,000  psi

13,000  psi
≤ ¢6.5 � 106

 psi

10 � 106
 psi
≤

L2 � L1 ¢s1E2

s2E1
≤

s1 ¢L1

E1
≤�s2 ¢L2

E2
≤

�2 �
F2L2

E2A2
�s2 ¢L2

E2
≤

�1 �
F1L1

E1A1
�s1 ¢L1

E1
≤

 d2 � 0.338  in.

 � 0.70518  in.2 � 0.59077  in.2 � 0.11441  in.2

 d2
2 �

4(7200  lb)

�(13,000  psi)
�

2(24,000  psi)  (0.4  in.)2

13,000  psi

W = 7200 lb

1

2

1

W

F1 F2
F1



Problem 2.4-14 A rigid bar ABCD is pinned at point B and 
supported by springs at A and D (see figure). The springs at A and D
have stiffnesses k1 � 10 kN/m and k2 � 25 kN/m, respectively, and the
dimensions a, b, and c are 250 mm, 500 mm, and 200 mm, respectively.
A load P acts at point C.

If the angle of rotation of the bar due to the action of the load P
is limited to 3°, what is the maximum permissible load Pmax?

Solution 2.4-14 Rigid bar supported by springs
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A B C

P

D

c = 200 mm

k1 = 10 kN/m
k2 = 25 kN/m

a = 250 mm b = 500 mm

NUMERICAL DATA

a � 250 mm

b � 500 mm

c � 200 mm

k1 � 10 kN/m

k2 � 25 kN/m

FREE-BODY DIAGRAM AND DISPLACEMENT DIAGRAM

EQUATION OF EQUILIBRIUM

(Eq. 1)©MB � 0   ��   FA(a) � P(c) � FD(b) � 0

umax � 3� �
�

60
 rad

EQUATION OF COMPATIBILITY

(Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

SOLVE SIMULTANEOUSLY EQS. (1) AND (5):

ANGLE OF ROTATION

MAXIMUM LOAD

SUBSTITUTE NUMERICAL VALUES:

 � 1800  N

� (500  mm)2(25  kN�m) ]

 Pmax �
��60  rad

200  mm
[ (250  mm)2(10  kN�m)

Pmax �
umax

c
 (a2k1 � b2k2)

P �
u

c
 (a2k1 � b2k2)

�D �
FD

k2
�

bcP

a2k1 � b2k2

�u�
�D

b
�

cP

a2k1 � b2k2

FA �
ack1P

a2k1 � b2k2

�FD �
bck2P

a2k1 � b2k2

FA

ak1
�

FD

bk2

�A �
FA

k1
�  �D �

FD

k2

�A

a
�

�D

b

A B C

P

D

c
k1

k2

a b

P FD

c

a b

FA RB

A
B C D

�A

�C

�D

�



Problem 2.4-15 A rigid bar AB of length L � 66 in. is hinged to a support
at A and supported by two vertical wires attached at points C and D (see
figure). Both wires have the same cross-sectional area (A � 0.0272 in.2) and
are made of the same material (modulus E � 30 � 106 psi). The wire at C
has length h � 18 in. and the wire at D has length twice that amount. The
horizontal distances are c � 20 in. and d � 50 in.

(a) Determine the tensile stresses �C and �D in the wires due to the
load P � 340 lb acting at end B of the bar. 

(b) Find the downward displacement �B at end B of the bar.

Solution 2.4-15 Bar supported by two wires
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P

A BDC

L

c

d

h

2h

h � 18 in.

2h � 36 in.

c � 20 in.

d � 50 in.

L � 66 in.

E� 30 � 106 psi

A � 0.0272 in.2

P � 340 lb

FREE-BODY DIAGRAM

DISPLACEMENT DIAGRAM

EQUATION OF EQUILIBRIUM

(Eq. 1)

EQUATION OF COMPATIBILITY

(Eq. 2)
�C

c
�

�D

d

©MA � 0  �  ��TC(c) � TD(d) � PL

P

A BDC

L

c

d

h

2h

P

A BDC

RA

TC

TD

A C D B

�C

�D

�B



Problem 2.4-16 A trimetallic bar is uniformly compressed by an
axial force P � 40 kN applied through a rigid end plate (see figure).
The bar consists of a circular steel core surrounded by brass and cop-
per tubes. The steel core has diameter 30 mm, the brass tube has outer
diameter 45 mm, and the copper tube has outer diameter 60 mm. The
corresponding moduli of elasticity are Es � 210 GPa, Eb � 100 GPa,
and Ec � 120 GPa.

Calculate the compressive stresses �s, �b, and �c in the steel, brass,
and copper, respectively, due to the force P.
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FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

TENSILE FORCES IN THE WIRES

Solve simultaneously Eqs. (1) and (5):

(Eqs. 6, 7)

TENSILE STRESSES IN THE WIRES

(Eq. 8)

(Eq. 9)sD �
TD

A
�

dPL

A(2c2 � d2)

sC �
TC

A
�

2cPL

A(2c2 � d2)

TC �
2cPL

2c2 � d2�TD �
dPL

2c2 � d2

TCh

cEA
�

TD(2h)

dEA
�or�

TC

c
�

2TD

d

�C �
TCh

EA
�  �D �

TD(2h)

EA

DISPLACEMENT AT END OF BAR

(Eq. 10)

SUBSTITUTE NUMERICAL VALUES

(a)

(b)

 � 0.0198  in.

�
2(18  in.) (340  lb)(66  in.)2

(30 � 106
 psi) (0.0272  in.2) (3300  in.2)

 �B �
2hPL2

EA(2c2 � d2)

� 12,500  psi

 sD �
dPL

A(2c2 � d2)
�

(50  in.) (340  lb)(66  in.)

(0.0272  in.2) (3300  in.2)

� 10,000  psi

 sC �
2cPL

A(2c2 � d2)
�

2(20  in.) (340  lb)(66  in.)

(0.0272  in.2) (3300  in.2)

2c2 � d2 � 2(20  in.)2 � (50  in.)2 � 3300  in.2

�B � �D  ¢L
d
≤�

2hTD

EA
 ¢L

d
≤�

2hPL2

EA(2c2 � d2)

P = 40 kN
Copper tube Brass tube

Steel core

30
mm

45
mm

60
mm



Solution 2.4-16 Trimetallic bar in compression
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Ps � compressive force in steel core

Pb � compressive force in brass tube

Pc � compressive force in copper tube

FREE-BODY DIAGRAM OF RIGID END PLATE

EQUATION OF EQUILIBRIUM

©Fvert � 0 Ps � Pb � Pc � P (Eq. 1)

EQUATIONS OF COMPATIBILITY

�s � �b �c � �s (Eqs. 2)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4, 5)

SOLUTION OF EQUATIONS

Substitute (3), (4), and (5) into Eqs. (2):

(Eqs. 6, 7)Pb � Ps

Eb Ab

Es As

�Pc � Ps

Ec Ac

Es As

�s �
Ps L

Es As

��b �
Pb L

Eb Ab

��c �
Pc L

Ec Ac

SOLVE SIMULTANEOUSLY EQS. (1), (6), AND (7):

COMPRESSIVE STRESSES

Let ©EA � EsAs � EbAb � EcAc

SUBSTITUTE NUMERICAL VALUES:

P � 40 kN Es � 210 GPa

Eb � 100 GPa Ec � 120 GPa

d1 � 30 mm d2 � 45 mm d3 � 60 mm

©EA�385.238 � 106 N

sc �
PEc

©EA
� 12.5  MPa

sb �
PEb

©EA
� 10.4  MPa

ss �
PEs

©EA
� 21.8  MPa

Ac �
�

4
(d3

2 � d2
2) � 1237.00  mm2

Ab �
�

4
(d2

2 � d1
2) � 883.57  mm2

As �
�

4
d1

2 � 706.86  mm2

sc �
Pc

Ac

�
PEc

©EA

ss �
Ps

As

�
PEs

©EA
�sb �

Pb

Ab

�
PEb

©EA

Pc � P
Ec  Ac

Es  As � Eb  Ab � Ec � Ac

Pb � P 
Eb  Ab

Es  As � Eb  Ab � Ec  Ac

Ps � P 
Es  As

Es  As � Eb  Ab � Ec  Ac

Copper

Brass

Steel

P

Ps

Pb

Pc



Thermal Effects

Problem 2.5-1 The rails of a railroad track are welded together at their
ends (to form continuous rails and thus eliminate the clacking sound of
the wheels) when the temperature is 60°F. 

What compressive stress � is produced in the rails when they 
are heated by the sun to 120°F if the coefficient of thermal expansion 
	 � 6.5 � 10�6/°F and the modulus of elasticity E � 30 � 106 psi?

Solution 2.5-1 Expansion of railroad rails
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The rails are prevented from expanding because of
their great length and lack of expansion joints.

Therefore, each rail is in the same condition as a bar
with fixed ends (see Example 2-7).

The compressive stress in the rails may be calculated
from Eq. (2-18).

 s� 11,700  psi

� (30 � 106
 psi) (6.5 � 10�6��F)(60�F)

 s� E	(¢T )

¢T � 120�F � 60�F � 60�F

Problem 2.5-2 An aluminum pipe has a length of 60 m at a temperature
of 10°C. An adjacent steel pipe at the same temperature is 5 mm longer
than the aluminum pipe. 

At what temperature (degrees Celsius) will the aluminum pipe 
be 15 mm longer than the steel pipe? (Assume that the coefficients 
of thermal expansion of aluminum and steel are 	a � 23 � 10�6/°C 
and 	s � 12 � 10�6/°C, respectively.)

Solution 2.5-2 Aluminum and steel pipes 

INITIAL CONDITIONS

La � 60 m T0 � 10�C

Ls � 60.005 m T0 � 10�C

	a � 23 � 10�6/�C 	s � 12 � 10�6/�C

FINAL CONDITIONS

Aluminum pipe is longer than the steel pipe by the
amount �L � 15 mm.

�T � increase in temperature

�a � 	a(�T)La �s � 	s(�T)Ls

From the figure above:

�a � La � �L � �s � Ls

or, 	a(�T)La � La � �L � 	s(�T)Ls � Ls

Solve for �T:

Substitute numerical values:

	a La � 	s Ls � 659.9 � 10�6 m/�C

� 40.3�C

T � T0 � ¢T � 10�C � 30.31�C

¢T �
15  mm � 5  mm

659.9 � 10�6
 m��C

� 30.31�C

¢T �
¢L � (Ls � La)

	a La � 	s Ls

�a La


L �s Ls

Aluminum pipe

Steel pipe
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Problem 2.5-3 A rigid bar of weight W � 750 lb hangs from three
equally spaced wires, two of steel and one of aluminum (see figure). 
The diameter of the wires is 1⁄8 in. Before they were loaded, all three 
wires had the same length.

What temperature increase �T in all three wires will result in the
entire load being carried by the steel wires? (Assume Es � 30 � 106 psi,
�s � 6.5 � 10�6/°F, and �a � 12 � 10�6/°F.)

Solution 2.5-3 Bar supported by three wires

W = 750 lb

S A S

S � steel A � aluminum

W � 750 lb

Es � 30 � 106 psi

EsAs � 368,155 lb

�s � 6.5 � 10�6/�F

�a � 12 � 10�6/�F

L � Initial length of wires

�1 � increase in length of a steel wire due to
temperature increase �T

� �s (�T)L

As �
�d2

4
� 0.012272  in.2

d �
1

8
 in.

�2 � increase in length of a steel wire due to load
W/2

�3 � increase in length of aluminum wire due to
temperature increase �T

� �a(�T)L

For no load in the aluminum wire:

�1 � �2 � �3

or

Substitute numerical values:

NOTE: If the temperature increase is larger than �T,
the aluminum wire would be in compression, which
is not possible. Therefore, the steel wires continue to
carry all of the load. If the temperature increase is
less than �T, the aluminum wire will be in tension
and carry part of the load.

 � 185�F�

 ¢T �
750  lb

(2)(368,155  lb)(5.5 � 10�6��F)

¢T �
W

2Es As(�a � �s)
�

�s(¢T)L �
WL

2Es As

� �a(¢T )L

�
WL

2Es As

W

S A S

Rigid
Bar

S A S

W
2

W
2

�3

�1

�2
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Problem 2.5-4 A steel rod of diameter 15 mm is held snugly (but
without any initial stresses) between rigid walls by the arrangement
shown in the figure. 

Calculate the temperature drop �T (degrees Celsius) at which 
the average shear stress in the 12-mm diameter bolt becomes 45 MPa.
(For the steel rod, use � � 12 � 10�6/°C and E � 200 GPa.)

Solution 2.5-4 Steel rod with bolted connection

15 mm

12 mm diameter bolt

R � rod

B � bolt

P � tensile force in steel rod due to temperature drop
�T

AR � cross-sectional area of steel rod

From Eq. (2-17) of Example 2-7: P � EAR�(�T)

Bolt is in double shear.

V � shear force acting over one cross section of the
bolt

� � average shear stress on cross section of the bolt

AB � cross-sectional area of bolt

t�
V

AB

�
EAR �(¢T)

2AB

V � P�2 �
1

2
EAR�(¢T)

SUBSTITUTE NUMERICAL VALUES:

� � 45 MPa dB � 12 mm dR � 15 mm

� � 12 � 10�6/�C E � 200 GPa

 ¢T � 24�C�

 ¢T �
2(45  MPa)(12  mm)2

(200  GPa)(12 � 10�6��C)(15  mm)2

¢T �
2tdB

2

E�dR
2

AR �
�dR

2

4
�where  dR � diameter  of  steel  rod

AB �
�dB

2

4
�where  dB � diameter  of  bolt

Solve  for  ¢T:   ¢T �
2tAB

EAR�

15 mm

12 mm diameter bolt

B
R

Problem 2.5-5 A bar AB of length L is held between rigid supports and
heated nonuniformly in such a manner that the temperature increase �T at
distance x from end A is given by the expression �T � �TBx3/L3, where
�TB is the increase in temperature at end B of the bar (see figure). 

Derive a formula for the compressive stress �c in the bar. (Assume
that the material has modulus of elasticity E and coefficient of thermal
expansion �.)

L

A

∆T
∆TB

B

x

0
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Solution 2.5-5 Bar with nonuniform temperature change

At distance x:

REMOVE THE SUPPORT AT END B OF THE BAR:

Consider an element dx at a distance x from end A.

¢T � ¢TB ¢ x3

L3≤

d� � Elongation of element dx

� � elongation of bar

COMPRESSIVE FORCE P REQUIRED TO SHORTEN THE BAR

BY THE AMOUNT �

COMPRESSIVE STRESS IN THE BAR

sc �
P

A
�

E�(¢TB)

4
�

P �
EA�

L
�

1

4
EA�(¢TB)

� � �
L

0

d� � �
L

0

�(¢TB) ¢ x3

L3≤ dx �
1

4
 �(¢TB)L

d� � �(¢T )dx � �(¢TB)¢ x3

L3≤ dx

L

A

∆T
∆TB

B

x

0

L

A B

x dx

Problem 2.5-6 A plastic bar ACB having two different solid circular cross
sections is held between rigid supports as shown in the figure. The diameters 
in the left- and right-hand parts are 50 mm and 75 mm, respectively. The
corresponding lengths are 225 mm and 300 mm. Also, the modulus of elasticity
E is 6.0 GPa, and the coefficient of thermal expansion � is 100 � 10�6/°C. The
bar is subjected to a uniform temperature increase of 30°C. 

Calculate the following quantities: (a) the compressive force P in the bar;
(b) the maximum compressive stress �c; and (c) the displacement �C of point C.

Solution 2.5-6 Bar with rigid supports

300 mm

75 mm

225 mm

A BC50 mm

300 mm

75 mm

225 mm

A B
50 mm

C

E � 6.0 GPa � � 100 � 10�6/�C

LEFT-HAND PART:

L1 � 225 mm d1 � 50 mm

� 1963.5 mm2

�T � 30°C

A1 �  
�

4
 d1

2 �
�

4
 (50  mm)2

RIGHT-HAND PART:

L2 � 300 mm d2 � 75 mm

(a) COMPRESSIVE FORCE P

Remove the support at end B.

A2 �
�

4
 d2

2 �
�

4
 (75  mm)2 � 4417.9  mm2

A
BC

A
BC

P

L1 L2
A1 A2
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Problem 2.5-7 A circular steel rod AB (diameter d1 � 1.0 in., length 
L1 � 3.0 ft) has a bronze sleeve (outer diameter d2 � 1.25 in., length 
L2 � 1.0 ft) shrunk onto it so that the two parts are securely bonded 
(see figure). 

Calculate the total elongation � of the steel bar due to a temperature rise
�T � 500°F. (Material properties are as follows: for steel, Es � 30 � 106 psi 
and �s � 6.5 � 10�6/°F; for bronze, Eb � 15 � 106 psi and �b � 11 � 10�6/°F.)

Solution 2.5-7 Steel rod with bronze sleeve

�T � elongation due to temperature

P � �(�T)(L1�L2)

� 1.5750 mm

�P � shortening due to P

� P(19.0986 � 10�9 m/N�11.3177 � 10�9 m/N)

� (30.4163 � 10�9 m/N)P

(P � newtons)

Compatibility: �T � �P

1.5750 � 10�3 m � (30.4163 � 10�9 m/N)P

P � 51,781  N�or�P � 51.8  kN�

�
PL1

EA1
�

PL2

EA2

(b) MAXIMUM COMPRESSIVE STRESS

(c) DISPLACEMENT OF POINT C

�C � Shortening of AC

(Positive means AC shortens and point C displaces to
the left.)

 �C � 0.314  mm�

� 0.9890  mm � 0.6750  mm

 �C �
PL1

EA1
� �(¢T )L1

sc �
P

A1
�

51.78  kN

1963.5  mm2 � 26.4  MPa�

d2d1
A B

L2

L1

d2d1
A B

L2

L1

L1 � 36 in. L2 � 12 in.

ELONGATION OF THE TWO OUTER PARTS OF THE BAR

�1 � �s(�T)(L1 � L2)

� (6.5 � 10�6/�F)(500�F)(36 in. � 12 in.)

� 0.07800 in.

ELONGATION OF THE MIDDLE PART OF THE BAR

The steel rod and bronze sleeve lengthen the same
amount, so they are in the same condition as the bolt
and sleeve of Example 2-8. Thus, we can calculate
the elongation from Eq. (2-21):

�2 �
(�s  Es  As � �b  Eb  Ab)(¢T)L2

Es  As � Eb  Ab

SUBSTITUTE NUMERICAL VALUES:

�s � 6.5 � 10�6/�F �b � 11 � 10�6/�F

Es � 30 � 106 psi Eb � 15 � 106 psi

d1 � 1.0 in.

d2 � 1.25 in.

�T � 500�F L2 � 12.0 in.

�2 � 0.04493 in.

TOTAL ELONGATION

� � �1 � �2 � 0.123  in.�

Ab �
�

4
(d2

2 � d1
2) � 0.44179  in.2

As �
�

4
 d1

2 � 0.78540  in.2
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Problem 2.5-8 A brass sleeve S is fitted over a steel bolt B (see figure),
and the nut is tightened until it is just snug. The bolt has a diameter 
dB � 25 mm, and the sleeve has inside and outside diameters 
d1 � 26 mm and d2 � 36 mm, respectively.

Calculate the temperature rise �T that is required to produce a
compressive stress of 25 MPa in the sleeve. (Use material properties 
as follows: for the sleeve, �S � 21 � 10�6/°C and ES � 100 GPa; 
for the bolt, �B � 10 � 10�6/°C and EB � 200 GPa.) 
(Suggestion: Use the results of Example 2-8.)

Solution 2.5-8 Brass sleeve fitted over a Steel bolt

Sleeve (S)

Bolt (B)

d2
d1

dB

Subscript S means “sleeve”.

Subscript B means “bolt”.

Use the results of Example 2-8.

�S � compressive force in sleeve

EQUATION (2-20a):

SOLVE FOR �T :

or

¢T �
sS

ES(�S � �B)
¢1 �

ES  AS

EB  AB

≤�

¢T �
sS(ES  AS � EB  AB)

(�S � �B)ES  EB  AB

sS �
(�S � �B)(¢T)ES  EB  AB

ES  AS � EB  AB

 (Compression)

SUBSTITUTE NUMERICAL VALUES:

�S � 25 MPa

d2 � 36 mm d1 � 26 mm dB � 25 mm

ES � 100 GPa EB � 200 GPa

�S � 21 � 10�6/�C �B � 10 � 10�6/�C

(Increase in temperature)

¢T � 34�C�

¢T �
25  MPa  (1.496)

(100  GPa)(11 � 10�6��C)

1 �
ES  AS

EB  AB

� 1.496

 AB �
�

4
(dB)2 �

�

4
(625  mm2)

 AS �
�

4
(d2

2 � d1
2) �

�

4
(620  mm2)

S

B

Steel Bolt
Brass Sleeve

Problem 2.5-9 Rectangular bars of copper and aluminum are held 
by pins at their ends, as shown in the figure. Thin spacers provide a
separation between the bars. The copper bars have cross-sectional
dimensions 0.5 in. � 2.0 in., and the aluminum bar has dimensions 
1.0 in. � 2.0 in. 

Determine the shear stress in the 7/16 in. diameter pins if the
temperature is raised by 100°F. (For copper, Ec � 18,000 ksi and 
�c � 9.5 � 10�6/°F; for aluminum, Ea � 10,000 ksi and 
�a � 13 � 10�6/°F.) Suggestion: Use the results of Example 2-8.

Copper bar

Copper bar

Aluminum bar
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Solution 2.5-9 Rectangular bars held by pins

C

C

A

Pin AluminumCopper

0.5 in. × 2.0 in.
1.0 in. × 2.0 in.
0.5 in. × 2.0 in.

Area of two copper bars: Ac � 2.0 in.2

Area of aluminum bar: Aa � 2.0 in.2

�T � 100�F

Copper: Ec � 18,000 ksi �c � 9.5 � 10�6/�F

Aluminum: Ea � 10,000 ksi �a � 13 � 10�6/�F

Use the results of Example 2-8.

Find the forces Pa and Pc in the aluminum bar and
copper bar, respectively, from Eq. (2-19).

Replace the subscript “S” in that equation by “a” 
(for aluminum) and replace the subscript “B” 
by “c” (for copper), because � for aluminum
is larger than � for copper.

Note that Pa is the compressive force in the
aluminum bar and Pc is the combined tensile 
force in the two copper bars.

Pa � Pc �
(�a � �c)(¢T)Ec  Ac

1 �
Ec  Ac

Ea  Aa

Pa � Pc �
(�a � �c)(¢T)Ea  Aa  Ec  Ac

Ea  Aa � Ec  Ac

Area  of  pin:  AP �
�

4
 dP

2 � 0.15033  in.2

Diameter  of  pin:  dP �
7

16
 in. � 0.4375  in. SUBSTITUTE NUMERICAL VALUES:

� 4,500 lb

FREE-BODY DIAGRAM OF PIN AT THE LEFT END

V � shear force in pin

� Pc /2

� 2,250 lb

� � average shear stress on cross section of pin

t� 15.0  ksi�

t�
V

AP

�
2,250  lb

0.15033  in.2

Pa � Pc �
(3.5 � 10�6��F)(100�F)(18,000  ksi)(2  in.2)

1 � ¢18

10
≤  ¢2.0

2.0
≤

Pc
2

Pc
2

Pa

Problem 2.5-10 A rigid bar ABCD is pinned at end A and supported by
two cables at points B and C (see figure). The cable at B has nominal 
diameter dB � 12 mm and the cable at C has nominal diameter dC � 20 mm.
A load P acts at end D of the bar. 

What is the allowable load P if the temperature rises by 60°C and 
each cable is required to have a factor of safety of at least 5 against its 
ultimate load? 

(Note: The cables have effective modulus of elasticity E � 140 GPa
and coefficient of thermal expansion � � 12 � 10�6/°C. Other properties
of the cables can be found in Table 2-1, Section 2.2.) P

DCBA

b2b

dB dC

2b
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Solution 2.5-10 Rigid bar supported by two cables 

FREE-BODY DIAGRAM OF BAR ABCD

P

DCBA

RAH
RAV

TB TC

2b 2b b

TB � force in cable B TC � force in cable C

dB � 12 mm dC � 20 mm

From Table 2-1:

AB � 76.7 mm2 E � 140 GPa

�T � 60�C AC � 173 mm2

� � 12 � 10�6/�C

EQUATION OF EQUILIBRIUM

or 2TB � 4TC � 5P (Eq. 1)

DISPLACEMENT DIAGRAM

COMPATIBILITY:

�C � 2�B (Eq. 2)

FORCE-DISPLACEMENT AND TEMPERATURE-
DISPLACEMENT RELATIONS

(Eq. 3)

(Eq. 4)�C �
TC  L

EAC

� �(¢T )L

�B �
TB  L

EAB

� �(¢T )L

©MA � 0   ���TB(2b) � TC(4b) � P(5b) � 0

SUBSTITUTE EQS. (3) AND (4) INTO EQ. (2):

or

2TB AC � TC AB � �E�(�T)AB AC (Eq. 5)

SUBSTITUTE NUMERICAL VALUES INTO EQ. (5):

TB(346) � TC(76.7) � �1,338,000 (Eq. 6)

in which TB and TC have units of newtons.

SOLVE SIMULTANEOUSLY EQS. (1) AND (6):

TB � 0.2494 P � 3,480 (Eq. 7)

TC � 1.1253 P � 1,740 (Eq. 8)

in which P has units of newtons.

SOLVE EQS. (7) AND (8) FOR THE LOAD P:

PB � 4.0096 TB � 13,953 (Eq. 9)

PC � 0.8887 TC � 1,546 (Eq. 10)

ALLOWABLE LOADS

From Table 2-1:

(TB)ULT � 102,000 N (TC)ULT � 231,000 N

Factor of safety � 5

(TB)allow � 20,400 N (TC)allow � 46,200 N

From Eq. (9): PB � (4.0096)(20,400 N) � 13,953 N

� 95,700 N

From Eq. (10): PC � (0.8887)(46,200 N) � 1546 N

� 39,500 N

Cable C governs.

Pallow � 39.5  kN

TC  L

EAC

� �(¢T)L �
2TB  L

EAB

� 2�(¢T)L

A B C b D

�B

�C

2b 2b

B

CD

A

P

b

b

2b

Problem 2.5-11 A rigid triangular frame is pivoted at C and held by two iden-
tical horizontal wires at points A and B (see figure). Each wire has axial rigidity
EA � 120 k and coefficient of thermal expansion � � 12.5 � 10�6/°F. 

(a) If a vertical load P � 500 lb acts at point D, what are the tensile forces
TA and TB in the wires at A and B, respectively? 

(b) If, while the load P is acting, both wires have their temperatures raised
by 180°F, what are the forces TA and TB?

(c) What further increase in temperature will cause the wire at B to become
slack?
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Solution 2.5-11 Triangular frame held by two wires 

FREE-BODY DIAGRAM OF FRAME

B

CD

A

P 2b

b

b

TA

TB

EQUATION OF EQUILIBRIUM

P(2b) � TA(2b) � TB(b) � 0 or 2TA � TB � 2P (Eq. 1)

DISPLACEMENT DIAGRAM

EQUATION OF COMPATIBILITY

�A � 2�B (Eq. 2)

(a) LOAD P ONLY

Force-displacement relations:

(Eq. 3, 4)

(L � length of wires at A and B.)

Substitute (3) and (4) into Eq. (2):

or TA � 2TB (Eq. 5)

Solve simultaneously Eqs. (1) and (5):

(Eqs. 6, 7)

Numerical values:

∴ TA � 400  lb      TB � 200  lb

P � 500  lb

TA �
4P

5
�  TB �

2P

5
  

TA  L

EA
�

2TB  L

EA

�A �
TA  L

EA
�  �B �

TB  L

EA

©MC � 0  ��

(b) LOAD P AND TEMPERATURE INCREASE �T

Force-displacement and temperature-
displacement relations:

(Eq. 8)

(Eq. 9)

Substitute (8) and (9) into Eq. (2):

or TA � 2TB � EA�(�T) (Eq. 10)

Solve simultaneously Eqs. (1) and (10):

(Eq. 11)

(Eq. 12)

Substitute numerical values:

P � 500 lb EA � 120,000 lb
�T � 180�F

� � 12.5 � 10�6/�F

(c) WIRE B BECOMES SLACK

Set TB � 0 in Eq. (12):

P � EA�(�T)

or

Further increase in temperature:

 � 153�F

 ¢T � 333.3�F � 180�F

 � 333.3�F

 ¢T �
P

EA�
�

500  lb

(120,000  lb)(12.5 � 10�6��F)

TB �
2

5
(500  lb � 270  lb) � 92  lb

TA �
1

5
(2000  lb � 270  lb) � 454  lb

TB �
2

5
[P � EA�(¢T ) ]

TA �
1

5
[4P � EA�(¢T ) ]

TAL

EA
� �(¢T)L �

2TBL

EA
� 2�(¢T)L

�B �
TBL

EA
� �(¢T)L

�A �
TAL

EA
� �(¢T)L

B

C

A

b

b

�A

�B
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Misfits and Prestrains

Problem 2.5-12 A steel wire AB is stretched between rigid supports 
(see figure). The initial prestress in the wire is 42 MPa when the
temperature is 20°C. 

(a) What is the stress � in the wire when the temperature drops 
to 0°C? 

(b) At what temperature T will the stress in the wire become zero?
(Assume � � 14 � 10�6/°C and E � 200 GPa.)

Solution 2.5-12 Steel wire with initial prestress

A B

Steel wire

Initial prestress: �1 � 42 MPa

Initial temperature: T1 � 20�C

E � 200 GPa

� � 14 � 10�6/�C

(a) STRESS � WHEN TEMPERATURE DROPS TO 0�C

T2 � 0�C �T � 20�C

Note: Positive �T means a decrease in temperature
and an increase in the stress in the wire.

Negative �T means an increase in temperature and a
decrease in the stress.

Stress � equals the initial stress �1 plus the
additional stress �2 due to the temperature drop.

From Eq. (2-18): �2 � E�(�T)

(b) TEMPERATURE WHEN STRESS EQUALS ZERO

� � �1 � �2 � 0 �1 � E�(�T) � 0

(Negative means increase in temp.)

T � 20�C � 15�C � 35�C

¢T � �
42  MPa

(200  GPa)(14 � 10�6��C)
� � 15�C

¢T � �
s1

E�

 � 42  MPa � 56  MPa � 98  MPa

 � 42  MPa � (200  GPa)(14 � 10�6��C)(20�C)

 s�s1 �s2 �s1 � E�(¢T )

A B

Problem 2.5-13 A copper bar AB of length 25 in. is placed in position 
at room temperature with a gap of 0.008 in. between end A and a rigid
restraint (see figure). 

Calculate the axial compressive stress �c in the bar if the temperature
rises 50°F. (For copper, use � � 9.6 � 10�6/°F and E � 16 � 106 psi.)

25 in.

0.008 in.

A

B
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Solution 2.5-13 Bar with a gap

L � 25 in.

S � 0.008 in.

�T � 50�F (increase)

� � 9.6 � 10�6/�F

E � 16 � 106 psi

� � elongation of the bar if it is free to expand

� �(�T)L

�C � elongation that is prevented by the support

� �(�T)L � S

eC � strain in the bar due to the restraint

� �C /L

�c � stress in the bar

Note: This result is valid only if �(�T)L � S.
(Otherwise, the gap is not closed).

Substitute numerical values:

� 0.008 in. ] � 2,560  psi

[ (9.6 � 10�6��F)(50�F)(25  in.) sc �
16 � 106

 psi

25  in.

� EeC �
E�C

L
�

E

L
[�(¢T)L � S ]

L

A

B

S

Problem 2.5-14 A bar AB having length L and axial rigidity EA is fixed
at end A (see figure). At the other end a small gap of dimension s exists
between the end of the bar and a rigid surface. A load P acts on the bar at
point C, which is two-thirds of the length from the fixed end. 

If the support reactions produced by the load P are to be equal in
magnitude, what should be the size s of the gap?

Solution 2.5-14 Bar with a gap (load P)

BA C

P

2L
3

— L
3
L
3

—
s

L � length of bar

S � size of gap

EA � axial rigidity

Reactions must be equal; find S.

FORCE-DISPLACEMENT RELATIONS

�2 �
RBL

EA

�1 �
P(2L

3 )

EA

COMPATIBILITY EQUATION

�1 � �2 � S or 

(Eq. 1)

EQUILIBRIUM EQUATION

RA � reaction at end A (to the left)

RB � reaction at end B (to the left)

P � RA � RB

Reactions must be equal.

P � 2RB

Substitute for RB in Eq. (1):

NOTE: The gap closes when the load reaches the
value P/4. When the load reaches the value P, equal
to 6EAs/L, the reactions are equal (RA � RB � P/2).
When the load is between P/4 and P, RA is greater
than RB. If the load exceeds P, RB is greater than RA.

2PL

3EA
�

PL

2EA
� S�or�S �

PL

6EA

RB �
P

2
∴ RA � RB

2PL

3EA
�

RBL

EA
� S

P RBRA

BA P

2L
3

— L
3
L
3

—
S

P
2L
3

—

�1

�2

RB
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Problem 2.5-15 Wires B and C are attached to a support at the left-hand
end and to a pin-supported rigid bar at the right-hand end (see figure).
Each wire has cross-sectional area A � 0.03 in.2 and modulus of elasticity
E � 30 � 106 psi. When the bar is in a vertical position, the length of
each wire is L � 80 in. However, before being attached to the bar, the
length of wire B was 79.98 in. and of wire C was 79.95 in. 

Find the tensile forces TB and TC in the wires under the action of 
a force P � 700 lb acting at the upper end of the bar.

Solution 2.5-15 Wires B and C attached to a bar

B

C

80 in.

700 lb

b

b

b

B

C

L = 80 in.

P = 700 lb

b

b

b

P � 700 lb

A � 0.03 in.2

E � 30�106 psi

LB � 79.98 in.

LC � 79.95 in.

EQUILIBRIUM EQUATION

TC(b) � TB(2b) � P(3b)

2TB � TC � 3P (Eq. 1)

DISPLACEMENT DIAGRAM

SB � 80 in. � LB � 0.02 in.

SC � 80 in. � LC � 0.05 in.

©Mpin � 0  ��

Elongation of wires:

�B � SB � 2� (Eq. 2)

�C � SC � � (Eq. 3)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 4, 5)

SOLUTION OF EQUATIONS

Combine Eqs. (2) and (4): 

(Eq. 6)

Combine Eqs. (3) and (5): 

(Eq. 7)

Eliminate � between Eqs. (6) and (7):

(Eq. 8)

Solve simultaneously Eqs. (1) and (8):

SUBSTITUTE NUMERICAL VALUES:

(Both forces are positive, which means tension, as
required for wires.)

TC � 420  lb � 90  lb � 450  lb � 780  lb

TB � 840  lb � 45  lb � 225  lb � 660  lb

EA

5L
� 2250  lb�in.

TC �
3P

5
�

2EASB

5L
�

4EASC

5L

TB �
6P

5
�

EASB

5L
�

2EASC

5L

TB � 2TC �
EASB

L
�

2EASC

L

TCL

EA
� SC � �

TBL

EA
� SB � 2�

�B �
TBL

EA
��C �

TCL

EA

P = 700 lb

b

b

b
Pin

TB

TC

B

C

L = 80 in.

SB

SC

2 �

�
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Problem 2.5-16 A rigid steel plate is supported by three posts of 
high-strength concrete each having an effective cross-sectional area 
A � 40,000 mm2 and length L � 2 m (see figure). Before the load 
P is applied, the middle post is shorter than the others by an amount 
s � 1.0 mm. 

Determine the maximum allowable load Pallow if the allowable
compressive stress in the concrete is �allow � 20 MPa. (Use E � 30 GPa
for concrete.)

Solution 2.5-16 Plate supported by three posts

S

P

CC C L

s

P

CC C L

s

Steel plate

s � size of gap � 1.0 mm

L � length of posts � 2.0 m

A � 40,000 mm2

�allow � 20 MPa

E � 30 GPa

C � concrete post

DOES THE GAP CLOSE?

Stress in the two outer posts when the gap is just
closed:

Since this stress is less than the allowable stress, the
allowable force P will close the gap.

 � 15  MPa

 s� Ee� E ¢ s

L
≤� (30  GPa) ¢1.0  mm

2.0  m
≤

EQUILIBRIUM EQUATION

2P1 � P2 � P (Eq. 1)

COMPATIBILITY EQUATION

�1 � shortening of outer posts

�2 � shortening of inner post

�1 � �2 � s (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eqs. 3, 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

By inspection, we know that P1 is larger than P2.
Therefore, P1 will control and will be equal to
�allow A.

 � 1.8  MN

 � 2400  kN � 600  kN � 1800  kN

 Pallow � 3sallow  A �
EAs

L

P � 3P1 �
EAs

L

P1L

EA
�

P2L

EA
� s�or�P1 � P2 �

EAs

L

�1 �
P1L

EA
��2 �

P2L

EA

P

P1 P2 P1
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Problem 2.5-17 A copper tube is fitted around a steel bolt and the nut 
is turned until it is just snug (see figure). What stresses �s and �c will be
produced in the steel and copper, respectively, if the bolt is now tightened
by a quarter turn of the nut?

The copper tube has length L � 16 in. and cross-sectional area 
Ac � 0.6 in.2, and the steel bolt has cross-sectional area As � 0.2 in.2 The
pitch of the threads of the bolt is p � 52 mils (a mil is one-thousandth 
of an inch). Also, the moduli of elasticity of the steel and copper are 
Es � 30 � 106 psi and Ec � 16 � 106 psi, respectively.

Note: The pitch of the threads is the distance advanced by the nut 
in one complete turn (see Eq. 2-22).

Solution 2.5-17 Steel bolt and copper tube

Copper tube

Steel bolt

Copper tube

Steel bolt

L � 16 in.

p � 52 mils � 0.052 in.

n � (See Eq. 2-22)

Steel bolt: As � 0.2 in.2

Es � 30 � 106 psi

Copper tube: Ac � 0.6 in.2

Ec � 16 � 106 psi

EQUILIBRIUM EQUATION

Ps � tensile force in steel bolt

Pc � compressive force in copper tube

Pc � Ps (Eq. 1)

COMPATIBILITY EQUATION

�c � shortening of copper tube

�s � elongation of steel bolt

�c � �s � np (Eq. 2)

1

4

FORCE-DISPLACEMENT RELATIONS

(Eq. 3, Eq. 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

(Eq. 6)

Substitute numerical values:

Ps � Pc � 3,000 lb

STRESSES

Steel bolt: 

Copper tube: 

� 5  ksi  (compression)

sc �
Pc

Ac

�
3,000  lb

0.6  in.2

ss �
Ps

As

�
3,000  lb

0.2  in.2
� 15  ksi  (tension)

Ps � Pc �
npEs As Ec Ac

L(Es As � Ec Ac)

PcL

EcAc

�
PsL

EsAs

� np

�c �
Pc L

Ec  Ac

��s �
Ps L

Es As

PsPc

Ps Pc

np
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Problem 2.5-18 A plastic cylinder is held snugly between a rigid plate
and a foundation by two steel bolts (see figure). 

Determine the compressive stress �p in the plastic when the nuts on 
the steel bolts are tightened by one complete turn. 

Data for the assembly are as follows: length L � 200 mm, pitch of 
the bolt threads p � 1.0 mm, modulus of elasticity for steel Es � 200 GPa,
modulus of elasticity for the plastic Ep � 7.5 GPa, cross-sectional area of
one bolt As � 36.0 mm2, and cross-sectional area of the plastic cylinder 
Ap � 960 mm2.

Solution 2.5-18 Plastic cylinder and two steel bolts

L
Steel
bolt

L � 200 mm

P � 1.0 mm

Es � 200 GPa

As � 36.0 mm2 (for one bolt)

Ep � 7.5 GPa

Ap � 960 mm2

n � 1 (See Eq. 2-22)

EQUILIBRIUM EQUATION

Ps � tensile force in one steel bolt

Pp � compressive force in plastic cylinder

Pp � 2Ps (Eq. 1)

COMPATIBILITY EQUATION

�s � elongation of steel bolt

�p � shortening of plastic cylinder

�s � �p � np (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eq. 3, Eq. 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

STRESS IN THE PLASTIC CYLINDER

SUBSTITUTE NUMERICAL VALUES:

N � Es As Ep � 54.0 � 1015 N2/m2

D � Ep Ap � 2Es As � 21.6 � 106 N

 � 25.0  MPa

 sp �
2np

L
¢N
D
≤�

2(1)(1.0  mm)

200  mm
 ¢N

D
≤

sp �
Pp

Ap

�
2 np Es As Ep

L(Ep Ap � 2Es As)

Pp �
2npEs As Ep Ap

L(Ep Ap � 2Es As)

Ps L

Es As

�
Pp L

Ep Ap

� np

�s �
Ps L

Es As

��p �
Pp L

Ep Ap

Ps Ps

Pp

S SP

Ps Ps
Pp

np

S SP

Probs. 2.5-18 and 2.5-19
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Problem 2.5-19 Solve the preceding problem if the data for the
assembly are as follows: length L � 10 in., pitch of the bolt threads 
p � 0.058 in., modulus of elasticity for steel Es � 30 � 106 psi, 
modulus of elasticity for the plastic Ep � 500 ksi, cross-sectional 
area of one bolt As � 0.06 in.2, and cross-sectional area of the 
plastic cylinder Ap � 1.5 in.2

Solution 2.5-19 Plastic cylinder and two steel bolts

L � 10 in.

p � 0.058 in.

Es � 30 � 106 psi

As � 0.06 in.2 (for one bolt)

Ep � 500 ksi

Ap � 1.5 in.2

n � 1 (see Eq. 2-22)

EQUILIBRIUM EQUATION

Ps � tensile force in one steel bolt

Pp � compressive force in plastic cylinder

Pp � 2Ps (Eq. 1)

COMPATIBILITY EQUATION

�s � elongation of steel bolt

�p � shortening of plastic cylinder

�s � �p � np (Eq. 2)

FORCE-DISPLACEMENT RELATIONS

(Eq. 3, Eq. 4)

SOLUTION OF EQUATIONS

Substitute (3) and (4) into Eq. (2):

(Eq. 5)

Solve simultaneously Eqs. (1) and (5):

STRESS IN THE PLASTIC CYLINDER

SUBSTITUTE NUMERICAL VALUES:

N � Es As Ep � 900 � 109 lb2/in.2

D � Ep Ap � 2Es As � 4350 � 103 lb

 � 2400  psi

 sP �
2np

L
¢N

D
≤�

2(1)(0.058  in.)

10  in.
 ¢N

D
≤

sp �
Pp

Ap

�
2 np Es As Ep

L(Ep Ap � 2Es As)

Pp �
2 np Es As Ep Ap

L(Ep Ap � 2Es As)

Ps L

Es As

�
Pp L

Ep Ap

� np

�s �
Ps L

Es As

��p �
Pp L

Ep Ap

Ps Ps

Pp

S SP

Ps Ps
Pp

np

S SP
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Problem 2.5-20 Prestressed concrete beams are sometimes
manufactured in the following manner. High-strength steel wires are
stretched by a jacking mechanism that applies a force Q, as represented
schematically in part (a) of the figure. Concrete is then poured around
the wires to form a beam, as shown in part (b). 

After the concrete sets properly, the jacks are released and the 
force Q is removed [see part (c) of the figure]. Thus, the beam is 
left in a prestressed condition, with the wires in tension and the 
concrete in compression.

Let us assume that the prestressing force Q produces in the steel
wires an initial stress �0 � 620 MPa. If the moduli of elasticity of the
steel and concrete are in the ratio 12:1 and the cross-sectional areas are in
the ratio 1:50, what are the final stresses �s and �c in the two materials?

Solution 2.5-20 Prestressed concrete beam

Q

Q

Q

Q

(a)

(b)

(c)

Steel wires

Concrete

Q

Steel wires

Concrete

PcPs

L � length

�0 � initial stress in wires

As � total area of steel wires

Ac � area of concrete

� 50 As

Es � 12 Ec

Ps� final tensile force in steel wires

Pc � final compressive force in concrete

�
Q

As

� 620  MPa

EQUILIBRIUM EQUATION

Ps � Pc (Eq. 1)

COMPATIBILITY EQUATION AND

FORCE-DISPLACEMENT RELATIONS

�1 � initial elongation of steel wires

�2 � final elongation of steel wires

�3 � shortening of concrete

(Eq. 2, Eq. 3)

Solve simultaneously Eqs. (1) and (3):

Ps � Pc �
s0 As

1 �
Es As

Ec Ac

�1 � �2 � �3�or�
s0 L

Es

�
Ps L

Es As

�
Pc L

Ec Ac

�
Pc L

Ec Ac

�
Ps L

Es As

�
QL

EsAs

�
s0L

Es

STRESSES

SUBSTITUTE NUMERICAL VALUES:

sc �
620  MPa

50 � 12
� 10  MPa  (Compression)

ss �
620  MPa

1 �
12

50

� 500  MPa  (Tension)

s0 � 620  MPa�
Es

Ec

� 12�
As

Ac

�
1

50

 sc �
Pc

Ac

�
s0

Ac

As

�
Es

Ec

 ss �
Ps

As

�
s0

1 �
Es As

Ec Ac
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Stresses on Inclined Sections

Problem 2.6-1 A steel bar of rectangular cross section 
(1.5 in. � 2.0 in.) carries a tensile load P (see figure). The 
allowable stresses in tension and shear are 15,000 psi and 
7,000 psi, respectively. 

Determine the maximum permissible load Pmax.

Solution 2.6-1 Rectangular bar in tension

P P

1.5 in.

2.0 in.

Problem 2.6-2 A circular steel rod of diameter d is subjected to a tensile
force P � 3.0 kN (see figure). The allowable stresses in tension and shear
are 120 MPa and 50 MPa, respectively. 

What is the minimum permissible diameter dmin of the rod?

Solution 2.6-2 Steel rod in tension

�allow � 120 MPa �allow � 50 MPa

Maximum  shear  stress:  tmax �
sx

2
�

P

2A

Maximum  normal  stress:  sx �
P

A

P � 3.0  kN�A �
�d2

4
Because �allow is less than one-half of �allow, the
shear stress governs.

Solve  for  d:  dmin � 6.18  mm

tmax �
P

2A
�or�50  MPa �

3.0  kN

(2)¢�d2

4
≤

P

P

1.5 in.

2.0 in.

A � 1.5 in. � 2.0 in.

� 3.0 in.2

Maximum Normal Stress:

sx �
P

A

�allow � 15,000 psi �allow � 7,000 psi

Because �allow is less than one-half of �allow, the
shear stress governs.

Pmax � 2�allow  A � 2(7,000 psi) (3.0 in.2)

� 42,000 lb

Maximum  shear  stress: tmax �
sx

2
�

P

2A

P = 3.0 kNP
d

P P
d



Problem 2.6-3 A standard brick (dimensions 8 in. � 4 in. � 2.5 in.) 
is compressed lengthwise by a force P, as shown in the figure. If the
ultimate shear stress for brick is 1200 psi and the ultimate compressive
stress is 3600 psi, what force Pmax is required to break the brick?

Solution 2.6-3 Standard brick in compression
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A � 2.5 in. � 4.0 in. � 10.0 in.2

Maximum normal stress:

sx �
P

A

Maximum shear stress:

�ult � 3600 psi �ult � 1200 psi

Because �ult is less than one-half of �ult, the shear
stress governs.

� 24,000  lb

Pmax � 2(10.0  in.2) (1200  psi)

tmax �
P

2A
�or�Pmax � 2Atult

tmax �
sx

2
�

P

2A

P

2.5 in.8 in. 4 in.

P

2.5 in.8 in. 4 in.

Problem 2.6-4 A brass wire of diameter d � 2.42 mm is stretched tightly
between rigid supports so that the tensile force is T � 92 N (see figure). 

What is the maximum permissible temperature drop �T if the allowable
shear stress in the wire is 60 MPa? (The coefficient of thermal expansion for
the wire is 20 � 10�6/°C and the modulus of elasticity is 100 GPa.)

Solution 2.6-4 Brass wire in tension

T d T

T d T

d � 2.42 mm

� � 20 � 10�6/�C E � 100 GPa �allow � 60 MPa

Initial tensile force: T � 92 N

Stress due to initial tension: 

Stress due to temperature drop: �x � E�(�T)

(see Eq. 2-18 of Section 2.5)

Total stress: sx �
T

A
� E�(¢T )

sx �
T

A

A �
�d2

4
� 4.60  mm2

MAXIMUM SHEAR STRESS

Solve for temperature drop �T:

SUBSTITUTE NUMERICAL VALUES:

 �
120  MPa � 20  MPa

2  MPa��C
� 50�C

 ¢T �
2(60  MPa) � (92  N)�(4.60  mm2)

(100  GPa)(20 � 10�6��C)

¢T �
2tmax � T�A

E�
�    tmax � tallow

tmax �
sx

2
�

1

2
B T

A
� E�(¢T )R

Probs. 2.6-4 and 2.6-5
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Problem 2.6-5 A brass wire of diameter d � 1/16 in. is stretched
between rigid supports with an initial tension T of 32 lb (see figure). 

(a) If the temperature is lowered by 50°F, what is the maximum shear
stress �max in the wire? 

(b) If the allowable shear stress is 10,000 psi, what is the maximum
permissible temperature drop? (Assume that the coefficient of
thermal expansion is 10.6 � 10�6/°F and the modulus of elasticity
is 15 � 106 psi.)

Solution 2.6-5 Brass wire in tension

� � 10.6 � 10�6/�F

E � 15 � 106 psi

Initial tensile force: T � 32 lb

Stress due to initial tension: 

Stress due to temperature drop: �x � E�(�T )

(see Eq. 2-18 of Section 2.5)

Total stress: sx �
T

A
� E�(¢T )

sx �
T

A

 � 0.003068  in.2

 A �
�d2

4

d �
1

16
 in.

(a) MAXIMUM SHEAR STRESS WHEN TEMPERATURE

DROPS 50�F

(Eq. 1)

Substitute numerical values:

(b) MAXIMUM PERMISSIBLE TEMPERATURE DROP IF

�allow � 10,000 psi

Solve Eq. (1) for �T:

Substitute numerical values:

¢T � 60.2�F

¢T �
2tmax � T�A

E�
�tmax � tallow

tmax � 9,190  psi

tmax �
sx

2
�

1

2
B T

A
� E�(¢T )R

T d T

Problem 2.6-6 A steel bar with diameter d � 12 mm is subjected to a
tensile load P � 9.5 kN (see figure). 

(a) What is the maximum normal stress �max in the bar? 
(b) What is the maximum shear stress �max? 
(c) Draw a stress element oriented at 45° to the axis of the bar and show

all stresses acting on the faces of this element.

P = 9.5 kNP
d = 12 mm



Solution 2.6-6 Steel bar in tension
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P � 9.5 kN

(a) MAXIMUM NORMAL STRESS

(b) MAXIMUM SHEAR STRESS

The maximum shear stress is on a 45� plane and
equals �x /2.

tmax �
sx

2
� 42.0  MPa

smax � 84.0  MPa

sx �
P

A
�

9.5  kN
�
4 (12  mm)2 � 84.0  MPa

(c) STRESS ELEMENT AT � � 45�

NOTE: All stresses have units of MPa.

P = 9.5 kNP
d = 12 mm

y
x

0

9,000

9,000

9,000

9,000

9,000

9,000

� = 45° 

Problem 2.6-7 During a tension test of a mild-steel specimen
(see figure), the extensometer shows an elongation of 0.00120 
in. with a gage length of 2 in. Assume that the steel is stressed
below the proportional limit and that the modulus of elasticity 
E � 30 � 106 psi. 

(a) What is the maximum normal stress �max in the speci-
men? 

(b) What is the maximum shear stress �max? 
(c) Draw a stress element oriented at an angle of 45° to the

axis of the bar and show all stresses acting on the faces 
of this element.

T T
2 in.
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�T � 50�C (Increase)

� � 17.5 � 10�6/�C

E � 120 GPa

STRESS DUE TO TEMPERATURE INCREASE

�x � E� (�T) (See Eq. 2-18 of Section 2.5)

� 105 MPa (Compression)

MAXIMUM SHEAR STRESS

� 52.5  MPa

tmax �
sx

2

STRESSES ON ELEMENTS A AND B

NOTE: All stresses have units of MPa.

A B

45° 

y

x0 52.5

52.5

52.5

52.5
52.5

� = 45° 

B

A
105105

52.5

Elongation: � � 0.00120 in.

(2 in. gage length)

Hooke’s law : �x � Ee� (30 � 106 psi)(0.00060)

� 18,000 psi

(a) MAXIMUM NORMAL STRESS

�x is the maximum normal stress.

smax � 18,000  psi

Strain: e�
�

L
�

0.00120  in.

2  in.
� 0.00060

(b) MAXIMUM SHEAR STRESS

The maximum shear stress is on a 45� plane and
equals �x /2.

(c) STRESS ELEMENT AT � � 45�

NOTE: All stresses have units of psi.

tmax �
sx

2
� 9,000  psi

T T
2 in.

y
x

0

9,000

9,000

9,000

9,000

9,000

9,000

� = 45° 

Problem 2.6-8 A copper bar with a rectangular cross section is held
without stress between rigid supports (see figure). Subsequently, the
temperature of the bar is raised 50°C.

Determine the stresses on all faces of the elements A and B, 
and show these stresses on sketches of the elements. 
(Assume � � 17.5 � 10�6/°C and E � 120 GPa.)

Solution 2.6-8 Copper bar with rigid supports

A B

45°

Solution 2.6-7 Tension test
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Problem 2.6-9 A compression member in a bridge truss is fabri-
cated from a wide-flange steel section (see figure). The 
cross-sectional area A � 7.5 in.2 and the axial load P � 90 k. 

Determine the normal and shear stresses acting on all faces of
stress elements located in the web of the beam and oriented at (a) an
angle � � 0°, (b) an angle � � 30°, and (c) an angle � � 45°. In each
case, show the stresses on a sketch of a properly oriented element.

Solution 2.6-9 Truss member in compression

PP
�

P � 90 k

A � 7.5 in.2

(a) � � 0�

(b) � � 30�

Use Eqs. (2-29a) and (2-29b):

�� � �x cos2� � (�12.0 ksi)(cos 30�)2

� �9.0 ksi

�� � ��x sin � cos � � �(�12.0 ksi)(sin 30�)(cos 30�)

� 5.2 ksi

� � 30� � 90� � 120�

�� � �x cos2� � (�12.0 ksi)(cos 120�)2 � �3.0 ksi

 � � 12.0  ksi  (Compression)

 sx � �
P

A
� �

90  k

7.5  in.2

�� � ��x sin � cos � � �(�12.0 ksi)(sin 120�) (cos 120�)

� �5.2 ksi

NOTE: All stresses have units of ksi.

(c) � � 45�

�� � �x cos2� � (�12.0 ksi)(cos 45�)2 � �6.0 ksi

�� � ��x sin � cos � � �(�12.0 ksi)(sin 45�) (cos 45�)

� 6.0 ksi

NOTE: All stresses have units of ksi.

PP
�

y

x0
12.0 ksi12.0 ksi

y

x0

9.0

3.0

3.0
5.2

9.05.2 � = 30° 

y

x0

6.0

6.0

6.06.0

6.0

6.0 � = 45° 
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Problem 2.6-10 A plastic bar of diameter d � 30 mm is compressed 
in a testing device by a force P � 170 N applied as shown in the figure. 

Determine the normal and shear stresses acting on all faces of stress
elements oriented at (a) an angle � � 0°, (b) an angle � � 22.5°, and 
(c) an angle � � 45°. In each case, show the stresses on a sketch of a
properly oriented element.

Solution 2.6-10 Plastic bar in compression

Plastic bar

100 mm
P = 170 N

d = 30 mm

300 mm

�

FREE-BODY DIAGRAM

F � Compressive force in plastic bar

F � 4P � 4(170 N)�680 N

PLASTIC BAR (ROTATED TO THE HORIZONTAL)

(a) � � 0�

(b) � � 22.5�

Use Eqs. (2-29a) and (2-29b)

�� � �x cos2� � (�962.0 kPa)(cos 22.5�)2

� �821 kPa

� � 962.0  kPa  (Compression)

sx � �
F

A
� �

680  N
�
4 (30  mm)2

�� � ��x sin � cos �

� �(�962.0 kPa)(sin 22.5�)(cos 22.5�)

� 340 kPa

� � 22.5� � 90� � 112.5�

�� � �x cos2� � (�962.0 kPa)(cos 112.5�)2

� �141 kPa

�� � ��x sin � cos �

� �(�962.0 kPa)(sin 112.5�)(cos 112.5�)

� �340 kPa

NOTE: All stresses have units of kPa.

(c) � � 45�

�� � �x cos2� � (�962.0 kPa)(cos 45�)2

� �481 kPa

�� � ��x sin � cos �

� �(�962.0 kPa)(sin 45�)(cos 45�) � 481 kPa

NOTE: All stresses have units of kPa.

Plastic bar

100 mm P = 170 N

d = 30 mm

300 mm

�

100 mm
P = 170 N

300 mm
F

d = 30 mm

F F
x

y

0

�

x

y

0
962 kPa962 kPa

y

x0

821

141

141
340

821
340

� = 22.5° 

y
x

0

481

481

481481

481
481 � = 45° 



Problem 2.6-11 A plastic bar fits snugly between rigid supports at 
room temperature (68°F) but with no initial stress (see figure). When 
the temperature of the bar is raised to 160°F, the compressive stress 
on an inclined plane pq becomes 1700 psi. 

(a) What is the shear stress on plane pq? (Assume � � 60 � 10�6/°F
and E � 450 � 103 psi.) 

(b) Draw a stress element oriented to plane pq and show the stresses
acting on all faces of this element.

Solution 2.6-11 Plastic bar between rigid supports
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q

p
�

� � 60 � 10�6/�F E � 450 � 103 psi

Temperature increase:

�T � 160�F � 68�F � 92�F

NORMAL STRESS �x IN THE BAR

�x� �E�(�T ) (See Eq. 2-18 in Section 2.5)

�x � �(450 � 103 psi)(60 � 10�6/�F)(92�F)

� �2484 psi (Compression)

ANGLE � TO PLANE pq

�� � �x cos2� For plane pq: �� � �1700 psi

Therefore, �1700 psi � (�2484 psi)(cos2�)

cos � � 0.8273 � � 34.18�

(a) SHEAR STRESS ON PLANE pq

�� � ��x sin � cos �

� �(�2484 psi)(sin 34.18�)(cos 34.18�)

� 1150  psi (Counter clockwise)

cos2u�
� 1700  psi

� 2484  psi
� 0.6844

(b) STRESS ELEMENT ORIENTED TO PLANE pq

� � 34.18� �� � �1700 psi �� � 1150 psi

� � 34.18� � 90� � 124.18�

�� � �x cos2� � (�2484 psi)(cos 124.18�)2

� �784 psi

�� � ��x sin � cos �

� �(�2484 psi)(sin 124.18�)(cos 124.18�)

� �1150 psi

NOTE: All stresses have units of psi.

q

p
�

y

x0

1700

784

784

1150 1700

1150

� = 34.18° 

Probs. 2.6-11 and 2.6-12



Problem 2.6-12 A copper bar is held snugly (but without any initial
stress) between rigid supports (see figure). The allowable stresses on the
inclined plane pq, for which � � 55°, are specified as 60 MPa in
compression and 30 MPa in shear. 

(a) What is the maximum permissible temperature rise �T if the
allowable stresses on plane pq are not to be exceeded? (Assume 
� � 17 � 10�6/°C and E � 120 GPa.) 

(b) If the temperature increases by the maximum permissible amount,
what are the stresses on plane pq?

Solution 2.6-12 Copper bar between rigid supports
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� � 17 � 10�6/�C

E � 120 GPa

Plane pq: � � 55�

Allowable stresses on plane pq:

�allow � 60 MPa (Compression)

�allow � 30 MPa (Shear)

(a) MAXIMUM PERMISSIBLE TEMPERATURE RISE �T

�� � �x cos2� �60 MPa � �x (cos 55�)2

�x � �182.4 MPa

�� � ��x sin � cos �

30 MPa � ��x (sin 55�)(cos 55�)

�x � �63.85 MPa

Shear stress governs. �x � �63.85 MPa

Due to temperature increase �T:

�x � �E�(�T) (See Eq. 2-18 in Section 2.5)

�63.85 MPa � �(120 GPa)(17 � 10�6/�C)(�T)

(b) STRESSES ON PLANE pq

�x � �63.85 MPa

�� � �x cos2� � (�63.85 MPa)(cos 55�)2

�� � ��x sin � cos �

� �(�63.85 MPa)(sin 55�)(cos 55�)

� 30.0  MPa (Counter clockwise)

� � 21.0  MPa  (Compression)

¢T � 31.3�C

q

p
�

Problem 2.6-13 A circular brass bar of diameter d is composed
of two segments brazed together on a plane pq making an angle
� � 36° with the axis of the bar (see figure). The allowable
stresses in the brass are 13,500 psi in tension and 6500 psi in
shear. On the brazed joint, the allowable stresses are 6000 psi 
in tension and 3000 psi in shear. 

If the bar must resist a tensile force P � 6000 lb, what is 
the minimum required diameter dmin of the bar?

PP

q

p d
�



Solution 2.6-13 Brass bar in tension
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� � 36�

� � 90� � � � 54�

P � 6000 lb

STRESS �x BASED UPON ALLOWABLE STRESSES

IN THE BRASS

Tensile stress (� � 0�): �allow � 13,500 psi

�x � 13,500 psi (1)

Shear stress (� � 45�): �allow � 6500 psi

�x � 2 �allow

� 13,000 psi (2)

STRESS �x BASED UPON ALLOWABLE STRESSES ON THE

BRAZED JOINT (� � 54�)

�allow � 6000 psi (tension)

�allow � 3000 psi (shear)

tmax �
sx

2

A �
�d2

4

Tensile stress: �� � �x cos2�

� 17,370 psi (3)

Shear stress: �� � ��x sin � cos �

� 6,310 psi (4)

ALLOWABLE STRESS

Compare (1), (2), (3), and (4).

Shear stress on the brazed joint governs.

�x � 6310 psi

DIAMETER OF BAR

dmin � 1.10  in.

A �
�d2

4
�d2 �

4A
�
�dmin �B4A

�

A �
P
sx

�
6000  lb

6310  psi
� 0.951  in.2

sx � ` tallow

sin  ucos  u
` � 3,000  psi

(sin  54�)(cos  54�)

sx �
sallow

cos2u
�

6000  psi

(cos  54�)2

PP

q

p
d �

n
� = 54°

Problem 2.6-14 Two boards are joined by gluing along a scarf joint, 
as shown in the figure. For purposes of cutting and gluing, the angle 
� between the plane of the joint and the faces of the boards must be
between 10° and 40°. Under a tensile load P, the normal stress in the
boards is 4.9 MPa. 

(a) What are the normal and shear stresses acting on the glued 
joint if � � 20°? 

(b) If the allowable shear stress on the joint is 2.25 MPa, what 
is the largest permissible value of the angle �? 

(c) For what angle � will the shear stress on the glued joint be
numerically equal to twice the normal stress on the joint?

PP

�



Solution 2.6-14 Two boards joined by a scarf joint
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Due to load P: �x � 4.9 MPa

(a) STRESSES ON JOINT WHEN � � 20�

� � 90� � � � 70�

�� � �x cos2� � (4.9 MPa)(cos 70�)2

�� � ��x sin � cos �

� (�4.9 MPa)(sin 70�)(cos 70�)

(b) LARGEST ANGLE � IF �allow � 2.25 MPa

�allow � ��x sin � cos �

The shear stress on the joint has a negative sign. Its
numerical value cannot exceed �allow � 2.25 MPa.
Therefore,

�2.25 MPa � �(4.9 MPa)(sin �)(cos �) or  
sin � cos � � 0.4592

Therefore: sin 2� � 2(0.4592) � 0.9184

Solving : 2� � 66.69� or 113.31�

From trigonometry:  sin  u cos  u�
1

2
 sin  2u

� � 1.58  MPa

� 0.57  MPa

10� � � � 40� � � 33.34� or 56.66�

� � 90� � � ‹ � � 56.66� or 33.34�

Since � must be between 10� and 40�, we select

Note: If � is between 10� and 33.3�,

|��| � 2.25 MPa.

If � is between 33.3� and 40�,

|��| 	 2.25 MPa.

(c) WHAT IS � if �� � 2��?

Numerical values only:

|��| � �x sin � cos � |��| � �x cos2�

�x sin � cos � � 2�xcos2�

sin � � 2 cos � or tan � � 2

� � 63.43� � � 90� � �

NOTE: For � � 26.6� and � � 63.4�, we find �� �
0.98 MPa and �� � �1.96 MPa.

Thus, as required.` tu
su
` � 2

a� 26.6�

` tu
su
` � 2

� � 33.3�

PP

�

y

x

�

n
� =

        90°� a



Problem 2.6-15 Acting on the sides of a stress element cut from a bar in
uniaxial stress are tensile stresses of 10,000 psi and 5,000 psi, as shown 
in the figure. 

(a) Determine the angle � and the shear stress �� and show all stresses
on a sketch of the element. 

(b) Determine the maximum normal stress �max and the maximum
shear stress �max in the material.

Solution 2.6-15 Bar in uniaxial stress
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   = 10,000 psi

5,000 psi10,000 psi

5,000 psi

�

�� ��

�� ��

��

(a) ANGLE � AND SHEAR STRESS ��

�� � �x cos2�

�� � 10,000 psi

(1)

PLANE AT ANGLE � � 90�

(2)

Equate (1) and (2):

tan2u�
1

2
�tan u�

1

�2
�u� 35.26�

10,000  psi

cos2u
�

5,000  psi

sin2u

sx �
su�90�

sin2u
�

5,000  psi

sin2u

 su�90� � 5,000  psi

 �sx  sin2u

 su�90� �sx[cos(u� 90�) ] 2 �sx[�sin  u ] 2

sx �
su

cos2u
�

10,000  psi

cos2u

From Eq. (1) or (2):

Minus sign means that �� acts clockwise on the plane
for which � � 35.26�.

NOTE: All stresses have units of psi.

(b) MAXIMUM NORMAL AND SHEAR STRESSES

tmax �
sx

2
� 7,500  psi

smax �sx � 15,000  psi

 � �7,070  psi

 � (�15,000  psi)(sin  35.26�)(cos  35.26�)

 tu� �sx  sin  u  cos  u

 sx � 15,000  psi

10,000 psi

5,000 psi

10,000 psi

5,000 psi

�

��

��

10,000

5,000

10,000

5,000

� = 35.26°
7,070

7,070

y

x0



Problem 2.6-16 A prismatic bar is subjected to an axial force that
produces a tensile stress �� � 63 MPa and a shear stress �� � �21 MPa
on a certain inclined plane (see figure). 

Determine the stresses acting on all faces of a stress element oriented
at � � 30° and show the stresses on a sketch of the element.

Solution 2.6-16 Bar in uniaxial stress
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21 MPa

63 MPa
�

�� � 63 MPa �� � � 21 MPa

INCLINED PLANE AT ANGLE �

�� � �xcos2�

63 MPa � �xcos2�

(1)

(2)

Equate (1) and (2):

or 

From (1) or (2): �x�70.0 MPa (tension)

tan  u�
21

63
�

1

3
�    u� 18.43�

63  MPa

cos2u
�

21  MPa

sin  u  cos  u

sx �
21  MPa

sin  u  cos  u

�21  MPa � �sx sin u cos u

tu� �sx  sin  u  cos  u

sx �
63  MPa

cos2u

STRESS ELEMENT AT � � 30�

Plane at � � 30� � 90� � 120�

NOTE: All stresses have units of MPa.

� 30.31  MPa

 tu� ( � 70  MPa)(sin  120�)(cos  120�)

 su� (70  MPa)(cos  120�)2 � 17.5  MPa

 � �30.31  MPa

� (�70  MPa)(sin  30�)(cos  30�)

 tu� �sx sin  u  cos  u

� 52.5  MPa

 su�sx cos2u� (70  MPa)(cos  30�)2

�

30°

17.5

30.31

52.5

30.31

52.5

y

x0



Problem 2.6-17 The normal stress on plane pq of a prismatic bar in
tension (see figure) is found to be 7500 psi. On plane rs, which makes 
an angle � � 30° with plane pq, the stress is found to be 2500 psi. 

Determine the maximum normal stress �max and maximum shear
stress �max in the bar.

Solution 2.6-17 Bar in tension
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q

p

r

P P

s

�

Eq. (2-29a):

�� � �xcos2�

� � 30�

PLANE pq: �1 � �xcos2�1 �1 � 7500 psi

PLANE rs: �2 � �xcos2(�1 � �) �2 � 2500 psi

Equate �x from �1 and �2:

(Eq. 1)

or 

(Eq. 2)
cos2

 u1

cos2(u1 � b)
�
s1

s2
�

cos  u1

cos(u1 � b)
�Bs1

s2

sx �
s1

cos2u1

�
s2

cos2(u1 � b)

SUBSTITUTE NUMERICAL VALUES INTO EQ. (2):

Solve by iteration or a computer program:

�1 � 30�

MAXIMUM NORMAL STRESS (FROM EQ. 1)

MAXIMUM SHEAR STRESS

tmax �
sx

2
� 5,000  psi

� 10,000  psi

smax �sx �
s1

cos2u1

�
7500  psi

cos230�

cos  u1

cos(u1 � 30�)
�B7500  psi

2500  psi
� �3 � 1.7321

q

p

r
P P

s

�



Problem 2.6-18 A tension member is to be constructed of two pieces of
plastic glued along plane pq (see figure). For purposes of cutting and
gluing, the angle � must be between 25° and 45°. The allowable stresses
on the glued joint in tension and shear are 5.0 MPa and 3.0 MPa,
respectively.

(a) Determine the angle � so that the bar will carry the largest load P.
(Assume that the strength of the glued joint controls the design.) 

(b) Determine the maximum allowable load Pmax if the cross-sectional
area of the bar is 225 mm2.

Solution 2.6-18 Bar in tension with glued joint
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q

pP P�

25� � � � 45�

A � 225 mm2

On glued joint: �allow � 5.0 MPa

�allow � 3.0 MPa

ALLOWABLE STRESS �x IN TENSION

(1)

�� � � �xsin � cos �

Since the direction of �� is immaterial, we can write:
|��| � �xsin � cos �

or 

(2)

GRAPH OF EQS. (1) AND (2)

sx �
�tu�

sin  u  cos  u
�

3.0  MPa

sin  u  cos  u

su�sx  cos2u�sx �
su

cos2u
�

5.0  MPa

cos2u

(a) DETERMINE ANGLE � FOR LARGEST LOAD

Point A gives the largest value of �x and hence the
largest load. To determine the angle � corresponding
to point A, we equate Eqs. (1) and (2).

(b) DETERMINE THE MAXIMUM LOAD

From Eq. (1) or Eq. (2):

 � 1.53  kN

 Pmax �sx A � (6.80  MPa)(225  mm2)

sx �
5.0  MPa

cos2 u
�

3.0  MPa

sin  u  cos  u
� 6.80  MPa

tan  u�
3.0

5.0
�u� 30.96�

�
3.0  MPa

sin  u cos  u

5.0  MPa

cos2u

q

pP P�

15° 30° 45° 60° 75° 90°

15

10

0

5

Eq.(2)

Eq.(1)

25° 45°

A

sx
(MPa)

u



Strain Energy

When solving the problems for Section 2.7, assume that the material
behaves linearly elastically.

Problem 2.7-1 A prismatic bar AD of length L, cross-sectional area A,
and modulus of elasticity E is subjected to loads 5P, 3P, and P acting at
points B, C, and D, respectively (see figure). Segments AB, BC, and CD
have lengths L /6, L /2, and L/3, respectively. 

(a) Obtain a formula for the strain energy U of the bar. 
(b) Calculate the strain energy if P � 6 k, L � 52 in., A � 2.76 in.2,

and the material is aluminum with E � 10.4 � 106 psi.

Solution 2.7-1 Bar with three loads
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A B C D

5P 3P P

L
6
— L

2
— L

3
—

P � 6 k

L � 52 in.

E � 10.4 � 106 psi

A � 2.76 in.2

INTERNAL AXIAL FORCES

NAB � 3P NBC � �2P NCD � P

LENGTHS

LAB �
L

6
�   LBC �

L

2
�   LCD �

L

3
  

(a) STRAIN ENERGY OF THE BAR (EQ. 2-40)

(b) SUBSTITUTE NUMERICAL VALUES:

 � 125  in.-lb

 U �
23(6  k)2(52  in.)

12(10.4 � 106
 psi) (2.76  in.2)

 �
P2L

2EA
¢23

6
≤�

23P2L

12EA

�
1

2EA
B(3P)2 ¢L

6
≤� (�2P)2 ¢L

2
≤� (P)2¢L

3
≤ R

 U � a Ni
2Li

2Ei Ai

A B C D

5P 3P P

L
6
— L

2
— L

3
—



138 CHAPTER 2 Axially Loaded Members

(a) STRAIN ENERGY OF THE BAR

Add the strain energies of the two segments of the
bar (see Eq. 2-40).

(b) SUBSTITUTE NUMERICAL VALUES:

 �
P2L

�E
¢ 1

4d2 �
1

d2≤�
5P2L

4�Ed2

 U � a
2

i�1

Ni
2 Li

2 Ei Ai

�
P2(L�2)

2E
B 1

�
4 (2d)2 �

1
�
4 (d2)

R

P � 27 kN L � 600 mm

d � 40 mm E � 105 GPa

 � 1.036  N � m � 1.036  J

 U �
5(27  kN)2(600  mm)

4�(105  GPa)(40  mm)2

P P

2d
d

L
2

— L
2

—

Problem 2.7-3 A three-story steel column in a building supports roof
and floor loads as shown in the figure. The story height H is 10.5 ft, the
cross-sectional area A of the column is 15.5 in.2, and the modulus of
elasticity E of the steel is 30 � 106 psi.

Calculate the strain energy U of the column assuming P1 � 40 k and
P2 � P3 � 60 k.

P1

P2

P3

H

H

H

Problem 2.7-2 A bar of circular cross section having two different
diameters d and 2d is shown in the figure. The length of each segment 
of the bar is L/2 and the modulus of elasticity of the material is E. 

(a) Obtain a formula for the strain energy U of the bar due to the 
load P. 

(b) Calculate the strain energy if the load P � 27 kN, the length 
L � 600 mm, the diameter d � 40 mm, and the material is brass
with E � 105 GPa.

Solution 2.7-2 Bar with two segments

P P

2d
d

L
2

— L
2

—



Solution 2.7-3 Three-story column
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H � 10.5 ft E � 30 � 106 psi

A � 15.5 in.2 P1 � 40 k

P2 � P3 � 60 k

To find the strain energy of the column, add the
strain energies of the three segments (see Eq. 2-40).

Upper segment: N1 � �P1

Middle segment: N2 � �(P1 � P2)

Lower segment: N3 � �(P1 � P2 � P3)

STRAIN ENERGY

[Q] � (40 k)2 � (100 k)2 � (160 k)2 � 37,200 k2

2EA � 2(30 � 106 psi)(15.5 in.2) � 930 � 106 lb

 � 5040  in.-lb

 U �
(10.5  ft) (12  in.�ft)

930 � 106
 lb

[37,200  k2]

�
H

2EA
[Q]

�
H

2EA
[P1

2 � (P1 � P2)2 � (P1 � P2 � P3)2 ]

U � a Ni
2Li

2Ei Ai

P1

P2

P3

H

H

H

Problem 2.7-4 The bar ABC shown in the figure is loaded by a force 
P acting at end C and by a force Q acting at the midpoint B. The bar 
has constant axial rigidity EA. 

(a) Determine the strain energy U1 of the bar when the force P acts
alone (Q � 0). 

(b) Determine the strain energy U2 when the force Q acts alone (P � 0). 
(c) Determine the strain energy U3 when the forces P and Q act 

simultaneously upon the bar.

Solution 2.7-4 Bar with two loads

A B C

PQ

L/2 L/2

(a) FORCE P ACTS ALONE (Q � 0)

(b) FORCE Q ACTS ALONE (P � 0)

U2 �
Q2(L�2)

2EA
�

Q2L

4EA

U1 �
P2L

2EA

(c) FORCES P AND Q ACT SIMULTANEOUSLY

(Note that U3 is not equal to U1 � U2. In this case,
U3 > U1 � U2. However, if Q is reversed in
direction, U3 � U1 � U2. Thus, U3 may be larger or
smaller than U1 � U2.)

U3 � UBC � UAB �
P2L

2EA
�

PQL

2EA
�

Q2L

4EA

 �
P2L

4EA
�

PQL

2EA
�

Q2L

4EA

 Segment  AB:  UAB �
(P � Q)2(L�2)

2EA

 Segment  BC:  UBC �
P2(L�2)

2EA
�

P2L

4EA
A B C

PQ

L/2 L/2



Problem 2.7-5 Determine the strain energy per unit volume (units of
psi) and the strain energy per unit weight (units of in.) that can be stored
in each of the materials listed in the accompanying table, assuming that
the material is stressed to the proportional limit.

DATA FOR PROBLEM 2.7-5

Weight Modulus of Proportional 
density elasticity limit 

Material (lb/in.3) (ksi) (psi)

Mild steel 0.284 30,000 36,000
Tool steel 0.284 30,000 75,000
Aluminum 0.0984 10,500 60,000
Rubber (soft) 0.0405 0.300 300

Solution 2.7-5 Strain-energy density 

DATA:
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STRAIN ENERGY PER UNIT VOLUME

Volume V � AL

At the proportional limit:

u � uR � modulus of resistance

(Eq. 1)uR �
sPL

2

2E

u �
U

V
�
s2

2E

Stress  s�
P

A

U �
P2L

2EA

STRAIN ENERGY PER UNIT WEIGHT

Weight W � �AL

� � weight density

At the proportional limit:

(Eq. 2)

RESULTS

uW �
sPL

2

2gE

uW �
U

W
�
s2

2gE

U �
P2L

2EA

Weight Modulus of Proportional
density elasticity limit

Material (lb/in.3) (ksi) (psi)

Mild steel 0.284 30,000 36,000

Tool steel 0.284 30,000 75,000

Aluminum 0.0984 10,500 60,000

Rubber (soft) 0.0405 0.300 300

uR uW
(psi) (in.)

Mild steel 22 76

Tool steel 94 330

Aluminum 171 1740

Rubber (soft) 150 3700



Problem 2.7-6 The truss ABC shown in the figure is subjected to a
horizontal load P at joint B. The two bars are identical with cross-
sectional area A and modulus of elasticity E. 

(a) Determine the strain energy U of the truss if the angle � � 60°.
(b) Determine the horizontal displacement �B of joint B by equating

the strain energy of the truss to the work done by the load.

Solution 2.7-6 Truss subjected to a load P
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� �

PB

CA

L

� � 60�

LAB � LBC � L

cos � � 1/2

FREE-BODY DIAGRAM OF JOINT B

©Fvert � 0 ↑� ↓�

�FAB sin � � FBC sin � � 0

FAB � FBC (Eq. 1)

©Fhoriz � 0 →� ←�

�FAB cos � � FBC cos � � P � 0

(Eq. 2)FAB � FBC �
P

2  cos  b
�

P

2(1�2)
� P

sin  b� �3�2

Axial forces: NAB � P (tension)

NBC � �P (compression)

(a) STRAIN ENERGY OF TRUSS (EQ. 2-40)

(b) HORIZONTAL DISPLACEMENT OF JOINT B (EQ. 2-42)

�B �
2U

P
�

2

P
 ¢P

2L

EA
≤�

2PL

EA

�
P2L

EA

U � a Ni
2Li

2EiAi

�
(NAB)2L

2EA
�

(NBC)2L

2EA

� �

PB

CA

L

� �

PB

FAB FBC



Problem 2.7-7 The truss ABC shown in the figure supports a horizontal
load P1 � 300 lb and a vertical load P2 � 900 lb. Both bars have 
cross-sectional area A � 2.4 in.2 and are made of steel with 
E � 30 � 106 psi. 

(a) Determine the strain energy U1 of the truss when the load P1 acts
alone (P2 �0). 

(b) Determine the strain energy U2 when the load P2 acts alone
(P1�0). 

(c) Determine the strain energy U3 when both loads act simultaneously.

Solution 2.7-7 Truss with two loads
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P1 � 300 lb

P2 � 900 lb

A � 2.4 in.2

E � 30 � 106 psi

LBC � 60 in.

� � 30�

sin � � sin 30� �

2EA � 2(30 � 106 psi)(2.4 in.2) � 144 � 106 lb

FORCES FAB AND FBC IN THE BARS

From equilibrium of joint B:

FAB � 2P2 � 1800 lb

FBC � P1 � P2�3 � 300  lb � 1558.8  lb

LAB �
 LBC

cos  30�
�

120

�3
 in. � 69.282  in.

cos  b� cos  30� �
�3

2

1

2

(a) LOAD P1 ACTS ALONE

(b) LOAD P2 ACTS ALONE

(c) LOADS P1 AND P2 ACT SIMULTANEOUSLY

NOTE: The strain energy U3 is not equal to U1 � U2.

� 2.22  in.-lb

 �
319.548 � 106

 lb2-in.

144 � 106
 lb

� ( � 1258.8  lb)2(60  in.) R

 �
1

2EA
B (1800  lb)2(69.282  in.)

 U3 �
1

2EA
B (FAB)2LAB � (FBC)2LBCR

 �
370.265 � 106

 lb2-in.

144 � 106
 lb

� 2.57  in.-lb

� ( � 1558.8  lb)2(60  in.) R

 �
1

2EA
B (1800  lb)2(69.282  in.)

 U2 �
1

2EA
B (FAB)2LAB � (FBC)2LBCR

 � 0.0375  in.-lb

 U1 �
(FBC)2LBC

2EA
�

(300  lb)2(60  in.)

144 � 106
 lb

Force P1 alone P2 alone P1 and P2

FAB 0 1800 lb 1800 lb

FBC 300 lb �1558.8 lb �1258.8 lb

P1

P2

BC

A

LBC

30°

LAB

P1 = 300 lb

P2 = 900 lb

BC

A

60 in.

30°



Problem 2.7-8 The statically indeterminate structure shown in the
figure consists of a horizontal rigid bar AB supported by five equally
spaced springs. Springs 1, 2, and 3 have stiffnesses 3k, 1.5k, and k,
respectively. When unstressed, the lower ends of all five springs lie
along a horizontal line. Bar AB, which has weight W, causes the
springs to elongate by an amount �.

(a) Obtain a formula for the total strain energy U of the springs 
in terms of the downward displacement � of the bar. 

(b) Obtain a formula for the displacement � by equating the strain
energy of the springs to the work done by the weight  W. 

(c) Determine the forces F1, F2, and F3 in the springs. 
(d) Evaluate the strain energy U, the displacement �, and the 

forces in the springs if W � 600 N and k � 7.5 N/mm.

Solution 2.7-8 Rigid bar supported by springs
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1.5k 1.5k

A B

W

k

3k3k1 2 12 3

k1 � 3k

k2 � 1.5k

k3 � k

� � downward displacement of rigid bar 

For a spring: U

(a) STRAIN ENERGY U OF ALL SPRINGS

(b) DISPLACEMENT �

Strain energy of the springs equals 5k�2

∴
W�

2
� 5k�2�and�� �

W

10k

Work  done  by  the  weight  W  equals  

W�

2

� 5k�2

U � 2 ¢3k�2

2
≤� 2 ¢1.5k�2

2
≤�

k�2

2

�
k�2

2
�Eq.  (2-38b)

(c) FORCES IN THE SPRINGS

(d) NUMERICAL VALUES

W � 600 N k � 7.5 N/mm � 7500 N/mm

NOTE: W � 2F1 � 2F2 � F3 � 600 N (Check)

F3 �
W

10
� 60  N

F2 �
3W

20
� 90  N

F1 �
3W

10
� 180  N

� �
W

10k
� 8.0  mm

 � 2.4  N �  m � 2.4  J

 U � 5k�2 � 5k ¢ W

10k
≤

2

�
W 2

20k

F3 � k� �
W

10

F1 � 3k� �
3W

10
�F2 � 1.5k� �

3W

20

1 2 12 3

W



Problem 2.7-9 A slightly tapered bar AB of rectangular cross section
and length L is acted upon by a force P (see figure). The width of the 
bar varies uniformly from b2 at end A to b1 at end B. The thickness t
is constant. 

(a) Determine the strain energy U of the bar. 
(b) Determine the elongation � of the bar by equating the strain 

energy to the work done by the force P.

Solution 2.7-9 Tapered bar of rectangular cross section
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b2

b1

L

A B
P

(a) STRAIN ENERGY OF THE BAR

From  Appendix  C:  � dx

a � bx
�

1

b
 ln  (a � bx)

 � �
L

0

P2dx

2Et  b(x)
�

P2

2Et �
L

0

dx

b2 � (b2 � b1)x
L

�(1)

 U � � [N(x) ] 2dx

2E A(x)
�(Eq.  2-41)

 � tBb2 �
(b2 � b1)x

L
R

 A(x) � tb(x)

b(x) � b2 �
(b2 � b1)x

L
Apply this integration formula to Eq. (1):

(b) ELONGATION OF THE BAR (EQ. 2-42)

NOTE: This result agrees with the formula derived in
Prob. 2.3-11.

� �
2U

P
�

PL

Et(b2 � b1)
 ln 

b2

b1

 U �
P2L

2Et(b2 � b1)
 ln  

b2

b1

 �
P2

2Et
B �L

(b2 � b1)
 ln  b1 �

�L

(b2 � b1)
 ln  b2R

�
(b2 � b1)x

L
R R

0

L

 U �
P2

2Et
B 1

�(b2 � b1) (1
L)

 ln  Bb2

b2

b1

L

A B
P

dx

b(x)

x

Problem 2.7-10 A compressive load P is transmitted through a rigid
plate to three magnesium-alloy bars that are identical except that initially
the middle bar is slightly shorter than the other bars (see figure). The
dimensions and properties of the assembly are as follows: length L � 1.0 m,
cross-sectional area of each bar A � 3000 mm2, modulus of elasticity 
E � 45 GPa, and the gap s � 1.0 mm.

(a) Calculate the load P1 required to close the gap. 
(b) Calculate the downward displacement � of the rigid plate when 

P � 400 kN. 
(c) Calculate the total strain energy U of the three bars when 

P � 400 kN. 
(d) Explain why the strain energy U is not equal to P�/2. 

(Hint: Draw a load-displacement diagram.)

L

P

s



Solution 2.7-10 Three bars in compression
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s � 1.0 mm

L � 1.0 m

For each bar:

A � 3000 mm2

E � 45 GPa

(a) LOAD P1 REQUIRED TO CLOSE THE GAP

For two bars, we obtain:

(b) DISPLACEMENT � FOR P � 400 kN

Since P � P1, all three bars are compressed. The 
force P equals P1 plus the additional force required 
to compress all three bars by the amount � � s.

or 400 kN � 270 kN � 3(135 � 106 N/m)(� � 0.001 m)

Solving,  we  get  � � 1.321  mm

P � P1 � 3¢EA

L
≤(� � s)

 P1 � 270  kN

 P1 � 2 ¢EAs

L
≤� 2(135 � 106

 N�m)(1.0  mm)

In  general,  � �
PL

EA
 and  P �

EA�

L

EA

L
� 135 � 106

 N�m

(c) STRAIN ENERGY U FOR P � 400 kN

Outer bars: � � 1.321 mm

Middle bar:  � � 1.321 mm � s

� 0.321 mm

(d) LOAD-DISPLACEMENT DIAGRAM

U � 243 J � 243 N . m

The strain energy U is not equal to because the

load-displacement relation is not linear.

U � area under line OAB.

under a straight line from O to B, 

which is larger than U.

P�

2
� area

P�

2

P�

2
�

1

2
(400  kN)(1.321  mm) � 264  N  �  m

 � 243  N �  m � 243  J

 �
1

2
(135 � 106

 N�m)(3.593  mm2)

 U �
EA

2L
[2(1.321  mm)2 � (0.321  mm)2]

U � a EA�2

2L

100

0 0.5 1.0 1.5 2.0

200

400

300

400 kN

270 kN A

B

� = 1.0 mm

� = 1.321 mm

Displacement � (mm)

Load P
(kN)

L

P

s = 1.0 mm



(b) STRAIN ENERGY U1 WHEN x � 2s

(5)

(c) STRAIN ENERGY U1 IS NOT EQUAL TO

For 

(This quantity is greater than U1.)

U1 � area under line OAB.

under a straight line from O to B, which 

is larger than U1.

Thus, is not equal to the strain energy because

the force-displacement relation is not linear.

P�

2

P�

2
� area

� � 2s:  

P�

2
�

1

2
 P1(2 s) � P1s � 2(k1 � k2)s2

P�

2

 U1 � (2k1 � k2)s2

 � k1s
2 � (k1 � k2)s2

 �
1

2
P0 s � P0 s �

1

2
(P1 � P0)s � P0 s �

1

2
 P1 s

 U1 � Area  below  force-displacement  curve
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Force P0 required to close the gap:

P0 � k1s (1)

FORCE-DISPLACEMENT RELATION BEFORE GAP IS CLOSED

P � k1x (0 � x � s)(0 � P � P0) (2)

FORCE-DISPLACEMENT RELATION AFTER GAP IS CLOSED

All three springs are compressed. Total stiffness
equals k1 � 2k2. Additional displacement equals 
x � s. Force P equals P0 plus the force required to
compress all three springs by the amount x � s.

(x � s); (P � P0) (3)

P1 � force P when x � 2s

Substitute x � 2s into Eq. (3):

P1 � 2(k1 � k2)s (4)

(a) FORCE-DISPLACEMENT DIAGRAM

 P � (k1 � 2k2)x � 2k2s�

 � k1s � (k1 � 2k2)x � k1s � 2k2s

 P � P0 � (k1 � 2k2) (x � s)

P
B

x

k2

k1

k2

s

Force P
P1

P0

0 s 2s
Displacement x

Eq (2)

Eq (3)

B

Slope = k1 + 2k2

Slope = k1

A

Problem 2.7-11 A block B is pushed against three springs by a force 
P (see figure). The middle spring has stiffness k1 and the outer springs
each have stiffness k2. Initially, the springs are unstressed and the middle
spring 
is longer than the outer springs (the difference in length is denoted s). 

(a) Draw a force-displacement diagram with the force P as ordinate and
the displacement x of the block as abscissa. 

(b) From the diagram, determine the strain energy U1 of the springs when
x � 2s. 

(c) Explain why the strain energy U1 is not equal to P�/2, where � � 2s.

Solution 2.7-11 Block pushed against three springs

P
B

x

k2

k1

k2

s

= + +
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Problem 2.7-12 A bungee cord that behaves linearly elastically has an
unstressed length L0 � 760 mm and a stiffness k � 140 N/m. 
The cord is attached to two pegs, distance b � 380 mm apart, and 
pulled at its midpoint by a force P � 80 N (see figure).

(a) How much strain energy U is stored in the cord? 
(b) What is the displacement �C of the point where the load is

applied? 
(c) Compare the strain energy U with the quantity P�C/2. 
(Note: The elongation of the cord is not small compared to its

original length.)

Solution 2.7-12 Bungee cord subjected to a load P. 

DIMENSIONS BEFORE THE LOAD P IS APPLIED

C
P

B

A
b

b � 380 mm

Bungee cord:

k � 140 N/m

From triangle ACD:

(1)

DIMENSIONS AFTER THE LOAD P IS APPLIED

Let x � distance CD

Let L1 � stretched length of bungee cord

d �
1

2
�L0

2 � b2 � 329.09  mm

L0 � 760  mm�
L0

2
� 380  mm

From triangle ACD:

(2)

(3)

EQUILIBRIUM AT POINT C

Let F � tensile force in bungee cord

(4)

ELONGATION OF BUNGEE CORD

Let � � elongation of the entire bungee cord

(5)

Final length of bungee cord � original length � �

(6)L1 � L0 � � � L0 �
P

2kB1 �
b2

4x2

� �
F

k
�

P

2kB1 �
b2

4x2

�
P

2B1 � ¢ b

2x
≤

2

F

P�2
�

L1�2
x

�F � ¢P
2
≤ ¢L1

2
≤ ¢1

x
≤

L1 � �b2 � 4x2

L1

2
�B¢b2≤2 � x2

C

A

B

L0
2

L0
2

d
Db

L0 = 760 mm

C

A

B

L1
2

L1
2

x
Db

P

P � 80 N

C P

P = 80 N

F

F

F

CP/2

(Continued)
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SOLUTION OF EQUATIONS

Combine Eqs. (6) and (3):

or

(7)

This equation can be solved for x.

SUBSTITUTE NUMERICAL VALUES INTO EQ. (7):

� (8)

(9)

Units: x is in millimeters

Solve for x (Use trial & error or a computer
program):

x � 497.88 mm

(a) STRAIN ENERGY U OF THE BUNGEE CORD

U �
k�2

2
�k � 140  N�m�P � 80  N

760 � ¢1 �
142.857

x
≤�144,400 � 4x2�(9)

�(380  mm)2 � 4x2

760  mm � B1 �
(80  N)(1000  mm�m)

4(140  N�m)x
R

L0 � ¢1 �
P

4kx
≤�b2 � 4x2

L1 � L0 �
P

4kx
�b2 � 4x2 � �b2 � 4x2

L1 � L0 �
P

2kB1 �
b2

4x2 � �b2 � 4x2

From Eq. (5):

(b) DISPLACEMENT �C OF POINT C

(c) COMPARISON OF STRAIN ENERGY U WITH THE

QUANTITY P�C /2

U � 6.55 J

The two quantities are not the same. The work done
by the load P is not equal to P�C /2 because the load-
displacement relation (see below) is non-linear when
the displacements are large. (The work done by the
load P is equal to the strain energy because the
bungee cord behaves elastically and there are no
energy losses.)

U � area OAB under the curve OA.

of triangle OAB,  which is greater 

than U.

P�C

2
� area

P�C

2
�

1

2
(80  N)(168.8  mm) � 6.75  J

� 168.8  mm

�C � x � d � 497.88  mm � 329.09  mm

U � 6.55  J

U �
1

2
(140  N�m)(305.81  mm)2 � 6.55  N  �  m

� �
P

2kB1 �
b2

4x2 � 305.81  mm

Load
P

0

80 N
A

B

�C

Large
displacements

Small
displacements

Displacement



Impact Loading

The problems for Section 2.8 are to be solved on the basis of the
assumptions and idealizations described in the text. In particular, assume
that the material behaves linearly elastically and no energy is lost during
the impact.

Problem 2.8-1 A sliding collar of weight W � 150 lb falls from a height 
h � 2.0 in. onto a flange at the bottom of a slender vertical rod (see figure).
The rod has length L � 4.0 ft, cross-sectional area A � 0.75 in.2, and
modulus of elasticity E � 30 � 106 psi. 

Calculate the following quantities: (a) the maximum downward
displacement of the flange, (b) the maximum tensile stress in the rod, 
and (c) the impact factor.

Solution 2.8-1 Collar falling onto a flange
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Collar

Rod

Flange

L

h

Flange

L

h

W

W � 150 lb

h � 2.0 in. L � 4.0 ft � 48 in.

E � 30 � 106 psi A � 0.75 in.2

(a) DOWNWARD DISPLACEMENT OF FLANGE

Eq. of (2-53):

(b) MAXIMUM TENSILE STRESS (EQ. 2-55)

(c) IMPACT FACTOR (EQ. 2-61)

 � 113

 Impact  factor �
�max

�st

�
0.0361  in.

0.00032  in.

smax �
E�max

L
� 22,600  psi

 � 0.0361  in.

 �max � �stB1 � ¢1 �
2h

�st

≤
1�2 R

�st �
WL

EA
� 0.00032  in.

Probs. 2.8-1, 2.8-2, and 2.8-3



Problem 2.8-2 Solve the preceding problem if the collar has mass 
M � 80 kg, the height h � 0.5 m, the length L � 3.0 m, the cross-sectional
area A � 350 mm2, and the modulus of elasticity E � 170 GPa.

Solution 2.8-2 Collar falling onto a flange
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M � 80 kg

W � Mg � (80 kg)(9.81 m/s2)

� 784.8 N

h � 0.5 m L � 3.0 m

E � 170 GPa A � 350 mm2

(a) DOWNWARD DISPLACEMENT OF FLANGE

(b) MAXIMUM TENSILE STRESS (EQ. 2-55)

(c) IMPACT FACTOR (EQ. 2-61)

� 160

Impact  factor �
�max

�st

�
6.33  mm

0.03957  mm

smax �
E�max

L
� 359  MPa

� 6.33  mm

Eq. (2-53):��max � �stB1 � ¢1 �
2h

�st

≤
1�2 R

�st �
WL

EA
� 0.03957  mm

Flange

L

h

W

Problem 2.8-3 Solve Problem 2.8-1 if the collar has weight W � 50 lb,
the height h � 2.0 in., the length L � 3.0 ft, the cross-sectional area 
A � 0.25 in.2, and the modulus of elasticity E � 30,000 ksi.

Solution 2.8-3 Collar falling onto a flange

Flange

L

h

W

W � 50 lb h � 2.0 in.

L � 3.0 ft � 36 in.

E � 30,000 psi A � 0.25 in.2

(a) DOWNWARD DISPLACEMENT OF FLANGE

(b) MAXIMUM TENSILE STRESS (EQ. 2-55)

(c) IMPACT FACTOR (EQ. 2-61)

� 130

Impact  factor �
�max

�st

�
0.0312  in.

0.00024  in.

smax �
E�max

L
� 26,000  psi

� 0.0312  in.

Eq. (2-53):��max � �stB1 � ¢1 �
2h

�st

≤
1�2 R

�st �
WL

EA
� 0.00024  in.



Problem 2.8-4 A block weighing W � 5.0 N drops inside a cylinder
from a height h � 200 mm onto a spring having stiffness k � 90 N/m
(see figure). 

(a) Determine the maximum shortening of the spring due to the
impact, and (b) determine the impact factor.

Solution 2.8-4 Block dropping onto a spring
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hCylinder

Block

k

W � 5.0 N h � 200 mm k � 90 N/m

(a) MAXIMUM SHORTENING OF THE SPRING

� 215  mm

Eq.  (2-53):��max � �stB1 � ¢1 �
2h

�st

≤
1�2 R

�st �
W

k
�

5.0  N

90  N�m
� 55.56  mm

(b) IMPACT FACTOR (EQ. 2-61)

� 3.9

Impact  factor �
�max

�st

�
215  mm

55.56  mm

h

k

W

Prob. 2.8-4 and 2.8-5



Problem 2.8-5 Solve the preceding problem if the block weighs 
W � 1.0 lb, h � 12 in., and k � 0.5 lb/in.

Solution 2.8-5 Block dropping onto a spring
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W � 1.0 lb h � 12 in. k � 0.5 lb/in.

(a) MAXIMUM SHORTENING OF THE SPRING

(b) IMPACT FACTOR (EQ. 2-61)

� 4.6

Impact  factor �
�max

�st

�
9.21  in.

2.0  in.

� 9.21  in.

Eq.  (2-53):��max � �stB1 � ¢1 �
2h

�st

≤
1�2 R

�st �
W

k
�

1.0  lb

0.5  lb�in.
� 2.0  in.

h

k

W

Problem 2.8-6 A small rubber ball (weight W � 450 mN) is attached 
by a rubber cord to a wood paddle (see figure). The natural length of the
cord is L0 � 200 mm, its cross-sectional area is A � 1.6 mm2, and its
modulus of elasticity is E � 2.0 MPa. After being struck by the paddle,
the ball stretches the cord to a total length L1 � 900 mm. 

What was the velocity v of the ball when it left the paddle? (Assume
linearly elastic behavior of the rubber cord, and disregard the potential
energy due to any change in elevation of the ball.)

Solution 2.8-6 Rubber ball attached to a paddle

g � 9.81 m/s2 E � 2.0 MPa

A � 1.6 mm2 L0 � 200 mm

L1 � 900 mm W � 450 mN

WHEN THE BALL LEAVES THE PADDLE

KE �
Wv2

2g

WHEN THE RUBBER CORD IS FULLY STRETCHED:

CONSERVATION OF ENERGY

SUBSTITUTE NUMERICAL VALUES:

� 13.1  m�s

v � (700  mm)B (9.81  m�s2)(2.0  MPa)(1.6  mm2)

(450  mN)(200  mm)

v � (L1 � L0)BgEA

WL0

v2 �
gEA

WL0
(L1 � L0)2

KE � U�Wv2

2g
�

EA

2L0
(L1 � L0)2

U �
EA�2

2L0
�

EA

2L0
(L1 � L0)2



Problem 2.8-7 A weight W � 4500 lb falls from a height h onto 
a vertical wood pole having length L � 15 ft, diameter d � 12 in.,
and modulus of elasticity E � 1.6 � 106 psi (see figure). 

If the allowable stress in the wood under an impact load is 
2500 psi, what is the maximum permissible height h?

Solution 2.8-7 Weight falling on a wood pole
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d = 12 in.

W = 4,500 lb

h

L = 15 ft

W � 4500 lb d � 12 in.

L � 15 ft � 180 in.

E � 1.6 � 106 psi

�allow � 2500 psi (� �max)

Find hmax

A �
�d2

4
� 113.10  in.2

STATIC STRESS

MAXIMUM HEIGHT hmax

or

Square both sides and solve for h:

SUBSTITUTE NUMERICAL VALUES:

� 8.55  in.

hmax �
(180  in.) (2500  psi)

2(1.6 � 106
 psi)

 ¢ 2500  psi

39.79  psi
� 2≤

h � hmax �
Lsmax

2E
 ¢smax

sst
� 2≤

smax

sst
� 1 � ¢1 �

2hE

Lsst

≤
1�2

Eq.  (2-59):�smax �sst B1 � ¢1 �
2hE

Lsst

≤
1�2 R

sst �
W

A
�

4500  lb

113.10  in.2
� 39.79  psi

d 

W

h

L 



Problem 2.8-9 Solve the preceding problem if the slider has weight 
W � 100 lb, h � 45 in., A � 0.080 in.2, E � 21 � 106 psi, and the
allowable stress is 70 ksi.

Problem 2.8-8 A cable with a restrainer at the bottom hangs vertically
from its upper end (see figure). The cable has an effective cross-sectional
area A � 40 mm2 and an effective modulus of elasticity E � 130 GPa. 
A slider of mass M � 35 kg drops from a height h � 1.0 m onto the
restrainer.

If the allowable stress in the cable under an impact load is 500 MPa,
what is the minimum permissible length L of the cable?

Solution 2.8-8 Slider on a cable
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Restrainer

Cable

Slider

h

L

W � Mg � (35 kg)(9.81 m/s2) � 343.4 N

A � 40 mm2 E � 130 GPa

h � 1.0 m �allow � �max � 500 MPa

Find minimum length Lmin

STATIC STRESS

MINIMUM LENGTH Lmin

or

Square both sides and solve for L:

SUBSTITUTE NUMERICAL VALUES:

� 9.25  mm

Lmin �
2(130  GPa)(1.0  m)(8.585  MPa)

(500  MPa) [500  MPa � 2(8.585  MPa) ]

L � Lmin �
2Ehsst

smax(smax � 2sst)

smax

sst
� 1 � ¢1 �

2hE

Lsst

≤
1�2

Eq.  (2-59):�smax �sst B1 � ¢1 �
2hE

Lsst

≤
1�2 R

sst �
W

A
�

343.4  N

40  mm2 � 8.585  MPa

h

LW

Probs. 2.8-8 and 2.8-9
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W � 100 lb

A � 0.080 in.2 E � 21 � 106 psi

h � 45 in �allow � �max � 70 ksi

Find minimum length Lmin

STATIC STRESS

sst �
W

A
�

100  lb

0.080  in.2
� 1250  psi

MINIMUM LENGTH Lmin

or

Square both sides and solve for L:

SUBSTITUTE NUMERICAL VALUES:

� 500  in.

Lmin �
2(21 � 106

 psi) (45  in.) (1250  psi)

(70,000  psi) [70,000  psi � 2(1250  psi) ]

L � Lmin �
2Ehsst

smax(smax � 2sst)

smax

sst
� 1 � ¢1 �

2hE

Lsst

≤
1�2

Eq.  (2-59):�smax �sstB1 � ¢1 �
2hE

Lsst

≤
1�2 R

Problem 2.8-10 A bumping post at the end of a track in a railway
yard has a spring constant k � 8.0 MN/m (see figure). The maximum
possible displacement d of the end of the striking plate is 450 mm. 

What is the maximum velocity vmax that a railway car of weight
W � 545 kN can have without damaging the bumping post when it
strikes it?

Solution 2.8-10 Bumping post for a railway car

d

k

v

d

k

v

k � 8.0 MN/m W � 545 kN

d � maximum displacement of spring

d � �max � 450 mm

Find vmax

KINETIC ENERGY BEFORE IMPACT

KE �
Mv2

2
�

Wv2

2g

STRAIN ENERGY WHEN SPRING IS COMPRESSED TO THE

MAXIMUM ALLOWABLE AMOUNT

CONSERVATION OF ENERGY

SUBSTITUTE NUMERICAL VALUES:

� 5400  mm�s � 5.4  m �s

vmax � (450  mm)B 8.0  MN�m
(545  kN)�(9.81  m�s2)

v � vmax � dB k

W�g

KE � U�Wv2

2g
�

kd2

2
�v2 �

kd2

W�g

U �
k�2

max

2
�

kd2

2

Solution 2.8-9 Slider on a cable

h

LW



Problem 2.8-11 A bumper for a mine car is constructed with a spring
of stiffness k � 1120 lb/in. (see figure). If a car weighing 3450 lb is
traveling at velocity v � 7 mph when it strikes the spring, what is the
maximum shortening of the spring?

Solution 2.8-11 Bumper for a mine car
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v

k

v

k

k � 1120 lb/in. W � 3450 lb

v � 7 mph � 123.2 in./sec

g � 32.2 ft/sec2 � 386.4 in./sec2

Find the shortening �max of the spring.

KINETIC ENERGY JUST BEFORE IMPACT

STRAIN ENERGY WHEN SPRING IS FULLY COMPRESSED

U �
k�max

2

2

KE �
Mv2

2
�

Wv2

2g

Conservation of energy

SUBSTITUTE NUMERICAL VALUES:

� 11.0  in.

�max �B (3450  lb)(123.2  in.�sec)2

(386.4  in.�sec2)(1120  lb�in.)

Solve  for  �max:��max �BWv2

gk

KE � U�Wv2

2g
�

k�max
2

2



Problem 2.8-12 A bungee jumper having a mass of 55 kg leaps from 
a bridge, braking her fall with a long elastic shock cord having axial
rigidity EA � 2.3 kN (see figure). 

If the jumpoff point is 60 m above the water, and if it is desired to
maintain a clearance of 10 m between the jumper and the water, what
length L of cord should be used?

Solution 2.8-12 Bungee jumper
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W � Mg � (55 kg)(9.81 m/s2)

� 539.55 N

EA � 2.3 kN

Height: h � 60 m

Clearance: C � 10 m

Find length L of the bungee cord.

P.E. � Potential energy of the jumper at the top of
bridge (with respect to lowest position)

� W(L � �max)

U � strain energy of cord at lowest position

CONSERVATION OF ENERGY

or��max
2 �

2WL

EA
 �max �

2WL2

EA
� 0

P.E. � U�W(L � �max) �
EA�max

2

2L

�
EA�max

2

2L

SOLVE QUADRATIC EQUATION FOR �max:

VERTICAL HEIGHT

h � C � L � �max

SOLVE FOR L:

SUBSTITUTE NUMERICAL VALUES:

Numerator � h � C � 60 m � 10 m � 50 m

�1.9586

L �
50  m

1.9586
� 25.5  m

 � B1 � ¢1 �
2

0.234587
≤

1�2 R
 Denominator � 1 � (0.234587)

W

EA
�

539.55 N

2.3 kN
� 0.234587

L �
h � C

1 �
W

EA
B1 � ¢1 �

2EA

W
≤

1�2R
     

h � C � L �
WL

EA
B1 � ¢1 �

2EA

W
≤

1�2 R

 �
WL

EA
B1 � ¢1 �

2EA

W
≤

1�2 R
 �max �

WL

EA
� B ¢WL

EA
≤

2

� 2L ¢WL

EA
≤ R 1�2

h

C



Problem 2.8-14 A rigid bar AB having mass M � 1.0 kg and length 
L � 0.5 m is hinged at end A and supported at end B by a nylon cord BC
(see figure). The cord has cross-sectional area A � 30 mm2, length 
b � 0.25 m, and modulus of elasticity E � 2.1 GPa. 

If the bar is raised to its maximum height and then released, what is
the maximum stress in the cord?

Problem 2.8-13 A weight W rests on top of a wall and is attached to one
end of a very flexible cord having cross-sectional area A and modulus of
elasticity E (see figure). The other end of the cord is attached securely to
the wall. The weight is then pushed off the wall and falls freely the full
length of the cord. 

(a) Derive a formula for the impact factor. 
(b) Evaluate the impact factor if the weight, when hanging statically,

elongates the band by 2.5% of its original length.

Solution 2.8-13 Weight falling off a wall
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W W

W � Weight

Properties of elastic cord:

E � modulus of elasticity

A � cross-sectional area

L � original length

�max � elongation of elastic cord

P.E. � potential energy of weight before fall (with
respect to lowest position)

P.E. � W(L � �max)

Let U � strain energy of cord at lowest position

U �
EA�max

2

2L

CONSERVATION OF ENERGY

SOLVE QUADRATIC EQUATION FOR �max:

STATIC ELONGATION

IMPACT FACTOR

NUMERICAL VALUES

�st � (2.5%)(L) � 0.025L

Impact  factor � 1 � [1 � 2(40) ]1�2 � 10

�st �
WL

EA
�      

W

EA
� 0.025�      

EA

W
� 40

�max

�st

� 1 � B1 �
2EA

W
R 1�2

�st �
WL

EA

�max �
WL

EA
� B ¢WL

EA
≤

2

� 2L ¢WL

EA
≤ R 1�2

or     �max
2 �

2WL

EA
 �max �

2WL2

EA
� 0

P.E. � U�    W(L � �max) �
EA�max

2

2  L

A B

C

W

b

L
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A B

C

W

b

L

RIGID BAR:

W � Mg � (1.0 kg)(9.81 m/s2)

� 9.81 N

L � 0.5 m

NYLON CORD:

A � 30 mm2

b � 0.25 m

E � 2.1 GPa

Find maximum stress �max in cord BC.

GEOMETRY OF BAR AB AND CORD BC

h � height of center of gravity of raised bar AD

�max � elongation of cord

cos u�
L

�b2 � L2

From triangle  ABC:  sin  u�
b

�b2 � L2

AD � AB � L

CD � CB � b

From Appendix C: 

(Eq. 1)

CONSERVATION OF ENERGY

P.E. � potential energy of raised bar AD

(Eq. 2)

Substitute into Eq. (2) and rearrange:

(Eq. 3)

Substitute from Eq. (1) into Eq. (3):

(Eq. 4)

SOLVE FOR �max:

SUBSTITUTE NUMERICAL VALUES:

smax � 33.3  MPa

smax �
W

2A
B1 �B1 �

8L2EA

W(b2 � L2)
R

smax
2 �

W

A
 smax �

2WL2E

A(b2 � L2)
� 0

smax
2 �

W

A
 smax �

2WhE

bA
� 0

For the cord: �max �
smaxb

E

P.E. � U�W ¢h �
�max

2
≤�

EA�max
2

2b

U � strain energy of stretched cord �
EA�max

2

2b

� W ¢h �
�max

2
≤

and     h �
bL2

b2 � L2

∴
2h

L
� 2 ¢ b

�b2 � L2
≤ ¢ L

�b2 � L2
≤�

2bL

b2 � L2

sin  2u� 2  sin  u  cos  u

From line  AD  :  sin  2u�
2h

AD
�

2h

L

Solution 2.8-14 Falling bar AB

h

h b

�max

CG

�

�

CG

D

C

B

L
�max

2

A



Stress Concentrations

The problems for Section 2.10 are to be solved by considering the 
stress-concentration factors and assuming linearly elastic behavior.

Problem 2.10-1 The flat bars shown in parts (a) and (b) of the figure are
subjected to tensile forces P � 3.0 k. Each bar has thickness t � 0.25 in. 

(a) For the bar with a circular hole, determine the maximum stresses
for hole diameters d � 1 in. and d � 2 in. if the width b � 6.0 in. 

(b) For the stepped bar with shoulder fillets, determine the maximum
stresses for fillet radii R � 0.25 in. and R � 0.5 in. if the bar
widths are b � 4.0 in. and c � 2.5 in.

Solution 2.10-1 Flat bars in tension
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P

P

P

P

b

db

(a)

(b)

c

R

P � 3.0 k t � 0.25 in.

(a) BAR WITH CIRCULAR HOLE (b � 6 in.)

Obtain K from Fig. 2-63

FOR d � 1 in.: c � b � d � 5 in.

d/b � K � 2.60

�max � k�nom � 

FOR d � 2 in.: c � b � d � 4 in.

d/b � K � 2.31

�max � K�nom � 6.9  ksi

1

3

snom �
P

ct
�

3.0  k

(4  in.) (0.25  in.)
� 3.00  ksi

6.2  ksi

1

6

snom �
P

ct
�

3.0  k

(5  in.) (0.25  in.)
� 2.40  ksi

(b) STEPPED BAR WITH SHOULDER FILLETS

b � 4.0 in. c � 2.5 in.; Obtain k from Fig. 2-64

FOR R � 0.25 in.: R/c � 0.1 b/c � 1.60

k � 2.30 �max � K�nom �

FOR R � 0.5 in.: R/c � 0.2 b/c � 1.60

K � 1.87 �max � K�nom � 9.0  ksi

11.0  ksi

snom �
P

ct
�

3.0  k

(2.5  in.) (0.25  in.)
� 4.80  ksi

PP PP
bdb

(a)

(b)

c

R = radius

Probs. 2.10-1 and 2.10-2
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Problem 2.10-2 The flat bars shown in parts (a) and (b) of the figure are
subjected to tensile forces P � 2.5 kN. Each bar has thickness t � 5.0 mm. 

(a) For the bar with a circular hole, determine the maximum stresses for
hole diameters d � 12 mm and d � 20 mm if the width b � 60 mm. 

(b) For the stepped bar with shoulder fillets, determine the maximum
stresses for fillet radii R � 6 mm and R � 10 mm if the bar widths are 
b � 60 mm and c � 40 mm.

Solution 2.10-2 Flat bars in tension

PP PP
bdb

(a)

(b)

c

R = radius

P � 2.5 kN t � 5.0 mm

(a) BAR WITH CIRCULAR HOLE (b � 60 mm)

Obtain K from Fig. 2-63

FOR d � 12 mm: c � b � d � 48 mm

d/b � K � 2.51

�max � K�nom � 

FOR d � 20 mm: c � b � d � 40 mm

d/b � K � 2.31

�max � K�nom � 29 MPa

1

3

snom �
P

ct
�

2.5  kN

(40  mm)(5  mm)
� 12.50  MPa

26  MPa

1

5

snom �
P

ct
�

2.5  kN

(48  mm)(5  mm)
� 10.42  MPa

(b) STEPPED BAR WITH SHOULDER FILLETS

b � 60 mm c � 40 mm; 

Obtain K from Fig. 2-64

FOR R � 6 mm: R/c � 0.15 b/c � 1.5

K � 2.00 �max � K�nom �

FOR R � 10 mm: R/c � 0.25 b/c � 1.5

K � 1.75 �max � K�nom � 22  MPa

25  MPa

snom �
P

ct
�

2.5  kN

(40  mm)(5  mm)
� 12.50  MPa
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Problem 2.10-4 A round brass bar of diameter d1 � 20 mm 
has upset ends of diameter d2 � 26 mm (see figure). The lengths 
of the segments of the bar are L1 � 0.3 m and L2 � 0.1 m. 
Quarter-circular fillets are used at the shoulders of the bar, 
and the modulus of elasticity of the brass is E � 100 GPa. 

If the bar lengthens by 0.12 mm under a tensile load P, 
what is the maximum stress �max in the bar?

L1

d1d2 d2

L2 L2

PP

PP
b d

t � thickness

�t � allowable tensile stress

Find Pmax

Find K from Fig. 2-64

Because �t, b, and t are constants, we write:

P* �
Pmax

st bt
�

1

K
 ¢1 �

d

b
≤

�
st

K
 bt ¢1 �

d

b
≤

Pmax �snomct �
smax

K
 ct �

st

K
 (b � d)t We observe that Pmax decreases as d/b increases.

Therefore, the maximum load occurs when the hole
becomes very small.

(

Pmax �
st bt

3

S 0�and�K S 3)
d

b

K P*

0 3.00 0.333

0.1 2.73 0.330

0.2 2.50 0.320

0.3 2.35 0.298

0.4 2.24 0.268

d

b

Problem 2.10-3 A flat bar of width b and thickness t has a hole of
diameter d drilled through it (see figure). The hole may have any 
diameter that will fit within the bar. 

What is the maximum permissible tensile load Pmax if the 
allowable tensile stress in the material is �t?

Solution 2.10-3 Flat bar in tension

PP
b d

Probs. 2.10-4 and 2.10-5
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Problem 2.10-5 Solve the preceding problem for a bar of monel metal
having the following properties: d1 � 1.0 in., d2 � 1.4 in., L1 � 20.0 in.,
L2 � 5.0 in., and E � 25 � 106 psi. Also, the bar lengthens by 0.0040 in.
when the tensile load is applied.

Solution 2.10-5 Round bar with upset ends

E � 25 � 106 psi

� � 0.0040 in.

L1 � 20 in.

L2 � 5 in.

Solve for P: P �
�EA1A2

2L2A1 � L1A2

� � 2¢PL2

EA2
≤�

PL1

EA1

� 0.2  in.

R � radius  of  fillets�R �
1.4  in. � 1.0  in.

2

Use Fig. 2-65 for the stress-concentration factor.

SUBSTITUTE NUMERICAL VALUES:

Use the dashed curve in Fig. 2-65. K � 1.53

 � 6100  psi

 smax � Ksnom � (1.53)(3984  psi)

R

D1
�

0.2  in.

1.0  in.
� 0.2

snom �
(0.0040  in.) (25 � 106

 psi)

2(5  in.) (1.0
1.4)2 � 20  in.

� 3,984  psi

�
�E

2L2(d1

d2
)2 � L1

snom �
P

A1
�

�EA2

2L2A1 � L1A2
�

�E

2L2(A1

A2
) � L1L1

d1 = 1.0 ind2 = 1.4 in.

L2 L2

PP

E � 100 GPa

� � 0.12 mm

L2 � 0.1 m

L1 � 0.3 m

Solve  for  P:�P �
�EA1 A2

2L2 A1 � L1 A2

� � 2 ¢PL2

EA2
≤�

PL1

EA1

R � radius  of  fillets �
26  mm � 20  mm

2
� 3  mm

Use Fig. 2-65 for the stress-concentration factor:

SUBSTITUTE NUMERICAL VALUES:

Use the dashed curve in Fig. 2-65. K � 1.6

� 46  MPa

smax � Ksnom � (1.6)(28.68  MPa)

R

D1
�

3  mm

20  mm
� 0.15

snom �
(0.12  mm)(100  GPa)

2(0.1  m)(20
26)2 � 0.3  m

� 28.68  MPa

�
�E

2L2(d1

d2
)2 � L1

snom �
P

A1
�

�EA2

2L2 A1 � L1 A2
�

�E

2L2(A1

A2
) � L1

Solution 2.10-4 Round brass bar with upset ends

L1

d1 = 20 mmd2 = 26 mm

L2 L2

PP
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P1

P2

d1

d0d1

d2

P2

P1

d0 � 20 mm

d1 � 20 mm

d2 � 25 mm

Fillet radius: R � 2 mm

Allowable stress: �t � 80 MPa

(a) COMPARISON OF BARS

 � (80  MPa)¢�
4
≤(20  mm)2 � 25.1  kN

 Prismatic  bar:�P1 �st A0 �st ¢�d0
2

4
≤

Stepped bar: See Fig. 2-65 for the stress-
concentration factor.

R � 2.0 mm D1 � 20 mm D2 � 25 mm

Enlarging the bar makes it weaker, not stronger. The
ratio of loads is 

(b) DIAMETER OF PRISMATIC BAR FOR THE SAME

ALLOWABLE LOAD

d0 �
d1

�K
�

20  mm

�1.75
� 15.1  mm

P1 � P2�st ¢�d0
2

4
≤�
st

K
 ¢�d1

2

4
≤�d0

2�
d1

2

K

P1�P2 � K � 1.75

� 14.4  kN

� ¢80  MPa

1.75
≤¢�

4
≤(20  mm)2

P2 �snom  A1 �
smax

K
 A1 �

st

K
 A1

snom �
P2

�
4d1

2 �
P2

A1
�      snom �

smax

K

R�D1
� 0.10�D2�D1

� 1.25�K � 1.75

Problem 2.10-6 A prismatic bar of diameter d0 � 20 mm is being
compared with a stepped bar of the same diameter (d1 � 20 mm) that 
is enlarged in the middle region to a diameter d2 � 25 mm (see figure).
The radius of the fillets in the stepped bar is 2.0 mm. 

(a) Does enlarging the bar in the middle region make it stronger 
than the prismatic bar? Demonstrate your answer by determining
the maximum permissible load P1 for the prismatic bar and the
maximum permissible load P2 for the enlarged bar, assuming 
that the allowable stress for the material is 80 MPa. 

(b) What should be the diameter d0 of the prismatic bar if it is to 
have the same maximum permissible load as does the 
stepped bar?

Soluton 2.10-6 Prismatic bar and stepped bar

P1

P2

d1

d0d1

d2

P2

P1



Problem 2.10-7 A stepped bar with a hole (see figure) has widths 
b � 2.4 in. and c � 1.6 in. The fillets have radii equal to 0.2 in.

What is the diameter dmax of the largest hole that can be drilled
through the bar without reducing the load-carrying capacity?

Solution 10-7 Stepped bar with a hole

SECTION 2.10 Stress Concentrations 165

P P
bd c

P P
bd c

b � 2.4 in.

c � 1.6 in.

Fillet radius: R � 0.2 in.

Find dmax

BASED UPON FILLETS (Use Fig. 2-64)

b � 2.4 in. c � 1.6 in. R � 0.2 in. R/c � 0.125

b/c � 1.5 K � 2.10

� 0.317  bt  smax

Pmax �snomct �
smax

K
 ct �

smax

K
 ¢c

b
≤(bt)

d (in.) d/b K

0.3 0.125 2.66 0.329

0.4 0.167 2.57 0.324

0.5 0.208 2.49 0.318

0.6 0.250 2.41 0.311

0.7 0.292 2.37 0.299

Pmax �btsmax

0.30

0.31

0.32

0.33

0.3 0.4 0.5 0.6 0.7 0.8

Based upon hole

Based upon fillets

dmax ≈ 0.51 in.

0.317

d (in.)

Pmax
bt�max

BASED UPON HOLE (Use Fig. 2-63)

b � 2.4 in. d � diameter of the hole (in.) c1 � b � d

�
1

K
 ¢1 �

d

b
≤ btsmax

Pmax �snom  c1t �
smax

K
(b � d)t



Nonlinear Behavior (Changes in Lengths of Bars)

Problem 2.11-1 A bar AB of length L and weight density � hangs
vertically under its own weight (see figure). The stress-strain relation 
for the material is given by the Ramberg-Osgood equation (Eq. 2-71):

� � �
�

E
� � �

�

E
0�
� ��

�

�

0

��
m

Derive the following formula

� � �
�

2
L
E

2

� � �
(m

�

�
0�

1
L
)E

� ��
�

�

L

0

��
m

for the elongation of the bar.

Solution 2.11-1 Bar hanging under its own weight
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A

B

L

L

x

dx

Let A � cross-sectional area

Let N � axial force at distance x

N � �Ax

s�
N

A
� gx

STRAIN AT DISTANCE x

ELONGATION OF BAR

 �
gL2

2E
�
s0�L

(m � 1)E
 ¢gL

s0
≤

m

��Q.E.D.

 � � �
L

0

e  dx � �
L

0

gx

E
 dx �

s0�

E �
L

0

¢gx

s0
≤

m

dx

e�
s

E
�
s0�

E
 ¢ s
s0
≤

m

�
gx

E
�
s0�

E
 ¢gx

s0
≤

m

Problem 2.11-2 A prismatic bar of length L � 1.8 m and cross-sectional
area A � 480 mm2 is loaded by forces P1 � 30 kN and P2 � 60 kN (see
figure). The bar is constructed of magnesium alloy having a stress-strain
curve described by the following Ramberg-Osgood equation:

� � �
45,

�

000
� � �

6
1
18
� ��

1
�

70
��10

(� � MPa)

in which � has units of megapascals. 

(a) Calculate the displacement �C of the end of the bar when the load
P1 acts alone. 

(b) Calculate the displacement when the load P2 acts alone. 
(c) Calculate the displacement when both loads act simultaneously.

Solution 2.11-2 Axially loaded bar

P2
P1A B C

L
3

——2L
3

L � 1.8 m A � 480 mm2

P1 � 30 kN P2 � 60 kN

Find displacement at end of bar.

� MPa)e�
s

45,000
�

1

618
 ¢ s

170
≤

10

(s

Ramberg�Osgood  Equation:
P2

P1A B C

L
3

——2L
3
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(c) BOTH P1 AND P2 ARE ACTING

e � 0.008477

e � 0.002853

(Note that the displacement when both loads act
simultaneously is not equal to the sum of the
displacements when the loads act separately.)

�C � �AB � �BC � 11.88  mm

�BC � e ¢L3 ≤� 1.71  mm

BC: s�
P2

A
�

60  kN

480  mm2 � 125  MPa

�AB � e ¢2L

3
≤� 10.17  mm

AB: s�
P1 � P2

A
�

90  kN

480  mm2 � 187.5  MPa

Problem 2.11-3 A circular bar of length L � 32 in. and diameter d � 0.75
in. is subjected to tension by forces P (see figure). The wire is made of a
copper alloy having the following hyperbolic stress-strain relationship:

� � �
1
1
�

8,0
3
0
0
0
0
�

�
� 0 � � � 0.03 (� � ksi)

(a) Draw a stress-strain diagram for the material. 
(b) If the elongation of the wire is limited to 0.25 in. and the maximum

stress is limited to 40 ksi, what is the allowable load P?

Solution 2.11-3 Copper bar in tension

P P

L

d

(a) P1 ACTS ALONE

e� 0.001389

(b) P2 ACTS ALONE

e� 0.002853

�c � eL � 5.13  mm

ABC: s�
P2

A
�

60  kN

480  mm2 � 125  MPa

�c � e ¢2L

3
≤� 1.67  mm

AB: s�
P1

A
�

30  kN

480  mm2 � 62.5  MPa

L � 32 in. d � 0.75 in.

(a) STRESS-STRAIN DIAGRAM

s�
18,000e

1 � 300e
�0 � e � 0.03�(s� ksi)

A �
�d2

4
� 0.4418  in.2

(b) ALLOWABLE LOAD P

Max. elongation �max � 0.25 in.

Max. stress �max � 40 ksi

Based upon elongation:

BASED UPON STRESS:

Stress governs. P � �max A � (40 ksi)(0.4418 in.2)

� 17.7  k

smax � 40  ksi

smax �
18,000  emax

1 � 300  emax
� 42.06  ksi

emax �
�max

L
�

0.25  in.

32  in.
� 0.007813

P P

L

d

20

40

60
Slope = 18,000 ksi

Asymptote
equals 60 ksi

0 0.01 0.02 0.03

�
(ksi)

�
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Problem 2.11-4 A prismatic bar in tension has length L � 2.0 m 
and cross-sectional area A � 249 mm2. The material of the bar has the
stress-strain curve shown in the figure. 

Determine the elongation � of the bar for each of the following axial
loads: P � 10 kN, 20 kN, 30 kN, 40 kN, and 45 kN. From these results,
plot a diagram of load P versus elongation � (load-displacement diagram).

Solution 2.11-4 Bar in tension

   (MPa)

0
0

200

100

0.005 0.010

�

�

L � 2.0 m

A � 249 mm2

STRESS-STRAIN DIAGRAM

(See the problem statement for the diagram)

LOAD-DISPLACEMENT DIAGRAM

NOTE: The load-displacement curve has the same
shape as the stress-strain curve.

P P

L

P � � P/A e � � eL
(kN) (MPa) (from diagram) (mm)

10 40 0.0009 1.8

20 80 0.0018 3.6

30 120 0.0031 6.2

40 161 0.0060 12.0

45 181 0.0081 16.2

10

20

30

40

50

0 5 10 15 20

P (kN)

� (mm)

Problem 2.11-5 An aluminum bar subjected to tensile forces P has
length L � 150 in. and cross-sectional area A � 2.0 in.2 The stress-strain
behavior of the aluminum may be represented approximately by the
bilinear stress-strain diagram shown in the figure. 

Calculate the elongation � of the bar for each of the following axial
loads: P � 8 k, 16 k, 24 k, 32 k, and 40 k. From these results, plot a
diagram of load P versus elongation � (load-displacement diagram).

E2 = 2.4 × 106 psi

E1 = 10 × 106 psi

0

12,000
psi

�

�



Solution 2.11-5 Aluminum bar in tension
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L � 150 in.

A � 2.0 in.2

STRESS-STRAIN DIAGRAM

E1 � 10 � 106 psi

E2 � 2.4 � 106 psi

�1 � 12,000 psi

� 0.0012

Eq. (1)

Eq. (2)�
s

2.4 � 106 � 0.0038�(s� psi)

e� e1 �
s�s1

E2
� 0.0012 �

s� 12,000

2.4 � 106

For  s � s1:

e�
s

E2
�

s

10 � 106
 psi

 (s� psi)

For  0 � s � s1:  

e1 �
s1

E1
�

12,000  psi

10 � 106
 psi

LOAD-DISPLACEMENT DIAGRAM
P P

L

�

�1

0 �1

E1

E2

�

10

20

30

40

0 0.2 0.4 0.6 0.8

0.18 in.

0.68 in.

40 k

24 k

P (k)

� (in.)

P � � P/A e � � eL
(k) (psi) (from Eq. 1 or Eq. 2) (in.)

8 4,000 0.00040 0.060

16 8,000 0.00080 0.120

24 12,000 0.00120 0.180

32 16,000 0.00287 0.430

40 20,000 0.00453 0.680



Problem 2.11-6 A rigid bar AB, pinned at end A, is supported by a wire
CD and loaded by a force P at end B (see figure). The wire is made of
high-strength steel having modulus of elasticity E � 210 GPa and yield
stress �Y � 820 MPa. The length of the wire is L � 1.0 m and its
diameter is d � 3 mm. The stress-strain diagram for the steel is defined
by the modified power law, as follows:

� � E� 0 � � � �Y

� � �Y��
E
�

�

Y

��n
� � �Y

(a) Assuming n � 0.2, calculate the displacement �B at the end of the
bar due to the load P. Take values of P from 2.4 kN to 5.6 kN in
increments of 0.8 kN. 

(b) Plot a load-displacement diagram showing P versus �B.

Solution 2.11-6 Rigid bar supported by a wire
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P

A D

C

B

L

b2b

Wire: E � 210 GPa

�Y � 820 MPa

L � 1.0 m

d � 3 mm

STRESS-STRAIN DIAGRAM

(1)

(2)

(a) DISPLACEMENT �B AT END OF BAR

(3)

Obtain e from stress-strain equations:

(4)From  Eq.  (1):�e�
s

E
�(0 � s � sY)

� � elongation  of  wire��B �
3

2
 � �

3

2
 eL

s�sY ¢EesY
≤

n

�(s � sY)�(n � 0.2)

s� Ee�(0 � s � sY)

A �
�d2

4
� 7.0686  mm2

(5)

(6)

PROCEDURE: Assume a value of P
Calculate � from Eq. (6)
Calculate e from Eq. (4) or (5)
Calculate �B from Eq. (3)

For � � �Y � 820 MPa:

e � 0.0039048 P � 3.864 kN �B � 5.86 mm

(b) LOAD-DISPLACEMENT DIAGRAM

Stress  in  wire:  s�
F

A
�

3P

2A

Axial  force  in  wire:  F �
3P

2

From  Eq.  (2):�e�
sY

E
 ¢ s
sY
≤

1�n

2

4

6

8

0 20 40 60

P = 3.86 kN

�Y = 820 MPa

�B = 5.86 mm

P
(kN)

�B (mm)

P � (MPa) e �B (mm)
(kN) Eq. (6) Eq. (4) or (5) Eq. (3)

2.4 509.3 0.002425 3.64

3.2 679.1 0.003234 4.85

4.0 848.8 0.004640 6.96

4.8 1018.6 0.01155 17.3

5.6 1188.4 0.02497 37.5

P

A D

C

B

L

b2b



Elastoplastic Analysis

The problems for Section 2.12 are to be solved assuming that the 
material is elastoplastic with yield stress �Y, yield strain �Y, and 
modulus of elasticity E in the linearly elastic region (see Fig. 2-70).

Problem 2.12-1 Two identical bars AB and BC support a vertical 
load P (see figure). The bars are made of steel having a stress-strain 
curve that may be idealized as elastoplastic with yield stress �Y. 
Each bar has cross-sectional area A. 

Determine the yield load PY and the plastic load PP.

Solution 2.12-1 Two bars supporting a load P
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P

B

A C� �

P

B

A C� �

P

B

�YA �YA

�

Structure is statically determinate. The yield load PY
and the plastic lead PP occur at the same time,
namely, when both bars reach the yield stress.

JOINT B

	Fvert � 0

(2�Y A) sin � � P

PY � PP � 2sY  A  sin  u  

Problem 2.12-2 A stepped bar ACB with circular cross sections 
is held between rigid supports and loaded by an axial force P at
midlength (see figure). The diameters for the two parts of the bar 
are d1 � 20 mm and d2 � 25 mm, and the material is elastoplastic 
with yield stress �Y � 250 MPa.

Determine the plastic load PP.

d2d1

L
2
— L

2
—

A BC P



Solution 2.12-2 Bar between rigid supports
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d1 � 20 mm d2 � 25 mm �Y � 250 MPa

DETERMINE THE PLASTIC LOAD PP:

At the plastic load, all parts of the bar are stressed to
the yield stress.

Point C:

FAC � �Y A1 FCB � �Y A2

P � FAC � FCB

PP �sYA1 �sYA2 �sY(A1 � A2)  

SUBSTITUTE NUMERICAL VALUES:

 � 201 kN

 � (250  MPa) ¢�
4
≤  [ (20  mm)2 � (25  mm)2]

 PP � (250  MPa) ¢�
4
≤(d1

2 � d2
2)

d2d1

L
2
— L

2
—

A BC
P

P

FCBFAC

Problem 2.12-3 A horizontal rigid bar AB supporting a load P is hung
from five symmetrically placed wires, each of cross-sectional area A
(see figure). The wires are fastened to a curved surface of radius R. 

(a) Determine the plastic load PP if the material of the wires is
elastoplastic with yield stress �Y. 

(b) How is PP changed if bar AB is flexible instead of rigid? 
(c) How is PP changed if the radius R is increased?

Solution  2.12-3 Rigid bar supported by five wires

A B

P

R

(a) PLASTIC LOAD PP

At the plastic load, each wire is stressed to the yield
stress. � 5sY A  ∴  PP

A B

P

A B

F F F F F

P

F � �YA

(b) BAR AB IS FLEXIBLE

At the plastic load, each wire is stressed to the yield
stress, so the plastic load is not changed.

(c) RADIUS R IS INCREASED

Again, the forces in the wires are not changed, so the
plastic load is not changed.



Problem 2.12-4 A load P acts on a horizontal beam that is supported 
by four rods arranged in the symmetrical pattern shown in the figure.
Each rod has cross-sectional area A and the material is elastoplastic 
with yield stress �Y. 

Determine the plastic load PP.

Solution 2.12-4 Beam supported by four rods
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P

��

At the plastic load, all four rods are stressed to the
yield stress.

F � �Y A

Sum forces in the vertical direction and solve for the
load:

PP � 2F � 2F sin �

PP � 2sY A  (1 � sin �)  

P

��
P

F F F F

Problem 2.12-5 The symmetric truss ABCDE shown in the figure is
constructed of four bars and supports a load P at joint E. Each of the 
two outer bars has a cross-sectional area of 0.307 in.2, and each of 
the two inner bars has an area of 0.601 in.2 The material is elastoplastic
with yield stress �Y � 36 ksi.

Determine the plastic load PP.

21 in. 21 in.54 in.

A B C D

P

36 in.

E



Solution 2.12-5 Truss with four bars

174 CHAPTER 2 Axially Loaded Members

21 in. 21 in.27 in. 27 in.

A B C D

P

36 in.

E

5

3

4 5
3

4

LAE � 60 in. LBE � 45 in.

JOINT E
Equilibrium:

or

P �
6

5
 FAE �

8

5
 FBE

2FAE ¢35≤� 2FBE ¢45≤� P

PLASTIC LOAD PP

At the plastic load, all bars are stressed to the yield
stress.

FAE � �Y AAE FBE � �Y ABE

SUBSTITUTE NUMERICAL VALUES:

AAE � 0.307 in.2 ABE � 0.601 in.2

�Y � 36 ksi

 � 13.26  k � 34.62  k � 47.9  k  

�
8

5
(36  ksi)(0.601  in.2) PP �

6

5
(36  ksi)(0.307  in.2)

PP �
6

5
 sY  AAE �

8

5
 sY  ABE  

P

E

FAE

FBE

Problem 2.12-6 Five bars, each having a diameter of 10 mm, 
support a load P as shown in the figure. Determine the plastic 
load PP if the material is elastoplastic with yield stress 
�Y � 250 MPa.

Solution 2.12-6 Truss consisting of five bars

P

b b b b

2b

P

b b b b

2b

d � 10 mm

�Y � 250 MPa

A �
�d2

4
� 78.54  mm2

At the plastic load, all five bars are
stressed to the yield stress

F � �YA

Sum forces in the vertical direction
and solve for the load:

Substitute numerical values:

PP � (4.2031)(250 MPa)(78.54 mm2)

� 82.5  kN  

 � 4.2031  sY  A  

�
sY A

5
(5�2 � 4�5 � 5)

 PP � 2F ¢ 1

�2
≤� 2F ¢ 2

�5
≤� F

P

F F F F F



Problem 2.12-7 A circular steel rod AB of diameter d � 0.60 in. is
stretched tightly between two supports so that initially the tensile stress
in the rod is 10 ksi (see figure). An axial force P is then applied to the
rod at an intermediate location C. 

(a) Determine the plastic load PP if the material is elastoplastic
with yield stress �Y � 36 ksi. 

(b) How is PP changed if the initial tensile stress is doubled to 
20 ksi?

Solution 2.12-7 Bar held between rigid supports
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BA

d

BP    A

C

d � 0.6 in.

�Y � 36 ksi

Initial tensile stress � 10 ksi

(a) PLASTIC LOAD PP

The presence of the initial tensile stress does not
affect the plastic load. Both parts of the bar must
yield in order to reach the plastic load.

POINT C:

(B) INITIAL TENSILE STRESS IS DOUBLED

PP  is  not  changed.  

 � 20.4  k  

 PP � 2sY  A � (2)(36  ksi) ¢�
4
≤ (0.60  in.)2

d

BP    A

C �	A �	A

C

P    

Problem 2.12-8 A rigid bar ACB is supported on a fulcrum at 
C and loaded by a force P at end B (see figure). Three identical
wires made of an elastoplastic material (yield stress �Y and 
modulus of elasticity E) resist the load P. Each wire has 
cross-sectional area A and length L. 

(a) Determine the yield load PY and the corresponding yield 
displacement �Y at point B. 

(b) Determine the plastic load PP and the corresponding
displacement �P at point B when the load just reaches 
the value PP. 

(c) Draw a load-displacement diagram with the load P as
ordinate and the displacement �B of point B as abscissa.

P

A C B

L

L

a a a a



Problem 2.12-9 The structure shown in the figure consists of a
horizontal rigid bar ABCD supported by two steel wires, one of length 
L and the other of length 3L /4. Both wires have cross-sectional area A
and are made of elastoplastic material with yield stress �Y and modulus
of elasticity E. A vertical load P acts at end D of the bar. 

(a) Determine the yield load PY and the corresponding yield
displacement �Y at point D. 

(b) Determine the plastic load PP and the corresponding displacement
�P at point D when the load just reaches the value PP. 

(c) Draw a load-displacement diagram with the load P as ordinate and
the displacement �D of point D as abscissa.

Solution 2.12-8 Rigid bar supported by wires
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(a) YIELD LOAD PY

Yielding occurs when the most highly stressed wire
reaches the yield stress �Y.

	MC � 0

At point A:

At point B:

�B � 3�A � �Y �
3sYL

2E
 

�A � ¢sY A

2
≤ ¢ L

EA
≤�
sY L

2E

PY �sY  A  

(b) PLASTIC LOAD PP

At the plastic load, all wires reach the yield stress.

©MC � 0

At point A:

At point B:

(c) LOAD-DISPLACEMENT DIAGRAM

�P � 2�Y

PP �
4

3
 PY

�B � 3�A � �P �
3sY L

E
 

�A � (sY A)¢ L

EA
≤�
sYL

E

PP �
4sY A

3
 

P

A C B

L

L

a a a a

PY

A C B

�YA
2

�YA
2 �YA

PP

A C B

�YA

�YA �YA

P

PP

PY

0 �Y �P �B

2b

L

A

P

DCB

3L
4

b b
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A � cross-sectional area

�Y � yield stress

E � modulus of elasticity

DISPLACEMENT DIAGRAM

COMPATIBILITY:

(1)

(2)

FREE-BODY DIAGRAM

EQUILIBRIUM:

2FB � 3FC � 4P (3)

FORCE-DISPLACEMENT RELATIONS

(4, 5)

Substitute into Eq. (1):

FC � 2FB (6)

3FCL

4EA
�

3FBL

2EA

�B �
FBL

EA
�    �C �

FC ¢34L≤
EA

©MA � 0   ���FB(2b) � FC(3b) � P(4b)

 �D � 2�B

 �C �
3

2
 �B

STRESSES

(7)

Wire C has the larger stress. Therefore, it will yield first.

(a) YIELD LOAD

From Eq. (3):

From Eq. (4):

From Eq. (2):

(b) PLASTIC LOAD

At the plastic load, both wires yield.

�B � �Y � �C FB � FC � �Y A

From Eq. (3):

2(�Y A) � 3(�Y A) � 4P

From Eq. (4):

From Eq. (2):

(c) LOAD-DISPLACEMENT DIAGRAM

�P � 2�Y

PP �
5

4
 PY

�D � �P � 2�B �
2sY L

E
 

�B �
FBL

EA
�
sY L

E

P � PP �
5

4
sY A  

�D � �Y � 2�B �
sY L

E
 

�B �
FBL

EA
�
sY L

2E

P � PY �sY A  

2 ¢1
2
sY A≤� 3(sY A) � 4P

FC �sY A�FB �
1

2
 sY A

sC �sY�sB �
sC

2
�
sY

2
�(From  Eq. 7)

sB �
FB

A
�sC �

FC

A
�∴  sC � 2sB

Solution 2.12-9 Rigid bar supported by two wires

2b

L

A

P

DCB

3L
4

b b

A B C D

�B �C �D

2b

A

P

DCB

b b

FB FC

P

PP

PY

0 �Y �P �D



Problem 2.12-10 Two cables, each having a length L of approximately 40 m, support a
loaded container of weight W (see figure). The cables, which have effective cross-sectional
area A � 48.0 mm2 and effective modulus of elasticity E � 160 GPa, are identical except
that one cable is longer than the other when they are hanging separately and unloaded. The
difference in lengths is d � 100 mm. The cables are made of steel having an elastoplastic
stress-strain diagram with �Y � 500 MPa. Assume that the weight W is initially zero and is
slowly increased by the addition of material to the container.

(a) Determine the weight WY that first produces yielding of the shorter cable. Also,
determine the corresponding elongation �Y of the shorter cable.

(b) Determine the weight WP that produces yielding of both cables. Also, determine the
elongation �P of the shorter cable when the weight W just reaches the value WP.

(c) Construct a load-displacement diagram showing the weight W as ordinate and the
elongation � of the shorter cable as abscissa. (Hint: The load displacement diagram
is not a single straight line in the region 0 � W � WY.)

Solution 2.12-10 Two cables supporting a load
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L

W

L � 40 m A � 48.0 mm2

E � 160 GPa

d � difference in length � 100 mm

�Y � 500 MPa

INITIAL STRETCHING OF CABLE 1

Initially, cable 1 supports all of the load.

Let W1 � load required to stretch cable 1
to the same length as cable 2

�1 � 100 mm (elongation of cable 1 )

(a) YIELD LOAD WY

Cable 1 yields first. F1 � �Y A � 24 kN

�1Y � total elongation of cable 1

�2Y � elongation of cable 2

� �1Y � d � 25 mm

� 28.8  kN

WY � F1 � F2 � 24  kN � 4.8  kN

F2 �
EA

L
 �2Y � 4.8  kN

�Y � �1Y � 125  mm

�1Y �
F1L

EA
�
sYL

E
� 0.125  m � 125  mm

s1 �
W1

A
�

Ed

L
� 400  MPa  (s1 6 sY  ∴  OK)

W1 �
EA

L
d � 19.2  kN

(b) PLASTIC LOAD WP

�2P � elongation of cable 2

�1P � �2P � d � 225 mm

(c) LOAD-DISPLACEMENT DIAGRAM

0 
 W 
 W1: slope � 192,000 N/m

W1 
 W 
 WY: slope � 384,000 N/m

WY 
 W 
 WP: slope � 192,000 N/m

WP

WY

� 1.667�
�P

�Y

� 1.8

WY

W1
� 1.5�

�Y

�1
� 1.25

�P � �1P � 225  mm

� F2 ¢ L

EA
≤�
sYL

E
� 0.125  mm � 125 mm

WP � 2sY A � 48 kN

F1 �sY A�F2 �sY A

0

10

20

30

40

50

100 200 300 � (mm)

W
(kN)

WP

WY

W1

�1 �Y �P

L

W

1 2



Clearance = c

L

P

T B T B

T

Problem 2.12-11 A hollow circular tube T of length L � 15 in. 
is uniformly compressed by a force P acting through a rigid plate 
(see figure). The outside and inside diameters of the tube are 3.0 
and 2.75 in., repectively. A concentric solid circular bar B of 1.5 in.
diameter is mounted inside the tube. When no load is present, there 
is a clearance c � 0.010 in. between the bar B and the rigid plate. Both
bar and tube are made of steel having an elastoplastic stress-strain 
diagram with E � 29 � 103 ksi and �Y � 36 ksi.

(a) Determine the yield load PY and the corresponding shortening
�Y of the tube.

(b) Determine the plastic load PP and the corresponding shortening
�P of the tube.

(c) Construct a load-displacement diagram showing the load P
as ordinate and the shortening � of the tube as abscissa. 
(Hint: The load-displacement diagram is not a single straight 
line in the region 0 � P � PY.)

Solution 2.12-11 Tube and bar supporting a load

SECTION 2.12 Elastoplastic Analysis 179

c

L

P

T B T B

T

L � 15 in.

c � 0.010 in.

E � 29 � 103 ksi

�Y � 36 ksi

TUBE:

d2 � 3.0 in.

d1 � 2.75 in.

AT �
�

4
(d2

2 � d1
2) � 1.1290  in.2

BAR:

d � 1.5 in.

INITIAL SHORTENING OF TUBE T

Initially, the tube supports all of the load.

Let P1 � load required to close the clearance

Let �1 � shortening of tube �1 � c � 0.010 in.

s1 �
P1

AT

� 19,330  psi        (s1 6 sY  ∴  OK)

P1 �
EAT

L
c � 21,827  lb

AB �
�d2

4
� 1.7671  in.2

(Continued)
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(a) YIELD LOAD PY

Because the tube and bar are made of the same
material, and because the strain in the tube is larger
than the strain in the bar, the tube will yield first.

FT � �Y AT � 40,644 lb

�TY � shortening of tube at the yield stress

�BY � shortening of bar

� �TY � c � 0.008621 in.

PY � FT � FB � 40,644 lb � 29,453 lb
� 70,097 lb

(b) PLASTIC LOAD PP

FT � �Y AT FB � �Y AB

�BP � shortening of bar

�TP � �BP � c � 0.028621 in.

�P � �TP � 0.02862  in.

� FB ¢ L

EAB

≤�
sYL

E
� 0.018621  in.

� 104,300  lb

PP � FT � FB �sY(AT � AB)

PY � 70,100  lb

FB �
EAB

L
�BY � 29,453  lb

�Y � �TY � 0.01862  in.

�TY �
FTL

EAT

�
sYL

E
� 0.018621  in.

(c) LOAD-DISPLACEMENT DIAGRAM

0 
 P 
P1:    slope � 2180 k/in.

P1 
P 
 PY: slope � 5600 k/in.

PY 
 P 
 PP: slope � 3420 k/in.

PP

PY

� 1.49�
�P

�Y

� 1.54

PY

P1
� 3.21�

�Y

�1
� 1.86

0

20

40

60

80

100
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P
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Torsional Deformations

Problem 3.2-1 A copper rod of length L � 18.0 in. is to be twisted 
by torques T (see figure) until the angle of rotation between the ends 
of the rod is 3.0°. 

If the allowable shear strain in the copper is 0.0006 rad, what is 
the maximum permissible diameter of the rod?

Solution 3.2-1 Copper rod in torsion

3
Torsion

L � 18.0 in.

�allow � 0.0006 rad

Find dmax

 � 0.05236  rad

 f� 3.0� � (3.0)¢ �

180
≤  rad

From Eq. (3-3):

 dmax � 0.413  in.

 dmax �
2Lgallow

f
�

(2)(18.0  in.) (0.0006  rad)

0.05236  rad

 gmax �
rf

L
�

df

2L

L

d
T T

L

d
T T

Problem 3.2-2 A plastic bar of diameter d � 50 mm is to be twisted by
torques T (see figure) until the angle of rotation between the ends of the
bar is 5.0°. 

If the allowable shear strain in the plastic is 0.012 rad, what is the
minimum permissible length of the bar?

Solution 3.2-2 Plastic bar in torsion

d � 50 mm

� 0.08727 rad

�allow

Find Lmin

From Eq. (3-3):  gmax �
rf

L
�

df

2L

 � 0.012  rad

 f� 5.0� � (5.0)¢ �

180
≤  rad

 Lmin � 182  mm

 Lmin �
df

2gallow
�

(50  mm)(0.08727  rad)

(2)(0.012  rad)

L

d
T T

Probs. 3.2-1 and 3.2-2



Problem 3.2-3 A circular aluminum tube subjected to pure torsion 
by torques T (see figure) has an outer radius r2 equal to twice the inner
radius r1. 

(a) If the maximum shear strain in the tube is measured as 
400 � 10�6 rad, what is the shear strain �1 at the inner
surface? 

(b) If the maximum allowable rate of twist is 0.15 degrees 
per foot and the maximum shear strain is to be kept at 
400 � 10�6 rad by adjusting the torque T, what is the
minimum required outer radius (r2)min?

Solution 3.2-3 Circular aluminum tube

182 CHAPTER 3 Torsion

L

T

r1

r2

T

r2 � 2r1

�max � 400 � 10�6 rad

(a) SHEAR STRAIN AT INNER SURFACE

From Eq. (3-5b):

 g1 � 200 � 10�6
 rad

 g1 �
1

2
 g2 �

1

2
(400 � 10�6

 rad)

 � 218.2 � 10�6
 rad �in.

 � (0.15��ft)¢ �

180
 

rad

degree
≤¢ 1

12
 

ft

in.
≤

 uallow � 0.15��ft

(b) MINIMUM OUTER RADIUS

From Eq. (3-5a):

 (r2)min � 1.83  in.

 (r2)min �
gmax

uallow
�

400 � 10�6
 rad

218.2 � 10�6
 rad �in.

 gmax � r2 
f

L
� r2u

r1

r2

Problem 3.2-4 A circular steel tube of length L � 0.90 m is loaded in
torsion by torques T (see figure). 

(a) If the inner radius of the tube is r1 � 40 mm and the measured
angle of twist between the ends is 0.5°, what is the shear strain 
�1 (in radians) at the inner surface? 

(b) If the maximum allowable shear strain is 0.0005 rad and the angle
of twist is to be kept at 0.5° by adjusting the torque T, what is the
maximum permissible outer radius (r2)max?

Problems 3.2-3, 3.2-4, and 3.2-5
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Solution 3.2-4 Circular steel tube

L � 0.90 m

r1 � 40 mm

(a) SHEAR STRAIN AT INNER SURFACE

From Eq. (3-5b):

 g1 � 388 � 10�6
 rad

 gmin � g1 � r1 
f

L
�

(40  mm)(0.008727  rad)

900  mm

 gmax � 0.0005  rad

 � 0.008727  rad

 f� 0.5� � (0.5�)¢ �

180
 

rad

degree
≤

(b) MAXIMUM OUTER RADIUS

From Eq. (3-5a):

 (r2)max � 51.6  mm

 (r2)max �
(0.0005  rad)(900  mm)

0.008727  rad

r2 �
gmaxL
f

 gmax � g2 � r2 
f

L
;

r1

r2

Problem 3.2-5 Solve the preceding problem if the length L � 50 in., 
the inner radius r1 � 1.5 in., the angle of twist is 0.6°, and the allowable
shear strain is 0.0004 rad.

Solution 3.2-5 Circular steel tube

L � 50 in.

r1 � 1.5 in.

(a) SHEAR STRAIN AT INNER SURFACE

From Eq. (3-5b):

 g1 � 314 � 10�6
 rad

 gmin � g1 � r1 
f

L
�

(1.5  in.) (0.010472  rad)

50  in.

 gmax � 0.0004  rad

 � 0.010472  rad

 f� 0.6� � (0.6�)¢ �

180
 

rad

degree
≤

(b) MAXIMUM OUTER RADIUS

From Eq. (3-5a):

 (r2)max � 1.91  in.

 (r2)max �
(0.0004  rad)(50  in.)

0.010472  rad

 gmax � g2 � r2 
f

L
;  r2 �

gmaxL

f

r1

r2



Problem 3.3-2 When drilling a hole in a table leg, a furniture maker
uses a hand-operated drill (see figure) with a bit of diameter d � 4.0 mm. 

(a) If the resisting torque supplied by the table leg is equal to 0.3 N�m,
what is the maximum shear stress in the drill bit? 

(b) If the shear modulus of elasticity of the steel is G � 75 GPa, what
is the rate of twist of the drill bit (degrees per meter)?

184 CHAPTER 3 Torsion

Circular Bars and Tubes

Problem 3.3-1 A prospector uses a hand-powered winch
(see figure) to raise a bucket of ore in his mine shaft. The axle
of the winch is a steel rod of diameter d � 0.625 in. Also, the
distance from the center of the axle to the center of the lifting
rope is b � 4.0 in. 

If the weight of the loaded bucket is W � 100 lb, 
what is the maximum shear stress in the axle due to torsion?

Solution 3.3-1 Hand-powered winch

b

d

P

W

W

d � 0.625 in.

b � 4.0 in.

W � 100 lb

Torque T applied to the axle:

T � Wb � 400 lb-in.

MAXIMUM SHEAR STRESS IN THE AXLE

From Eq. (3-12):

 tmax � 8,340  psi

 tmax �
(16)(400  lb- in)

�(0.625in.)3

 tmax �
16T

�d 3

b

d

W

Axle

d



Solution 3.3-2 Torsion  of a drill bit

Problem 3.3-3 While removing a wheel to change a tire, a
driver applies forces P � 25 lb at the ends of two of the arms 
of a lug wrench (see figure). The wrench is made of steel with
shear modulus of elasticity G � 11.4 � 106 psi. Each arm of the
wrench is 9.0 in. long and has a solid circular cross section of
diameter d � 0.5 in. 

(a) Determine the maximum shear stress in the arm that is
turning the lug nut (arm A). 

(b) Determine the angle of twist (in degrees) of this same
arm.

Solution 3.3-3 Lug wrench
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d � 4.0 mm T � 0.3 N � m G � 75 GPa

(a) MAXIMUM SHEAR STRESS

From Eq. (3-12):

 tmax � 23.8  MPa

 tmax �
16(0.3  N �  m)

�(4.0  mm)3

 tmax �
16T

�d 3

(b) RATE OF TWIST

From Eq. (3-14):

 u� 0.1592  rad �m� 9.12��m

 u�
0.3 N �  m

(75  GPa)¢ �

32
≤(4.0  mm)4

 u�
T

GIP

d
T T

9.0 in.

d = 0.5 in.

P

A

P = 25 lb

9.0 in.

P � 25 lb

L � 9.0 in.

d � 0.5 in.

G � 11.4 � 106 psi

T � torque acting on arm A

� 450 lb-in.

 T � P(2L) � 2(25  lb)(9.0  in.)

(a) MAXIMUM SHEAR STRESS

From Eq. (3-12):

(b) ANGLE OF TWIST

From Eq. (3-15):

 f� 0.05790  rad � 3.32�

 f�
TL

GIP

�
(450  lb-in.) (9.0  in.)

(11.4 � 106
 psi)¢ �

32
≤(0.5  in.)4

 tmax � 18,300  psi

 tmax �
16T

�d 3 �
(16)(450  lb- in.)

�(0.5  in.)3

T
T

Arm A

P

P
L L

d



Problem 3.3-4 An aluminum bar of solid circular cross section is
twisted by torques T acting at the ends (see figure). The dimensions 
and shear modulus of elasticity are as follows: L � 1.2 m, 
d � 30 mm, and G � 28 GPa. 

(a) Determine the torsional stiffness of the bar. 
(b) If the angle of twist of the bar is 4°, what is the maximum 

shear stress? What is the maximum shear strain (in radians)?

Solution 3.3-4 Aluminum bar in torsion
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L

d
T T

L � 1.2 m d � 30 mm

G � 28 GPa � � 4�

(a) TORSIONAL STIFFNESS

(b) MAXIMUM SHEAR STRESS

From Eq. (3-15):

f�
TL

GIP

�T �
GIPf

L

f� 4� � (4�)(p �180)rad � 0.069813  rad

 kT � 1860  N . m

 kT �
GIP

L
�

G�d 4

32L
�

(28  GPa)(�)(30  mm)4

32(1.2  m)

From Eq. (3-11): 

MAXIMUM SHEAR STRAIN

Hooke’s Law:

 gmax � 873 � 10�6
 rad

 gmax �
tmax

G
�

24.43  MPa

28  GPa

 tmax � 24.4  MPa

 � 24.43  MPa

�
(28  GPa)(30  mm)(0.069813  rad)

2(1.2  m)

 tmax �
Gdf

2L

 tmax �
Tr

IP

�
Td

2IP

� ¢GIPf

L
≤¢ d

2IP

≤
L

d
T T

Problem 3.3-5 A high-strength steel drill rod used for boring a hole in
the earth has a diameter of 0.5 in. (see figure).The allowable shear stress
in the steel is 40 ksi and the shear modulus of elasticity is 11,600 ksi. 

What is the minimum required length of the rod so that one
end of the rod can be twisted 30° with respect to the other end
without exceeding the allowable stress?

d = 0.5 in.
TT

L



Solution 3.3-5 Steel drill rod
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G � 11,600 psi

d � 0.5 in.

�allow � 40 ksi

MINIMUM LENGTH

From Eq. (3-12): (1)tmax �
16T

�d 3

f� 30� � (30�)¢ �

180
≤ rad � 0.52360  rad

From Eq. (3-15): 

; substitute T into Eq. (1):

Lmin � 38.0  in.

�
(11,600  ksi)(0.5  in.) (0.52360  rad)

2(40  ksi)

Lmin �
Gdf

2tallow

tmax � ¢ 16

�d 3≤¢
G�d 4f

32L
≤�

Gdf

2L

T �
G�d 4f

32L

f�
TL

GIP

�
32TL

G�d 4

d TT

L

Problem 3.3-6 The steel shaft of a socket wrench has a diameter
of 8.0 mm. and a length of 200 mm (see figure). 

If the allowable stress in shear is 60 MPa, what is the
maximum permissible torque Tmax that may be exerted with 
the wrench? 

Through what angle � (in degrees) will the shaft twist under
the action of the maximum torque? (Assume G � 78 GPa and
disregard any bending of the shaft.)

Solution 3.3-6 Socket wrench

L = 200 mm

d = 8.0 mm

T

d � 8.0 mm L � 200 mm

�allow � 60 MPa G � 78 GPa

MAXIMUM PERMISSIBLE TORQUE

From Eq. (3-12): 

 Tmax � 6.03  N # m

 Tmax �
�(8.0  mm)3(60  MPa)

16

 Tmax �
�d 3tmax

16

tmax �
16T

�d 3

ANGLE OF TWIST

From Eq. (3-15): 

From Eq. (3-12): 

 f� (0.03846  rad)¢180
�

deg �rad≤� 2.20�

 f�
2(60  MPa)(200  mm)

(78  GPa)(8.0  mm)
� 0.03846  rad

 f�
�d 3tmaxL(32)

16G(�d 4)
�

2tmaxL

Gd

 f� ¢�d 3tmax

16
≤ ¢ L

GIP

≤�IP �
�d 4

32

Tmax �
�d 3tmax

16

f�
TmaxL

GIPL 

d

T



Problem 3.3-7 A circular tube of aluminum is subjected to
torsion by torques T applied at the ends (see figure). The bar is
20 in. long, and the inside and outside diameters are 1.2 in. and
1.6 in., respectively. It is determined by measurement that the
angle of twist is 3.63° when the torque is 5800 lb-in. 

Calculate the maximum shear stress �max in the tube, the
shear modulus of elasticity G, and the maximum shear strain
�max (in radians).

Solution 3.3-7 Aluminum tube in torsion
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1.6 in.

1.2 in.

20 in.

T T

L � 20 in.

d1 � 1.2 in.

d2 � 1.6 in.

T � 5800 lb-in.

� � 3.63� � 0.063355 rad

MAXIMUM SHEAR STRESS

 tmax � 10,550  psi

 tmax �
Tr

IP

�
(5800  lb-in.) (0.8  in.)

0.43982  in.4

IP �
�

32
(d2

4�d1
4) � 0.43982  in.4

SHEAR MODULUS OF ELASTICITY

MAXIMUM SHEAR STRAIN

 gmax � 0.00253  rad

 gmax �
(0.8  in.) (0.063355  rad)

20  in.

 gmax � ¢Tr

IP

≤¢fIP

TL
≤�

rf

L

 gmax �
tmax

G

 G � 4.16 � 106
 psi

 G �
(5800  lb- in.) (20  in.)

(0.063355  rad)(0.43982  in.4)

 f�
TL

GIP

�G �
TL

fIP

d1 d2

Problem 3.3-8 A propeller shaft for a small yacht is made of a solid
steel bar 100 mm in diameter. The allowable stress in shear is 50 MPa,
and the allowable rate of twist is 2.0° in 3 meters. 

Assuming that the shear modulus of elasticity is G � 80 GPa,
determine the maximum torque Tmax that can be applied to the shaft.



Solution 3.3-8 Propeller shaft
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d � 100 mm

G � 80 GPa �allow � 50 MPa

MAX. TORQUE BASED UPON SHEAR STRESS

T1 � 9820  N �  m

�
�(100  mm)3(50  MPa)

16

t�
16T

�d 3�T1 �
�d 3tallow

16

� 0.011636  rad�m

u� 2�  in  3  m �
1

3
(2�)¢ �

180
≤  rad�m

MAX. TORQUE BASED UPON RATE OF TWIST

RATE OF TWIST GOVERNS

Tmax � 9140  N � m

T2 � 9140  N �  m

� (80  GPa)¢ �

32
≤(100  mm)4(0.011636  rad �m)

u�
T

GIP

�T2 � GIPu� G ¢�d 4

32
≤ u

TT
d

Problem 3.3-9 Three identical circular disks A, B, and C are welded to
the ends of three identical solid circular bars (see figure). The bars lie 
in a common plane and the disks lie in planes perpendicular to the axes 
of the bars. The bars are welded at their intersection D to form a rigid
connection. Each bar has diameter d1 � 0.5 in. and each disk has
diameter d2 � 3.0 in. 

Forces P1, P2, and P3 act on disks A, B, and C, respectively, thus
subjecting the bars to torsion. If P1 � 28 lb, what is the maximum shear
stress �max in any of the three bars?

C

d1
A

P1

P1

B

D

P2

P2

P3

P3

135°

135°

90°

d2



Solution 3.3-9 Three circular bars
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d1 � diameter of bars

� 0.5 in.

d2 � diameter of disks

� 3.0 in.

P1 � 28 lb

T1 � P1d2 T2 � P2d2 T3 � P3d2

THE THREE TORQUES MUST BE IN EQUILIBRIUM

T3 is the largest torque

MAXIMUM SHEAR STRESS (Eq. 3-12)

tmax �
16(28  lb)(3.0  in.) �2

�(0.5  in.)3 � 4840  psi

tmax �
16T

�d 3 �
16T3

�d1
3 �

16P1d2�2

�d1
3

T3 � T1�2 � P1d2�2

C

A

B

135°

135°

90°

T1

T3

T2

45°

T1

T3

T2

Problem 3.3-10 The steel axle of a large winch on an ocean liner is
subjected to a torque of 1.5 kN�m (see figure). What is the minimum
required diameter dmin if the allowable shear stress is 50 MPa and the
allowable rate of twist is 0.8°/m? (Assume that the shear modulus of
elasticity is 80 GPa.)

Solution 3.3-10 Axle of a large winch

T

T
d

T � 1.5 kN � m

G � 80 GPa

�allow � 50 MPa

MIN. DIAMETER BASED UPON SHEAR STRESS

d � 0.05346  m�dmin � 53.5  mm

d 3 �
16(1.5  kN � m)

�(50  MPa)
� 152.789 � 10�6

 m3

t�
16T

�d 3�d 3 �
16T

�tallow

� 0.013963 rad �m

uallow � 0.8��m � (0.8�)¢ �

180
≤rad �m

MIN. DIAMETER BASED UPON RATE OF TWIST

RATE OF TWIST GOVERNS

dmin � 60.8  mm

d � 0.0608  m�dmin � 60.8  mm

� 0.00001368  m4

d 4 �
32(1.5  kN � m)

�(80  GPa)(0.013963  rad�m)

u�
T

GIp

�
32T

G�d 4�d 4 �
32T

�Guallow

T

T
d



Problem 3.3-11 A hollow steel shaft used in a construction auger 
has outer diameter d2 � 6.0 in. and inner diameter d1 � 4.5 in. (see
figure). The steel has shear modulus of elasticity G � 11.0 � 106 psi. 

For an applied torque of 150 k-in., determine the following
quantities: 

(a) shear stress �2 at the outer surface of the shaft, 
(b) shear stress �1 at the inner surface, and 
(c) rate of twist � (degrees per unit of length). 

Also, draw a diagram showing how the shear stresses vary in mag-
nitude along a radial line in the cross section.

Solution 3.3-11 Construction auger
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d1

d2

d2

d2 � 6.0 in. r2 � 3.0 in.

d1 � 4.5 in. r1 � 2.25 in.

G � 11 � 106 psi

T � 150 k-in.

(a) SHEAR STRESS AT OUTER SURFACE

� 5170  psi�

t2 �
Tr2

IP

�
(150  k-in.) (3.0  in.)

86.98  in.4

IP �
�

32
(d2

4 � d1
4) � 86.98  in.4

(b) SHEAR STRESS AT INNER SURFACE

(c) RATE OF TWIST

(d) SHEAR STRESS DIAGRAM

 u� 157 � 10�6
 rad �in. � 0.00898��in.�

 u�
T

GIP

�
(150  k-in.)

(11 � 106
 psi) (86.98  in.4)

t1 �
Tr1

IP

�
r1

r2
 t2 � 3880  psi�

d1

d2

C

C

0 0.75 1.50 2.25 3.00

3880 psi
5170 psi



Problem 3.3-12 Solve the preceding problem if the shaft has outer
diameter d2 � 150 mm and inner diameter d1 � 100 mm. Also, the 
steel has shear modulus of elasticity G � 75 GPa and the applied 
torque is 16 kN�m.

Solution 3.3-12 Construction auger
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d2 � 150 mm r2 � 75 mm

d1 � 100 mm r1 � 50 mm

G � 75 GPa

T � 16 kN � m

(a) SHEAR STRESS AT OUTER SURFACE

� 30.1  MPa�

t2 �
Tr2

IP

�
(16  kN � m)(75  mm)

39.88 � 106
 mm4

IP �
�

32
(d2

4 � d1
4) � 39.88 � 106

 mm4

(b) SHEAR STRESS AT INNER SURFACE

(c) RATE OF TWIST

(d) SHEAR STRESS DIAGRAM

u� 0.005349  rad �m � 0.306��m�

u�
T

GIP

�
16  kN � m

(75  GPa)(39.88 � 106
 mm4)

t1 �
Tr1

IP

�
r1

r2
      t2 � 20.1  MPa

d1

d2

C

C

0 25 50 75

20.1 MPa
30.1 MPa

r (mm)

Problem 3.3-13 A vertical pole of solid circular cross section is twisted
by horizontal forces P � 1100 lb acting at the ends of a horizontal arm
AB (see figure). The distance from the outside of the pole to the line of
action of each force is c � 5.0 in. 

If the allowable shear stress in the pole is 4500 psi, what is the
minimum required diameter dmin of the pole? d

c
A

P

B

P
c



Solution 3.3-13 Vertical pole
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P � 1100 lb

c � 5.0 in.

�allow � 4500 psi

Find dmin

TORSION FORMULA

T � P(2c � d)�IP �
�d 4

32

tmax �
Tr

IP

�
Td

2IP

(��max)d3 � (16P)d � 32Pc � 0

SUBSTITUTE NUMERICAL VALUES:

UNITS: Pounds, Inches

(�)(4500)d3 � (16)(1100)d � 32(1100)(5.0) � 0

or

d3 � 1.24495d � 12.4495 � 0

Solve numerically: d � 2.496 in.

dmin � 2.50  in.�

tmax �
P(2c � d)d

�d4�16
�

16P(2c � d)

�d3

d

c
A

P

B

P
c

Problem 3.3-14 Solve the preceding problem if the horizontal forces
have magnitude P � 5.0 kN, the distance c � 125 mm, and the allowable
shear stress is 30 MPa.

Solution 3.3-14 Vertical pole

TORSION FORMULA

(��max)d3 � (16P)d � 32Pc � 0

SUBSTITUTE NUMERICAL VALUES:

UNITS: Newtons, Meters

(�)(30 � 106)d3 � (16)(5000)d � 32(5000)(0.125) � 0

or

d3 � 848.826 � 10�6d � 212.207 � 10�6 � 0

Solve numerically: d � 0.06438 m

dmin � 64.4  mm�

tmax �
P(2c � d)d

�d4�16
�

16P(2c � d)

�d3

T � P(2c � d)�IP �
�d 4

32

tmax �
Tr

IP

�
Td

2IP

d

c
A

P

B

P
c

P � 5.0 kN

c � 125 mm

�allow � 30 MPa

Find dmin



Problem 3.3-15 A solid brass bar of diameter d � 1.2 in. is
subjected to torques T1, as shown in part (a) of the figure. 
The allowable shear stress in the brass is 12 ksi. 

(a) What is the maximum permissible value of the torques T1? 
(b) If a hole of diameter 0.6 in. is drilled longitudinally 

through the bar, as shown in part (b) of the figure, what is
the maximum permissible value of the torques T2? 

(c) What is the percent decrease in torque and the percent
decrease in weight due to the hole?

Solution 3.3-15 Brass bar in torsion
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T2

d

T1
d

(a)

(b)

T2

T1

(a) SOLID BAR

d � 1.2 in.

�allow � 12 ksi

Find max. torque T1

(b) BAR WITH A HOLE

d2 � d � 1.2 in.

d1 � 0.6 in.

 T2 � 3817  lb-in.�

 T2 �
� [ (1.2  in.)4 � (0.6  in.)4 ] (12 ksi)

16(1.2  in.)

 T2 �
�(d2

4 � d1
4)tallow

16d2

 tmax �
Tr

IP

�
Td�2

�
32(d2

4� d1
4)

�
16Td2

�(d2
4� d1

4)

� 4072  lb-in.�

T1 �
�(1.2  in.)3(12  ksi)

16

tmax �
16T

�d3�T1 �
�d3tallow

16

(c) PERCENT DECREASE IN TORQUE

PERCENT DECREASE IN WEIGHT

NOTE: The hollow bar weighs 25% less than the solid
bar with only a 6.25% decrease in strength.

%  decrease � 25%  

 
d1

d2
�

1

2
�

W2

W1
�

3

4

 
W2

W1
�

A2

A1
�

d2
2 � d1

2

d2
2 � 1 � ¢d1

d2
≤

2

%  decrease � 6.25%�

 
d1

d2
�

1

2
�

T2

T1
� 0.9375

 
T2

T1
�

�(d2
4� d1

4)tallow

16d2
 � 

16

�d2
3tallow

� 1 � ¢d1

d2
≤

4

d

d2d1



Problem 3.3-16 A hollow aluminum tube used in a roof structure has 
an outside diameter d2 � 100 mm and an inside diameter d1 � 80 mm
(see figure). The tube is 2.5 m long, and the aluminum has shear modulus
G � 28 GPa. 

(a) If the tube is twisted in pure torsion by torques acting at the ends,
what is the angle of twist � (in degrees) when the maximum shear
stress is 50 MPa? 

(b) What diameter d is required for a solid shaft (see figure) to resist the
same torque with the same maximum stress?

(c) What is the ratio of the weight of the hollow tube to the weight of
the solid shaft?

Solution 3.3-16 Hollow aluminum tube
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d2

d1 d

d2 � 100 mm

d1 � 80 mm

L � 2.5 m

G � 28 GPa

�max � 50 MPa

(a) ANGLE OF TWIST FOR THE TUBE

(b) DIAMETER OF A SOLID SHAFT

�max is the same as for tube.

Torque is the same.

 T �
2tmax

d2
 ¢ �

32
≤(d2

4 � d1
4)

 For  the  tube:  T �
2IPtmax

d2

 f� 5.12��

 f�
2(50  MPa)(2.5  m)

(28  GPa)(100  mm)
� 0.08929  rad

 f�
2tmaxL

Gd2

 f�
TL

GIp

� ¢2Iptmax

d2
≤¢ L

GIp

≤

 tmax �
Tr

Ip

�
Td2

2Ip

,�T �
2Iptmax

d2

FOR THE SOLID SHAFT:

(c) RATIO OF WEIGHTS

The weight of the tube is 51% of the weight of the
solid shaft, but they resist the same torque.

 
Wtube

Wsolid
�

(100  mm)2 � (80  mm)2

(83.9  mm)2 � 0.51 

 
Wtube

Wsolid
�

Atube

Asolid
�

d2
2 � d1

2

d2

 d � 83.9  mm�

 d3 �
(100  mm)4 � (80  mm)4

100  mm
� 590,400  mm3

Solve  for  d3:  d3 �
d2

4 � d1
4

d2

tmax �
16T

�d3 �
16

�d3 ¢
2tmax

d2
≤ ¢ �

32
≤(d2

4 � d1
4)

d2

d1

d



Problem 3.3-17 A circular tube of inner radius r1 and outer radius r2
is subjected to a torque produced by forces P � 900 lb (see figure). The
forces have their lines of action at a distance b � 5.5 in. from the outside
of the tube. 

If the allowable shear stress in the tube is 6300 psi and the inner
radius r1 � 1.2 in., what is the minimum permissible outer radius r2?

Solution 3.3-17 Circular tube in torsion
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P

r1

r2

2r2

P

P

P
b b

P � 900 lb

b � 5.5 in.

�allow � 6300 psi

r1 � 1.2 in.

Find minimum permissible radius r2

TORSION FORMULA

T � 2P(b�r2)

All terms in this equation are known except r2.

tmax �
Tr2

IP

�
2P(b � r2)r2

�
2 (r2

4 � r1
4)

�
4P(b � r2)r2

�(r2
4 � r1

4)

IP �
�

2
(r2

4 � r1
4)

SOLUTION OF EQUATION

UNITS: Pounds, Inches

Substitute numerical values:

or

or

�1.000402 r2 �2.07360 � 0

Solve numerically:

r2 � 1.3988 in.

MINIMUM PERMISSIBLE RADIUS

r2 � 1.40  in.�

r2
4 � 0.181891  r2

2

r2
4 � 2.07360

r2(r2 � 5.5)
� 0.181891 � 0

6300  psi �
4(900  lb)(5.5  in. � r2) (r2)

� [ (r2
4) � (1.2  in.)4 ]

P

r1

r2

2r2

P
b b



Nonuniform Torsion

Problem 3.4-1 A stepped shaft ABC consisting of two solid 
circular segments is subjected to torques T1 and T2 acting in 
opposite directions, as shown in the figure. The larger segment 
of the shaft has diameter d1 � 2.25 in. and length L1 � 30 in.; 
the smaller segment has diameter d2 � 1.75 in. and length 
L2 � 20 in. The material is steel with shear modulus 
G � 11 � 106 psi, and the torques are T1 � 20,000 lb-in. 
and T2 � 8,000 lb-in.

Calculate the following quantities: (a) the maximum shear 
stress �max in the shaft, and (b) the angle of twist �C (in degrees) 
at end C.

Solution 3.4-1 Stepped shaft
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L1

d1

T1
T2

L2

B C

d2

A

d1 � 2.25 in. L1 � 30 in.

d2 � 1.75 in. L2 � 20 in.

G � 11 � 106 psi

T1 � 20,000 lb-in.

T2 � 8,000 lb-in.

SEGMENT AB

TAB � T2�T1 � �12,000 lb-in.

� �0.013007  rad

fAB �
TABL1

G(Ip)AB

�
(�12,000  lb-in.) (30  in.)

(11 � 106
 psi)¢ �

32
≤(2.25  in.)4

tAB � ` 16  TAB

�d1
3 ` � 16(12,000  lb-in.)

�(2.25  in.)3 � 5365  psi

SEGMENT BC

TBC � �T2 � 8,000 lb-in.

(a) MAXIMUM SHEAR STRESS

Segment BC has the maximum stress

(b) ANGLE OF TWIST AT END C

�C � �AB � �BC � (�0.013007 � 0.015797) rad

fC � 0.002790�rad � 0.16�

tmax � 7600  psi

� �0.015797  rad

fBC �
TBC L2

G(Ip)BC

�
(8,000  lb-in.) (20  in.)

(11 � 106
 psi)¢ �

32
≤(1.75  in.)4

tBC �
16  TBC

�d2
3 �

16(8,000  lb-in.)

�(1.75  in.)3 � 7602  psiL1

d1

T1
T2

L2B C

d2

A



Problem 3.4-2 A circular tube of outer diameter d3 � 70 mm and
inner diameter d2 � 60 mm is welded at the right-hand end to a fixed
plate and at the left-hand end to a rigid end plate (see figure). A solid
circular bar of diameter d1 � 40 mm is inside of, and concentric with,
the tube. The bar passes through a hole in the fixed plate and is
welded to the rigid end plate. 

The bar is 1.0 m long and the tube is half as long as the bar. A
torque T � 1000 N � m acts at end A of the bar. Also, both the bar
and tube are made of an aluminum alloy with shear modulus of
elasticity G � 27 GPa.

(a) Determine the maximum shear stresses in both the bar and
tube. 

(b) Determine the angle of twist (in degrees) at end A of the bar.

Solution 3.4-2 Bar and tube
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Tube

Tube

A
T

Fixed
plate

End
plate Bar

Bar

d1

d2

d3

TUBE

d3 � 70 mm d2 � 60 mm

Ltube � 0.5 m G � 27 GPa

� 1.0848 � 106 mm4

BAR

d1 � 40 mm Lbar � 1.0 m G � 27 GPa

(Ip)bar �
�d1

4

32
� 251.3 � 103

 mm4

(Ip)tube �
�

32
(d3

4 � d2
4)

TORQUE

T � 1000 N � m

(a) MAXIMUM SHEAR STRESSES

Bar: 

Tube: 

(b) ANGLE OF TWIST AT END A

Bar: 

Tube: 

�A � �bar � �tube � 0.1474 � 0.0171 � 0.1645 rad

fA � 9.43��

ftube �
TLtube

G(Ip)tube
� 0.0171  rad

fbar �
TLbar

G(Ip)bar
� 0.1474  rad

ttube �
T(d3�2)

(Ip)tube
� 32.3  MPa�

tbar �
16T

�d1
3 � 79.6  MPa�

Tube

A
T

Bar
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Problem 3.4-3 A stepped shaft ABCD consisting of solid circular
segments is subjected to three torques, as shown in the figure. The 
torques have magnitudes 12.0 k-in., 9.0 k-in., and 9.0 k-in. The 
length of each segment is 24 in. and the diameters of the segments 
are 3.0 in., 2.5 in., and 2.0 in. The material is steel with shear 
modulus of elasticity G � 11.6 � 103 ksi.

(a) Calculate the maximum shear stress �max in the shaft. 
(b) Calculate the angle of twist �D (in degrees) at end D.

Solution 3.4-3 Stepped shaft

24 in. 24 in. 24 in.

A B C D

2.5 in.

12.0 k-in. 9.0 k-in. 9.0 k-in.
3.0 in. 2.0 in.

G � 11.6 � 103 ksi

rAB � 1.5 in.

rBC � 1.25 in. rCD � 1.0 in.

LAB � LBC � LCD � 24 in.

TORQUES

TAB � 12.0 � 9.0 � 9.0 � 30 k-in.

TBC � 9.0 � 9.0 � 18 k-in.

TCD � 9.0 k-in.

POLAR MOMENTS OF INERTIA

 (Ip)CD �
�

32
 (2.0  in.)4 � 1.571  in.4

 (Ip)BC �
�

32
 (2.5  in.)4 � 3.835  in.4

 (Ip)AB �
�

32
 (3.0  in.)4 � 7.952  in.4

(a) SHEAR STRESSES

(b) ANGLE OF TWIST AT END D

�D � �AB � �BC � �CD � 0.02937 rad

fD � 1.68��

 fCD �
TCD LCD

G(Ip)CD

� 0.011853  rad

 fBC �
TBC LBC

G(Ip)BC

� 0.009711  rad

 fAB �
TAB LAB

G(Ip)AB

� 0.007805  rad

tmax � 5870  psi�

 tCD �
TCD rCD

(Ip)CD

� 5730  psi

 tBC �
TBC rBC

(Ip)BC

� 5870  psi

 tAB �
TAB rAB

(Ip)AB

� 5660  psi

A B C D

2.5 in.

12.0 k-in. 9.0 k-in. 9.0 k-in.

3.0 in.
2.0 in.



Problem 3.4-4 A solid circular bar ABC consists of two segments,
as shown in the figure. One segment has diameter d1 � 50 mm and
length L1 � 1.25 m; the other segment has diameter d2 � 40 mm
and length L2 � 1.0 m.

What is the allowable torque Tallow if the shear stress is not to
exceed 30 MPa and the angle of twist between the ends of the bar 
is not to exceed 1.5°? (Assume G � 80 GPa.)

Solution 3.4-4 Bar consisting of two segments
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L1 L2

T

A B C

d1 d2
T

�allow � 30 MPa

�allow � 1.5� � 0.02618 rad

G � 80 GPa

ALLOWABLE TORQUE BASED UPON SHEAR STRESS

Segment BC has the smaller diameter and hence the
larger stress.

tmax �
16T

�d3      Tallow �
�d2

3tallow

16
� 3.77  N # m

ALLOWABLE TORQUE BASED UPON ANGLE OF TWIST

ANGLE OF TWIST GOVERNS

Tallow � 348  N � m�

Tallow �
�fallowG

32 ¢L1

d1
4 �

L2

d2
4≤

� 348  N � m

f�
32T

�G
 ¢L1

d1
4 �

L2

d2
4≤

f� a TiLi

GIPi

�
TL1

GIP1
�

TL2

GIP2
�

T

G
 ¢ L1

IP1
�

L2

IP2
≤

L1 = 1.25 m L2 = 1.0 m

T

A B C

d1 = 50 mm d2 = 40 mm
T

Problem 3.4-5 A hollow tube ABCDE constructed of 
monel metal is subjected to five torques acting in the directions
shown in the figure. The magnitudes of the torques are 
T1 � 1000 lb-in., T2 � T4 � 500 lb-in., and T3 � T5 � 800 lb-in.
The tube has an outside diameter d2 � 1.0 in. The allowable
shear stress is 12,000 psi and the allowable rate of twist is
2.0°/ft. 

Determine the maximum permissible inside diameter d1
of the tube.

A B C D E

T1 =
1000 lb-in.

T2 =
500 lb-in.

T3 =
800 lb-in.

T4 =
500 lb-in.

T5 =
800 lb-in.

d2 = 1.0 in.



Solution 3.4-5 Hollow tube of monel metal
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d2 � 1.0 in. �allow � 12,000 psi

�allow � 2�/ft � 0.16667�/in.

� 0.002909 rad/in.

From Table H-2, Appendix H: G � 9500 ksi

TORQUES

T1 � 1000 lb-in. T2 � 500 lb-in. T3 � 800 lb-in.

T4 � 500 lb-in. T5 � 800 lb-in.

INTERNAL TORQUES

TAB � � T1 � � 1000 lb-in.

TBC � � T1 � T2 � � 500 lb-in.

TCD � � T1 � T2 � T3 � � 1300 lb-in.

TDE � � T1 � T2 � T3 � T4 � � 800 lb-in.

Largest torque (absolute value only):

Tmax � 1300 lb-in.

REQUIRED POLAR MOMENT OF INERTIA BASED UPON

ALLOWABLE SHEAR STRESS

REQUIRED POLAR MOMENT OF INERTIA BASED UPON

ALLOWABLE ANGLE OF TWIST

SHEAR STRESS GOVERNS

Required IP � 0.05417 in.4

� 0.4482 in.4

(Maximum permissible inside diameter)

d1 � 0.818  in.�

d1
4� d2

4�
32IP

�
� (1.0  in.)4 �

32(0.05417  in.4)
�

IP �
�

32
 (d2

4 � d1
4)

u�
Tmax

GIP

�IP �
Tmax

Guallow
� 0.04704  in.4

tmax �
Tmaxr

IP

�IP �
Tmax(d2�2)
tallow

� 0.05417  in.4

d2 d1 

A B C D E

T1 T2 T3 T4 T5

Problem 3.4-6 A shaft of solid circular cross section consisting of two
segments is shown in the first part of the figure. The left-hand segment 
has diameter 80 mm and length 1.2 m; the right-hand segment has
diameter 60 mm and length 0.9 m. 

Shown in the second part of the figure is a hollow shaft made of the
same material and having the same length. The thickness t of the hollow
shaft is d/10, where d is the outer diameter. Both shafts are subjected to 
the same torque. 

If the hollow shaft is to have the same torsional stiffness as the solid
shaft, what should be its outer diameter d?

t = d—
10

2.1 m

d

1.2 m 0.9 m

60 mm80 mm



Solution 3.4-6 Solid and hollow shafts
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SOLID SHAFT CONSISTING OF TWO SEGMENTS

HOLLOW SHAFT

d0 � inner diameter � 0.8d

UNITS: d � meters

 �
32T

�G
 ¢ 2.1  m

0.5904  d 4≤�
32T

�G
 ¢3.5569  m

d 4 ≤

 f2 �
TL

GIp

�
T(2.1  m)

G ¢ �

32
≤ [d 4� (0.8d)4 ]

 �
32T

�G
(98,741  m�3)

 �
32T

�G
 (29,297  m�3 � 69,444  m�3 )

�
T(0.9  m)

G ¢ �

32
≤(60  mm)4

 f1 � ©
TLi

GIPi

�
T(1.2  m)

G ¢ �

32
≤(80  mm)4

TORSIONAL STIFFNESS

Torque T is the same for both shafts.

‹ For equal stiffnesses, �1 � �2

d � 0.0775  m � 77.5  mm

d4 �
3.5569

98,741
� 36.023 � 10�6

 m4

98,741  m�3 �
3.5569  m

d4

kT �
T

f

1.2 m 0.9 m

60 mm80 mm

t = d—
10

2.1 m

d = outer diameter

Problem 3.4-7 Four gears are attached to a circular shaft and transmit
the torques shown in the figure. The allowable shear stress in the shaft is
10,000 psi. 

(a) What is the required diameter d of the shaft if it has a 
solid cross section? 

(b) What is the required outside diameter d if the shaft is 
hollow with an inside diameter of 1.0 in.?

C

D

A

B

8,000 lb-in.

19,000 lb-in.

4,000 lb-in.

7,000 lb-in.



Solution 3.4-7 Shaft with four gears
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�allow � 10,000 psi TBC � �11,000 lb-in.

TAB � �8000 lb-in. TCD � �7000 lb-in.

(a) SOLID SHAFT

Required d � 1.78  in.

d3 �
16Tmax

�tallow
�

16(11,000  lb-in.)

�(10,000  psi)
� 5.602  in.3

tmax �
16T

�d 3

(b) HOLLOW SHAFT

Inside diameter d0 � 1.0 in.

UNITS: d � inches

or

d4 � 5.6023 d � 1 � 0

Solving, d � 1.832

Required d � 1.83  in.

10,000 �
56,023  d

d4 � 1

10,000  psi �

(11,000  lb-in.)¢d
2
≤

¢ �

32
≤ [d4 � (1.0  in.)4 ]

tmax �
Tr

Ip

�tallow �

Tmax¢d2≤
Ip

C DA B

8,000 lb-in.
19,000 lb-in. 4,000 lb-in. 7,000 lb-in.

Problem 3.4-8 A tapered bar AB of solid circular cross section 
is twisted by torques T (see figure). The diameter of the bar varies
linearly from dA at the left-hand end to dB at the right-hand end. 

For what ratio dB /dA will the angle of twist of the tapered bar 
be one-half the angle of twist of a prismatic bar of diameter dA? 
(The prismatic bar is made of the same material, has the same length, 
and is subjected to the same torque as the tapered bar.) Hint: Use the
results of Example 3-5.

Solution 3.4-8 Tapered bar AB

T T
A

B

L

dBdA

TAPERED BAR (From Eq. 3-27)

PRISMATIC BAR

f2 �
TL

G(IP)A

f1 �
TL

G(IP)A

¢b
2 � b� 1

3b3 ≤�b�
dB

dA

ANGLE OF TWIST

SOLVE NUMERICALLY:

b�
dB

dA

� 1.45

or     3b3 � 2b2 � 2b� 2 � 0

f1 �
1

2
 f2�

b2 � b� 1

3b3 �
1

2

T T
A

B

L dB
dA

Problems 3.4-8, 3.4-9 and 3.4-10



Problem 3.4-9 A tapered bar AB of solid circular cross section is twisted
by torques T � 36,000 lb-in. (see figure). The diameter of the bar varies
linearly from dA at the left-hand end to dB at the right-hand end. The bar
has length L � 4.0 ft and is made of an aluminum alloy having shear
modulus of elasticity G � 3.9 � 106 psi. The allowable shear stress in 
the bar is 15,000 psi and the allowable angle of twist is 3.0°. 

If the diameter at end B is 1.5 times the diameter at end A, what is 
the minimum required diameter dA at end A? (Hint: Use the results of
Example 3-5).

Solution 3.4-9 Tapered bar
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dB � 1.5 dA

T � 36,000 lb-in.

L � 4.0 ft � 48 in.

G � 3.9 � 106 psi

�allow � 15,000 psi

�allow � 3.0�

� 0.0523599 rad

MINIMUM DIAMETER BASED UPON ALLOWABLE

SHEAR STRESS

� 12.2231 in.3

dA � 2.30 in.

tmax �
16T

�dA
3�dA

3 �
16T

�tallow
�

16(36,000  lb-in.)

�(15,000  psi)

MINIMUM DIAMETER BASED UPON ALLOWABLE ANGLE

OF TWIST (From Eq. 3-27)

� � dB/dA � 1.5

dA � 2.52 in.

ANGLE OF TWIST GOVERNS

Min. dA � 2.52  in.

� 40.4370  in.4

dA
4 �

2.11728  in.4

fallow
�

2.11728  in.4

0.0523599  rad

�
2.11728  in.4

dA
4

 �
(36,000  lb-in.) (48  in.)

(3.9 � 106
 psi)¢ �

32
≤ dA

4

 (0.469136)

 f�
TL

G(IP)A

 ¢b
2 � b� 1

3b3 ≤�
TL

G(IP)A

 (0.469136)

T T
A

B

L dB
dA



Problem 3.4-10 The bar shown in the figure is tapered linearly from
end A to end B and has a solid circular cross section. The diameter at the
smaller end of the bar is dA � 25 mm and the length is L � 300 mm. 
The bar is made of steel with shear modulus of elasticity G � 82 GPa. 

If the torque T � 180 N � m and the allowable angle of twist is 0.3°,
what is the minimum allowable diameter dB at the larger end of the bar?
(Hint: Use the results of Example 3-5.)

Solution 3.4-10 Tapered bar
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dA � 25 mm

L � 300 mm

G � 82 GPa

T � 180 N � m

�allow � 0.3�

Find dB

DIAMETER BASED UPON ALLOWABLE ANGLE OF TWIST

(From Eq. 3-27)

f�
TL

G(IP)A

 ¢b
2 � b� 1

3b3 ≤�(IP)A �
�

32
dA

4

b�
dB

dA

0.914745�3 � �2 � 1 � 0

SOLVE NUMERICALLY:

� � 1.94452

Min. dB � bdA � 48.6  mm

0.304915 �
b2 � b� 1

3b3

�
(180  N # m)(0.3  m)

(82  GPa)¢ �

32
≤(25  mm)4

 ¢b
2 � b� 1

3b3 ≤

(0.3�)¢ �

180
 

rad

degrees
≤

T T
A

B

L dB
dA

Problem 3.4-11 A uniformly tapered tube AB of hollow circular
cross section is shown in the figure. The tube has constant wall
thickness t and length L. The average diameters at the ends are 
dA and dB � 2dA. The polar moment of inertia may be represented
by the approximate formula IP � �d 3t/4 (see Eq. 3-18). 

Derive a formula for the angle of twist � of the tube when 
it is subjected to torques T acting at the ends.

T T
A

B

L

t

dB = 2dA

dA

t



Solution 3.4-11 Tapered tube
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t � thickness (constant)

dA, dB � average diameters at the ends

dB � 2dA (approximate formula)IP �
�d3t

4

T T

A
B

L

ANGLE OF TWIST

Take the origin of coordinates at point O.

IP(x) �
� [d(x) ] 3t

4
�

�tdA
3

4L3  x3

d(x) �
x

2L
 (dB) �

x

L
 dA

BL

dB = 2dAdAO

x

d(x)

dx

L

For element of length dx:

For entire bar:

f� �
2L

L

df�
4TL3

�GtdA
3 �

2L

L

dx

x3 �
3TL

2�GtdA
3

df�
Tdx

GIP(x)
�

Tdx

G ¢�td3
A

4L3 ≤ x3

�
4TL3

�GtdA
3

#  
dx

x3

Problem 3.4-12 A prismatic bar AB of length L and solid circular cross
section (diameter d) is loaded by a distributed torque of constant intensity
t per unit distance (see figure). 

(a) Determine the maximum shear stress �max in the bar.
(b) Determine the angle of twist � between the ends of the bar.

Solution 3.4-12 Bar with distributed torque

A

B

t

L

t � intensity of distributed torque

d � diameter

G � shear modulus of elasticity

(a) MAXIMUM SHEAR STRESS

(b) ANGLE OF TWIST

f� �
L

0

df�
32t

�Gd4�
L

0

x dx �
16tL2

�Gd4

df�
T(x)dx

GIp

�
32 tx dx

�Gd4

T(x) � tx�IP �
�d 4

32

Tmax � tL�tmax �
16Tmax

�d3 �
16tL

�d3A

B

t

L

dx

x



Problem 3.4-13 A prismatic bar AB of solid circular cross section
(diameter d) is loaded by a distributed torque (see figure). The intensity 
of the torque, that is, the torque per unit distance, is denoted t(x) and
varies linearly from a maximum value tA at end A to zero at end B. Also,
the length of the bar is L and the shear modulus of elasticity of the
material is G. 

(a) Determine the maximum shear stress �max in the bar.
(b) Determine the angle of twist � between the ends of the bar.

Solution 3.4-13 Bar with linearly varying torque
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A

B

t(x)

L

t(x) � intensity of distributed torque

tA � maximum intensity of torque

d � diameter

G � shear modulus

TA � maximum torque

�
1

2
 tAL

(a) MAXIMUM SHEAR STRESS

(b) ANGLE OF TWIST

T(x) � torque at distance x from end B

f� �
L

0

df�
16tA

�GLd4�
L

0

x2dx �
16tAL2

3�Gd4

df�
T(x) dx

GIP

�
16tAx2 dx

�GLd4

T(x) �
t(x)x

2
�

tAx2

2L
�IP �

�d4

32

tmax �
16Tmax

�d3 �
16TA

�d3 �
8tAL

�d3

A

B

t(x)

L
dx

x

TA
L

tA

t(x) = x



Problem 3.4-14 A magnesium-alloy wire of diameter d � 4 mm
and length L rotates inside a flexible tube in order to open or close 
a switch from a remote location (see figure). A torque T is applied
manually (either clockwise or counterclockwise) at end B, thus
twisting the wire inside the tube. At the other end A, the rotation 
of the wire operates a handle that opens or closes the switch. 

A torque T0 � 0.2 N � m is required to operate the switch. 
The torsional stiffness of the tube, combined with friction between
the tube and the wire, induces a distributed torque of constant
intensity t � 0.04 N�m/m (torque per unit distance) acting along 
the entire length of the wire. 

(a) If the allowable shear stress in the wire is �allow � 30 MPa,
what is the longest permissible length Lmax of the wire? 

(b) If the wire has length L � 4.0 m and the shear modulus of
elasticity for the wire is G � 15 GPa, what is the angle 
of twist � (in degrees) between the ends of the wire?

Solution 3.4-14 Wire inside a flexible tube

208 CHAPTER 3 Torsion

t

dA

B

T

T0 = torque
Flexible tube

d � 4 mm

T0 � 0.2 N � m

t � 0.04 N � m/m

(a) MAXIMUM LENGTH Lmax

�allow � 30 MPa

Equilibrium: T � tL � T0

From Eq. (3-12): 

Substitute numerical values: Lmax � 4.42  m

Lmax �
1

16t
(�d3tallow � 16T0)

L �
1

16t
(�d3tmax � 16T0)

tL � T0 �
�d3tmax

16

tmax �
16T

�d3�T �
�d3tmax

16

(b) ANGLE OF TWIST �

L � 4 m G � 15 GPa

�1 � angle of twist due to distributed torque t

(from problem 3.4-12)

�2 � angle of twist due to torque T0

(from Eq. 3-15)

� � total angle of twist

� �1 � �2

Substitute numerical values:

f� 2.971  rad � 170�

f�
16L

�Gd4 (tL � 2T0)

�
T0L

GIP

�
32 T0L

�Gd4

�
16tL2

�Gd 4

t
TT0

L

d



Pure Shear

Problem 3.5-1 A hollow aluminum shaft (see figure) has 
outside diameter d2 � 4.0 in. and inside diameter d1 � 2.0 in. 
When twisted by torques T, the shaft has an angle of twist per unit
distance equal to 0.54°/ft. The shear modulus of elasticity of the
aluminum is G � 4.0 � 106 psi. 

(a) Determine the maximum tensile stress �max in the shaft.
(b) Determine the magnitude of the applied torques T.

Solution 3.5-1 Hollow aluminum shaft
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L

d2d1

d2
T T

d2d1

T T

d2 � 4.0 in. d1 � 2.0 in. � � 0.54�/ft

G � 4.0 � 106 psi

MAXIMUM SHEAR STRESS

�max � Gr� (from Eq. 3-7a)

r � d2/2 � 2.0 in.

�max � (4.0 � 106 psi)(2.0 in.)(785.40 � 10�6 rad/in.)

� 6283.2 psi

� 785.40 � 10�6
 rad�in.

u� (0.54��ft)¢ 1

12
 

ft

in.
≤ ¢ �

180
 

rad

degree
≤

(a) MAXIMUM TENSILE STRESS

�max occurs on a 45� plane and is equal to �max.

(b) APPLIED TORQUE

Use the torsion formula 

� 74,000  lb-in.

T �
(6283.2  psi)(23.562  in.4)

2.0  in.

� 23.562  in.4

T �
tmaxIP

r
�IP �

�

32
[ (4.0  in.)4 � (2.0  in.)4 ]

tmax �
Tr

IP

smax � tmax � 6280  psi

Problems 3.5-1, 3.5-2, and 3.5-3



Problem 3.5-2 A hollow steel bar (G � 80 GPa) is twisted by torques 
T (see figure). The twisting of the bar produces a maximum shear strain
�max � 640 � 10�6 rad. The bar has outside and inside diameters of 
150 mm and 120 mm, respectively. 

(a) Determine the maximum tensile strain in the bar.
(b) Determine the maximum tensile stress in the bar.
(c) What is the magnitude of the applied torques T ?

Solution 3.5-2 Hollow steel bar

210 CHAPTER 3 Torsion

G � 80 GPa �max � 640 � 10�6 rad

d2 � 150 mm d1 � 120 mm

� 29.343 � 106 mm4

(a) MAXIMUM TENSILE STRAIN

emax �
gmax

2
� 320 � 10�6

�
�

32
[ (150  mm)4 � (120  mm)4]

IP �
�

32
(d2

4 � d1
4)

(b) MAXIMUM TENSILE STRESS

�max � G�max � (80 GPa)(640 � 10�6)

� 51.2 MPa

(c) APPLIED TORQUES

Torsion formula: 

� 20,030 N � m

� 20.0  kN # m

T �
2IPtmax

d2
�

2(29.343 � 106
 mm4)(51.2  MPa)

150  mm

tmax �
Tr

IP

�
Td2

2IP

smax � tmax � 51.2  MPa

d2d1

T T

Problem 3.5-3 A tubular bar with outside diameter d2 � 4.0 in. is
twisted by torques T � 70.0 k-in. (see figure). Under the action of these
torques, the maximum tensile stress in the bar is found to be 6400 psi. 

(a) Determine the inside diameter d1 of the bar.
(b) If the bar has length L � 48.0 in. and is made of aluminum with

shear modulus G � 4.0 � 106 psi, what is the angle of twist �
(in degrees) between the ends of the bar? 

(c) Determine the maximum shear strain �max (in radians)?



Solution 3.5-3 Tubular bar
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d2d1

T T

L

d2 � 4.0 in. T � 70.0 k-in. � 70,000 lb-in.

�max � 6400 psi �max � �max � 6400 psi

(a) INSIDE DIAMETER d1

Torsion formula: 

Also, 

Equate formulas:

Solve for d1: d1 � 2.40 in.

(b) ANGLE OF TWIST �

�

32
[256  in.4 � d1

4] � 21.875  in.4

Ip �
�

32
(d2

4 � d1
4) �

�

32
[ (4.0  in.)4 � d1

4]

� 21.875  in.4

IP �
Td2

2tmax
�

(70.0  k-in.) (4.0  in.)

2(6400  psi)

tmax �
Tr

IP

�
Td2

2IP

L � 48 in. G � 4.0 � 106 psi

From torsion formula, 

(c) MAXIMUM SHEAR STRAIN

� 1600 � 10�6
 rad

gmax �
tmax

G
�

6400  psi

4.0 � 106
 psi

 f� 2.20�

 �
2(48  in.) (6400  psi)

(4.0 � 106
 psi) (4.0  in.)

� 0.03840  rad

 ∴ f�
2IPtmax

d2
 ¢ L

GIP

≤�
2Ltmax

Gd2

T �
2IPtmax

d2

f�
TL

GIp

Problem 3.5-4 A solid circular bar of diameter d � 50 mm
(see figure) is twisted in a testing machine until the applied torque
reaches the value T � 500 N � m. At this value of torque, a 
strain gage oriented at 45° to the axis of the bar gives a reading 
� � 339 � 10�6. 

What is the shear modulus G of the material?

Solution 3.5-4 Bar in a testing machine

T

T = 500 N·md = 50 mm
Strain gage

45°

Strain gage at 45�:

emax � 339 � 10�6

d � 50 mm

T � 500 N . m

SHEAR STRAIN (FROM EQ. 3-33)

�max � 2emax � 678 � 10�6

SHEAR STRESS (FROM EQ. 3-12)

SHEAR MODULUS

G �
tmax

gmax
�

20.372  MPa

678 � 10�6 � 30.0  GPa

tmax �
16T

�d3 �
16(500  N . m)

�(0.050  m)3 � 20.372  MPa

T T

45°



Problem 3.5-5 A steel tube (G � 11.5 � 106 psi) has an outer diameter
d2 � 2.0 in. and an inner diameter d1 � 1.5 in. When twisted by a torque
T, the tube develops a maximum normal strain of 170 � 10�6. 

What is the magnitude of the applied torque T?

Solution 3.5-5 Steel tube

212 CHAPTER 3 Torsion

G � 11.5 � 106 psi d2 � 2.0 in. d1 � 1.5 in.

emax � 170 � 10�6

SHEAR STRAIN (FROM EQ. 3-33)

�max � 2emax � 340 � 10�6

SHEAR STRESS (FROM TORSION FORMULA)

Also, �max � G�max

tmax �
Tr

IP

�
Td2

2IP

 � 1.07379  in.4

 IP �
�

32
 (d2

2� d1
4) �

�

32
[ (2.0  in.)4 � (1.5  in.)4 ]

Equate expressions:

SOLVE FOR TORQUE

 � 4200  lb-in.

�
2(11.5 � 106

 psi) (1.07379  in.4) (340 � 10�6)

2.0  in.

 T �
2GIPgmax

d2

Td2

2IP

� Ggmax

d2d1

T T

Problem 3.5-6 A solid circular bar of steel (G � 78 GPa) transmits a torque T � 360
N�m. The allowable stresses in tension, compression, and shear are 90 MPa, 70 MPa,
and 40 MPa, respectively. Also, the allowable tensile strain is 220 � 10�6.

Determine the minimum required diameter d of the bar.



Problem 3.5-7 The normal strain in the 45° direction on the 
surface of a circular tube (see figure) is 880 � 10�6 when 
the torque T � 750 lb-in. The tube is made of copper alloy 
with G � 6.2 � 106 psi. 

If the outside diameter d2 of the tube is 0.8 in., what is 
the inside diameter d1?

Solution 3.5-7 Circular tube with strain gage
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T � 360 N . m G � 78 GPa

ALLOWABLE STRESSES

Tension: 90 MPa Compression: 70 MPa

Shear: 40 MPa

Allowable tensile strain: emax � 220 � 10�6

DIAMETER BASED UPON ALLOWABLE STRESS

The maximum tensile, compressive, and shear
stresses in a bar in pure torsion are numerically
equal. Therefore, the lowest allowable stress 
(shear stress) governs.

 d � 0.0358  m � 35.8  mm

 d3 � 45.837 � 10�6
 m3

 tmax �
16T

�d3       d3 �
16T

�tallow
�

16(360  N . m)

�(40  MPa)

 tallow � 40  MPa

DIAMETER BASED UPON ALLOWABLE TENSILE STRAIN

TENSILE STRAIN GOVERNS

dmin � 37.7 mm

 d � 0.0377  m � 37.7  mm

� 53.423 � 10�6
 m3

 d3 �
16(360  N . m)

2�(78  GPa)(220 � 10�6)

 tmax �
16T

�d3�d3 �
16T

�tmax
�

16T

2�Gemax

 gmax � 2emax;  tmax � Ggmax � 2Gemax

T
T = 750 lb-in.d2 = 0.8 in.

Strain gage

45°

d2 � 0.80 in. T � 750 lb-in. G � 6.2 � 106 psi

Strain gage at 45�: emax � 880 � 10�6

MAXIMUM SHEAR STRAIN

�max � 2emax

MAXIMUM SHEAR STRESS

 tmax �
T(d2�2)

IP

�IP �
Td2

2tmax
�

Td2

4Gemax

 tmax � Ggmax � 2Gemax

INSIDE DIAMETER

Substitute numerical values:

 d1 � 0.60  in.

 � 0.4096  in.4 � 0.2800  in.4 � 0.12956  in.4

 d1
4� (0.8  in.)4 �

8(750  lb-in.) (0.80  in.)

�(6.2 � 106
 psi) (880 � 10�6)

 �d2
4 � d1

4 �
8Td2

�Gemax
�d1

4 � d2
4 �

8Td2

�Gemax

 IP �
�

32
(d2

4� d1
4) �

Td2

4Gemax

T T

45°
d2d1

Solution 3.5-6 Solid circular bar of steel



Problem 3.5-9 A solid steel bar (G � 11.8 � 106 psi) of 
diameter d � 2.0 in. is subjected to torques T � 8.0 k-in. 
acting in the directions shown in the figure. 

(a) Determine the maximum shear, tensile, and compressive
stresses in the bar and show these stresses on sketches of
properly oriented stress elements. 

(b) Determine the corresponding maximum strains (shear, 
tensile, and compressive) in the bar and show these 
strains on sketches of the deformed elements.

214 CHAPTER 3 Torsion

Problem 3.5-8 An aluminum tube has inside diameter d1 � 50 mm, shear modulus
of elasticity G � 27 GPa, and torque T � 4.0 kN � m. The allowable shear stress in
the aluminum is 50 MPa and the allowable normal strain is 900 � 10�6. 

Determine the required outside diameter d2.

Solution 3.5-8 Aluminum tube

d1 � 50 mm G � 27 GPa

T � 4.0 kN � m �allow � 50 MPa eallow � 900 � 10�6

Determine the required diameter d2.

ALLOWABLE SHEAR STRESS

(�allow)1 � 50 MPa

ALLOWABLE SHEAR STRESS BASED ON NORMAL STRAIN

(�allow)2 � 2Geallow � 2(27 GPa)(900 � 10�6)

� 48.6  MPa

emax �
g

2
�
t

2G
�t� 2Gemax

NORMAL STRAIN GOVERNS

�allow � 48.60 MPa

REQUIRED DIAMETER

Rearrange and simplify:

Solve numerically:

d2 � 79.3  mm

d2 � 0.07927  m

d2
4 � (419.174 � 10�6)d2 � 6.25 � 10�6 � 0

t�
Tr

IP

�48.6 MPa �
(4000  N # m)(d2�2)

�

32
[d2

4 � (0.050  m)4]

T T
d2d1

T
T = 8.0 k-in.d = 2.0 in.



Solution 3.5-9 Solid steel bar

SECTION 3.5 Pure Shear 215

T � 8.0 k-in.

G � 11.8 � 106 psi

(a) MAXIMUM STRESSES

st � 5090  psi�sc � �5090  psi

� 5093  psi

tmax �
16T

�d3 �
16(8000  lb-in.)

�(2.0  in.)3

(b) MAXIMUM STRAINS

et � 216 � 10�6�ec � � 216 � 10�6

emax �
gmax

2
� 216 � 10�6

� 432 � 10�6
 rad

gmax �
tmax

G
�

5093  psi

11.8 � 106
 psi

T T = 8.0 k-in.d = 2.0 in.

G = 11.8x106 psi

y

x
0

 45° 

y

x0

�c = 5090 psi 

Tmax = 
5090 psi

�t = 5090 psi 

 45° 

�c = 
216 × 10−6

�t = 216 × 10−6

�max = 
4.32 × 10−6

 rad

11

Problem 3.5-10 A solid aluminum bar (G � 27 GPa) of
diameter d � 40 mm is subjected to torques T � 300 N � m 
acting in the directions shown in the figure. 

(a) Determine the maximum shear, tensile, and compressive 
stresses in the bar and show these stresses on sketches of 
properly oriented stress elements. 

(b) Determine the corresponding maximum strains (shear, 
tensile, and compressive) in the bar and show these 
strains on sketches of the deformed elements.

T
T = 300 N·md = 40 mm



Solution 3.5-10 Solid aluminum bar
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(a) MAXIMUM STRESSES

st � 23.9  MPa�sc � � 23.9  MPa�

� 23.87  MPa�

tmax �
16T

�d3 �
16(300  N � m)

�(0.040  m)3

(b) MAXIMUM STRAINS

et � 442 � 10�6�ec � �442 � 10�6�

emax �
gmax

2
� 442 � 10�6

� 884 � 10�6
 rad�

gmax �
tmax

G
�

23.87  MPa

27  GPa

T
T = 300 N · md = 40 mm

G = 27 GPa

y
x

0

 45° 

y

x0

�t = 23.9 MPa

�max = 
23.9 MPa

�c = 23.9 MPa

 45° 

�t = 
442 × 10−6

�c = 
442 × 10−6 

�max = 
884 × 10−6

 rad

1 1

Transmission of Power

Problem 3.7-1 A generator shaft in a small hydroelectric plant turns 
at 120 rpm and delivers 50 hp (see figure). 

(a) If the diameter of the shaft is d � 3.0 in., what is the maximum
shear stress �max in the shaft? 

(b) If the shear stress is limited to 4000 psi, what is the minimum
permissible diameter dmin of the shaft?

Solution 3.7-1 Generator shaft

d
120 rpm

50 hp

n � 120 rpm H � 50 hp d � diameter

TORQUE

 � 2188  lb-ft � 26,260  lb-in.

 T �
33,000  H

2�n
�

(33,000)(50  hp)

2�(120  rpm)

H �
2�nT

33,000
�H � hp�n � rpm�T � lb-ft

(a) MAXIMUM SHEAR STRESS �max

d � 3.0 in.

(b) MINIMUM DIAMETER dmin

 dmin � 3.22  in.�

 d3 �
16T

�tallow
�

16(26,260  lb-in.)

�(4000  psi)
� 334.44  in.3

 tallow � 4000  psi

 tmax � 4950  psi�

 tmax �
16T

�d3 �
16(26,260  lb-in.)

�(3.0  in.)3



Problem 3.7-2 A motor drives a shaft at 12 Hz and delivers 20 kW of
power (see figure). 

(a) If the shaft has a diameter of 30 mm, what is the maximum shear
stress �max in the shaft? 

(b) If the maximum allowable shear stress is 40 MPa, what is the
minimum permissible diameter dmin of the shaft?

Solution 3.7-2 Motor-driven shaft
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d
12 Hz

20 kW

f � 12 Hz P � 20 kW � 20,000 N � m/s

TORQUE

P � 2�f T P � watts f � Hz � s�1

T � Newton meters

(a) MAXIMUM SHEAR STRESS �max

d � 30 mm

T �
P

2�f
�

20,000  W

2�(12  Hz)
� 265.3  N . m

(b) MINIMUM DIAMETER dmin

�allow � 40 MPa

 dmin � 0.0323  m � 32.3  mm�
� 33.78 � 10�6

 m3

 d3 �
16T

�tallow
�

16(265.3  N .  m)

�(40  MPa)

� 50.0  MPa�

tmax �
16T

�d3 �
16(265.3  N . m)

�(0.030  m)3

Problem 3.7-3 The propeller shaft of a large ship has outside 
diameter 18 in. and inside diameter 12 in., as shown in the figure. 
The shaft is rated for a maximum shear stress of 4500 psi. 

(a) If the shaft is turning at 100 rpm, what is the maximum
horsepower that can be transmitted without exceeding the
allowable stress? 

(b) If the rotational speed of the shaft is doubled but the power
requirements remain unchanged, what happens to the shear
stress in the shaft?

Solution 3.7-3 Hollow propeller shaft

d2 � 18 in. d1 � 12 in. �allow � 4500 psi

TORQUE

 � 344,590  lb-ft.

� 4.1351 � 106
 lb-in.

 T �
2(4500  psi)(8270.2  in.4)

18  in.

tmax �
T(d2�2)

IP

�T �
2tallow IP

d2

IP �
�

32
(d2

4 � d1
4) � 8270.2  in.4

(a) HORSEPOWER

n � rpm T � lb-ft H � hp

(b) ROTATIONAL SPEED IS DOUBLED

If n is doubled but H remains the same, then T is halved.

If T is halved, so is the maximum shear stress.

∴  Shear  stress  is  halved�

H �
2�nT

33,000

� 6560  hp�

H �
2�(100  rpm)(344,590  lb-ft)

33,000

n � 100  rpm�H �
2� nT

33,000

18 in.

12 in.

18 in. 100 rpm



Problem 3.7-4 The drive shaft for a truck (outer diameter 60 mm 
and inner diameter 40 mm) is running at 2500 rpm (see figure). 

(a) If the shaft transmits 150 kW, what is the maximum shear 
stress in the shaft? 

(b) If the allowable shear stress is 30 MPa, what is the maximum
power that can be transmitted?

Solution 3.7-4 Drive shaft for a truck
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60 mm
2500 rpm

60 mm

40 mm

d2 � 60 mm d1 � 40 mm n � 2500 rpm

(a) MAXIMUM SHEAR STRESS �max

P � power (watts) P � 150 kW � 150,000 W

T � torque (newton meters) n � rpm

.
T �

60(150,000  W)

2�(2500  rpm)
� 572.96  N . m

P �
2�nT

60
�T �

60P

2�n

IP �
�

32
(d2

4 � d1
4) � 1.0210 � 10�6

 m4

(b) MAXIMUM POWER Pmax

 � 267  kW�

 Pmax � P 
tallow

tmax
� (150  kW) ¢ 30  MPa

16.835  MPa
≤

tallow � 30  MPa

tmax � 16.8  MPa�

� 16.835  MPa

tmax �
Td2

2  IP

�
(572.96  N . m)(0.060  m)

2(1.0210 � 10�6
 m4)

Problem 3.7-5 A hollow circular shaft for use in a pumping station is
being designed with an inside diameter equal to 0.75 times the outside
diameter. The shaft must transmit 400 hp at 400 rpm without exceeding 
the allowable shear stress of 6000 psi.

Determine the minimum required outside diameter d.

Solution 3.7-5 Hollow shaft

d � outside diameter

d0 � inside diameter

� 0.75 d

H � 400 hp n � 400 rpm

�allow � 6000 psi

TORQUE

H �
2�nT

33,000

IP �
�

32
[d 4� (0.75  d)4 ] � 0.067112 d 4

H � hp n � rpm T � lb-ft

MINIMUM OUTSIDE DIAMETER

d3 � 78.259  in.3�dmin � 4.28  in.�

0.067112 d4 �
(63,025  lb-in.) (d)

2(6000  psi)

tmax �
Td

2IP

�IP �
Td

2tmax
�

Td

2tallow

 � 5252.1  lb-ft � 63,025  lb-in.

 T �
33,000  H

2�n
�

(33,000)(400  hp)

2�(400  rpm)



Problem 3.7-6 A tubular shaft being designed for use on a construction
site must transmit 120 kW at 1.75 Hz. The inside diameter of the shaft is
to be one-half of the outside diameter. 

If the allowable shear stress in the shaft is 45 MPa, what is the
minimum required outside diameter d?

Solution 3.7-6 Tubular shaft
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d � outside diameter

d0 � inside diameter

� 0.5 d

P � 120 kW � 120,000 W f � 1.75 Hz

�allow � 45 MPa

TORQUE

P � 2�f T P � watts f � Hz

IP �
�

32
[d4 � (0.5  d)4 ] � 0.092039  d4

T � newton meters

MINIMUM OUTSIDE DIAMETER

dmin � 110  mm�

d3 � 0.0013175  m3�d � 0.1096  m

0.092039 d4 �
(10,913.5  N .  m)(d)

2(45  MPa)

tmax �
Td

2IP

�IP �
Td

2tmax
�

Td

2tallow

 T �
P

2�f
�

120,000  W

2�(1.75  Hz)
� 10,913.5  N .  m

Problem 3.7-7 A propeller shaft of solid circular cross section and
diameter d is spliced by a collar of the same material (see figure). The
collar is securely bonded to both parts of the shaft.

What should be the minimum outer diameter d1 of the collar in 
order that the splice can transmit the same power as the solid shaft?

Solution 3.7-7 Splice in a propeller shaft

dd1

SOLID SHAFT

HOLLOW COLLAR

�
�tmax

16 d1
(d1

4 � d4)

 T2 �
2tmaxIP

d1
�

2tmax

d1
 ¢ �

32
≤(d1

4 � d4)

 IP �
�

32
(d1

4 � d4)     tmax �
T2r

IP

�
T2(d1�2)

IP

tmax �
16T1

�d3 �T1 �
�d3tmax

16

EQUATE TORQUES

For the same power, the torques must be the same.
For the same material, both parts can be stressed to
the same maximum stress.

(Eq. 1)

MINIMUM OUTER DIAMETER

Solve Eq. (1) numerically:

Min.  d1 � 1.221  d�

or  ¢d1

d
≤

4

�
d1

d
� 1 � 0

∴  T1 � T2�
�d3tmax

16
�

�tmax

16d1
(d1

4 � d4)

dd1
TT



Problem 3.7-8 What is the maximum power that can be delivered 
by a hollow propeller shaft (outside diameter 50 mm, inside diameter 
40 mm, and shear modulus of elasticity 80 GPa) turning at 600 rpm 
if the allowable shear stress is 100 MPa and the allowable rate of twist 
is 3.0°/m?

Solution 3.7-8 Hollow propeller shaft
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d2 � 50 mm d1 � 40 mm
G � 80 GPa n � 600 rpm

BASED UPON ALLOWABLE SHEAR STRESS

� 1449  N . m

 T1 �
2(100  MPa)(362.3 � 10�9

 m4)

0.050  m

 tmax �
T1(d2�2)

IP

�T1 �
2tallow IP

d2

 IP �
�

32
(d2

4 � d1
4) � 362.3 � 10�9

 m4

 tallow � 100  MPa�uallow � 3.0��m

BASED UPON ALLOWABLE RATE OF TWIST

�

SHEAR STRESS GOVERNS

MAXIMUM POWER

Pmax � 91.0  kW�

 P � 91,047  W

 P �
2�nT

60
�

2�(600  rpm)(1449  N .  m)

60

Tallow � T1 � 1449  N .  m

 T2 � 1517  N .  m

¢ �

180
 rad �degree≤

 T2 � (80  GPa)(362.3 � 10�9
 m4)(3.0��m)

 u�
T2

GIP

�T2 � GIPuallow

Problem 3.7-9 A motor delivers 275 hp at 1000 rpm to the end of 
a shaft (see figure). The gears at B and C take out 125 and 150 hp,
respectively. 

Determine the required diameter d of the shaft if the allowable shear
stress is 7500 psi and the angle of twist between the motor and gear C is
limited to 1.5°. (Assume G � 11.5 � 106 psi, L1 � 6 ft, and L2 � 4 ft.)

C
BA d

L1

Motor

L2



Solution 3.7-9 Motor-driven shaft
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CBA L1 L2

275 hp 125 hp 150 hp

L1 � 6 ft

L2 � 4 ft

d � diameter

n � 1000 rpm

�allow � 7500 psi

TORQUES ACTING ON THE SHAFT

FREE-BODY DIAGRAM

TA � 17,332 lb-in.

TC � 9454 lb-in.

d � diameter

TB � 7878 lb-in.

INTERNAL TORQUES

TAB � 17,332 lb-in.

TBC � 9454 lb-in.

At  point  C:  TC �
150

275
     TA � 9454  lb-in.

At  point  B:  TB �
125

275
     TA � 7878  lb-in.

 � 17,332  lb-in.

� 1444  lb-ft

 At  point  A:  TA �
33,000(275  hp)

2�(1000  rpm)

 T �
33,000  H

2�n

 H �
2�nT

33,000
�H � hp�n � rpm     T � lb-ft

G � 11.5 � 106
 psi

(fAC)allow � 1.5� � 0.02618  rad

DIAMETER BASED UPON ALLOWABLE SHEAR STRESS

The larger torque occurs in segment AB

DIAMETER BASED UPON ALLOWABLE ANGLE OF TWIST

Segment AB:

Segment BC:

(�AC)
allow

� 0.02618 rad

Angle of twist governs

d � 2.75  in.�

∴  0.02618 �
1.5070

d 4       and       d � 2.75  in.

From  A to C: fAC � fAB � fBC �
1.5070

d 4

 fBC �
0.4018

d 4

 �
32(9450  lb-in.) (4  ft) (12  in.�ft)

�(11.5 � 106
 psi)d4

 fBC �
32  TBC LBC

�Gd 4

 fAB �
1.1052

d 4

 �
32(17,330  lb-in.) (6  ft) (12  in.�ft)

�(11.5 � 106
 psi)d4

 fAB �
32  TAB LAB

�Gd4

IP �
�d4

32
�f�

TL

GIP

�
32TL

�Gd4

d � 2.27  in.

�
16(17,332  lb-in.)

�(7500  psi)
� 11.77  in.3

tmax �
16TAB

�d3 �d3 �
16TAB

�tallow

CBA 6 ft 4 ft

TA = 17,332 lb-in. TC = 9454 lb-in.

TB = 7878 lb-in.



Problem 3.7-10 The shaft ABC shown in the figure is driven by a motor
that delivers 300 kW at a rotational speed of 32 Hz. The gears at B and C
take out 120 and 180 kW, respectively. The lengths of the two parts of the
shaft are L1 � 1.5 m and L2 � 0.9 m. 

Determine the required diameter d of the shaft if the allowable shear
stress is 50 MPa, the allowable angle of twist between points A and C is
4.0°, and G � 75 GPa.

Solution 3.7-10 Motor-driven shaft
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L1 � 1.5 m

L2 � 0.9 m

d � diameter

f � 32 Hz

�allow � 50 MPa

G � 75 GPa

TORQUES ACTING ON THE SHAFT

P � 2�f T P � watts f � Hz

T � newton meters

FREE-BODY DIAGRAM

TA � 1492 N � m

TB � 596.8 N � m

TC � 895.3 N � m

d � diameter

At  point  C:  TC �
180

300
     TA � 895.3  N � m

At  point  B:  TB �
120

300
     TA � 596.8  N � m

At  point  A:  TA �
300,000  W

2�(32  Hz)
� 1492  N � m

T �
P

2�f

(fAC)allow � 4� � 0.06981  rad

INTERNAL TORQUES

TAB � 1492 N � m

TBC � 895.3 N � m

DIAMETER BASED UPON ALLOWABLE SHEAR STRESS

The larger torque occurs in segment AB

DIAMETER BASED UPON ALLOWABLE ANGLE OF TWIST

Segment AB:

Segment BC:

(�AC)allow � 0.06981 rad

SHEAR STRESS GOVERNS

d � 53.4  mm�

� 49.3  mm

and d � 0.04933  m

∴  0.06981 �
0.4133 � 10�6

d4

From  A to  C: fAC � fAB � fBC �
0.4133 � 10�6

d4

 fBC �
0.1094 � 10�6

d4

 fBC �
32  TBC LBC

�Gd4 �
32(895.3  N .  m)(0.9 m)

�(75  GPa)d4

 fAB �
0.3039 � 10�6

d4

 fAB �
32  TAB LAB

�Gd4 �
32(1492  N .  m)(1.5 m)

�(75  GPa)d4

IP �
�d 4

32
�f�

TL

GIP

�
32TL

�Gd4

d3 � 0.0001520  m3�d � 0.0534  m � 53.4  mm

tmax �
16  TAB

�  d3 �d3 �
16  TAB

�tallow
�

16(1492  N .  m)

�(50  MPa)

CBA

300 kW 180 kW

L1 L2

120 kW

CBA

TA = 1492 N . m

1.5 m 0.9 m
TB = 596.8 N . m

TC = 895.3 N . m



Statically Indeterminate Torsional Members

Problem 3.8-1 A solid circular bar ABCD with fixed supports is acted
upon by torques T0 and 2T0 at the locations shown in the figure. 

Obtain a formula for the maximum angle of twist �max of the bar.
(Hint: Use Eqs. 3-46a and b of Example 3-9 to obtain the reactive
torques.)

Solution 3.8-1 Circular bar with fixed ends
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A B C D TD

2T0T0

TA

3L—
10

3L—
10

4L—
10

L

From Eqs. (3-46a and b):

APPLY THE ABOVE FORMULAS TO THE GIVEN BAR:

 TD � T0 ¢ 3

10
≤� 2T0 ¢ 6

10
≤�

15T0

10

 TA � T0 ¢ 7

10
≤� 2T0 ¢ 4

10
≤�

15T0

10

TB �
T0LA

L

TA �
T0LB

L

ANGLE OF TWIST AT SECTION B

ANGLE OF TWIST AT SECTION C

MAXIMUM ANGLE OF TWIST

fmax � fC �
3T0 L

5GIP

fC � fCD �
TD(4L �10)

GIP

�
3T0L

5GIP

fB � fAB �
TA(3L �10)

GIP

�
9T0L

20GIP

A B TB

T0
TA

LA

L

LB

A B C D TD

2T0T0

TA

3L—
10

3L—
10

4L—
10

Problem 3.8-2 A solid circular bar ABCD with fixed supports at 
ends A and D is acted upon by two equal and oppositely directed 
torques T0, as shown in the figure. The torques are applied at points 
B and C, each of which is located at distance x from one end of the 
bar. (The distance x may vary from zero to L /2.)

(a) For what distance x will the angle of twist at points B and C
be a maximum? 

(b) What is the corresponding angle of twist �max? 
(Hint: Use Eqs. 3-46a and b of Example 3-9 to obtain the 
reactive torques.)

A B C D

T0 T0

TDTA

L

x x



Solution 3.8-2 Circular bar with fixed ends
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From Eqs. (3-46a and b):

APPLY THE ABOVE FORMULAS TO THE GIVEN BAR:

TA �
T0(L � x)

L
�

T0 x

L
�

T0

L
 (L � 2x)  TD � TA

TB �
T0 LA

L

TA �
T0 LB

L

(a) ANGLE OF TWIST AT SECTIONS B AND C

(b) MAXIMUM ANGLE OF TWIST

fmax � (fB)max � (fB)x�L
4
�

T0L

8GIP

or�x �
L

4

dfB

dx
� 0;  L � 4x � 0

dfB

dx
�

T0

GIPL
 (L � 4x)

�
T0

GIPL
 (L � 2x)(x)fB � fAB �

TAx

GIP

A

T0

TDTA

L

LA LB

B

A B C D

T0 T0

TDTA

L

x x

Problem 3.8-3 A solid circular shaft AB of diameter d is fixed against rotation at
both ends (see figure). A circular disk is attached to the shaft at the location shown. 

What is the largest permissible angle of rotation �max of the disk if the allowable
shear stress in the shaft is �allow? (Assume that a � b. Also, use Eqs. 3-46a and b of
Example 3-9 to obtain the reactive torques.)

Solution 3.8-3 Shaft fixed at both ends

dA B

Disk

ba

L � a�b

a � b

Assume that a torque T0 acts at the disk.

The reactive torques can be obtained from 
Eqs. (3-46a and b):

TA �
T0b

L
       TB �

T0a

L

Since a � b, the larger torque (and hence the larger
stress) is in the right hand segment.

ANGLE OF ROTATION OF THE DISK (FROM Eq. 3-49)

 fmax �
(T0)maxab

GLIP

�
2btallow

Gd

 f�
T0ab

GLIP

 T0 �
2LIPtmax

ad
     (T0)max �

2LIPtallow

ad

 tmax �
TB(d �2)

IP

�
T0 ad

2LIP

dA B

Disk

ba

TA TB

To
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Problem 3.8-4 A hollow steel shaft ACB of outside diameter 50 mm
and inside diameter 40 mm is held against rotation at ends A and B
(see figure). Horizontal forces P are applied at the ends of a vertical
arm that is welded to the shaft at point C.

Determine the allowable value of the forces P if the maximum
permissible shear stress in the shaft is 45 MPa. (Hint: Use Eqs. 3-46a
and b of Example 3-9 to obtain the reactive torques.)

Solution 3.8-4 Hollow shaft with fixed ends

A

B

C

P

P

200 mm

200 mm

600 mm

400 mm

GENERAL FORMULAS:

From Eqs. (3-46a and b):

TB �
T0 LA

L

TA �
T0 LB

L

A

B
LA

LB

TB

TA

L

TO

APPLY THE ABOVE FORMULAS TO THE GIVEN SHAFT

A

B

C

600 mm

400 mm

TB

TA

TO

The larger torque, and hence the larger shear 
stress, occurs in part CB of the shaft.

‹ Tmax � TB � 0.24 P

SHEAR STRESS IN PART CB

(Eq. 1)

UNITS: Newtons and meters

�max � 45 � 106N/m2

d � d2 � 0.05 mm

Substitute numerical values into (Eq. 1):

Pallow � 2710  N

P �
652.07  N . m

0.24  m
� 2717  N

� 652.07  N . m

0.24P �
2(45 � 106 N�m2)(362.26 � 10�9m4)

0.05  m

� 362.26 � 10�9m4 IP �
�

32
(d2

4� d1
4)

tmax �
Tmax(d�2)

IP

�Tmax �
2tmaxIP

d

T0 � P(400 mm)

LB � 400 mm

LA � 600 mm

L � LA � LB � 1000 mm

d2 � 50 mm d1 � 40 mm

�allow � 45 MPa

UNITS: P � Newtons T � Newton meters

 TB �
T0 LA

L
�

P(0.4  m)(600  mm)

1000  mm
� 0.24 P

 TA �
T0 LB

L
�

P(0.4  m)(400  mm)

1000  mm
� 0.16 P



Problem 3.8-5 A stepped shaft ACB having solid circular cross 
sections with two different diameters is held against rotation at 
the ends (see figure). 

If the allowable shear stress in the shaft is 6000 psi, what is 
the maximum torque (T0)max that may be applied at section C? 
(Hint: Use Eqs. 3-45a and b of Example 3-9 to obtain the reactive
torques.)

Solution 3.8-5 Stepped shaft ACB
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A

0.75 in.

6.0 in. 15.0 in.

1.50 in.

BC

T0

dA � 0.75 in.

dB � 1.50 in.

LA � 6.0 in.

LB � 15.0 in.

	allow � 6000 psi

Find (T0)max

REACTIVE TORQUES (from Eqs. 3-45a and b)

(1)

(2)

ALLOWABLE TORQUE BASED UPON SHEAR STRESS

IN SEGMENT AC

(3)

Combine Eqs. (1) and (3) and solve for T0:

(4)

Substitute numerical values:

(T0)AC � 3678 lb-in.

 �
1

16
 �dA

3tallow ¢1 �
LAdB

4

LBdA
4≤

 (T0)AC �
1

16
 �dA

3tallow ¢1 �
LAIPB

LBIPA

≤

�
1

16
 �dA

3tallowTA �
1

16
 �dA

3    tAC

tAC �
16TA

�d
 

TB � T0 ¢ LAIPB

LBIPA � LAIPB

≤

TA � T0 ¢ LBIPA

LBIPA � LAIPB

≤

ALLOWABLE TORQUE BASED UPON SHEAR STRESS

IN SEGMENT CB

(5)

Combine Eqs. (2) and (5) and solve for T0:

(6)

Substitute numerical values:

(T0)CB � 4597 lb-in.

SEGMENT AC GOVERNS

NOTE: From Eqs. (4) and (6) we find that

which can be used as a partial check on the results.

(T0)AC

(T0)CB

� ¢LA

LB

≤ ¢dB

dA

≤

(T0)max � 3680 lb-in.

 �
1

16
 �dB

3tallow ¢1 �
LBdA

4

LAdB
4 ≤

 (T0)CB �
1

16
 �dB

3tallow ¢1 �
LBIPA

LAIPB

≤

�
1

16
 �dB

3tallowTB �
1

16
 �dB

3tCB

tCB �
16TB

�dB
3� 

A

dA

LA LB

dB

BC

T0

TBTA



Problem 3.8-6 A stepped shaft ACB having solid circular cross 
sections with two different diameters is held against rotation at 
the ends (see figure). 

If the allowable shear stress in the shaft is 43 MPa, what is the 
maximum torque (T0)max that may be applied at section C? 
(Hint: Use Eqs. 3-45a and b of Example 3-9 to obtain the reactive
torques.)

Solution 3.8-6 Stepped shaft ACB
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B

T0

A

450 mm

C

225 mm

20 mm 25 mm

dA � 20 mm

dB � 25 mm

LA � 225 mm

LB � 450 mm

�allow � 43 MPa

Find (T0)max

REACTIVE TORQUES (from Eqs. 3-45a and b)

(1)

(2)

ALLOWABLE TORQUE BASED UPON SHEAR STRESS

IN SEGMENT AC

(3)

Combine Eqs. (1) and (3) and solve for T0:

(4)

Substitute numerical values:

(T0)AC � 150.0 N . m

 �
1

16
 �dA

3tallow ¢1 �
LAdB

4

LBdA
4≤

 (T0)AC �
1

16
 �dA

3tallow ¢1 �
LAIPB

LBIPA

≤

�
1

16
 �dA

3tallowTA �
1

16
 �dA

3tAC

tAC �
16TA

�dA
3  

TB � T0 ¢ LAIPB

LBIPA � LAIPB

≤

TA � T0 ¢ LBIPA

LBIPA � LAIPB

≤

ALLOWABLE TORQUE BASED UPON SHEAR STRESS

IN SEGMENT CB

(5)

Combine Eqs. (2) and (5) and solve for T0:

(6)

Substitute numerical values:

(T0)CB � 240.0 N . m

SEGMENT AC GOVERNS

NOTE: From Eqs. (4) and (6) we find that

which can be used as a partial check on the results.

(T0)AC

(T0)CB

� ¢LA

LB

≤ ¢dB

dA

≤

(T0)max � 150  N . m

 �
1

16
 �dB

3tallow ¢1 �
LBdA

4

LAdB
4 ≤

 (T0)CB �
1

16
 �dB

3tallow ¢1 �
LBIPA

LAIPB

≤

�
1

16
 �dB

3tallowTB �
1

16
 �dB

3tCB

tCB �
16TB

�dB
3  

A

dA

LA LB

dB

BC

T0

TBTA
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Problem 3.8-7 A stepped shaft ACB is held against rotation at ends 
A and B and subjected to a torque T0 acting at section C (see figure). 
The two segments of the shaft (AC and CB) have diameters dA and dB,
respectively, and polar moments of inertia IPA and IPB, respectively. 
The shaft has length L and segment AC has length a. 

(a) For what ratio a/L will the maximum shear stresses be the same 
in both segments of the shaft? 

(b) For what ratio a /L will the internal torques be the same in 
both segments of the shaft? (Hint: Use Eqs. 3-45a and b of 
Example 3-9 to obtain the reactive torques.)

Solution 3.8-7 Stepped shaft

B

T0

A C
IPA

dA dB
IPB

a

L

SEGMENT AC: dA, IPA LA � a

SEGMENT CB: dB, IPB LB � L � a

REACTIVE TORQUES (from Eqs. 3-45a and b)

(a) EQUAL SHEAR STRESSES

(Eq. 1)

Substitute TA and TB into Eq. (1):

tAC � tCB�or�
TAdA

IPA

�
TB dB

IPB

tAC �
TA(dA�2)

IPA

�tCB �
TB(dB �2)

IPB

TA � T0 ¢ LBIPA

LBIPA � LAIPB

≤;    TB � T0 ¢ LAIPB

LBIPA � LAIPB

≤

or (L�a)dA � adB

(b) EQUAL TORQUES

TA � TB or LBIPA � LAIPB

or (L � a) IPA � aIPB

or    
a

L
�

dA
4

dA
4 � dB

4

Solve for a �L:�a

L
�

IPA

IPA � IPB

Solve for a �L:�a

L
�

dA

dA � dB

LBIPA dA

IPA

�
LAIPB dB

IPB

�or�LB dA � LA dB

B

T0

A C

dA dB

a

L

TA TB

Problem 3.8-8 A circular bar AB of length L is fixed against
rotation at the ends and loaded by a distributed torque t(x) that
varies linearly in intensity from zero at end A to t0 at end B
(see figure).

Obtain formulas for the fixed-end torques TA and TB.
A

t(x)
t0

TBTA

B

L

x
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Solution 3.8-8 Fixed-end bar with triangular load

A

t(x)
t0

TBTA

B

L

x dx

T0 � Resultant of distributed torque

EQUILIBRIUM

TA � TB � T0 �
t0 L

2

T0 � �
L

0

t(x)dx � �
L

0

t0 x

L
 dx �

t0 L

2

t(x) �
t0 x

L

ELEMENT OF DISTRIBUTED LOAD

dTA � Elemental reactive torque

dTB � Elemental reactive torque

From Eqs. (3-46a and b):

REACTIVE TORQUES (FIXED-END TORQUES)

NOTE: TA � TB �
t0 L

2

TB � �dTB � �
L

0

¢t0
x

L
≤ ¢ x

L
≤ dx �

t0 L

3

TA � �dTA � �
L

0

¢t0
x

L
≤ ¢L � x

L
≤ dx �

t0 L

6

dTA � t(x)dx ¢L � x

L
≤�dTB � t(x)dx ¢ x

L
≤

t(x)dx
dTBdTA

B

x dx

Problem 3.8-9 A circular bar AB with ends fixed against rotation has 
a hole extending for half of its length (see figure). The outer diameter 
of the bar is d2 � 3.0 in. and the diameter of the hole is d1 � 2.4 in. 
The total length of the bar is L � 50 in. 

At what distance x from the left-hand end of the bar should a torque
T0 be applied so that the reactive torques at the supports will be equal?

BA

x

3.0 in. T0

2.4
in.

3.0
in.

25 in. 25 in.



Solution 3.8-9 Bar with a hole
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BA

x

d2 T0

L/2 L/2

TBTA

L � 50 in.

L/2 � 25 in.

d2 � outer diameter

� 3.0 in.

d1 � diameter of hole

� 2.4 in.

T0 � Torque applied at distance x

Find x so that TA � TB

EQUILIBRIUM

(1)

REMOVE THE SUPPORT AT END B

�B � Angle of twist at B

IPA � Polar moment of inertia at left-hand end

IPB � Polar moment of inertia at right-hand end

(2)�
T0(L�2)

GIPA

fB �
TB(L�2)

GIPB

�
TB(L�2)

GIPA

�
T0(x � L�2)

GIPB

�
T0

2
∴ TA � TBTA � TB � T0

Substitute Eq. (1) into Eq. (2) and simplify:

COMPATIBILITY �B � 0

SOLVE FOR x:

SUBSTITUTE NUMERICAL VALUES:

x �
50  in.

4
 B2 � ¢2.4  in.

3.0  in.
≤

4R � 30.12  in.

x �
L

4
B2 � ¢d1

d2
≤

4R

IPB

IPA

�
d2

4 � d1
4

d2
4 � 1 � ¢d1

d2
≤

4

x �
L

4
 ¢3 �

IPB

IPA

≤

∴
x

IPB

�
3L

4IPB

�
L

4IPA

fB �
T0

G
 B L

4IPB

�
L

4IPA

�
x

IPB

�
L

2IPB

�
L

2IPA

R

x

T0

L/2

IPB

TB

IPA



Problem 3.8-10 A solid steel bar of diameter d1 � 25.0 mm is 
enclosed by a steel tube of outer diameter d3 � 37.5 mm and inner
diameter d2 � 30.0 mm (see figure). Both bar and tube are held 
rigidly by a support at end A and joined securely to a rigid plate 
at end B. The composite bar, which has a length L � 550 mm, 
is twisted by a torque T � 400 N � m acting on the end plate. 

(a) Determine the maximum shear stresses �1 and �2 in the bar and
tube, respectively. 

(b) Determine the angle of rotation � (in degrees) of the end plate,
assuming that the shear modulus of the steel is G � 80 GPa. 

(c) Determine the torsional stiffness kT of the composite bar. 
(Hint: Use Eqs. 3-44a and b to find the torques in the bar and tube.)

Solution 3.8-10 Bar enclosed in a tube

SECTION 3.8 Statically Indeterminate Torsional Members 231

A
Tube

T

End
plate

B

Bar

L

d3

d2

d1

d1 � 25.0 mm d2 � 30.0 mm d3 � 37.5 mm

G � 80 GPa

POLAR MOMENTS OF INERTIA

 Tube:  IP2 �
�

32
 ¢d3

4 � d2
4≤� 114.6229 � 10�9

 m4

 Bar:  IP1 �
�

32
 d1

4 � 38.3495 � 10�9
 m4

TORQUES IN THE BAR (1) AND TUBE (2) 
FROM EQS. (3-44A AND B)

(a) MAXIMUM SHEAR STRESSES

(b) ANGLE OF ROTATION OF END PLATE

(c) TORSIONAL STIFFNESS

kT �
T

f
� 22.3  kN # m�

f� 1.03��

f�
T1L

GIP1
�

T2L

GIP2
� 0.017977  rad

 Tube:  t2 �
T2(d3 �2)

IP2
� 49.0  MPa�

 Bar:  t1 �
T1(d1�2)

IP1
� 32.7  MPa�

 Tube:  T2 � T ¢ IP2

IP1 � IP2
≤� 299.7217  N # m

 Bar:  T1 � T ¢ IP1

IP1 � IP2
≤� 100.2783  N # m

A
Tube (2)

T = 400 N . m

End
plate

B

Bar (1)

L = 550 mm

d3

d2

d1



Problem 3.8-11 A solid steel bar of diameter d1 � 1.50 in. is enclosed
by a steel tube of outer diameter d3 � 2.25 in. and inner diameter 
d2 � 1.75 in. (see figure). Both bar and tube are held rigidly by a support
at end A and joined securely to a rigid plate at end B. The composite bar,
which has length L � 30.0 in., is twisted by a torque T � 5000 lb-in.
acting on the end plate. 

(a) Determine the maximum shear stresses �1 and �2 in the bar and
tube, respectively. 

(b) Determine the angle of rotation � (in degrees) of the end plate,
assuming that the shear modulus of the steel is G � 11.6 � 106 psi. 

(c) Determine the torsional stiffness kT of the composite bar. (Hint:
Use Eqs. 3-44a and b to find the torques in the bar and tube.)

Solution 3.8-11 Bar enclosed in a tube
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d1 � 1.50 in. d2 � 1.75 in. d3 � 2.25 in.

G � 11.6 � 106 psi

POLAR MOMENTS OF INERTIA

 Tube:  IP2 �
�

32
 ¢d3

4� d2
4≤� 1.595340  in.4

 Bar:  IP1 �
�

32
 d1

4 � 0.497010  in.4

TORQUES IN THE BAR (1) AND TUBE (2) 
FROM EQS. (3-44A AND B)

(a) MAXIMUM SHEAR STRESSES

(b) ANGLE OF ROTATION OF END PLATE

(c) TORSIONAL STIFFNESS

kT �
T

f
� 809  k-in.�

f� 0.354��

f�
T1L

GIP1
�

T2L

GIP2
� 0.00618015  rad

 Tube:  t2 �
T2(d3 �2)

IP2
� 2690  psi�

 Bar:  t1 �
T1(d1�2)

IP1
� 1790  psi�

 Tube:  T2 � T ¢ IP2

IP1 � IP2
≤� 3812.32  lb-in.

 Bar:  T1 � T ¢ IP1

IP1 � IP2
≤� 1187.68  lb-in.

A
Tube (2)

T = 5000 lb-in.

End
plate

B

Bar (1)

L = 30.0 in.

d3

d2

d1



Steel sleeve
      S

Brass core
     B

d1 d2

Problem 3.8-12 The composite shaft shown in the figure is
manufactured by shrink-fitting a steel sleeve over a brass core so that 
the two parts act as a single solid bar in torsion. The outer diameters 
of the two parts are d1 � 40 mm for the brass core and d2 � 50 mm for
the steel sleeve. The shear moduli of elasticity are Gb � 36 GPa for the
brass and Gs � 80 GPa for the steel.

Assuming that the allowable shear stresses in the brass and steel are
�b � 48 MPa and �s � 80 MPa, respectively, determine the maximum
permissible torque Tmax that may be applied to the shaft. (Hint: Use 
Eqs. 3-44a and b to find the torques.)

Solution 3.8-12 Composite shaft shrink fit
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Steel sleeve
T 

T 
Brass core

d1 d2

d1 � 40 mm

d2 � 50 mm

GB � 36 GPa GS � 80 GPa

Allowable stresses:

�B � 48 MPa �S � 80 MPa

BRASS CORE (ONLY)

STEEL SLEEVE (ONLY)

GBIPB � 9047.79  N # m2

IPB �
�

32
 d1

4� 251.327 � 10�9
 m4

GSIPS � 28,981.2  N # m2

IPS �
�

32
 (d2

4� d1
4) � 362.265 � 10�9

 m4

TORQUES

Total torque: T � TB � TS

Eq. (3-44a): 

� 0.237918 T

Eq. (3-44b): 

� 0.762082 T

T � TB � TS (CHECK)

ALLOWABLE TORQUE T BASED UPON BRASS CORE

Substitute numerical values:

T � 2535 N � m

ALLOWABLE TORQUE T BASED UPON STEEL SLEEVE

SUBSTITUTE NUMERICAL VALUES:

T � 1521 N � m

STEEL SLEEVE GOVERNS Tmax � 1520  N # m�

�
2(80  MPa)(362.265 � 10�9

 m4)

50 mm

TS � 0.762082 T

tS �
TS (d2�2)

IPS

�TS �
2tS IPS

d2

�
2(48  MPa)(251.327 � 10�9

 m4)

40  mm

TB � 0.237918  T

tB �
TB(d1�2)

IPB

�TB �
2tBIPB

d1

TS � T ¢ GSIPS

GS IPB � GS IPS

≤

TB � T ¢ GBIPB

GBIPB � GS IPS

≤

TB 

TB 

TS 

TS



Problem 3.8-13 The composite shaft shown in the figure is manufactured
by shrink-fitting a steel sleeve over a brass core so that the two parts act as 
a single solid bar in torsion. The outer diameters of the two parts are 
d1 � 1.6 in. for the brass core and d2 � 2.0 in. for the steel sleeve. The shear
moduli of elasticity are Gb � 5400 ksi for the brass and Gs � 12,000 ksi 
for the steel. 

Assuming that the allowable shear stresses in the brass and steel are 
�b � 4500 psi and �s � 7500 psi, respectively, determine the maximum per-
missible torque Tmax that may be applied to the shaft. (Hint: Use Eqs. 3-44a
and b to find the torques.)

Solution 3.8-13 Composite shaft shrink fit
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d1 � 1.6 in.

d2 � 2.0 in.

GB � 5,400 psi GS � 12,000 psi

Allowable stresses:

�B � 4500 psi �S � 7500 psi

BRASS CORE (ONLY)

GBIPB � 3.47435 � 106 lb-in.2

STEEL SLEEVE (ONLY)

GSIPS � 11.1288 � 106 lb-in.2

IPS �
�

32
(d2

4� d1
4) � 0.927398  in.4

IPB �
�

32
d1

4� 0.643398  in.4

Steel sleeve
      S

Brass core
     B

d1 d2

TB 

TB 

TORQUES

Total torque: T � TB � TS

Eq. (3-44a):

� 0.237918 T

Eq. (3-44b): 

� 0.762082 T

T � TB � TS (CHECK)

ALLOWABLE TORQUE T BASED UPON BRASS CORE

Substitute numerical values:

T � 15.21 k-in.

ALLOWABLE TORQUE T BASED UPON STEEL SLEEVE

Substitute numerical values:

T � 9.13 k-in.

STEEL SLEEVE GOVERNS Tmax � 9.13 k-in.

TS � 0.762082  T �
2(7500  psi)(0.927398  in.4)

2.0  in.

tS �
TS(d2�2)

IPS

     TS �
2tS IPS

d2

�
2(4500  psi)(0.643398  in.4)

1.6  in.

TB � 0.237918  T

tB �
TB(d1�2)

IPB

      TB �
2tB IPB

d1

TS � T ¢ GS IPS

GB IPB � GS IPS

≤

TB � T ¢ GB IPB

GB IPB � GS IPS

≤

TS 

TS



Problem 3.8-14 A steel shaft (Gs � 80 GPa) of total
length L � 4.0 m is encased for one-half of its length by a
brass sleeve (Gb � 40 GPa) that is securely bonded to the
steel (see figure). The outer diameters of the shaft and
sleeve are d1 � 70 mm and d2 � 90 mm, respectively. 

(a) Determine the allowable torque T1 that may be applied 
to the ends of the shaft if the angle of twist � between 
the ends is limited to 8.0°. 

(b) Determine the allowable torque T2 if the shear stress
in the brass is limited to �b � 70 MPa. 

(c) Determine the allowable torque T3 if the shear stress
in the steel is limited to �s � 110 MPa. 

(d) What is the maximum allowable torque Tmax if all
three of the preceding conditions must be satisfied?
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T

A B C

T

 = 2.0 m

Steel
shaft

Brass
sleeve

 = 2.0 m

d2 = 90 mm d1 = 70 mm

L
2

L
2

T

A B C

T

 = 2.0 m

Steel
shaft

Brass
sleeve

 = 2.0 m

d2 = 90 mm d1 = 70 mm

L
2

L
2

PROPERTIES OF THE STEEL SHAFT (s)

GS � 80 GPa d1 � 70 mm

Allowable shear stress: �S � 110 MPa

GSIPS � 188.574 � 103 N � m2

PROPERTIES OF THE BRASS SLEEVE (b)

Gb � 40 GPa d2 � 90 mm d1 � 70 mm

Allowable shear stress: �b � 70 MPa

GbIPB � 163.363 � 103 N � m2

TORQUES IN THE COMPOSITE BAR AB

TS � Torque in the steel shaft AB

Tb � Torque in the brass sleeve AB

From Eq. (3-44a): 

TS � T (0.53582) (Eq. 1)

Tb � T � TS � T (0.46418) (Eq. 2)

ANGLE OF TWIST OF THE COMPOSITE BAR AB

(Eq. 3)
UNITS: T � N � m � � rad

� (5.6828 � 10�6)T

fAB �
TS(L�2)

GS IPS

�
Tb(L�2)

Gb IPb

TS � T ¢ GS IPS

GSIPS � Gb IPb

≤

IPB �
�

32
 (d2

4 � d1
4) � 4.0841 � 10�6

 m4

IPS �
�

32
 d1

4 � 2.3572 � 10�6
 m4

ANGLE OF TWIST OF PART BC OF THE STEEL SHAFT

(Eq. 4)

ANGLE OF TWIST OF THE ENTIRE SHAFT ABC

� � �AB � �BC (Eqs. 3 and 4)

� � (16.2887 � 10�6) T
UNITS: � � rad

T � N � m

(a) ALLOWABLE TORQUE T1 BASED UPON ANGLE OF TWIST

(b) ALLOWABLE TORQUE T2 BASED UPON SHEAR STRESS

IN THE BRASS SLEEVE

(c) ALLOWABLE TORQUE T3 BASED UPON SHEAR STRESS IN

THE STEEL SHAFT BC

(d) MAXIMUM ALLOWABLE TORQUE

Tmax � 7.41  kN . m

Shear  stress  in  steel  governs

T3 � 7.41  kN . m

Solve  for T  (Equal  to T3):  

110  MPa �
T(0.035  m)

2.3572 � 10�6
 m4

tS �
T(d2�2)

IPS

   tS � 110  MPa

� 13.69  kN . mSolve  for T  (Equal  to T2):  T2

70  MPa �
(0.46418T )(0.045  m)

4.0841 � 10�6
 m4

Tb � 0.46418  T  (From  Eq.  2)

tb �
T(d2 �2)

Ipb

 tb � 70  MPa  

T1 � 8.57  kN . m

 f� (16.2887 � 10�6)  T � 0.13963  rad

 fallow � 8.0� � 0.13963  rad

fBC �
T(L�2)

GS IPS

� (10.6059 � 10�6)T

Solution 3.8-14 Composite shaft



Strain Energy in Torsion

Problem 3.9-1 A solid circular bar of steel (G � 11.4 � 106 psi)
with length L � 30 in. and diameter d � 1.75 in. is subjected to
pure torsion by torques T acting at the ends (see figure).

(a) Calculate the amount of strain energy U stored in the bar
when the maximum shear stress is 4500 psi. 

(b) From the strain energy, calculate the angle of twist �
(in degrees).

Solution 3.9-1 Steel bar
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L

d
T T

L

d
T T

G � 11.4 � 106 psi

L � 30 in.

d � 1.75 in.

�max � 4500 psi

(Eq. 1)

IP �
�d4

32

tmax �
16  T

�d 3�T �
�d 3tmax

16

(a) STRAIN ENERGY

(Eq. 2)

Substitute numerical values:

(b) ANGLE OF TWIST

Substitute for T and U from Eqs. (1) and (2):

(Eq. 3)

Substitute numerical values:

f� 0.013534�rad � 0.775�

f�
2Ltmax

Gd

U �
Tf

2
�f�

2U

T

U � 32.0  in.-lb

 �
�d 2Ltmax

2

16G

 U �
T2L

2GIP

� ¢�d 3tmax

16
≤2¢ L

2G
≤ ¢ 32

�d 4≤

Problem 3.9-2 A solid circular bar of copper (G � 45 GPa) with length
L � 0.75 m and diameter d � 40 mm is subjected to pure torsion by
torques T acting at the ends (see figure). 

(a) Calculate the amount of strain energy U stored in the bar when the
maximum shear stress is 32 MPa. 

(b) From the strain energy, calculate the angle of twist � (in degrees)



Solution 3.9-2 Copper bar
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L

d
T T

G � 45 GPa

L � 0.75 m

d � 40 mm

�max � 32 MPa

(Eq. 1)

IP �
�d 4

32

tmax �
16T

�d3�T �
�d 3tmax

16

(a) STRAIN ENERGY

(Eq. 2)

Substitute numerical values:

(b) ANGLE OF TWIST

Substitute for T and U from Eqs. (1) and (2):

(Eq. 3)

Substitute numerical values:

f� 0.026667 rad � 1.53�

f�
2Ltmax

Gd

U �
Tf

2
�f�

2U

T

U � 5.36  J

 �
�d2Ltmax

2

16G

 U �
T 2L

2GIP

� ¢�d3tmax

16
≤2¢ L

2G
≤ ¢ 32

�d 4≤

Problem 3.9-3 A stepped shaft of solid circular cross sections 
(see figure) has length L � 45 in., diameter d2 � 1.2 in., and 
diameter d1 � 1.0 in. The material is brass with G � 5.6 � 106 psi. 

Determine the strain energy U of the shaft if the angle of twist 
is 3.0°.

Solution 3.9-3 Stepped shaft

d2 d1

TT

L—
2

L—
2

d2 d1

TT

L—
2

L—
2

d1 � 1.0 in.

d2 � 1.2 in.

L � 45 in.

G � 5.6 � 106 psi (brass)

� � 3.0� � 0.0523599 rad

STRAIN ENERGY

(Eq. 1)

Also, (Eq. 2)

Equate U from Eqs. (1) and (2) and solve for T:

SUBSTITUTE NUMERICAL VALUES:

U � 22.6  in.-lb

U �
Tf

2
�

�Gf2

32L
¢ d1

4
 d2

4

d1
4� d2

4≤�f� radians

T �
�Gd1

4
 d2

4
 f

16L(d1
4� d2

4)

U �
Tf

2

 �
8T 2L

�G
 ¢ 1

d2
4 �

1

d1
4≤

 U � a  

T 2L

2GIP

�
16  T 2(L �2)

�Gd2
4 �

16  T 2(L�2)

�Gd1
4



Problem 3.9-4 A stepped shaft of solid circular cross sections (see figure)
has length L � 0.80 m, diameter d2 � 40 mm, and diameter d1 � 30 mm.
The material is steel with G � 80 GPa.

Determine the strain energy U of the shaft if the angle of twist is 1.0°.

Soluton 3.9-4 Stepped shaft
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d2 d1

TT

L—
2

L—
2

d1 � 30 mm d2 � 40 mm

L � 0.80 m G � 80 GPa (steel)

� � 1.0� � 0.0174533 rad

STRAIN ENERGY

(Eq. 1)

Also, (Eq. 2)U �
Tf

2

 �
8T 2L

�G
 ¢ 1

d2
4 �

1

d1
4≤

 U � a  

T 2L

2GIP

�
16T 2(L�2)

�Gd2
4 �

16T 2(L�2)

�Gd1
4

Equate U from Eqs. (1) and (2) and solve for T:

SUBSTITUTE NUMERICAL VALUES:

U � 1.84  J

U �
Tf

2
�

�Gf2

32L
¢ d1

4
 d2

4

d1
4� d2

4≤�f� radians

T �
�G  d1

4
 d2

4
 f

16L(d1
4� d2

4)

Problem 3.9-5 A cantilever bar of circular cross section and length L is
fixed at one end and free at the other (see figure). The bar is loaded by a
torque T at the free end and by a distributed torque of constant intensity 
t per unit distance along the length of the bar. 

(a) What is the strain energy U1 of the bar when the load T acts alone? 
(b) What is the strain energy U2 when the load t acts alone? 
(c) What is the strain energy U3 when both loads act simultaneously?

Solution 3.9-5 Cantilever bar with distributed torque

L T

t

G � shear modulus

IP � polar moment of inertia

T � torque acting at free end

t � torque per unit distanceL T

t



Problem 3.9-6 Obtain a formula for the strain energy U of the statically
indeterminate circular bar shown in the figure. The bar has fixed supports
at ends A and B and is loaded by torques 2T0 and T0 at points C and D,
respectively. 

Hint: Use Eqs. 3-46a and b of Example 3-9, Section 3.8, to obtain the
reactive torques.

Solution 3.9-6 Statically indeterminate bar
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(a) LOAD T ACTS ALONE (Eq. 3-51a)

(b) LOAD t ACTS ALONE

From Eq. (3-56) of Example 3-11:

U2 �
t2L3

6GIP

U1 �
T 2L

2GIP

(c) BOTH LOADS ACT SIMULTANEOUSLY

At distance x from the free end:

T(x) � T � tx

NOTE: U3 is not the sum of U1 and U2.

�
t2L3

6GIP

 �
T 2L

2GIP

�
TtL2

2GIP

 U3 � �
L

0

[T(x) ] 2

2GIP

 dx �
1

2GIP
�

L

0

(T � tx)2dx

t

dx x

T

2T0 T0

A B

DC

L—
4

L—
4

L—
2

REACTIVE TORQUES

From Eq. (3-46a):

INTERNAL TORQUES

TAC � �
7T0

4
      TCD �

T0

4
     TDB �

5T0

4

TB � 3T0 � TA �
5T0

4

TA �

(2T0)¢3L

4
≤

L
�

T0 ¢L4 ≤
L

�
7T0

4

STRAIN ENERGY (from Eq. 3-53)

 U �
19T0

2L

32GIP

� ¢T0

4
≤2¢L

2
≤� ¢5T0

4
≤2¢L

4
≤ R �

1

2GIP

B ¢�7T0

4
≤2¢L

4
≤

� TCD
2 ¢L

2
≤� TDB

2 ¢L
4
≤ R�

1

2GIp

BTAC
2     ¢L

4
≤

 U � a
n

i�1

Ti
2Li

2Gi IPi

2T0 T0

A B

DC

L—
4

L—
4

L—
2

TA TB



Problem 3.9-7 A statically indeterminate stepped shaft ACB is fixed at
ends A and B and loaded by a torque T0 at point C (see figure). The two
segments of the bar are made of the same material, have lengths LA and LB,
and have polar moments of inertia IPA and IPB.

Determine the angle of rotation � of the cross section at C by using
strain energy. 

Hint: Use Eq. 3-51b to determine the strain energy U in terms of the
angle �. Then equate the strain energy to the work done by the torque T0.
Compare your result with Eq. 3-48 of Example 3-9, Section 3.8.

Solution 3.9-7 Statically indeterminate bar
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T0

LA

LB

A

C

IPA

IPB
B

STRAIN ENERGY (FROM EQ. 3-51B)

�
Gf2

2
 ¢ IPA

LA

�
IPB

LB

≤
U � a

n

i�1

GIPifi
2

2Li

�
GIPAf

2

2LA

�
GIPBf

2

2LB

WORK DONE BY THE TORQUE T0

EQUATE U AND W AND SOLVE FOR �

(This result agrees with Eq. (3-48) of Example 3-9,
Section 3.8.)

f�
T0LALB

G(LBIPA � LAIPB)

Gf2

2
 ¢IPA

LA

�
IPB

LB

≤�
T0f

2

W �
T0f

2

T0
LA

LB

A

C

IPA

IPB
B�

Problem 3.9-8 Derive a formula for the strain energy U of the cantilever
bar shown in the figure. 

The bar has circular cross sections and length L. It is subjected 
to a distributed torque of intensity t per unit distance. The intensity 
varies linearly from t � 0 at the free end to a maximum value t � t0
at the support.

L

t

t0



Solution 3.9-8 Cantilever bar with distributed torque
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x � distance from right-hand end of the bar

ELEMENT d�

Consider a differential element d� at distance � from
the right-hand end.

dT � external torque acting on this element

dT � t(�)d�

�

ELEMENT dx AT DISTANCE x

T(x) � internal torque acting on this element

T(x) � total torque from x � 0 to x � x

 �
t0x

2

2L

 T(x) � �
x

0

dT � �
x

0

t0 ¢jL≤ dj

t0 ¢jL≤ dj

L

t(x) = t0

t0

x
L

dx

x

d�

�

dT

d�

dx

T(x)T(x)

STRAIN ENERGY OF ELEMENT dx

STRAIN ENERGY OF ENTIRE BAR

U �
t 0

2L3

40GIP

 �
t0

2

8L2GIP

 ¢L5

5
≤

 U � �
L

0

dU �
t0

2

8L2GIP
�

L

0

x4
 dx

 �
t0

2

8L2GIP

 x4
 dx

 dU �
[T(x) ] 2dx

2GIP

�
1

2GIP

 ¢ t0

2L
≤2x4

 dx



Problem 3.9-9 A thin-walled hollow tube AB of conical shape has
constant thickness t and average diameters dA and dB at the ends 
(see figure). 

(a) Determine the strain energy U of the tube when it is subjected 
to pure torsion by torques T. 

(b) Determine the angle of twist � of the tube. 

Note: Use the approximate formula IP � �d3t/4 for a thin circular
ring; see Case 22 of Appendix D.

Solution 3.9-9 Thin-walled, hollow tube
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L

t
t

TT
A

dA dB

B

L

TT
A

B

d(x)

x dx

t � thickness

dA � average diameter at end A

dB � average diameter at end B

d(x) � average diameter at distance x from end A

POLAR MOMENT OF INERTIA

(a) STRAIN ENERGY (FROM EQ. 3-54)

(Eq. 1)

From Appendix C:

� dx

(a � bx)3 � �
1

2b(a � bx)2

�
2T2

�Gt�
L

0

dxBdA � ¢dB � dA

L
≤xR 3

U � �
L

0

T 2dx

2GIP(x)

IP(x) �
� [d(x) ] 3t

4
�

�t

4
BdA � ¢dB � dA

L
≤ xR 3

IP �
�d 3t

4

d(x) � dA � ¢dB � dA

L
≤ x

Therefore,

Substitute this expression for the integral into the
equation for U (Eq. 1):

(b) ANGLE OF TWIST

Solve for �:

f�
2TL(dA � dB)

�Gt  dA
2dB

2

W � U�
Tf

2
�

T 2L(dA � dB)

�Gt  dA
2dB

2

Work  of  the  torque  T:  W �
Tf

2

U �
2T 2

�Gt
�

L(dA � dB)

2dA
2dB

2 �
T 2L

�Gt
 ¢dA � dB

dA
2

 dB
2 ≤

�
L(dA � dB)

2dA
2

 dB
2

� �
L

2(dB � dA)(dB)2 �
L

2(dB � dA)(dA)2

� �
1

2(dB � dA)

L
BdA � ¢dB � dA

L
≤xR 2

 4
0

L

�
L

0

dxBdA � ¢dB � dA

L
≤ xR 3



Problem 3.9-10 A hollow circular tube A fits over the end of 
a solid circular bar B, as shown in the figure. The far ends of both 
bars are fixed. Initially, a hole through bar B makes an angle � with 
a line through two holes in tube A. Then bar B is twisted until the 
holes are aligned, and a pin is placed through the holes. 

When bar B is released and the system returns to equilibrium,
what is the total strain energy U of the two bars? (Let IPA and IPB
represent the polar moments of inertia of bars A and B, respectively.
The length L and shear modulus of elasticity G are the same for 
both bars.)

Solution 3.9-10 Circular tube and bar
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L

Bar B

Bar B

Tube A

Tube A

L

IPA IPB

�

TUBE A

T � torque acting on the tube

�A � angle of twist

BAR B

T � torque acting on the bar

�B � angle of twist

COMPATIBILITY

�A � �B � �

FORCE-DISPLACEMENT RELATIONS

Substitute into the equation of compatibility and
solve for T:

STRAIN ENERGY

Substitute for T and simplify:

U �
b2G

2L
 ¢ IPA  IPB

IPA � IPB

≤
�

T 2L

2G
 ¢ 1

IPA

�
1

IPB

≤
U � a T 2L

2GIP

�
T 2L

2GIPA

�
T 2L

2GIPB

T �
bG

L
 ¢ IPAIPB

IPA � IPB

≤

fA �
TL

GIPA

�fB �
TL

GIPB

L

Bar B
Bar B

Tube A
Tube A

L

IPA IPB

�

T

�A

T
�B



Problem 3.9-11 A heavy flywheel rotating at n revolutions per minute is
rigidly attached to the end of a shaft of diameter d (see figure). If the
bearing at A suddenly freezes, what will be the maximum angle of twist �
of the shaft? What is the corresponding maximum shear stress in the
shaft? 

(Let L � length of the shaft, G � shear modulus of elasticity, and 
Im � mass moment of inertia of the flywheel about the axis of the shaft.
Also, disregard friction in the bearings at B and C and disregard the mass
of the shaft.) 

Hint: Equate the kinetic energy of the rotating flywheel to the strain
energy of the shaft.

Solution 3.9-11 Rotating flywheel
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n (rpm)

C

B
d

A

d � diameter

n � rpm

KINETIC ENERGY OF FLYWHEEL

n � rpm

UNITS:

Im � (force)(length)(second)2

� � radians per second

K.E. � (length)(force)

STRAIN ENERGY OF SHAFT (FROM EQ. 3-51b)

IP �
�

32
 d 4

U �
GIPf

2

2L

 �
�2n2Im

1800

 K.E. �
1

2
 Im ¢2�n

60
≤2

v�
2�n

60

K.E. �
1

2
 Imv

2

d � diameter of shaft

UNITS:

G � (force)/(length)2

IP � (length)4

� � radians

L � length

U � (length)(force)

EQUATE KINETIC ENERGY AND STRAIN ENERGY

Solve for �:

MAXIMUM SHEAR STRESS

Eliminate T:

tmax �
n

15d
 B2�GIm

L

tmax �
Gd

2L
�

2n

15d 2 B2�ImL

G

t�
Gdf

2L

t�
T(d�2)

IP

�f�
TL

GIP

f�
2n

15d2 B2�ImL

G

K.E. � U     
�2n2Im

1800
�

�Gd 4f2

64L

U �
�Gd 4f2

64L

Shaft

Flywheel



Thin-Walled Tubes

Problem 3.10-1 A hollow circular tube having an inside diameter of 10.0 in. 
and a wall thickness of 1.0 in. (see figure) is subjected to a torque T � 1200 k-in. 

Determine the maximum shear stress in the tube using (a) the approximate
theory of thin-walled tubes, and (b) the exact torsion theory. Does the approximate
theory give conservative or nonconservative results?

Solution 3.10-1 Hollow circular tube
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10.0 in.

1.0 in.

10.0 in.

1.0 in.

T � 1200 k-in.

t � 1.0 in.

r � radius to median line

r � 5.5 in.

d2 � outside diameter � 12.0 in.

d1 � inside diameter � 10.0 in.

APPROXIMATE THEORY (EQ. 3-63)

EXACT THEORY (EQ. 3-11)

Because the approximate theory gives stresses that
are too low, it is nonconservative. Therefore, the
approximate theory should only be used for very thin
tubes.

texact � 6830  psi

� 6831  psi

 �
16(1200  k-in.) (12.0  in.)

� [ (12.0  in.)4 � (10.0  in.)4 ]

 t2 �
T(d2 �2)

IP

�
Td2

2 ¢ �

32
≤ d2

4� d1
4

tapprox � 6310  psi

t1 �
T

2�r2t
�

1200  k-in.

2�(5.5  in.)2(1.0  in.)
� 6314  psi

Problem 3.10-2 A solid circular bar having diameter d is to be replaced
by a rectangular tube having cross-sectional dimensions d � 2d to the
median line of the cross section (see figure). 

Determine the required thickness tmin of the tube so that the maxi-
mum shear stress in the tube will not exceed the maximum shear stress in
the solid bar.

Solution 3.10-2 Bar and tube

t

2d

t

dd

SOLID BAR

(Eq. 3-12)

RECTANGULAR TUBE

tmax �
16T

�d 3

Am � (d )(2d ) � 2d2 (Eq. 3-64)

(Eq. 3-61)

EQUATE THE MAXIMUM SHEAR STRESSES AND SOLVE FOR t

If t � tmin, the shear stress in the tube is less than the
shear stress in the bar.

tmin �
�d

64

16T

�d 3 �
T

4td 2

tmax �
T

2tAm

�
T

4td 2d

t

2d

d



Problem 3.10-3 A thin-walled aluminum tube of rectangular 
cross section (see figure) has a centerline dimensions b � 6.0 in.
and h � 4.0 in. The wall thickness t is constant and equal to 
0.25 in.

(a) Determine the shear stress in the tube due to a torque 
T � 15 k-in.

(b) Determine the angle of twist (in degrees) if the length L of 
the tube is 50 in. and the shear modulus G is 4.0 � 106 psi.

Solution 3.10-3 Thin-walled tube
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t

b

h

b � 6.0 in.

h � 4.0 in.

t � 0.25 in.

T � 15 k-in.

L � 50 in.

G � 4.0 � 106 psi

Eq. (3-64): Am � bh � 24.0 in.2

J � 28.8 in.4

(a) SHEAR STRESS (EQ. 3-61)

(b) ANGLE OF TWIST (EQ. 3-72)

� 0.373�

f�
TL

GJ
� 0.0065104  rad

t�
T

2tAm

� 1250  psi

Eq.  (3-71)�with�t1 � t2 � t:�J �
2b2h2t

b � h
t

b

h

Problem 3.10-4 A thin-walled steel tube of rectangular cross section 
(see figure) has centerline dimensions b �150 mm and h � 100 mm. 
The wall thickness t is constant and equal to 6.0 mm.

(a) Determine the shear stress in the tube due to a torque T � 1650 N � m. 
(b) Determine the angle of twist (in degrees) if the length L of the tube is 

1.2 m and the shear modulus G is 75 GPa.

Solution 3.10-4 Thin-walled tube
b � 150 mm

h � 100 mm

t � 6.0 mm

T � 1650 N � m

L � 1.2 m

G � 75 GPa

Eq. (3-64): Am � bh � 0.015 m2

J � 10.8 � 10�6 m4

Eq.  (3-71)�with�t1 � t2 � t:�J �
2b2h2t

b � h

(a) SHEAR STRESS (Eq. 3-61)

(b) ANGLE OF TWIST (Eq. 3-72)

� 0.140�

f�
TL

GJ
� 0.002444  rad

t�
T

2tAm

� 9.17  MPat

b

h

Use with Prob. 3.10-4



Problem 3.10-5 A thin-walled circular tube and a solid circular bar of
the same material (see figure) are subjected to torsion. The tube and bar
have the same cross-sectional area and the same length. 

What is the ratio of the strain energy U1 in the tube to the strain 
energy U2 in the solid bar if the maximum shear stresses are the same in
both cases? (For the tube, use the approximate theory for thin-walled bars.)

Solution 3.10-5 THIN-WALLED TUBE (1)
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Tube (1)
Bar (2)

Am � �r2 J � 2�r3t A � 2�rt

T � 2�r2t�max

� U1 �
Atmax

2 L

2G

But  rt �
A

2�

�
�rttmax

2 L

G

U1 �
T 2L

2GJ
�

(2�r2ttmax)2L

2G(2�r3t)

tmax �
T

2tAm

�
T

2�r2t

SOLID BAR (2)

RATIO

U1

U2
� 2

But  �r2
2 � A     ∴ U2 �

Atmax
2 L

4G

U2 �
T 2L

2GIP

�
(�r2

3 tmax)2L 

8G ¢�
2

r2
4≤ �

�r2
2tmax

2 L

4G

tmax �
Tr2

IP

�
2T

�r2
3      T �

�r2
3tmax

2

A � �r2
2       IP �

�

2
 r2

4

t

r
r2

Problem 3.10-6 Calculate the shear stress � and the angle of twist � (in
degrees) for a steel tube (G � 76 GPa) having the cross section shown 
in the figure. The tube has length L � 1.5 m and is subjected to a torque
T � 10 kN � m.

Solution 3.10-6 Steel tube

b = 100 mm

t = 8 mm
r = 50 mm r = 50 mm

G � 76 GPa

L � 1.5 m

T � 10 kN . m

Am � �r2�2br

Am � �(50 mm)2�2(100 mm)(50 mm)

� 17,850 mm2

Lm � 2b�2�r

� 2(100 mm)�2�(50 mm)
� 514.2 mm

� 19.83 � 106 mm4

J �
4tAm

2

Lm

�
4(8  mm)(17,850  mm2)2

514.2  mm

SHEAR STRESS

ANGLE OF TWIST

 � 0.570�

� 0.00995  rad

 f�
TL

GJ
�

(10  kN .  m) (1.5  m)

(76  GPa)(19.83 � 106 mm4)

� 35.0  MPa

t�
T

2tAm

�
10  kN .  m

2(8  mm)(17,850  mm2)

b = 100 mm

t = 8 mm
r = 50 mm r = 50 mm



Problem 3.10-7 A thin-walled steel tube having an elliptical cross
section with constant thickness t (see figure) is subjected to a torque 
T � 18 k-in.

Determine the shear stress � and the rate of twist � (in degrees 
per inch) if G � 12 � 106 psi, t � 0.2 in., a � 3 in., and b � 2 in. 
(Note: See Appendix D, Case 16, for the properties of an ellipse.)

Solution 3.10-7 Elliptical tube
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t

2a

2b

T � 18 k-in. 

G � 12 � 106 psi

t � constant

t � 0.2 in a � 3.0 in. b � 2.0 in.

FROM APPENDIX D, CASE 16:

Am � �ab � �(3.0 in.)(2.0 in.) � 18.850 in.2

SHEAR STRESS

ANGLE OF TWIST PER UNIT LENGTH (RATE OF TWIST)

u� 83.73 � 10�6 rad�in. � 0.0048��in.

u�
f

L
�

T

GJ
�

18  k-in.

(12 � 106 psi)(17.92  in.4)

� 2390  psi

t�
T

2tAm

�
18  k-in.

2(0.2  in.) (18.850  in.2)

� 17.92  in.4

J �
4tAm

2

Lm

�
4(0.2  in.) (18.850  in.2)2

15.867  in.

 � � [1.5(5.0  in.) � �6.0  in.2 ] � 15.867  in.

 Lm � p [1.5(a � b) � �ab ]

t

2a

2b

Problem 3.10-8 A torque T is applied to a thin-walled tube having 
a cross section in the shape of a regular hexagon with constant wall
thickness t and side length b (see figure).

Obtain formulas for the shear stress � and the rate of twist �.

t

b



Solution 3.10-8 Regular hexagon
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t

b

b � Length of side

t � Thickness 

Lm � 6b

FROM APPENDIX D, CASE 25:

� � 60� n � 6

�
3�3b2

2

Am �
nb2

4
 cot 
b

2
�

6b2

4
 cot 30�

SHEAR STRESS

ANGLE OF TWIST PER UNIT LENGTH (RATE OF TWIST)

(radians per unit length)

u�
T

GJ
�

2T

G(9b3t)
�

2T

9Gb3t

J �
4Am

2 t

�
Lm

0

dS

t

�
4Am

2 t

Lm

�
9b3t

2

t�
T

2tAm

�
T�3

9b2t

Problem 3.10-9 Compare the angle of twist �1 for a thin-walled circular tube
(see figure) calculated from the approximate theory for thin-walled bars with the
angle of twist �2 calculated from the exact theory of torsion for circular bars. 

(a) Express the ratio �1/�2 in terms of the nondimensional ratio � � r/t.
(b) Calculate the ratio of angles of twist for � � 5, 10, and 20. What conclusion

about the accuracy of the approximate theory do you draw from these results?

Solution 3.10-9 Thin-walled tube

r

C

t

r

C

t

APPROXIMATE THEORY

EXACT THEORY

f2 �
TL

GIP

�
2TL

�Grt(4r2 � t2)

f2 �
TL

GIP

      From Eq. (3-17): Ip �
�rt

2
 (4r2 � t2)

f1 �
TL

GJ
     J � 2�r3t    f1 �

TL

2�Gr3t

(a) RATIO

(b) � �1/�2

5 1.0100

10 1.0025

20 1.0006

As the tube becomes thinner and � becomes larger,
the ratio �1/�2 approaches unity. Thus, the thinner
the tube, the more accurate the approximate theory
becomes.

Let  b�
r

t
�   

f1

f2
� 1 �

1

4b2

f1

f2
�

4r2 � t2

4r2 � 1 �
t2

4r2



Problem 3.10-10 A thin-walled rectangular tube has uniform thickness t
and dimensions a � b to the median line of the cross section (see figure). 

How does the shear stress in the tube vary with the ratio � � a/b if
the total length Lm of the median line of the cross section and the torque T
remain constant? 

From your results, show that the shear stress is smallest when the
tube is square (� � 1).

Solution 3.10-10 Rectangular tube
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t

a

b

t

a

b

t � thickness (constant)

a, b � dimensions of the tube

T � constant

SHEAR STRESS

t�
T

2tAm

�
T(4)(1 � b)2

2tbLm
2 �

2T(1 � b)2

tLm
2b

Am �
bLm

2

4(1 � b)2

b �
Lm

2(1 � b)
�          Am � bB Lm

2(1 � b)
R 2

 Lm � 2b(1 � b) � constant

 t�
T

2tAm

�                Am � ab � bb2

Lm � 2(a � b) � constant

b�
a

b

T, t, and Lm are constants.

From the graph, we see that � is minimum when 
� � 1 and the tube is square.

ALTERNATE SOLUTION

or 2� (1��)�(1��)2 � 0 � � � 1

Thus, the tube is square and � is either a minimum 
or a maximum. From the graph, we see that � is a
minimum.

dt

db
�

2T

tLm
2 B b(2)(1 � b) � (1 � b)2(1)

b2 R � 0

t�
2T

tLm
2 B (1 � b)2

b
R

tmin �
8T

tLm
2¢t

k
≤

min
� 4

Let k �
2T

tLm
2 � constant�t� k 

(1 � b)2

b

2

0 1 2 3

4

6

8

�
k

� � 
a

        b



Problem 3.10-11 A tubular aluminum bar (G � 4 � 106 psi) of square
cross section (see figure) with outer dimensions 2 in. � 2 in. must resist a
torque T � 3000 lb-in.

Calculate the minimum required wall thickness tmin if the allowable
shear stress is 4500 psi and the allowable rate of twist is 0.01 rad/ft.

Solution 3.10-11 Square aluminum tube
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t

2 in.

2 in.

t

2 in.

2 in.

Outer dimensions:

2.0 in. � 2.0 in.

G � 4 � 106 psi

T � 3000 lb-in.

�allow � 4500 psi

Let b � outer dimension

� 2.0 in.

Centerline dimension � b � t

Am � (b � t)2 Lm � 4(b � t)

J �
4tAm

2

Lm

�
4t(b � t)4

4(b � t)
� t(b � t)3

uallow � 0.01  rad�ft �
0.01

12
 rad�in.

THICKNESS t BASED UPON SHEAR STRESS

UNITS: t � in. b � in. T � lb-in. � � psi

Solve for t: t � 0.0915 in.

THICKNESS t BASED UPON RATE OF TWIST

UNITS: t � in. G � psi � � rad/in.

Solve for t:

t � 0.140 in.

ANGLE OF TWIST GOVERNS

tmin � 0.140  in.

10t(2 � t)3 � 9 � 0

�
9

10

t(2.0  in. � t)3 �
3000  lb-in

(4 � 106 psi)(0.01�12  rad �in.)

u�
T

GJ
�

T

Gt(b � t)3      t(b � t)3 �
T

Gu

3t(2 � t)2 � 1 � 0

t(2.0  in. � t)2 �
3000  lb-in.

2(4500  psi)
�

1

3
 in.3

t�
T

2tAm

      tAm �
T

2t
      t(b � t)2 �

T

2t



Problem 3.10-12 A thin tubular shaft of circular cross section 
(see figure) with inside diameter 100 mm is subjected to a torque of 
5000 N � m. 

If the allowable shear stress is 42 MPa, determine the required 
wall thickness t by using (a) the approximate theory for a thin-walled
tube, and (b) the exact torsion theory for a circular bar.

Solution 3.10-12 Thin tube
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t

100 mm

t

100 mm

T � 5,000 N � m d1 � inner diameter � 100 mm

�allow � 42 MPa

t is in millimeters.

r1 � Inner radius

� 50 mm

r2 � Outer radius

(a) APPROXIMATE THEORY

or     

Solve for t:

t � 6.66  mm

t ¢50 �
t

2
≤2 �

5,000  N . m

2�(42  MPa)
�

5 � 106

84�
 mm3

42  MPa �
5,000  N . m

2� ¢50 �
t

2
≤2t

t�
T

2tAm

�
T

2t(�r2)
�

T

2�r2t

 Am � �r2 � 50  mm � t

 � 50  mm �
t

2

 r � Average  radius

(b) EXACT THEORY

Solve for t:

The approximate result is 5% less than the 
exact result. Thus, the approximate theory is
nonconservative and should only be used for 
thin-walled tubes.

t � 7.02  mm

�
5 � 106

21�
 mm3

(50 � t)4 � (50)4

50 � t
�

(5000  N .  m)(2)

(�)(42  MPa)

42  MPa �
(5,000  N . m)(50 � t)
�

2
[ (50 � t)4 � (50)4]

�
�

2
[ (50 � t)4 � (50)4] t�

Tr2

Ip

�Ip �
�

2
(r2

4 � r1
4)



Problem 3.10-13 A long, thin-walled tapered tube AB of circular cross
section (see figure) is subjected to a torque T. The tube has length L and
constant wall thickness t. The diameter to the median lines of the cross
sections at the ends A and B are dA and dB, respectively.

Derive the following formula for the angle of twist of the tube:

� � 	
�

2T
G
L
t

	 �		
dA �

d2
Ad2

B

		
dB �

Hint: If the angle of taper is small, we may obtain approximate
results by applying the formulas for a thin-walled prismatic tube to a 
differential element of the tapered tube and then integrating along the 
axis of the tube.

Solution 3.10-13 Thin-walled tapered tube
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tt

L

T T
A B

dA dB

L

x dx

A B

d(x)dA dB

t � thickness

dA � average diameter at end A

dB � average diameter at end B

T � torque

d(x) � average diameter at distance x from end A.

For element of length dx:

df�
Tdx

GJ(x)
�

4Tdx

G�tBdA � ¢dB � dA

L
≤ xR 3

J(x) �
�t

4
[d(x) ] 3 �

�t

4
BdA � ¢dB � dA

L
≤ xR 3

J � 2�r3t �
�d 3t

4

d(x) � dA � ¢dB � dA

L
≤ x

For entire tube:

From table of integrals (see Appendix C):

 f�
2TL

�Gt
 ¢dA � dB

dA
2dB

2 ≤
 �

4T

�Gt
B �

L

2(dB � dA)dB
2 �

L

2(dB � dA)dA
2 R

 
f�

4T

�GtC �
1

2¢dB � dA

L
≤¢dA �

dB � dA

L
� x≤2S

0

L

� dx

(a � bx)3 � �
1

2b(a � bx)2

f�
4T

�GT�
L

0

dxBdA � ¢dB � dA

L
≤ xR 3



Stress Concentrations in Torsion

The problems for Section 3.11 are to be solved by considering the
stress-concentration factors.

Problem 3.11-1 A stepped shaft consisting of solid circular segments
having diameters D1 � 2.0 in. and D2 � 2.4 in. (see figure) is subjected
to torques T. The radius of the fillet is R � 0.1 in.

If the allowable shear stress at the stress concentration is 6000 psi,
what is the maximum permissible torque Tmax?

Solution 3.11-1 Stepped shaft in torsion
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T T

RD2
D1

T T

RD2
D1

D1 � 2.0 in.

D2 � 2.4 in.

R � 0.1 in.

�allow � 6000 psi

USE FIG. 3-48 FOR THE STRESS-CONCENTRATION

FACTOR

∴  Tmax � 6200  lb-in.

 �
�(2.0  in.)3(6000  psi)

16(1.52)
� 6200  lb-in.

 Tmax �
�D1

3tmax

16K

K � 1.52       tmax � K     tnom � K ¢16  Tmax

�  D1
3 ≤

R

D1
�

0.1  in.

2.0  in.
� 0.05       

D2

D1
�

2.4  in.

2.0  in.
� 1.2

Problem 3.11-2 A stepped shaft with diameters D1 � 40 mm and 
D2 � 60 mm is loaded by torques T � 1100 N � m (see figure). 

If the allowable shear stress at the stress concentration is 120 MPa,
what is the smallest radius Rmin that may be used for the fillet?

Solution 3.11-2 Stepped shaft in torsion

T T

RD2
D1

D1 � 40 mm

D2 � 60 mm

T � 1100 N � m

�allow � 120 MPa

USE FIG. 3-48 FOR THE STRESS-CONCENTRATION FACTOR

From Fig. (3-48) with , 

we get 

∴ Rmin � 0.10(40  mm) � 4.0  mm

R

D1
� 0.10

D2

D1
� 1.5  and  K � 1.37

D2

D1
�

60  mm

40  mm
� 1.5

K �
�D1

3tmax

16T
�

�(40  mm)3(120  MPa)

16(1100  N #  m)
� 1.37

tmax � Ktnom � K ¢ 16T

�D1
3≤

Probs. 3.11-1 through 3.11-5



Problem 3.11-3 A full quarter-circular fillet is used at the shoulder 
of a stepped shaft having diameter D2 � 1.0 in. (see figure). A torque 
T � 500 lb-in. acts on the shaft. 

Determine the shear stress �max at the stress concentration for 
values as follows: D1 � 0.7, 0.8, and 0.9 in. Plot a graph showing 
�max versus D1.

Solution 3.11-3 Stepped shaft in torsion
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T T

RD2
D1

D2 � 1.0 in.
T � 500 lb-in.

D1 � 0.7, 0.8, and 0.9 in.

Full quarter-circular fillet (D2 � D1 � 2R)

USE FIG. 3-48 FOR THE STRESS-CONCENTRATION FACTOR

� 2546
K

D1
3� K

16(500  lb-in.)

�D1
3

tmax � Ktnom � K ¢ 16T

�D1
3≤

R �
D2 � D1

2
� 0.5 in. �

D1

2

Note that �max gets smaller as D1 gets larger, even
though K is increasing.

D1 (in.) D2/D1 R (in.) R/D1 K �max (psi)

0.7 1.43 0.15 0.214 1.20 8900

0.8 1.25 0.10 0.125 1.29 6400

0.9 1.11 0.05 0.056 1.41 4900

�max
(psi)

10,000

5000

0
0.6 0.8 1 D1 (in.)



Problem 3.11-4 The stepped shaft shown in the figure is required to
transmit 600 kW of power at 400 rpm. The shaft has a full quarter-circular
fillet, and the smaller diameter D1 � 100 mm.

If the allowable shear stress at the stress concentration is 100 MPa, at
what diameter D2 will this stress be reached? Is this diameter an upper or
a lower limit on the value of D2?

Solution 3.11-4 Stepped shaft in torsion
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T T

RD2
D1

P � 600 kW D1 � 100 mm
n � 400 rpm �allow � 100 MPa

Full quarter-circular fillet

POWER (Eq. 3-42 of Section 3.7)

P � watts n � rpm T � Newton meters

USE FIG. 3-48 FOR THE STRESS-CONCENTRATION FACTOR

�
(100  MPa)(�)(100  mm)3

16(14,320  N # m)
� 1.37

K �
tmax(�D1

3)

16T

tmax � Ktnom � K ¢ 16T

�D1
3≤

T �
60P

2�n
�

60(600 � 103
 W)

2�(400  rpm)
� 14,320  N  #  m

P �
2�nT

60

Use the dashed line for a full quarter-circular fillet.

D2 � D1 � 2R � 100 mm � 2(7.5 mm) � 115 mm

This value of D2 is a lower limit

(If D2 is less than 115 mm, R/D1 is smaller, K is larger,
and �max is larger, which means that the allowable stress
is exceeded.)

∴ D2 � 115  mm

� 7.5  mm

� 0.075  (100  mm)
R

D1
� 0.075�R � 0.075�D1



Problem 3.11-5 A stepped shaft (see figure) has diameter D2 � 1.5 in.
and a full quarter-circular fillet. The allowable shear stress is 15,000 psi
and the load T � 4800 lb-in. 

What is the smallest permissible diameter D1?

Solution 3.11-5 Stepped shaft in torsion
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T T

RD2
D1

D2 � 1.5 in.

�allow � 15,000 psi

T � 4800 lb-in.

Full quarter-circular fillet D2 � D1 � 2R

USE FIG. 3-48 FOR THE STRESS-CONCENTRATION FACTOR

� 24,450  

K

D1
3

�
K

D1
3 B 16(4800  lb-in.)

�
R

tmax � Ktnom � K ¢ 16T

�D1
3≤

R �
D2 � D1

2
� 0.75  in. �

D1

2

Use trial-and-error. Select trial values of D1

D1 (in.) R (in.) R/D1 K �max(psi)

1.30 0.100 0.077 1.38 15,400
1.35 0.075 0.056 1.41 14,000
1.40 0.050 0.036 1.46 13,000

From the graph, minimum D1 � 1.31 in.

16,000

15,000

14,000

13,000
1.30 1.40

�allow

�max (psi)

D1=1.31in.

D1(in.)





Shear Forces and Bending Moments

Problem 4.3-1 Calculate the shear force V and bending moment M
at a cross section just to the left of the 1600-lb load acting on the simple

beam AB shown in the figure.

Solution 4.3-1 Simple beam

4
Shear Forces and
Bending Moments

259

A B

1600 lb800 lb

120 in.
30 in. 60 in. 30 in.

�MA � 0: RB � 1400 lb
�MB � 0: RA � 1000 lb

Free-body diagram of segment DB

� 42,000  lb-in.

©MD � 0:�M � (1400  lb)(30  in.)  

� 200  lb

©FVERT � 0:�V � 1600  lb � 1400  lb  

A B

1600 lb800 lb

30 in. 60 in. 30 in.

D

RA RB

B

1600 lb

30 in.

D

RB

V

M

Problem 4.3-2 Determine the shear force V and bending moment M
at the midpoint C of the simple beam AB shown in the figure.

Solution 4.3-2 Simple beam

A
C

B

2.0 kN/m6.0 kN

1.0 m 1.0 m
4.0 m

2.0 m

A
C

B

2.0 kN/m6.0 kN

1.0 m 1.0 m 2.0 m
RA RB

�MA � 0: RB � 4.5 kN

�MB � 0: RA � 5.5 kN

Free-body diagram of segment AC

©MC � 0:�M � 5.0  kN � m

©FVERT � 0:�V � �0.5  kN

A C

6.0 kN

1.0 m 1.0 m

RA

V M



Problem 4.3-3 Determine the shear force V and bending moment M at
the midpoint of the beam with overhangs (see figure). Note that one load
acts downward and the other upward.

Solution 4.3-3 Beam with overhangs

260 CHAPTER 4 Shear Forces and Bending Moments

PP

bb L

� P ¢1 �
2b

L
≤�(upward)

RA �
1

L
[P(L � b � b) ]  

©MB � 0

Free-body diagram (C is the midpoint)

 M �
PL

2
� Pb � Pb �

PL

2
� 0

M � P ¢1 �
2b

L
≤ ¢L

2
≤� P ¢b �

L

2
≤

 ©MC � 0:

�
2bP

L
V � RA � P � P ¢1 �

2b

L
≤� P  

©FVERT � 0:

©MA � 0:�RB � P ¢1 �
2b

L
≤�(downward)PP

bb L

A B

RA RB

P

b L/2

A C

RA V

M

Problem 4.3-4 Calculate the shear force V and bending moment M at a
cross section located 0.5 m from the fixed support of the cantilever beam
AB shown in the figure.

Solution 4.3-4 Cantilever beam

A
B

1.5 kN/m4.0 kN

1.0 m1.0 m 2.0 m

Free-body diagram of segment DB

Point D is 0.5 m from support A.
� �9.5  kN � m
� �2.0  kN � m � 7.5  kN � m  

� (1.5  kN�m)(2.0  m)(2.5  m)
 ©MD � 0:�M � �(4.0  kN)(0.5  m)
 � 4.0  kN � 3.0  kN � 7.0  kN

V � 4.0  kN � (1.5  kN�m)(2.0  m)
 ©FVERT � 0:A

B

1.5 kN/m4.0 kN

1.0 m1.0 m 2.0 m

D
B

1.5 kN/m4.0 kN

1.0 m0.5 m 2.0 m

V

M



Problem 4.3-5 Determine the shear force V and bending moment M
at a cross section located 16 ft from the left-hand end A of the beam 
with an overhang shown in the figure.

Solution 4.3-5 Beam with an overhang
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A C
B

400 lb/ft 200 lb/ft

6 ft6 ft10 ft 10 ft

�MB � 0: RA � 2460 lb

�MA � 0: RB � 2740 lb

Free-body diagram of segment AD

Point D is 16 ft from support A.

� �4640  lb-ft

� (400  lb�ft) (10  ft) (11  ft)

 ©MD � 0:�M � (2460  lb)(16  ft)

� �1540  lb

 V � 2460  lb � (400  lb�ft) (10  ft)

 ©FVERT � 0:

A C
B

400 lb/ft 200 lb/ft

6 ft6 ft10 ft 10 ft

RA RB

A
D

400 lb/ft

6 ft10 ft
RA V

M

Problem 4.3-6 The beam ABC shown in the figure is simply
supported at A and B and has an overhang from B to C. The
loads consist of a horizontal force P1 � 4.0 kN acting at the 
end of a vertical arm and a vertical force P2 � 8.0 kN acting at
the end of the overhang. 

Determine the shear force V and bending moment M at 
a cross section located 3.0 m from the left-hand support.
(Note: Disregard the widths of the beam and vertical arm and

use centerline dimensions when making calculations.)

Solution 4.3-6 Beam with vertical arm

4.0 m 1.0 m

BA C

P2 = 8.0 kN
P1 = 4.0 kN

1.0 m

4.0 m 1.0 m

BA

P2 = 8.0 kN
P1 = 4.0 kN

1.0 m

RA RB

�MB � 0: RA � 1.0 kN (downward)

�MA � 0: RB � 9.0 kN (upward)

Free-body diagram of segment AD

Point D is 3.0 m from support A.

� �7.0  kN � m

©MD � 0:�M � �RA(3.0  m) � 4.0  kN � m  

©FVERT � 0:�V � �RA � � 1.0  kN

3.0 m

A D

RA V

M
4.0 kN • m



Problem 4.3-7 The beam ABCD shown in the figure has overhangs 
at each end and carries a uniform load of intensity q. 

For what ratio b/L will the bending moment at the midpoint of the
beam be zero?

Solution 4.3-7 Beam with overhangs
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q

bb L

DA
B C

From symmetry and equilibrium of vertical forces:

RB  �  RC  �  q ¢b �
L

2
≤

Free-body diagram of left-hand half of beam:

Point E is at the midpoint of the beam.

Solve for b /L :

b

L
�

1

2

�q ¢b �
L

2
≤ ¢L

2
≤� q ¢1

2
≤ ¢b �

L

2
≤

2

� 0

�RB ¢L2 ≤� q ¢1
2
≤ ¢b �

L

2
≤

2

� 0

©ME  �  0  �  �

q

bb L

DA
B C

RB RC

q

b L/2

A

RB

V

M = 0   (Given)
E

Problem 4.3-8 At full draw, an archer applies a pull of 130 N to the
bowstring of the bow shown in the figure. Determine the bending moment
at the midpoint of the bow.

350 mm

1400 mm

70°



Solution 4.3-8 Archer’s bow
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P � 130 N

� � 70°

H � 1400 mm

� 1.4 m

b � 350 mm

� 0.35 m

Free-body diagram of point A

T � tensile force in the bowstring

�FHORIZ � 0: 2T cos �� P � 0

T �
P

2 cos b

Free-body diagram of segment BC

Substitute numerical values:

M � 108 N � m

M �
130  N

2
B1.4  m

2
� (0.35  m)(tan  70�)R

�
P

2
 ¢H

2
� b tan b≤

M  �  T ¢H
2

 cosb  �  b sin b≤
T(cos b)¢H

2
≤  �  T(sin b) (b) � M � 0

©MC  �  0  �  �

b

H
P

A

�
C

B

P
A

T

�

T

H
2

Cb

B

T

�

M



Problem 4.3-9 A curved bar ABC is subjected to loads in the form 
of two equal and opposite forces P, as shown in the figure. The axis of
the bar forms a semicircle of radius r. 

Determine the axial force N, shear force V, and bending moment M
acting at a cross section defined by the angle �.

Solution 4.3-9 Curved bar
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PP P

C

B

A O

r

A

V

NM

��

 M � Nr � Pr sin u

 ©MO � 0  �  �        M � Nr � 0

 V � P cos  u
 �FV  �  0  �R a�      V  �  P cos u  �  0

 N  �  P sin u

 ©FN  �  0  Q� b��N � P sin u� 0 

P
P P

C

B

A O

r

A

V

NM

��
O

P cos �

P sin �

B

Problem 4.3-10 Under cruising conditions the distributed load 
acting on the wing of a small airplane has the idealized variation 
shown in the figure. 

Calculate the shear force V and bending moment M at the 
inboard end of the wing.

Solution 4.3-10 Airplane wing

1.0 m

1600 N/m 900 N/m

2.6 m2.6 m

1.0 m

1600 N/m 900 N/m

2.6 m2.6 m

A B

VM

Shear Force

�FVERT � 0 c� T�

(Minus means the shear force acts opposite to the
direction shown in the figure.)

V � �6040  N � �6.04  kN

�
1

2
 (900  N�m)(1.0  m) � 0

V �
1

2
(700  N�m)(2.6  m) � (900  N�m)(5.2  m)

Bending Moment

M � 788.67 N • m � 12,168 N • m � 2490 N • m

� 15,450 N • m

� 15.45  kN � m

 �
1

2
(900  N�m)(1.0  m)¢5.2  m �

1.0  m

3
≤� 0

 � (900  N�m)(5.2  m)(2.6  m)

 �M �
1

2
 (700  N�m)(2.6  m)¢2.6  m

3
≤

©MA � 0  ��

A B

32

1700 N/m

900 N/m

Loading (in three parts)



Problem 4.3-11 A beam ABCD with a vertical arm CE is supported as 
a simple beam at A and D (see figure). A cable passes over a small pulley 
that is attached to the arm at E. One end of the cable is attached to the
beam at point B. 

What is the force P in the cable if the bending moment in the 
beam just to the left of point C is equal numerically to 640 lb-ft? 
(Note: Disregard the widths of the beam and vertical arm and use 
centerline dimensions when making calculations.)

Solution 4.3-11 Beam with a cable
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A

E P

C DB

Cable
8 ft

6 ft 6 ft 6 ft

UNITS:

P in lb

M in lb-ft

Free-body diagram of section AC

Numerical value of M equals 640 lb-ft.

and  P � 1200  lb

∴ 640  lb-ft �
8P

15
 lb-ft

 M � �
8P

15
 lb-ft

  M  �
4P

5
(6  ft) �

4P

9
 (12  ft) � 0

 ©MC � 0  ��  

A

E P

C DB

Cable
8 ft

6 ft 6 ft 6 ft

P

__
9

__
9
4P 4P

A

P

C

B6 ft 6 ft

P

__
5

__
5

N

M

V
__
9

4P

4P

3P

Problem 4.3-12 A simply supported beam AB supports a trapezoidally
distributed load (see figure). The intensity of the load varies linearly 
from 50 kN/m at support A to 30 kN/m at support B. 

Calculate the shear force V and bending moment M at the midpoint
of the beam.

BA

50 kN/m
30 kN/m

3 m



Solution 4.3-12 Beam with trapezoidal load
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Reactions

RA � 65 kN

RB � 55 kN

� 30  kN�m)(3  m) � 0RA � RB � 1�2 (50  kN�m  

©FVERT  �  0
�

c  

 � (20  kN�m)(3  m)(1�2) (2  m) � 0

 ©MB � 0 � � RA(3  m) � (30  kN�m)(3  m)(1.5  m)

Free-body diagram of section CB

Point C is at the midpoint of the beam.

�FVERT � 0 c� T�

� 55 kN� 0

� M � (30 kN/m)(1.5 m)(0.75 m)

� (55 kN)(1.5 m) � 0

M � 45.0  kN � m

� 1�2(10  kN�m)(1.5  m)(0.5  m)

©MC � 0  ��

V � �2.5  kN

V � (30  kN�m)(1.5  m) � 1
2(10  kN�m)(1.5  m)

BA

50 kN/m
30 kN/m

3 m
RA RB

B

V

40 kN/m

30 kN/m

1.5 m
55 kN

CM

Problem 4.3-13 Beam ABCD represents a reinforced-concrete
foundation beam that supports a uniform load of intensity q1 � 3500 lb/ft
(see figure). Assume that the soil pressure on the underside of the beam is
uniformly distributed with intensity q2. 

(a) Find the shear force VB and bending moment MB at point B. 
(b) Find the shear force Vm and bending moment Mm at the midpoint 

of the beam.

Solution 4.3-13 Foundation beam

A

B C

D

3.0 ft 3.0 ft

q2

q1 = 3500 lb/ft

8.0 ft

�FVERT � 0: q2(14 ft) � q1(8 ft)

(a) V and M at point B

�FVERT � 0:

©MB  �  0:�MB  �  9000  lb-ft

VB  �  6000  lb

∴ q2 �
8

14
  q1 � 2000  lb�ft

(b) V and M at midpoint E

�FVERT � 0: Vm � (2000 lb/ft)(7 ft) � (3500 lb/ft)(4 ft)

�ME � 0: 

Mm � (2000 lb/ft)(7 ft)(3.5 ft)

� (3500 lb/ft)(4 ft)(2 ft)

Mm � 21,000  lb-ft

Vm  �  0

A B C D

3.0 ft 3.0 ft

q2

q1 = 3500 lb/ft

8.0 ft

A B

3 ft
2000 lb/ft VB

MB

A B E

4 ft

2000 lb/ft

3500 lb/ft

3 ft

Mm

Vm



Problem 4.3-14 The simply-supported beam ABCD is loaded by 
a weight W � 27 kN through the arrangement shown in the figure. 
The cable passes over a small frictionless pulley  at B and is attached 
at E to the end of the vertical arm. 

Calculate the axial force N, shear force V, and bending moment 
M at section C, which is just to the left of the vertical arm. 
(Note: Disregard the widths of the beam and vertical arm and use
centerline dimensions when making calculations.)

Solution 4.3-14 Beam with cable and weight
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A

E

DCB

W = 27 kN

2.0 m 2.0 m 2.0 m

Cable
1.5 m

RA � 18 kN RD � 9 kN

Free-body diagram of pulley at B

A

E

DCB

27 kN

2.0 m 2.0 m 2.0 m

Cable 1.5 m

RA RD

27 kN

21.6 kN

10.8 kN

27 kN

Free-body diagram of segment ABC of beam

©MC � 0:�M � 50.4  kN � m

©FVERT � 0:�V � 7.2  kN

©FHORIZ � 0:�N � 21.6  kN  (compression)

A

N

MCB
21.6 kN

2.0 m 2.0 m

V

10.8 kN

18 kN



Problem 4.3-15 The centrifuge shown in the figure rotates in a horizontal
plane (the xy plane) on a smooth surface about the z axis (which is vertical)
with an angular acceleration �. Each of the two arms has weight w per unit
length and supports a weight W � 2.0 wL at its end. 

Derive formulas for the maximum shear force and maximum bending
moment in the arms, assuming b � L/9 and c � L/10.

Solution 4.3-15 Rotating centrifuge
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b

c

L

W

x

W

y

�

b

c

L

x

W
g
__ (L + b + c)�

w�x
g

__

Tangential acceleration � r�

Maximum V and M occur at x � b.

�
w L2�

6g
 (2L � 3b)

 �
W�

g
 (L � b � c)(L � c)  

� �
L�b

b

w�

g
 x(x  �  b)dx

 Mmax �
W�

g
 (L � b � c)(L � c)

�
wL�

2g
 (L � 2b)

 �
W�

g
 (L � b � c)  

 Vmax �
W
g

(L � b � c)� � �
L�b

b

w�

g
 x dx

Inertial  force Mr �  �  

W
g  r�

Substitute numerical data:

Mmax  �  

229wL3�

75g

Vmax  �  

91wL2�

30g

W � 2.0 wL�b �
L

9
     c �

L

10



Shear-Force and Bending-Moment Diagrams

When solving the problems for Section 4.5, draw the shear-force and
bending-moment diagrams approximately to scale and label all critical
ordinates, including the maximum and minimum values.

Probs. 4.5-1 through 4.5-10 are symbolic problems and Probs. 4.5-11
through 4.5-24 are numerical problems. The remaining problems (4.5-25
through 4.5-30) involve specialized topics, such as optimization, beams
with hinges, and moving loads.

Problem 4.5-1 Draw the shear-force and bending-moment diagrams for 
a simple beam AB supporting two equal concentrated loads P (see figure).

Solution 4.5-1 Simple beam
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A B

L

P Pa a

A B

L

P Pa a

RA = P RB = P

P

�P

V

Pa

M

0

0



Problem 4.5-2 A simple beam AB is subjected to a counterclockwise
couple of moment M0 acting at distance a from the left-hand support 
(see figure). 

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-2 Simple beam
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A B

L

a

M0

A B

L

a

M0

M0
     L

0

V

M

M0a
 L

0
� M0 (1� a

L
)

RA =
M0
L RB =

M0
L

Problem 4.5-3 Draw the shear-force and bending-moment diagrams 
for a cantilever beam AB carrying a uniform load of intensity q over 
one-half of its length (see figure).

Solution 4.5-3 Cantilever beam

A
B

q

L—
2

L—
2

A
B

q

L—
2

L—
2

qL—
2

V

M
qL2

0

0

MA =
3qL2

8

RA =
qL
2

3qL2

8

8
�

�



Problem 4.5-4 The cantilever beam AB shown in the figure 
is subjected to a concentrated load P at the midpoint and a
counterclockwise couple of moment M1 � PL/4 at the free end. 

Draw the shear-force and bending-moment diagrams for 
this beam.

Solution 4.5-4 Cantilever beam
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A B

P

L—
2

L—
2

M1 =
PL—–
4

MA

P

RA
L/2 L/2

A B
M1 � 

PL
4

MA � 
PL
4

RA � P

V

M

0

0

� 
PL
4

PL
4

P

Problem 4.5-5 The simple beam AB shown in the figure is subjected to 
a concentrated load P and a clockwise couple M1 � PL /4 acting at the
third points. 

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-5 Simple beam

A B

P

L—
3

L—
3

L—
3

M1 =
PL—–
4

A B

P

L—
3

L—
3

L—
3

M1 =
PL—–
4

RA =
5P—–
12

RB =
7P—–
12

5P/12
V

M

0

0

5PL/36
7PL/36

�PL/18

�7P/12



Problem 4.5-6 A simple beam AB subjected to clockwise couples M1
and 2M1 acting at the third points is shown in the figure. 

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-6 Simple beam
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A B

M1 2M1

L—
3

L—
3

L—
3

A B

M1 2M1

L—
3

L—
3

L—
3

RB =
3M1—–

L
RA =

3M1—–
L

V �
3M1—–

L

0

M 0

M1

�M1 �M1

Problem 4.5-7 A simply supported beam ABC is loaded by a vertical
load P acting at the end of a bracket BDE (see figure). 

Draw the shear-force and bending-moment diagrams for beam ABC.

Solution 4.5-7 Beam with bracket

A C

L

D
E

P

B

L—
4

L—
4

L—
2

A C

P

B

L—
4

—
4

3L

RA =
P—–
2

RC =
P—–
2

V

M

0

0

P—–
2

PL—–
8

PL—–
4

3PL—–
8

P—–
2

�



Problem 4.5-8 A beam ABC is simply supported at A and B and
has an overhang BC (see figure). The beam is loaded by two forces
P and a clockwise couple of moment Pa that act through the
arrangement shown. 

Draw the shear-force and bending-moment diagrams for 
beam ABC.

Solution 4.5-8 Beam with overhang
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A C
B

a a a a

P P Pa

C
P P

Pa
a a a

P P

upper
beam:

B
P P

a a a

2P

lower
beam:

C

V 0

M 0

P

�Pa

�P

Problem 4.5-9 Beam ABCD is simply supported at B and C and has
overhangs at each end (see figure). The span length is L and each
overhang has length L /3. A uniform load of intensity q acts along the
entire length of the beam. 

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-9 Beam with overhangs

q

LL
3

DA
B C

L
3

q

L
L/3

–qL2/18 –qL2/18

qL/3

L/3
DA

B C

__5qLRB = 6

__qL–
3

__qL–
2

__5qLRC = 6

V

M
X1

__5qL2

72

0

0

__qL
2

x1 � L 
�5

6
 �  0.3727L



Problem 4.5-10 Draw the shear-force and bending-moment diagrams
for a cantilever beam AB supporting a linearly varying load of maximum
intensity q0 (see figure).

Solution 4.5-10 Cantilever beam
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A
B

L

q0

A

V

M

B

L

q0

x

__xq=q0 L __q0L2
MB = 6

__q0x3
M = –

6L

__q0x2
V = –

2L

__q0L
RB = 2

__q0 L
–

2

__q0L2
–

6

0

0

Problem 4.5-11 The simple beam AB supports a uniform load of
intensity q � 10 lb/in. acting over one-half of the span and a concentrated
load P � 80 lb acting at midspan (see figure). 

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-11 Simple beam

A B

q = 10 lb/in.

P = 80 lb

= 40 in.L—
2

= 40 in.L—
2

A B

10 lb/in.

P = 80 lb

40 in.

46 in.

6 in.

40 in.

60

RB = 340 lbRA =140 lb

140

–340

V

M

Mmax = 5780
5600

(lb)

(lb/in.)

0

0



Problem 4.5-12 The beam AB shown in the figure supports a uniform
load of intensity 3000 N/m acting over half the length of the beam. The
beam rests on a foundation that produces a uniformly distributed load
over the entire length.

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-12 Beam with distributed loads
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0.8 m

3000 N/m

A B

0.8 m1.6 m

0.8 m

3000 N/m

A

V

M

B

0.8 m1.6 m

1500 N/m

1200

–1200960

480480

(N)

(N . m)

0

0

Problem 4.5-13 A cantilever beam AB supports a couple and a
concentrated load, as shown in the figure. 

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-13 Cantilever beam

A
B

5 ft 5 ft

200 lb

400 lb-ft

A
B

5 ft 5 ft

200 lb

400 lb-ft

MA = 1600 lb-ft

RA = 200 lb

V

M

(lb)

+200

–600
–1600

–1000

0

0

(lb-ft)



Problem 4.5-14 The cantilever beam AB shown in the figure is
subjected to a uniform load acting throughout one-half of its length and a
concentrated load acting at the free end. 

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-14 Cantilever beam
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A
B

2 m 2 m

2.5 kN2.0 kN/m

A
B

2 m 2 m

2.5 kN2.0 kN/m

RA = 6.5 kN

MA = 14 kN . m

6.5

–14.0

–5.0

2.5V

M

(kN)

(kN . m)

0

0

Problem 4.5-15 The uniformly loaded beam ABC has simple supports at 
A and B and an overhang BC (see figure). 

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-15 Beam with an overhang

A

V

M

C
B

72 in.

25 lb/in.

48 in.
RA = 500 lb RB = 2500 lb

1200
500

20 in.
–1300

–28,800

20 in.

40 in.

(lb)

(lb-in.)

0

0
5000

A C
B

72 in.

25 lb/in.

48 in.



Problem 4.5-16 A beam ABC with an overhang at one end supports a
uniform load of intensity 12 kN/m and a concentrated load of magnitude
2.4 kN (see figure). 

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-16 Beam with an overhang
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A C
B

1.6 m 1.6 m 1.6 m

2.4 kN12 kN/m

A C
B

1.6 m 1.6 m 1.6 m

2.4 kN

2.4

13.2

5.76

–3.84

–6.0

12 kN/m

V

M

Mmax = 7.26

RA = 13.2 kN RB = 8.4 kN

(kN . m)

0

0

1.1m

1.1m

0.64 m

Mmax

(kN)

Problem 4.5-17 The beam ABC shown in the figure is simply 
supported at A and B and has an overhang from B to C. The 
loads consist of a horizontal force P1 � 400 lb acting at the end 
of the vertical arm and a vertical force P2 � 900 lb acting at the 
end of the overhang. 

Draw the shear-force and bending-moment diagrams for this 
beam. (Note: Disregard the widths of the beam and vertical arm 
and use centerline dimensions when making calculations.)

Solution 4.5-17 Beam with vertical arm

4.0 ft 1.0 ft

BA C

P2 = 900 lb
P1 = 400 lb

1.0 ft

V
(lb)

M
(lb)

900

0

0

�400
�900

4.0 ft 1.0 ft

BA C

P2 = 900 lb
P1 = 400 lb

1.0 ft

RA = 125 lb RB = 1025 lb

A
400 lb-ft

125 lb

B
900 lb

C

1025 lb

�125



Problem 4.5-18 A simple beam AB is loaded by two segments of 
uniform load and two horizontal forces acting at the ends of a vertical
arm (see figure). 

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-18 Simple beam
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A B

4 kN/m8 kN4 kN/m

2 m2 m2 m 2 m

1 m

1 m

8 kN

Problem 4.5-19 A beam ABCD with a vertical arm CE is supported as a
simple beam at A and D (see figure). A cable passes over a small pulley
that is attached to the arm at E. One end of the cable is attached to the
beam at point B. The tensile force in the cable is 1800 lb. 

Draw the shear-force and bending-moment diagrams for beam ABCD.
(Note: Disregard the widths of the beam and vertical arm and use center-
line dimensions when making calculations.)

Solution 4.5-19 Beam with a cable

A

E

C DB

Cable
8 ft

1800 lb

6 ft 6 ft 6 ft

A B

4 kN/m4 kN/m

2 m2 m2 m 2 m
RA = 6 kN RB = 10 kN

V
(kN)

M

(kN . m)

0

0

�2.0

16 kN . m

1.5 m

1.5 m

6.0

�10.0

4.5 4.0

16.0
12.0

Note: All forces have units of pounds.

A

E

C DB

Cable
8 ft

1800 lb

6 ft 6 ft 6 ft

1800 lb

RD = 800 lb RD = 800 lb

Free-body diagram of beam ABCD

A C DB1800

1440 1800
1440

5760 lb-ft

800
1080 720

800

V
(lb)

M
(lb-ft)

640

0 0

�4800

4800

�800�800

�960



Problem 4.5-20 The beam ABCD shown in the figure has 
overhangs that extend in both directions for a distance of 4.2 m 
from the supports at B and C, which are 1.2 m apart.

Draw the shear-force and bending-moment diagrams for this 
overhanging beam.

Solution 4.5-20 Beam with overhangs
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A D

1.2 m
4.2 m 4.2 m

5.1 kN/m5.1 kN/m

10.6 kN/m

B C

A D

1.2 m
4.2 m 4.2 m

5.1 kN/m5.1 kN/m

10.6 kN/m

B C

RB = 39.33 kN RC = 39.33 kN

V
(kN)

�32.97

6.36

0

32.97

�6.36

M 0
(kN . m)

�61.15 �61.15

�59.24

Problem 4.5-21 The simple beam AB shown in the figure supports a
concentrated load and a segment of uniform load.

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-21 Simple beam

A
C

B

2.0 k/ft4.0 k

20 ft
10 ft5 ft

A
C

B

2.0 k/ft4.0 k

10 ft5 ft 5 ftRA = 8 k
RB = 16 k

Mmax = 64 k-ft

V
(k)

�16

M
(k-ft)

0

0

8
4

8 ft

12 ft

8 ft12 ft

40

60 64

C

C



Problem 4.5-24 A beam with simple supports is subjected to a
trapezoidally distributed load (see figure). The intensity of the load varies
from 1.0 kN/m at support A to 3.0 kN/m at support B.

Draw the shear-force and bending-moment diagrams for this beam.

Problem 4.5-22 The cantilever beam shown in the figure supports 
a concentrated load and a segment of uniform load.

Draw the shear-force and bending-moment diagrams for this
cantilever beam.

Solution 4.5-22 Cantilever beam
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A
B

1.0 kN/m3 kN

1.6 m0.8 m 0.8 m

A
B

1.0 kN/m3 kN

1.6 m0.8 m 0.8 m

RA = 4.6 kN

�6.24

M
(kN . m)

V
(kN)

0

0

4.6

1.6

�2.56
�1.28

MA = 
6.24 kN . m

Problem 4.5-23 The simple beam ACB shown in the figure is subjected 
to a triangular load of maximum intensity 180 lb/ft.

Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-23 Simple beam

B
C

A

180 lb/ft

7.0 ft

6.0 ft

B

C
A

180 lb/ft

1.0 ft6.0 ft

RA = 240 lb RB = 390 lb

Mmax = 640

V
(lb)

�300

M
(lb-ft)

0

0

240

x1 = 4.0 ft

�390

360

BA

3.0 kN/m
1.0 kN/m

2.4 m
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BA

3.0 kN/m
1.0 kN/m

2.4 m
RA = 2.0 kN

RB = 2.8 kN

Set V � 0: x1 � 1.2980 m

V  �  2.0 � x �
x2

2.4
�(x � meters; V � kN)

M

(kN . m)

�2.8

2.0

0

0

Mmax = 1.450

x1 = 1.2980 m
x

V
(kN)

Problem 4.5-25 A beam of length L is being designed to support a uniform load
of intensity q (see figure). If the supports of the beam are placed at the ends,
creating a simple beam, the maximum bending moment in the beam is qL2/8.
However, if the supports of the beam are moved symmetrically toward the middle
of the beam (as pictured), the maximum bending moment is reduced. 

Determine the distance a between the supports so that the maximum bending
moment in the beam has the smallest possible numerical value. 

Draw the shear-force and bending-moment diagrams for this
condition.

Solution 4.5-25 Beam with overhangs

Solution 4.5-24 Simple beam

A B

L

a

q

A B

a

q

RA = qL/2 RB = qL/2

(L � a)/2 (L � a)/2

M2

M1 M1

0M

The maximum bending moment is smallest when
M1� M2 (numerically).

M1 � M2         (L � a)2 � L(2a � L)

M2 �  RA¢a2≤�
qL2

8
 �

qL

8
(2a � L)

M1 �
q(L � a)2

8

0.2071L
0.2071 qL

0.02145 qL2

0.2929L

� 0.2071 qL � 0.2929 qL

V 0

M 0

� 0.02145 qL2 � 0.02145 qL2

x1 x1

0.2929 qL

x1 = 0.3536 a

= 0.2071 L

�
qL2

8
 (3 � 2�2) � 0.02145qL2

M1 � M2 �
q

8
 (L � a)2

 

Solve  for  a:  a � (2 � �2)L � 0.5858L



Problem 4.5-26 The compound beam ABCDE shown in the figure
consists of two beams (AD and DE) joined by a hinged connection at D.
The hinge can transmit a shear force but not a bending moment. The
loads on the beam consist of a 4-kN force at the end of a bracket attached
at point B and a 2-kN force at the midpoint of beam DE. 

Draw the shear-force and bending-moment diagrams for this
compound beam.

Solution 4.5-26 Compound beam
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A E
B C D

4 kN

2 m2 m2 m2 m

1 m

2 kN
1 m

A E
B C D

4 kN

1 m1 m 1 m1 m2 m2 m2 m

2 kN

RA = 2.5 kN

�1.0

M
(kN . m)

4 kN . m Hinge

RC = 2.5 kN RE = 1 kN

V
(kN) 0

2.5
1.0

�1.5 D

D
1.0

5.0

�2.0

0
2.67 m

1.0

Problem 4.5-27 The compound beam ABCDE shown in the figure
consists of two beams (AD and DE) joined by a hinged connection at D.
The hinge can transmit a shear force but not a bending moment. A force P
acts upward at A and a uniform load of intensity q acts downward on
beam DE. 

Draw the shear-force and bending-moment diagrams for this
compound beam.

Solution 4.5-27 Compound beam

A E
B

P

C D

2LL L L

q

A

V

M

E
B

P

C D

2LL L L

q

PL

D

D

P

−P−qL

−qL2

–qL

L L

RC = P + 2qL RE = qLRB = 2P + qL

0

0

Hinge 

qL

qL
2



Problem 4.5-28 The shear-force diagram for a simple beam 
is shown in the figure. 

Determine the loading on the beam and draw the bending-
moment diagram, assuming that no couples act as loads on 
the beam.

Solution 4.5-28 Simple beam (V is given)
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1.0 m1.0 m2.0 m

12 kN

–12 kN

0

V

12

−1212

0

0

V

M

6.0 kN/m 12 kN

A B

2 m 1 m 1 m

(kN . m)

(kN)

RA = 12kN RB = 12kN

Problem 4.5-29 The shear-force diagram for a beam is shown 
in the figure. Assuming that no couples act as loads on the beam,
determine the forces acting on the beam and draw the bending-
moment diagram.

Solution 4.5-29 Forces on a beam (V is given)

4 ft4 ft 16 ft

572 lb

–128 lb

0

V

652 lb

500 lb
580 lb

–448 lb

14.50 ft

572

2448

–2160

–128

0

0

V

M

652

500
580

–448

(lb)

(lb-ft)

4 ft4 ft 16 ft

20 lb/ft

652 lb 700 lb 1028 lb 500 lb

Force diagram
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Problem 4.5-30 A simple beam AB supports two connected wheel loads P
and 2P that are distance d apart (see figure). The wheels may be placed at
any distance x from the left-hand support of the beam. 

(a) Determine the distance x that will produce the maximum shear force
in the beam, and also determine the maximum shear force Vmax. 

(b) Determine the distance x that will produce the maximum bending
moment in the beam, and also draw the corresponding bending-
moment diagram. (Assume P � 10 kN, d � 2.4 m, and L � 12 m.)

Solution 4.5-30 Moving loads on a beam

(a) Maximum shear force
By inspection, the maximum shear force occurs at
support B when the larger load is placed close to, but
not directly over, that support.

(b) Maximum bending moment

By inspection, the maximum bending moment occurs
at point D, under the larger load 2P.

Vmax � RB � P ¢3 �
d

L
≤� 28  kN

x � L � d � 9.6  m  

Reaction at support B:

Bending moment at D:

Eq.(1)

Substitute x into Eq (1):

RB  �  

P

2
¢3  �  

d

L
≤  �  14  kN

Note:�RA  �  

P

2
¢3  �  

d

L
≤  �  16  kN

�  

PL

12
 ¢3 �

d

L
≤

2

� 78.4  kN � m

� ¢L
6
≤ ¢3 �

5d

L
≤� 2d(L � d)R

Mmax  �  

P

L
B�  3¢L

6
≤

2

¢3 �
5d

L
≤

2

� (3L � 5d)

Solve  for  x:    x �
L

6
 ¢3 �

5d

L
≤� 4.0  m

dMD

dx
 �  

P

L
 (�6x � 3L � 5d) � 0

 �
P

L
[�3x2 � (3L � 5d)x � 2d(L � d) ]

�  

P

L
 (2d � 3x)(L � x � d)

MD � RB(L � x � d)  

RB �
P

L
 x �

2P

L
 (x � d) �

P

L
 (2d � 3x)

L

BA

x d

P 2P

L

BA

x d

P 2P

BA

x = L − d
P 2P

RB = P(3 −    )d
LRA = L

Pd

d

BA

L

P 2P

x d
D

RB

64 Mmax = 78.4

2.4 m4.0 m 5.6 m
0

M
(kN . m)

P � 10 kN
d � 2.4 m
L � 12 m



Longitudinal Strains in Beams

Problem 5.4-1 Determine the maximum normal strain �max produced in
a steel wire of diameter d � 1/16 in. when it is bent around a cylindrical
drum of radius R � 24 in. (see figure). 

Solution 5.4-1 Steel wire

5
Stresses in Beams
(Basic Topics)

285

d

R

R � 24 in.

From Eq. (5-4):

Substitute numerical values:

emax �
1�16 in.

2(24 in.) � 1�16 in.
� 1300 � 10�6

 �
d�2

R � d�2
�

d

2R � d

emax �
y

r

d �
1

16
 in.

dR

Cylinder

Problem 5.4-2 A copper wire having diameter d � 3 mm is bent into 
a circle and held with the ends just touching (see figure). If the maximum
permissible strain in the copper is �max � 0.0024, what is the shortest
length L of wire that can be used? 

Solution 5.4-2 Copper wire

d = diameter

L = length

d � 3 mm �max � 0.0024

From Eq. (5-4):

Lmin �
�d
emax

�
�  (3 mm)

0.0024
� 3.93 m

emax �
y

r
�

d�2
L�2�

�
�d

L

L � 2�r�r�
L

2�
d

�



Problem 5.4-3 A 4.5 in. outside diameter polyethylene pipe designed to
carry chemical wastes is placed in a trench and bent around a quarter-
circular 90° bend (see figure). The bent section of the pipe is 46 ft long. 

Determine the maximum compressive strain �max in the pipe. 

Solution 5.4-3 Polyethylene pipe

286 CHAPTER 5 Stresses in Beams (Basic Topics)

90°

Angle equals 90º or �/2 radians, 
r � � � radius of curvature

emax �
�d

4L
�

�

4
¢ 4.5 in.

552 in.
≤� 6400 � 10�6

r�
L

��2
�

2L
�
� emax �

y

r
�

d�2
2L��

r � radius

r

d

L

Problem 5.4-4 A cantilever beam AB is loaded by a couple M0 at 
its free end (see figure). The length of the beam is L � 1.5 m and the
longitudinal normal strain at the top surface is 0.001. The distance 
from the top surface of the beam to the neutral surface is 75 mm. 

Calculate the radius of curvature �, the curvature �, and the vertical
deflection � at the end of the beam. 

Solution 5.4-4 Cantilever beam

A

B
M0

�

L

L � length of beam
L � 1.5 m �max � 0.001

k�
1
r

� 0.01333 m�1

∴ r�
y

emax
�

75 mm

0.001
� 75 m

y � 75 mm �emax �
y

r

A

C B
M0

�

L

�
�

�

0′

L � length of 90º bend
L � 46 ft� 552 in.

d � 4.5 in.

L �
2�r

4
�

�r

2

Assume that the deflection curve is nearly flat. 
Then the distance BC is the same as the length L
of the beam.

� � arcsin 0.02 � 0.02 rad
� � � (1 � cos �) � (75 m)(1 � cos (0.02 rad))

� 15.0 mm

NOTE: which confirms that the deflection

curve is nearly flat.

L

�
� 100,

∴  sin u�
L
r

�
1.5 m

75 m
� 0.02
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Problem 5.4-5 A thin strip of steel of length L � 20 in. and thickness 
t � 0.2 in. is bent by couples M0 (see figure). The deflection � at the
midpoint of the strip (measured from a line joining its end points) is found 
to be 0.25 in. 

Determine the longitudinal normal strain � at the top surface of the strip. 

Solution 5.4-5 Thin strip of steel

t

M0M0

�

L
2
— L

2
—

L � 20 in. t � 0.2 in.
� � 0.25 in.

The deflection curve is very flat (note that L/� � 80)
and therefore � is a very small angle.

For small angles, (� is in radians)

� � � � � cos � � �(1 � cos �)

Substitute numerical values (� � inches): 

Solve numerically: � � 200.0 in.

NORMAL STRAIN

(Shortening at the top surface)

e�
y

r
�

t�2
r

�
0.1 in.

200 in.
� 500 � 10�6

0.25 � r ¢1 � cos 
10
r
≤

 � r ¢1 � cos 
L

2r
≤

u� sin u�
L�2
r

sin u�
L�2
r

M0M0

�

L
2
— L

2
—

��

0′

� �

Problem 5.4-6 A bar of rectangular cross section is loaded and
supported as shown in the figure. The distance between supports is 
L � 1.2 m and the height of the bar is h � 100 mm. The deflection 
� at the midpoint is measured as 3.6 mm. 

What is the maximum normal strain � at the top and bottom of
the bar? 

P
h

P

a a

�

L
2
— L

2
—
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Solution 5.4-6 Bar of rectangular cross section

L � 1.2 m h � 100 mm � � 3.6 mm

Note that the deflection curve is nearly flat 
(L/� � 333) and � is a very small angle.

� � r (1 � cos u) � r ¢1 � cos 
L

2r
≤

u�
L�2
r

 (radians)

sin u�
L�2
r

Substitute numerical values (� � meters):

Solve numerically: � � 50.00 m

NORMAL STRAIN

(Elongation on top; shortening on bottom)

e�
y

r
�

h�2
r

�
50 mm

50,000 mm
� 1000 � 10�6

0.0036 � r ¢1 � cos 
0.6
r
≤

P
h

P

a a

�

L
2
— L

2
—

� �
��

0′

Normal Stresses in Beams

Problem 5.5-1 A thin strip of hard copper (E � 16,400 ksi) having
length L � 80 in. and thickness t � 3/32 in. is bent into a circle and 
held with the ends just touching (see figure). 

(a) Calculate the maximum bending stress �max in the strip. 
(b) Does the stress increase or decrease if the thickness of 

the strip is increased? 

Solution 5.5-1 Copper strip bent into a circle

3
32

t = — in.

E � 16,400 ksi L � 80 in. t � 3/32 in.

(a) MAXIMUM BENDING STRESS

From Eq. (5-7): 

smax �
2�E(t�2)

L
�

�Et

L

s�
Ey

r
�

2�Ey

L

L � 2�r � 2�r�r�
L

2�

Substitute numerical values:

(b) CHANGE IN STRESS

If the thickness t is increased, the stress �max increases.

smax �
� (16,400 ksi)(3�32 in.) 

80 in.
� 60.4 ksi



Problem 5.5-2 A steel wire (E � 200 GPa) of diameter d � 1.0 mm 
is bent around a pulley of radius R0 � 400 mm (see figure). 

(a) What is the maximum stress �max in the wire?
(b) Does the stress increase or decrease if the radius of the pulley 

is increased? 

Solution 5.5-2 Steel wire bent around a pulley
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d

R0

E � 200 GPa d � 1.0 mm R0 � 400 mm

(a) MAXIMUM STRESS IN THE WIRE

y �
d

2
� 0.5 mm

r� R0 �
d

2
� 400 mm � 0.5 mm � 400.5 mm

From Eq. (5-7):

(b) CHANGE IN STRESS

If the radius is increased, the stress �max

decreases.

smax �
Ey

r
�

(200 GPa) (0.5 mm)

400.5 mm
� 250 MPa

Problem 5.5-3 A thin, high-strength steel rule (E � 30 � 106 psi)
having thickness t � 0.15 in. and length L � 40 in. is bent by couples 
M0 into a circular arc subtending a central angle 	 � 45° (see figure). 

(a) What is the maximum bending stress �max in the rule? 
(b) Does the stress increase or decrease if the central angle is

increased? 

Solution 5.5-3 Thin steel rule bent into an arc

L = length

M0M0

t

	

E � 30 � 106 psi
t � 0.15 in.

L � 40 in.
	 � 45º � 0.78540 rad

(a) MAXIMUM BENDING STRESS

smax �
Ey

r
�

E(t�2)

L�	
�

Et	

2L

L � r	 �r�
L
	
�	 � radians

Substitute numerical values:

� 44,200 psi � 44.2 ksi

(b) CHANGE IN STRESS

If the angle 	 is increased, the stress �max

increases.

smax �
(30 � 106 psi) (0.15 in.) (0.78540 rad)

2 (40 in.)

L

	

�



Problem 5.5-4 A simply supported wood beam AB with span length 
L � 3.5 m carries a uniform load of intensity q � 6.4 kN/m (see figure). 

Calculate the maximum bending stress �max due to the load q if the
beam has a rectangular cross section with width b � 140 mm and height
h � 240 mm.

Solution 5.5-4 Simple beam with uniform load
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A

L 

B

q

h

b

L � 3.5 m q � 6.4 kN/m
b � 140 mm h � 240 mm

smax �
Mmax

S
�

3qL2

4bh2

Mmax �
qL2

8
�S �

bh2

6

Substitute numerical values:

smax �
3(6.4 kN�m)(3.5 m)2

4(140 mm)(240 mm)2 � 7.29 MPa

Problem 5.5-5 Each girder of the lift bridge (see figure) is 
180 ft long and simply supported at the ends. The design load 
for each girder is a uniform load of intensity 1.6 k/ft. The girders 
are fabricated by welding three steel plates so as to form an 
I-shaped cross section (see figure) having section modulus 
S � 3600 in3. 

What is the maximum bending stress �max in a girder due 
to the uniform load? 

Solution 5.5-5 Bridge girder

L � 180 ft q � 1.6 k/ft

S � 3600 in.3

smax �
(1.6 k �ft) (180 ft)2(12 in.�ft)

8(3600 in.3)
� 21.6 ksi

smax �
Mmax

S
�

qL2

8S

Mmax �
qL2

8
L

q



Problem 5.5-6 A freight-car axle AB is loaded approximately as shown
in the figure, with the forces P representing the car loads (transmitted to
the axle through the axle boxes) and the forces R representing the rail
loads (transmitted to the axle through the wheels). The diameter of the
axle is d � 80 mm, the distance between centers of the rails is L, and 
the distance between the forces P and R is b � 200 mm. 

Calculate the maximum bending stress �max in the axle if P � 47 kN.

Solution 5.5-6 Freight-car axle
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d
d

b b

A

P P

RR

L

B

Diameter d � 80 mm
Distance b � 200 mm
Load P � 47 kN

Mmax � Pb�S �
�d3

32

MAXIMUM BENDING STRESS

Substitute numerical values:

smax �
32(47 kN)(200 mm)

�(80 mm)3 � 187 MPa

smax �
Mmax

S
�

32Pb

�d 3

Problem 5.5-7 A seesaw weighing 3 lb/ft of length is occupied by two
children, each weighing 90 lb (see figure). The center of gravity of each
child is 8 ft from the fulcrum. The board is 19 ft long, 8 in. wide, and 
1.5 in. thick. 

What is the maximum bending stress in the board? 

Solution 5.5-7 Seesaw

b � 8 in. h � 1.5 in.
q � 3 lb/ft P � 90 lb d � 8.0 ft L � 9.5 ft

� 855.4 lb-ft � 10,264 lb-in.

smax �
M

S
�

10,264 lb-in.

3.0 in.3
� 3420 psi

S �
bh2

6
� 3.0 in3.

Mmax � Pd �
qL2

2
� 720 lb-ft � 135.4 lb-ft

h

L

d d

q
PP

L

b



Problem 5.5-8 During construction of a highway bridge, the
main girders are cantilevered outward from one pier toward 
the next (see figure). Each girder has a cantilever length of 46 m
and an I-shaped cross section with dimensions as shown in the
figure. The load on each girder (during construction) is assumed
to be 11.0 kN/m, which includes the weight of the girder. 

Determine the maximum bending stress in a girder due to
this load. 

Solution 5.5-8 Bridge girder
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25 mm

50 mm

600 mm

2400 mm

L � 46 m
q � 11.0 kN/m
b � 600 mm h � 2400 mm

tf � 50 mm tw � 25 mm
h1 � h � 2tf � 2300 mm
b1 � b � tw � 575 mm

� 129 MPa

smax �
Mmax c

I
�

(11,638 kŇ � ˇm)(1.2 m)

0.1082 m4

 � 0.6912 m4 � 0.5830 m4 � 0.1082 m4

 �
1

12
 (0.6 m)(2.4 m)3 �

1

12
 (0.575 m)(2.3 m)3

I �
bh3

12
�

b1h
3
1

12

smax �
Mmax c

I
�c �

h

2
� 1200 mm

Mmax �
qL2

2
�

1

2
 (11.0 kN�m)(46 m)2 � 11,638 kŇ � ˇm

b

tf

h1 h2
tw

L

q

Problem 5.5-9 The horizontal beam ABC of an oil-well pump 
has the cross section shown in the figure. If the vertical pumping
force acting at end C is 8.8 k, and if the distance from the line 
of action of that force to point B is 14 ft, what is the maximum 
bending stress in the beam due to the pumping force? 

A B C

0.625
in.

0.875 in.

8.0 in.

20.0
in.



Solution 5.5-9 Beam in an oil-well pump
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L � 14 ft
P � 8.8 k
b � 8.0 in. h � 20.0 in.
tf � 0.875 in. tw � 0.625 in.

h1 � h � 2tf � 18.25 in.
b1 � b � tw � 7.375 in.

Mmax � PL � (8.8 k)(14 ft)
� 123,200 lb-ft � 1,478,400 lb-in.

� 5,333.3 in.4 � 3,735.7 in.4 � 1,597.7 in.4

� 9250 psi � 9.25 ksi

smax �
Mmax c

I
�

(1.4784 � 106 lb-in.)(10.0 in.)

1,597.7 in.4

 �
1

12
 (8.0 in.) (20.0 in.)3 �

1

12
 (7.375 in.)(18.25 in.)3

I �
bh3

12
�

b1h1
3

12

smax �
Mmax c

I
�c �

h

2
� 10.0 in.

b

tf

h1 h2
tw

L

P

Problem 5.5-10 A railroad tie (or sleeper) is subjected to two rail 
loads, each of magnitude P � 175 kN, acting as shown in the figure. 
The reaction q of the ballast is assumed to be uniformly distributed 
over the length of the tie, which has cross-sectional dimensions 
b � 300 mm and h � 250 mm.

Calculate the maximum bending stress �max in the tie due to 
the loads P, assuming the distance L � 1500 mm and the overhang 
length a � 500 mm. 

Solution 5.5-10 Railroad tie (or sleeper)

L

q

P P
b

h

a a

DATA P � 175 kN b � 300 mm h � 250 mm
L � 1500 mm a � 500 mm

BENDING-MOMENT DIAGRAM

 �
P

4
 (2a � L)

 �
P

L � 2a
 ¢L

2
� a≤

2

�
PL

2

M2 �
q

2
 ¢L

2
� a≤

2

�
PL

2

M1 �
qa2

2
�

Pa2

L � 2a

q �
2P

L � 2a
�S �

bh2

6
� 3.125 � 10�3 m3

Substitute numerical values:

M1 � 17,500 N � m M2 � �21,875 N � m

Mmax � 21,875 N � m

MAXIMUM BENDING STRESS

(Tension on top; compression on bottom)

smax �
Mmax

5
�

21,875 Ň � ˇm

3.125 � 10�3 m3 � 7.0 MPa0

M1

M2

M1



Problem 5.5-11 A fiberglass pipe is lifted by a sling, as shown in the
figure. The outer diameter of the pipe is 6.0 in., its thickness is 0.25 in.,
and its weight density is 0.053 lb/in.3 The length of the pipe is L � 36 ft 
and the distance between lifting points is s � 11 ft. 

Determine the maximum bending stress in the pipe due to its own
weight. 

Solution 5.5-11 Pipe lifted by a sling
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s

L

L � 36 ft � 432 in. d2 � 6.0 in. t � 0.25 in.
s � 11 ft � 132 in. d1 � d2 � 2t � 5.5 in.


 � 0.053 lb/in.3

a � (L � s)/2 � 150 in.

A �
�

4
 (d 2

2 � d 1
2) � 4.5160 in.2

q � 
A � (0.053 lb/in.3)(4.5160 in.2) � 0.23935 lb/in.

I �
�

64
 (d 2

4 � d 1
4) � 18.699 in.4

L

q

a as d1

d2

t

BENDING-MOMENT DIAGRAM

Mmax � 2,692.7 lb-in.

M2 � �
qL

4
 ¢L

2
� s≤� �2,171.4 lb-in.

M1 � �
qa2

2
� �2,692.7 lb-in.

MAXIMUM BENDING STRESS

(Tension on top)

smax �
(2,692.7 lb-in.)(3.0 in.)

18.699 in.4
� 432 psi

smax �
Mmax c

I
�c �

d2

2
� 3.0 in.

0

M1 M1

M2



Problem 5.5-12 A small dam of height h � 2.0 m is constructed of
vertical wood beams AB of thickness t � 120 mm, as shown in the figure.
Consider the beams to be simply supported at the top and bottom. 

Determine the maximum bending stress �max in the beams, assuming
that the weight density of water is 
 � 9.81 kN/m3.

Solution 5.5-12 Vertical wood beam
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h

t

A

B

h � 2.0 m
t � 120 mm

 � 9.81 kN/m3 (water)

Let b � width of beam perpendicular to the plane 
of the figure

Let q0 � maximum intensity of distributed load

q0 � gbh�S �
bt 2

6

MAXIMUM BENDING MOMENT

Substitute into the equation for M:

For the vertical wood beam: 

Maximum bending stress

SUBSTITUTE NUMERICAL VALUES:

�max � 2.10 MPa

NOTE: For b � 1.0 m, we obtain q0 � 19,620 N/m, 
S � 0.0024 m3, Mmax � 5,034.5 N � m, and
�max � Mmax/S � 2.10 MPa

smax �
Mmax

S
�

2q0ˇˇ h2

3�3 bt 2
�

2gh3

3�3 t 2

L � h; Mmax �
q0ˇˇ h2

9�3

Mmax �
q0ˇˇ L

6
 ¢ L

�3
≤�

q0ˇ

6L
 ¢ L3

3�3
≤�

q0ˇˇ L2

9�3

x � L� �3

dM

dx
�

q0ˇˇ L

6
�

q0ˇˇ x2

2L
� 0�x �

L

�3

 �
q0ˇˇ Lx

6
�

q0ˇˇ x3

6L

M � RAx �
q0ˇ x3

6L

RA �
q̌0 ˇL

6

h

A

B
q0

t

L

A B

q0

RA

x

(��)xq � q0  
L



Problem 5.5-13 Determine the maximum tensile stress �t (due to pure
bending by positive bending moments M) for beams having cross sections
as follows (see figure): (a) a semicircle of diameter d, and (b) an isosceles
trapezoid with bases b1 � b and b2 � 4b/3, and altitude h.

Solution 5.5-13 Maximum tensile stress
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C C h

(a) (b)

d b2

b1

(a) SEMICIRCLE

From Appendix D, Case 10:

st �
Mc

IC

�
768M

(9�2 � 64)d3 � 30.93 
M

d3

c �
4r

3�
�

2d

3�

IC �
(9� 2 � 64)r4

72�
�

(9� 2 � 64)d 4

1152�

(b) TRAPEZOID

From Appendix D, Case 8:

st �
Mc

IC

�
360M

73bh2

c �
h(2b1 � b2)

3(b1 � b2)
�

10h

21

 �
73bh3

756

IC �
h3(b1

2 � 4b1b2 � b2
2)

36(b1 � b2)

b1 � b�b2 �
4b

3

C

d

c C h

b2

b1

c

Problem 5.5-14 Determine the maximum bending stress �max
(due to pure bending by a moment M) for a beam having a cross 
section in the form of a circular core (see figure). The circle has 
diameter d and the angle � � 60°. (Hint: Use the formulas given 
in Appendix D, Cases 9 and 15.)

C

d

�

�



Solution 5.5-14 Circular core
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From Appendix D, Cases 9 and 15:

� � radians 	 � radians a � r sin � b � r cos �

 �
d 4

128
 (4b� sin 4b)

 �
�d 4

64
�

d 4

32
 ¢�

2
� b�

1

4
 sin 4b≤

 �
�d 4

64
�

d 4

32
 ¢�

2
� b�  ¢1

2
 sin 2b≤(�cos 2b)≤

 �
�d 4

64
�

d 4

32
 ¢�

2
�  b� (sin b cos b)(1 � 2 cos2b)≤

Iy �
�d 4

64
�

d 4

32
 ¢�

2
�  b� sin b cos b� 2 sin b cos3 b≤

r �
d

2
�	 �

�

2
� b

Iy �
�r4

4
�

r4

2
 ¢	 �

ab

r 2
�

2ab3

r4 ≤
MAXIMUM BENDING STRESS

For � � 60º � �/3 rad:

smax �
576M

(8��3 � 9)d 3
� 10.96 

M

d 3

smax �
64M sin b

d3(4b� sin 4b)

smax �
Mc

Iy

�c � r sin b�
d

2
 sin b

C

d

�

�
y y

Problem 5.5-15 A simple beam AB of span length L � 24 ft 
is subjected to two wheel loads acting at distance d � 5 ft apart 
(see figure). Each wheel transmits a load P � 3.0 k, and the 
carriage may occupy any position on the beam. 

Determine the maximum bending stress �max due to the wheel 
loads if the beam is an I-beam having section modulus S � 16.2 in.3

Solution 5.5-15 Wheel loads on a beam

A B C

d
P P

L

L � 24 ft � 288 in.
d � 5 ft � 60 in.
P � 3 k
S � 16.2 in.3

MAXIMUM BENDING MOMENT

dM

dx
�

P

L
 (2L � d � 4x) � 0�x �

L

2
�

d

4

M � RAx �
P

L
 (2Lx � dx � 2x2)

RA �
P

L
 (L � x) �

P

L
 (L � x � d) �

P

L
 (2L � d � 2x)

Substitute x into the equation for M:

MAXIMUM BENDING STRESS

Substitute numerical values:

� 21.4 ksi

smax �
3k

2(288 in.) (16.2 in.3)
 (288 in. � 30 in.)2

smax �
Mmax

S
�

P

2LS
 ¢L �

d

2
≤

2

Mmax �
P

2L
 ¢L �

d

2
≤

2

A B

d

P P

LRA

x



Problem 5.5-16 Determine the maximum tensile
stress �t and maximum compressive stress �c due to 
the load P acting on the simple beam AB (see figure).

Data are as follows: P � 5.4 kN, L � 3.0 m, 
d � 1.2 m, b � 75 mm, t � 25 mm, h � 100 mm, 
and h1 � 75 mm.

Solution 5.5-16 Simple beam of T-section
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d

A B

P

b

h1h

t

L

P � 5.4 kN L � 3.0 m

b � 75 mm t � 25 mm

d � 1.2 m h � 100 mm h1 � 75 mm

PROPERTIES OF THE CROSS SECTION

A � 3750 mm2

c1� 62.5 mm c2 � 37.5 mm

IC� 3.3203 � 106 mm4

REACTIONS OF THE BEAM

RA � 2.16 kN RB � 3.24 kN

MAXIMUM BENDING MOMENT

Mmax � RA(L � d) � RB(d) � 3888 N � m

MAXIMUM TENSILE STRESS

� 43.9 MPa

MAXIMUM COMPRESSIVE STRESS

� 73.2 MPa

sc �
Mmax c1

IC

�
(3888 Ň � ˇm)(0.0625 m)

3.3203 � 106 mm4

st �
Mmax c2

IC

�
(3888 Ň � ˇm)(0.0375 m)

3.3203 � 106 mm4

d

A B

P

b

h1 h
c1

c2

t

L RBRA

C

Problem 5.5-17 A cantilever beam AB, loaded by a uniform load and 
a concentrated load (see figure), is constructed of a channel section. 

Find the maximum tensile stress �t and maximum compressive 
stress �c if the cross section has the dimensions indicated and the 
moment of inertia about the  z axis (the neutral axis) is I � 2.81 in.4

(Note: The uniform load represents the weight of the beam.)
A B

5.0 ft 3.0 ft

20 lb/ft

z

y

C

0.606 in.

200 lb

2.133 in.



Solution 5.5-17 Cantilever beam (channel section)
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Problem 5.5-18 A cantilever beam AB of triangular cross section has
length L � 0.8 m, width b � 80 mm, and height h � 120 mm (see figure).
The beam is made of brass weighing 85 kN/m3. 

(a) Determine the maximum tensile stress �t and maximum
compressive stress �c due to the beam’s own weight.

(b) If the width b is doubled, what happens to the stresses? 
(c) If the height h is doubled, what happens to the stresses?

Solution 5.5-18 Triangular beam

I � 2.81 in.4 c1 � 0.606 in. c2 � 2.133 in.

� 1000 lb-ft � 640 lb-ft � 1640 lb-ft

� 19,680 lb-in.

MAXIMUM TENSILE STRESS

� 4,240 psi

MAXIMUM COMPRESSIVE STRESS

� 14,940 psi

 sc �
Mc2

I
�

(19,680 lb-in.) (2.133 in.)

2.81 in.4

 st �
Mc1

I
�

(19,680 lb-in.) (0.606 in.)

2.81 in.4

 Mmax � (200 lb)(5.0 ft) � (20 lb�ft) (8.0 ft)¢8.0 ft

2
≤

A B

5.0 ft

8.0 ft

3.0 ft

20 lb/ft

z

y

C

0.606 in.

200 lb

2.133 in.

h

A

B

b

L

L

q

h

b

z C

y

h/3

2h
3

L � 0.8 m b � 80 mm h � 120 mm

 � 85 kN/m3

(a) MAXIMUM STRESSES

Tensile stress: st �
Mc1

Iz

�
3gL2

h

Iz � IC �
bh3

36
�c1 �

h

3
�c2 �

2h

3

q � gA � g ¢bh

2
≤�Mmax �

qL2

2
�
gbhL2

4

Compressive stress: �c � 2�t

Substitute numerical values: �t � 1.36 MPa

�c � 2.72 MPa

(b) WIDTH b IS DOUBLED

No change in stresses.

(c) HEIGHT h IS DOUBLED

Stresses are reduced by half.



Problem 5.5-19 A beam ABC with an overhang from B to C supports a
uniform load of 160 lb/ft throughout its length (see figure). The beam is 
a channel section with dimensions as shown in the figure. The moment of
inertia about the z axis (the neutral axis) equals 5.14 in.4

Calculate the maximum tensile stress �t and maximum compressive
stress �c due to the uniform load. 

Solution 5.5-19 Beam with an overhang
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A
B

C

10 ft 5 ft

160 lb/ft

z

y

C

0.674 in.

2.496 in.

L � 10 ft

q � 160 lb/ft

CBA

b � 5 ft 

z

y

C

0.674 in.

2.496 in.

0

M1

M2
3.75 ft

Iz � 5.14 in.4

c1 � 0.674 in. c2 � 2.496 in.
RA � 600 lb RB � 1800 lb
M1 � 1125 lb-ft � 13,500 lb-in.
M2 � 2000 lb-ft � 24,000 lb-in.

AT CROSS SECTION OF MAXIMUM POSITIVE

BENDING MOMENT

AT CROSS SECTION OF MAXIMUM NEGATIVE

BENDING MOMENT

MAXIMUM STRESSES

�t � 6,560 psi �c � 11,650 psi

sc �
M2c2

Iz

�
(24,000 lb-in.) (2.496 in.)

5.14 in.4
� 11,650 psi

st �
M2c1

Iz

�
(24,000 lb-in.) (0.674 in.)

5.14 in.4
� 3,150 psi

sc �
M1c1

Iz

�
(13,500 lb-in.) (0.674 in.)

5.14 in.4
� 1,770 psi

st �
M1c2

Iz

�
(13,500 lb-in.) (2.496 in.)

5.14 in.4
� 6,560 psi

Problem 5.5-20 A frame ABC travels horizontally with an acceleration
a0 (see figure). Obtain a formula for the maximum stress �max in the
vertical arm AB, which has length L, thickness t, and mass density �. 

L

CB

A
t

a0 = acceleration



Solution 5.5-20 Accelerating frame
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L � length of vertical arm
t � thickness of vertical arm
� � mass density

a0 � acceleration
Let b � width of arm perpendicular to the plane of the figure
Let q � inertia force per unit distance along vertical arm

VERTICAL ARM

S �
bt 2

6
�smax �

Mmax

S
�

3rL2a0

t

q � rbta0�Mmax �
qL2

2
�
rbta0 L2

2

TYPICAL UNITS FOR USE

IN THE PRECEDING EQUATION

SI UNITS: � � kg/m3 � N � s2/m4

L � meters (m)

a0 � m/s2

t � meters (m)

�max � N/m2 (pascals)

USCS UNITS: � � slug/ft3 � lb-s2/ft4

L � ft a0 � ft/s2 t � ft

�max � lb/ft2 (Divide by 144 to obtain psi)

qL

t

Problem 5.5-21 A beam of T-section is supported and 
loaded as shown in the figure. The cross section has width 
b �2 1/2 in., height h � 3 in., and thickness t � 1/2 in. 

Determine the maximum tensile and compressive 
stresses in the beam. 

Solution 5.5-21 Beam of T-section

q = 80 lb/ft
P = 625 lb

h =
3 in.

b = 2    in.
1—
2

L1 = 4 ft

L3 = 5 ftL2 = 8 ft

t = 1—
2 in.

t = 1—
2 in.

L1 � 4 ft � 48 in. L2 � 8 ft � 96 in. L3 � 5 ft � 60 in.

P � 625 lb q � 80 lb/ft � 6.6667 lb/in.

PROPERTIES OF THE CROSS SECTION

b � 2.5 in. h � 3.0 in. t � 0.5 in.
A � bt � (h � t)t � 2.50 in.2

c1 � 2.0 in. c2 � 1.0 in.

REACTIONS

RA � 187.5 lb (upward)
RB � 837.5 lb (upward)

IC �
25

12
 in.4 � 2.0833 in.4

BENDING-MOMENT DIAGRAM

AT CROSS SECTION OF MAXIMUM POSITIVE

BENDING MOMENT

AT CROSS SECTION OF MAXIMUM NEGATIVE

BENDING MOMENT

MAXIMUM STRESSES

�t � 11,520 psi �c � 8,640 psi

st �
M2c1

IC

� 11,520 psi�sc �
M2c2

IC

� 5,760 psi

st �
M1c2

IC

� 4,320 psi�sc �
M1c1

IC

� 8,640 psi

q
P

L1

L3L2
RA RB

A
B

C

h

b

C

t

t

c1

c2

M1 � RA L1 � 9,000 lb – in.  

M2 �
 �qL3

2

 � �12,000 lb – in.����   2



Problem 5.5-22 A cantilever beam AB with a rectangular cross
section has a longitudinal hole drilled throughout its length (see
figure). The beam supports a load P � 600 N. The cross section 
is 25 mm wide and 50 mm high, and the hole has a diameter of 
10 mm. 

Find the bending stresses at the top of the beam, at the top of
the hole, and at the bottom of the beam. 

Solution 5.5-22 Rectangular beam with a hole
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50 mm
12.5 mm

25 mm

10 mm

A B

P = 600 N

L = 0.4 m

37.5 mm

MAXIMUM BENDING MOMENT

M � PL � (600 N)(0.4 m) � 240 N � m

PROPERTIES OF THE CROSS SECTION

A1 � area of rectangle

� (25 mm)(50 mm) � 1250 mm2

A2 � area of hole

A � area of cross section

� A1 � A2 � 1171.5 mm2

Using line B-B as reference axis:

∑Aiyi � A1(25 mm) � A2(37.5 mm) � 28,305 mm3

Distances to the centroid C:

c1 � 50 mm � c2 � 25.838 mm

c2 � y � 24.162 mm

y �
a Ai yi

A
�

28,305 mm3

1171.5 mm2 � 24.162 mm

�
�

4
(10 mm)2 � 78.54 mm2

MOMENT OF INERTIA ABOUT THE NEUTRAL AXIS

(THE z AXIS)

All dimensions in millimeters.

Rectangle: 
Iz � Ic � Ad 2

Hole:

� 490.87 � 13,972 � 14,460 mm4

Cross-section: 
I � 261,300 � 14,460 � 246,800 mm4

STRESS AT THE TOP OF THE BEAM

� 25.1 MPa
(tension)

STRESS AT THE TOP OF THE HOLE

(tension)

STRESS AT THE BOTTOM OF THE BEAM

� �23.5 MPa
(compression)

s3 � �
Mc2

I
� �

(240 Ň � ˇm)(24.162 mm)

246,800 mm4

s2 �
(240 Ň � ˇm)(18.338 mm)

246,800 mm4 � 17.8 MPa

s2 �
My

I
�y � c1 � 7.5 mm � 18.338 mm

s1 �
Mc1

I
�

(240 Ň � ˇm)(25.838 mm)

246,800 mm4

Iz � Ic � Ad 2 �
�

64
(10)4 � (78.54)(37.5 � 24.162)2

� 260,420 � 878 � 261,300 mm4

�
1

12
(25)(50)3 � (25)(50)(25 � 24.162)2

c1

c2

y

B B

C
y

z
C

–



Problem 5.5-23 A small dam of height h � 6 ft is constructed of
vertical wood beams AB, as shown in the figure. The wood beams,
which have thickness t � 2.5 in., are simply supported by horizontal
steel beams at A and B. 

Construct a graph showing the maximum bending stress �max in
the wood beams versus the depth d of the water above the lower
support at B. Plot the stress �max (psi) as the ordinate and the depth 
d (ft) as the abscissa. (Note: The weight density 
 of water equals 
62.4 lb/ft3.) 

Solution 5.5-23 Vertical wood beam in a dam
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Wood beam

Wood beam

Steel beam

Steel beam

Side view Top view

B

A

h

d

t

t

h � 6 ft
t � 2.5 in.


 � 62.4 lb/ft3

Let b � width of beam
(perpendicular to the
figure)
Let q0 � intensity of
load at depth d
q0 � 
 bd

ANALYSIS OF BEAM

L � h � 6 ft

x0 � dB d

3L

RB �
q0 d

6
 ¢3 �

d

L
≤

RA �
q0 d 2

6L

MAXIMUM BENDING STRESS

Section modulus: 

q0 � 
 bd

SUBSTITUTE NUMERICAL VALUES:
d � depth of water (ft) (Max. d � h � 6 ft)
L � h � 6 ft 
 � 62.4 lb/ft3 t � 2.5 in.
�max � psi

d (ft) �max (psi)

0 0
1 9
2 59
3 171
4 347
5 573
6 830

 � 0.1849d 3(54 � 9d � d�2d)

smax �
(62.4)d 3

(2.5)2  ¢1 �
d

6
�

d

9B d

18
≤

smax �
gd 3

t 2
 ¢1 �

d

L
�

2d

3LB d

3L
≤

smax �
Mmax

S
�

6

bt 2
B q0 d 2

6
¢1 �

d

L
�

2d

3LB d

3L
≤ R

S �
1

6
 bt 2

A

B
q0

d

h

t

C
A

q0

B

d

L

RBRA

V

M

x0

0

0

MC

C

RA

�RB

Mmax

Mmax �
q0 d 2

6
 ¢1 �

d

L
�

2d

3LB d

3L
≤

830 psi 

0        1       2       3       4      5       6    
d (ft)

250

500

750

1000

�max
(psi)

MC � RA(L � d) �
q0 d 2

6
 ¢1 �

d

L
≤



Design of Beams

Problem 5.6-1 The cross section of a narrow-gage railway 
bridge is shown in part (a) of the figure. The bridge is constructed 
with longitudinal steel girders that support the wood cross ties. 
The girders are restrained against lateral buckling by diagonal 
bracing, as indicated by the dashed lines. 

The spacing of the girders is s1 � 50 in. and the spacing 
of the rails is s2 � 30 in. The load transmitted by each rail to a
single tie is P � 1500 lb. The cross section of a tie, shown in
part (b) of the figure, has width b � 5.0 in. and depth d.

Determine the minimum value of d based upon an allowable
bending stress of 1125 psi in the wood tie. (Disregard the weight
of the tie itself.) 

Solution 5.6-1 Railway cross tie
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s1

d

s2
P P

Wood 
tie

Steel
girder

Steel rail

(a)

(b)

b

s1 � 50 in. b � 5.0 in. s2 � 30 in.
d � depth of tie P � 1500 lb �allow � 1125 psi

S �
bd 2

6
�

1

6
(50 in.) (d 2) �

5d 2

6
�d � inches

Mmax �
P(s1 � s2)

2
� 15,000 lb-in. Solving, d2 � 16.0 in. dmin � 4.0 in.

Note: Symbolic solution: d 2 �
3P(s1 � s2)

bsallow

Mmax �sallow S�15,000 � (1125)¢5d 2

6
≤

s1

d

s2
P P

Wood 
tie

Steel rail

b

Problem 5.6-2 A fiberglass bracket ABCD of solid circular cross 
section has the shape and dimensions shown in the figure. A vertical 
load P � 36 N acts at the free end D. 

Determine the minimum permissible diameter dmin of the bracket if
the allowable bending stress in the material is 30 MPa and b � 35 mm.
(Disregard the weight of the bracket itself.) 

Solution 5.6-2 Fiberglass bracket

5b

2b

A B

D C

P 2b

DATA P � 36 N �allow � 30 MPa b � 35 mm

CROSS SECTION

MAXIMUM BENDING MOMENT Mmax � P(3b)

MAXIMUM BENDING STRESS

sallow �
3Pbd

2I
�

96 Pb

�d 3
smax �

Mmax c

I
�c �

d

2

I �
�d 4

64
d = diameter

MINIMUM DIAMETER

� 1,283.4 mm3

dmin � 10.9 mm

d 3 �
96Pb

�sallow
�

(96)(36 N)(35 mm)

�(30 MPa)



Problem 5.6-3 A cantilever beam of length L � 6 ft supports a uniform
load of intensity q � 200 lb/ft and a concentrated load P � 2500 lb 
(see figure). 

Calculate the required section modulus S if �allow � 15,000 psi. Then
select a suitable wide-flange beam (W shape) from Table E-1, Appendix
E, and recalculate S taking into account the weight of the beam. Select a
new beam size if necessary. 

Solution 5.6-3 Cantilever beam
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L = 6 ft

q � 200 lb/ft

P � 2500 lb

P � 2500 lb q � 200 lb/ft L � 6 ft
�allow � 15,000 psi

REQUIRED SECTION MODULUS

�18,600 lb-ft � 223,200 lb-in.

S �
Mmax

sallow
�

223,200 lb-in.

15,000 psi
� 14.88 in.3

Mmax � PL �
qL2

2
� 15,000 lb-ft � 3,600 lb-ft

TRIAL SECTION W 8 � 21

S � 18.2 in.3 q0 � 21 lb/ft

Mmax � 223,200 � 4,536 � 227,700 lb-in.

Required

15.2 in.3 � 18.2 in.3 � Beam is satisfactory.

Use W 8 � 21

S �
Mmax

sallow
�

227,700 lb-in.

15,000 psi
� 15.2 in.3

M0 �
q0 L

2

2
� 378 lb-ft � 4536 lb-in.

Problem 5.6-4 A simple beam of length L � 15 ft carries a uniform
load of intensity q � 400 lb/ft and a concentrated load  P � 4000 lb
(see figure). 

Assuming �allow � 16,000 psi, calculate the required section 
modulus S. Then select an 8-inch wide-flange beam (W shape) from
Table E-1, Appendix E, and recalculate S taking into account the 
weight of the beam. Select a new 8-inch beam if necessary. 

Solution 5.6-4 Simple beam

L = 15 ft

q = 400 lb/ft

P = 4000 lb
7.5 ft

P � 4000 lb q � 400 lb/ft L � 15 ft
�allow � 16,000 psi use an 8-inch W shape

REQUIRED SECTION MODULUS

� 26,250 lb-ft � 315,000 lb-in.

S �
Mmax

sallow
�

315,000 lb-in.

16,000 psi
� 19.69 in.3

Mmax �
PL

4
�

qL2

8
� 15,000 lb-ft � 11,250 lb-ft

TRIAL SECTION W 8 � 28

S � 24.3 in.3 q0 � 28 lb/ft

Mmax � 315,000 � 9,450 � 324,450 lb-in.

Required

20.3 in.3 � 24.3 in.3 � Beam is satisfactory.

Use W 8 � 28

S �
Mmax

sallow
�

324,450 lb-in.

16,000 psi
� 20.3 in.3

M0 �
q0 L2

8
� 787.5 lb-ft � 9450 lb-in.



Problem 5.6-5 A simple beam AB is loaded as shown in the figure on 
the next page. Calculate the required section modulus S if �allow � 15,000 psi,
L � 24 ft, P � 2000 lb, and q � 400 lb/ft. Then select a suitable I-beam 
(S shape) from Table E-2, Appendix E, and recalculate S taking into 
account the weight of the beam. Select a new beam size if necessary. 

Solution 5.6-5 Simple beam
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A B

Pq q

L
4
— L

4
— L

4
— L

4
—

P � 2000 lb q � 400 lb/ft L � 24 ft
�allow � 15,000 psi

REQUIRED SECTION MODULUS

� 19,200 lb-ft � 230,400 lb-in.

S �
Mmax

sallow
�

230,400 lb-in.

15,000 psi
� 15.36 in.3

Mmax �
PL

4
�

qL2

32
� 12,000 lb-ft � 7,200 lb-ft

TRIAL SECTION S 10 � 25.4

S � 24.7 in.3 q0 � 25.4 lb/ft

Mmax � 230,400 � 21,950 � 252,300 lb-in.

Required 
.

16.8 in.3 � 24.7 in.3 � Beam is satisfactory.

Use S 10 � 25.4

S �
Mmax

sallow
�

252,300 lb-in.

15,000 psi
� 16.8 in.3

M0 �
q0 L2

8
� 1829 lb-ft � 21,950 lb-in.

Problem 5.6-6 A pontoon bridge (see figure) is constructed of two
longitudinal wood beams, known as balks, that span between adjacent
pontoons and support the transverse floor beams, which are called
chesses. 

For purposes of design, assume that a uniform floor load of 
8.0 kPa acts over the chesses. (This load includes an allowance for 
the weights of the chesses and balks.) Also, assume that the chesses 
are 2.0 m long and that the balks are simply supported with a span of
3.0 m. The allowable bending stress in the wood is 16 MPa. 

If the balks have a square cross section, what is their minimum
required width bmin? 

Solution 5.6-6 Pontoon bridge

Chess

Pontoon

Balk

FLOOR LOAD: w � 8.0 kPa

ALLOWABLE STRESS: �allow � 16 MPa

Lc � length of chesses Lb � length of balks

� 2.0 m � 3.0 m

Chess

Pontoon

Balk

Lc � 2.0 m

Lb � 3.0 m



Problem 5.6-7 A floor system in a small building consists of
wood planks supported by 2 in. (nominal width) joists spaced at
distance s, measured from center to center (see figure). The span
length L of each joist is 10.5 ft, the spacing s of the joists is 16 in.,
and the allowable bending stress in the wood is 1350 psi. The uni-
form floor load is 120 lb/ft2, which includes an allowance for 
the weight of the floor system itself.

Calculate the required section modulus S for the joists, and
then select a suitable joist size (surfaced lumber) from Appendix F,
assuming that each joist may be represented as a simple beam car-
rying a uniform load. 

Solution 5.6-7 Floor joists
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LOADING DIAGRAM FOR ONE BALK

W � total load

� wLbLc

� 8.0 kN/m

�
(8.0 kPa)(2.0 m)

2

q �
W

2Lb

�
wLc

2

Section modulus 

Solving, bmin � 0.150 m � 150 mm

∴
b3

6
� 562.5 � 10�6 m3�and�b3 � 3375 � 10�6 m3

S �
Mmax

sallow
�

9,000 N � m

16 MPa
� 562.5 � 10�6 m3

Mmax �
qL2

b

8
�

(8.0 kN�m)(3.0 m)2

8
� 9,000 Ň � ˇm

S �
b3

6

Lb � 3.0 m

b

b

q � 8.0 kN/m

Joists

Planks

s

s

s

L

�allow � 1350 psi

L � 10.5 ft � 126 in.
w � floor load � 120 lb/ft2 � 0.8333 lb/in.2

s � spacing of joists � 16 in.
q � ws � 13.333 lb/in.

Required 

From Appendix F: Select 2 � 10 in. joists

S �
Mmax

sallow
�

26,460 lb�in.

1350 psi
� 19.6 in.3

Mmax �
qL2

8
�

1

8
(13.333 lb�in.) (126 in.)2 � 26,460 lb-in.q

L � 10.5 ft



Problem 5.6-8 The wood joists supporting a plank floor (see figure) are 
40 mm � 180 mm in cross section (actual dimensions) and have a span 
length L � 4.0 m. The floor load is 3.6 kPa, which includes the weight 
of the joists and the floor. 

Calculate the maximum permissible spacing s of the joists if the 
allowable bending stress is 15 MPa. (Assume that each joist may be 
represented as a simple beam carrying a uniform load.) 

Solution 5.6-8 Spacing of floor joists
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Joists

Planks

s

s

s

L
b = 40 mm

h = 180 mm

q � ws

S �
Mmax

sallow
�

wsL2

8sallow
�

bh2

6

Mmax �
qL2

8
�

wsL2

8

S �
bh2

6

SPACING OF JOISTS

Substitute numerical values:

� 0.450 m � 450 mm

smax �
4(40 mm)(180 mm)2(15 MPa)

3(3.6 kPa) (4.0 m)2

smax �
4 bh2sallow

3wL2

L � 4.0 m
w � floor load � 3.6 kPa �allow � 15 MPa
s � spacing of joists

q

L � 4.0 m



Problem 5.6-9 A beam ABC with an overhang from B to C is
constructed of a C 10 � 30 channel section (see figure). The beam
supports its own weight (30 lb/ft) plus a uniform load of intensity 
q acting on the overhang. The allowable stresses in tension and
compression are 18 ksi and 12 ksi, respectively. 

Determine the allowable uniform load qallow if the distance 
L equals 3.0 ft. 

Solution 5.6-9 Beam with an overhang
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q

A B C

C
0.649 in.

2.384 in.3.033
in.

10.0 in.

L L

DATA

C 10 � 30 channel section

c1 � 2.384 in. c2 � 0.649 in.

I � 3.94 in.4 (from Table E-3)

q0 � weight of beam ABC
� 30 lb/ft � 2.5 lb/in.

q � load on overhang

L � length of overhang
� 3.0 ft = 36 in.

ALLOWABLE STRESSES

�t � 18 ksi �c � 12 ksi

MAXIMUM BENDING MOMENT

Mmax occurs at support B.

Tension on top; compression on bottom.

Mmax �
(q � q0)L2

2

ALLOWABLE BENDING MOMENT

BASED UPON TENSION

ALLOWABLE BENDING MOMENT

BASED UPON COMPRESSION

ALLOWABLE BENDING MOMENT

Tension governs. Mallow � 29,750 lb-in.

ALLOWABLE UNIFORM LOAD q

� 45.91 � 2.5 � 43.41 lb/in.

qallow � (43.41)(12) � 521 lb/ft

qallow �
2Mallow

L2 � q0 �
2(29,750 lb-in.)

(36 in.)2 � 2.5 lb�in.

Mmax �
(q � q0)L2

2
�qallow � q0 �

2Mallow

L2

Mc �
sc  I

c2
�

(12 ksi)(3.94 in.4)

0.649 in.
� 72,850 lb-in.

Mt �
st  I

c1
�

(18 ksi)(3.94 in.4)

2.384 in.
� 29,750 lb-in.

Problem 5.6-10 A so-called “trapeze bar” in a hospital 
room provides a means for patients to exercise while in bed 
(see figure). The bar is 2.1 m long and has a cross section in 
the shape of a regular octagon. The design load is 1.2 kN applied
at the midpoint of the bar, and the allowable bending stress is
200 MPa. 

Determine the minimum height h of the bar. (Assume that
the ends of the bar are simply supported and that the weight of
the bar is negligible.)

h
C



Solution 5.6-10 Trapeze bar (regular octagon)
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P � 1.2 kN L � 2.1 m �allow � 200 MPa

Determine minimum height h.

MAXIMUM BENDING MOMENT

PROPERTIES OF THE CROSS SECTION

Use Appendix D, Case 25, with n � 8

b � length of one side

(from triangle)

For � � 45º: 

MOMENT OF INERTIA

IC �
8b4

192
(2.41421) [3(2.41421)2 � 1] � 1.85948b4

IC �
nb4

192
 ¢ cot 

b

2
≤ ¢3 cot2 

b

2
� 1≤

h

b
� cot 

45�

2
� 2.41421

b

h
� tan 

45�

2
� 0.41421

cot 
b

2
�

h

b

tan 
b

2
�

b

h

b�
360�

n
�

360�

8
� 45�

Mmax �
PL

4
�

(1.2 kN)(2.1 m)

4
� 630 Ň � ˇm

b � 0.41421h � IC � 1.85948(0.41421h)4 � 0.054738h4

SECTION MODULUS

MINIMUM HEIGHT h

h3 � 28.7735 � 10�6 m3 h � 0.030643 m

� hmin � 30.6 mm

ALTERNATIVE SOLUTION (n � 8)

Substitute numerical values:

h3 � 28.7735 � 10�6 m3 hmin � 30.643 mm

S � ¢4�2 � 5

6
≤ h3�h3 �

3PL

2(4�2 � 5)sallow

IC � ¢11 � 8�2

12
≤ b4 � ¢4�2 � 5

12
≤ h4

b � ( �2 � 1)h�h � ( �2 � 1)b

M �
PL

4
�b� 45��tan 

b

2
� �2 � 1�cot 

b

2
� �2 � 1

0.109476h3 �
630Ň � ˇm

200 MPa
� 3.15 � 10�6 m3

s�
M

S
�S �

M
s

S �
IC

h�2
�

0.054738h4

h�2
� 0.109476h3

h
C

L

L
2

b

P

C

C

h
2

b

�

b
2

h
2

�
2

Problem 5.6-11 A two-axle carriage that is part of an overhead traveling
crane in a testing laboratory moves slowly across a simple beam AB (see
figure). The load transmitted to the beam from the front axle is 2000 lb
and from the rear axle is 4000 lb. The weight of the beam itself may be
disregarded.

(a) Determine the minimum required section modulus S for the beam
if the allowable bending stress is 15.0 ksi, the length of the beam is 16 ft,
and the wheelbase of the carriage is 5 ft. 

(b) Select a suitable I-beam (S shape) from Table E-2, Appendix E.

5 ft

16 ft

4000 lb 2000 lb

A B



Solution 5.6-11 Moving carriage
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P1 � load on front axle
� 2000 lb

P2 � load on rear axle
� 4000 lb

L � 16 ft d � 5 ft �allow � 15 ksi
x � distance from support A to the larger load P2 (feet)

� 125(43 � 3x) (x � ft; RA � lb)

� (4000 lb)¢1 �
x

16
≤� (2000 lb)¢1 �

x

16
�

5

16
≤

RA � P2 ¢L � x

L
≤� P1¢L � x � d

L
≤

BENDING MOMENT UNDER LARGER LOAD P2

M � RA x � 125(43x � 3x2) (x � ft; M � lb-ft)

MAXIMUM BENDING MOMENT

Set equal to zero and solve for x � xm.

�19, 260 lb-ft � 231,130 lb-in.

(a) MINIMUM SECTION MODULUS

(b) SELECT ON I-BEAM (S SHAPE)

Table E-2. Select S 8 � 23

(S � 16.2 in.3)

Smin �
Mmax

sallow
�

231,130 lb-in.

15,000 psi
� 15.41 in.3

Mmax � (M)x�xm
� 125B (43)¢43

6
≤� 3¢43

6
≤

2R

dM

dx
� 125(43 � 6x) � 0�x � xm �

43

6
� 7.1667 ft

dM

dx

d

L

P2 P1

A B

RA

x

Problem 5.6-12 A cantilever beam AB of circular cross section and length
L � 450 mm supports a load P � 400 N acting at the free end (see figure).
The beam is made of steel with an allowable bending stress of 60 MPa. 

Determine the required diameter dmin of the beam, considering the
effect of the beam’s own weight. 

Solution 5.6-12 Cantilever beam

L

A
B

P

d

DATA L � 450 mm P � 400 N
�allow � 60 MPa

� � weight density of steel
� 77.0 kN/m3

WEIGHT OF BEAM PER UNIT LENGTH

MAXIMUM BENDING MOMENT

SECTION MODULUS S �
� d 3

32

Mmax � PL �
qL2

2
� PL �

� gd 3L2

8

q � g ¢�d 2

4
≤

MINIMUM DIAMETER

Mmax � �allow S

Rearrange the equation:

(Cubic equation with diameter d as unknown.)

Substitute numerical values (d � meters):

(60 � 106 N/m2)d3 � 4(77,000 N/m3)(0.45m)2d2

60,000d3 � 62.37d2 � 1.833465 � 0

Solve the equation numerically:

d � 0.031614 m dmin � 31.61 mm

�
32
�

 (400 N)(0.45 m) � 0

sallow d 3 � 4g L2 d 2 �
32 PL

�
� 0

PL �
� gd 2L2

8
�sallow ¢�d 3

32
≤



Problem 5.6-13 A compound beam ABCD (see figure) is supported at
points A, B, and D and has a splice (represented by the pin connection) 
at point C. The distance a � 6.0 ft and the beam is a W 16 � 57 
wide-flange shape with an allowable bending stress of 10,800 psi.

Find the allowable uniform load qallow that may be placed on top of
the beam, taking into account the weight of the beam itself. 

Solution 5.6-13 Compound beam
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CA

a4a 4a

B D

q

Pin

Pin connection at point C.

qallow � qmax � (weight of beam)

DATA: a � 6 ft � 72 in. �allow � 10,800 psi

W 16 � 57 S � 92.2 in.3

ALLOWABLE UNIFORM LOAD

� 922 lb/ft

qallow � 922 lb/ft � 57 lb/ft � 865 lb/ft

qmax �
2(10,800 psi)(92.2 in.3)

5(72 in.)2 � 76.833 lb�in.

qmax �
2sallow S

5a2

Mmax �
5q a2

2
�sallow S

CA

a4a 4a

B D

q

Pin

RA � 
11qa

            8 RB� 
45qa

            8 RD� 2qa

A

2a 2a

B D

M

11a
  8

2qa2

C

121 
128 

qa2

5qa2 
  2�

Problem 5.6-14 A small balcony constructed of wood is supported 
by three identical cantilever beams (see figure). Each beam has length 
L1 � 2.1 m, width b, and height h � 4b/3. The dimensions of the balcony
floor are L1 � L2, with  L2 � 2.5 m. The design load is 5.5 kPa acting
over the entire floor area. (This load accounts for all loads except 
the weights of the cantilever beams, which have a weight density 
� � 5.5 kN/m3.) The allowable bending stress in the cantilevers is 
15 MPa.

Assuming that the middle cantilever supports 50% of the load 
and each outer cantilever supports 25% of the load, determine the
required dimensions b and h.

Solution 5.6-14 Cantilever beam for a balcony

4b—
3

h =

L2 L1 b

L1 � 2.1 m L2 � 2.5 m Floor dimensions: L1 � L2
Design load � w � 5.5 kPa
� � 5.5 kN/m3 (weight density of wood beam)
�allow � 15 MPa

MIDDLE BEAM SUPPORTS 50% OF THE LOAD.

WEIGHT OF BEAM

� 7333b2 (N/m) (b � meters)

q0 � gbh �
4gb2

3
�

4

3
 (5.5 kN�m2)b2

∴ q � w ¢L 2

2
≤� (5.5 kPa)¢2.5 m

2
≤� 6875 N�m

4b—
3

h =

bL1 

q



Problem 5.6-15 A beam having a cross section in the form of an
unsymmetric wide-flange shape (see figure) is subjected to a negative
bending moment acting about the z axis. 

Determine the width b of the top flange in order that the stresses at
the top and bottom of the beam will be in the ratio 4:3, respectively. 

Solution 5.6-15 Unsymmetric wide-flange beam
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MAXIMUM BENDING MOMENT

�15,159 � 16,170b2 (N � m)

Mmax � �allow S

15,159 � 16,170b2 � (15 � 106 N�m2)¢8b3

27
≤

S �
bh2

6
�

8b3

27

Mmax �
(q � q0)L1

2

2
�

1

2
(6875 N�m � 7333b2) (2.1 m)2

Rearrange the equation:

(120 � 106)b3 � 436,590b2 � 409,300 � 0

SOLVE NUMERICALLY FOR DIMENSION b

b � 0.1517 m

REQUIRED DIMENSIONS

b � 152 mm h � 202 mm

h �
4b

3
� 0.2023 m

1.5 in.
1.25 in.

1.5 in.

z

b

y

C

16 in.

12 in.

Stresses at top and bottom are in the ratio 4:3.
Find b (inches)

h � height of beam � 15 in.

LOCATE CENTROID

c2 �
3

7
 h �

45

7
� 6.42857 in.

c1 �
4

7
 h �

60

7
� 8.57143 in.

stop

sbottom
�

c1

c2
�

4

3

AREAS OF THE CROSS SECTION (in.2)

A1 � 1.5b A2 � (12)(1.25) � 15 in.2

A3 � (16)(1.5) � 24 in.2

A � A1 � A2 � A3 � 39 � 1.5b (in.2)

FIRST MOMENT OF THE CROSS-SECTIONAL AREA ABOUT THE

LOWER EDGE B-B

� 130.5 � 21.375b (in.3)

DISTANCE c2 FROM LINE B-B TO THE CENTROID C

SOLVE FOR b

(39 � 1.5b)(45) � (130.5 � 21.375b)(7)
82.125b � 841.5 b � 10.25 in.

c2 �
QBB

A
�

130.5 � 21.375b

39 � 1.5b
�

45

7
 in.

QBB � a yi Ai � (14.25)(1.5b) � (7.5)(15) � (0.75)(24)

1.5 in.
1.25 in.

1.5 in.

z

b

y

C

16 in.

12 in.

c1

c2

B

A3 A2

A1

B



Problem 5.6-16 A beam having a cross section in the form of a channel
(see figure) is subjected to a bending moment acting about the z axis. 

Calculate the thickness t of the channel in order that the bending
stresses at the top and bottom of the beam will be in the ratio 7:3,
respectively. 

Solution 5.6-16 Channel beam
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z

y

C 50 mm

tt

t

120 mm

t � thickness (constant) (t is in millimeters)
b1 � b � 2t � 120 mm � 2t

Stresses at the top and bottom are in the ratio 7:3.

Determine the thickness t.

LOCATE CENTROID

c2 �
3

10
 h � 15 mm

c1 �
7

10
 h � 35 mm

stop

sbottom
�

c1

c2
�

7

3

AREAS OF THE CROSS SECTION (mm2)

A1 � ht � 50 t A2 � b1 t � 120 t � 2t 2

A � 2A1 � A2 � 220t � 2 t2 � 2t(110�t)

FIRST MOMENT OF THE CROSS-SECTIONAL AREA ABOUT

THE LOWER EDGE B-B

� t (2500 � 60 t � t2) (t � mm; Q � mm3)

DISTANCE c2 FROM LINE B-B TO THE CENTROID C

SOLVE FOR t
2(110 � t)(15) � 2500 � 60 t � t2

t2 � 90 t � 800 � 0 t � 10 mm

�
2500 � 60 t � t 2

2(110 � t)
� 15 mm

c2 �
QBB

A
�

t(2500 � 60t � t2)

2t(110 � t)

 � 2(25)(50t) � ¢ t

2
≤(120 � 2t)(t)

QBB � ayi Ai � (2)  ¢h
2
≤(50 t) � ¢ t

2
≤(b1) (t)

z

y

C
h � 50 mm

tt

t

b � 120 mm

c1

c2
B

A2

A1 A1

B
b1

Problem 5.6-17 Determine the ratios of the weights of three beams that
have the same length, are made of the same material, are subjected to the
same maximum bending moment, and have the same maximum bending
stress if their cross sections are (1) a rectangle with height equal to twice
the width, (2) a square, and (3) a circle (see figures). 

b

h = 2b

a

a

d



Solution 5.6-17 Ratio of weights of three beams
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Beam 1: Rectangle (h � 2b)
Beam 2: Square (a � side dimension)
Beam 3: Circle (d � diameter)
L, �, Mmax, and �max are the same in all three beams.

S � section modulus

Since M and � are the same, the section moduli must
be the same.

(1) RECTANGLE:

A1 � 2b2 � 2 ¢3S

2
≤

2�3

� 2.6207S 2�3

S �
bh2

6
�

2b3

3
�b � ¢3S

2
≤

1�3

S �
M
s

(2) SQUARE:

A2 � a2 � (6S)2/3 � 3.3019S2/3

(3) CIRCLE:

Weights are proportional to the cross-sectional areas
(since L and � are the same in all 3 cases).
W1 : W2 : W3 � A1 : A2 : A3
A1 : A2 : A3 � 2.6207 : 3.3019 : 3.6905
W1 : W2 : W3 � 1 : 1.260 : 1.408

A3 �
�d 2

4
�

�

4
¢32S

�
≤

 2�3

� 3.6905 S 2�3

S �
�d 3

32
�d � ¢32S

�
≤

1�3

S �
a3

6
�a � (6S)1�3

Problem 5.6-18 A horizontal shelf AD of length L � 900 mm, width b
� 300 mm, and thickness t � 20 mm is supported by brackets at B and C
[see part (a) of the figure]. The brackets are adjustable and may be placed
in any desired positions between the ends of the shelf. A uniform load of
intensity q, which includes the weight of the shelf itself, acts on the shelf
[see part (b) of the figure]. 

Determine the maximum permissible value of the load q if the
allowable bending stress in the shelf is �allow � 5.0 MPa and the position
of the supports is adjusted for maximum load-carrying capacity.

Solution 5.6-18 Shelf with adjustable supports

t

B
A

C
D

(a)

(b)

A
B C

D

q

L

L
b

L � 900 mm
b � 300 mm
t � 20 mm
�allow � 5.0 MPa

For maximum load-carrying capacity, place the supports
so that 
Let x � length of overhang

∴
qL

8
 (L � 4x) �

qx2

2

M1 �
qL

8
 (L � 4x)� ƒ M2 ƒ �

qx2

2

M1 � ƒ M2 ƒ .

Solve for x:

Substitute x into the equation for either M1 or :

Eq. (1)

Eq. (2)

Equate Mmax from Eqs. (1) and (2) and solve for q:

Substitute numerical values:
qmax � 5.76 kN/m

qmax �
4bt 2sallow

3L2(3 � 212)

Mmax �sallow S �sallow ¢bt 2

6
≤

Mmax �
qL2

8
 (3 � 212)

ƒ M2 ƒ

x �
L

2
 (12 � 1)

A
B C

D

A B C D

q

L

M2M2

M1

x x

b
t



Problem 5.6-19 A steel plate (called a cover plate) having cross-
sectional dimensions 4.0 in. � 0.5 in. is welded along the full length of
the top flange of a W 12 � 35 wide-flange beam (see figure, which shows
the beam cross section).

What is the percent increase in section modulus (as compared to the
wide-flange beam alone)?

Solution 5.6-19 Beam with cover plate
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4.0 � 0.5 in. cover plate

W 12 � 35

All dimensions in inches.

WIDE-FLANGE BEAM ALONE

(AXIS 1-1 IS CENTROIDAL AXIS)

W 12 � 35 d � 12.50 in.
A0 � 10.3 in.2 I0 � 2.85 in.4 S0 � 45.6 in.3

BEAM WITH COVER PLATE

(z AXIS IS CENTROIDAL AXIS)
A1 � A0 � (4.0 in.)(0.5 in.) � 12.3 in.2

First moment with respect to axis 1-1:

� 13.00 in.3

c2 � 6.25 � y � 7.307 in.

c1 � 6.25 � 0.5 � y � 5.693 in.

y �
Q1

A1
�

13.00 in.3

12.3 in.2
� 1.057 in.

Q1 � a yi Ai � (6.25 in. � 0.25 in.) (4.0 in.) (0.5 in.)

Moment of inertia about axis 1-1:

� 369.5 in.4

Moment of inertia about z axis:

Iz � 369.5 in.4 � (12.3 in.2)(1.057 in.)2 � 355.8 in.4

SECTION MODULUS (Use the smaller of the two section
moduli)

INCREASE IN SECTION MODULUS

Percent increase � 6.8%

S1

S0
�

48.69

45.6
� 1.068

S1 �
Iz

c2
�

355.8 in.4

7.307 in.
� 48.69 in.3

I1–1 � Iz � A1 y 2�Iz � I1–1 � A1 y 2

I1–1 � I0 �
1

12
(4.0)(0.5)3 � (4.0)(0.5)(6.25 � 0.25)24.0 � 0.5 in. cover plate

z C

c1

c2

y

6.25

6.25

1 1
 y–

Problem 5.6-20 A steel beam ABC is simply supported 
at A and B and has an overhang BC of length L � 150 mm
(see figure on the next page). The beam supports a uniform
load of intensity q � 3.5 kN/m over its entire length of 
450 mm. The cross section of the beam is rectangular 
with width b and height 2b. The allowable bending stress
in the steel is �allow � 60 MPa and its weight density is 
� � 77.0 kN/m3.

(a) Disregarding the weight of the beam, calculate t
he required width b of the rectangular cross section. 

(b) Taking into account the weight of the beam,
calculate the required width b. 

A
B

C

b

2b

q

2L L



Solution 5.6-20 Beam with an overhang
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(a) DISREGARD THE WEIGHT OF THE BEAM

Mmax � �allow S

b3 �
3qL2

4sallow

qL2

2
�sallow ¢2b3

3
≤

Mmax �
qL2

2
�S �

bh2

6
�

2b3

3

A
B

C

b

2b

q

2L L

RA � 
3qL

         4
RB � 

9qL
         4

9qL2

32

A
B C

qL2

2

M

0

–

L � 150 mm
q � 3.5 kN/m
�allow � 60 MPa
� � 77.0 kN/m3

Substitute numerical values:

b � 0.00995 m � 9.95 mm

(b) INCLUDE THE WEIGHT OF THE BEAM

q0 � weight of beam per unit length

q0 � �(b)(2b) � 2�b2

Mmax � �allow S

Rearrange the equation:

4�allowb3 � 6�L2b2 � 3qL2 � 0

Substitute numerical values:
(240 � 106)b3 � 10,395b2 � 236.25 � 0
(b � meters)

Solve the equation:
b � 0.00996 m � 9.96 mm

1

2
 (q � 2g b2)  L2 �sallow ¢2b3

3
≤

S �
2b3

3

Mmax �
(q � q0)L2

2
�

1

2
 (q � 2g b2)L2

b3 �
3(3.5 kN�m)(150 mm)2

4(60 MPa)
� 0.98438 � 10�6 m3

Problem 5.6-21 A retaining wall 5 ft high is constructed of
horizontal wood planks 3 in. thick (actual dimension) that are
supported by vertical wood piles of 12 in. diameter (actual
dimension), as shown in the figure. The lateral earth pressure 
is p1 � 100 lb/ft2 at the top of the wall and p2 � 400 lb/ft2 at 
the bottom.

Assuming that the allowable stress in the wood is 1200 psi,
calculate the maximum permissible spacing s of the piles.

(Hint: Observe that the spacing of the piles may be
governed by the load-carrying capacity of either the planks or
the piles. Consider the piles to act as cantilever beams subjected
to a trapezoidal distribution of load, and consider the planks to
act as simple beams between the piles. To be on the safe side,
assume that the pressure on the bottom plank is uniform and
equal to the maximum pressure.)

3 in.

s
5 ft

Top view

Side view

3 in.

12 in.
diam.

12 in.
diam.

p1 = 100 lb/ft2

p2 = 400 lb/ft2



Solution 5.6-21 Retaining wall
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t

s q

(1) PLANK AT THE BOTTOM OF THE DAM

t � thickness of plank � 3 in.
b � width of plank (perpendicular to the plane 

of the figure)
p2 � maximum soil pressure

� 400 lb/ft2 � 2.778 lb/in.2

s � spacing of piles
q � p2b �allow � 1200 psi S � section
modulus

Mmax � �allow S or

Solve for s:

(2) VERTICAL PILE

h � 5 ft � 60 in.
p1 � soil pressure at the top

� 100 lb/ft2 � 0.6944 lb/in.2

q1 � p1s
q2 � p2s
d � diameter of pile � 12 in.

s �B4 sallow t 2

3p2
� 72.0 in.

p2 bs2

8
�sallow ¢bt 2

6
≤

Mmax �
qs2

8
�

p2 bs2

8
�     S �

bt 2

6

Divide the trapezoidal load into two triangles 
(see dashed line).

Mmax � �allow S or

Solve for s:

PLANK GOVERNS smax � 72.0 in.

s �
3� sallow d 3

16h2(2p1 � p2)
� 81.4 in.

sh2

6
 (2p1 � p2) �sallow ¢�d 3

32
≤

S �
�d 3

32

Mmax �
1

2
 (q1) (h)¢2h

3
≤�

1

2
 (q2) (h)¢h

3
≤�

sh2

6
 (2p1 � p2)

h

q1

q2

Problem 5.6-22 A beam of square cross section (a � length of each
side) is bent in the plane of a diagonal (see figure). By removing a small
amount of material at the top and bottom corners, as shown by the shaded
triangles in the figure, we can increase the section modulus and obtain a
stronger beam, even though the area of the cross section is reduced. 

(a) Determine the ratio � defining the areas that should be removed
in order to obtain the strongest cross section in bending. 

(b) By what percent is the section modulus increased when the areas
are removed? 

a

a

Cz

y

�a

�a



Solution 5.6-22 Beam of square cross section with corners
removed
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a � length of each side
�a � amount removed
Beam is bent about the z axis.

ENTIRE CROSS SECTION (AREA 0)

SQUARE mnpq (AREA 1)

PARALLELOGRAM mm,n,n (AREA 2)

(base)(height)3

REDUCED CROSS SECTION (AREA qmm,n,p,pq)

c �
(1 � b)a12

�S �
I
c

�
12 a3

12
(1 � 3b)(1 � b)2

I � I1 � 2I2 �
a4

12
 (1 � 3b)(1 � b)3

I2 �
1

3
 (ba12) B (1 � b)a12

R 3

�
ba4

6
 (1 � b)3

I2 �
1

3

I1 �
(1 � b)4a4

12

I0 �
a4

12
�c0 �

a12
�S0 �

I0

c0
�

a312

12

RATIO OF SECTION MODULI

Eq. (1)

GRAPH OF EQ. (1)

(a) VALUE OF � FOR A MAXIMUM VALUE OF S/S0

Take the derivative and solve this equation for �.

(b) MAXIMUM VALUE OF S/S0
Substitute � � 1/9 into Eq. (1). (S/S0)max � 1.0535
The section modulus is increased by 5.35% when the
triangular areas are removed.

b�
1

9

d

db
 ¢ S

S0
≤� 0

S

S0
� (1 � 3b)(1 � b)2

a

a

Cz

y

�a

q

�a

p p1

m1m (1 � �) a 

n n1

� � 1        9

�

1.10

1.00

.90

0 0.1 0.2 0.3

Eq. (1)

( S         
  S0

)
 max � 1.0535 

Problem 5.6-23 The cross section of a rectangular beam having 
width b and height h is shown in part (a) of the figure. For reasons
unknown to the beam designer, it is planned to add structural projections
of width b/9 and height d to the top and bottom of the beam [see part 
(b) of the figure]. 

For what values of d is the bending-moment capacity of the beam
increased? For what values is it decreased?

h

b—
9

b—
9

d

d

h

(a) (b)

b



Solution 5.6-23 Beam with projections

320 CHAPTER 5 Stresses in Beams (Basic Topics)

h

b—
9

d

d

h

b

1 2

(1) ORIGINAL BEAM

(2) BEAM WITH PROJECTIONS

RATIO OF SECTION MODULI

EQUAL SECTION MODULI

Set and solve numerically for .

and
d

h
� 0

d

h
� 0.6861

d

h

S2

S1
� 1

S2

S1
�

b [8h3 � (h � 2d)3 ]

9(h � 2d)(bh2)
�

8 � ¢1 �
2d

h
≤

3

9¢1 �
2d

h
≤

S2 �
I2

c2
�

b [8h3 � (h � 2d)3 ]

54(h � 2d)

c2 �
h

2
� d �

1

2
 (h � 2d)

�
b

108
[8h3 � (h � 2d)3 ]

I2 �
1

12
 ¢8b

9
≤ h3 �

1

12
 ¢b

9
≤(h � 2d)3

I1 �
bh3

12
�    c1 �

h

2
�    S1 �

I1

c1
�

bh2

6

Graph of versus 

Moment capacity is increased when

Moment capacity is decreased when

NOTES:

when 

or and 0

is minimum when 

¢S2

S1
≤

min
� 0.8399

d

h
�
13 4 � 1

2
� 0.2937

S2

S1

d

h
� 0.6861

¢1 �
2d

h
≤

3

� 9 ¢1 �
2d

h
≤� 8 � 0

S2

S1
� 1

d

h
6 0.6861

d

h
7 0.6861

d

h

S2

S1

0 1.000
0.25 0.8426
0.50 0.8889
0.75 1.0500
1.00 1.2963

S2

S1

d

h

d
h

1.0

1.0

0.5

0.50

0.2937 0.6861

S2
S1



Nonprismatic Beams

Problem  5.7-1 A tapered cantilever beam AB of length L has square
cross sections and supports a concentrated load P at the free end (see
figure on the next page). The width and height of the beam vary linearly
from hA at the free end to hB at the fixed end. 

Determine the distance x from the free end A to the cross section of
maximum bending stress if hB � 3hA. What is the magnitude �max of the
maximum bending stress? What is the ratio of the maximum stress to the
largest stress �B at the support? 

Solution 5.7-1 Tapered cantilever beam
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A
hA

hB

B

x
P

L

SQUARE CROSS SECTIONS

hA � height and width at smaller end
hB � height and width at larger end
hx � height and width at distance x

STRESS AT DISTANCE x

AT END A: x � 0 �A � 0

AT SUPPORT B: x � L

sB �
2PL

9(hA)3

s1 �
Mx

Sx

�
6Px

(hA)3 ¢1 �
2x

L
≤

3

Sx �
1

6
 (hx)

3 �
hA

3

6
 ¢1 �

2x

L
≤

3

hx � hA � (hB � hA)¢ x

L
≤� hA ¢1 �

2x

L
≤

hB

hA

� 3

CROSS SECTION OF MAXIMUM STRESS

Set Evaluate the derivative, set it equal

to zero, and solve for x.

MAXIMUM BENDING STRESS

Ratio of �max to �B

smax

sB
� 2

smax � (s1)x�L�4 �
4PL

9(hA)3

x �
L

4

ds1

dx
� 0

A B

x

P

L



Problem  5.7-2 A tall signboard is supported by two vertical
beams consisting of thin-walled, tapered circular tubes (see
figure). For purposes of this analysis, each beam may be
represented as a cantilever AB of length L � 8.0 m subjected 
to a lateral load P � 2.4 kN at the free end. The tubes have
constant thickness t � 10.0 mm and average diameters 
dA � 90 mm and dB � 270 mm at ends A and B, respectively. 

Because the thickness is small compared to the diameters,
the moment of inertia at any cross section may be obtained 
from the formula I � �d3t/8 (see Case 22, Appendix D), and
therefore the section modulus may be obtained from the 
formula S � �d2t/4.

At what distance x from the free end does the maximum
bending stress occur? What is the magnitude �max of the
maximum bending stress? What is the ratio of the maximum
stress to the largest stress �B at the support? 

Solution 5.7-2 Tapered circular tube
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Wind
load

P = 2.4 kN

A
B

x

t = 10.0 mm

dA = 90 mm dB = 270 mm

L = 8.0 m

P � 2.4 kN
L � 8.0 m
t � 10 mm
d � average diameter

At end A: dA � 90 mm
At support B: dB � 270 mm

AT DISTANCE x:

Mx � Px � 2400x x � meters, Mx � N � m

s1 �
Mx

Sx

�
2400x

20.25� ¢1 �
2x

L
≤

2�L � meters, s1 � MPa

 � 20,250� ¢1 �
2x

L
≤

2

�Sx � mm3

Sx �
�

4
 (dx)

2(t) �
�

4
 (90)2 ¢1 �

2x

L
≤

2

(10)

dx � dA � (dB � dA) ¢ x

L
≤� 90 � 180 

x

L
� 90 ¢1 �

2x

L
≤

AT END A: x � 0 �1 � �A � 0

AT SUPPORT B: x � L � 8.0 m
�1 � �B � 33.53 MPa 

CROSS SECTION OF MAXIMUM STRESS

Set Evaluate the derivative, set it equal to

zero, and solve for x.

MAXIMUM BENDING STRESS

� 37.73 MPa

RATIO OF �max to �B

smax

sB
�

9

8
� 1.125

smax � (s1)x�L�2 �
2400(4.0)

(20.25 �)(1 � 1)2

x �
L

2
� 4.0 m

ds1

dx
� 0

P

A
B

x

t

L 
d



Problem  5.7-3 A tapered cantilever beam AB having
rectangular cross sections is subjected to a concentrated load 
P � 50 lb and a couple M0 � 800 lb-in. acting at the free end
(see figure). The width b of the beam is constant and equal to 
1.0 in., but the height varies linearly from hA � 2.0 in. at the
loaded end to hB � 3.0 in. at the support.

At what distance x from the free end does the maximum
bending stress �max occur? What is the magnitude �max of the
maximum bending stress? What is the ratio of the maximum
stress to the largest stress �B at the support? 

Solution 5.7-3 Tapered cantilever beam
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hA = 
2.0 in.

hB = 
3.0 in.

BA

b = 1.0 in. b = 1.0 in.

x

P = 50 lb

M0 = 800 lb-in.

L = 20 in.

P � 50 lb
M0 � 800 lb-in.

L � 20 in.
hA � 2.0 in.
hB � 3.0 in.
b � 1.0 in.

UNITS: pounds and inches

AT DISTANCE x:

Mx � Px � M0 � (50)(x) � 800 � 50(16 � x)

s1 �
Mx

Sx

�
50(16 � x)(6)

¢2 �
x

L
≤

2 �
120,000(16 � x)

(40 � x)2

Sx �
bhx

2

6
�

b

6
 ¢2 �

x

L
≤

2

�
1

6
 ¢2 �

x

L
≤

2

hx � hA � (hB � hA)
x

L
� 2 � (1)¢ x

L
≤� 2 �

x

L

AT END A: x � 0 �1 � �A � 1200 psi

AT SUPPORT B: x � L � 20 in. �1 � �B � 1200 psi

CROSS SECTION OF MAXIMUM STRESS

Set Evaluate the derivative, set it equal to

zero, and solve for x.

x � 8.0 in.

MAXIMUM BENDING STRESS

RATIO OF �max TO �B

smax

sB
�

1250

1200
�

25

24
� 1.042

smax � (s1)x�8.0 �
(120,000)(24)

(48)2 � 1250 psi

ds1

dx
� 0

Problem  5.7-4 The spokes in a large flywheel are modeled as beams
fixed at one end and loaded by a force P and a couple M0 at the other 
(see figure). The cross sections of the spokes are elliptical with major 
and minor axes (height and width, respectively) having the lengths 
shown in the figure. The cross-sectional dimensions vary linearly from
end A to end B.

Considering only the effects of bending due to the loads P and M0,
determine the following quantities: (a) the largest bending stress �A at 
end A; (b) the largest bending stress �B at end B; (c) the distance x to 
the cross section of maximum bending stress; and (d) the magnitude 
�max of the maximum bending stress. 

x

A

P = 15 kN
BM0 = 12 kN·m

hB = 120 mmhA = 90 mm

bB = 80 mm

bA = 60 mm

L = 1.10 m

BA
x

P 

M0 

L 



Solution 5.7-4 Elliptical spokes in a flywheel
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P � 15 kN � 15,000 N
M0 � 12 kN � m � 12,000 N � m
L � 1.1 m

UNITS: Newtons, meters

AT END A: bA � 0.06 m, hA � 0.09 m

AT SUPPORT B: bB � 0.08 m, hB � 0.12 m

AT DISTANCE x:

Case 16, Appendix D: 

Mx � M0 � Px � 12,000 N � m � (15,000 N)x
� 15,000(0.8 � x)

 �
(80 � 109)(0.8 � x)

3� ¢3 �
x

L
≤

3

s1 �
Mx

Sx

�
15,000(0.8 � x)(16 � 106)

9� ¢3 �
x

L
≤

3

 �
9�

16 � 106 ¢3 �
x

L
≤

3

Sx �
�

32
 (0.02)¢3 �

x

L
≤(0.03)2 ¢3 �

x

L
≤

2

Ix �
�

64
 (bx)(hx)

3�Sx �
Ix

hx �2
�

�bxhx
2

32

I �
�

64
 (bh3)

hx � hA � (hB � hA) 
x

L
� 0.09 � 0.03 

x

L
� 0.03 ¢3 �

x

L
≤

bx � bA � (bB � bA) 
x

L
� 0.06 � 0.02 

x

L
� 0.02 ¢3 �

x

L
≤

(a) AT END A: x � 0

� 251.5 MPa

(b) AT END B: x � L � 1.1 m

� 252.0 � 106 N/m2 � 252.0 MPa

(c) CROSS SECTION OF MAXIMUM STRESS

Set Evaluate the derivative, set it equal to

zero, and solve for x.

x � 0.45 m

(d) MAXIMUM BENDING STRESS

� 267.8 � 106 N/m2 � 267.8 MPa

smax � (s1)x�0.45 �
(80 � 109)(0.8 � 0.45)

(3�)¢3 �
0.45

1.1
≤

3

ds1

dx
� 0

sB � (s1)x�L �
(80 � 109)(0.8 � 1.1)

(3�)(3 � 1)3

sA � (s1)x�0 �
(80 � 109)(0.8)

(3�)(27)
� 251.5 � 106 N�m2

x
A

P 

B

M0

L = 1.10 m

Problem  5.7-5 Refer to the tapered cantilever beam of solid circular
cross section shown in Fig. 5-24 of Example 5-9. 

(a) Considering only the bending stresses due to the load P,
determine the range of values of the ratio dB/dA for which the maximum
normal stress occurs at the support.

(b) What is the maximum stress for this range of values?



Solution 5.7-5 Tapered cantilever beam

SECTION 5.7 Nonprismatic Beams 325

x

A

P
B

dB dA 

L 

FROM EQ. (5-32), EXAMPLE 5-9

Eq. (1)

FIND THE VALUE OF x THAT MAKES �1 A MAXIMUM

Let 

After simplification:

Eq. (2)∴
x

L
�

dA

2(dB � dA)
�

1

2 ¢dB

dA

� 1≤

ds1

dx
� 0�dA � 2(dB � dA)¢ x

L
≤� 0

ds1

dx
�

N

D
�

32PBdA � 2(dB � dA)  
x

L
R

�BdA � (dB � dA)¢ x

L
≤ R 4

D � � 2BdA � (dB � dA)
x

L
R 6

N � 32�PBdA � (dB � dA)¢ x

L
≤ R 2BdA � 2(dB � dA) 

x

L
R

 �[32Px] [�] [3] BdA � (dB � dA)¢ x

L
≤ R 2

 B 1

L
 (dB � dA) R

N � �BdA � (dB � dA)¢ x

L
≤ R 3

[32P]

s1 �
u
y
�

ds1

dx
�

y ¢du

dx
≤� u ¢dy

dx
≤

y2 �
N

D

s1 �
32Px

�BdA � (dB � dA)¢ x

L
≤ R 3

(a) GRAPH OF x/L VERSUS dB/dA (EQ. 2)

Maximum bending stress occurs at the 

support when 

(b) MAXIMUM STRESS (AT SUPPORT B)

Substitute x/L � 1 into Eq. (1):

smax �
32PL

�d B
3

1 �
dB

dA

� 1.5

2

2

1

1

1.5 2.5 3
0

dB 
dA 

Eq. (2)

x
L



Fully Stressed Beams

Problems 5.7-6 to 5.7-8 pertain to fully stressed beams of rectangular
cross section. Consider only the bending stresses obtained from the
flexure formula and disregard the weights of the beams. 

Problem  5.7-6 A cantilever beam AB having rectangular cross sections
with constant width b and varying height hx is subjected to a uniform load
of intensity q (see figure). 

How should the height hx vary as a function of x (measured from the
free end of the beam) in order to have a fully stressed beam? (Express hx
in terms of the height hB at the fixed end of the beam.) 

Solution 5.7-6 Fully stressed beam with constant width and varying height
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x

hBhx

hBhx

A
B

b
b

q

L 

hx � height at distance x
hB � height at end B
b � width (constant)

AT DISTANCE x:

hx � xB 3q

bsallow

sallow �
M

S
�

3qx2

bhx
2

M �
qx2

2
�S �

bhx
2

6

AT THE FIXED END (x � L):

Therefore, 
hx

hB

�
x

L
�hx �

hB x

L

hB � L B 3q

bsallow

Problem  5.7-7 A simple beam ABC having rectangular cross sections
with constant height h and varying width bx supports a concentrated load
P acting at the midpoint (see figure). 

How should the width bx vary as a function of x in order to have a
fully stressed beam? (Express bx in terms of the width bB at the midpoint
of the beam.)

A B

P

x

C
h

h

bx

h

bB

L
2
— L

2
—



Solution 5.7-7 Fully stressed beam with constant height and varying width
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h � height of beam (constant)

bx � width at distance x from end 

bB � width at midpoint B (x � L/2)

AT DISTANCE x

sallow �
M

S
�

3Px

bxh
2�bx �

3Px

sallow h2

M �
Px

2
�S �

1

6
 bxh

2

A ¢0 � x �
L

2
≤

AT MIDPOINT B (x � L/2)

Therefore, 

NOTE: The equation is valid for and the

beam is symmetrical about the midpoint.

0 � x �
L

2

bx

bb

�
2x

L
�and�bx �

2bB x

L

bB �
3PL

2sallowh2

Problem  5.7-8 A cantilever beam AB having rectangular cross sections
with varying width bx and varying height hx is subjected to a uniform load
of intensity q (see figure). If the width varies linearly with x according to
the equation bx � bBx /L, how should the height hx vary as a function of x
in order to have a fully stressed beam? (Express hx in terms of the height
hB at the fixed end of the beam.) 

Solution 5.7-8 Fully stressed beam with varying width and varying height

x

hB

hB

hx

bB

bx

q

hxA

B

L 

hx � height at distance x
hB � height at end B
bx � width at distance x
bB � width at end B

AT DISTANCE x

hx �B 3qL x

bBsallow

sallow �
M

S
�

3qL x

bBhx
2

M �
qx 2

2
�S �

bx hx
2

6
�

bB x

6L
(hx)

2

bx � bB ¢ x

L
≤

AT THE FIXED END (x � L)

Therefore, 
hx

hB

�B x

L
�hx � hB B x

L

hB �B 3qL2

bBsallow



Shear Stresses in Rectangular Beams

Problem  5.8-1 The shear stresses � in a rectangular beam are given by 
Eq. (5-39):

in which V is the shear force, I is the moment of inertia of the cross-sectional
area, h is the height of the beam, and y1 is the distance from the neutral axis to
the point where the shear stress is being determined (Fig. 5-30). 

By integrating over the cross-sectional area, show that the resultant
of the shear stresses is equal to the shear force V. 

Solution 5.8-1 Resultant of the shear stresses

t�
V

2I
¢h

2

4
� y2

1≤

328 CHAPTER 5 Stresses in Beams (Basic Topics)

t�
V

2I
 ¢h

2

4
� y2

1≤

I �
bh3

12

V � shear force acting on the cross section
R � resultant of shear stresses �

� R � V Q.E.D.

 �
12V

h3  ¢2h3

24
≤� V

 �
12V

bh3  (b) �
h�2

0

 ¢h
2

4
� y2

1≤ dy1

R � �
h�2

�h�2

 tbdy1 � 2�
h�2

0

 

V

2I
 ¢h

2

4
� y1

2≤ bdy1N.A.

V

b

dy1

y1
�

h
2

h
2

Problem 5.8-2 Calculate the maximum shear stress �max and the
maximum bending stress �max in a simply supported wood beam (see
figure) carrying a uniform load of 18.0 kN/m (which includes the weight
of the beam) if the length is 1.75 m and the cross section is rectangular
with width 150 mm and height 250 mm.

Solution 5.8-2 Wood beam with a uniform load

1.75 m

18.0 kN/m

250 mm

150 mm

L � 1.75 m

q � 18 kN/m

h � 250 mm

b � 150 mm

MAXIMUM SHEAR STRESS

� 630 kPa

tmax �
3V

2A
�

3qL

4bh
�

3(18 kN�m)(1.75 m)

4(150 mm)(250 mm)

V �
qL

2
�A � bh

MAXIMUM BENDING STRESS

� 4.41 MPa

smax �
M

S
�

3qL2

4bh2 �
3(18 kN�m)(1.75 m)2

4(150 mm)(250 mm)2

M �
qL2

8
�S �

bh2

6



Problem 5.8-3 Two wood beams, each of square cross section
(3.5 in. � 3.5 in., actual dimensions) are glued together to form a
solid beam of dimensions 3.5 in. � 7.0 in. (see figure). The beam 
is simply supported with a span of 6 ft.

What is the maximum load Pmax that may act at the midpoint 
if the allowable shear stress in the glued joint is 200 psi? (Include
the effects of the beam’s own weight, assuming that the wood
weighs 35 lb/ft3.)

Solution 5.8-3 Simple beam with a glued joint
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7.0 in.

3.5 in.

P

6 ft

L/2L/2

P

h/2

h/2

b

q

L � 6 ft � 72 in. b � 3.5 in. h � 7.0 in.

q � weight of beam per unit distance
� �bh

MAXIMUM LOAD Pmax

 � bh ¢4
3

 t� gL≤

Pmax �
4

3
 bht� qL �

4

3
 bht� gbhL

tmax �
3V

2A
�

3 ¢P
2

�
qL

2
≤

2bh
�

3

4bh
 (P � qL)

V �
P

2
�

qL

2
�     A � bh

g� (35 lb�ft3) ¢ 1

1728
 

ft3

in.3
≤�

35

1728
 lb�in.3

tallow � 200 psi

SUBSTITUTE NUMERICAL VALUES:

Pmax � (3.5 in.) (7.0 in.)

� 6500 lb

(This result is based solely on the shear stress.)

 � B 4

3
(200 psi) � ¢ 35

1728
 lb�in.3≤(72 in.) R

Problem 5.8-4 A cantilever beam of length L � 2 m supports a 
load P � 8.0 kN (see figure). The beam is made of wood with 
cross-sectional dimensions 120 mm � 200 mm. 

Calculate the shear stresses due to the load P at points located 
25 mm, 50 mm, 75 mm, and 100 mm from the top surface of the
beam. From these results, plot a graph showing the distribution of
shear stresses from top to bottom of the beam. 

200 mm

120 mm
L = 2 m

P = 8.0 kN



Solution 5.8-4 Shear stresses in a cantilever beam
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Eq. (5-39):

h � 200 mm (y1 � mm)

t� 50 � 10�6(10,000 � y1
2)�(y1 � mm;  t� MPa)

t�
8,000

2(80 � 106)
B (200)2

4
� y1

2R� (t� N�mm2 � MPa)

V � P � 8.0 kN � 8,000 N�I �
bh3

12
� 80 � 106 mm4

t�
V

2I
 ¢h

2

4
� y1

2≤
GRAPH OF SHEAR STRESS �

Distance from the y1 � �
top surface (mm) (mm) (MPa) (kPa)

0 100 0 0
25 75 0.219 219
50 50 0.375 375
75 25 0.469 469

100 (N.A.) 0 0.500 500

h = 200 mm

b = 120 mm
L = 2 m

P = 8.0 kN

0

0

219

219

375

375

469

469
Tmax = 500 kPaN.A.

Problem 5.8-5 A steel beam of length L � 16 in. and cross-sectional
dimensions b � 0.6 in. and h � 2 in. (see figure) supports a uniform load
of intensity q � 240 lb/in., which includes the weight of the beam. 

Calculate the shear stresses in the beam (at the cross section of
maximum shear force) at points located 1/4 in., 1/2 in., 3/4 in., and 1 in.
from the top surface of the beam. From these calculations, plot a graph
showing the distribution of shear stresses from top to bottom of the beam. 

Solution 5.8-5 Shear stresses in a simple beam

q = 240 lb/in.

b = 0.6 in. 

h = 2 in.

L = 16 in.

Eq. (5-39): 

UNITS: pounds and inches

(� � psi; y1 � in.)

t�
1920

2(0.4)
B (2)2

4
� y1

2R � (2400)(1 � y1
2)

V �
qL

2
� 1920 lb�I �

bh3

12
� 0.4 in.4

t�
V

2I
 ¢h

2

4
� y1

2≤
GRAPH OF SHEAR STRESS �

Distance from the y1 �
top surface (in.) (in.) (psi)

0 1.00 0
0.25 0.75 1050
0.50 0.50 1800
0.75 0.25 2250
1.00 (N.A.) 0 2400

q = 240 lb/in.

b = 0.6 in. 

h = 2.0 in.

L = 16 in.

0

0

1050

1050

1800

1800

2250

2250
Tmax = 2400 psiN.A.



Problem 5.8-6 A beam of rectangular cross section (width b and height
h) supports a uniformly distributed load along its entire length L. The
allowable stresses in bending and shear are �allow and �allow, respectively. 

(a) If the beam is simply supported, what is the span length L0 below
which the shear stress governs the allowable load and above which the
bending stress governs? 

(b) If the beam is supported as a cantilever, what is the length L0
below which the shear stress governs the allowable load and above which
the bending stress governs?

Solution 5.8-6 Beam of rectangular cross section
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b � width h � height L � length

UNIFORM LOAD q � intensity of load

ALLOWABLE STRESSES �allow and �allow

(a) SIMPLE BEAM

BENDING

(1)

SHEAR

(2)

Equate (1) and (2) and solve for L0:

L0 � h ¢sallow

tallow
≤

qallow �
4tallow bh

3L

tmax �
3V

2A
�

3qL

4bh

Vmax �
qL

2
�A � bh

qallow �
4sallow bh2

3L2

smax �
Mmax

S
�

3qL2

4bh2

Mmax �
qL2

8
�S �

bh2

6

(b) CANTILEVER BEAM

BENDING

(3)

SHEAR

(4)

Equate (3) and (4) and solve for L0:

NOTE: If the actual length is less than L0, the shear
stress governs the design. If the length is greater than
L0, the bending stress governs.

L0 �
h

2
 ¢sallow

tallow
≤

qallow �
2tallow bh

3L

tmax �
3V

2A
�

3qL

2bh

Vmax � qL�A � bh

smax �
Mmax

S
�

3qL2

bh2 �qallow �
sallow bh2

3L2

Mmax �
qL2

2
�S �

bh2

6

Problem 5.8-7 A laminated wood beam on simple supports is built up
by gluing together three 2 in. � 4 in. boards (actual dimensions) to form
a solid beam 4 in. � 6 in. in cross section, as shown in the figure. The
allowable shear stress in the glued joints is 65 psi and the allowable
bending stress in the wood is 1800 psi. 

If the beam is 6 ft long, what is the allowable load P acting at the
midpoint of the beam? (Disregard the weight of the beam.) 

2 in.

2 in.

2 in.

4 in.

P
3 ft

L � 6 ft



Solution 5.8-7 Laminated wood beam on simple supports
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L � 6 ft � 72 in.
�allow � 65 psi
�allow � 1800 psi

ALLOWABLE LOAD BASED UPON SHEAR STRESS

IN THE GLUED JOINTS

P1 � 36tallow � 36 (65 psi) � 2340 lb

t�
(P�2)(16 in.3)

(72 in.4) (4 in.)
�

P

36
�(P � lb; t� psi)

V �
P

2
�I �

bh3

12
�

1

12
 (4 in.) (6 in.)3 � 72 in.4

t�
VQ

Ib
�Q � (4 in.) (2 in.) (2 in.) � 16 in.3

ALLOWABLE LOAD BASED UPON BENDING STRESS

ALLOWABLE LOAD

Shear stress in the glued joints governs.

Pallow � 2340 lb

P2 �
4

3
 sallow �

4

3
 (1800 psi) � 2400 lb

s�
(18P lb-in.)

24 in.3
�

3P

4
�(P � lb; s� psi)

S �
bh2

6
�

1

6
 (4 in.) (6 in.)2 � 24 in.3

s�
M

S
�M �

PL

4
� P ¢72 in.

4
≤� 18P (lb-in.)

2 in.
2 in.

2 in.

2 in.

4 in.

N.A.

Problem 5.8-8 A laminated plastic beam of square cross section
is built up by gluing together three strips, each 10 mm � 30 mm
in cross section (see figure). The beam has a total weight of 3.2 N
and is simply supported with span length L � 320 mm. 

Considering the weight of the beam, calculate the maximum
permissible load P that may be placed at the midpoint if (a) the
allowable shear stress in the glued joints is 0.3 MPa, and (b) 
the allowable bending stress in the plastic is 8 MPa.

Solution 5.8-8 Laminated plastic beam

P

30 mm

30 mm

10 mm
10 mm
10 mm

q

L

P

h = 30 mm

b = 30 mm

10 mm

10 mm
10 mm
10 mm

q

L/2 L/2

N.A.

L � 320 mm
W � 3.2 N

q �
W

L
�

3.2 N

320 mm
� 10 N�m S �

bh2

6
�

1

6
 (30 mm)(30 mm)2 � 4500 mm3

I �
bh3

12
�

1

12
 (30 mm)(30 mm)3 � 67,500 mm4



Problem 5.8-9 A wood beam AB on simple supports with span length
equal to 9 ft is subjected to a uniform load of intensity 120 lb/ft acting
along the entire length of the beam and a concentrated load of magnitude
8800 lb acting at a point 3 ft from the right-hand support (see figure). The
allowable stresses in bending and shear, respectively, are 2500 psi and
150 psi.

(a) From the table in Appendix F, select the lightest beam that will
support the loads (disregard the weight of the beam). 

(b) Taking into account the weight of the beam (weight density � 
35 lb/ft3), verify that the selected beam is satisfactory, or, if it is not,
select a new beam. 

Solution 5.8-9
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(a) ALLOWABLE LOAD BASED UPON SHEAR

IN GLUED JOINTS

�allow � 0.3 MPa

(V � newtons; P � newtons)

Q � (30 mm)(10 mm)(10 mm) � 3000 mm3

(� � N/mm2 � MPa)

SOLVE FOR P:
P � 1350�allow � 3.2 � 405 N � 3.2 N � 402 N

t�
VQ

Ib
�

P�2 � 1.6 N

675 mm2

Q

Ib
�

3000 mm3

(67,500 mm4)(30 mm)
�

1

675 mm2

t�
VQ

Ib
�V �

P

2
�

qL

2
�

P

2
� 1.6 N

(b) ALLOWABLE LOAD BASED UPON BENDING STRESSES

�allow � 8 MPa

(P � newtons; M � N � m)

(� � N/m2 � Pa)

SOLVE FOR P:
P � (56.25 � 10�6) �allow�1.6

� (56.25 � 10�6)(8�106 Pa) � 1.6
� 450 � 1.6 � 448 N

s�
(0.08P � 0.128)(Ň � ˇm)

4.5 � 10�6 m3

Mmax �
PL

4
�

qL2

8
� 0.08P � 0.128 (Ň � ˇm)

s�
Mmax

S

A B

8800 lb

120 lb/ft

9 ft

3 ft

q � 120 lb/ft
P � 8800 lb
d � 3 ft
�allow � 2500 psi
�allow � 150 psi

RA �
qL

2
�

P

3
�    RB �

qL

2
�

2P

3

(a) DISREGARDING THE WEIGHT OF THE BEAM

Vmax � RB � 6407 lb

RB � 540 lb �
2

3
 (8800 lb) � 6407 lb

RA �
(120 lb�ft) (9 ft)

2
�

8800 lb

3
� 3473 lb

A B

P

q

L = 9 ft

d

RB
RA

V (lb)
3473

2753

� 6047
� 6407

0

(Continued)



Problem 5.8-10 A simply supported wood beam of rectangular cross
section and span length 1.2 m carries a concentrated load P at midspan in
addition to its own weight (see figure). The cross section has width 140
mm and height 240 mm. The weight density of the wood is 5.4 kN/m3. 

Calculate the maximum permissible value of the load P if (a) the
allowable bending stress is 8.5 MPa, and (b) the allowable shear stress is
0.8 MPa. 

Solution 5.8-10 Simply supported wood beam 
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Maximum bending moment occurs under the
concentrated load.

� 18,680 lb-ft � 224,200 lb-in.

FROM APPENDIX F: Select 8 � 10 in. beam 
(nominal dimensions)

A � 71.25 in.2 S � 112.8 in.3

s�
M

S
�Sreq �

Mmax

sallow
�

224,200 lb-in.

2500 psi
� 89.7 in.3

tmax �
3V

2A
�Areq �

3Vmax

2tallow
�

3(6407 lb)

2(150 psi)
� 64.1 in.2

� (6407 lb)(3 ft) �
1

2
 (120 lb�ft) (3 ft)2

Mmax � RB d �
qd 2

2

(b) CONSIDERING THE WEIGHT OF THE BEAM

qBEAM � 17.3 lb/ft (weight density � 35 lb/ft3)

Vmax � 6485 lb

8 � 10 beam is still satisfactory for shear.

qTOTAL � 120 lb/ft � 17.3 lb/ft � 137.3 lb/ft

� 18,837 lb-ft � 226,050 lb-in.

8 � 10 beam is still satisfactory for moment.

Use 8 � 10 in. beam

Sreq’d �
Mmax

sallow
�

226,050 lb-in.

2500 psi
� 90.4 in.3

Mmax � RB d �
qd 2

2
� (6485 lb)(3 ft) �

1

2
 ¢137.3 

lb

ft
≤(3 ft)2

Areq’d �
3Vmax

2tallow
� 64.9 in.2

RB � 6407 lb �
(17.3 lb�ft) (9 ft)

2
� 6407 � 78 � 6485 lb

0.6 m 0.6 m

P

140 mm

240 mm

L/2 L/2

P

b

h

q

b � 140 mm h � 240 mm A � bh � 33,600 mm2

� � 5.4 kN/m3

L � 1.2 m q � �bh � 181.44 N/m

(a) ALLOWABLE LOAD P BASED UPON BENDING STRESS

�allow � 8.5 MPa

� 0.3P � 32.66 N � m (P � newtons; M � N � m)

Mmax � S�allow � (1344�103 mm3)(8.5 MPa) � 11,424 N � m

Mmax �
PL

4
�

qL2

8
�

P(1.2 m)

4
�

(181.44 N�m)(1.2 m)2

8

s�
Mmax

S

S �
bh2

6
� 1344 � 103 mm3

Equate values of Mmax and solve for P:

0.3P � 32.66 � 11,424 P � 37,970 N

or P � 38.0 kN

(b) ALLOWABLE LOAD P BASED UPON

SHEAR STRESS

�allow � 0.8 MPa

Equate values of V and solve for P:

P � 35,622 N

or P � 35.6 kN

NOTE: The shear stress governs and 
Pallow � 35.6 kN

P

2
� 108.86 � 17,920

V �
2At

3
�

2

3
 (33,600 mm2)(0.8 MPa) � 17,920 N

�
P

2
� 108.86 (N)

V �
P

2
�

qL

2
�

P

2
�

(181.44 N�m)(1.2 m)

2

t�
3V

2A



Problem 5.8-11 A square wood platform, 8 ft � 8 ft in area, rests
on masonry walls (see figure). The deck of the platform is
constructed of 2 in. nominal thickness tongue-and-groove planks
(actual thickness 1.5 in.; see Appendix F) supported on two 8-ft
long beams. The beams have 4 in. � 6 in. nominal dimensions
(actual dimensions 3.5 in. � 5.5 in.).

The planks are designed to support a uniformly distributed 
load w (lb/ft2) acting over the entire top surface of the platform.
The allowable bending stress for the planks is 2400 psi and the
allowable shear stress is 100 psi. When analyzing the planks,
disregard their weights and assume that their reactions are
uniformly distributed over the top surfaces of the supporting beams.

(a) Determine the allowable platform load w1 (lb/ft2) based
upon the bending stress in the planks. 

(b) Determine the allowable platform load w2 (lb/ft2) based
upon the shear stress in the planks. 

(c) Which of the preceding values becomes the allowable load
wallow on the platform? 

(Hints: Use care in constructing the loading diagram for the
planks, noting especially that the reactions are distributed loads
instead of concentrated loads. Also, note that the maximum shear
forces occur at the inside faces of the supporting beams.)

Solution 5.8-11 Wood platform with a plank deck
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8 ft
8 ft

Wall

Beam

Platform: 8 ft � 8 ft
t � thickness of planks

� 1.5 in.
w � uniform load on the deck (lb/ft2)
�allow � 2400 psi
�allow � 100 psi
Find wallow (lb/ft2)

(a) ALLOWABLE LOAD BASED UPON BENDING STRESS IN

THE PLANKS

Let b � width of one plank (in.)
A � 1.5b (in.2)

� 0.375b (in.3)

S �
b

6
 (1.5 in.)2

Free-body diagram of one plank supported on the
beams:

Load on one plank:

Reaction

(R � lb; w � lb/ft2; b � in.)
Mmax occurs at midspan.

(M � lb-in.; w � lb/ft2; b � in.)

Allowable bending moment:

Mallow � �allow S � (2400 psi)(0.375b) � 900b (lb-in.)

EQUATE Mmax AND Mallow AND SOLVE FOR w:

w1 � 121 lb/ft2
89

12
 wb � 900 b

�
wb

3
 (46.25) �

wb

144
 (1152) �

89

12
 wb

Mmax � R ¢3.5 in.

2
�

89 in.

2
≤�

q(48 in.)2

2

R � q ¢96 in.

2
≤� ¢ wb

144
≤(48) �

wb

3

q � B w (lb�ft2)

144 in.2�ft2 R (b in.) �
wb

144
 (lb�in.)8 ft

Plank

3.5 in.

3.5 in.

1.5 in.
b

3.5 in.3.5 in.

q

8 ft. (96 in.)

Plank

89 in.

(Continued)



Problem 5.8-12 A wood beam ABC with simple supports at A
and B and an overhang BC has height h � 280 mm (see figure).
The length of the main span of the beam is L � 3.6 m and the
length of the overhang is L/3 � 1.2 m. The beam supports a
concentrated load 3P � 15 kN at the midpoint of the main span
and a load P � 5 kN at the free end of the overhang. The wood
has weight density � � 5.5 kN/m3.

(a) Determine the required width b of the beam based upon
an allowable bending stress of 8.2 MPa. 

(b) Determine the required width based upon an allowable
shear stress of 0.7 MPa. 

Solution 5.8-12 Rectangular beam with an overhang
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(b) ALLOWABLE LOAD BASED UPON SHEAR STRESS

IN THE PLANKS

See the free-body diagram in part (a).
Vmax occurs at the inside face of the support.

(V � lb; w � lb/ft2; b � in.)

Allowable shear force:

t�
3V

2A
�Vallow �

2Atallow

3
�

2(1.5b)(100 psi)

3
� 100b (lb)

Vmax � q ¢89 in.

2
≤� 44.5q � (44.5)¢ wb

144
≤�

89 wb

288

EQUATE Vmax AND Vallow AND SOLVE FOR w:

w2 � 324 lb/ft2

(c) ALLOWABLE LOAD

Bending stress governs. wallow � 121 lb/ft2

89wb

288
� 100b

A CB

P

b

h =
280 mm

3P

L

L
2
—

L
3
—

A CB

P

b

h =
280 mm

3P

L
3
—L

2
— L

2
—

q

RA RB

P

RA

V

0

qL
18

7P 
6 �

qL
 3P �

qL
18

� 11P 
6 �

5qL
9

� 11P 
6 �

L � 3.6 m
P � 5 kN
� � 5.5 kN/m3 (for the wood)
q � �bh
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MB

M

0

Mmax

FIND b

(a) REQUIRED WIDTH b BASED UPON BENDING STRESS

� (0.280 m)(3.6 m)2

� 10,500 � 1940.4b (b � meters)

(M � newton-meters)

�allow � 8.2 MPa

� 107,150b

Mmax �
bh2sallow

6
�

b

6
 (0.280 m)2(8.2 � 106 Pa)

s�
Mmax

S
�

6Mmax

bh2

� 10,500 Ň � ˇm �
7

72
 (5500 N�m3)(b)

�
7

72
 (gbh)(3.6 m)2

Mmax �
7PL

12
�

7qL2

72
�

7

12
 (5000 N)(3.6 m)

Mmax �
7PL

12
�

7qL2

72
�MB � �

PL

3
�

qL2

18

Vmax �
11P

6
�

5qL

9

RB �
17P

6
�

8qL

9

RA �
7P

6
�

4qL

9

EQUATE MOMENTS AND SOLVE FOR b:
10,500 � 1940.4b � 107,150b
b � 0.0998 m � 99.8 mm

(b) REQUIRED WIDTH b BASED UPON SHEAR STRESS

� 9167 � 3080b (b � meters)

(V � newtons)

�allow � 0.7 MPa

� 130,670b

EQUATE SHEAR FORCES AND SOLVE FOR b:
9167 � 3080b � 130,670b
b � 0.0718 m � 71.8 mm

NOTE: Bending stress governs. b � 99.8 mm

Vmax �
2bhtallow

3
�

2b

3
 (0.280 m)(0.7 � 106 N�m2)

t�
3Vmax

2A
�

3Vmax

2bh

� 9167 N �
5

9
 (5500 N�m3)(b)(0.280 m)(3.6 m)

�
11

6
 (5000 N) �

5

9
 (gbh)(3.6 m)

Vmax �
11P

6
�

5qL

9



Shear Stresses in Circular Beams

Problem 5.9-1 A wood pole of solid circular cross section (d �
diameter) is subjected to a horizontal force P � 450 lb (see figure). The
length of the pole is L � 6 ft, and the allowable stresses in the wood are
1900 psi in bending and 120 psi in shear. 

Determine the minimum required diameter of the pole based upon (a)
the allowable bending stress, and (b) the allowable shear stress.

Solution 5.9-1 Wood pole of circular cross section
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L

P

d
d

P � 450 lb L � 6 ft � 72 in.
�allow � 1900 psi
�allow � 120 psi
Find diameter d

(a) BASED UPON BENDING STRESS

Mmax � PL � (450 lb)(72 in.) � 32,400 lb-in.

dmin � 5.58 in.

(b) BASED UPON SHEAR STRESS

Vmax � 450 lb

dmin � 2.52 in.

(Bending stress governs.)

t�
4V

3A
�

16V

3�d 2
�d 2 �

16Vmax

3�tallow
� 6.366 in.2

s�
M

S
�

32M

�d 3
�d 3 �

32Mmax

�sallow
� 173.7 in.3

L

P

d

d

Problem 5.9-2 A simple log bridge in a remote area consists of two
parallel logs with planks across them (see figure). The logs are Douglas
fir with average diameter 300 mm. A truck moves slowly across the
bridge, which spans 2.5 m. Assume that the weight of the truck is equally
distributed between the two logs. 

Because the wheelbase of the truck is greater than 2.5 m, only one set
of wheels is on the bridge at a time. Thus, the wheel load on one log is
equivalent to a concentrated load W acting at any position along the span.
In addition, the weight of one log and the planks it supports is equivalent
to a uniform load of 850 N/m acting on the log.

Determine the maximum permissible wheel load W based upon (a) an
allowable bending stress of 7.0 MPa, and (b) an allowable shear stress of
0.75 MPa. 

W

2.5 m

x

850 N/m

300 m



Solution 5.9-2 Log bridge
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Diameter d � 300 mm
�allow � 7.0 MPa
�allow � 0.75 MPa
Find allowable load W

(a) BASED UPON BENDING STRESS

Maximum moment occurs when wheel is at midspan 
(x � L/2).

� 0.625W � 664.1 (N � m) (W � newtons)

Mmax � S�allow � (2.651 � 10�3 m3)(7.0 MPa)
� 18,560 N � m

� 0.625W � 664.1 � 18,560
W � 28,600 N � 28.6 kN

S �
�d 3

32
� 2.651 � 10�3 m3

Mmax �
WL

4
�

qL2

8
�

W

4
(2.5 m) �

1

8
(850 N�m)(2.5 m)2

(b) BASED UPON SHEAR STRESS

Maximum shear force occurs when wheel is adjacent
to support (x � 0).

� W � 1062.5 N (W � newtons)

� 39,760 N
� W �1062.5 N � 39,760 N
W � 38,700 N � 38.7 kN

Vmax �
3A tallow

4
�

3

4
 (0.070686 m2)(0.75 MPa)

tmax �
4Vmax

3A

A �
�d 2

4
� 0.070686 m2

Vmax � W �
qL

2
� W �

1

2
 (850 N�m)(2.5 m)

W

L = 2.5 m

x

q = 850 N/m

Problem 5.9-3 A sign for an automobile service station is supported by
two aluminum poles of hollow circular cross section, as shown in the
figure. The poles are being designed to resist a wind pressure of 75 lb/ft2

against the full area of the sign. The dimensions of the poles and sign are
h1 � 20 ft, h2 � 5 ft, and b � 10 ft. To prevent buckling of the walls of
the poles, the thickness t is specified as one-tenth the outside diameter d.

(a) Determine the minimum required diameter of the poles based
upon an allowable bending stress of 7500 psi in the aluminum. 

(b) Determine the minimum required diameter based upon an
allowable shear stress of 2000 psi. 

d

t = 

b

h2

h1

Wind
load

d
10
—



Solution 5.9-3 Wind load on a sign
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b � width of sign
b � 10 ft
P � 75 lb/ft2

�allow � 7500 psi
�allow � 2000 psi
d � diameter W � wind force on one pole

(a) REQUIRED DIAMETER BASED UPON

BENDING STRESS

(d � inches)

� 1164.6 in.3 d � 10.52 in.

d 3 �
17.253Mmax

sallow
�

(17.253)(506,250 lb-in.)

7500 psi

s�
Mc

I
�

M(d�2)

369�d 4�40,000
�

17.253M

d 3

c �
d

2

I �
�

64
Bd 4 � ¢4d

5
≤

4R �
�d 4

64
 ¢369

625
≤�

369�d 4

40,000
 (in.4)

I �
�

64
 (d 2

4 � d 2
4)�d2 � d�d1 � d � 2t �

4

5
 d

Mmax � W ¢h1 �
h2

2
≤� 506,250 lb-in.

t �
d

10
�           W � ph2 ¢b

2
≤� 1875 lb

(b) REQUIRED DIAMETER BASED UPON SHEAR STRESS

Vmax � W � 1875 lb

d � 2.56 in.
(Bending stress governs.)

d 2 �
7.0160 Vmax

tallow
�

(7.0160)(1875 lb)

2000 psi
� 6.5775 in.2

t�
4V

3
 ¢61

41
≤ ¢ 100

9�d 2
≤� 7.0160 

V

d 2

A �
�

4
 (d 2

2 � d 1
2) �

�

4
Bd 2 � ¢4d

5
≤

2R �
9�d 2

100

r 2
2 � r2r1 � r 1

2

r 2
2 � r 1

2 �

¢d
2
≤

2

� ¢d
2
≤ ¢2d

5
≤� ¢2d

5
≤

2

¢d
2
≤

2

� ¢2d

5
≤

2 �
61

41

r1 �
d

2
� t �

d

2
�

d

10
�

2d

5

t�
4V

3A
 ¢r 2

2 � r2r1 � r 1
2

r 2
2 � r 1

2 ≤�r2 �
d

2

d

h2 = 5ft

h1 = 20 ft

W

Problem 5.9-4 Solve the preceding problem for a sign and poles 
having the following dimensions: h1 � 6.0 m, h2 � 1.5 m, b � 3.0 m, 
and t � d/10. The design wind pressure is 3.6 kPa, and the allowable
stresses in the aluminum are 50 MPa in bending and 14 MPa in shear. 



Solution 5.9-4 Wind load on a sign
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d

h2 = 1.5 m

h1 = 6.0 m

W

b � width of sign

b � 3.0 m

p � 3.6 kPa

�allow � 50 MPa

�allow � 16 MPa

d � diameter W � wind force on one pole

(a) REQUIRED DIAMETER BASED UPON BENDING STRESS

(d � meters)

� 0.018866 m3

d � 0.266 m � 266 mm

d 3 �
17.253Mmax

sallow
�

(17.253)(54.675 kŇ � ˇm)

50 MPa

s�
Mc

I
�

M(d�2)

369�d 4�40,000
�

17.253M

d 3

c �
d

2

I �
�

64
 Bd 4 � ¢4d

5
≤

4R �
�d 4

64
 ¢369

625
≤�

369�d 4

40,000
 (m4)

s�
Mc

I
�I �

�

64
 (d 2

4 � d 1
4)�d2 � d�d1 � d � 2t �

4

5
 d

Mmax � W ¢h1 �
h2

2
≤� 54.675 kŇ � ˇm

t �
d

10
�W � ph2 ¢b

2
≤� 8.1 kN

(b) REQUIRED DIAMETER BASED UPON

SHEAR STRESS

Vmax � W � 8.1 kN

� 0.004059 m2

d � 0.06371 m � 63.7 mm

(Bending stress governs)

d 2 �
7.0160 Vmax

tallow
�

(7.0160)(8.1 kN)

14 MPa

t�
4V

3
 ¢61

41
≤ ¢ 100

9�d 2
≤� 7.0160 

V

d 2

A �
�

4
 (d 2

2 � d 1
2) �

�

4
Bd 2 � ¢4d

5
≤

2R �
9�d 2

100

r 2
2 � r1r2 � r 1

2

r 2
2 � r 1

2 �

¢d
2
≤

2

� ¢d
2
≤ ¢2d

5
≤� ¢2d

5
≤

2

¢d
2
≤

2

� ¢2d

5
≤

2 �
61

41

r1 �
d

2
� t �

d

2
�

d

10
�

2d

5

t�
4V

3A
 ¢r 2

2 � r1r2 � r 1
2

r 2
2 � r 1

2 ≤�r2 �
d

2



Shear Stresses in the Webs of Beams with Flanges

Problem 5.10-1 through 5.10-6 A wide-flange beam (see figure) having
the cross section described below is subjected to a shear force V. Using the
dimensions of the cross section, calculate the moment of inertia and then
determine the following quantities:

(a) The maximum shear stress �max in the web. 
(b) The minimum shear stress �min in the web. 
(c) The average shear stress �aver (obtained by dividing the shear

force by the area of the web) and the ratio �max/�aver. 
(d) The shear force Vweb carried in the web and the ratio Vweb/V.

Note: Disregard the fillets at the junctions of the web and flanges and
determine all quantities, including the moment of inertia, by considering
the cross section to consist of three rectangles.

Problem 5.10-1 Dimensions of cross section: b � 6 in., t � 0.5 in., 
h � 12 in., h1 � 10.5 in., and V � 30 k.

Solution 5.10-1 Wide-flange beam
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z

t

y

O hh1

b

b � 6.0 in.
t � 0.5 in.
h � 12.0 in.
h1 � 10.5 in.
V � 30 k

MOMENT OF INERTIA (Eq. 5-47)

(a) MAXIMUM SHEAR STRESS IN THE WEB (Eq. 5-48a)

tmax �
V

8It
 (bh2 � bh1

2 � th1
2) � 5795 psi

I �
1

12
(bh3 � bh1

3 � th1
3) � 333.4 in.4

(b) MINIMUM SHEAR STRESS IN THE WEB (Eq. 5-48b)

(c) AVERAGE SHEAR STRESS IN THE WEB (Eq. 5-50)

(d) SHEAR FORCE IN THE WEB (Eq. 5-49)

Vweb

V
� 0.942

Vweb �
th1

3
 (2tmax � tmin) � 28.25 k

tmax

taver
� 1.014

taver �
V

th1
� 5714 psi

tmin �
Vb

8It
 (h2 � h1

2) � 4555 psi
t

h1

b

h

Probs. 5.10-1 through 5.10-6



Problem 5.10-2 Dimensions of cross section: b � 180 mm, t � 12 mm,
h � 420 mm, h1 � 380 mm, and V � 125 kN.

Solution 5.10-2 Wide-flange beam
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b � 180 mm
t � 12 mm

h � 420 mm
h1 � 380 mm
V � 125 kN

MOMENT OF INERTIA (Eq. 5-47)

(a) MAXIMUM SHEAR STRESS IN THE WEB (Eq. 5-48a)

tmax �
V

8It
 (bh2 � bh1

2 � th1
2) � 28.43 MPa

I �
1

12
(bh3 � bh1

3 � th1
3) � 343.1 � 106 mm4

(b) MINIMUM SHEAR STRESS IN THE WEB (Eq. 5-48b)

(c) AVERAGE SHEAR STRESS IN THE WEB (Eq. 5-50)

(d) SHEAR FORCE IN THE WEB (Eq. 5-49)

Vweb

V
� 0.957

Vweb �
th1

3
 (2tmax � tmin) � 119.7 kN

tmax

taver
� 1.037

taver �
V

th1
� 27.41 MPa

tmin �
Vb

8It
 (h2 � h1

2) � 21.86 MPa
t

h1

b

h

Problem 5.10-3 Wide-flange shape, W 8 � 28 (see Table E-1, Appendix
E); V � 10 k. 

Solution 5.10-3 Wide-flange beam

W 8 � 28
b � 6.535 in.
t � 0.285 in.
h � 8.06 in.

h1 � 7.13 in.
V � 10 k

MOMENT OF INERTIA (Eq. 5-47)

(a) MAXIMUM SHEAR STRESS IN THE WEB (Eq. 5-48a)

(b) MINIMUM SHEAR STRESS IN THE WEB (Eq. 5-48b)

tmin �
Vb

8It
 (h2 � h2

1) � 4202 psi

tmax �
V

8It
 (bh2 � bh2

1 � th1
2) � 4861 psi

I �
1

12
 (bh3 � bh3

1 � th3
1) � 96.36 in.4

(c) AVERAGE SHEAR STRESS IN THE WEB (Eq. 5-50)

(d) Shear force in the web (Eq. 5-49)

Vweb

V
� 0.943

Vweb �
th1

3
 (2tmax � tmin) � 9.432 k

tmax

taver
� 0.988 

taver �
V

th1
� 4921 psi

t

h1

b

h



Problem 5.10-4 Dimensions of cross section: b � 220 mm, t � 12 mm,
h � 600 mm, h1 � 570 mm, and V � 200 kN.

Solution 5.10-4 Wide-flange beam
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b � 220 mm
t � 12 mm
h � 600 mm

h1 � 570 mm
V � 200 kN

MOMENT OF INERTIA (Eq. 5-47)

(a) MAXIMUM SHEAR STRESS IN THE WEB (Eq. 5-48a)

tmax �
V

8It
 (bh2 � bh2

1 � th1
2) � 32.28 MPa

I �
1

12
 (bh3 � bh3

1 � th3
1) � 750.0 � 106 mm4

(b) MINIMUM SHEAR STRESS IN THE WEB (Eq. 5-48b)

(c) AVERAGE SHEAR STRESS IN THE WEB (Eq. 5-50)

(d) SHEAR FORCE IN THE WEB (Eq. 5-49)

Vweb

V
� 0.981

Vweb �
th1

3
 (2tmax � tmin) � 196.1 kN

tmax

taver
� 1.104 

taver �
V

th1
� 29.24 MPa

tmin �
Vb

8It
 (h2 � h2

1) � 21.45 MPa
t

h1

b

h

Problem 5.10-5 Wide-flange shape, W 18 � 71 
(see Table E-1, Appendix E); V � 21 k. 

Solution 5.10-5 Wide-flange beam

W 18 � 71
b � 7.635 in.
t � 0.495 in.
h � 18.47 in.

h1 � 16.85 in.
V � 21 k

MOMENT OF INERTIA (Eq. 5-47)

(a) MAXIMUM SHEAR STRESS IN THE WEB (Eq. 5-48a)

tmax �
V

8It
 (bh2 � bh2

1 � th1
2) � 2634 psi

I �
1

12
 (bh3 � bh3

1 � th3
1) � 1162 in.4

(b) MINIMUM SHEAR STRESS IN THE WEB (Eq. 5-48b)

(c) AVERAGE SHEAR STRESS IN THE WEB (Eq. 5-50)

(d) SHEAR FORCE IN THE WEB (Eq. 5-49)

Vweb

V
� 0.961

Vweb �
th1

3
 (2tmax � tmin) � 20.19 k

tmax

taver
� 1.046 

taver �
V

th1
� 2518 psi

tmin �
Vb

8It
 (h2 � h2

1) � 1993 psi
t

h1

b

h



Problem 5.10-6 Dimensions of cross section: b � 120 mm, t � 7 mm,
h � 350 mm, h1� 330 mm, and V � 60 kN.

Solution 5.10-6 Wide-flange beam
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b � 120 mm
t � 7 mm
h � 350 mm

h1 � 330 mm
V � 60 kN

MOMENT OF INERTIA (Eq. 5-47)

(a) MAXIMUM SHEAR STRESS IN THE WEB (Eq. 5-48a)

tmax �
V

8It
 (bh2 � bh1

2 � th1
2) � 28.40 MPa

I �
1

12
 (bh3 � bh1

3 � th1
3) � 90.34 � 106 mm4

(b) MINIMUM SHEAR STRESS IN THE WEB (Eq. 5-48b)

(c) AVERAGE SHEAR STRESS IN THE WEB (Eq. 5-50)

(d) SHEAR FORCE IN THE WEB (Eq. 5-49)

Vweb

V
� 0.977

Vweb �
th1

3
 (2tmax � tmin) � 58.63 kN

tmax

taver
� 1.093

taver �
V

th1
� 25.97 MPa

tmin �
Vb

8It
 (h2 � h1

2) � 19.35 MPa
t

h1

b

h

Problem 5.10-7 A cantilever beam AB of length L � 6.5 ft supports
a uniform load of intensity q that includes the weight of the beam 
(see figure). The beam is a steel W 10 � 12 wide-flange shape (see
Table E-1, Appendix E). 

Calculate the maximum permissible load q based upon (a) an
allowable bending stress �allow � 16 ksi, and (b) an allowable shear
stress �allow � 8.5 ksi. (Note: Obtain the moment of inertia and 
section modulus of the beam from Table E-1.) 

Solution 5.10-7 Cantilever beam

W 10 � 12A
B

q

L = 6.5 ft

W 10 � 12
From Table E-1:
b � 3.960 in.
t � 0.190 in.
h � 9.87 in.

h1 � 9.87 in. �2(0.210 in.) � 9.45 in.
I � 53.8 in.4

S � 10.9 in.3

L � 6.5 ft � 78 in.
�allow � 16,000 psi
�allow � 8,500 psi

(a) MAXIMUM LOAD BASED UPON BENDING STRESS

Mmax �
qL2

2
�s�

Mmax

S
�q �

2Ss

L2

� 57.33 lb/in. � 688 lb/ft

(b) MAXIMUM LOAD BASED UPON SHEAR STRESS

(Eq. 5-48a)

Substitute numerical values:

qmax � 181.49 lb/in. � 2180 lb/ft

NOTE: Bending stress governs. qallow � 688 lb/ft

qmax �
Vmax

L
�

8It(tallow)

L(bh2 � bh2
1 � th1

2)

Vmax � qL�tmax �
Vmax

8It
 (bh2 � bh1

2 � th1
2)

qmax �
2Ssallow

L2 �
2(10.9 in.3) (16,000 psi)

(78 in.)2

t

h1

b

h



Problem 5.10-8 A bridge girder AB on a simple span of length 
L � 14 m supports a uniform load of intensity q that includes the 
weight of the girder (see figure). The girder is constructed of three 
plates welded to form the cross section shown. 

Determine the maximum permissible load q based upon (a) an
allowable bending stress �allow � 110 MPa, and (b) an allowable 
shear stress �allow � 50 MPa.

Solution 5.10-8 Bridge girder (simple beam)
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L � 14 m
b � 450 mm t � 15 mm
h � 1860 mm h1 � 1800 mm
�allow � 110 MPa
�allow � 50 MPa
c � h/2 � 930 mm

Eq. (5-47):

� 29.897 � 109 mm4

S �
I
c

�
29.897 � 109 mm4

930 mm
� 32.147 � 106 mm3

I �
1

12
 (bh3 � bh3

1 � th1
3)

(a) MAXIMUM LOAD BASED UPON BENDING STRESS

� 144.3 � 103 N/m � 144 kN/m

(b) MAXIMUM LOAD BASED UPON SHEAR STRESS

(Eq. 5-48a)

Substitute numerical values:
qmax � 173.8 � 103 N/m � 174 kN/m

NOTE: Bending stress governs. qallow � 144 kN/m

qmax �
2Vmax

L
�

16It(tallow)

L(bh2 � bh2
1 � th1

2)

Vmax �
qL

2
�tmax �

Vmax

8It
 (bh2 � bh1

2 � th1
2)

qmax �
8Ssallow

L2 �
8(32.147 � 106 mm3)(110 MPa)

(14 m)2

Mmax �
qL2

8
�s�

Mmax

S
�q �

8Ss

L2

t

h1

b

h

A B

L = 14 m

q

450 mm

450 mm

1800 mm
15 mm

30 mm

30 mm

Problem 5.10-9 A simple beam with an overhang supports a uniform
load of intensity q � 1200 lb/ft and a concentrated load P � 3000 lb 
(see figure). The uniform load includes an allowance for the weight of 
the beam. The allowable stresses in bending and shear are 18 ksi and 
11 ksi, respectively. 

Select from Table E-2, Appendix E, the lightest I-beam (S shape) 
that will support the given loads. 

Hint: Select a beam based upon the bending stress and then calculate
the maximum shear stress. If the beam is overstressed in shear, select a
heavier beam and repeat.

A
B

C

P = 3000 lb

q = 1200 lb/ft

12 ft 4 ft

8 ft



Solution 5.10-9 Beam with an overhang
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�allow � 18 ksi
�allow � 11 ksi

Select a beam of S shape
RA � 7400 lb
RB � 14,800 lb

Maximum shear force: Vmax � 10,000 lb at x � 12 ft

Maximum bending moment:
Mmax � 22,820 lb-ft at x � 6.167 ft

REQUIRED SECTION MODULUS

From Table E-2:
Lightest beam is S 8 � 23

I � 64.9 in.4 S � 16.2 in.3

b � 4.171 in. t � 0.441 in.

h � 8.00 in. h1 � 8.00 � 2(0.426) � 7.148 in.

MAXIMUM SHEAR STRESS (Eq. 5-48a)

� ok for shear 

Select S 8 � 23 beam

� 3340 psi 6 11,000 psi

tmax �
Vmax

8It
(bh2 � bh2

1 � th1
2)

S �
Mmax

sallow
�

(22,820 lb-ft) (12 in.�ft)
18,000 psi

� 15.2 in.3
A

B
C

P = 3000 lb

q = 1200 lb/ft

12 ft 4 ft

8 ft

RA RB
x

Problem 5.10-10 A hollow steel box beam has the rectangular 
cross section shown in the figure. Determine the maximum allowable
shear force V that may act on the beam if the allowable shear stress 
is 36 MPa. 

Solution 5.10-10 Rectangular box beam

10 mm

200 mm

20
mm

20
mm

10 mm
450
mm

�allow � 36 MPa

Find Vallow

t � 2(10 mm) � 20 mm

I �
1

12
 (200)  (450)3 �

1

12
 (180)(410)3 � 484.9 � 106 mm4

Vallow �
tallowIt

Q

t�
VQ

It

� 1.280 � 106 mm3

� 273 kN

 �
(36 MPa)  (484.9 � 106 mm4)(20 mm)

1.280 � 106 mm3

Vallow �
tallowIt

Q

Q � (200)  ¢450

2
≤ ¢450

4
≤� (180)¢410

2
≤ ¢410

4
≤



Problem 5.10-11 A hollow aluminum box beam has the square cross section
shown in the figure. Calculate the maximum and minimum shear stresses �max
and �min in the webs of the beam due to a shear force V � 28 k.

Solution 5.10-11 Square box beam
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1.0 in.

1.0 in.

12 in.

V � 28 k � 28,000 lb

t1 � 1.0 in.

b � 12 in.

b1 � 10 in.

t � 2t1 � 2.0 in.

MOMENT OF INERTIA

MAXIMUM SHEAR STRESS IN THE WEB

(AT NEUTRAL AXIS)

y1 �
1

2
 ¢b

2
≤�

b

4
�y2 �

1

2
 ¢b1

2
≤�

b1

4

A2 � b1 ¢b1

2
≤�

b2
1

2

A1 � b ¢b
2
≤�

b2

2
Q � A1 y1 � A2 y2

I �
1

12
 (b4 � b4

1) � 894.67 in.4

t�
VQ

It

� 1.42 ksi

MINIMUM SHEAR STRESS IN THE WEB

(AT LEVEL A-A)

� 1.03 ksi

tmin �
VQ

It
�

(28,000 lb)(66.0 in.3)

(894.67 in.4) (2.0 in.)
� 1033 psi

Q �
(12 in.)

8
 [ (12 in.)2 � (10 in.)2 ] � 66.0 in.3

t1 �
b � b1

2
�Q �

b

8
 (b2 � b1

2)

Q � Ay � (bt1)  ¢b
2

�
t1

2
≤�

bt1

2
 (b � t1)

tmax �
VQ

It
�

(28,000 lb)(91.0 in.3)

(894.67 in.4) (2.0 in.)
� 1424 psi

Q � ¢b
2

2
≤ ¢b

4
≤� ¢b1

2

2
≤ ¢b1

4
≤�

1

8
 (b3 � b1

3) � 91.0 in.3
A A

t1

t1

b

b1

Problem 5.10-12 The T-beam shown in the figure has cross-sectional
dimensions as follows: b � 220 mm, t � 15 mm, h � 300 mm, and 
h1 � 275 mm. The beam is subjected to a shear force V � 60 kN. 

Determine the maximum shear stress �max in the web of the beam. 
z

y

C
h1 h

c

t

bProbs. 5.10-12 and 5.10-13



Solution 5.10-12 T-beam
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b � 220 mm t � 15 mm h � 300 mm

h1 � 275 mm V � 60 kN

Find �max

LOCATE NEUTRAL AXIS

(ALL DIMENSIONS IN MILLIMETERS)

 �

(220)(25)¢25

2
≤� (15)(275)¢300 �

275

2
≤

(220)(25) � (15)(275)
� 76.79 mm

c �
gAy

gA
�

b(h � h1)¢h � h1

2
≤� th1¢h �

h1

2
≤

b(h � h1) � th1

MOMENT OF INERTIA ABOUT THE z-AXIS

� 56.29 � 106 mm4

� 23.02 � 106 mm4

I � Iweb � Iflange � 79.31 � 106 mm4

FIRST MOMENT OF AREA ABOVE THE z AXIS

� 373.6 � 103 mm3

MAXIMUM SHEAR STRESS

� 18.8 MPa

tmax �
VQ

It
�

(60  kN)(373.6 � 103 mm3)

(79.31 � 106 mm4)(15 mm)

Q � (15)(223.2)¢223.2

2
≤

Iflange �
1

12
 (220)(25)3 � (220)(25)¢76.79 �

25

2
≤

2

Iweb �
1

3
 (15)(223.2)3 �

1

3
(15)(76.79 � 25)3

z

y

C
275

1.5

220

223.2

76.79
25

Problem 5.10-13 Calculate the maximum shear stress �max in the web 
of the T-beam shown in the figure if b � 10 in.,  t � 0.6 in., h � 8 in., 
h1 � 7 in., and the shear force V � 5000 lb.

Solution 5.10-13 T-beam

b � 10 in.

t � 0.6 in.
h � 8 in.

h1 � 7 in.

V � 5000 lb

Find �max

LOCATE NEUTRAL AXIS

(ALL DIMENSIONS IN INCHES)

MOMENT OF INERTIA ABOUT THE z-AXIS

� 50.48 in.4

Iweb �
1

3
 (0.6)(6.317)3 �

1

3
 (0.6)(1.683 � 1.0)3

 �
(10)(1)(0.5) � (0.6)(7)(4.5)

10(1) � (0.6)(7)
� 1.683 in.

c �
gAy

gA
�

b(h � h1)¢h � h1

2
≤� th1¢h �

h1

2
≤

b(h � h1) � th1

� 14.83 in.4

I � Iweb � Iflange � 65.31 in4.

FIRST MOMENT OF AREA ABOVE THE z AXIS

MAXIMUM SHEAR STRESS

tmax �
VQ

It
�

(5000 lb)(11.97 in.3)

(65.31 in.4) (0.6 in.)
� 1530 psi

Q � (0.6)(6.317)¢6.317

2
≤� 11.97 in.3

Iflange �
1

12
 (10)(1.0)3 � (10)(1.0)(1.683 � 0.5)2

z

y

C
h1 h

c

t

b

z

y

C
7

1.683

0.6

10

6.317

1.0



Built-Up Beams

Problem 5.11-1 A prefabricated wood I-beam serving as a floor joist
has the cross section shown in the figure. The allowable load in shear 
for the glued joints between the web and the flanges is 65 lb/in. in the
longitudinal direction. 

Determine the maximum allowable shear force Vmax for the beam. 

Solution 5.11-1 Wood I-beam

350 CHAPTER 5 Stresses in Beams

0.75 in.

0.75 in.

0.625 in.
z

y

O 8 in.

5 in.

0.75 in.

0.75 in.

t = 0.625 in.

z

y

O h1 = 8

b = 5

h = 9.5

Problem 5.11-2 A welded steel girder having the cross section shown in
the figure is fabricated of two 280 mm � 25 mm flange plates and a 600
mm � 15 mm web plate. The plates are joined by four fillet welds that
run continuously for the length of the girder. Each weld has an allowable
load in shear of 900 kN/m. 

Calculate the maximum allowable shear force Vmax for the girder. 
z

y

O

280 mm

15 mm

25 mm

25 mm

600 mm

All dimensions in inches.

Find Vmax based upon shear in the glued joints.

Allowable load in shear for the glued joints is 65 lb/in.

� fallow � 65 lb/in.

� 170.57 in.4

Q � Qflange � Af df � (5)(0.75)(4.375) � 16.406 in.3

Vmax �
fallowI

Q
�

(65 lb�in.) (170.57 in.4)

16.406 in.3
� 676 lb

I �
bh3

12
�

(b � t)h1
3

12
�

1

12
 (5)(9.5)3 �

1

12
 (4.375)(8)3

f �
VQ

I
�     Vmax �

fallowI

Q



Solution 5.11-2 Welded steel girder
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All dimensions in millimeters.

Allowable load in shear for one weld is 900 kN/m.

� fallow � 2(900) � 1800 kN/m

� 1638 � 106 mm4

Q � Qflange � Af df � (280)(25)(312.5) � 2.1875 � 106 mm3

� 1.35 MN

Vmax �
fallowI

Q
�

(1800 kN�m)(1638 � 106 mm4)

2.1875 � 106 mm3

I �
bh3

12
�

(b � t)h1
3

12
�

1

12
 (280)(650)3 �

1

12
 (265)(600)3

f �
VQ

I
�     Vmax �

fallowI

Q

z

y

O

b = 280

t = 15

25

25

h1 = 
600

weld

h = 
650 

Problem 5.11-3 A welded steel girder having the cross section 
shown in the figure is fabricated of two 18 in. � 1 in. flange plates 
and a 64 in. � 3/8 in. web plate. The plates are joined by four
longitudinal fillet welds that run continuously throughout the length 
of the girder. 

If the girder is subjected to a shear force of 300 kips, what force 
F (per inch of length of weld) must be resisted by each weld?

Solution 5.11-3 Welded steel girder

z

y

O

18 in.

in.

1 in.

1 in.

64 in.
3
8
—

z

y

O

b = 18

t = 0.375

1.0

1.0

h1 = 
64

weld

h = 
66 

All dimensions in inches.

V � 300 k
F � force per inch of length of one weld

f � shear flow

� 46,220 in.4

Q � Qflange � Af df � (18)(1.0)(32.5) � 585 in.3

F �
VQ

2I
�

(300 k)(585 in.3)

2(46,220 in.4)
� 1900 lb�in.

I �
bh3

12
�

(b � t)h1
3

12
�

1

12
 (18)(66)3 �

1

12
 (17.625)(64)3

F �
VQ

2I
f � 2F �

VQ

I



Problem 5.11-4 A box beam of wood is constructed of two 260 mm �
50 mm boards and two 260 mm � 25 mm boards (see figure). The boards
are nailed at a longitudinal spacing  s � 100 mm. 

If each nail has an allowable shear force F � 1200 N, what is the
maximum allowable shear force Vmax? 

Solution 5.11-4 Wood box beam

352 CHAPTER 5 Stresses in Beams

z

y

O
50

 mm

25 mm

25 mm

50
 mm

260 mm

260 mm

All dimensions in millimeters.

b � 260 b1 � 260 � 2(50) � 160
h � 310 h1 � 260

s � nail spacing � 100 mm
F � allowable shear force 

for one nail � 1200 N
f � shear flow between one flange 

and both webs
Q � Qflange � Af df � (260)(25)(142.5) � 926.25 � 103 mm3

� 10.7 kN

Vmax �
fallowI

Q
�

(24 kN�m)(411.125 � 106 mm4)

926.25 � 103 mm3

I �
1

12
 (bh3 � b1h

3
1) � 411.125 � 106 mm4

f �
VQ

I
�     Vmax �

fallowI

Q

fallow �
2F
s

�
2(1200 N)

100 mm
� 24 kN�m

Problem 5.11-5 A box beam constructed of four wood boards of size 
6 in. � 1 in. (actual dimensions) is shown in the figure. The boards are
joined by screws for which the allowable load in shear is F � 250 lb 
per screw. 

Calculate the maximum permissible longitudinal spacing smax of the
screws if the shear force V is 1200 lb.

Solution 5.11-5 Wood box beam

z

y

O

1 in.

1 in.

1 in.1 in.

6 in.

6 in.

All dimensions in inches.

b � 6.0 b1 � 6.0 � 2(1.0) � 4.0
h � 8.0 h1 � 6.0
F � allowable shear force for one screw � 250 lb
V � shear force � 1200 lb
s � longitudinal spacing of the screws
f � shear flow between one flange and both webs

Q � Qflange � Af df � (6.0)(1.0)(3.5) � 21 in.3

� 3.65 in.

smax �
2FI

VQ
�

2(250 lb)(184 in.4)

(1200 lb)(21 in.3)

I �
1

12
 (bh3 � b1h1

3) � 184 in.4

∴ smax �
2FI

VQ
f �

VQ

I
�

2F
s



Problem 5.11-6 Two wood box beams (beams A and B) have
the same outside dimensions (200 mm � 360 mm) and the same
thickness (t � 20 mm) throughout, as shown in the figure on 
the next page. Both beams are formed by nailing, with each nail
having an allowable shear load of 250 N. The beams are
designed for a shear force V � 3.2 kN. 

(a) What is the maximum longitudinal spacing sA for 
the nails in beam A? 

(b) What is the maximum longitudinal spacing sB for the
nails in beam B? 

(c) Which beam is more efficient in resisting the shear
force? 

Solution 5.11-6 Two wood box beams
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z

y

O z

y

O

200 mm

360
mm

360
mm

t =
20 mm

t =
20 mm

A

200 mm

B

Cross-sectional dimensions are the same.

All dimensions in millimeters.

b � 200 b1 � 200 � 2(20) � 160
h � 360 h1 � 360 � 2(20) � 320
t � 20

F � allowable load per nail � 250 N
V � shear force � 3.2 kN

s � longitudinal spacing of the nails
f � shear flow between one flange and both webs

∴ smax �
2FI

VQ
f �

2F
s

�
VQ

I

I �
1

12
 (bh3 � b1h1

3) � 340.69 � 106 mm4

(a) BEAM A

� 680 � 103 mm3

� 78.3 mm

(b) BEAM B

� 544 � 103 mm3

� 97.9 mm

(c) BEAM B IS MORE EFFICIENT because the shear
flow on the contact surfaces is smaller and therefore
fewer nails are needed.

sB �
2FI

VQ
�

(2)(250 N)(340.7 � 106 mm4)

(3.2 kN)(544 � 103 mm3)

Q � Af df � (b � 2t)(t)¢h � t

2
≤� (160)(20)

1

2
(340)

sA �
2FI

VQ
�

(2)(250 N)(340.7 � 106 mm4)

(3.2 kN)(680 � 103 mm3)

Q � Ap dp � (bt)¢h � t

2
≤� (200)(20)¢1

2
≤(340)

Problem 5.11-7 A hollow wood beam with plywood webs has the 
cross-sectional dimensions shown in the figure. The plywood is attached
to the flanges by means of small nails. Each nail has an allowable load 
in shear of 30 lb.

Find the maximum allowable spacing s of the nails at cross sections
where the shear force V is equal to (a) 200 lb and (b) 300 lb.

z

y

O

3 in.

— in.3
16

— in.3
16

8 in.

in.3
4

in.3
4



Solution 5.11-7 Wood beam with plywood webs
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All dimensions in inches.

b � 3.375 b1 � 3.0
h � 8.0 h1 � 6.5
F � allowable shear force for one nail � 30 lb
s � longitudinal spacing of the nails
f � shear flow between one flange and both webs

Q � Qflange � Af df � (3.0)(0.75)(3.625) � 8.1563 in.3

I �
1

12
 (bh3 � b1h1

3) � 75.3438 in.4

∴ smax �
2FI

VQ
f �

VQ

I
�

2F
s

(a) V � 200 lb

� 2.77 in.

(b) V � 300 lb

By proportion,

smax � (2.77 in.)¢200

300
≤� 1.85 in.

smax �
2FI

VQ
�

2(30 lb)(75.344 in.4)

(200 lb)(8.1563 in.3)

Problem 5.11-8 A beam of T cross section is formed by nailing together
two boards having the dimensions shown in the figure. 

If the total shear force V acting on the cross section is 1600 N and
each nail may carry 750 N in shear, what is the maximum allowable nail
spacing s? 

Solution 5.11-8 T-beam (nailed)

z

y

C

50 mm

50 mm

200 mm

200 mm

z

y

C

t

t

b

h1

h

B B

c1

c2

All dimensions in millimeters.
V � 1600 N
F � allowable load per nail
F � 750 N
b � 200 mm t � 50 mm
h � 250 mm h1 � 200 mm
s � nail spacing
Find smax

LOCATION OF NEUTRAL AXIS (z AXIS)

Use the lower edge of the cross section (line B-B) 
as a reference axis.

� (200)(50)(100) � (200)(50)(225)
� 3.25 � 106 mm3

QBB � (h1t)¢h1

2
≤� (bt)¢h �

t

2
≤

A � bt � h1t � t(b � h1) � (50)(400)
� 20 � 103 mm2

c1 � h � c2 � 250 � 162.5 � 87.5 mm

MOMENT OF INERTIA ABOUT THE NEUTRAL AXIS

� 113.541 � 106 mm4

FIRST MOMENT OF AREA OF FLANGE

MAXIMUM ALLOWABLE SPACING OF NAILS

� 85.2 mm

smax �
Fallow I

VQ
�

(750 N)(113.541 � 106 mm4)

(1600 N)(625 � 103 mm3)

f �
VQ

I
�

F
s

Q � bt ¢c1 �
t

2
≤� (200)(50)(62.5) � 625 � 103 mm3

� (200)(50)(62.5)2

�
1

3
(50)(162.5)3 �

1

3
(50)(37.5)3 �

1

12
(200)(50)3

I �
1

3
tc2

3 �
1

3
t(h1 � c2)3 �

1

12
bt3 � bt ¢c1 �

t

2
≤

2

c2 �
QBB

A
�

3.25 � 106 mm3

20 � 103 mm2 � 162.5 mm



Problem 5.11-9 The T-beam shown in the figure is fabricated by
welding together two steel plates. If the allowable load for each weld 
is 2.0 k/in. in the longitudinal direction, what is the maximum allowable
shear force V?

Solution 5.11-9 T-beam (welded)
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z

y

C

0.5 in.

0.5 in.

6 in.

5 in.

All dimensions in inches.

F � allowable load per inch of weld
F � 2.0 k/in.
b � 5.0 t � 0.5
h � 6.5 h1 � 6.0
V � shear force
Find Vmax

LOCATION OF NEUTRAL AXIS (z AXIS)

Use the lower edge of the cross section (line B-B) 
as a reference axis.

� (5)(0.5)(0.25) � (6)(0.5)(3.5) � 11.25 in.3

QBB � (bt)¢ t

2
≤� (h1t)¢h �

h1

2
≤

A � bt � h1t � (5)(0.5) � (6)(0.5) � 5.5 in.2

c1 � h � c2 � 4.4773 in.

MOMENT OF INERTIA ABOUT THE NEUTRAL AXIS

FIRST MOMENT OF AREA OF FLANGE

SHEAR FLOW AT WELDS

MAXIMUM ALLOWABLE SHEAR FORCE

Vmax �
2FI

Q
�

2(2.0  k�in.) (23.455 in.4)

4.4318 in.3
� 21.2 k

f � 2F �
VQ

I

Q � bt  ¢c2 �
t

2
≤� (5)(0.5)(1.7727) � 4.4318 in.3

� (5)(0.5)(1.7727)2 � 23.455 in.4

�
1

3
(0.5)(4.4773)3 �

1

3
(0.5)(1.5227)3 �

1

12
(5)(0.5)3

I �
1

3
tc1

3 �
1

3
t(c2 � t)3 �

1

12
bt3 � (bt)¢c2 �

t

2
≤

2

c2 �
QBB

A
�

11.125 in.3

5.5 in.2
� 2.0227 in.

z

y

C

t

t

h

b

h1

B B

c1

c2

Problem 5.11-10 A steel beam is built up from a W 16 � 77 wide-
flange beam and two 10 in. � 1/2 in. cover plates (see figure on the next
page). The allowable load in shear on each bolt is 2.1 kips.

What is the required bolt spacing s in the longitudinal direction if the
shear force V � 30 kips? (Note: Obtain the dimensions and moment of
inertia of the W shape from Table E-1.)

z

y

O

10 in. �     in.
1
2—   

cover plates

W 16 � 77
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Solution 5.11-10 Beam with cover plates

All dimensions in inches.
Wide-flange beam (W 16 � 77):
d � 16.52 in.
Ibeam � 1110 in.4

Cover plates:
b � 10 in. t � 0.5 in.
F � allowable load per bolt

� 2.1 k
V � shear force

� 30 k
s � spacing of bolts in the longitudinal direction
Find smax

MOMENT OF INERTIA ABOUT THE NEUTRAL AXIS

� 1834 in.4

FIRST MOMENT OF AREA OF A COVER PLATE

MAXIMUM SPACING OF BOLTS

smax �
2(2.1 k)(1834 in.4)

(30 k)(42.55 in.3)
� 6.03 in.

s �
2FI

VQ
f �

VQ

I
�

2F
s

Q � bt ¢d � t

2
≤� (10)(0.5)(8.51) � 42.55 in.3

� 1110 in.4 � 2B 1

12
(10)(0.5)3 � (10)(0.5)(8.51)2R

I � Ibeam � 2B 1

12
bt 3 � (bt)¢d

2
�

t

2
≤

2R
N.A.

W 16 � 77
d

t = 0.5

t = 0.5

b =10

Problem 5.11-11 Two W 10 � 45 steel wide-flange beams are bolted
together to form a built-up beam as shown in the figure.

What is the maximum permissible bolt spacing s if the shear force 
V � 20 kips and the allowable load in shear on each bolt is F � 3.1 kips?
(Note: Obtain the dimensions and properties of the W shapes from 
Table E-1.)

Solution 5.11-11 Built-up steel beam

All dimensions in inches.
W 10 � 45: I1 � 248 in.4 d � 10.10 in.

A � 13.3 in.2

V � 20 k F � 3.1 k

Find maximum allowable bolt spacing smax.

MOMENT OF INERTIA OF BUILT-UP BEAM

� 1174.4 in.4

I � 2B I1 � A¢d
2
≤

2R � 2[248 � (13.3)(5.05)2]

FIRST MOMENT OF AREA OF ONE BEAM

MAXIMUM SPACING OF BOLTS IN THE LONGITUDINAL

DIRECTION

smax �
2(3.1 k)(1174.4 in.4)

(20 k)(67.165 in.3)
� 5.42 in.

s �
2FI

VQ
f �

VQ

I
�

2F
s

Q � A¢d
2
≤� (13.3)(5.05) � 67.165 in.3

W 10 � 45

W 10 � 45
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Beams with Axial Loads

When solving the problems for Section 5.12, assume that the bending
moments are not affected by the presence of lateral deflections.

Problem 5.12-1 While drilling a hole with a brace and bit, you exert 
a downward force P � 25 lb on the handle of the brace (see figure). 
The diameter of the crank arm is d � 7/16 in. and its lateral offset is 
b � 4-7/8 in. 

Determine the maximum tensile and compressive stresses �t and 
�c, respectively, in the crank.

Solution 5.12-1 Brace and bit

P = 25 lb

d =   
7
 in.—

16

b = 4 
7
  in.—8

P � 25 lb (compression)
M � Pb � (25 lb)(4 7/8 in.)

� 121.9 lb-in.
d � diameter
d � 7/16 in.

S �
�d 3

32
� 0.008221 in.3

A �
�d 2

4
� 0.1503 in.2

MAXIMUM STRESSES

� �166 psi � 14,828 psi � 14,660 psi

� �14,990 psi

sc � �
P

A
�

M

S
� �166 psi � 14,828 psi

st � �
P

A
�

M

S
� �

25 lb

0.1503 in.2
�

121.9 lb-in.

0.008221 in.3
P

d

M

Problem 5.12-2 An aluminum pole for a street light weighs 4600 N and
supports an arm that weighs 660 N (see figure). The center of gravity of
the arm is 1.2 m from the axis of the pole. The outside diameter of the
pole (at its base) is 225 mm and its thickness is 18 mm. 

Determine the maximum tensile and compressive stresses �t and �c,
respectively, in the pole (at its base) due to the weights. 

1.2 m

225 mm

18 mm

W1 = 4600 N

W2 = 660 N



Solution 5.12-2 Aluminum pole for a street light

358 CHAPTER 5 Stresses in Beams

W1 � weight of pole
� 4600 N

W2 � weight of arm
� 660 N

b � distance between axis of pole and center 
of gravity of arm

� 1.2 m
d2 � outer diameter of pole� 225 mm
d1 � inner diameter of pole

� 225 mm � 2(18 mm) � 189 mm

AT BASE OF POLE

P � W1 � W2 � 5260 N
M � W2b � 792 N � m

PROPERTIES OF THE CROSS SECTION

MAXIMUM STRESSES

� �0.4493 MPa � 1.4105 MPa

� 0.961 MPa � 961 kPa

� �1.860 MPa � �1860 kPa

sc � �
P

A
�

Mc

I
� �0.4493 MPa � 1.4105 MPa

st � �
P

A
�

Mc

I
� �

5260 N

11,706 mm2 �
(792 Ň � ˇm)(112.5 mm)

63.17 � 106 mm4

c �
d2

2
� 112.5 mm

I �
�

64
 (d 4

2 � d 4
1 ) � 63.17 � 106 mm4

A �
�

4
 (d2

2 � d 2
1 ) � 11,706 mm2

d2

P

M

Problem 5.12-3 A curved bar ABC having a circular axis (radius 
r � 12 in.) is loaded by forces P � 400 lb (see figure). The cross 
section of the bar is rectangular with height h and thickness t. 

If the allowable tensile stress in the bar is 12,000 psi and the 
height h � 1.25 in., what is the minimum required thickness tmin?

Solution 5.12-3 Curved bar

45° 45°

B

P P
A C

h

r

h

t

r � radius of curved bar
e � r � r cos 45º

CROSS SECTION

h � height t � thickness A � ht S �
1

6
 th2

M � Pe �
Pr

2
 (2 � �2)

� r ¢1 �
1

�2
≤

TENSILE STRESS

MINIMUM THICKNESS

SUBSTITUTE NUMERICAL VALUES:

P � 400 lb �allow � 12,000 psi
r � 12 in. h � 1.25 in.
tmin � 0.477 in.

tmin �
P

hsallow
B1 � 3(2 � �2)  

r

h
R

�
P

ht
 B1 � 3(2 � �2)

r

h
R

st �
P

A
�

M

S
�

P

ht
�

3Pr (2 � �2)

th2

B

P

P
A e

M



Problem 5.12-4 A rigid frame ABC is formed by welding two 
steel pipes at B (see figure). Each pipe has cross-sectional area 
A � 11.31 � 103 mm2, moment of inertia I � 46.37 � 106 mm4, 
and outside diameter d � 200 mm. 

Find the maximum tensile and compressive stresses �t and �c,
respectively, in the frame due to the load P � 8.0 kN if L � H � 1.4 m.

Solution 5.12-4 Rigid frame
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B

P

A C
H

d d

d

L L

Load P at midpoint B

REACTIONS:

BAR AB:

d � diameter
c � d/2

sin � �
H

�H 2 � L2

tan � �
H

L

RA � RC �
P

2

AXIAL FORCE: N � RA sin � � sin �

BENDING MOMENT: 

TENSILE STRESS

SUBSTITUTE NUMERICAL VALUES:

P � 8.0 kN L � H � 1.4 m � � 45º
sin � � d � 200 mm
A � 11.31 � 103 mm2 I � 46.37 � 106 mm4

� �0.250 MPa � 12.08 MPa

� 11.83 MPa (tension)

� �12.33 MPa (compression)

sc � �
N

A
�

Mc

I
� �0.250 MPa � 12.08 MPa

st � �
(8.0 kN)(1� �2)

2(11.31 � 103 mm2)
�

(8.0 kN)(1.4 m)(200 mm)

4(46.37 � 106 mm4)

1�12

st � �
N

A
�

Mc

I
� �

P sin �

2A
�

PLd

4I

M � RAL �
PL

2

P

2
B

A

N

d

�

M 

RA

V

Problem 5.12-5 A palm tree weighing 1000 lb is inclined at an 
angle of 60° (see figure). The weight of the tree may be resolved 
into two resultant forces, a force P1 � 900 lb acting at a point 12 ft 
from the base and a force P2 � 100 lb acting at the top of the tree, 
which is 30 ft long. The diameter at the base of the tree is 14 in. 

Calculate the maximum tensile and compressive stresses �t and 
�c, respectively, at the base of the tree due to its weight. 

60°

30 ft

12 ft

P2 = 100 lb

P1 = 900 lb



Solution 5.12-5 Palm tree

360 CHAPTER 5 Stresses in Beams

FREE-BODY DIAGRAM

P1 � 900 lb
P2 � 100 lb
L1 � 12 ft � 144 in.
L2 � 30 ft � 360 in.
d � 14 in.

S �
�d 3

32
� 269.39 in.3

A �
�d 2

4
� 153.94 in.2

M � P1L1 cos 60º � P2L2 cos 60º
� [(900 lb)(144 in.) � (100 lb)(360 in.)] cos 60º
� 82,800 lb-in.

N � (P1 � P2) sin 60º � (1000 lb) sin 60º � 866 lb

MAXIMUM TENSILE STRESS

� �5.6 psi � 307.4 psi � 302 psi

MAXIMUM COMPRESSIVE STRESS

�c � �5.6 psi � 307.4 psi � �313 psi

st � �
N

A
�

M

S
� �

866 lb

153.94 in.2
�

82,800 lb-in.

269.39 in.3

�
L1

L2

P2

P1

N

V

M

Problem 5.12-6 A vertical pole of aluminum is fixed at the base and
pulled at the top by a cable having a tensile force T (see figure). The
cable is attached at the outer surface of the pole and makes an angle 
� � 25° at the point of attachment. The pole has length L � 2.0 m 
and a hollow circular cross section with outer diameter d2 � 260 mm 
and inner diameter d1 � 200 mm. 

Determine the allowable tensile force Tallow in the cable if the
allowable compressive stress in the aluminum pole is 90 MPa. 

Solution 5.12-6 Aluminum pole

L

T

d2

d1 

d2 

�

� � 25º
L � 2.0 m

d2 � 260 mm
d1 � 200 mm
(�c)allow � 90 MPa

CROSS SECTION

� 145.778 � 10�6 m4

AT THE BASE OF THE POLE

N � T cos � � 0.90631T (N, T � newtons)

� 0.11782 T � 0.84524 T

� 0.96306 T (M � newton meters)

M � (T cos �)¢d2

2
≤� (T sin �)(L)

c �
d2

2
� 130 mm � 0.13 m

I �
�

64
(d 2

4 � d 1
4) � 145,778 � 103 mm4

A �
�

4
(d 2

2 � d 1
2) � 21,677 mm2 � 21.677 � 10�3 mm2

L

T sin �

d2

N

V
M

T cos �



Problem 5.12-7 Because of foundation settlement, 
a circular tower is leaning at an angle � to the vertical 
(see figure). The structural core of the tower is a circular
cylinder of height h, outer diameter d2, and inner diameter
d1. For simplicity in the analysis, assume that the weight 
of the tower is uniformly distributed along the height. 

Obtain a formula for the maximum permissible angle
� if there is to be no tensile stress in the tower. 

Solution 5.12-7 Leaning tower
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COMPRESSIVE STRESS

� 41.82 T � 858.83 T

� 900.64 T (�c � pascals)

sc �
N

A
�

Mc

I
�

0.90631T

21.677 � 10�3 m2 �
(0.96306T)(0.13 m)

145.778 � 10�6 m4

ALLOWABLE TENSILE FORCE

� 99,900 N � 99.9 kN

Tallow �
(sc)allow

900.64
�

90 � 106 pascals

900.64
 

AT THE BASE OF THE TOWER

N � W cos �

TENSILE STRESS (EQUAL TO ZERO)

MAXIMUM ANGLE �

� � arctan 
d 2

2 � d 1
2

4hd2

∴
cos �

A
�

hd2 sin �

4I
�tan � �

4I

hd2A
�

d 2
2 � d 1

2

4hd2

st � �
N

A
�

Mc

I
� �

W cos �

A
�

W

I
 ¢h

2
  sin �≤ ¢d2

2
≤� 0

M � W ¢h
2
≤ sin �

c �
d2

2

I

A
�

d 2
2 � d 1

2

16

h d1

d2

�

W � weight of tower
� � angle of tilt

CROSS SECTION

�
�

64
(d 2

2 � d 1
2) (d 2

2 � d 1
2)

I �
�

64
(d 2

4 � d 1
4)

A �
�

4
(d 2

2 � d 1
2)

N

V

M

h
2

h
2

W



Problem 5.12-8 A steel bar of solid circular cross section is subjected to
an axial tensile force T � 26 kN and a bending moment M � 3.2 kN � m
(see figure). 

Based upon an allowable stress in tension of 120 MPa, determine the
required diameter d of the bar. (Disregard the weight of the bar itself.)

Solution 5.12-8 Circular bar

362 CHAPTER 5 Stresses in Beams

T � 26 kN M � 3.2 kN � m
�allow � 120 MPa d � diameter

TENSILE STRESS

or �d3 �allow � 4Td � 32M � 0

(�)(120 MPa)d3 � 4(26 kN)d � 32(3.2 kN � m) � 0

st �
T

A
�

M

S
�

4T

�d 2
�

32M

�d 3

S �
�d 3

32
A �

�d 2

4

(d � meters)

(120,000,000 N�m2)(�)d3 � (104,000 N)d
� 102,400 N � m � 0

SIMPLIFY THE EQUATION:

(15,000 �) d3 � 13d � 12.8 � 0

SOLVE NUMERICALLY FOR THE REQUIRED DIAMETER:

d � 0.0662 m � 66.2 mm

Problem 5.12-9 A cylindrical brick chimney of height H weighs 
w � 825 lb/ft of height (see figure). The inner and outer diameters are 
d1 � 3 ft and d2 � 4 ft, respectively. The wind pressure against the side
of the chimney is p � 10 lb/ft2 of projected area. 

Determine the maximum height H if there is to be no tension in the
brickwork. 

Solution 5.12-9 Brick chimney

p � wind pressure
q � intensity of load � pd2

d2 � outer diameter
d1 � inner diameter
W � total weight of

chimney � wH

CROSS SECTION

I �
�

64
 (d 2

4 � d 1
4) �

�

64
 (d 2

2 � d 1
2) (d 2

2 � d 1
2)

A �
�

4
(d 2

2 � d 1
2)

AT BASE OF CHIMNEY

N � W � wH

TENSILE STRESS (EQUAL TO ZERO)

or

SOLVE FOR H

SUBSTITUTE NUMERICAL VALUES

w � 825 lb/ft d2 � 4 ft d1 � 3 ft p � 10 lb/ft2

Hmax � 32.2 ft

H �
w(d 2

2 � d 1
2)

4pd 2
2

pd2H
2

2wH
�

d 2
2 � d 1

2

8d2

M

N
�

2I

Ad2
st � �

N

A
�

Md2

2I
� 0�

M � qH ¢H
2
≤�

1

2
 pd2H 2

I

A
�

1

16
 (d 2

2 � d 1
2)�c �

d2

2

M

T

w

d1

d2

p

H

q
H

N

V

M

W

d2



Problem 5.12-10 A flying buttress transmits a load P � 25 kN, acting 
at an angle of 60° to the horizontal, to the top of a vertical buttress AB
(see figure). The vertical buttress has height h � 5.0 m and rectangular
cross section of thickness t � 1.5 m and width b � 1.0 m (perpendicular
to the plane of the figure). The stone used in the construction weighs 
� � 26 kN/m3.

What is the required weight W of the pedestal and statue above the
vertical buttress (that is, above section A) to avoid any tensile stresses 
in the vertical buttress? 

Solution 5.12-10 Flying buttress
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60°

P

A
A

B B

W

h h
t—2

Flying
buttress

t t

FREE-BODY DIAGRAM OF VERTICAL BUTTRESS

P � 25 kN
h � 5.0 m
t � 1.5 m
b � width of buttress perpendicular to the figure
b � 1.0 m
� � 26 kN/m3

WB � weight of vertical buttress
� bth�
� 195 kN

CROSS SECTION

A � bt � (1.0 m)(1.5 m) � 1.5 m2

AT THE BASE

N � W � WB � P sin 60º 
� W � 195 kN � (25 kN) sin 60º
� W � 216.651 kN

M � (P cos 60º)h � (25 kN)(cos 60º)(5.0 m)
� 62.5 kN � m

TENSILE STRESS (EQUAL TO ZERO)

or �W � 216.651 kN � 250 kN � 0

W � 33.3 kN

� �
W � 216.651 kN

1.5 m2 �
62.5 kŇ � ˇm

0.375 m3 � 0

st � �
N

A
�

M

S

S �
1

6
 bt 2 �

1

6
 (1.0 m)(1.5 m)2 � 0.375 m360°

P
W

h WB

t

N

V

M

Problem 5.12-11 A plain concrete wall (i.e., a wall with no steel
reinforcement) rests on a secure foundation and serves as a small 
dam on a creek (see figure). The height of the wall is h � 6.0 ft 
and the thickness of the wall is t � 1.0 ft. 

(a) Determine the maximum tensile and compressive stresses �t and
�c, respectively, at the base of the wall when the water level reaches the
top (d � h). Assume plain concrete has weight density �c � 145 lb/ft3. 

(b) Determine the maximum permissible depth dmax of the water if
there is to be no tension in the concrete. 

h

d

t



Solution 5.12-11 Concrete wall

364 CHAPTER 5 Stresses in Beams

h � height of wall
t � thickness of wall
b � width of wall (perpendicular to the figure)

�c � weight density of concrete
�w � weight density of water

d � depth of water
W � weight of wall
W � bht�c
F � resultant force for the water pressure

MAXIMUM WATER PRESSURE � �wd

A � bt

STRESSES AT THE BASE OF THE WALL

(d � DEPTH OF WATER)

Eq. (1)

Eq. (2)sc � �
W

A
�

M

S
� �hgc �

d 3gw

t 2

st � �
W

A
�

M

S
� �hgc �

d 3gw

t 2

S �
1

6
 bt 2

M � F ¢d
3
≤�

1

6
 bd 3gw

F �
1

2
 (d)(gw d)(b) �

1

2
 bd 2gw

(a) STRESSES AT THE BASE WHEN d � h

h � 6.0 ft � 72 in. d � 72 in.
t � 1.0 ft � 12 in.

Substitute numerical values into Eqs. (1) and (2):
�t � �6.042 psi � 93.600 psi � 87.6 psi

�c � �6.042 psi � 93.600 psi � �99.6 psi

(b) MAXIMUM DEPTH FOR NO TENSION

Set �t � 0 in Eq. (1):

dmax � 28.9 in.

d 3 � (72 in.) (12 in.)2 ¢ 145

62.4
≤� 24,092 in.3

d 3 � ht 2 ¢ gc

gw
≤�hgc �

d 3gw

t 2
� 0

gw � 62.4 lb�ft3 �
62.4

1728
 lb�in.3

gc � 145 lb�ft3 �
145

1728
 lb�in.3

h

d

t

M

W

W

F

d/3

V



Eccentric Axial Loads

Problem 5.12-12 A circular post and a rectangular post are each
compressed by loads that produce a resultant force P acting at the edge of
the cross section (see figure). The diameter of the circular post and the
depth of the rectangular post are the same. 

(a) For what width b of the rectangular post will the maximum tensile
stresses be the same in both posts? 

(b) Under the conditions described in part (a), which post has the
larger compressive stress?

Solution 5.12-12 Two posts in compression
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P P

b

dd

CIRCULAR POST

Tension:

Compression: 

RECTANGULAR POST

A � bd

Tension: 

Compression: sc � �
P

A
�

M

S
� �

P

bd
�

3P

bd
� �

4P

bd

st � �
P

A
�

M

S
� �

P

bd
�

3P

bd
�

2P

bd

M �
Pd

2
S �

bd 2

6

� �
20P

�d 2

sc � �
P

A
�

M

S
� �

4P

�d 2
�

16P

�d 2

st � �
P

A
�

M

S
� �

4P

�d 2
�

16P

�d 2
�

12P

�d 2

M �
Pd

2
S �

�d 3

32
A �

�d 2

4

EQUAL MAXIMUM TENSILE STRESSES

or (Eq. 1)

(a) Determine the width b of the rectangular post

From Eq. (1):

(b) Compressive stresses

Circular post:

Rectangular post: 

Rectangular post has the larger compressive 
stress.

� �
24P

�d 2

sc � �
4P

bd
� �

4P

(�d�6)d

sc � �
20P

�d 2

b �
�d

6

6

�d
�

1

b

12P

�d 2
�

2P

bd

Problem 5.12-13 Two cables, each carrying a tensile force 
P � 1200 lb, are bolted to a block of steel (see figure). The 
block has thickness t � 1 in. and width b � 3 in. 

(a) If the diameter d of the cable is 0.25 in., what are the 
maximum tensile and compressive stresses �t and �c, respectively, 
in the block? 

(b) If the diameter of the cable is increased (without changing 
the force P), what happens to the maximum tensile and compressive
stresses? 

b

t

P P



Solution 5.12-13 Steel block loaded by cables

366 CHAPTER 5 Stresses in Beams

d
P

e
t

Steel 
blockt

2

P � 1200 lb d � 0.25 in.

t � 1.0 in.

b � width of block
� 3.0 in.

CROSS SECTION OF BLOCK

A � bt � 3.0 in.2

(a) MAXIMUM TENSILE STRESS (AT TOP OF BLOCK)

� 400 psi � 1500 psi � 1900 psi

�
1200 lb

3 in.2
�

(1200 lb)(0.625 in.)(0.5 in.)

0.25 in.4

st �
P

A
�

Pey

I

y �
t

2
� 0.5 in.

I �
1

12
bt 3 � 0.25 in.4

e �
t

2
�

d

2
� 0.625 in.

MAXIMUM COMPRESSIVE STRESS (AT BOTTOM OF

BLOCK)

� 400 psi � 1500 psi � �1100 psi

(b) IF d IS INCREASED, the eccentricity e increases
and both stresses increase in magnitude.

�
1200 lb

3 in.2
�

(1200 lb)(0.625 in.)(�0.5 in.)

0.25 in.4

sc �
P

A
�

Pey

I

y � �
t

2
� �0.5 in.

Problem 5.12-14 A bar AB supports a load P acting at the centroid 
of the end cross section (see figure). In the middle region of the bar 
the cross-sectional area is reduced by removing one-half of the bar. 

(a) If the end cross sections of the bar are square with sides of 
length b, what are the maximum tensile and compressive stresses �t
and �c, respectively, at cross section mn within the reduced region? 

(b) If the end cross sections are circular with diameter b, what 
are the maximum stresses �t and �c?

(a)

(b)

m n

b
b

P

B

A

b

b

b
2
—

b
2
—

b
2
—



Solution 5.12-14 Bar with reduced cross section
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(a) SQUARE BAR

Cross section mn is a rectangle.

STRESSES

(b) CIRCULAR BAR

Cross section mn is a semicircle

From Appendix D, Case 10:

M � P¢ 2b

3�
≤� 0.2122 Pb

I � 0.1098¢b
2
≤

4

� 0.006860 b4

A �
1

2
 ¢�b2

4
≤�

�b2

8
� 0.3927 b2

sc �
P

A
�

Mc

I
�

2P

b2 �
6P

b2 � �
4P

b2

st �
P

A
�

Mc

I
�

2P

b2 �
6P

b2 �
8P

b2

c �
b

4
M � P ¢b

4
≤

I �
1

12
(b)¢b

2
≤

3

�
b4

96
A � (b)¢b

2
≤�

b2

2

FOR TENSION:

FOR COMPRESSION:

STRESSES

� 2.546 
P

b2 � 8.903 
P

b2 � �6.36 
P

b2

sc�
P

A
�

Mcc

I
�

P

0.3927b2 �
(0.2122 Pb)(0.2878 b)

0.006860 b4

� 2.546 
P

b2 � 6.564 
P

b2 � 9.11 
P

b2

st �
P

A
�

Mct

I
�

P

0.3927 b2 �
(0.2122 Pb)(0.2122 b)

0.006860 b4

cc � r � ct �
b

2
�

2b

3�
� 0.2878 b

ct �
4r

3�
�

2b

3�
� 0.2122 b

Problem 5.12-15 A short column constructed of a W 10 � 30 
wide-flange shape is subjected to a resultant compressive load 
P � 12 k having its line of action at the midpoint of one flange 
(see figure). 

(a) Determine the maximum tensile and compressive stresses 
�t and �c, respectively, in the column. 

(b) Locate the neutral axis under this loading condition.

P = 12 k

z

y

C

W 10 � 30



Problem 5.12-16 A short column of wide-flange shape is
subjected to a compressive load that produces a resultant force 
P � 60 kN acting at the midpoint of one flange (see figure).

(a) Determine the maximum tensile and compressive
stresses �t and �c, respectively, in the column.

(b) Locate the neutral axis under this loading condition.

Solution 5.12-16 Column of wide-flange shape
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P = 60 kN

z

y

C

P

12 mm

8 mm

160
mm

200
mm

b � 160 mm tw � 8 mm
h � 200 mm tf � 12 mm

P � 60 kN

A � 2btf � (h � 2tf) tw � 5248 mm2

� 37.611 � 106 mm4

I �
1

12
bh3 �

1

12
(b � tw)(h � 2tf)

3

e �
h

2
�

tf

2
� 94 mm

(a) MAXIMUM STRESSES

� �11.43 MPa � 15.00 MPa
� 3.57 MPa

�c � �11.43 MPa � 15.00 MPa
� �26.4 MPa

(b) NEUTRAL AXIS (SEE FIGURE)

� �76.2 mm

y0 � �
I

Ae
� �

37.611 � 106 mm4

(5248 mm2)(94 mm)

� �
60 kN

5248 mm2 �
(60 kN)(94 mm)(100 mm)

37.611 � 106 mm4

st � �
P

A
�

Pe(h�2)

I

W 10 � 30 A � 8.84 in.2

I � 170 in.4 tf � 0.510 in.

e �
h

2
�

tf

2
� 4.98 in.

(a) MAXIMUM STRESSES

� 480 psi

� �3200 psi

(b) NEUTRAL AXIS (SEE FIGURE)

y0 � �
I

Ae
� �3.86 in.

sc � �
P

A
�

Pe(h�2)

I
� �1357 psi � 1840 psi

st � �
P

A
�

Pe(h�2)

I
� �1357 psi � 1840 psi

z

y

O h = 10.47 in.

P = 12 k

e

N.A.

Solution 5.12-15 Column of wide-flange shape

z

y

O

P

N.A.

tf

tw

b

e

h



Problem 5.12-17 A tension member constructed of an L 4 � 4 � 3⁄4 inch
angle section (see Appendix E) is subjected to a tensile load P � 15 kips that
acts through the point where the midlines of the legs intersect (see figure).

Determine the maximum tensile stress �t in the angle section.

Solution 5.12-17 Angle section in tension

SECTION 5.12 Eccentric Axial Loads 369

1 1

3

3

2

2

C

P �

3
4
—L 4 � 4 �

Bending occurs about axis 3-3.

A � 5.44 in.2 t � thickness of legs

c � 1.27 in. � 0.75 in.

e � eccentricity of load P

� 1.266 in.

P � 15 k (tensile load)

c1 � distance from centroid C to corner B of angle

(see Table E-4)

rmin � 0.778 in.

I3 � (5.44 in.2)(0.778 in.)2 � 3.293 in.4

M � Pe � (15 k)(1.266 in.) � 18.94 k-in.

I3 � Ar 2
min

� c�2 � (1.27 in.) �2 � 1.796 in.

� (1.27 � 0.375) �2

� ¢c �
t

2
≤�2

L 4 � 4 �
3

4

MAXIMUM TENSILE STRESS

Maximum tensile stress occurs at corner B.

� 2.76 ksi � 10.36 ksi

� 13.1 ksi

�
15 k

5.44 in2 �
(18.99 k-in.)(1.796 in.)

3.293 in.4

st �
P

A
�

Mc1

I3

1 1

3

3

2

2

C

P

c

c

c1

eB



370 CHAPTER 5 Stresses in Beams

Problem 5.12-18 A short length of a C 8�11.5 channel is subjected 
to an axial compressive force P that has its line of action through the
midpoint of the web of the channel (see figure). 

(a) Determine the equation of the neutral axis under this loading
condition. 

(b) If the allowable stresses in tension and compression are 
10,000 psi and 8,000 psi, respectively, find the maximum permissible 
load Pmax. 

Solution 5.12-18 Channel in compression

C 8 � 11.5

A � 3.38 in.2 h � 2.260 in. tw � 0.220 in.
Iz � 1.32 in.4 c1 � 0.571 in. c2 � 1.689 in.

ECCENTRICITY OF THE LOAD

(a) LOCATION OF THE NEUTRAL AXIS

� �0.847 in.

(b) MAXIMUM LOAD BASED UPON TENSILE STRESS

�allow � 10,000 psi (P � pounds)

P � 34,000 lb � 34 k

10,000 � �
P

3.38
�

P

1.695
� 0.2941 P

� �
P

3.38 in.2
�

P(0.461 in.)(1.689 in.)

1.32 in.4

st � �
P

A
�

Pe c2

I

y0 � �
I

Ae
� �

1.32 in.4

(3.38 in.2) (0.461 in.)

e � c1 �
tw

2
� 0.571 � 0.110 � 0.461 in.

MAXIMUM LOAD BASED UPON COMPRESSIVE STRESS

�allow � 8000 psi (P � pounds)

P � 16,200 lb � 16.2 k

COMPRESSION GOVERNS. Pmax � 16.2 k

8000 �
P

3.38
�

P

5.015
� 0.4953 P

� �
P

3.38 in.2
�

P(0.461 in.) (0.571 in.)

1.32 in.4

sc � �
P

A
�

Pe c1

I

Cz

y

P
0.220 in.

�c1

c2
2.260 in.

Cz

y

P
C 8 × 11.5

�



Stress Concentrations

The problems for Section 5.13 are to be solved considering the 
stress-concentration factors. 

Problem  5.13-1 The beams shown in the figure are subjected 
to bending moments M � 2100 lb-in. Each beam has a rectangular 
cross section with height h � 1.5 in. and width b � 0.375 in.
(perpendicular to the plane of the figure).

(a) For the beam with a hole at midheight, determine the 
maximum stresses for hole diameters d � 0.25, 0.50, 0.75, and 
1.00 in. 

(b) For the beam with two identical notches (inside height 
h1 � 1.25 in.), determine the maximum stresses for notch radii 
R � 0.05, 0.10, 0.15, and 0.20 in. 

Solution 5.13-1
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(b)

(a)

M

MM

M

dh

h h1

2R

M � 2100 lb-in. h � 1.5 in. b � 0.375 in.

(a) BEAM WITH A HOLE

Eq. (5-57):

(1)

Eq. (5-56):

(2)

Note: The larger the hole, the larger the stress.

�C �B
d d Eq.(1) Eq.(2) �max 

(in.) h (psi) (psi) (psi)

0.25 0.1667 15,000 — 15,000
0.50 0.3333 15,500 — 15,500
0.75 0.5000 17,100 17,100 17,100
1.00 0.6667 — 28,300 28,300

�
67,200 d

3.375 � d 3

sB �
12Md

b(h3 � d 3)

d

h
�

1

2

�
50,400

3.375 � d 3

sC �
6Mh

b(h3 � d 3)

d

h
�

1

2

(b) BEAM WITH NOTCHES

h1 � 1.25 in.

Eq. (5-58):

�max � K�nom

Note: The larger the notch radius, the smaller the
stress.

R R K �max 
(in.) h1 (Fig. 5-50) (psi)

0.05 0.04 3.0 65,000
0.10 0.08 2.3 49,000
0.15 0.12 2.1 45,000
0.20 0.16 1.9 41,000

snom �
6M

bh 1
2 � 21,500 psi

h

h1
�

1.5 in.

1.25 in.
� 1.2

Probs. 5.13-1 through 5.13-4



Problem 5.13-2 The beams shown in the figure are subjected to bending
moments M � 250 N � m. Each beam has a rectangular cross section with height
h � 44 mm and width b � 10 mm (perpendicular to the plane of the figure). 

(a) For the beam with a hole at midheight, determine the maximum stresses
for hole diameters d � 10, 16, 22, and 28 mm. 

(b) For the beam with two identical notches (inside height h1 � 40 mm),
determine the maximum stresses for notch radii R � 2, 4, 6, and 8 mm. 

Solution 5.13-2
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M � 250 N � m h � 44 mm b � 10 mm

(a) BEAM WITH A HOLE

Eq. (5-57):

(1)

Eq. (5-56):

(2)

Note: The larger the hole, the larger the stress.

�C �B
d d Eq.(1) Eq.(2) �max 

(mm) h (MPa) (MPa) (MPa)

10 0.227 78 — 78
16 0.364 81 — 81
22 0.500 89 89 89
28 0.636 — 133 133

�
300 � 10 3d

85,180 � d 3
 MPa

sB �
12Md

b(h3 � d 3)

d

h
�

1

2

�
6.6 � 106

85,180 � d 3
 MPa

sC �
6Mh

b(h3 � d 3)

d

h
�

1

2

(b) BEAM WITH NOTCHES

h1 � 40 mm

Eq. (5-58): 

�max � K�nom

Note: The larger the notch radius, the smaller the
stress.

R R K �max 
(mm) h1 (Fig. 5-50) (MPa)

2 0.05 2.6 240
4 0.10 2.1 200
6 0.15 1.8 170
8 0.20 1.7 160

snom �
6M

bh 1
2 � 93.8 MPa

h

h1
�

44 mm

40 mm
� 1.1

Problem 5.13-3 A rectangular beam with semicircular notches, as shown 
in part (b) of the figure, has dimensions h � 0.88 in. and h1 � 0.80 in. The
maximum allowable bending stress in the metal beam is �max � 60 ksi, and
the bending moment is M � 600 lb-in. 

Determine the minimum permissible width bmin of the beam. 

Solution 5.13-3 Beam with semicircular notches

h � 0.88 in. h1 � 0.80 in.

�max � 60 ksi M � 600 lb-in.

h � h1 � 2R

From Fig. 5-50: K � 2.57

R

h1
�

0.04 in.

0.80 in.
� 0.05

R �
1

2
 (h � h1) � 0.04 in.

Solve for b:
bmin � 0.24 in.

60 ksi � 2.57 B 6(600 lb-in.)

b(0.80 in.)2 R
smax � Ksnom � K ¢6M

bh2
1

≤



Problem 5.13-4 A rectangular beam with semicircular notches, 
as shown in part (b) of the figure, has dimensions h � 120 mm and 
h1 � 100 mm. The maximum allowable bending stress in the plastic 
beam is �max � 6 MPa, and the bending moment is M � 150 N � m. 

Determine the minimum permissible width bmin of the beam. 

Solution 5.13-4 Beam with semicircular notches
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h � 120 mm h1 � 100 mm
�max � 6 MPa M � 150 N � m

h � h1 � 2R

From Fig. 5-50: K � 2.20

R

h1
�

10 mm

100 mm
� 0.10

R �
1

2
 (h � h1) � 10 mm

Solve for b:
bmin � 33 mm

6 MPa � (2.20)  B 6(150 Ň � ˇm)

b(100 mm)2 R
smax � Ksnom � K ¢6M

bh2
1

≤

Problem 5.13-5 A rectangular beam with notches and a hole 
(see figure) has dimensions h � 5.5 in., h1 � 5 in., and width 
b � 1.6 in. The beam is subjected to a bending moment 
M � 130 k-in., and the maximum allowable bending stress in 
the material (steel) is �max � 42,000 psi. 

(a) What is the smallest radius Rmin that should be used in 
the notches? 

(b) What is the diameter dmax of the largest hole that should 
be drilled at the midheight of the beam? 

Solution 5.13-5 Beam with notches and a hole

M
M

dh1 h

2R

h � 5.5 in. h1 � 5 in. b � 1.6 in.

M � 130 k-in. �max � 42,000 psi

(a) MINIMUM NOTCH RADIUS

From Fig. 5-50, with K � 2.15 and , we get

� Rmin � 0.090h1 � 0.45 in.

R

h1
� 0.090

h

h1
� 1.1

K �
smax

snom
�

42,000 psi

19,500 psi
� 2.15

snom �
6M

bh2
1

� 19,500 psi

h

h1
�

5.5 in.

5 in.
� 1.1

(b) LARGEST HOLE DIAMETER

Assume and use Eq. (5-56).

or

d3 � 23.21d � 166.4 � 0

Solve numerically:

dmax � 4.13 in.

42,000 psi �
12(130 k-in.)d

(1.6 in.) [ (5.5 in.)3 � d3 ]

sB �
12 Md

b(h3 � d 3)

d

h
7

1

2



Plane Stress

Problem 7.2-1 An element in plane stress is subjected to stresses
�x � 6500 psi, �y � 1700 psi, and �xy � 2750 psi, as shown in the
figure. 

Determine the stresses acting on an element oriented at an
angle � � 60° from the x axis, where the angle � is positive when
counterclockwise. Show these stresses on a sketch of an element
oriented at the angle �.

Solution 7.2-1 Plane stress (angle ��)

7
Analysis of Stress
and Strain

425

y

xO

�xy = 2750 psi

�y = 1700 psi

�x = 6500 psi

xO

3450 psi

� � 60�

5280 psi

2920 psi

y �x � 6500 psi �y � 1700 psi �xy � 2750 psi
� � 60�

� 5280 psi

� �3450 psi

sy1
�sx �sy �sx1

� 2920 psi

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

Problem 7.2-2 Solve the preceding problem for �x � 80 MPa, 
�y � 52 MPa, �xy � 48 MPa, and � � 25° (see figure).

52 MPa

48 MPa
80 MPa



Solution 7.2-2 Plane stress (angle ��)
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xO

20.1 MPa

� � 25�

111.8 MPa

20.2 MPa

y �x � 80 MPa �y � 52 MPa �xy � 48 MPa
� � 25�

� 111.8 MPa

� 20.1 MPa

sy1
�sx �sy �sx1

� 20.2 MPa

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

Problem 7.2-3 Solve Problem 7.2-1 for �x � �9,900 psi, 
�y � �3,400 psi, �xy � 3,600 psi, and � � 50° (see figure).

Solution 7.2-3 Plane stress (angle ��)

3,400 psi

3,600 psi

9,900 psi

xO

2,580 psi

� � 50�

2,540 psi

10,760 psi

y �x � �9900 psi �y � �3400 psi �xy � 3600 psi
� � 50�

� �2540 psi

� 2580 psi

sy1
�sx �sy �sx1

� �10,760 psi

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

Problem 7.2-4 The stresses acting on element A in the web
of a train rail are found to be 42 MPa tension in the horizontal
direction and 140 MPa compression in the vertical direction
(see figure). Also, shear stresses of magnitude 60 MPa act in
the directions shown. 

Determine the stresses acting on an element oriented at 
a counterclockwise angle of 48° from the horizontal. Show
these stresses on a sketch of an element oriented at this angle.

A

60 MPa

140 MPa

Side
View

Cross
Section

42 MPa

A



Solution 7.2-4 Plane stress (angle ��)
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xO

84.2 MPa

� � 48�

118.2 MPa

20.2 MPa

y �x � 42 MPa �y � �140 MPa �xy � �60 MPa
� � 48�

� �118.2 MPa

� �84.2 MPa

sy1
�sx �sy �sx1

� 20.2 MPa

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

Problem 7.2-5 Solve the preceding problem if the normal 
and shear stresses acting on element A are 7,500 psi, 20,500 psi, 
and 4,800 psi (in the directions shown in the figure) and the angle 
is 30° (counterclockwise).

Solution 7.2-5 Plane stress (angle ��)

A

4,800 psi

20,500 psi

7,500 psi

xO

14,520 psi

� � 30�

3,660 psi

9,340 psi

y �x � 7,500 psi �y � �20,500 psi
�xy � �4,800 psi
� � 30�

� �3,660 psi

� �14, 520 psi

sy1
�sx �sy �sx1

� �9,340 psi

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

Problem 7.2-6 An element in plane stress from the fuselage of 
an airplane is subjected to compressive stresses of magnitude 
25.5 MPa in the horizontal direction and tensile stresses of magnitude 
6.5 MPa in the vertical direction (see figure). Also, shear stresses of 
magnitude 12.0 MPa act in the directions shown. 

Determine the stresses acting on an element oriented at a clockwise
angle of 40° from the horizontal. Show these stresses on a sketch of an
element oriented at this angle.

12.0 MPa

6.5 MPa

25.5 MPa



Solution 7.2-6 Plane stress (angle ��)
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xO

0.5 MPa

� � � 40�

18.5 MPa

17.8 MPa

y �x � �25.5 MPa �y � 6.5 MPa
�xy � �12.0 MPa
� � �40�

� �0.5 MPa

� �17.8 MPa

sy1
�sx �sy �sx1

� �18.5 MPa

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

Problem 7.2-7 The stresses acting on element B in the 
web of a wide-flange beam are found to be 11,000 psi 
compression in the horizontal direction and 3,000 psi 
compression in the vertical direction (see figure). Also, 
shear stresses of magnitude 4,200 psi act in the directions
shown. 

Determine the stresses acting on an element oriented 
at a counterclockwise angle of 41° from the horizontal. 
Show these stresses on a sketch of an element oriented 
at this angle.

Solution 7.2-7 Plane stress (angle ��)

B

4,200 psi

3,000 psi

11,000 psi

Side
View

Cross
Section

B

xO

3,380 psi

� � 41�

11,720 psi

2,280 psi

y �x � �11,000 psi �y � �3,000 psi
�xy � �4,200 psi
� � 41�

� �11,720 psi

� 3,380 psi

sy1
�sx �sy �sx1

� �2,280 psi

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

Problem 7.2-8 Solve the preceding problem if the normal and shear
stresses acting on element B are 54 MPa, 12 MPa, and 20 MPa (in the
directions shown in the figure) and the angle is 42.5° (clockwise).

B
54 MPa

12 MPa

20 MPa



Solution 7.2-8 Plane stress (angle ��)
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xO

54.8 MPa

� � – 42.5�

11.2 MPa

19.2 MPa

y �x � �54 MPa �y � �12 MPa �xy � 20 MPa
� � �42.5�

� �54.8 MPa

� �19.2 MPa

sy1
�sx �sy �sx1

� �11.2 MPa

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

Problem 7.2-9 The polyethylene liner of a settling pond 
is subjected to stresses �x � 350 psi, �y � 112 psi, and 
�xy � �120 psi, as shown by the plane-stress element in 
the first part of the figure. 

Determine the normal and shear stresses acting on a 
seam oriented at an angle of 30° to the element, as shown 
in the second part of the figure. Show these stresses on a 
sketch of an element having its sides parallel and 
perpendicular to the seam.

Solution 7.2-9 Plane stress (angle ��)

y

xO

120 psi

112 psi

350 psi

Seam

30°

�x � 350 psi �y � 112 psi �xy � �120 psi
� � 30�

� 187 psi

� �163 psi

sy1
�sx �sy �sx1

� 275 psi

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

The normal stress on the seam equals 187 psi
tension.
The shear stress on the seam equals 163 psi, acting
clockwise against the seam.

xO

163 psi

� � 30 �

187 psi

275 psi

y



Problem 7.2-10 Solve the preceding problem if the normal 
and shear stresses acting on the element are �x � 2100 kPa, 
�y � 300 kPa, and �xy � �560 kPa, and the seam is oriented 
at an angle of 22.5° to the element (see figure).

Solution 7.2-10 Plane stress (angle ��)
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y

xO

560 kPa

300 kPa

2100 kPa

Seam

22.5°

�x � 2100 kPa �y � 300 kPa �xy � �560 kPa
� � 22.5�

xO

1030 kPa

� � 22.5�

1440 kPa

960 kPa

y

� 1440 kPa

� �1030 kPa

The normal stress on the seam equals 1440 kPa
tension.
The shear stress on the seam equals 1030 kPa, acting
clockwise against the seam.

sy1
�sx �sy �sx1

� 960 kPa

tx1y1
� �
sx �sy

2
 sin  2u� txy  cos  2u

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

Problem 7.2-11 A rectangular plate of dimensions 3.0 in. � 5.0 in. is
formed by welding two triangular plates (see figure). The plate is subjected
to a tensile stress of 500 psi in the long direction and a compressive stress of
350 psi in the short direction. 

Determine the normal stress �w acting perpendicular to the line of the
weld and the shear stress �w acting parallel to the weld. (Assume that the
normal stress �w is positive when it acts in tension against the weld and the
shear stress �w is positive when it acts counterclockwise against the weld.)

Solution 7.2-11 Biaxial stress (welded joint)

350 psi

Weld
500 psi3 in.

5 in.

�x � 500 psi �y � �350 psi �xy � 0

u� arctan 
3 in.

5 in.
� arctan 0.6 � 30.96�

xO

375 psi

� � 30.96�

275 psi

125 psi

y

STRESSES ACTING ON THE WELD

�w � �125 psi

�w � 375 psi

sy1
�sx �sy �sx1

� �125 psi

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u� �375 psi

� 275 psi

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

�w
�

�w

375 psi
� �30.96�

125 psi



Problem 7.2-13 At a point on the surface of a machine the material
is in biaxial stress with �x � 3600 psi and �y � �1600 psi, as shown
in the first part of the figure. The second part of the figure shows 
an inclined plane aa cut through the same point in the material but
oriented at an angle �. 

Determine the value of the angle � between zero and  90°
such that no normal stress acts on plane aa. Sketch a stress element
having plane aa as one of its sides and show all stresses acting on 
the element.

Solution 7.2-13 Biaxial stress
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Problem 7.2-12 Solve the preceding problem for a plate of
dimensions 100 mm � 250 mm subjected to a compressive
stress of 2.5 MPa in the long direction and a tensile stress of
12.0 MPa in the short direction (see figure).

Solution 7.2-12 Biaxial stress (welded joint)

12.0 MPa

Weld 2.5 MPa100 mm
250 mm

�x � �2.5 MPa �y � 12.0 MPa �xy � 0

� �0.5 MPa

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

u� arctan 
100 mm

250 mm
� arctan 0.4 � 21.80�

xO

5.0 MPa

� � 21.80 �

0.5 MPa

10.0 MPa
y

STRESSES ACTING ON THE WELD

�w � 10.0 MPa

�w � �5.0 MPa

sy1
�sx �sy �sx1

� 10.0 MPa

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u� 5.0 MPa

�w �

�w
5.0 MPa

� � 21.80�

10.0 MPa

y

x

a

a

O

1600 psi

3600 psi
�

�x � 3600 psi
�y � �1600 psi
�xy � 0

Find angle � for � � 0.
� � normal stress on plane a-a

� 1000 � 2600 cos 2� (psi)

For we obtain 

� 2� � 112.62� and � � 56.31�

 cos 2u� �
1000

2600
sx1

� 0,

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

STRESS ELEMENT

� � 56.31�

� �2400 psi

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u

sy1
�sx �sy �sx1

� 2000 psi

sx1
� 0

xO
2400 psi

� � 56.31�

2000 psi
y

a

a

�

�
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Problem 7.2-14 Solve the preceding problem for �x � 32 MPa 
and �y � �50 MPa (see figure).

Solution 7.2-14 Biaxial stress

y

x

a

a

O

50 MPa

32 MPa
�

�x � 32 MPa
�y � �50 MPa
�xy � 0

Find angles � for � � 0.
� � normal stress on plane a-a

� �9 � 41 cos 2� (MPa)

For we obtain 

� 2� � 77.32� and � � 38.66�

 cos 2u�
9

41
sx1

� 0,

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

STRESS ELEMENT

� � 38.66�

�  �40 MPa

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u

sy1
�sx �sy �sx1

� �18 MPa

sx1
� 0

a

a

�

�

xO
40 MPa

� � 38.66�

18 MPa

y

Problem 7.2-15 An element in plane stress from the frame of a racing
car is oriented at a known angle � (see figure). On this inclined element,
the normal and shear stresses have the magnitudes and directions shown
in the figure. 

Determine the normal and shear stresses acting on an element whose
sides are parallel to the xy axes; that is, determine �x, �y, and �xy. Show
the results on a sketch of an element oriented at � � 0°.

Solution 7.2-15 Plane stress

2,360 psi4,180 psi

15,220 psi

y

xO

� = 30°

Transform from � � 30� to � � 0�.
Let: �x � �15,220 psi, �y � �4,180 psi,
�xy � 2,360 psi, and � � �30�.

� �14,500 psi

sy1
�sx �sy �sx1

� �4,900 psi

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u� �3,600 psi

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

FOR � � 0:

txy � tx1y1
� �3,600 psi

sy �sy1
� �4,900 psi

sx �sx1
� �14,500 psi

y

xO

4,900 psi

14,500 psi

3,600 psi



Problem 7.2-16 Solve the preceding problem for the element shown in
the figure.

Solution 7.2-16 Plane stress
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26.7 MPa

66.7 MPa

25.0 MPa

y

xO

� = 60°

Transform from � � 60� to � � 0�.
Let: �x � �26.7 MPa, �y � 66.7 MPa,
�xy � �25.0 MPa, and � � �60�.

sy1
�sx �sy �sx1

� �25 MPa

tx1y1
� �
sx �sy

2
 sin 2u� txy  cos 2u� �28 MPa

� 65 MPa

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

FOR � � 0:

txy � tx1y1
� �28 MPa

sy �sy1
� �25 MPa

sx �sx1
� 65 MPa

Problem 7.2-17 A plate in plane stress is subjected to normal 
stresses �x and �y and shear stress �xy, as shown in the figure. At 
counterclockwise angles � � 40° and � � 80° from the x axis the 
normal stress is 5000 psi tension. 

If the stress �x equals 2000 psi tension, what are the stresses 
�y and �xy?

Solution 7.2-17 Plane stress

y

xO

�xy

�y

�x = 2000 psi

�x � 2000 psi �y � ? �xy � ?
At � � 40� and � � 80�; (tension)
Find �y and �xy.

FOR � � 40�:

or 0.41318�y � 0.98481�xy � 3826.4 psi (1)

�
2000 �sy

2
�

2000 �sy

2
 cos 80� � txy  sin 80�

sx1
� 5000

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

sx1
� 5000 psi

FOR � � 80�:

or 0.96985�y � 0.34202�xy � 4939.7 psi (2)

SOLVE EQS. (1) AND (2):

�y � 4370 psi �xy � 2050 psi

�
2000 �sy

2
�

2000 �sy

2
 cos 160� � txy  sin 160�

sx1
� 5000  

O

y

x
65 MPa

25 MPa

28 MPa



Problem 7.2-18 The surface of an airplane wing is subjected to plane
stress with normal stresses �x and �y and shear stress �xy, as shown in 
the figure. At a counterclockwise angle � � 30° from the x axis the
normal stress is 35 MPa tension, and at an angle � � 50° it is 10 MPa
compression. 

If the stress �x equals 100 MPa tension, what are the stresses �y
and �xy?

Solution 7.2-18 Plane stress
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y

xO

�xy

�y

�x = 100 MPa

�x � 100 MPa �y � ? �xy � ?
At � � 30�, (tension)
At � � 50�, (compression)
Find �y and �xy

FOR � � 30�:

or 0.25�y � 0.86603�xy � �40 MPa (1)

�
100 �sy

2
�

100 �sy

2
 cos 60� � txy  sin 60�

sx1
� 35  

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

sx1
� �10 MPa

sx1
� 35 MPa

FOR � � 50�:

or 0.58682�y � 0.98481�xy � �51.318 MPa (2)

SOLVE EQS. (1) AND (2):

�y � �19.3 MPa �xy � �40.6 MPa

�
100 �sy

2
�

100 �sy

2
 cos 100� � txy  sin 100�

sx1
� �10

Problem 7.2-19 At a point in a structure subjected to plane stress, 
the stresses are �x � �4000 psi, �y � 2500 psi, and �xy � 2800 psi 
(the sign convention for these stresses is shown in Fig. 7-1). A stress
element located at the same point in the structure, but oriented at a 
counterclockwise angle �1 with respect to the x axis, is subjected 
to the stresses shown in the figure (�b, �b, and 2000 psi). 

Assuming that the angle �1 is between zero and 90°, calculate 
the normal stress �b, the shear stress �b, and the angle �1.

Solution 7.2-19 Plane stress

2000 psi

O x

y

�b
�b

�1

�x � �4000 psi �y � 2500 psi �xy � 2800 psi

FOR � � �1:

�xy � �b

Find �b, �b, and �1

STRESS �b

�b � �x � �y � 2000 psi � �3500 psi

sy1
�sbsx1

� 2000 psi

ANGLE �1

2000 psi � �750 � 3250 cos 2�1 � 2800 sin 2�1
or �65 cos 2�1 � 56 sin 2�1 � 55 � 0

Solve numerically:
2�1� 89.12� �1� 44.56�

SHEAR STRESS �b

� 3290 psi

tb � tx1y1
� �
sx �sy

2
 sin 2u1 � txy  cos 2u1

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u



Principal Stresses and Maximum Shear Stresses

When solving the problems for Section 7.3, consider only the in-plane
stresses (the stresses in the xy plane).

Problem 7.3-1 An element in plane stress is subjected to
stresses �x � 6500 psi, �y � 1700 psi, and �xy � 2750 psi 
(see the figure for Problem 7.2-1). 

Determine the principal stresses and show them on a 
sketch of a properly oriented element.

Solution 7.3-1 Principal stresses
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�x � 6500 psi �y � 1700 psi �xy � 2750 psi

PRINCIPAL STRESSES

2�p� 48.89� and �p� 24.44�
2�p� 228.89� and �p� 114.44�

For 2�p� 48.89�:

For 2�p� 228.89�: sx1
� 450 psi

sx1
� 7750 psi

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� 1.1458

Therefore, �1 � 7750 psi and 
�2 � 450 psi and }up2

� 114.44�

up1
� 24.44�

Problem 7.3-2 An element in plane stress is subjected to stresses 
�x � 80 MPa, �y � 52 MPa, and �xy � 48 MPa (see the figure for
Problem 7.2-2). 

Determine the principal stresses and show them on a sketch of 
a properly oriented element.

Solution 7.3-2 Principal stresses

�x � 80 MPa �y � 52 MPa �xy � 48 MPa

PRINCIPAL STRESSES

2�p� 73.74� and �p� 36.87�
2�p� 253.74� and �p� 126.87�

For 2�p� 73.74�:
For 2�p� 253.74�: sx1

� 16 MPa
sx1

� 116 MPa

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� 3.429

Therefore, �1 � 116 MPa and 

�2 � 16 MPa and }up2
� 126.87�

up1
� 36.87�

xO

�p1
 � 24.44�

450 psi

y

7750 psi

xO

�p1
 � 36.87�

16 MPa

y

116 MPa



Problem 7.3-3 An element in plane stress is subjected to stresses 
�x � �9,900 psi, �y � �3,400 psi, and �xy � 3,600 psi (see the figure 
for Problem 7.2-3). 

Determine the principal stresses and show them on a sketch of a
properly oriented element.

Solution 7.3-3 Principal stresses
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�x � �9900 psi �y � �3400 psi �xy � 3600 psi

PRINCIPAL STRESSES

2�p� �47.92� and �p� �23.96�
2�p� 132.08� and �p� 66.04�

For 2�p� �47.92�:
For 2�p� 132.08�: sx1

� �1,800 psi
sx1

� �11,500 psi

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� �1.1077

Therefore, �1 � �1,800 psi and 

�2 � �11,500 psi and }
up2

� �23.96�

up1
� 66.04�

Problem 7.3-4 An element in plane stress is subjected to stresses 
�x � 42 MPa, �y � �140 MPa, and �xy � �60 MPa (see the figure 
for Problem 7.2-4). 

Determine the principal stresses and show them on a sketch of a
properly oriented element.

Solution 7.3-4 Principal stresses

�x � 42 MPa �y � �140 MPa
�xy � �60 MPa

PRINCIPAL STRESSES

2�p � �33.40� and �p � �16.70�

2�p � 146.60� and �p � 73.30�

For 2�p � �33.40�:

For 2�p � 146.60�: sx1
� �158 MPa

sx1
� 60 MPa

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� �0.6593

Therefore, �1 � 60 MPa and 

�2 � �158 MPa and }up2
� 73.30�

up1
� �16.70�

xO

�p1
 � 66.04�

11,500 psi

y

1,800 psi

xO

�p2
 � 73.30�

60 MPa

y

158 MPa



Problem 7.3-5 An element in plane stress is subjected to stresses �x � 7,500 psi,
�y � �20,500 psi, and �xy � �4,800 psi (see the figure for Problem 7.2-5). 

Determine the maximum shear stresses and associated normal stresses and
show them on a sketch of a properly oriented element.

Solution 7.3-5 Maximum shear stresses
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�x � 7,500 psi �y � �20,500 psi
�xy � �4,800 psi

PRINCIPAL ANGLES

2�p � �18.92� and �p � �9.46�
2�p � 161.08� and �p � 80.54�

For 2�p � �18.92�:
For 2�p � 161.08�:
Therefore, up1

� �9.46�
sx1

� �21,300 psi
sx1

� 8,300 psi

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� �0.3429

MAXIMUM SHEAR STRESSES

and � � 14,800 psi     

and � � �14,800 psi }
saver �

sx �sy

2
� �6,500 psi

us2
� up1

� 45� � 35.54�

us1
� up1

� 45� � �54.46�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 14,800 psi

Problem 7.3-6 An element in plane stress is subjected to stresses �x � �25.5 MPa,
�y � 6.5 MPa, and �xy � �12.0 MPa (see the figure for Problem 7.2-6). 

Determine the maximum shear stresses and associated normal stresses and show
them on a sketch of a properly oriented element.

Solution 7.3-6 Maximum shear stresses
�x � �25.5 MPa �y � 6.5 MPa
�xy � �12.0 MPa

PRINCIPAL ANGLES

2�p � 36.87� and �p� 18.43�
2�p � 216.87� and �p� 108.43�

For 2�p � 36.87�:
For 2�p � 216.87�:
Therefore, up1

� 108.4�
sx1

� 10.5 MPa
sx1

� �29.5 MPa

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� 0.7500

MAXIMUM SHEAR STRESSES

and � � 20.0 MPa
and � � �20.0 MPa

saver �
sx �sy

2
� �9.5 MPa

us2
� up1

� 45� � 153.43�
us1

� up1
� 45� � 63.48�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 20.0 MPa

}

xO
14,800 psi

�s2
 � 35.54�

6,500 psi

y

6,500 psi

xO
20.0 MPa

�s1
 � 63.43�

9.5 MPa

9.5 MPa

y



Problem 7.3-7 An element in plane stress is subjected to stresses 
�x � �11,000 psi, �y � �3,000 psi, and �xy � �4200 psi (see the 
figure for Problem 7.2-7). 

Determine the maximum shear stresses and associated normal
stresses and show them on a sketch of a properly oriented element.

Solution 7.3-7 Maximum shear stresses
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�x � �11,000 psi �y � �3,000 psi
�xy � �4,200 psi

PRINCIPAL ANGLES

2�p � 46.40� and �p� 23.20�
2�p � 226.40� and �p� 113.20�

For 2�p � 46.40�:
For 2�p � 226.40�:
Therefore, up1

� 113.20�
sx1

� �1,200 psi
sx1

� �12,800 psi

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� 1.0500

MAXIMUM SHEAR STRESSES

and � � 5,800 psi       
and � � �5,800 psi

saver �
sx �sy

2
� �7,000 psi

us2
� up1

� 45� � 158.20�

us1
� up1

� 45� � 68.20�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 5,800 psi

}

Problem 7.3-8 An element in plane stress is subjected to stresses �x � �54 MPa,
�y � �12 MPa, and �xy � 20 MPa (see the figure for Problem 7.2-8). 

Determine the maximum shear stresses and associated normal stresses and
show them on a sketch of a properly oriented element.

Solution 7.3-8 Maximum shear stresses

�x � �54 MPa �y � �12 MPa
�xy � 20 MPa

PRINCIPAL ANGLES

2�p � �43.60� and �p � �21.80�
2�p � 136.40� and �p � 68.20�

For 2�p � �43.60�:

For 2�p � 136.40�:

Therefore, up1
� 68.20�

sx1
� �4.0 MPa

sx1
� �62 MPa

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� �0.9524

MAXIMUM SHEAR STRESSES

and � � 29.0 MPa  
and � � �29.0 MPa

saver �
sx �sy

2
� �33.0 MPa

us2
� up1

� 45� � 113.20�

us1
� up1

� 45� � 23.20�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 29.0 MPa

xO
29.0 MPa

�s1
 � 23.20�

33.0 MPa
33.0 MPa

y

}

xO
5,800 psi

�s1
 � 68.20�

7,000 psi
7,000 psi

y



Problem 7.3-9 A shear wall in a reinforced concrete building is
subjected to a vertical uniform load of intensity q and a horizontal force
H, as shown in the first part of the figure. (The force H represents the
effects of wind and earthquake loads.) As a consequence of these loads,
the stresses at point A on the surface of the wall have the values shown 
in the second part of the figure (compressive stress equal to 1100 psi 
and shear stress equal to 480 psi).

(a) Determine the principal stresses and show them on a sketch of 
a properly oriented element.

(b) Determine the maximum shear stresses and associated normal
stresses and show them on a sketch of a properly oriented element.

Solution 7.3-9 Shear wall
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1100 psi

480 psi

A

A

q

H

�x � 0 �y � �1100 psi �xy � �480 psi

(a) PRINCIPAL STRESSES

2�p � �41.11� and �p � �20.56�
2�p � 138.89� and �p � 69.44�

For 2�p � �41.11�:
For 2�p � 138.89�:
Therefore, �1 � 180 psi and 

�2 � �1280 psi and up2
� 69.44�

up1
� �20.56�

sx1
� �1280 psi

sx1
� 180 psi

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� �0.87273

(b) MAXIMUM SHEAR STRESSES

and � � 730 psi 

and � � �730 psi

saver �
sx �sy

2
� �550 psi

us2
� up1

� 45� � 24.44�

us1
� up1

� 45� � �65.56�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 730 psi

}

}

xO

�p2
 � 69.44�

180 psi
1280 psi

y
xO

730 psi

�s2
 � 24.44�

550 psi

550 psi

y

Problem 7.3-10 A propeller shaft subjected to combined torsion 
and axial thrust is designed to resist a shear stress of 63 MPa and 
a compressive stress of 90 MPa (see figure).

(a) Determine the principal stresses and show them on a sketch 
of a properly oriented element. 

(b) Determine the maximum shear stresses and associated normal
stresses and show them on a sketch of a properly oriented element.

90 MPa

63 MPa



Problems 7.3-11 through 7.3-16 An element in plane stress (see figure)
is subjected to stresses �x, �y, and �xy. 

(a) Determine the principal stresses and show them on a sketch of a
properly oriented element. 

(b) Determine the maximum shear stresses and associated normal
stresses and show them on a sketch of a properly oriented element.

Data for 7.3-11 �x � 3500 psi, �y � 1120 psi, �xy � �1200 psi

Solution 7.3-11 Plane stress
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�x � �90 MPa �y � 0 �xy � �63 MPa

(a) PRINCIPAL STRESSES

2�p � 54.46� and �p � 27.23�
2�p � 234.46� and �p � 117.23�

For 2�p � 54.46�:
For 2�p � 234.46�: sx1

� 32.4 MPa
sx1

� �122.4 MPa

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� 1.4000

Therefore, 
�1 � 32.4 MPa and 
�2 � �122.4 MPa and 

(b) MAXIMUM SHEAR STRESSES

and � � 77.4 MPa      

and � � �77.4 MPa

saver �
sx �sy

2
� �45 MPa

us2
� up1

� 45� � 162.23�

us1
� up1

� 45� � 72.23�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 77.4 MPa

up2
� 27.23�

up1
� 117.23�

Solution 7.3-10 Propeller shaft

}

}

xO

�p2
 � 27.23�

32.4 MPa
122.4 MPa

y

xO
77.4 MPa

�s1
 � 72.23�

45 MPa

45 MPa

y

y

xO

�xy

�x

�y

�x � 3500 psi �y � 1120 psi �xy � �1200 psi

(a) PRINCIPAL STRESSES

2�p � �45.24� and �p � �22.62�
2�p � 134.76� and �p � 67.38�

For 2�p � �45.24�:
For 2�p � 134.76�: sx1

� 620 psi
sx1

� 4000 psi

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� �1.0084

Therefore, 
�1 � 4000 psi and 
�2 � 620 psi and up2

� 67.38�
up1

� �22.62� }

xO

�p2
 � 67.38�

4000 psi
620 psi

y



Data for 7.3-12 �x � 2100 kPa, �y � 300 kPa, �xy � �560 kPa

Solution 7.3-12 Plane stress
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(b) MAXIMUM SHEAR STRESSES

and � � 1690 psi

and � � �1690 psi

saver �
sx �sy

2
� 2310 psi

us2
� up1

� 45� � 22.38�

us1
� up1

� 45� � �67.62�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 1690 psi

}
xO

1690 psi

�s2
 � 22.38�

2310 psi

2310 psi

y

�x � 2100 kPa �y � 300 kPa �xy � �560 kPa

(a) PRINCIPAL STRESSES

2�p � �31.89� and �p � �15.95�
2�p � 148.11� and �p � 74.05�

For 2�p� �31.89�:

For 2�p� 148.11�:

Therefore, �1 � 2260 kPa and 

�2 � 140 kPa and up2
� 74.05�

up1
� �15.95�

sx1
� 140 kPa

sx1
� 2260 kPa

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� �0.6222

(b) MAXIMUM SHEAR STRESSES

and � � 1060 kPa

and � � �1060 kPa

saver �
sx �sy

2
� 1200 kPa

us2
� up1

� 45� � 29.05�

us1
� up1

� 45� � �60.95�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 1060 kPa

}

}

xO

�p2
 � 74.05�

2260 kPa
140 kPa

y

xO
1060 kPa

�s2
 � 29.05�

1200 kPa

1200 kPa

y



Data for 7.3-13 �x � 15,000 psi, �y � 1,000 psi, �xy � 2,400 psi

Solution 7.3-13 Plane stress

442 CHAPTER 7 Analysis of Stress and Strain

�x � 15,000 psi �y � 1,000 psi �xy � 2,400 psi

(a) PRINCIPAL STRESSES

2�p � 18.92� and �p � 9.46�
2�p � 198.92� and �p � 99.46�

For 2�p � 18.92�:

For 2�p � 198.92�:

Therefore, �1 � 15,400 psi and 
�2 � 600 psi and up2

� 99.96�
up1

� 9.46�

sx1
� 600 psi

sx1
� 15,400 psi

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� 0.34286

(b) MAXIMUM SHEAR STRESSES

and � � 7,400 psi

and � � �7,400  psi

saver �
sx �sy

2
� 8,000 psi

us2
� up1

� 45� � 54.46�

us1
� up1

� 45� � �35.54�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 7,400 psi

}

}

xO

�p1
 � 9.46�

600 psi
15,400 psi

y xO
7400 psi

�s2
 � 54.46�

8000 psi

8000 psi

y

Data for 7.3-14 �x � 16 MPa, �y � �96 MPa, �xy � �42 MPa

Solution 7.3-14 Plane stress
�x � 16 MPa �y � �96 MPa �xy � �42 MPa

(a) PRINCIPAL STRESSES

2�p � �36.87� and �p � �18.43�
2�p � 143.13� and �p � 71.57�

For 2�p � �36.87�:

For 2�p � 143.13�:

Therefore, �1 � 30 MPa and 

�2 � �110 MPa and 

(b) MAXIMUM SHEAR STRESSES

and � � 70 MPa

and � � �70 MPa

saver �
sx �sy

2
� �40 MPa

us2
� up1

� 45� � 26.57�

us1
� up1

� 45� � �63.43�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 70 MPa

up2
� 71.57�

up1
� �18.43�

sx1
� �110 MPa

sx1
� 30 MPa

sx1
�
sx �sy

2
�
sx �sy

2
 cos  2u� txy  sin  2u

tan 2up �
2txy

sx �sy
� �0.7500

}

xO

�p2
 � 71.57�

30 MPa
110 MPa

y

}
xO

70 MPa

�s2
 � 26.57�

40 MPa

40 MPa

y



Data for 7.3-15 �x � �3000 psi, �y � �12,000 psi, �xy � 6000 psi

Solution 7.3-15 Plane stress
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�x � �3000 psi �y � �12,000 psi
�xy � 6000 psi

(a) PRINCIPAL STRESSES

2�p � 53.13� and �p � 26.57�

2�p � 233.13� and �p � 116.57�

For 2�p � 53.13�:
For 2�p � 233.13�:

Therefore, 

�1 � 0 and 

�2 � �15,000 psi and up2
� 116.57�

up1
� 26.57�

sx1
� �15,000 psi

sx1
� 0

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� 1.3333 }

}

xO

�p1
 � 26.57�

15,000 psi

y

xO

7500 psi

�s2
 � 71.57�

7500 psi

7500 psi

y

Data for 7.3-16 �x � �100 MPa, �y � 50 MPa, �xy � �50 MPa

Solution 7.3-16 Plane stress
�x � �100 MPa �y � 50 MPa �xy � �50 MPa

(a) PRINCIPAL STRESSES

2�p � 33.69� and �p � 16.85�
2�p � 213.69� and �p � 106.85�

For 2�p � 33.69�:

For 2�p � 213.69�: 

Therefore, 
�1 � 65.1 MPa and 
�2 � �115.1 MPa and up2

� 16.85�
up1

� 106.85�

sx1
� 65.1 MPa

sx1
� �115.1 MPa

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� 0.66667

xO

�p2
 � 16.85�

65.1 MPa
115.1 MPa

y

}

(b) MAXIMUM SHEAR STRESSES

and � � 7500 psi

and � � �7500 psi

saver �
sx �sy

2
� �7500 psi

us2
� up1

� 45� � 71.57�

us1
� up1

� 45� � �18.43�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 7500 psi
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(b) MAXIMUM SHEAR STRESSES

and � � 90.1 MPa

and � � �90.1 MPa

saver �
sx �sy

2
� �25.0 MPa

us2
� up1

� 45� � 151.85�

us1
� up1

� 45� � 61.85�

tmax �B¢sx �sy

2
≤

2

� txy
2 � 90.1 MPa

}
xO

90.1 MPa

�s1
 � 61.85�

25.0 MPa

25.0 MPa

y

Problem 7.3-17 At a point on the surface of a machine component 
the stresses acting on the x face of a stress element are �x � 6500 psi 
and �xy � 2100 psi (see figure). 

What is the allowable range of values for the stress �y if the 
maximum shear stress is limited to �0 � 2900 psi?

Solution 7.3-17 Allowable range of values

y

xO

�xy = 2100 psi

�y

�x = 6500 psi

2

4

6

0 5 10 15

2.5 6.5 10.5

� 5

Eq. (3)

�y (ksi)

2.1 ksi

2.9 ksi (� �o)

�max
(ksi)

�x � 6500 psi �xy � 2100 psi �y � ?
Find the allowable range of values for �y if the
maximum allowable shear stresses is �0 � 2900 psi.

Eq. (1)

or

Eq. (2)

SOLVE FOR �y

sy �sx � 2�tmax
2 � txy

2

tmax
2 � ¢sx �sy

2
≤

2

� txy
2

tmax �B¢sx �sy

2
≤

2

� txy
2

Substitute numerical values:

� 6500 psi � 4000 psi
Therefore, 2500 psi � �y � 10,500 psi

GRAPH OF �max

From Eq. (1): 

Eq. (3)tmax �B¢6500 �sy

2
≤

2

� (2100)2

sy � 6500 psi � 2�(2900 psi)2 � (2100 psi)2
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Problem 7.3-18 At a point on the surface of a machine component 
the stresses acting on the x face of a stress element are �x � 45 MPa 
and �xy � 30 MPa (see figure). 

What is the allowable range of values for the stress �y if the 
maximum shear stress is limited to �0 � 34 MPa?

Solution 7.3-18 Allowable range of values

y

xO

�xy

�y

�x = 100 MPa

�x � 45 MPa �xy � 30 MPa �y � ?
Find the allowable range of values for �y if the
maximum allowable shear stresses is �0 � 34 MPa.

Eq. (1)

or

Eq. (2)tmax
2 � ¢sx �sy

2
≤

2

� txy
2

tmax �B¢sx �sy

2
≤

2

� txy
2

SOLVE FOR �y

Substitute numerical values:

� 45 MPa � 32 MPa
Therefore, 13 MPa � �y � 77 MPa

GRAPH OF �max

From Eq. (1): 

Eq. (3)tmax �B¢45 �sy

2
≤

2

� (30)2

sy � 45 MPa � 2�(34 MPa)2 � (30 MPa)2

sy �sx � 2�tmax
2 � txy

2

20

30

40

0 20 40 60

13 45 77

� 20

Eq. (3)

�y (MPa)

30 MPa
34 MPa (� �o)�max

(MPa)

10

10080

Problem 7.3-19 An element in plane stress is subjected to stresses 
�x � 6500 psi and �xy � �2800 psi (see figure). It is known that one 
of the principal stresses equals 7300 psi in tension. 

(a) Determine the stress �y. 
(b) Determine the other principal stress and the orientation of 

the principal planes; then show the principal stresses on a sketch 
of a properly oriented element.

y

xO
6500 psi

�y

2800 psi



Solution 7.3-19 Plane stress
�x � 6500 psi �xy � �2800 psi �y � ?
One principal stress � 7300 psi (tension)

(a) STRESS �y

Because �x is smaller than the given principal stress,
we know that the given stress is the larger principal
stress.
�1 � 7300 psi

Substitute numerical values and solve for �y:
�y � �2500 psi

s1 �
sx �sy

2
�B¢sx �sy

2
≤

2

� txy
2

(b) PRINCIPAL STRESSES

2�p � �31.891� and �p � �15.945�
2�p � 148.109� and �p � 74.053�

For 2�p � �31.891�:
For 2�p � 148.109�:

Therefore, 
�1 � 7300 psi and 
�2 � �3300 psi and up2

� 74.05�
up1

� �15.95�

sx1
� �3300 psi

sx1
� 7300 psi

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� �0.62222

446 CHAPTER 7 Analysis of Stress and Strain

xO

�p2
 � 74.05�

7300 psi

3300 psi

y

Problem 7.3-20 An element in plane stress is subjected to stresses 
�x � �68.5 MPa and �xy � 39.2 MPa (see figure). It is known that 
one of the principal stresses equals 26.3 MPa in tension. 

(a) Determine the stress �y. 
(b) Determine the other principal stress and the orientation of 

the principal planes; then show the principal stresses on a sketch 
of a properly oriented element.

Solution 7.3-20 Plane stress

y

xO

39.2 MPa

�y

68.5 MPa

}

�x � �68.5 MPa �xy � 39.2 MPa �y � ?
One principal stress � 26.3 MPa (tension)

(a) STRESS �y

Because �x is smaller than the given principal stress,
we know that the given stress is the larger principal
stress.

�1 � 26.3 MPa

Substitute numerical values and solve for �y:
�y � 10.1 MPa

s1 �
sx �sy

2
�B¢sx �sy

2
≤

2

� txy
2
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(b) PRINCIPAL STRESSES

2�p � �44.93� and �p � �22.46�
2�p � 135.07� and �p � 67.54�

For 2�p � �44.93�:
For 2�p � 135.07�:

Therefore, 

�1 � 26.3 MPa and 
�2 � �84.7 MPa and up2

� �22.46�
up1

� 67.54�

sx1
� 26.3 MPa

sx1
� �84.7 MPa

sx1
�
sx �sy

2
�
sx �sy

2
 cos 2u� txy  sin 2u

tan 2up �
2txy

sx �sy
� �0.99746

xO

�p1
 � 67.54�

84.7 MPa

26.3 MPa

y

Mohr’s Circle for Plane Stress

The problems for Section 7.4 are to be solved using Mohr’s circle.
Consider only the in-plane stresses (the stresses in the xy plane).

Problem 7.4-1 An element in uniaxial stress is subjected to tensile
stresses �x � 14,500 psi, as shown in the figure. 

Using Mohr’s circle, determine (a) the stresses acting on an 
element oriented at a counterclockwise angle � � 24° from the 
x axis and (b) the maximum shear stresses and associated normal 
stresses. Show all results on sketches of properly oriented elements.

Solution 7.4-1 Uniaxial stress

y

xO
14,500 psi

�x � 14,500 psi �y � 0 �xy � 0

(a) ELEMENT AT � � 24� (All stresses in psi)

2� � 48� � � 24� R � 7250 psi

Point C: sx1
� 7250 psi

Point D: 

Point D�: 
tx1y1

� 5390 psi

sx1
� R � R  cos 2u� 2400 psi

tx1y1
� R  sin 2u� �5390 psi

sx1
� R � R  cos 2u� 12,100 psi

D'

D (� � 24�)

A
        (� � 0)

14,500

2�

2�s2  

2�s1 
= � 90� 

C

S1

S2

R

R

O  B (� � 90�) �x1

�x1y1

xO

5390 psi

� � 24�

2400 psi

12,100 psi

y

D'

D

}
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(b) MAXIMUM SHEAR STRESSES

Point S1: 
�max � R � 7250 psi

Point S2: 

�min � �R � �7250 psi
�aver � R � 7250 psi

us2
� 45�2us2

� 90�

us1
� �45�2us1

� �90�

xO 7250 psi

�s2
 � 45�

7250 psi 7250 psi

y

S2

S1

Problem 7.4-2 An element in uniaxial stress is subjected to tensile
stresses �x � 55 MPa, as shown in the figure. 

Using Mohr’s circle, determine (a) the stresses acting on an element
oriented at an angle � � �30° from the x axis (minus means clockwise)
and (b) the maximum shear stresses and associated normal stresses. Show
all results on sketches of properly oriented elements.

Solution 7.4-2 Uniaxial stress

y

xO
55 MPa

�x � 55 MPa �y � 0 �xy � 0

(a) ELEMENT AT � � �30� (All stresses in MPa)

2� � �60� � � �30� R � 27.5 MPa

Point C: 

Point D:

Point D�: 
tx1y1

� �R  sin ƒ 2u ƒ � �23.8 MPa

sx1
� R � R  cos ƒ 2u ƒ � 13.8 MPa

tx1y1
� R  sin ƒ 2u ƒ � R  sin 60� � 23.8 MPa

� R(1 �  cos 60�) � 41.2 MPa

sx1
� R � R  cos ƒ 2u ƒ

sx1
� 27.5 MPa

(b) MAXIMUM SHEAR STRESSES

Point S1: 
�max � R � 27.5 MPa

Point S2: 
�min � �R � �27.5 MPa

�aver � R � 27.5 MPa

us2
� 45�2us2

� 90�

us1
� �45�2us1

� �90�

D'

D 
(� � �30�)

A (	 � 0)

55 MPa

2� = �60� C

S1

S2

R

R

O 
x1

�x1y1

 B (� � 90�)

xO

41.2 MPa

� � –30�

13.8 MPa

23.8 MPa

y

D

D'

xO
27.5 MPa

�s2
 � 45�

27.5 MPa

27.5 MPa

y

S1

S2



Problem 7.4-3 An element in uniaxial stress is subjected to compressive
stresses of magnitude 5600 psi, as shown in the figure. 

Using Mohr’s circle, determine (a) the stresses acting on an element
oriented at a slope of 1 on 2 (see figure) and (b) the maximum shear
stresses and associated normal stresses. Show all results on sketches 
of properly oriented elements.

Solution 7.4-3 Uniaxial stress

SECTION 7.4 Mohr’s Circle for Plane Stress 449

y

x
O

5600 psi

1
2

�x � �5600 psi �y � 0 �xy � 0

(a) ELEMENT AT A SLOPE OF 1 ON 2

(All stresses in psi)

2� � 53.130�
� � 26.57�
R � 2800 psi

Point C: 

Point D:  

Point D�: 
tx1y1

� �R sin 2u� �2240 psi

sx1
� �R � R  cos 2u� �1120 psi

tx1y1
� R  sin 2u� 2240 psi

sx1
� �R � R  cos 2u� �4480 psi

sx1
� �2800 psi

u� arctan 
1

2
� 26.565�

(b) MAXIMUM SHEAR STRESSES

Point S1: 

�max � R � 2800 psi

Point S2: 

�min � �R � �2800 psi

�aver � �R � �2800 psi

us2
� �45�2us2

� �90�

us1
� 45�2us1

� 90�

�
1

2

D'

D

        A 
(� � 0)

5600

2� = 
53.13� 

2�s2
 = 

�90� C

S1

S2

R
O 
x1

 B (� � 90�)

�x1y1

2�s1

R

R

xO

2240 psi

� � 26.57�

1120 psi

4480 psi

y

D

D'

xO
2800 psi

�s1
 � 45�

2800 psi 2800 psi

y

S2

S1

Problem 7.4-4 An element in biaxial stress is subjected to stresses 
�x � �60 MPa and �y � 20 MPa, as shown in the figure.

Using Mohr’s circle, determine (a) the stresses acting on an element
oriented at a counterclockwise angle � � 22.5° from the x axis and (b) the
maximum shear stresses and associated normal stresses. Show all results
on sketches of properly oriented elements.

y

xO

20 MPa

60 MPa



Solution 7.4-4 Biaxial stress

450 CHAPTER 7 Analysis of Stress and Strain

�x � �60 MPa �y � 20 MPa �xy � 0

(a) ELEMENT AT � � 22.5�

(All stresses in MPa)
2� � 45� � � 22.5�
2R � 60 � 20 � 80 MPa R � 40 MPa

Point C: 

Point D: 

Point D�: 
tx1y1

� �R sin 2u� �28.28 MPa

sx1
� R  cos 2u� 20 � 8.28 MPa

tx1y1
� R  sin 2u� 28.28 MPa

sx1
� �20 � R  cos 2u� �48.28 MPa

sx1
� �20 MPa

(b) MAXIMUM SHEAR STRESSES

Point S1: 
�max � R � 40 MPa

Point S2: 
�min � �R � �40 MPa

�aver � �20 MPa

us2
� �45�2us2

� �90�

us1
� 45�2us1

� 90�

D'

D

         A 
(	 � 0)

40

2�
C

S1

S2

R

O 
x1

 B (� � 90�)

�x1y1

2�s1

(� � 22.5�)

20 20
60

R

xO

28.28 MPa

� � 22.5�

48.28 MPa

8.28 MPa
y

D

D'

xO

20 MPa

�s1
 � 45�

40 MPa20 MPa 20 MPa

y

S2

S1

Problem 7.4-5 An element in biaxial stress is subjected to stresses 
�x � 6000 psi and �y � �1500 psi, as shown in the figure. 

Using Mohr’s circle, determine (a) the stresses acting on an element
oriented at a counterclockwise angle � � 60° from the x axis and (b) the
maximum shear stresses and associated normal stresses. Show all results
on sketches of properly oriented elements.

Solution 7.4-5 Biaxial stress

y

xO

1500 psi

6000 psi

�x � 6000 psi �y � �1500 psi �xy � 0

(a) ELEMENT AT � � 60�

(All stresses in psi)
2� � 120� � � 60�
2R � 7500 psi R � 3750 psi

Point C: sx1
� 2250 psi D'

D

A (� � 0)

2250

60� 

2� = 120� 

C

S1

S2

R

R

O �x1

 B (� � 90�)

�x1y1

30�

1500 6000

 (� � 60�)



Problem 7.4-6 An element in biaxial stress is subjected to stresses 
�x � �24 MPa and �y � 63 MPa, as shown in the figure. 

Using Mohr’s circle, determine (a) the stresses acting on an element
oriented at a slope of 1 on 2.5 (see figure) and (b) the maximum shear
stresses and associated normal stresses. Show all results on sketches of
properly oriented elements.

Solution 7.4-6 Biaxial stress

SECTION 7.4 Mohr’s Circle for Plane Stress 451

Point D: 

Point D�: 
tx1y1

� R  sin 60� � 3248 psi

sx1
� 2250 � R  cos 60� � 4125 psi

tx1y1
� �R  sin 60� � �3248 psi

sx1
� 2250 � R  cos 60� � 375 psi (b) MAXIMUM SHEAR STRESSES

Point S1: 
�max � R � 3750 psi

Point S2: 
�min � �R � �3750 psi

�aver � 2250 psi

us2
� 45�2us2

� 90�

us1
� �45�2us1

� �90�

xO 3250 psi

� � 60�

4125 psi

375 psi
y

D

D'

xO
3750 psi

�s2
 � 45�

2250 psi
2250 psi

y S2

S1

y

xO

63 MPa

24 MPa

1

2.5

�x � �24 MPa �y � 63 MPa �xy � 0

(a) ELEMENT AT A SLOPE OF 1 ON 2.5

(All stresses in MPa)

2� � 43.603�
� � 21.801�

2R � 87 MPa
R � 43.5 MPa

Point C: 

Point D: 

tx1y1
� R  sin 2u� 30 MPa

sx1
� �R  cos 2u� 19.5 � �12 MPa

sx1
� 19.5 MPa

u� arctan 
1

2.5
� 21.801�

Point D�: 

(b) MAXIMUM SHEAR STRESSES

Point S1: 
�max � R � 43.5 MPa

Point S2: 
�min � �R � �43.5 MPa

�aver � 19.5 MPa

us2
� �45�2us2

� �90�

us1
� 45�2us1

� 90�

tx1y1
� �R sin 2u� �30 MPa

sx1
� 19.5 � R  cos 2u� 51 MPa

�
1

2.5

D'

D

               A
      (	 � 0)

19.5

43.603�

2� 

C

S1

S2

R

R

B (� � 90�)

x1

�x1y1

6324

O

xO

30 MPa

� � 21.80�

12 MPa

51 MPa
y

D

D'

xO
43.5 MPa

�s1
 � 45�

19.5 MPa 19.5 MPa

y

S2

S1



Problem 7.4-7 An element in pure shear is subjected to stresses 
�xy � 3000 psi, as shown in the figure. 

Using Mohr’s circle, determine (a) the stresses acting on an 
element oriented at a counterclockwise angle � � 70° from the 
x axis and (b) the principal stresses. Show all results on sketches 
of properly oriented elements.

Solution 7.4-7 Pure shear

452 CHAPTER 7 Analysis of Stress and Strain

y

xO

3000 psi

�x � 0 �y � 0 �xy � 3000 psi

(a) ELEMENT AT � � 70�
(All stresses in psi)
2� � 140� � � 70� R � 3000 psi
Origin O is at center of circle.

Point D:  

Point D�: 
tx1y1

� R  sin 50� � 2298 psi

sx1
� �R  cos 50� � �1928 psi

tx1y1
� �R  sin 50� � �2298 psi

sx1
� R  cos 50� � 1928 psi

(b) PRINCIPAL STRESSES

Point P1: 

�1 � R � 3000 psi

Point P2: 

�2 � �R � �3000 psi

up2
� �45�2up2

� �90�

up1
� 45�2up1

� 90�

D'

D

A (� � 0)

3000 psi

2�p1
 

2� = 
140� 

P1P2 R

R

O
�x1

 B (� � 90�)

�x1y1

50�

xO

2300 psi

� � 70�

1930 psi

1930 psi

y

D

D'

xO

�p1
 � 45�

3000 psi 3000 psi

y

P2

P1

Problem 7.4-8 An element in pure shear is subjected to stresses 
�xy � �16 MPa, as shown in the figure. 

Using Mohr’s circle, determine (a) the stresses acting on an element
oriented at a counterclockwise angle � � 20° from the x axis and (b)
the principal stresses. Show all results on sketches of properly oriented
elements.

y

xO

16 MPa



Solution 7.4-8 Pure shear

SECTION 7.4 Mohr’s Circle for Plane Stress 453

�x � 0 �y � 0 �xy � �16 MPa

(a) ELEMENT AT � � 20�

(All stresses in MPa)
2� � 40� � � 20� R � 16 MPa
Origin O is at center of circle.

Point D:  

Point D�: 
tx1y1

� R  cos 2u� 12.26 MPa

sx1
� R  sin 2u� 10.28 MPa

tx1y1
� �R  cos 2u� �12.26 MPa

sx1
� �R  sin 2u� �10.28 MPa

(b) PRINCIPAL STRESSES

Point P1: 
�1 � R � 16 MPa

Point P2: 
�2 � �R � �16 MPa

up2
� 45�2up2

� 90�

up1
� 135�2up1

� 270�

D'

D
A (� � 0)

2� 

2�p2
 

2�p1
 

P1P2 R

R

O �x1

(� � 20�)

B (� � 90�)
�x1y1

16

xO

12.3 MPa

� � 20�

10.3 MPa

10.3 MPa

y

D

D'

xO

�p2
 � 45�

16 MPa 16 MPa

y

P2

P1

Problem 7.4-9 An element in pure shear is subjected to stresses 
�xy � 4000 psi, as shown in the figure. 

Using Mohr’s circle, determine (a) the stresses acting on an element
oriented at a slope of 3 on 4 (see figure) and (b) the principal stresses.
Show all results on sketches of properly oriented elements.

O

3

4

y

x

4000 psi

Solution 7.4-9 Pure shear

�x � 0 �y � 0 �xy � 4000 psi

(a) ELEMENT AT A SLOPE OF 3 ON 4

(All stresses in psi)

2� � 73.740� � � 36.870�
R � 4000 psi
Origin O is at center of circle.

u� arctan 
3

4
� 36.870�

�
3

4

D'

D

A (� � 0)

2� 

2�p1
 

P1P2

R

R

O �x1

B (� � 90�)

�x1y1

4000

16.260� R
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Point D:  

Point D�: 
tx1y1

� �R  sin 16.260� � �1120 psi

sx1
� �R  cos 16.260� � �3840 psi

tx1y1
� R  sin 16.260� � 1120 psi

sx1
� R  cos 16.260� � 3840 psi (b) PRINCIPAL STRESSES

Point P1: 
�1 � R � 4000 psi

Point P2: 
�2 � �R � �4000 psi

up2
� �45�2up2

� �90�

up1
� 45�2up1

� 90�

xO

1120 psi

� � 36.87�

3840 psi

3840 psi

y

D

D'

xO

�p1
 � 45�

4000 psi 4000 psi

y

P2

P1

Problems 7.4-10 through 7.4-15 An element in plane stress is subjected
to stresses �x, �y, and �xy (see figure). 

Using Mohr’s circle, determine the stresses acting on an element 
oriented at an angle � from the x axis. Show these stresses on a sketch 
of an element oriented at the angle �. (Note: The angle � is positive 
when counterclockwise and negative when clockwise.)

y

xO

�xy

�x

�y

Solution 7.4-10 Plane stress (angle ��)

�x � 21 MPa �y � 11 MPa
�xy � 8 MPa � � 50�
(All stresses in MPa)

� � arctan 
8

5
� 57.99�

R � �(5)2 � (8)2 � 9.4340 MPa

� � 2� � � � 100� � � � 42.01�

Point D (� � 50�):

Point D� (� � �40�):

tx1y1
� R  sin b� 6.31 MPa

sx1
� 16 � R  cos b� 8.99 MPa

tx1y1
� �R  sin b� �6.31 MPa

sx1
� 16 � R  cos b� 23.01 MPa

Data for 7.4-10 �x � 21 MPa, �y � 11 MPa, �xy � 8 MPa, � � 50°

D'

D

A (� � 0)

2� � 
100�  

R

RR

�x1

(� � 90�)
(� � 50�)

�x1y1

8

8

80�

�

B

16

11

21

C

5
O

�

xO

23.01 MPa

� � 50�

6.31 MPa

8.99 MPa

y

D' D
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Data for 7.4-11 �x � 4500 psi, �y � 14,100 psi, �xy � �3100 psi, � � �55°

Solution 7.4-11 Plane stress (angle ��)

�x � 4500 psi �y � 14,100 psi

�xy � �3100 psi � � �55�

(All stresses in psi)

� � arctan 
3100

4800
� 32.86�

R � �(4800)2 � (3100)2 � 5714 psi

� � 180� � 110� � � � 37.14�
Point D (� � �55�):

Point D�(� � 35�):

tx1y1
� R  sin b� 3450 psi

sx1
� 9300 � R  cos b� 4750 psi

tx1y1
� �R  sin b� �3450 psi

sx1
� 9300 � R  cos b� 13,850 psi

D'

D
(� � 0)

    A 

2� � �110�  

R

RR

�x1

(� � 90�)

(� � �55�)

�x1y1

3100

B9300

4500

14,100

C
O

4800
��
3100

xO

13,850 psi

� � �55�

3450 psi 4750 psi

y

D

D'

Data for 7.4-12 �x � �44 MPa, �y � �194 MPa, �xy � �36 MPa, � � �35°

Solution 7.4-12 Plane stress (angle ��)
�x � �44 MPa �y � �194 MPa
�xy � �36 MPa � � �35�

(All stresses in MPa)

� � 70� � � � 44.36�

� � arctan 
36

75
� 25.64�

R � �(75)2 � (36)2 � 83.19 MPa

Point D (� � �35�):

Point D�(� � 55�):

tx1y1
� �R  sin b� �58.2 MPa

sx1
� �119 � R  cos b� �178.5 MPa

tx1y1
� R  sin b� 58.2 MPa

sx1
� �119 � R  cos b� �59.5 MPa

D'

D

A (� � 0)

2� � 
�70�  

R R

R

�x1

(� � 90�)
(� � �35�)

�x1y1

36

36
�

B

119

194

C
75 O

44

�

xO

59.5 MPa

� � �35�

58.2 MPa

178.5 MPa

y

D'

D



Data for 7.4-13 �x � �1520 psi, �y � �480 psi, �xy � 280 psi, � � 18°

456 CHAPTER 7 Analysis of Stress and Strain

�x � �1520 psi �y � �480 psi
�xy � 280 psi � � 18�

(All stresses in psi)

� � arctan 
280

520
� 28.30�

R � �(520)2 � (280)2 � 590.6 psi

� � � � 36� � 64.30�
Point D (� � 18�):

Point D�(� � 108�):

tx1y1
� �R  sin b� �532 psi

sx1
� �1000 � R  cos b� �744 psi

tx1y1
� R  sin b� 532 psi

sx1
� �1000 � R  cos b� �1256 psi

Solution 7.4-13 Plane stress (angle ��)

D'

D

         A 
(� � 0)

2�
     � 36�  

R

R

�x1

(� � 90°)

(� � 18�)

�x1y1

280

280

280 �

B

1000

1520

C O

480

�
520

xO

1256 psi

� � 18�

744 psi

532 psi

y

D

D'

Data for 7.4-14 �x � 31 MPa, �y � �5 MPa, �xy � 33 MPa, � � 45°

Solution 7.4-14 Plane stress (angle ��)

�x � 31 MPa �y � �5 MPa
�xy � 33 MPa � � 45�

(All stresses in MPa)

� � 90� � � � 28.610�

� � arctan 
33

18
� 61.390�

R � �(18)2 � (33)2 � 37.590 MPa

Point D (� � 45�):

Point D�(� � 135�):

tx1y1
� R  sin b� 18.0 MPa

sx1
� 13 � R  cos b� �20.0 MPa

tx1y1
� �R  sin b� �18.0 MPa

sx1
� 13 � R  cos b� 46.0 MPa

(� � 90°)
B

5

33

C
O

R
�

D (� � 45°)

�x1

333313

18
�

31
A (� � 0)

�x1y1

D' R

D' � � 45�

x18.0 MPaO

D

y

20 MPa 46.0 MPa



Data for 7.4-15 �x � �5750 psi, �y � 750 psi, �xy � �2100 psi, � � 75°
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Solution 7.4-15 Plane stress (angle ��))

�x � �5750 psi �y � 750 psi
�xy� �2100 psi � � 75�

(All stresses in psi)
� � � � 30� � 62.87�
Point D (� � 75�):

Point D�(� � �15�):

tx1y1
� �R  sin b� �3444 psi

sx1
� �2500 � R  cos b� �4265 psi

tx1y1
� R  sin b� 3444 psi

sx1
� �2500 � R  cos b� �735 psi

� � arctan 
2100

3250
� 32.87�

R � �(3250)2 � (2100)2 � 3869 psi

(� � 0)

30�

C O

R

� B (� � 90�)

�x1�

2500

�x1y1

D'
(� � �15�)

2100

A

3250

2� 
� 150� 2100

R

750

Point D:
� � 75�

5750

D

y

x

D'

D

O

3444 psi

735 psi

4265 psi

� � 75°

Problems 7.4-16 through 7.4-23 An element in plane stress is 
subjected to stresses �x, �y, and �xy (see figure). 

Using Mohr’s circle, determine (a) the principal stresses and 
(b) the maximum shear stresses and associated normal stresses. 
Show all results on sketches of properly oriented elements.

y

xO

�xy

�x

�y

Data for 7.4-16 �x � �31.5 MPa, �y � 31.5 MPa, �xy � 30 MPa

Solution 7.4-16 Principal stresses

�x � �31.5 MPa �y � 31.5 MPa
�xy � 30 MPa

(All stresses in MPa)

� � arctan 
30

31.5
� 43.60�

R � �(31.5)2 � (30.0)2 � 43.5 MPa
30

B (� � 90�)

30
30

31.5
(� � 0)

A

S2

R

O 31.5

�
2�P1

�x1

�x1y1

2�s1

S1

P1

31.5

P2
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(a) PRINCIPAL STRESSES

Point P1: �1 � R � 43.5 MPa

Point P2: �2 � �R � �43.5 MPa

up2
� �21.80�2up2

� �� � �43.60�

up1
� 68.20�2up1

� 180� � � � 136.40�

(b) MAXIMUM SHEAR STRESSES

Point S1: �aver � 0 �max � R � 43.5 MPa

Point S2: �aver � 0 �min � �43.5 MPa

us2
� 113.20�2us2

� 2us1
� 180� � 226.40�

us1
� 23.20�2us1

� 90� � � � 46.40�

O

�p1
� 68.20�

43.5 MPa

43.5 MPa

y

x

P1

P2

�s1
� 23.20�

S1

S2

O

y

x

43.5 MPa

Data for 7.4-17 �x � 8400 psi, �y � 0, �xy � 1440 psi

Solution 7.4-17 Principal stresses

�x � 8400 psi �y � 0 �xy � 1440 psi

(All stresses in psi)

(a) PRINCIPAL STRESSES

Point P1: �1 � 4200 � R � 8640 psi

Point P2: �2 � 4200 � R � �240 psi

up2
� 99.46�2up2

� 180� � � � 198.92�

up1
� 9.46�2up1

� � � 18.92�

� � arctan 
1440

4200
� 18.92�

R � �(4200)2 � (1440)2 � 4440 psi

(b) MAXIMUM SHEAR STRESSES

Point S1: �aver � 4200 psi �max � R � 4440 psi
Point S2: �aver � 4200 psi �min � �4440 psi

us2
� 54.46�2us2

� 90� � � � 108.92�
us1

� �35.54�2us1
� �(90� � �) � �71.08�

(� � 90�)

�x1y1

R
RB

R

S2

P2

S1

P1

14404200

4200
8400

A (� � 0)
2�s1

�x1

O C

� O

�p1
� 9.46�

y

x

P2

240 psi

P1

8640 psi

4440 psi

y

4200 psi

S1
S2

4200 psi

xO

�s1
� 54.46�



Data for 7.4-18 �x � 0, �y � �22.4 MPa, �xy � �6.6 MPa
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Solution 7.4-18 Principal stresses

�x � 0 �y � �22.4 MPa
�xy � �6.6 MPa
(All stresses in MPa)

(a) PRINCIPAL STRESSES

Point P1: �1 � R � 11.2 � 1.8 MPa

Point P2: �2 � �11.2� R � �24.2 MPa

up2
� 74.74�2up2

� 180� � � � 149.49�

up1
� �15.26�2up1

� �� � �30.51�

� � arctan 
6.6

11.2
� 30.51�

R � �(11.2)2 � (6.6)2 � 13.0 MPa

(b) MAXIMUM SHEAR STRESSES

Point S1: �aver � �11.2 MPa �max � R � 13.0 MPa
Point S2: �aver � �11.2 MPa �min � �13.0 MPa

us2
� 29.74�2us2

� 90� � � � 59.49�
us1

� �60.26�2us1
� �� � 90� � �120.51�(� � 90�)

�x1

�x1y1

P2

S2

R

C O

S1

2�p2 A (� � 0)
R

6.6

P1

B

6.6
11.2

�

R

11.2
22.4

O

�p2
� 74.74�

1.8 MPa

24.2 MPa

y

x

P1

P2

S1

x

13.0 MPa
O

S2

y

11.2 MPa

11.2 MPa

�s2
� 29.74�

Data for 7.4-19 �x � 1850 psi, �y � 6350 psi, �xy � 3000 psi

Solution 7.4-19 Principal stresses

�x � 1850 psi �y � 6350 psi �xy � 3000 psi

(All stresses in psi)

� � arctan 
3000

2260
� 53.13�

R � �(2250)2 � (3000)2 � 3750 psi
O

RR

A

2250

30
00

3000

1850
4100

6350

S2

P2

P1

S1
(� � 0)

�

2�s1

2�p1

C

�x1y1

�x1

B (� � 90�)

�

R
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(a) PRINCIPAL STRESSES

Point P1: �1 � 4100 � R � 7850 psi
Point P2: �2 � 4100 � R � 350 psi

up2
� �26.57�2up2

� �� � �53.13�
up1

� 63.43�2up1
� 180� � � � 126.87�

(b) MAXIMUM SHEAR STRESSES

Point S1: �aver � 4100 psi �max � R � 3750 psi
Point S2: �aver � 4100 psi �min � �3750 psi

us2
� 108.43�2us2

� 270� � � � 216.87�
us1

� 18.43�2us1
� 90� � � � 36.87�

O

�P1
� 63.43�

7850 psi

y

x

P2

P1

350 psi
S2

xO
S1

y

4100 psi

�s1
� 18.43�

3750 psi

4100 psi

Data for 7.4-20 �x � 3100 kPa, �y � 8700 kPa, �xy � �4500 kPa

Solution 7.4-20 Principal stresses

�x � 3100 kPa �y � 8700 kPa
�xy � �4500 kPa

(All stresses in kPa)

(a) PRINCIPAL STRESSES

Point P1: �1 � 5900 � R � 11,200 kPa
Point P2: �2 � 5900 � R � 600 kPa

up2
� 29.05�2up2

� � � 58.11�
up1

� 119.05�2up1
� � � 180� � 238.11�

� � arctan 
4500

2800
� 58.11�

R � �(2800)2 � (4500)2 � 5300 kPa

(b) MAXIMUM SHEAR STRESSES

Point S1: �aver � 5900 kPa �max � R � 5300 kPa

Point S2: �aver � 5900 kPa �min � �5300 kPa

us2
� 164.05�2us2

� 270� � � � 328.11�

us1
� 74.05�2us1

� 90� � � � 148.11�

O

A S2

R

P2

S1

P1
C

R
R

2800

450045
00

3100
5900

8700�x1y1

�x1

B (� � 90�)

�

2�p2

(� � 0)

4500
O

�p2
� 29.05�

600 kPa

y

x

P2

P1

11,200 kPa

S2

xO

S1

y

5900 kPa

�s1
� 74.05�

5900 kPa

5300 kPa



Data for 7.4-21 �x � �12,300 psi, �y � �19,500 psi, �xy � �7700 psi
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Solution 7.4-21 Principal stresses

�x � �12,300 psi �y � �19,500 psi
�xy� �7700 psi

(All stresses in psi)

(a) PRINCIPAL STRESSES

Point P1: �1 � �15,900 � R � �7400 psi

Point P2: �2 � �15,900 � R � �24,400 psi

up2
� 57.53�2up2

� 180� � � � 115.06�

up1
� �32.47�2up1

� �� � �64.94�

� � arctan 
7700

3600
� 64.94�

R � �(3600)2 � (7700)2 � 8500 psi

(b) MAXIMUM SHEAR STRESSES

Point S1: �aver � �15,900 psi �max � R � 8500 psi
Point S2: �aver � �15,900 psi �min � �8500 psi

us2
� 12.53�2us2

� 90� � � � 25.06�
us1

� 102.53�2us1
� 270� � � � 205.06�

7700
7700

3600

12,300
15,900

19,500

P2

S2

S1

P1
C

B

O

2�s2

�x1

A (� � 0)

R
2�p2

�

�x1y1

O

�p2
� 57.53�

7400 psi

y

x

P2

P1

24,400 psi

S2

xO

S1

y

�s2
� 12.53�

8500 psi

15,900 psi

15,900 psi

Data for 7.4-22 �x � �3.1 MPa, �y � 7.9 MPa, �xy � �13.2 MPa

Solution 7.4-22 Principal stresses

�x � �3.1 MPa �y � 7.9 MPa
�xy � �13.2 MPa

(All stresses in MPa)

� � arctan 
13.2

5.5
� 67.38�

R � �(5.5)2 � (13.2)2 � 14.3 MPaO

R

C

R

S2

�x1

�x1y1

B (� � 90�)

(� � 0) A

13.2
�

P2

2.4
7.9

3.1

5.5

13.2

S1

P1
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(a) PRINCIPAL STRESSES

Point P1: �1 � 2.4 � R � 16.7 MPa
Point P2: �2 � �R � 2.4 � �11.9 MPa

up2
� 33.69�2up2

� � � 67.38�
up1

� 123.69�2up1
� 180� � � � 247.38�

(b) MAXIMUM SHEAR STRESSES

Point S1: �aver � 2.4 MPa �max � R � 14.3 MPa
Point S2: �aver � 2.4 MPa �min � �14.3 MPa

us2
� �11.31�2us2

� �90� � � � �22.62�
us1

� 78.69�2us1
� � � 90� � 157.38�

O

�p2
� 33.69�

16.7 MPa

y

x

P2

P1
11.9 MPa

S2

xO

S1

y

�s1
� 78.69�

2.4 MPa

14.3 MPa

2.4 MPa

Data for 7.4-23 �x � 700 psi, �y � �2500 psi, �xy � 3000 psi

Solution 7.4-23 Principal stresses

�x � 700 psi �y � �2500 psi
�xy � 3000 psi

(All stresses in psi)

(a) PRINCIPAL STRESSES

Point P1: �1 � �900 � R � 2500 psi

Point P2: �2 � �900 � R � �4300 psi

up2
� 120.96�2up2

� 180� � � � 241.93�

up1
� 30.96�2up1

� � � 61.93�

� � arctan 
3000

1600
� 61.93�

R � �(1600)2 � (3000)2 � 3400 psi

(b) MAXIMUM SHEAR STRESSES

Point S1: �aver � �900 psi �max � R � 3400 psi

Point S2: �aver � �900 psi �min � �3400 psi

us2
� 75.96�2us2

� 90� � � � 151.93�

us1
� �14.04�2us1

� �90� � � � �28.07�

�x1y1

(� � 90�) B

2500

3000
1600

3000

700
900

O

R

C

R

S2

S1 A (� � 0)

P2

�

P1 �x1

O

�p1
� 30.96�

4300 psi

y

x

S1
s2 2500 psi

S2

xO

S1

y

�s2
� 75.96�

900 psi

900 psi

3400 psi



Hooke’s Law for Plane Stress

When solving the problems for Section 7.5, assume that the material 
is linearly elastic with modulus of elasticity E and Poisson’s ratio �.

Problem 7.5-1 A rectangular steel plate with thickness t � 0.25 in. is
subjected to uniform normal stresses �x and �y, as shown in the figure.
Strain gages A and B, oriented in the x and y directions, respectively, are
attached to the plate. The gage readings give normal strains �x � 0.0010
(elongation) and �y � �0.0007 (shortening). 

Knowing that E � 30 	 106 psi and � � 0.3, determine the stresses
�x and �y and the change �t in the thickness of the plate.

Solution 7.5-1 Rectangular plate in biaxial stress
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�y

�x

y

xO
B A

t � 0.25 in. 	x � 0.0010 	y � �0.0007
E � 30 	 106 psi 
 � 0.3
Substitute numerical values:
Eq. (7-40a):

sx �
E

(1 � n2)
 (ex � ney) � 26,040 psi

Eq. (7-40b):

Eq. (7-39c):

�t � 	zt � �32.1 	 10�6 in.
(Decrease in thickness)

ez � �
n

E
 (sx �sy) � �128.5 	 10�6

sy �
E

(1 � n2)
 (ey � nex) � �13,190 psi

Problem 7.5-2 Solve the preceding problem if the thickness of the steel
plate is t � 10 mm, the gage readings are �x � 480 	 10�6 (elongation)
and �y � 130 	 10�6 (elongation), the modulus is E � 200 GPa, and
Poisson’s ratio is � � 0.30.

Solution 7.5-2 Rectangular plate in biaxial stress

t � 10 mm 	x � 480 	 10�6

	y � 130 	 10�6

E � 200 GPa 
 � 0.3
Substitute numerical values:
Eq. (7-40a):

sx �
E

(1 � n2)
 (ex � ney) � 114.1 MPa

Eq. (7-40b):

Eq. (7-39c):

�t � 	zt � �2610 	 10�6 mm
(Decrease in thickness)

ez � �
n

E
 (sx �sy) � �261.4 	 10�6

sy �
E

(1 � n2)
 (ey � nex) � 60.2 MPa

Problem 7.5-3 Assume that the normal strains �x and �y for an 
element in plane stress (see figure) are measured with strain gages. 

(a) Obtain a formula for the normal strain �z in the z direction 
in terms of �x, �y, and Poisson’s ratio �.

(b) Obtain a formula for the dilatation e in terms of �x, �y, 
and Poisson’s ratio �.

y

x

z

O
�x

�xy

�y

Probs. 7.5-1 and 7.5-2



Solution 7.5-3 Plane stress
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Given: 	x, 	y, 


(a) NORMAL STRAIN 	z

Eq. (7-34c): 

Eq. (7-36a): 

Eq. (7-36b): 

Substitute �x and �y into the first equation and
simplify:

ez � �
n

1 � n
(ex � ey)

sy �
E

(1 � n2)
 (ey � nex)

sx �
E

(1 � n2)
 (ex � ney)

ez � �
n

E
 (sx �sy)

(b) DILATATION

Eq. (7-47):

Substitute �x and �y from above and simplify:

e �
1 � 2n

1 � n
(ex � ey)

e �
1 � 2n

E
(sx �sy)

Problem 7.5-4 A magnesium plate in biaxial stress is subjected
to tensile stresses �x � 24 MPa and �y � 12 MPa (see figure). 

The corresponding strains in the plate are �x � 440 	 10�6 and 
�y � 80 	 10�6. 

Determine Poisson’s ratio � and the modulus of elasticity E
for the material.

�y

�x

y

xO

Solution 7.5-4 Biaxial stress

�x � 24 MPa �y � 12 MPa
	x � 440 	 10�6 	y � 80 	 10�6

POISSON’S RATIO AND MODULUS OF ELASTICITY

Eq. (7-39a):

Eq. (7-39b): ey �
1

E
(sy � nsx)

ex �
1

E
(sx � nsy)

Substitute numerical values:
E (440 	 10�6) � 24 MPa � 
 (12 MPa)
E (80 	 10�6) � 12 MPa � 
 (24 MPa)
Solve simultaneously:

 � 0.35 E � 45 GPa

Problem 7.5-5 Solve the preceding problem for a steel plate 
with �x � 10,800 psi (tension), �y � �5400 psi (compression), 
�x � 420 	 10�6 (elongation), and �y � �300 	 10�6 (shortening).

Solution 7.5-5 Biaxial stress

�x � 10,800 psi �y � �5400 psi
	x � 420 	 10�6 	y � �300 	 10�6

POISSON’S RATIO AND MODULUS OF ELASTICITY

Eq. (7-39a):

Eq. (7-39b): ey �
1

E
(sy � nsx)

ex �
1

E
(sx � nsy)

Substitute numerical values:
E (420 	 10�6) � 10,800 psi � 
 (�5400 psi)
E (�300 	 10�6) � �5400 psi � 
 (10,800 psi)
Solve simultaneously:

 � 1/3 E � 30 	 106 psi

Probs. 7.5-4 through 7.5-7



Problem 7.5-6 A rectangular plate in biaxial stress (see figure) is 
subjected to normal stresses �x � 90 MPa (tension) and �y � �20 MPa
(compression). The plate has dimensions 400 	 800 	 20 mm and is
made of steel with E � 200 GPa and � � 0.30. 

(a) Determine the maximum in-plane shear strain 
max in the plate. 
(b) Determine the change �t in the thickness of the plate. 
(c) Determine the change �V in the volume of the plate.
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Solution 7.5-6 Biaxial stress

�x � 90 MPa �y � �20 MPa
E � 200 GPa 
 � 0.30
Dimensions of Plate: 400 mm 	 800 mm 	 20 mm
Shear Modulus (Eq. 7-38):

(a) MAXIMUM IN-PLANE SHEAR STRAIN

Principal stresses: �1 � 90 MPa �2 � �20 MPa

Eq. (7-26): 

Eq. (7-35): gmax �
tmax

G
� 715 	 10�6

tmax �
s1 �s2

2
� 55.0 MPa

G �
E

2(1 � n)
� 76.923 GPa

(b) CHANGE IN THICKNESS

Eq. (7-39c): 

�t � 	zt � �2100 	 10�6 mm
(Decrease in thickness)

(c) CHANGE IN VOLUME

From Eq. (7-47): 

V0 � (400)(800)(20) � 6.4 	 106 mm3

Also, 

� �V � (6.4 	 106 mm3)(140 	 10�6)
� 896 mm3

(Increase in volume)

¢1 � 2n

E
≤(sx �sy) � 140 	 10�6

¢V � V0 ¢1 � 2n

E
≤(sx �sy)

ez � �
n

E
(sx �sy) � �105 	 10�6

Problem 7.5-7 Solve the preceding problem for an aluminum plate 
with �x � 12,000 psi (tension), �y � �3,000 psi (compression),
dimensions 20 	 30 	 0.5 in., E � 10.5 	 106 psi, and � � 0.33.

Solution 7.5-7 Biaxial stress

�x � 12,000 psi �y � �3,000 psi
E � 10.5 	 106 psi 
 � 0.33
Dimensions of Plate: 20 in. 	 30 in. 	 0.5 in.
Shear Modulus (Eq. 7-38):

(a) MAXIMUM IN-PLANE SHEAR STRAIN

Principal stresses: �1 � 12,000 psi
�2 � �3,000 psi

Eq. (7-26): 

Eq. (7-35): gmax �
tmax

G
� 1,900 	 10�6

tmax �
s1 �s2

2
� 7,500 psi

G �
E

2(1 � n)
� 3.9474 	 106 psi

(b) CHANGE IN THICKNESS

Eq. (7-39c): 

�t � 	zt � �141 	 10�6 in.
(Decrease in thickness)

(c) CHANGE IN VOLUME

From Eq. (7-47): 

V0 � (20)(30)(0.5) � 300 in.3

Also, 

� �V � (300 in.3)(291.4 	 10�6)
� 0.0874 in.3

(Increase in volume)

¢1 � 2n

E
≤(sx �sy) � 291.4 	 10�6

¢V � V0 ¢1 � 2n

E
≤(sx �sy)

ez � �
n

E
(sx �sy) � �282.9 	 10�6



Problem 7.5-8 A brass cube 50 mm on each edge is compressed 
in two perpendicular directions by forces P � 175 kN (see figure). 

Calculate the change �V in the volume of the cube and the 
strain energy U stored in the cube, assuming E � 100 GPa and 
� � 0.34.

Solution 7.5-8 Biaxial stress-cube
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P = 175 kN

P = 175 kN

Side b � 50 mm P � 175 kN
E � 100 GPa � � 0.34 (Brass)

sx �sy � �
P

b2 � �
(175 kN)

(50 mm)2 � �70.0 MPa

CHANGE IN VOLUME

Eq. (7-47): 

V0 � b3 � (50 mm)3 � 125 � 103 mm3

�V � eV0 � �56 mm3

(Decrease in volume)

STRAIN ENERGY

Eq. (7-50): 

� 0.03234 MPa
U � uV0 � (0.03234 MPa)(125 � 103 mm3)

� 4.04 J

u �
1

2E
(sx

2 �sy
2 � 2nsxsy)

e �
1 � 2n

E
(sx �sy) � �448 � 10�6P 

P 

Problem 7.5-9 A 4.0-inch cube of concrete (E � 3.0 � 106 psi, � � 0.1)
is compressed in biaxial stress by means of a framework that is loaded as
shown in the figure. 

Assuming that each load F equals 20 k, determine the change �V in
the volume of the cube and the strain energy U stored in the cube.

Solution 7.5-9 Biaxial stress – concrete cube

F

F

b � 4 in.
E � 3.0 � 106 psi
� � 0.1
F � 20 kips

Joint A:

� 28.28 kips

sx �sy � �
P

b2 � �1768 psi

P � F�2

CHANGE IN VOLUME

Eq. (7-47): 

V0 � b3 � (4 in.)3 � 64 in.3

�V � eV0 � �0.0603 in.3

(Decrease in volume)

STRAIN ENERGY

Eq. (7-50): 

� 0.9377 psi
U � uV0 � 60.0 in.-lb

u �
1

2E
(sx

2 �sy
2 � 2nsxsy)

e �
1 � 2n

E
(sx �sy) � �0.0009429

F

F

A

F

F

P

A



Problem 7.5-10 A square plate of width b and thickness t is loaded by
normal forces Px and Py, and by shear forces V, as shown in the figure.
These forces produce uniformly distributed stresses acting on the side
faces of the plate.

Calculate the change �V in the volume of the plate and the strain
energy U stored in the plate if the dimensions are b � 600 mm and 
t � 40 mm, the plate is made of magnesium with E � 45 GPa and 
� � 0.35, and the forces are Px � 480 kN, Py � 180 kN, and 
V � 120 kN.

Solution 7.5-10 Square plate in plane stress

SECTION 7.5 Hooke’s Law for Plane Stress 467

Py

Py

PxPx

y

t

b

b

V

V

V

V

xO

b � 600 mm t � 40 mm
E � 45 GPa � � 0.35 (magnesium)

Px � 480 kN

Py � 180 kN

V � 120 kN

CHANGE IN VOLUME

Eq. (7-47): 

V0 � b2t � 14.4 � 106 mm3

�V � eV0 � 2640 mm3

(Increase in volume)

e �
1 � 2n

E
(sx �sy) � 183.33 � 10�6

txy �
V

bt
� 5.0 MPa

sy �
Py

bt
� 7.5 MPa

sx �
Px

bt
� 20.0 MPa

STRAIN ENERGY

Eq. (7-50): 

Substitute numerical values:
u � 4653 Pa
U � uV0 � 67.0 N . m � 67.0 J

G �
E

2(1 � n)
� 16.667 GPa

u �
1

2E
(sx

2 �sy
2 � 2nsxsy) �

t2
xy

2G

Problem 7.5-11 Solve the preceding problem for an aluminum plate
with b � 12 in., t � 1.0 in., E � 10,600 ksi, � � 0.33, Px � 90 k, 
Py � 20 k, and V � 15 k.

Solution 7.5-11 Square plate in plane stress

b � 12.0 in. t � 1.0 in.
E � 10,600 ksi � � 0.33 (aluminum)

Px � 90 k

Py � 20 k

V � 15 k

CHANGE IN VOLUME

Eq. (7-47): 

V0 � b2t � 144 in.3

�V � eV0 � 0.0423 in.3

(Increase in volume)

e �
1 � 2n

E
(sx �sy) � 294 � 10�6

txy �
V

bt
� 1250 psi

sy �
Py

bt
� 1667 psi

sx �
Px

bt
� 7500 psi

STRAIN ENERGY

Eq. (7-50): 

Substitute numerical values:
u � 2.591 psi
U � uV0 � 373 in.-lb

G �
E

2(1 � n)
� 3985 ksi

u �
1

2E
(sx

2 �sy
2 � 2nsxsy) �

txy
2

2G

Probs. 7.5-10 and 7.5-11



Problem 7.5-12 A circle of diameter d � 200 mm is etched on a
brass plate (see figure). The plate has dimensions 400 � 400 � 20 mm.
Forces are applied to the plate, producing uniformly distributed normal
stresses �x � 42 MPa and �y � 14 MPa. 

Calculate the following quantities: (a) the change in length �ac
of diameter ac; (b) the change in length �bd of diameter bd; (c) the
change �t in the thickness of the plate; (d) the change �V in the
volume of the plate, and (e) the strain energy U stored in the plate.
(Assume E � 100 GPa and � � 0.34.)

Solution 7.5-12 Plate in biaxial stress
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�y

�x

�x

�y

yz

b

d

ca

x

�x � 42 MPa �y � 14 MPa
Dimensions: 400 � 400 � 20 (mm)
Diameter of circle: d � 200 mm
E � 100 GPa � � 0.34 (Brass)

(a) CHANGE IN LENGTH OF DIAMETER IN x DIRECTION

Eq. (7-39a): 

�ac � �x d � 0.0745 mm
(increase)

(b) CHANGE IN LENGTH OF DIAMETER IN y DIRECTION

Eq. (7-39b): 

�bd � �y d � �560 � 10�6 mm
(decrease)

ey �
1

E
(sy � nsx) � �2.80 � 10�6

ex �
1

E
(sx � nsy) � 372.4 � 10�6

(c) CHANGE IN THICKNESS

Eq. (7-39c): 

�t � �zt � �0.00381 mm
(decrease)

(d) CHANGE IN VOLUME

Eq. (7-47): 

V0 � (400)(400)(20) � 3.2 � 106 mm3

�V � eV0 � 573 mm3

(increase)

(e) STRAIN ENERGY

Eq. (7-50): 

� 7.801 � 10�3 MPa
U � uV0 � 25.0 N . m � 25.0 J

u �
1

2E
(sx

2 �sy
2 � 2nsxsy)

e �
1 � 2n

E
(sx �sy) � 179.2 � 10�6

ez � �
n

E
(sx �sy) � �190.4 � 10�6

Triaxial Stress

When solving the problems for Section 7.6, assume that the material 
is linearly elastic with modulus of elasticity E and Poisson’s ratio �.

Problem 7.6-1 An element of aluminum in the form of a
rectangular parallelepiped (see figure) of dimensions a � 6.0 in., 
b � 4.0 in, and c � 3.0 in. is subjected to triaxial stresses
�x � 12,000 psi, �y � �4,000 psi, and �z � �1,000 psi acting 
on the x, y, and z faces, respectively. 

Determine the following quantities: (a) the maximum shear 
stress �max in the material; (b) the changes �a, �b, and �c in the
dimensions of the element; (c) the change �V in the volume; and 
(d) the strain energy U stored in the element. (Assume E � 10,400 ksi
and � � 0.33.)

y

x

z

a

b

c

O

Probs. 7.6-1 and 7.6-2



Solution 7.6-1 Triaxial stress
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�x � 12,000 psi �y � �4,000 psi
�z � �1,000 psi
a � 6.0 in. b � 4.0 in. c � 3.0 in.
E � 10,400 ksi � � 0.33 (aluminum)

(a) MAXIMUM SHEAR STRESS

�1 � 12,000 psi �2 � �1,000 psi
�3 � �4,000 psi

(b) CHANGES IN DIMENSIONS

Eq. (7-53a): 

Eq. (7-53b): 

Eq. (7-53c): 

�a � a�x � 0.0079 in. (increase)
�b � b�y � �0.0029 in. (decrease)
�c � c�z � �0.0011 in. (decrease)

ez �
sz

E
�
n

E
(sx �sy) � �350.0 � 10�6

ey �
sy

E
�
n

E
(sz �sx) � �733.7 � 10�6

ex �
sx

E
�
n

E
(sy �sz) � 1312.5 � 10�6

tmax �
s1 �s3

2
� 8,000 psi

(c) CHANGE IN VOLUME

Eq. (7-56):

V � abc
�V � e (abc) � 0.0165 in.3 (increase)

(d) STRAIN ENERGY

Eq. (7-57a): 

� 9.517 psi
U � u (abc) � 685 in.-lb

u �
1

2
(sxex �syey �szez)

e �
1 � 2n

E
(sx �sy �sz) � 228.8 � 10�6

1
2

3

Problem 7.6-2 Solve the preceding problem if the element is steel 
(E � 200 GPa, � � 0.30) with dimensions a � 300 mm, b � 150 mm,
and c � 150 mm and the stresses are �x � �60 MPa, �y � �40 MPa,
and �z � �40 MPa.

Solution 7.6-2 Triaxial stress
�x � �60 MPa �y � �40 MPa
�z � �40 MPa
a � 300 mm b � 150 mm c � 150 mm
E � 200 GPa � � 0.30 (steel)

(a) MAXIMUM SHEAR STRESS

�1 � �40 MPa �2 � �40 MPa
�3 � �60 MPa

(b) CHANGES IN DIMENSIONS

Eq. (7-53a): 

Eq. (7-53b): 

Eq. (7-53c): ez �
sz

E
�
n

E
(sx �sy) � �50.0 � 10�6

ey �
sy

E
�
n

E
(sz �sx) � �50.0 � 10�6

ex �
sx

E
�
n

E
(sy �sz) � �180.0 � 10�6

tmax �
s1 �s3

2
� 10.0 MPa

�a � a�x � �0.0540 mm (decrease)
�b � b�y � �0.0075 mm (decrease)
�c � c�z � �0.0075 mm (decrease)

(c) CHANGE IN VOLUME

Eq. (7-56):

V � abc
�V � e (abc) � �1890 mm3 (decrease)

(d) STRAIN ENERGY

Eq. (7-57a): 

� 0.00740 MPa

U � u (abc) � 50.0 N . m � 50.0 J

u �
1

2
(sxex �syey �szez)

e �
1 � 2n

E
(sx �sy �sz) � �280.0 � 10�6



Problem 7.6-3 A cube of cast iron with sides of length a � 4.0 in. 
(see figure) is tested in a laboratory under triaxial stress. Gages mounted
on the testing machine show that the compressive strains in the material
are �x � �225 � 10�6 and �y � �z � �37.5 � 10�6. 

Determine the following quantities: (a) the normal stresses �x, �y,
and �z acting on the x, y, and z faces of the cube; (b) the maximum shear
stress �max in the material; (c) the change �V in the volume of the cube;
and (d) the strain energy U stored in the cube. (Assume E � 14,000 ksi and
� � 0.25.)

Solution 7.6-3 Triaxial stress (cube)
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y

x

z

a

a

a

O

�x � �225 � 10�6 �y � �37.5 � 10�6

�z � �37.5 � 10�6 a � 4.0 in.
E � 14,000 ksi � � 0.25 (cast iron)

(a) NORMAL STRESSES

Eq. (7-54a):

� �4200 psi
In a similar manner, Eqs. (7-54 b and c) give
�y � �2100 psi �z � �2100 psi

(b) MAXIMUM SHEAR STRESS

�1 � �2100 psi �2 � �2100 psi
�3 � �4200 psi

tmax �
s1 �s3

2
� 1050 psi

sx �
E

(1 � n)(1 � 2n)
[ (1 � n)ex � n(ey � ez) ]

(c) CHANGE IN VOLUME

Eq. (7-55): e � �x � �y � �z � �0.000300
V � a3

�V � ea3 � �0.0192 in.3 (decrease)

(d) STRAIN ENERGY

Eq. (7-57a): 

� 0.55125 psi
U � ua3 � 35.3 in.-lb

u �
1

2
(sxex �syey �szez)

Problem 7.6-4 Solve the preceding problem if the cube is granite 
(E � 60 GPa, � � 0.25) with dimensions a � 75 mm and compressive
strains �x � �720 � 10�6 and �y � � z � �270 � 10�6.

Solution 7.6-4 Triaxial stress (cube)
�x � �720 � 10�6 �y � �270 � 10�6

�z � �270 � 10�6 a � 75 mm E � 60 GPa
� � 0.25 (Granite)

(a) NORMAL STRESSES

Eq. (7-54a):

� �64.8 MPa
In a similar manner, Eqs. (7-54 b and c) give
�y � �43.2 MPa �z � �43.2 MPa

(b) MAXIMUM SHEAR STRESS

�1 � �43.2 MPa �2 � �43.2 MPa
�3 � �64.8 MPa

tmax �
s1 �s3

2
� 10.8 MPa

sx �
E

(1 � n)(1 � 2n)
[ (1 � n)ex � n(ex � ez) ]

(c) CHANGE IN VOLUME

Eq. (7-55): e � �x � �y � �z � �1260 � 10�6

V � a3

�V � ea3 � �532 mm3 (decrease)

(d) STRAIN ENERGY

Eq. (7-57a): 

� 0.03499 MPa = 34.99 kPa
U � ua3 � 14.8 N . m � 14.8 J

u �
1

2
(sxex �syey �szez)

Probs. 7.6-3 and 7.6-4



Problem 7.6-5 An element of aluminum in triaxial stress (see figure)
is subjected to stresses �x � 5200 psi (tension), �y � �4750 psi
(compression), and �z � �3090 psi (compression). It is also known
that the normal strains in the x and y directions are �x � 713.8 � 10�6

(elongation) and �y � �502.3 � 10�6 (shortening). 
What is the bulk modulus K for the aluminum?

Solution 7.6-5 Triaxial stress (bulk modulus)
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y

x

z

O
�x�x

�z

�y

�y

�z

�x � 5200 psi �y � �4750 psi
�z � �3090 psi �x � 713.8 � 10�6

�y � �502.3 � 10�6

Find K.

Eq. (7-53a): 

Eq. (7-53b): ey �
sy

E
�
n

E
(sz �sx)

ex �
sx

E
�
n

E
(sy �sz)

Substitute numerical values and rearrange:
(713.8 � 10�6) E � 5200 � 7840 � (1)
(�502.3 � 10�6) E � �4750 � 2110 � (2)
Units: E � psi

Solve simultaneously Eqs. (1) and (2):
E � 10.801 � 106 psi � � 0.3202

Eq. (7-61): K �
E

3(1 � 2n)
� 10.0 � 106 psi

Problem 7.6-6 Solve the preceding problem if the material is nylon
subjected to compressive stresses �x � �4.5 MPa, �y � �3.6 MPa, 
and �z � �2.1 MPa, and the normal strains are �x � �740 � 10�6 and 
�y � �320 � 10�6 (shortenings).

Solution 7.6-6 Triaxial stress (bulk modulus)
�x � �4.5 MPa �y � �3.6 MPa
�z � �2.1 MPa �x � �740 � 10�6

�y � �320 � 10�6

Find K.

Eq. (7-53a): 

Eq. (7-53b): ey �
sy

E
�
n

E
(sz �sx)

ex �
sx

E
�
n

E
(sy �sz)

Substitute numerical values and rearrange:
(�740 � 10�6) E � �4.5 � 5.7 � (1)
(�320 � 10�6) E � �3.6 � 6.6 � (2)
Units: E � MPa
Solve simultaneously Eqs. (1) and (2):
E � 3,000 MPa � 3.0 GPa � � 0.40

Eq. (7-61): K �
E

3(1 � 2n)
� 5.0 GPa

Problem 7.6-7 A rubber cylinder R of length L and 
cross-sectional area A is compressed inside a steel cylinder 
S by a force F that applies a uniformly distributed pressure 
to the rubber (see figure). 

(a) Derive a formula for the lateral pressure p between 
the rubber and the steel. (Disregard friction between the rubber
and the steel, and assume that the steel cylinder is rigid when
compared to the rubber.) 

(b) Derive a formula for the shortening � of the rubber
cylinder.

L
S

R

F

S

F

Probs. 7.6-5 and 7.6-6



Solution 7.6-7 Rubber cylinder
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�x � �p
�z � �p
�x � �z � 0

(a) LATERAL PRESSURE

Eq. (7-53a): 

OR

Solve for p: p �
n

1 � n
 ¢F

A
≤

0 � �p � n ¢�F

A
� p≤

ex �
sx

E
�
n

E
(sy �sz)

sy � �
F

A

(b) SHORTENING

Eq. (7-53b): 

Substitute for p and simplify:

(Positive �y represents an increase in strain, that is,
elongation.)

� � ��yL

(Positive � represents a shortening of the rubber
cylinder.)

� �
(1 � n)(1 � 2n)

(1 � n)
 ¢FL

EA
≤

ey �
F

EA
 
(1 � n)(�1 � 2n)

1 � n

� �
F

EA
�
n

E
(�2p)

ey �
sy

E
�
n

E
(sz �sx)

L

S

R

F

�y = –

p 

F
A

p

y

z

x

Problem 7.6-8 A block R of rubber is confined between plane
parallel walls of a steel block S (see figure). A uniformly distributed
pressure p0 is applied to the top of the rubber block by a force F. 

(a) Derive a formula for the lateral pressure p between the rubber
and the steel. (Disregard friction between the rubber and the steel, and
assume that the steel block is rigid when compared to the rubber.) 

(b) Derive a formula for the dilatation e of the rubber.
(c) Derive a formula for the strain-energy density u of the 

rubber.

Solution 7.6-8 Block of rubber

F
F

S
R

S

�x � �p
�y � �p0 �z � 0
�x � 0 �y � 0 �z � 0

(a) LATERAL PRESSURE

Eq. (7-53a): 

OR 0 � �p � � (�p0) � p � �p0

ex �
sx

E
�
n

E
(sy �sz)

(b) DILATATION

Eq. (7-56): 

Substitute for p:

(c) STRAIN ENERGY DENSITY

Eq. (7-57b):

Substitute for �x, �y, �z, and p:

u �
(1 � n2)p0

2

2E

u �
1

2E
(sx

2 �sy
2 �sz

2) �
n

E
(sxsy �sxsz �sysz)

e � �
(1 � n)(1 � 2n)p0

E

�
1 � 2n

E
(�p � p0)

e �
1 � 2n

E
(sx �sy �sz)

F p0 = pressure on top of
 the block

p p 

y

z

x



Problem 7.6-9 A solid spherical ball of brass (E � 15 � 106 psi, 
� � 0.34) is lowered into the ocean to a depth of 10,000 ft. The diameter
of the ball is 11.0 in. 

Determine the decrease � d in diameter, the decrease �V in volume,
and the strain energy U of the ball.

Solution 7.6-9 Brass sphere
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E � 15 � 106 psi � � 0.34
Lowered in the ocean to depth h � 10,000 ft
Diameter d � 11.0 in.
Sea water: � � 63.8 lb/ft3

Pressure: �0 � �h � 638,000 lb/ft2 � 4431 psi

DECREASE IN DIAMETER

Eq. (7-59):

�d � �0d � 1.04 � 10�3 in.
(decrease)

e0 �
s0

E
(1 � 2n) � 94.53 � 10�6

DECREASE IN VOLUME

Eq. (7-60): e � 3�0 � 283.6 � 10�6

� 696.9 in.3

�V � eV0 � 0.198 in.3

(decrease)

STRAIN ENERGY

Use Eq. (7-57b) with �x � �y � �z � �0:

U � uV0 � 438 in.-lb

u �
3(1 � 2n)s0

2

2E
� 0.6283 psi

V0 �
4

3
	r 3 �

4

3
(	)¢11.0 in.

2
≤

3

Problem 7.6-10 A solid steel sphere (E � 210 GPa, � � 0.3) is 
subjected to hydrostatic pressure p such that its volume is reduced 
by 0.4%. 

(a) Calculate the pressure p. 
(b) Calculate the volume modulus of elasticity K for the steel. 
(c) Calculate the strain energy U stored in the sphere if its 

diameter is d � 150 mm.

Solution 7.6-10 Steel sphere
E � 210 GPa � � 0.3
Hydrostatic Pressure. V0 � Initial volume
�V � 0.004V0

Dilatation: 

(a) PRESSURE

Eq. (7-60): 

or

Pressure p � �0 � 700 MPa

s0 �
Ee

3(1 � 2n)
� 700 MPa

e �
3s0(1 � 2n)

E

e �
¢V

V0
� 0.004

(b) VOLUME MODULUS OF ELASTICITY

Eq. (7-63): 

(c) STRAIN ENERGY (d � diameter)

d � 150 mm r � 75 mm
From Eq. (7-57b) with �x � �y � �z � �0:

U � uV0 � 2470 N . m � 2470 J

V0 �
4	r 3

3
� 1767 � 10�6 m3

u �
3(1 � 2n)s0

2

2E
� 1.40 MPa

K �
s0

E
�

700 MPa

0.004
� 175 GPa



Problem 7.6-11 A solid bronze sphere (volume modulus of elasticity 
K � 14.5 � 106 psi) is suddenly heated around its outer surface. The tendency
of the heated part of the sphere to expand produces uniform tension in all
directions at the center of the sphere. 

If the stress at the center is 12,000 psi, what is the strain? Also, calculate
the unit volume change e and the strain-energy density u at the center.

Solution 7.6-11 Bronze sphere (heated)

474 CHAPTER 7 Analysis of Stress and Strain

K � 14.5 � 106 psi
�0 � 12,000 psi (tension at the center)

STRAIN AT THE CENTER OF THE SPHERE

Eq. (7-59): 

Eq. (7-61): 

Combine the two equations:

e0 �
s0

3K
� 276 � 10�6

K �
E

3(1 � 2n)

e0 �
s0

E
(1 � 2n)

UNIT VOLUME CHANGE AT THE CENTER

Eq. (7-62): 

STRAIN ENERGY DENSITY AT THE CENTER

Eq. (7-57b) with �x � �y � �z � �0:

u � 4.97 psi

u �
3(1 � 2n)s0

2

2E
�
s0

2

2K

e �
s0

K
� 828 � 10�6

Plane Strain

When solving the problems for Section 7.7, consider only the in-plane
strains (the strains in the xy plane) unless stated otherwise. Use the
transformation equations of plane strain except when Mohr’s circle 
is specified (Problems 7.7-23 through 7.7-28).

Problem 7.7-1 A thin rectangular plate in biaxial stress is subjected to
stresses �x and �y, as shown in part (a) of the figure on the next page. The
width and height of the plate are b � 8.0 in. and h � 4.0 in., respectively.
Measurements show that the normal strains in the x and y directions are 
�x � 195 � 10�6 and �y � �125 � 10�6, respectively. 

With reference to part (b) of the figure, which shows a two-dimensional
view of the plate, determine the following quantities: (a) the increase �d
in the length of diagonal Od; (b) the change �
 in the angle 
 between
diagonal Od and the x axis; and (c) the change �� in the angle � between
diagonal Od and the y axis.

Solution 7.7-1 Plate in biaxial stress

�y

�x

y

b

h

xO

(a)

y

x

z

b

h

(b)




�

d

b � 8.0 in. h � 4.0 in. �x � 195 � 10�6

�y � �125 � 10�6 �xy � 0

(a) INCREASE IN LENGTH OF DIAGONAL

For � � 
 � 26.57�, 
¢d � ex1

Ld � 0.00117 in.
ex1

� 130.98 � 10�6

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

Ld � �b2 � h2 � 8.944 in.

f� arctan 
h

b
� 26.57�

y

xO b

h




�

d

�x

�y

Probs. 7.7-1 and 7.7-2



Problem 7.7-2 Solve the preceding problem if b  160 mm, 
h � 60 mm, �x � 410 � 10�6, and �y � �320 � 10�6.

Solution 7.7-2 Plate in biaxial stress
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(b) CHANGE IN ANGLE 


Eq. (7-68): � � �(�x � �y) sin � cos � � �xy sin2�
For � � 
 � 26.57�: � � �128.0 � 10�6 rad
Minus sign means line Od rotates clockwise (angle 

decreases).
�
 � 128 � 10�6 rad (decrease)

(c) CHANGE IN ANGLE �

Angle � increases the same amount that 
 decreases.

�� � 128 � 10�6 rad (increase)

b � 160 mm h � 60 mm �x � 410 � 10�6

�y � �320 � 10�6 �xy � 0

Ld � �b2 � h2 � 170.88 mm

f� arctan 
h

b
� 20.56�

(a) INCREASE IN LENGTH OF DIAGONAL

For � � 
 � 20.56�: 

(b) CHANGE IN ANGLE 


Eq. (7-68): � � �(�x � �y) sin � cos � � �xy sin2�
For � � 
 � 20.56�: � � �240.0 � 10�6 rad
Minus sign means line Od rotates clockwise (angle 

decreases).
�
 � 240 � 10�6 rad (decrease)

(c) CHANGE IN ANGLE �

Angle � increases the same amount that 
 decreases.
�� � 240 � 10�6 rad (increase)

¢d � ex1
Ld � 0.0547 mm

ex1
� 319.97 � 10�6

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

y

xO b

h




�

d

�x

�y

Problem 7.7-3 A thin square plate in biaxial stress is
subjected to stresses �x and �y, as shown in part (a) of the
figure. The width of the plate is b � 12.0 in. Measurements
show that the normal strains in the x and y directions are 
�x � 427 � 10�6 and �y � 113 � 10�6, respectively. 

With reference to part (b) of the figure, which shows a
two-dimensional view of the plate, determine the following
quantities: (a) the increase �d in the length of diagonal Od;
(b) the change �
 in the angle 
 between diagonal Od and
the x axis; and (c) the shear strain � associated with diagonals
Od and cf (that is, find the decrease in angle ced ).

�y

�x

y

b

b

xO

(a)

y

x

z b

b e

c d

f

(b)




Probs. 7.7-3 and 7.7-4



Solution 7.7-3 Square plate in biaxial stress
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b � 12.0 in. �x � 427 � 10�6

�y � 113 � 10�6


 � 45� �xy � 0

(a) INCREASE IN LENGTH OF DIAGONAL

For � � 
 � 45�: 

¢d � ex1
Ld � 0.00458 in.

ex1
� 270 � 10�6

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

Ld � b�2 � 16.97 in.

(b) CHANGE IN ANGLE 


Eq. (7-68): � � �(�x � �y) sin � cos � � �xy sin2�

For � � 
 � 45�: � � �157 � 10�6 rad

Minus sign means line Od rotates clockwise (angle 

decreases).

�
 � 157 � 10�6 rad (decrease)

(c) SHEAR STRAIN BETWEEN DIAGONALS

Eq. (7-71b): 

For � � 
 � 45�: 

(Negative strain means angle ced increases)

� � �314 � 10�6 rad

gx1y1
� �314 � 10�6 rad

gx1y1

2
� �
ex � ey

2
 sin 2u�

gxy

2
 cos 2u

y

xO
b

b e

c d

f



�x

�y

Problem 7.7-4 Solve the preceding problem if b � 225 mm, �x � 845
� 10�6, and �y � 211 � 10�6.

Solution 7.7-4 Square plate in biaxial stress

b � 225 mm �x � 845 � 10�6

�y � 211 � 10�6 
 � 45� �xy � 0

(a) INCREASE IN LENGTH OF DIAGONAL

For � � 
 � 45�: 

¢d � ex1
Ld � 0.168 mm

ex1
� 528 � 10�6

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

Ld � b�2 � 318.2 mm

(b) CHANGE IN ANGLE 


Eq. (7-68): � � �(�x � �y) sin � cos � � �xy sin2�

For � � 
 � 45�: � � �317 � 10�6 rad

Minus sign means line Od rotates clockwise (angle 

decreases).

�
 � 317 � 10�6 rad (decrease)

(c) SHEAR STRAIN BETWEEN DIAGONALS

Eq. (7-71b): 

For � � 
 � 45�: 

(Negative strain means angle ced increases)

� � �634 � 10�6 rad

gx1y1
� �634 � 10�6 rad

gx1y1

2
� �
ex � ey

2
 sin 2u�

gxy

2
 cos 2u

y

xO
b

b e

c d

f



�x

�y



Problem 7.7-5 An element of material subjected to plane strain (see
figure) has strains as follows: �x � 220 � 10�6, �y � 480 � 10�6, and
�xy � 180 � 10�6. 

Calculate the strains for an element oriented at an angle � � 50°
and show these strains on a sketch of a properly oriented element.

Solution 7.7-5 Element in plane strain
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�y

�x

�xy

y

xO 1

1

�x � 220 � 10�6 �y � 480 � 10�6

�xy � 180 � 10�6

FOR � � 50�:

ey1
� 239 � 10�6

gx1y1
� 225 � 10�6ex1

� 461 � 10�6

ey1
� ex � ey � ex1

gx1y1

2
� �
ex � ey

2
 sin 2u�

gxy

2
 cos 2u

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

y

x1

O

1

1

461 � 10 –6

50°

x

y1

239 � 10 –6

 � � 225 � 10 –6

Problem 7.7-6 Solve the preceding problem for the following data: 
�x � 420 � 10�6, �y � �170 � 10�6, �x y � 310 � 10�6, and � � 37.5°.

Solution 7.7-6 Element in plane strain
�x � 420 � 10�6 �y � �170 � 10�6

�xy � 310 � 10�6

FOR � � 37.5�:

ey1
� �101 � 10�6

gx1y1
� �490 � 10�6ex1

� 351 � 10�6

ey1
� ex � ey � ex1

gx1y1

2
� �
ex � ey

2
 sin 2u�

gxy

2
 cos 2u

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

y

x1

O

1

1

351 � 10 –6

37.5°

x

y1

101 � 10 –6

 � � �490 � 10 –6

Problem 7.7-7 The strains for an element of material in plane strain
(see figure) are as follows: �x � 480 � 10�6, �y � 140 � 10�6, and
�xy � �350 � 10�6. 

Determine the principal strains and maximum shear strains, and 
show these strains on sketches of properly oriented elements.

Probs. 7.7-5 through 7.7-10



Solution 7.7-7 Element in plane strain
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�x � 480 � 10�6 �y � 140 � 10�6

�xy � �350 � 10�6

PRINCIPAL STRAINS

� 310 � 10�6 	 244 � 10�6

�1 � 554 � 10�6 �2 � 66 � 10�6

2�p � �45.8� and 134.2�
�p � �22.9� and 67.1�

For �p � �22.9�:

� 554 � 10�6

� �1 � 554 � 10�6

�2 � 66 � 10�6up2
� 67.1�

up1
� �22.9�

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

tan 2up �
gxy

ex � ey
� �1.0294

e1,2 �
ex � ey

2
	 B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

MAXIMUM SHEAR STRAINS

� 244 � 10�6

�max � 488 � 10�6

�max � 488 � 10�6

�min � �488 � 10�6

eaver �
ex � ey

2
� 310 � 10�6

us2
� us1

� 90� � 22.1�

us1
� up1

� 45� � �67.9� or 112.1�

gmax

2
�B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

y
x1

O

1

1
66 � 10 –6

67.1°

x

y1

554 � 10 –6

y

x1

O

1

1

310 � 10 –6

22.1° x

y1

310 � 10 –6
� ��488 � 10 –6

Problem 7.7-8 Solve the preceding problem for the following strains:
�x � 120 � 10�6, �y � �450 � 10�6, and �xy � �360 � 10�6. 

Solution 7.7-8 Element in plane strain

�x � 120 � 10�6 �y � �450 � 10�6

�xy � �360 � 10�6

PRINCIPAL STRAINS

� �165 � 10�6 	 377 � 10�6

�1 � 172 � 10�6 �2 � �502 � 10�6

2�p � 327.7� and 147.7�
�p � 163.9� and 73.9�

 tan  2up �
gxy

ex � ey
� �0.6316

e1,2 �
ex � ey

2
	 B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

For �p � 163.9�:

� 172 � 10�6

� �1 � 172 � 10�6

�2 � �502 � 10�6up2
� 73.9�

up1
� 163.9�

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

y

x1

O

1
1

502 � 10�6

73.9°

x

y1

172 � 10�6



Problem 7.7-9 An element of material in plane strain
(see figure) is subjected to strains �x � 480 � 10�6, 
�y � 70 � 10�6, and �xy � 420 � 10�6. 

Determine the following quantities: (a) the strains for 
an element oriented at an angle � � 75°, (b) the principal 
strains, and (c) the maximum shear strains. Show the 
results on sketches of properly oriented elements.

Solution 7.7-9 Element in plane strain
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MAXIMUM SHEAR STRAINS

� 337 � 10�6

�max � 674 � 10�6

�max � 674 � 10�6

�min � �674 � 10�6

eaver �
ex � ey

2
� �165 � 10�6

us2
� us1

� 90� � 28.9�

us1
� up1

� 45� � 118.9�

gmax

2
�B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2 y

x1

O

1

1

165 � 10�6

28.9° x

y1

� � �674 � 10�6

165 � 10�6

�x � 480 � 10�6 �y � 70 � 10�6

�xy � 420 � 10�6

FOR � � 75�:

ey1
� 348 � 10�6

gx1y1
� �569 � 10�6ex1

� 202 � 10�6

ey1
� ex � ey � ex1

gx1y1

2
� �
ex � ey

2
 sin 2u�

gxy

2
 cos 2u

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

PRINCIPAL STRAINS

� 275 � 10�6 	 293 � 10�6

�1 � 568 � 10�6 �2 � �18 � 10�6

2�p � 45.69� and 225.69�
�p � 22.85� and 112.85�

For �p � 22.85�:

� 568 � 10�6

� �1 � 568 � 10�6

�2 � �18 � 10�6up2
� 112.8�

up1
� 22.8�

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

 tan  2up �
gxy

ex � ey
� 1.0244

e1,2 �
ex � ey

2
	 B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

y

x1

O

1
1

348 � 10�6

75°

x

y1

� � �569 � 10�6

202 � 10�6

y

x1

O

1

1

18 � 10�6

22.8° x

y1

568 � 10�6



Problem 7.7-10 Solve the preceding problem for the following data: 
�x � �1120 � 10�6, �y � �430 � 10�6, �xy � 780 � 10�6, and � � 45°. 

Solution 7.7-10 Element in plane strain

480 CHAPTER 7 Analysis of Stress and Strain

MAXIMUM SHEAR STRAINS

� 293 � 10�6

�max � 587 � 10�6

�max � 587 � 10�6

�min � �587 � 10�6

eaver �
ex � ey

2
� 275 � 10�6

us2
� us1

� 90� � 67.8�

us1
� up1

� 45� � �22.2� or 157.8�

gmax

2
�B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

x1

275 � 10�6

275 � 10�6

x� � �587 � 10�6 O

67.8�

y1

y

1

1

�x � �1120 � 10�6 �y � �430 � 10�6

�xy � 780 � 10�6

FOR � � 45�:

PRINCIPAL STRAINS

� �775 � 10�6 	 521 � 10�6

�1 � �254 � 10�6 �2 � �1296 � 10�6

2�p � 131.5� and 311.5�
�p � 65.7� and 155.7�

For �p � 65.7�:

� �254 � 10�6

� �1 � �254 � 10�6

�2 � �1296 � 10�6up2
� 155.7�

up1
� 65.7�

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

 tan  2up �
gxy

ex � ey
� �1.1304

e1,2 �
ex � ey

2
	 B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

ey1
� �1165 � 10�6

gx1y1
� 690 � 10�6ex1

� �385 � 10�6

ey1
� ex � ey � ex1

gx1y1

2
� �
ex � ey

2
 sin 2u�

gxy

2
 cos 2u

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

MAXIMUM SHEAR STRAINS

� 521 � 10�6

�max � 1041 � 10�6

�max � 1041 � 10�6

�min � �1041 � 10�6

eaver �
ex � ey

2
� �775 � 10�6

us2
� us1

� 90� � 110.7�

us1
� up1

� 45� � 20.7�

gmax

2
�B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

x1

385 � 10�61165 � 10�6

x� � 690 � 10�6
O

45�

y1

y

1

1

x1

1296 � 10�6 xO

65.7�

y1

y

1

1

254 � 10�6

x1

775 � 10�6

775 � 10�6

xO
20.7�

y1

y

1

1
� � 1041 � 10�6



Problem 7.7-11 A steel plate with modulus of elasticity E � 30 � 106 psi
and Poisson’s ratio � � 0.30 is loaded in biaxial stress by normal stresses �x
and �y (see figure). A strain gage is bonded to the plate at an angle 
 � 30°. 

If the stress �x is 18,000 psi and the strain measured by the gage is 
� � 407 � 10�6, what is the maximum in-plane shear stress (�max)xy and
shear strain (�max)xy? What is the maximum shear strain (�max)xz in the xz
plane? What is the maximum shear strain (�max)yz in the yz plane?

Solution 7.7-11 Steel plate in biaxial stress
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�y

�x

y

x

z




�x � 18,000 psi �xy � 0 �y � ?
E � 30 � 106 psi � � 0.30
Strain gage: 
 � 30� � � 407 � 10�6

UNITS: All stresses in psi.

STRAIN IN BIAXIAL STRESS (EQS. 7-39)

(1)

(2)

(3)

STRAINS AT ANGLE 
 � 30� (Eq. 7-71a)

Solve for �y: �y � 2400 psi (4)

� ¢1
2
≤ ¢ 1

30 � 106≤(23,400 � 1.3sy)  cos 60�

407 � 10�6 � ¢1
2
≤ ¢ 1

30 � 106≤(12,600 � 0.7sy)

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

ez � �
n

E
(sx �sy) � �

0.3

30 � 106(18,000 �sy)

ey �
1

E
(sy � nsx) �

1

30 � 106(sy � 5400)

ex �
1

E
(sx � nsy) �

1

30 � 106(18,000 � 0.3sy)

MAXIMUM IN-PLANE SHEAR STRESS

STRAINS FROM EQS. (1), (2), AND (3)

�x � 576 � 10�6 �y � �100 � 10�6

�z � �204 � 10�6

MAXIMUM SHEAR STRAINS (EQ. 7-75)

xy plane: 

�xy � 0 (�max)xy � 676 � 10�6

xz plane: 

�xz � 0 (�max)xz � 780 � 10�6

yz plane: 

�yz � 0 (�max)yz � 104 � 10�6

(gmax)yz

2
�B¢ey � ez

2
≤

2

� ¢gyz

2
≤

2

(gmax)xz

2
�B¢ex � ez

2
≤

2

� ¢gxz

2
≤

2

(gmax)xy

2
�B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

(tmax)xy �
sx �sy

2
� 7800 psi

Problem 7.7-12 Solve the preceding problem if the plate is made of
aluminum with E � 72 GPa and � � 1/3, the stress �x is 86.4 MPa, 
the angle 
 is 21°, and the strain � is 946 � 10�6.

Solution 7.7-12 Aluminum plate in biaxial stress

�x � 86.4 MPa �xy � 0 �y � ?
E � 72 GPa � � 1/3
Strain gage: 
 � 21� � � 946 � 10�6

UNITS: All stresses in MPa.

STRAINS IN BIAXIAL STRESS (EQS. 7-39)

(1)

(2)

(3)ez � �
n

E
(sx �sy) � �

1�3
72,000

(86.4 �sy)

ey �
1

E
(sy � nsx) �

1

72,000
(sy � 28.8)

ex �
1

E
(sx � nsy) �

1

72,000
¢86.4 �

1

3
sy≤

Probs. 7.7-11 and 7.7-12
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STRAINS AT ANGLE 
 � 21� (EQ. 7-71a)

Solve for �y: �y � 21.55 MPa (4)

MAXIMUM IN-PLANE SHEAR STRESS

STRAINS FROM EQS. (1), (2), AND (3)

�x � 1100 � 10�6 �y � �101 � 10�6

�z � �500 � 10�6

(tmax)xy �
sx �sy

2
� 32.4 MPa

� ¢1
2
≤¢ 1

72,000
≤¢115.2 �

4

3
sy≤  cos 42�

946 � 10�6 � ¢1
2
≤¢ 1

72,000
≤¢57.6 �

2

3
sy≤

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

MAXIMUM SHEAR STRAINS (EQ. 7-75)

xy plane: 

�xy � 0 (�max)xy � 1200 � 10�6

xz plane: 

�xz � 0 (�max)xz � 1600 � 10�6

yz plane: 

�yz � 0 (�max)yz � 399 � 10�6

(gmax)yz

2
�B¢ey � ez

2
≤

2

� ¢gyz

2
≤

2

(gmax)xz

2
�B¢ex � ez

2
≤

2

� ¢gxz

2
≤

2

(gmax)xy

2
�B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

Problem 7.7-13 An element in plane stress is subjected to stresses
�x � �8400 psi, �y � 1100 psi, and �xy � �1700 psi (see figure). 
The material is aluminum with modulus of elasticity E � 10,000 ksi 
and Poisson’s ratio � � 0.33. 

Determine the following quantities: (a) the strains for an element
oriented at an angle � � 30°, (b) the principal strains, and (c) the 
maximum shear strains. Show the results on sketches of properly 
oriented elements. 

Solution 7.7-13 Element in plane stress

y

xO

�xy

�y

�x

�x � �8400 psi �y � 1100 psi
�xy � �1700 psi E � 10,000 ksi � � 0.33

HOOKE’S LAW (EQS. 7-34 AND 7-35)

FOR � � 30�:

� �756 � 10�6

� 434 � 10�6

� 267 � 10�6ey1
� ex � ey � ex1

gx1y1
� 868 � 10�6

gx1y1

2
� �
ex � ey

2
 sin 2u�

gxy

2
 cos 2u

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

gxy �
txy

G
�

2txy(1 � n)

E
� �452.2 � 10�6

ey �
1

E
(sy � nsx) � 387.2 � 10�6

ex �
1

E
(sx � nsy) � �876.3 � 10�6

x1

756 � 10�6

267 � 10�6

xO
30�

y1

y

1

1� � 868 � 10�6

Probs. 7.7-13 and 7.7-14
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PRINCIPAL STRAINS

� �245 � 10�6 	 671 � 10�6

�1 � 426 � 10�6 �2 � �916 � 10�6

2�p � 19.7� and 199.7�
�p � 9.8� and 99.8�

For �p � 9.8�:

� �916 � 10�6

� �1 � 426 � 10�6

�2 � �916 � 10�6up2
� 9.8�

up1
� 99.8�

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

 tan  2up �
gxy

ex � ey
� 0.3579

e1,2 �
ex � ey

2
	 B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

MAXIMUM SHEAR STRAINS

� 671 � 10�6

�max � 1342 � 10�6

�max � 1342 � 10�6

�min � �1342 � 10�6

eaver �
ex � ey

2
� �245 � 10�6

us2
� us1

� 90� � 144.8�

us1
� up1

� 45� � 54.8�

gmax

2
�B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

x1

916 � 10�6

426 � 10�6

xO
9.8�

y1

y

1

1

x1

245 � 10�6

245 � 10�6

xO

54.8�

y1

y

1

1

� � 1342 � 10�6

Problem 7.7-14 Solve the preceding problem for the following data:
�x � �150 MPa, �y � �210 MPa, �xy � �16 MPa, and � � 50°. The
material is brass with E � 100 GPa and � � 0.34.

Solution 7.7-14 Element in plane stress

�x � �150 MPa �y � �210 MPa
�xy � �16 MPa E � 100 GPa � � 0.34

HOOKE’S LAW (EQS. 7-34 AND 7-35)

FOR � � 50�:

� �1469 � 10�6

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

gxy �
txy

G
�

2txy(1 � n)

E
� �429 � 10�6

ey �
1

E
(sy � nsx) � �1590 � 10�6

ex �
1

E
(sx � nsy) � �786 � 10�6

� �358.5 � 10�6

� �907 � 10�6ey1
� ex � ey � ex1

gx1y1
� �717 � 10�6

gx1y1

2
� �
ex � ey

2
 sin 2u�

gxy

2
 cos 2u

x1

1469 � 10�6

907 � 10�6 xO

50�

y1

y

1

1

� � 
717 � 10�6



Problem 7.7-15 During a test of an airplane wing, the strain gage read-
ings from a 45° rosette (see figure) are as follows: gage A, 520 � 10�6;
gage B, 360 � 10�6; and gage C, �80 � 10�6. 

Determine the principal strains and maximum shear strains, and
show them on sketches of properly oriented elements.

Solution 7.7-15 45° strain rosette
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y

C
B

A x
O

45°

45°

PRINCIPAL STRAINS

� �1188 � 10�6 	 456 � 10�6

�1 � �732 � 10�6 �2 � �1644 � 10�6

2�p � 151.9� and 331.9�
�p � 76.0� and 166.0�
For �p � 76.0�:

� �1644 � 10�6

� �1 � �732 � 10�6

�2 � �1644 � 10�6up2
� 76.0�

up1
� 166.0�

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

 tan 2up �
gxy

ex � ey
� �0.5333

e1,2 �
ex � ey

2
	 B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

MAXIMUM SHEAR STRAINS

� 456 � 10�6

�max � 911 � 10�6

�max � 911 � 10�6

�min � �911 � 10�6

eaver �
ex � ey

2
� �1190 � 10�6

us2
� us1

� 90� � 31.0�

us1
� up1

� 45� � 121.0�

gmax

2
�B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

x1

1644 � 10�6

732 � 10�6
xO

76�

y1

y

1

1

x1

1190 � 10�6

1190 � 10�6

xO
31.0�

y1

y

1

1
� � 
911 � 10�6

�A � 520 � 10�6 �B � 360 � 10�6

�C � �80 � 10�6

FROM EQS. (7-77) AND (7-78) OF EXAMPLE 7-8:

�x � �A � 520 � 10�6 �y � �C � �80 � 10�6

�xy � 2�B � �A � �C � 280 � 10�6

PRINCIPAL STRAINS

� 220 � 10�6 	 331 � 10�6

�1 � 551 � 10�6 �2 � �111 � 10�6

e1,2 �
ex � ey

2
	 B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

x1

551 � 10�6

111 � 10�6

xO
12.5�

y1

y

1

1

Probs. 7.7-15 and 7.7-16
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2�p � 25.0� and 205.0�
�p � 12.5� and 102.5�

For �p � 12.5�:

� 551 � 10�6

� �1 � 551 � 10�6

�2 � �111 � 10�6

MAXIMUM SHEAR STRAINS

� 331 � 10�6

�max � 662 � 10�6

us1
� up1

� 45� � �32.5� or 147.5�

gmax

2
�B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

up2
� 102.5�

up1
� 12.5�

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

 tan  2up �
gxy

ex � ey
� 0.4667 �max � 662 � 10�6

�min � �662 � 10�6

eaver �
ex � ey

2
� 220 � 10�6

us2
� us1

� 90� � 57.5�

x1

220 � 10�6
220 � 10�6

xO

57.5�

y1

y

1

1

� � 
662 � 10�6

Problem 7.7-16 A 45° strain rosette (see figure) mounted on the 
surface of an automobile frame gives the following readings: gage A,
310 � 10�6; gage B, 180 � 10�6; and gage C, �160 � 10�6. 

Determine the principal strains and maximum shear strains, 
and show them on sketches of properly oriented elements.

Solution 7.7-16 45° strain rosette
�A � 310 � 10�6 �B � 180 � 10�6

�C � �160 � 10�6

FROM EQS. (7-77) AND (7-78) OF EXAMPLE 7-8:

�x � �A � 310 � 10�6 �y � �C � �160 � 10�6

�xy � 2�B � �A � �C � 210 � 10�6

PRINCIPAL STRAINS

� 75 � 10�6 	 257 � 10�6

�1 � 332 � 10�6 �2 � �182 � 10�6

2�p � 24.1� and 204.1�
�p � 12.0� and 102.0�

For �p � 12.0�:

� 332 � 10�6

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

 tan 2up �
gxy

ex � ey
� 0.4468

e1,2 �
ex � ey

2
	 B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

� �1 � 332 � 10�6

�2 � �182 � 10�6up2
� 102.0�

up1
� 12.0�

x1

332 � 10�6

182 � 10�6

xO
12.0�

y1

y

1

1



486 CHAPTER 7 Analysis of Stress and Strain

MAXIMUM SHEAR STRAINS

� 257 � 10�6

�max � 515 � 10�6

�max � 515 � 10�6

�min � �515 � 10�6

eaver �
ex � ey

2
� 75 � 10�6

us2
� us1

� 90� � 57.0�

us1
� up1

� 45� � �33.0� or 147.0�

gmax

2
�B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

x1

75 � 10�6
75 � 10�6

xO

57.0�

y1

y

1

1

� � 
515 � 10�6

Problem 7.7-17 A solid circular bar of diameter d � 1.5 in. 
is subjected to an axial force P and a torque T (see figure). 
Strain gages A and B mounted on the surface of the bar give 
readings �a � 100 � 10�6 and �b � �55 � 10�6. The bar is 
made of steel having E � 30 � 106 psi and � � 0.29.

(a) Determine the axial force P and the torque T.
(b) Determine the maximum shear strain �max and the 

maximum shear stress �max in the bar. 

Solution 7.7-17 Circular bar (plane stress)

d

C

B

A

P

T

C

45°

Bar is subjected to a torque T and an axial force P.
E � 30 � 106 psi � � 0.29
Diameter d � 1.5 in.

STRAIN GAGES

At � � 0�: �A � �x � 100 � 10�6

At � � 45�: �B � �55 � 10�6

ELEMENT IN PLANE STRESS

�y � 0

�x � 100 � 10�6 �y � ���x � �29 � 10�6

AXIAL FORCE P

SHEAR STRAIN

� �(0.1298 � 10�6)T (T � lb-in.)

gxy �
txy

G
�

2txy(1 � n)

E
� �

32T(1 � n)

	d3E

P �
	d2Eex

4
� 5300 lbex �

sx

E
�

4P

	d2E

txy � �
16T

	d3sx �
P

A
�

4P

	d2

STRAIN AT � � 45�

(1)

2� � 90�

Substitute numerical values into Eq. (1):
�55 � 10�6 � 35.5 � 10�6 � (0.0649 � 10�6)T

Solve for T: T � 1390 lb-in.

MAXIMUM SHEAR STRAIN AND MAXIMUM SHEAR STRESS

�xy � �(0.1298 � 10�6)T � �180.4 � 10�6 rad

Eq. (7-75): 

� 111 � 10�6 rad
�max � 222 � 10�6 rad

�max � G�max � 2580 psi

gmax

2
�B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

ex1
� eB � �55 � 10�6

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u



Problem 7.7-18 A cantilever beam of rectangular cross section 
(width b � 25 mm, height h � 100 mm) is loaded by a force 
P that acts at the midheight of the beam and is inclined at an 
angle � to the vertical (see figure). Two strain gages are placed 
at point C, which also is at the midheight of the beam. Gage A
measures the strain in the horizontal direction and gage B
measures the strain at an angle � � 60° to the horizontal. The 
measured strains are �a � 125 � 10�6 and �b � �375 � 10�6. 

Determine the force P and the angle �, assuming the material 
is steel with E � 200 GPa and � � 1/3. 

Solution 7.7-18 Cantilever beam (plane stress)
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h

bP

C

C

B

A

�

�

�

h

Beam loaded by a force P acting at an angle �.
E � 200 GPa � � 1/3 b � 25 mm
h � 100 mm
Axial force F � P sin �
Shear force V � P cos �
(At the neutral axis, the bending moment produces
no stresses.)

STRAIN GAGES

At � � 0�: �A � �x � 125 � 10�6

At � � 60�: �B � �375 � 10�6

ELEMENT IN PLANE STRESS

�y � 0

�x � 125 � 10�6 �y � ���x � �41.67 � 10�6

txy � �
3V

2A
� �

3P  cos �

2bh

sx �
F

A
�

P  sin �

bh

HOOKE’S LAW

P sin � � bhE�x � 62,500 N (1)

� �(8.0 � 10�9)P cos � (2)

FOR � � 60�:

(3)

2� � 120�

Substitute into Eq. (3):
�375 � 10�6 � 41.67 � 10�6 � 41.67 � 10�6

�(3.464 � 10�9)P cos �
or P cos � � 108,260 N (4)

SOLVE EQS. (1) AND (4):

tan � � 0.5773 � � 30�
P � 125 kN

ex1
� eB � �375 � 10�6

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

gxy �
txy

G
� �

3P  cos �

2bhG
� �

3(1 � n)P  cos �

bhE

ex �
sx

E
�

P  sin �

bhE

Problem 7.7-19 Solve the preceding problem if 
the cross-sectional dimensions are b � 1.0 in. 
and h � 3.0 in., the gage angle is � � 75°, the 
measured strains are �a � 171 � 10�6 and 
�b � �266 � 10�6, and the material is a 
magnesium alloy with modulus E � 6.0 � 106 psi 
and Poisson’s ratio � � 0.35.
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Beam loaded by a force P acting at an angle �.
E � 6.0 � 106 psi � � 0.35 b � 1.0 in.
h � 3.0 in.
Axial force F � P sin � Shear force V � P cos �
(At the neutral axis, the bending moment produces
no stresses.)

STRAIN GAGES

At � � 0�: �A � �x � 171 � 10�6

At � � 75�: �B � �266 � 10�6

ELEMENT IN PLANE STRESS

�y � 0

�x � 171 � 10�6 �y � ���x � �59.85 � 10�6

txy � �
3V

2A
� �

3P  cos �

2bh

sx �
F

A
�

P  sin �

bh

HOOKE’S LAW

P sin � � bhE�x � 3078 lb (1)

� �(225.0 � 10�9)P cos � (2)

FOR � � 75�:

(3)

2� � 150�

Substitute into Eq. (3):
�266 � 10�6 � 55.575 � 10�6 � 99.961 � 10�6

�(56.25 � 10�9)P cos �
or P cos � � 3939.8 lb (4)

SOLVE EQS. (1) AND (4):

tan � � 0.7813 � � 38�
P � 5000 lb

ex1
� eB � �266 � 10�6

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

gxy �
txy

G
� �

3P  cos �

2bhG
� �

3(1 � n)P  cos �

bhE

ex �
sx

E
�

P  sin �

bhE

Problem 7.7-20 A 60° strain rosette, or delta rosette, consists of 
three electrical-resistance strain gages arranged as shown in the figure.
Gage A measures the normal strain �a in the direction of the x axis.
Gages B and C measure the strains �b and �c in the inclined directions
shown. 

Obtain the equations for the strains �x, �y, and �xy associated with 
the xy axes.

Solution 7.7-20 Delta rosette (60° strain rosette)

y

CB

A

xO

60°60°

60°

STRAIN GAGES

Gage A at � � 0� Strain � �A
Gage B at � � 60� Strain � �B
Gage C at � � 120� Strain � �C

FOR � � 0�: �x � �A

FOR � � 60�:

(1)eB �
eA

4
�

3ey

4
�
gxy�3

4

eB �
eA � ey

2
�
eA � ey

2
 (cos 120�) �

gxy

2
 (sin 120�)

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

FOR � � 120�:

(2)

SOLVE EQS. (1) AND (2):

gxy �
2

�3
(eB � eC)

ey �
1

3
(2eB � 2eC � eA)

eC �
eA

4
�

3ey

4
�
gxy�3

4

eC �
eA � ey

2
�
eA � ey

2
 (cos 240�) �

gxy

2
 (sin 240�)

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

Solution 7.7-19 Cantilever beam (plane stress)



Problem 7.7-21 On the surface of a structural component in a 
space vehicle, the strains are monitored by means of three strain gages
arranged as shown in the figure. During a certain maneuver, the following
strains were recorded: �a � 1100 � 10�6, �b � 200 � 10�6, and 
�c � 200 � 10�6. 

Determine the principal strains and principal stresses in the 
material, which is a magnesium alloy for which E � 6000 ksi and 
� � 0.35. (Show the principal strains and principal stresses on 
sketches of properly oriented elements.)

Solution 7.7-21 30-60-90° strain rosette
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y

CB

A
xO

30°

Magnesium alloy: E � 6000 ksi � � 0.35

STRAIN GAGES

Gage A at � � 0� �A � 1100 � 10�6

Gage B at � � 90� �B � 200 � 10�6

Gage C at � � 150� �C � 200 � 10�6

FOR � � 0�: �x � �A � 1100 � 10�6

FOR � � 90�: �y � �B � 200 � 10�6

FOR � � 150�:

200 � 10�6 � 650 � 10�6 � 225 � 10�6

� 0.43301�xy

Solve for �xy : �xy � 1558.9 � 10�6

PRINCIPAL STRAINS

� 650 � 10�6 	 900 � 10�6

�1 � 1550 � 10�6 �2 � �250 � 10�6

2�p � 60� �p � 30�

For �p � 30�:

� 1550 � 10�6

� �1 � 1550 � 10�6

�2 � �250 � 10�6up2
� 120�

up1
� 30�

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

 tan  2up �
gxy

ex � ey
� �3 � 1.7321

e1,2 �
ex � ey

2
	 B¢ex � ey

2
≤

2

� ¢gxy

2
≤

2

ex1
� eC �

ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

PRINCIPAL STRESSES (see Eqs. 7-36)

Substitute numerical values:
�1 � 10,000 psi �2 � 2,000 psi

s2 �
E

1 � n2 (e2 � ne1)s1 �
E

1 � n2 (e1 � ne2)

x1

xO
�p1 � 30�

y1

y

1

1 �1 � 1550 � 10�6�2 � �250 � 10�6

O

�p1
� 30�

2,000 psi

y

x

10,000 psi



Problem 7.7-22 The strains on the surface of an experimental device
made of pure aluminum (E � 70 GPa, � � 0.33) and tested in a space
shuttle were measured by means of strain gages. The gages were oriented
as shown in the figure, and the measured strains were �a � 1100 � 10�6,
�b � 1496 � 10�6, and �c � �39.44 � 10�6. 

What is the stress �x in the x direction?

Solution 7.7-22 40-40-100° strain rosette
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y

CB

A
xO 40°40°

Pure aluminum: E � 70 GPa � � 0.33

STRAIN GAGES

Gage A at � � 0� �A � 1100 � 10�6

Gage B at � � 40� �B � 1496 � 10�6

Gage C at � � 140� �C � �39.44 � 10�6

FOR � � 0�: �x � �A � 1100 � 10�6

FOR � � 40�:

Substitute and
�x � 1100 � 10�6; then simplify and rearrange:
0.41318�y � 0.49240�xy � 850.49 � 10�6 (1)

ex1
� eB � 1496 � 10�6

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

FOR � � 140�:

Substitute and
�x � 1100 � 10�6; then simplify and rearrange:
0.41318�y � 0.49240�xy � �684.95 � 10�6 (2)

SOLVE EQS. (1) AND (2):

�y � 200.3 � 10�6 �xy � 1559.2 � 10�6

HOOKE’S LAW

sx �
E

1 � n2 (ex � ney) � 91.6 MPa

ex1
� eC � �39.44 � 10�6

ex1
�
ex � ey

2
�
ex � ey

2
 cos 2u�

gxy

2
 sin 2u

Problem 7.7-23 Solve Problem 7.7-5 by using Mohr’s circle for plane strain.

Solution 7.7-23 Element in plane strain

�x � 220 � 10�6 �y � 480 � 10�6

�xy � 180 � 10�6 � � 50�
gxy

2
� 90 � 10�6

(� � 90�)

(� � 50�)

�x1y1

2

RR B

O

D

C

D'

90

90

220

480

         A
(� � 0)

2� �100�

�x1130
130

� �

___
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� 158.11 � 10�6

� � 180� � � � 2� � 45.30�

POINT C:

POINT D (� � 50�):

POINT D� (� � 140�):

gx1y1
� �225 � 10�6

gx1y1

2
� �R  sin b� �112.4 � 10�6

ex1
� 350 � 10�6 � R  cos b� 239 � 10�6

gx1y1
� 225 � 10�6

gx1y1

2
� R  sin  b� 112.4 � 10�6

ex1
� 350 � 10�6 � R  cos  b� 461 � 10�6

ex1
� 350 � 10�6

� � arctan 
90

130
� 34.70�

R � �(130 � 10�6)2 � (90 � 10�6)2

x1

461 � 10�6

239 � 10�6

xO

50�

y1

y

1

1

� � 225 � 10�6

Problem 7.7-24 Solve Problem 7.7-6 by using Mohr’s circle for plane strain.

Solution 7.7-24 Element in plane strain

�x � 420 � 10�6 �y � �170 � 10�6

�xy� 310 � 10�6 � � 37.5�

� 333.24 � 10�6

� � 2� � � � 47.28�

� � arctan 
155

295
� 27.72�

R � �(295 � 10�6)2 � (155 � 10�6)2

gxy

2
� 155 � 10�6

POINT C:

POINT D  (� � 37.5�):

POINT D� (� � 127.5�):

gx1y1
� 490 � 10�6

gx1y1

2
� R  sin b� 244.8 � 10�6

ex1
� 125 � 10�6 � R  cos b� �101 � 10�6

gx1y1
� �490 � 10�6

gx1y1

2
� �R  sin b� �244.8 � 10�6

ex1
� 125 � 10�6 � R  cos b� 351 � 10�6

ex1
� 125 � 10�6

(� � 90�)

(� � 37.5�)

�x1y1

2

R

R

B

O

D

C

D'

420

170

A (� � 0)

2� �
75�

�x1
295

295
�

�15
5

15
5

y

x1

O

1

1

351 � 10 –6

37.5°

x

y1

101 � 10 –6

 � � �490 � 10 –6



Problem 7.7-25 Solve Problem 7.7-7 by using Mohr’s circle for plane strain.

Solution 7.7-25 Element in plane strain
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�x � 480 � 10�6 �y � 140 � 10�6

�xy � �350 � 10�6

� 243.98 � 10�6

POINT C:

PRINCIPAL STRAINS

Point P1: �1 � 310 � 10�6 � R � 554 � 10�6

Point P2: �2 � 310 � 10�6 � R � 66 � 10�6

up1
� 157.1�2up1

� 2up2
� 180� � 314.2�

up2
� 67.1�2up2

� 180� � � � 134.2�

ex1
� 310 � 10�6

� � arctan 
175

170
� 45.83�

R � �(175 � 10�6)2 � (170 � 10�6)2

gxy

2
� �175 � 10�6

MAXIMUM SHEAR STRAINS

Point S1: �aver � 310 � 10�6

�max � 2R � 488 � 10�6

Point S2: �aver � 310 � 10�6

�min � �488 � 10�6

us1
� 112.1�2us1

� 2us2
� 180� � 224.17�

us2
� 22.1�2us2

� 90� � � � 44.17�

(� � 90�)

R

R

B

O C
P2 P1

S1

S2

140

480

A (� � 0)
2�s2

2�p2

�x1

170
170

�

17
5

17
5

�x1y1

2

y
x1

O

1

1
66 � 10 –6

67.1°

x

y1

554 � 10 –6

y

x1

O

1

1

310 � 10 –6

22.1° x

y1

310 � 10 –6
���488 � 10 –6



Problem 7.7-26 Solve Problem 7.7-8 by using Mohr’s circle for plane strain.

Solution 7.7-26 Element in plane strain
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�x � 120 � 10�6 �y � �450 � 10�6

�xy � �360 � 10�6

� 337.08 � 10�6

POINT C:

PRINCIPAL STRAINS

Point P1: �1 � R � 165 � 10�6 � 172 � 10�6

Point P2: �2 � �165 � 10�6 � R � �502 � 10�6

up1
� 163.9�2up1

� 2up2
� 180� � 327.72�

up2
� 73.9�2up2

� 180� � � � 147.72�

ex1
� �165 � 10�6

� � arctan 
180

285
� 32.28�

R � �(285 � 10�6)2 � (180 � 10�6)2

gxy

2
� �180 � 10�6

MAXIMUM SHEAR STRAINS

Point S1: �aver � �165 � 10�6

�max � 2R � 674 � 10�6

Point S2: �aver � �165 � 10�6

�min � �674 � 10�6

us1
� 118.9�2us1

� 2us2
� 180� � 237.72�

us2
� 28.9�2us2

� 90� � � � 57.72�

A (� � 0)

450

285

18
0

18
02�p2

2�s2

C

S1

S2

R

R

             B
 (� � 90�)

x1

�x1y1

2

� O
P2 P1165 120

120

y

x1

O

1
1

502 � 10�6

73.9°

x

y1

172 � 10�6

y

x1

O

1

1

165 � 10�6

28.9° x

y1

� � �674 � 10�6

165 � 10�6



Problem 7.7-27 Solve Problem 7.7-9 by using Mohr’s circle for plane strain.

Solution 7.7-27 Element in plane strain

494 CHAPTER 7 Analysis of Stress and Strain

�x � 480 � 10�6 �y � 70 � 10�6

�xy � 420 � 10�6 � � 75�

� 293.47 � 10�6

� � � � 180� � 2� � 75.69�

POINT C:

POINT D (� � 75�):

POINT D� (� � 165�):

gx1y1
� 569 � 10�6

gx1y1

2
� R  sin b� 284.36 � 10�6

ex1
� 275 � 10�6 � R  cos b� 348 � 10�6

gx1y1
� �569 � 10�6

gx1y1

2
� �R  sin b� �284.36 � 10�6

ex1
� 275 � 10�6 � R  cos b� 202 � 10�6

ex1
� 275 � 10�6

� � arctan 
210

205
� 45.69�

R � �(205 � 10�6)2 � (210 � 10�6)2

gxy

2
� 210 � 10�6

PRINCIPAL STRAINS

Point P1: �1 � 275 � 10�6 � R � 568 � 10�6

Point P2: �2 � 275 � 10�6 � R � �18 � 10�6

MAXIMUM SHEAR STRAINS

Point S1: �aver � 275 � 10�6

�max � 2R � 587 � 10�6

Point S2: �aver � 275 � 10�6

�min � �587 � 10�6

us1
� 157.8�2us1

� 2us2
� 180� � 315.69�

us2
� 67.8�2us2

� 90� � � � 135.69�

up2
� 112.8�2up2

� 2up1
� 180� � 225.69�

up1
� 22.8�2up1

� � � 45.69�

A (� � 0)

480

2�p1

2�

2�s2

C

S1

S2

R

D'

D

R

B

x1

�x1y1

2

�
O

P2 P1

21
0

205205

(� � 90�)

2� � 150�

70

(� � 75�)

�
R

y

x1

O

1

1

348 � 10�6

75°

x

y1

� � �569 � 10�6

202 � 10�6

y

x1

O

1

1

18 � 10�6

22.8° x

y1

568 � 10�6

x1

275 � 10�6

275 � 10�6

x� � �587 � 10�6 O

67.8�

y1

y

1

1



Problem 7.7-28 Solve Problem 7.7-10 by using Mohr’s circle for plane strain.

Solution 7.7-28 Element in plane strain

SECTION 7.7 Plane Strain 495

�x � �1120 � 10�6 �y � �430 � 10�6

�xy � 780 � 10�6 � � 45�

� 520.70 � 10�6

� � 180� � � � 2� � 41.50�

POINT C:

POINT D (� � 45�):

POINT D�(� � 135�):

gx1y1
� �690 � 10�6

gx1y1

2
� �R  sin b� �345 � 10�6

ex1
� �775 � 10�6 � R  cos b� �1165 � 10�6

gx1y1
� 690 � 10�6

gx1y1

2
� R  sin b� 345 � 10�6

ex1
� �775 � 10�6 � R  cos b� �385 � 10�6

ex1
� �775 � 10�6

� � arctan 
390

345
� 48.50�

R � �(345 � 10�6)2 � (390 � 10�6)2

gxy

2
� 390 � 10�6

PRINCIPAL STRAINS

Point P1: �1 � �775 � 10�6 � R � �254 � 10�6

Point P2: �2 � �775 � 10�6 � R � �1296 � 10�6

MAXIMUM SHEAR STRAINS

Point S1: �aver � �775 � 10�6

�max � 2R � 1041 � 10�6

Point S2: �aver � �775 � 10�6

�min � �1041 � 10�6

us2
� 110.7�2us2

� 2us1
� 180� � 221.50�

us1
� 20.7�2us1

� 90� � � � 41.50�

up2
� 155.7�2up2

� 2up1
� 180� � 311.50�

up1
� 65.7�2up1

� 180� � � � 131.50�

(� � 90�)

(� � 45�)

R

R

B

O

D

C

D'

39
0

39
0

1120

430

         A
(� � 0)

2� �90�

�x1345
345

�x1y1

2
___

2�p1

2�s1

P2

S2

S1

P1
�

�

x1

254 � 10�6

1296 � 10�6 xO

65.7�

y1

y

1

1

x1

775 � 10�6

775 � 10�6

xO
20.7�

y1

y

1

1
� � 1041 � 10�6

x1

385 � 10�61165 � 10�6

x� � 690 � 10�6
O

45�

y1

y

1

1





Differential Equations of the Deflection Curve

The beams described in the problems for Section 9.2 have constant 
flexural rigidity EI.

Problem 9.2-1 The deflection curve for a simple beam AB (see figure)
is given by the following equation: 

v � � (7L4 � 10L2x2 � 3x4)

Describe the load acting on the beam. 

Solution 9.2-1 Simple beam

q0x
�
360LEI

9
Deflections of Beams

y

xA B

L

Take four consecutive derivatives and obtain:

From Eq. (9-12c): 

The load is a downward triangular load of maximum
intensity q0.

q � �EIv–– �
q0 x

L

v–– � �
q0 x

LEI

v � �
q0 x

360 LEI
(7L4 � 10 L2x 2 � 3x 4)

L

q0

Problem 9.2-2 The deflection curve for a simple beam AB (see figure) 
is given by the following equation:

v � � sin �
�

L
x
�

(a) Describe the load acting on the beam. 
(b) Determine the reactions RA and RB at the supports.
(c) Determine the maximum bending moment Mmax.

q0L4

�
�4EI

Probs. 9.2-1 and 9.2-2



Solution 9.2-2 Simple beam

548 CHAPTER 9 Deflections of Beams

(a) LOAD (EQ. 9-12c)

The load has the shape of a sine curve, acts
downward, and has maximum intensity q

0.

q � �EIv–– � q0 sin 
�x

L

v‡¿ � �
q0

EI
 sin 

�x

L

v‡ �
q0 L

�EI
 cos 

�x

L

v– �
q0 L2

�2EI
 sin 

�x

L

v¿ � �
q0 L3

�3EI
 cos 

�x

L

v � �
q0 L4

�4EI
 sin 

�x

L
(b) REACTIONS (EQ. 9-12b)

At x � 0:

At x � L: ; 

(c) MAXIMUM BENDING MOMENT (EQ. 9-12a)

For maximum moment, Mmax �
q0 L2

�2x �
L

2
;

M � EIv– �
q0 L2

� 2
 sin 

�x

L

RB �
q0 L

�
V � �RB � �

q0 L

�

V � RA � �
q0 L

�

V � EIv‡ � �
q0 L

�
 cos 

�x

L

L

q0

Problem 9.2-3 The deflection curve for a cantilever beam AB
(see figure) is given by the following equation: 

v � � (10L3 � 10L2x � 5Lx2 � x3)

Describe the load acting on the beam. 

Solution 9.2-3 Cantilever beam

q0x2

�
120LEI

x

y

BA

L

Take four consecutive derivatives and obtain:

From Eq. (9-12c):

The load is a downward triangular load of maximum
intensity q

0.

q � �EIv–– � q0 ¢1 �
x

L
≤

v–– � �
q0

LEI
(L � x)

v � �
q0 x2

120 LEI
 (10 L3 � 10 L2x � 5 L x2 � x3)

q0

L

Probs. 9.2-3 and 9.2-4



Problem 9.2-4 The deflection curve for a cantilever beam AB
(see figure) is given by the following equation: 

v � � (45L4 � 40L3x � 15L2x2 � x4)

(a) Describe the load acting on the beam.
(b) Determine the reactions RA and MA at the support.

Solution 9.2-4 Cantilever beam

q0x2

�
360L2EI

SECTION 9.2 Differential Equations of the Deflection Curve 549

(a) LOAD (EQ. 9-12c)

The load is a downward parabolic load of maximum
intensity q

0.

q � �EIv–– � q0 ¢1 �
x2

L2≤

v‡¿ � �
q0

L2EI
 (L2 � x2)

v‡ � �
q0

3 L2EI
 (�2 L3 � 3 L2x � x3)

v– � �
q0

12 L2EI
 (3 L4 � 8 L3x � 6 L2x2 � x4)

v¿ � �
q0

60 L2EI
 (15 L4x � 20 L3x2 � 10 L2x3 � x5)

v � �
q0 x2

360 L2EI
 (45L4 � 40 L3x � 15 L2x2 � x4) (b) REACTIONS RA AND MA (EQ. 9-12b AND EQ. 9-12a)

At x � 0:

At x � 0:

NOTE: Reaction RA is positive upward.
Reaction MA is positive clockwise (minus means 
MA is counterclockwise).

M � MA � �
q0 L2

4

M � EIv– � �
q0

12L2  (3 L4 � 8 L3x � 6 L2x2 � x4)

V � RA �
2q0 L

3

V � EIv‡ � �
q0

3L2  (�2 L3 � 3 L2x � x3)

L

q0 



Deflection Formulas

Problems 9.3-1 through 9.3-7 require the calculation of deflections 
using the formulas derived in Examples 9-1, 9-2, and 9-3. All beams 
have constant flexural rigidity EI.

Problem 9.3-1 A wide-flange beam (W 12 � 35) supports a uniform
load on a simple span of length L � 14 ft (see figure). 

Calculate the maximum deflection �max at the midpoint and the 
angles of rotation � at the supports if q �1.8 k/ft and E � 30 � 106 psi.
Use the formulas of Example 9-1.

Solution 9.3-1 Simple beam (uniform load)

550 CHAPTER 9 Deflections of Beams

W 12 � 35 L � 14 ft � 168 in.
q � 1.8 k�ft � 150 lb� in. E � 30 � 106 psi
I � 285 in.4

MAXIMUM DEFLECTION (EQ. 9-18)

� 0.182 in.

�max �
5 qL4

384 EI
�

5(150 lb�in.) (168 in.)4

384(30 � 106 psi)(285 in.4)

ANGLE OF ROTATION AT THE SUPPORTS

(EQs. 9-19 AND 9-20)

� 0.003466 rad � 0.199º

u� uA � uB �
qL3

24 EI
�

(150 lb�in.) (168 in.)3

24(30 � 106 psi)(285 in.4)

Problem 9.3-2 A uniformly loaded steel wide-flange beam with simple
supports (see figure) has a downward deflection of 10 mm at the midpoint
and angles of rotation equal to 0.01 radians at the ends. 

Calculate the height h of the beam if the maximum bending stress is
90 MPa and the modulus of elasticity is 200 GPa. (Hint: Use the formulas
of Example 9-1.)

Solution 9.3-2 Simple beam (uniform load)
� � �max � 10 mm � � �A � �B � 0.01 rad
� � �max � 90 MPa E � 200 GPa

Calculate the height h of the beam.

Eq. (9-18): or (1)

Eq. (9-19): or (2)

Equate (1) and (2) and solve for L: (3)

Flexure formula: s�
Mc

I
�

Mh

2 I

L �
16 �

5u

q �
24 EIu

L3u� uA �
qL3

24 EI

q �
384 EI�

5 L4� � �max �
5 qL4

384 EI

Maximum bending moment: 

(4)

Solve Eq. (4) for h: (5)

Substitute for q from (2) and for L from (3):

Substitute numerical values:

h �
32(90 MPa)(10 mm)

15(200 GPa)(0.01 rad)2 � 96 mm

h �
32s�

15Eu2

h �
16 Is

qL2

∴ s�
qL2h

16 I
M �

qL2

8

L

h

q

Probs. 9.3-1, 9.3-2 and 9.3-3



Problem 9.3-3 What is the span length L of a uniformly loaded simple
beam of wide-flange cross section (see figure) if the maximum bending
stress is 12,000 psi, the maximum deflection is 0.1 in., the height of 
the beam is 12 in., and the modulus of elasticity is 30 � 106 psi? 
(Use the formulas of Example 9-1.) 

Solution 9.3-3 Simple beam (uniform load)
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� � �max � 12,000 psi � � �max � 0.1 in.
h � 12 in. E � 30 � 106 psi

Calculate the span length L.

Eq. (9-18): or (1)

Flexure formula: 

Maximum bending moment:

(2)∴ s�
qL2h

16I
M �

qL2

8

s�
Mc

I
�

Mh

2I

q �
384 EI�

5L4� � �max �
5qL4

384 EI

Solve Eq. (2) for q: (3)

Equate (1) and (2) and solve for L:

Substitute numerical values:

L � 120 in. � 10 ft

L2 �
24(30 � 106 psi)(12 in.) (0.1 in.)

5(12,000 psi)
� 14,400 in.2

L �B24 Eh�

5s
L2 �

24 Eh�

5s

q �
16 Is

L2h

Problem 9.3-4 Calculate the maximum deflection �max of a uniformly 
loaded simple beam (see figure) if the span length L � 2.0 m, the intensity 
of the uniform load q � 2.0 kN/m, and the maximum bending stress 
� � 60 MPa. 

The cross section of the beam is square, and the material is aluminum 
having modulus of elasticity E � 70 GPa. (Use the formulas of Example 9-1.)

Solution 9.3-4 Simple beam (uniform load)
L � 2.0 m q � 2.0 kN�m
� � �max � 60 MPa E � 70 GPa

CROSS SECTION (square; b � width)

Maximum deflection (Eq. 9-18): (1)

Substitute for I: (2)

Flexure formula with :

Substitute for S: (3)s�
3qL2

4b3

s�
M

S
�

qL2

8S
M �

qL2

8

� �
5qL4

32 Eb4

� �
5qL4

384 EI

S �
b3

6
I �

b4

12

Solve for b3: (4)

Substitute b into Eq. (2): 

(The term in parentheses is nondimensional.)

Substitute numerical values:

�max �
10(80)1�3

2.8
 mm � 15.4 mm

¢4 Ls

3q
≤

1�3

� B 4(2.0 m)(60 MPa)

3(2000 N�m)
R 1�3

� 10(80)1�3

5Ls

24E
�

5(2.0 m)(60 MPa)

24(70 GPa)
�

1

2800
 m �

1

2.8
 mm

�max �
5Ls

24E
¢4Ls

3q
≤

1�3

b3 �
3qL2

4s

q = 2.0 kN/m

L = 2.0 m



Problem 9.3-5 A cantilever beam with a uniform load (see figure) 
has a height h equal to 1/8 of the length L. The beam is a steel wide-
flange section with E � 28 � 106 psi and an allowable bending stress 
of 17,500 psi in both tension and compression. 

Calculate the ratio � /L of the deflection at the free end to the length,
assuming that the beam carries the maximum allowable load. (Use the 
formulas of Example 9-2.)

Solution 9.3-5 Cantilever beam (uniform load)
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L

h

q

E � 28 � 106 psi � � 17,500 psi

Calculate the ratio ��L.

Maximum deflection (Eq. 9-26): (1)

(2)

Flexure formula with 

s�
Mc

I
� ¢qL2

2
≤ ¢ h

2I
≤�

qL2h

4I

M �
qL2

2
:

∴  

�

L
�

qL3

8EI

�max �
qL4

8 EI

h

L
�

1

8
Solve for q:

(3)

Substitute q from (3) into (2):

Substitute numerical values:

�

L
�

17,500 psi

2(28 � 106 psi)
 (8) �

1

400

d

L
�
s

2E
 ¢L

h
≤

q �
4Is

L2h

Problem 9.3-6 A gold-alloy microbeam attached to a silicon wafer
behaves like a cantilever beam subjected to a uniform load (see 
figure). The beam has length L � 27.5 �m and rectangular cross
section of width b � 4.0 �m and thickness t � 0.88 �m. The total
load on the beam is 17.2 �N. 

If the deflection at the end of the beam is 2.46 �m, what is 
the modulus of elasticity Eg of the gold alloy? (Use the formulas 
of Example 9-2.) 

Solution 9.3-6 Gold-alloy microbeam

t

L

q

b

Cantilever beam with a uniform load.
L � 27.5 �m b � 4.0 �m t � 0.88 �m
qL � 17.2 �N �max � 2.46 �m

Determine Eq.

Eq. (9-26): or

Eq �
3 qL4

2 bt3�max

I �
bt3

12

Eq �
qL4

8 I�max
� �

qL4

8 EqI

Substitute numerical values:

� 80.02 � 109 N�m2 or Eq � 80.0 GPa

Eq �
3(17.2 mN)(27.5 mm)3

2(4.0 mm)(0.88 mm)3(2.46 mm)



Problem 9.3-7 Obtain a formula for the ratio �C /�max of the deflection 
at the midpoint to the maximum deflection for a simple beam supporting 
a concentrated load P (see figure). 

From the formula, plot a graph of �C /�max versus the ratio a /L that
defines the position of the load (0.5 � a /L � 1). What conclusion do you
draw from the graph? (Use the formulas of Example 9-3.)

Solution 9.3-7 Simple beam (concentrated load)
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a b
L

A B

P

Eq. (9-35):

Eq. (9-34):

Replace the distance b by the distance a by
substituting L � a for b:

Divide numerator and denominator by L2:

ALTERNATIVE FORM OF THE RATIO

Let

�c

�max
�

(3�3)(�1 � 8b� 4b2)

16(2b� b2)3�2

b�
a

L

�c

�max
�

(3�3)¢�1 � 8
a

L
� 4

a2

L2≤

16 ¢2a

L
�

a2

L2≤
3�2

�c

�max
�

(3�3L)¢�1 � 8
a

L
� 4

a2

L2≤

16L ¢2a

L
�

a2

L2≤
3�2

�c

�max
�

(3�3L)(�L2 � 8ab � 4a2)

16(2aL � a2)3�2

�c

�max
�

(3�3L)(3L2 � 4b2)

16(L2 � b2)3�2 �(a 	 b)

�max �
Pb(L2 � b2)3�2

9�3 LEI
�(a 	 b)

�C �
Pb(3L2 � 4b2)

48EI
�(a 	 b) GRAPH OF �c��max VERSUS � � a �L

Because a 	 b, the ratio � versus from 0.5 to 1.0.

NOTE: The deflection �c at the midpoint of the beam 
is almost as large as the maximum deflection �max. 
The greatest difference is only 2.6% and occurs when
the load reaches the end of the beam (� � 1).

0.974

0.75 1.00.5
0.95

1.0

�c
�max

� = aL

�c

�max

�

0.5 1.0
0.6 0.996
0.7 0.988
0.8 0.981
0.9 0.976
1.0 0.974



Deflections by Integration of the Bending-Moment Equation

Problems 9.3-8 through 9.3-16 are to be solved by integrating the second-order
differential equation of the deflection curve (the bending-moment equation).
The origin of coordinates is at the left-hand end of each beam, and all beams
have constant flexural rigidity EI. 

Problem 9.3-8 Derive the equation of the deflection curve for a cantilever
beam AB supporting a load P at the free end (see figure). Also, determine 
the deflection �B and angle of rotation �B at the free end. (Note: Use the
second-order differential equation of the deflection curve.)

Solution 9.3-8 Cantilever beam (concentrated load)

554 CHAPTER 9 Deflections of Beams

x

y

BA

P

L

BENDING-MOMENT EQUATION (EQ. 9-12a)

B.C.

EIv � �
P Lx2

2
�

Px3

6
� C2

v¿(0) � 0�∴ C2 � 0

EIv¿ � �PLx �
Px2

2
� C1

EIv– � M � �P(L � x)

B.C.

(These results agree with Case 4, Table G-1.)

uB � �v¿(L) �
PL2

2EI

�B � �v(L) �
PL3

3EI

v¿ � �
Px

2EI
 (2L � x)

v � �
Px2

6EI
 (3L � x)

v(0) � 0�∴ C1 � 0

Problem 9.3-9 Derive the equation of the deflection curve
for a simple beam AB loaded by a couple M0 at the left-hand
support (see figure). Also, determine the maximum deflection
�max. (Note: Use the second-order differential equation of the
deflection curve.) 

Solution 9.3-9 Simple beam (couple M0)

y

xA
M0

B

L

BENDING-MOMENT EQUATION (EQ. 9-12a)

B.C.

B.C.

v � �
M0x

6 LEI
 (2L2 � 3Lx � x2)

v(L) � 0�∴ C1 � �
M0L

3

v(0) � 0�∴ C2 � 0

EIv � M0 ¢x
2

2
�

x3

6L
≤� C1x � C2

EIv¿ � M0 ¢x �
x2

2L
≤� C1

EIv– � M � M0 ¢1 �
x

L
≤

MAXIMUM DEFLECTION

Set and solve for x:

Substitute x1 into the equation for v:

(These results agree with Case 7, Table G-2.)

�
M0 L2

9�3EI

�max � �(v)x�x1

x1 � L ¢1 �
�3

3
≤

v¿ � 0

v¿ � �
M0

6 LEI
 (2 L2 � 6 Lx � 3 x2)



Problem 9.3-10 A cantilever beam AB supporting a triangularly
distributed load of maximum intensity q0 is shown in the figure. 

Derive the equation of the deflection curve and then obtain
formulas for the deflection �B and angle of rotation �B at the free
end. (Note: Use the second-order differential equation of the
deflection curve.)

Solution 9.3-10 Cantilever beam (triangular load)
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BA

q0

x

y

L

BENDING-MOMENT EQUATION (EQ. 9-12a)

B.C.

EIv � �
q0

120L 
(L � x)5 �

q0L
3x

24
� C2

v¿(0) � 0�∴ c2 � �
q0 L3

24

EIv¿ �
q0

24L
 (L � x)4 � C1

EIv– � M � �
q0

6L
 (L � x)3

B.C.

(These results agree with Case 8, Table G-1.)

uB � �v¿(L) �
q0 L3

24 EI

�B � �v(L) �
q0 L4

30 EI

v¿ � �
q0 x

24 LEI
 (4 L3 � 6 L2x � 4 Lx2 � x3)

v � �
q0 x2

120 LEI
 (10 L3 � 10 L2x � 5 Lx2 � x3)

v(0) � 0�∴ c2 �
q0 L4

120

Problem 9.3-11 A cantilever beam AB is acted upon by a uniformly
distributed moment (bending moment, not torque) of intensity m
per unit distance along the axis of the beam (see figure). 

Derive the equation of the deflection curve and then obtain 
formulas for the deflection �B and angle of rotation �B at the free end.
(Note: Use the second-order differential equation of the deflection curve.)

Solution 9.3-11 Cantilever beam (distributed moment)

BA

y

x

m

L

BENDING-MOMENT EQUATION (EQ. 9-12a)

B.C.

B.C. v(0) � 0�∴ C2 � 0

EIv � �m ¢Lx2

2
�

x3

6
≤� C2

v¿(0) � 0�∴ C1 � 0

EIv¿ � �m ¢Lx �
x2

2
≤� C1

EIv– � M � �m(L � x)

uB � �v¿(L) �
mL2

2 EI

�B � �v(L) �
mL3

3 EI

v¿ � �
mx

2EI
 (2L � x)

v � �
mx2

6 EI
 (3L � x)

Problem 9.3-12 The beam shown in the figure has a roller support at A
and a guided support at B. The guided support permits vertical movement
but no rotation. 

Derive the equation of the deflection curve and determine the
deflection �B at end B due to the uniform load of intensity q. (Note:
Use the second-order differential equation of the deflection curve.) 

A
B

q
y

x

L
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Problem 9.3-13 Derive the equations of the deflection curve 
for a simple beam AB loaded by a couple M0 acting at distance 
a from the left-hand support (see figure). Also, determine the
deflection �0 at the point where the load is applied. (Note: Use
the second-order differential equation of the deflection curve.) 

Solution 9.3-13 Simple beam (couple M0)

y

xA B

M0

a b

L

BENDING-MOMENT EQUATION (EQ. 9-12a)

(0 
 x 
 a)

(0 
 x 
 a)

(a 
 x 
 L)

(a 
 x 
 L)

B.C. 1 ( )Left � ( )Right at x � a

� C2 � C1 � M0a

(0 
 x 
 a)

B.C. 2 v(0) � 0 � C3 � 0

(a 
 x 
 L)

EIv � �
M0 x2

2
�

M0 x3

6L
� C1x � M0 ax � C4

EIv �
M0 x3

6L
� C1x � C3

v¿v¿

EIv¿ � �
M0

L
 ¢Lx �

x2

2
≤� C2

EIv– � M � �
M0

L
 (L � x)

EIv¿ �
M0 x2

2L
� C1

EIv– � M �
M0 x

L

B.C. 3 v(L) � 0

B.C. 4 (v)Left � (v)Right at x � a

(0 
 x 
 a)

(a 
 x 
 L)

NOTE: �0 is positive downward. The pending results
agree with Case 9, Table G-2.

�
M0 ab(2a � L)

3LEI

�0 � �v(a) �
M0 a(L � a)(2a � L)

3 LEI

v � �
M0

6 LEI
 (3a2L � 3a2x � 2L2x � 3Lx2 � x3)

v � �
M0 x

6 LEI
 (6aL � 3a2 � 2L2 � x2)

C1 �
M0

6L
 (2L2 � 6aL � 3a2)

∴ C4 � �
M0 a2

2

∴ C4 � �M0 L ¢a �
L

3
≤� C1L

Solution 9.3-12 Beam with a guided support
REACTIONS AND DEFLECTION CURVE BENDING-MOMENT EQUATION (EQ. 9-12a)

B.C. v(L) � 0

B.C. v(0) � 0 � C2 � 0

�B � �v(L) �
5 qL4

24 EI

v � �
qx

24 EI
 (8L3 � 4Lx2 � x3)

EIv �
qLx3

6
�

qx4

24
�

qL3x

3
� C2

∴  C1 � �
qL3

3

EIv¿ �
qLx2

2
�

qx3

6
� C1

EIv– � M � qLx �
qx2

2

L

q

MB = 
qL2

2
x

B

RA = qL

A

y

�B 

x

B

A
y
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Problem 9.3-14 Derive the equations of the deflection curve 
for a cantilever beam AB carrying a uniform load of intensity 
q over part of the span (see figure). Also, determine the 
deflection �B at the end of the beam. (Note: Use the 
second-order differential equation of the deflection curve.) 

Solution 9.3-14 Cantilever beam (partial uniform load)

A B

q

y

x

L

a b

BENDING-MOMENT EQUATION (EQ. 9-12a)

(0 
 x 
 a)

(0 
 x 
 a)

B.C. 1 (0) � 0 � C1 � 0
� M � 0 (a 
 x 
 L)
� C2 (a 
 x 
 L)

B.C. 2 ( )Left � ( )Right at x � a

(0 
 x 
 a)EIv � �
q

2
 ¢a

2x2

2
�

ax3

3
�

x4

12
≤� C3

∴ C2 � �
qa3

6

v¿v¿

EIv¿
EIv–

v¿

EIv¿ � �
q

2
 ¢a2x � ax2 �

x3

3
≤� C1

EIv– � M � �
q

2
 (a � x)2 � �

q

2
 (a2 � 2ax � x2)

B.C. 3 v(0) � 0 � C3 � 0

(a 
 x 
 L)

B.C. 4 (v)Left � (v)Right at x � a

(0 
 x 
 a)

(a 
 x 
 L)

(These results agree with Case 2, Table G-1.)

�B � �v(L) �
qa3

24 EI
 (4L � a)

v � �
qa3

24 EI
 (4x � a)

v � �
qx2

24 EI
 (6a2 � 4ax � x2)

∴ C4 �
qa4

24

EIv � C2 x � C4 � �
qa3x

6
� C4

Problem 9.3-15 Derive the equations of the deflection curve for a
cantilever beam AB supporting a uniform load of intensity q acting 
over one-half of the length (see figure). Also, obtain formulas for the
deflections �B and �C at points B and C, respectively. (Note: Use 
the second-order differential equation of the deflection curve.) 

Solution 9.3-15 Cantilever beam (partial uniform load)

L
2

A BC

q

x

y

—
L
2
—

BENDING-MOMENT EQUATION (EQ. 9-12a)

¢0 
 x 

L

2
≤EIv¿ � �

qL

8
 (3Lx � 2x2) � C1

¢0 
 x 

L

2
≤EIv– � M � �

qL

8
 (3L � 4x)

B.C. 1 (0) � 0 � C1 � 0

¢L
2


 x 
 L≤EIv¿ � �
q

2
 ¢L2x � Lx2 �

x3

3
≤� C2

¢L
2


 x 
 L≤EIv– � M � �
q

2
 (L2 � 2Lx � x2)

v¿
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Problem 9.3-16 Derive the equations of the deflection curve 
for a simple beam AB with a uniform load of intensity q acting
over the left-hand half of the span (see figure). Also, determine
the deflection �C at the midpoint of the beam. (Note: Use the 
second-order differential equation of the deflection curve.) 

Solution 9.3-16 Simple beam (partial uniform load)

A B

C

q

x

y

—L
2

—L
2

BENDING-MOMENT EQUATION (EQ. 9-12a)

B.C. 1 ( )Left � ( )Right at 

¢0 
 x 

L

2
≤EIv �

qLx3

16
�

qx4

24
� C1x � C3

∴ C2 � C1 �
qL2

48

x �
L

2
v¿v¿

¢L
2


 x 
 L≤EIv¿ �
qL2x

8
�

qLx2

16
� C2

¢L
2


 x 
 L≤EIv– � M �
qL2

8
�

qLx

8

¢0 
 x 

L

2
≤EIv¿ �

3qLx2

16
�

qx3

6
� C1

¢0 
 x 

L

2
≤EIv– � M �

3qLx

8
�

qx2

2

B.C. 2 v(0) � 0 � C3 � 0

B.C. 3 v(L) � 0

B.C. 4 (v)Left � (v)Right at 

(These results agree with Case 2, Table G-2.)

�C � �v ¢L
2
≤�

5qL4

768EI

¢L
2


 x 
 L≤
v � �

qL

384EI
 (8x3 � 24Lx2 � 17L2x � L3)

¢0 
 x 

L

2
≤v � �

qx

384EI
 (9L3 � 24Lx2 � 16x3)

∴ C1 � �
3qL3

128

x �
L

2

∴ C4 � �C1L �
qL4

48

¢L
2


 x 
 L≤
EIv �

qL2x2

16
�

qLx3

48
� C1x �

qL3x

48
� C4

B.C. 2 ( )Left � ( )Right at 

B.C. 3 v(0) � 0 � C3 � 0

¢L
2


 x 
 L≤

EIv � �
q

2
 ¢L

2x2

2
�

Lx3

3
�

x4

12
≤�

qL3

48
x � C4

¢0 
 x 

L

2
≤EIv � �

qL

8
 ¢3Lx2

2
�

2x3

3
≤� C3

∴ C2 �
qL3

48

x �
L

2
v¿v¿ B.C. 4 (v)Left � (v)Right at 

�B � �v(L) �
41qL4

384EI

¢L
2


 x 
 L≤
v � �

q

384 EI
 (16x4 � 64 Lx3 � 96 L2x2 � 8 L3x � L4)

�C � �v ¢L
2
≤�

7qL4

192EI

¢0 
 x 

L

2
≤v � �

qLx2

48 EI
 (9L � 4x)

∴ C4 � �
qL4

384

x �
L

2
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Differential Equations of the Deflection Curve

The beams described in the problems for Section 9.4 have constant
flexural rigidity EI. Also, the origin of coordinates is at the left-hand
end of each beam.

Problem 9.4-1 Derive the equation of the deflection curve for a
cantilever beam AB when a couple M0 acts counterclockwise at the 
free end (see figure). Also, determine the deflection �B and slope 
�B at the free end. Use the third-order differential equation of the
deflection curve (the shear-force equation).

Solution 9.4-1 Cantilever beam (couple M0)

x

y

BA

M0

L

SHEAR-FORCE EQUATION (EQ. 9-12 b).

B.C. 1 M � M0 � M � M0 � C1

� C1x � C2 � M0x � C2

B.C. 2 (0) � 0 � C2 � 0

EIv �
M0 x2

2
� C3

v¿

EIv¿
EIv–

EIv– � C1

EIv‡ �  V �  0

B.C. 3 v(0) � 0 � C3 � 0

(upward)

(counterclockwise)

(These results agree with Case 6, Table G-1.)

uB � v¿(L) �
M0 L

EI

�B � v(L) �
M0 L2

2 EI

v¿ �
M0 x

EI

v �
M0 x2

2 EI

Problem 9.4-2 A simple beam AB is subjected to a distributed load 
of intensity q � q0 sin �x/L, where q0 is the maximum intensity of 
the load (see figure). 

Derive the equation of the deflection curve, and then determine 
the deflection �max at the midpoint of the beam. Use the fourth-order
differential equation of the deflection curve (the load equation). 

Solution 9.4-2 Simple beam (sine load)

A

y

x

�x
L
—

L

B

q = q0 sin

LOAD EQUATION (EQ. 9-12 c).

B.C. 1 � C2 � 0

B.C. 2 � C1 � 0

EIv � �q0 ¢L
�
≤

4

 sin 
�x

L
� C3x � C4

EIv¿ � �q0 ¢L
�
≤

3

 cos 
�x

L
� C3

EIv–(L) � 0

EIv–(0) � 0EIv– � M

EIv– � q0 ¢L
�
≤

2

 sin 
�x

L
� C1x � C2

EIv‡ � q0 ¢L
�
≤ cos 

�x

L
� C1

EIv–– � �q � �q0 sin 
�x

L

B.C. 3 v(0) � 0 � C4 � 0

B.C. 4 v(L) � 0 � C3 � 0

(These results agree with Case 13, Table G-2.)

�max � �v ¢L
2
≤�

q0L
4

�4EI

v � �
q0 L4

�4EI
 sin 

�x

L
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Problem 9.4-3 The simple beam AB shown in the figure 
has moments 2M0 and M0 acting at the ends. 

Derive the equation of the deflection curve, and then 
determine the maximum deflection �max. Use the third-order 
differential equation of the deflection curve (the shear-force 
equation). 

Solution 9.4-3 Simple beam with two couples

y

xA
B M0

2M0

L

Reaction at support A: (downward)

Shear force in beam:

SHEAR-FORCE EQUATION (EQ. 9-12 b)

B.C. 1 � C1 � 2M0

B.C. 2 v(0) � 0 � C3 � 0

EIv � �
M0 x3

2L
� M0 x2 � C2 x � C3

EIv¿ � �
3M0 x2

2L
� 2M0 x � C2

EIv–(0) � 2M0EIv– � M

EIv– � �
3M0 x

L
� C1

EIv‡ � V � �
3M0

L

V � �RA � �
3M0

L

RA �
3M0

L
B.C. 3 v(L) � 0

MAXIMUM DEFLECTION

Set v� � 0 and solve for x:

x1 � L and 

Maximum deflection occurs at .

(downward)�max � �v ¢L
3
≤�

2M0 L2

27 EI

x2 �
L

3

x2 �
L

3

v¿ � �
M0

2LEI
 (L � x)(L � 3x)

v � �
M0 x

2 LEI
 (L2 � 2 Lx � x2) � �

M0 x

2 LEI
 (L � x)2

∴ C2 � �
M0 L

2

Problem 9.4-4 A simple beam with a uniform load is pin supported
at one end and spring supported at the other. The spring has stiffness 
k � 48EI/L3. 

Derive the equation of the deflection curve by starting with 
the third-order differential equation (the shear-force equation). 
Also, determine the angle of rotation �A at support A. 

Solution 9.4-4 Beam with a spring support

y

xA

48EI
L3

B

—k =

q

L

REACTIONS

DEFLECTIONS AT END B

�B �
RB

k
�

qL

2k
�

qL4

96EI
k �

48EI

L3

y

xA

qL
2

B

—RB =

q

L

k

qL
2

—RA =
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Problem 9.4-5 The distributed load acting on a cantilever beam AB
has an intensity q given by the expression q0 cos �x /2L, where q0 is 
the maximum intensity of the load (see figure). 

Derive the equation of the deflection curve, and then determine
the deflection �B at the free end. Use the fourth-order differential 
equation of the deflection curve (the load equation).

Solution 9.4-5 Cantilever beam (cosine load)

A

y

x

�x
2L
—

B

q = q0 cosq0

L

LOAD EQUATION (EQ. 9-12 c)

B.C. 1

B.C. 2

EIv¿ � q0 ¢2L
�
≤

3

 sin 
�x

2L
�

q0 Lx2

�
�

2q0 L2x

�
� C3

∴ C2 � �
2q0 L2

�
EIv–(L) � 0EIv– � M

EIv– � q0 ¢2L
�
≤

2

 cos 
�x

2L
�

2q0 Lx

�
� C2

∴ C1 �
2q0 L

�
EIv‡(L) � 0EIv‡ � V

EIv‡ � �q0 ¢2L
�
≤ sin 

�x

2L
� C1

EIv–– � �q � �q0 cos 
�x

2L

B.C. 3 � C3 � 0

B.C. 4 v(0) � 0

(These results agree with Case 10, Table G-1.)

�B � �v(L) �
2q0 L4

3�4EI
 (�3 � 24)

v � �
q0 L

3�4EI
 ¢48L3 cos 

�x

2L
� 48L3 � 3�3 Lx2 � �3x3≤

∴ C4 �
16q0L

4

�4

EIv � �q0 ¢2L
�
≤

4

 cos 
�x

2L
�

q0 Lx3

3�
�

q0 L2x2

�
� C4

v¿(0) � 0

SHEAR-FORCE EQUATION (EQ. 9-12 b)

B.C. 1 � C1 � 0

EIv �
q

2
 ¢Lx3

6
�

x4

12
≤� C2x � C3

EIv¿ �
q

2
 ¢Lx2

2
�

x3

3
≤� C2

EIv–(0) � 0EIv– � M

EIv– �
q

2
 (Lx � x2) � C1

EIv‡ � V �
q

2
 (L � 2x)

V � RA � qx �
q

2
 (L � 2x)

B.C. 2 v(0) � 0 � C3 � 0

B.C. 3

(clockwise)uA � �v¿(0) �
5qL3

96EI

v¿ � �
q

96 EI
 (5 L3 � 24 Lx2 � 16x3)

v � �
qx

96EI
 (5L3 � 8Lx2 � 4x3)

∴ C2 � �
5qL3

96

v(L) � ��B � �
qL4

96 EI
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Problem 9.4-6 A cantilever beam AB is subjected to a parabolically varying
load of intensity q � q0(L2 � x2) /L2, where q0 is the maximum intensity of
the load (see figure). 

Derive the equation of the deflection curve, and then determine the
deflection �B and angle of rotation �B at the free end. Use the fourth-order
differential equation of the deflection curve (the load equation). 

Solution 9.4-6 Cantilever beam (parabolic load)

A

y

x

L2 �x2

L2—

B

q = q0 
q0

L

LOAD EQUATION (EQ. 9-12 c)

B.C. 1

B.C. 2

EIv¿ � �
q0

L2  ¢L
2x3

6
�

x5

60
≤�

q0Lx2

3
�

q0L
2x

4
� C3

∴ C2 � �
q0L

2

4
EIv–(L) � 0EIv– � M

EIv– � �
q0

L2  ¢L
2x2

2
�

x4

12
≤�

2q0L

3
 x � C2

∴ C1 �
2q0L

3
EIv‡(L) � 0EIv‡ � V

EIv‡ � �
q0

L2  ¢L2x �
x3

3
≤� C1

EIv–– � �q � �
q0

L2  (L2 � x2)

B.C. 3 � C3 � 0

B.C. 4 v(0) � 0 � C4 � 0

uB � �v¿(L) �
q0L

3

15EI

v¿ � �
q0 x

60L2EI
 (15L4 � 20L3x � 10L2x2 � x4)

�B � �v(L) �
19q0 L4

360 EI

v � �
q0 x2

360 L2EI
 (45L4 � 40L3x � 15L2x2 � x4)

EIv � �
q0

L2  ¢L
2x4

24
�

x6

360
≤�

q0 Lx3

9
�

q0 L2x2

8
� C4

v¿(0) � 0

Problem 9.4-7 A beam on simple supports is subjected to a 
parabolically distributed load of intensity q � 4q0x(L � x) /L2, 
where q0 is the maximum intensity of the load (see figure). 

Derive the equation of the deflection curve, and then 
determine the maximum deflection �max. Use the fourth-
order differential equation of the deflection curve (the load 
equation). 

Solution 9.4-7 Single beam (parabolic load)

A

y

x

4q0 x
L2

 

—

B

q =  (L � x)

L

LOAD EQUATION (EQ. 9-12 c)

B.C. 1 � C2 � 0]

B.C. 2

EIv¿ � �
q0

30L2  (�5L3x2 � 5L x4 � 2x5) � C3

∴ C1 �
q0 L

3
EIv–(L) � 0

EIv–(0) � 0EIv– � M

EIv– � �
q0

3L2  (2Lx3 � x4) � C1x � C2

EIv‡ � �
2q0

3L2  (3Lx2 � 2x3) � C1

EIv–– � �q � �
4q0 x

L2  (L � x) � �
4q0

L2  (Lx � x2)

B.C. 3 (Symmetry)

B.C. 4 v(0) � 0 � C4 � 0

�max � �v ¢L
2
≤�

61q0L
4

5760 EI

v � �
q0 x

90L2EI
 (3L5 � 5L3x2 � 3Lx4 � x5)

EIv � �
q0

30L2  ¢L5x �
5L3x3

3
� L x5 �

x6

3
≤� C4

∴ C3 � �
q0L

3

30
v¿¢L

2
≤� 0
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Problem 9.4-8 Derive the equation of the deflection curve for a
simple beam AB carrying a triangularly distributed load of maximum
intensity q0 (see figure). Also, determine the maximum deflection �max
of the beam. Use the fourth-order differential equation of the deflection
curve (the load equation). 

Solution 9.4-8 Simple beam (triangular load)

A

y
q0

x
B

L

LOAD EQUATION (EQ. 9-12 c)

B.C. 1 � C2 � 0

B.C. 2

B.C. 3 v(0) � 0 � C4 � 0

EIv � �
q0 x5

120L
�

q0 Lx3

36
� C3x � C4

EIv¿ � �
q0 x4

24L
�

q0 L x2

12
� C3

∴ C1 �
q0L

6
EIv–(L) � 0

EIv–(0) � 0EIv– � M

EIv– � �
q0 x3

6L
� C1x � C2

EIv‡ � �
q0 x2

2L
� C1EIv–– � �q � �

q0 x

L

B.C. 4 v(L) � 0

MAXIMUM DEFLECTION

Set v� � 0 and solve for x:

x1 � 0.51933L

(These results agree with Case 11, Table G-2.)

� 0.006522 
q0 L4

EI

�max � �v (x1) �
q0 L4

225EI
 ¢5

3
�

2

3
�A 8

15
≤

1�2

x2
1 � L2 ¢1 �A 8

15
≤

v¿ � �
q0

360 LEI
 (7L4 � 30L2x2 � 15x4)

v � �
q0 x

360 LEI
 (7L4 � 10L2x2 � 3x4)

∴ C3 � �
7q0 L3

360

Problem 9.4-9 Derive the equations of the deflection curve for an
overhanging beam ABC subjected to a uniform load of intensity q
acting on the overhang (see figure). Also, obtain formulas for the
deflection �C and angle of rotation �C at the end of the overhang. 
Use the fourth-order differential equation of the deflection curve 
(the load equation).

Solution 9.4-9 Beam with an overhang

A CB

qy

x

L
—
2

L

LOAD EQUATION (EQ. 9-12 c)

(0 � x � L)
(0 � x � L)
(0 � x � L)

B.C. 1 � C2 � 0

B.C. 2

¢L � x �
3L

2
≤EIv– � �

qx2

2
�

3qLx

2
� C4

∴ C3 �
3qL

2
EIv‡¢3L

2
≤� 0EIv‡ � V

¢L � x �
3L

2
≤EIv‡ � �qx � C3

¢L � x �
3L

2
≤EIv–– � �q

EIv–(0) � 0EIv– � M

EIv– � C1 x � C2

EIv‡ � C1

EIv–– � �q � 0

B.C. 3

B.C. 4 at x � L

(0 � x � L)

¢L � x �
3L

2
≤

EIv¿ � �
qx3

6
�

3qLx2

4
�

9qL2x

8
� C6

EIv¿ � �
qLx2

16
� C5

∴ C1 � �
qL

8
C1L � �

qL2

2
�

3qL2

2
�

9qL2

8

EI(v–)Left � EI(v–)Right

∴ C4 � �
9qL2

8
EIv–¢3L

2
≤� 0EIv– � M
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B.C. 5 at x � L

(a)

(0 � x � L)

B.C. 6 v(0) � 0 � C7 � 0

B.C. 7 v(L) � 0 for 0 � x � L

From Eq.(a):

¢L � x �
3L

2
≤

EIv � �
qx4

24
�

3qLx3

12
�

9qL2x2

16
�

qL3x

2
� C8

C6 �
qL3

2

∴ C5 �
qL3

48

EIv � �
qLx3

48
� C5 x � C7

∴ C6 � C5 �
23qL3

48

(v¿)Left � (v¿)Right B.C. 8 v(L) � 0 for

(0 � x � L)

uC � �v¿  ¢3L

2
≤�

qL3

16 EI

�C � �v ¢3L

2
≤�

11qL4

384 EI

¢L � x �
3L

2
≤

v � �
q(L � x)

48 EI
 (7L3 � 17L2x � 10Lx2 � 2x3)

v � �
qLx

48 EI
 (L2 � x2)

∴ C8 � �
7qL4

48
L � x �

3L

2

Problem 9.4-10 Derive the equations of the deflection curve for a
simple beam AB supporting a triangularly distributed load of maximum
intensity q0 acting on the right-hand half of the beam (see figure). Also,
determine the angles of rotation �A and �B at the ends and the deflection
�C at the midpoint. Use the fourth-order differential equation of the
deflection curve (the load equation). 

Solution 9.4-10 Simple beam (triangular load)

A
BC

q0y

x

L
—
2

L
—
2

LOAD EQUATION (EQ. 9-12 c)

Left-hand half (part AC):

Right-hand half (part CB):

PART AC q � 0

PART CB

EIv– �
q0

L
 ¢Lx2

2
�

x3

3
≤� C5 x � C6

EIv‡ �
q0

L
 (Lx � x2) � C5

EIv–– � �q �
q0

L
 (L � 2x)

q �
q0

L
 (2x � L)

EIv � C1 ¢x
3

6
≤� C2 ¢x

2

2
≤� C3 x � C4

EIv¿ � C1 ¢x
2

2
≤� C2 x � C3EIv– � C1 x � C2

EIv‡ � C1EIv–– � �q � 0

1

2
� x � L

0 � x �
L

2

BOUNDARY CONDITIONS

B.C. 1 at 

(1)

B.C. 2
C2 � 0 (2)

B.C. 3 (3)

B.C. 4 for 

(4)C1L � C5 L � 2C6 �
q0 L2

6

x �
L

2
(EIv–)AC � (EIv–)CB

C5 L � C6 � �
q0 L2

6
EIv¿(L) � 0

EIv–(0) � 0EIv– � M

C1 � C5 �
q0 L

4

x �
L

2
EI(v‡ )AC � EI(v‡ )BCEIv‡ � V

EIv �
q0

L
 ¢Lx4

24
�

x5

60
≤� C5 ¢x

3

6
≤� C6 ¢x

2

2
≤� C7x � C8

EIv¿ �
q0

L
 ¢Lx3

6
�

x4

12
≤� C5 ¢x

2

2
≤� C6 x � C7
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B.C. 5 for 

(5)

B.C. 6 v(0) � 0 C4 � 0 (6)

B.C. 7 v(L) � 0

(7)

B.C. 8 (v)AC � (v)CB for

C1L3 � 24C3L � C5L3 � 6C6L2 � 24C7L � 48C8

(8)

SOLVE EQS. (1) THROUGH (B):

C2 � 0

C4 � 0

Substitute constants into equations for v and v¿.

CB �
q0L

4

1920
C7 � �

67q0L
3

5760

C6 �
q0 L2

24
C5 � �

5q0 L

24

C3 � �
37q0 L3

5760
C1 �

q0 L

24

�
q0L

4

10

x �
L

2

C5 L3 � 3C6 L2 � 6C7 L � 6C8 � �
3q0 L4

20

C1L
2 � 8C3 � C5 L2 � 4C6 L � 8C7 �

q0 L3

8

x �
L

2
(v¿)AC � (v¿)CB DEFLECTION CURVE FOR PART AC

DEFLECTION CURVE FOR PART CB

uB � v¿(L) �
53q0 L3

5760EI

v¿ � �
q0

5760 LEI
 [L2 (37L2 � 120x2) � 30(2x � L)4 ]

v � �
q0

5760 LEI
 [L2x (37 L2 � 40x2) � 3(2x � L)5 ]

¢L
2

� x � L≤

�C � �v ¢L
2
≤�

3q0 L4

1280 EI

uA � �v¿(0) �
37q0 L3

5760 EI

v¿ � �
q0 L

5760EI
 (37 L2 � 120x2)

v � �
q0Lx

5760EI
 (37L2 � 40x2)

¢0 � x �
L

2
≤

Method of Superposition

The problems for Section 9.5 are to be solved by the method of 
superposition. All beams have constant flexural rigidity EI.

Problem 9.5-1 A cantilever beam AB carries three equally spaced
concentrated loads, as shown in the figure. Obtain formulas for the
angle of rotation �B and deflection �B at the free end of the beam.

Solution 9.5-1 Cantilever beam with 3 loads

A

P P

B

P

L
3
—L

3
—L

3
—

Table G-1, Cases 4 and 5

uB �

P ¢L
3
≤

2

2EI
�

P ¢2L

3
≤

2

2 EI
�

PL2

2 EI
�

7PL2

9 EI
�

5PL3

9 EI

�B �

P ¢L
3
≤

2

6 EI
 ¢3L �

L

3
≤�

P ¢2L

3
≤

2

6 EI
 ¢3L �

2L

3
≤�

PL3

3 EI



Problem 9.5-2 A simple beam AB supports five equally spaced loads 
P (see figure). 

(a) Determine the deflection �1 at the midpoint of the beam. 
(b) If the same total load (5P) is distributed as a uniform load 

on the beam, what is the deflection �2 at the midpoint? 
(c) Calculate the ratio of �1 to �2. 

Solution 9.5-2 Simple beam with 5 loads

566 CHAPTER 9 Deflections of Beams

BA

P P P P P

L
6
—L

6
—L

6
—L

6
—L

6
—L

6
—

(a) Table G-2, Cases 4 and 6

�
11PL3

144 EI

P ¢L
3
≤

24 EI
 B3L2 � 4 ¢L

3
≤

2R �
PL3

48 EI

�1 �

P ¢L
6
≤

24 EI
 B3L2 � 4 ¢L

6
≤

2R �

(b) Table G-2, Case 1 qL � 5P

(c) 
�1

�2
�

11

144
 ¢384

25
≤�

88

75
� 1.173

�2 �
5qL4

384 EI
�

25 PL3

384 EI

Problem 9.5-3 The cantilever beam AB shown in the figure has an extension
BCD attached to its free end. A force P acts at the end of the extension. 

(a) Find the ratio a/L so that the vertical deflection of point B will be zero. 
(b) Find the ratio a/L so that the angle of rotation at point B will be zero. 

Solution 9.5-3 Cantilever beam with extension

L

A B

C
D

P
a

Table G-1, Cases 4 and 6

(a)

(b)
a

L
�

1

2
uB �

PL2

2EI
�

PaL

EI
� 0

a

L
�

2

3
�B �

PL3

3EI
�

PaL2

2EI
� 0

L

A B

P

Pa



Problem 9.5-4 Beam ACB hangs from two springs, as shown 
in the figure. The springs have stiffnesses k1 and k2 and the beam
has flexural rigidity EI. 

What is the downward displacement of point C, which 
is at the midpoint of the beam, when the load P is applied? 

Data for the structure are as follows: P � 8.0 kN, 
L � 1.8 m, EI � 216 kN�m2, k1 � 250 kN/m, and 
k2 � 160 kN/m. 

Solution 9.5-4 Beam hanging from springs
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k2 = 160 kN/mk1 = 250 kN/m

P = 8.0 kN

A B
C

L = 1.8 m

P � 8.0 kN L � 1.8 m
EI � 216 kN � m2 k1 � 250 kN/m
k2 � 160 kN/m

Stretch of springs:

Table G-2, Case 4

�
PL3

48EI
�

P

4
 ¢ 1

k1
�

1

k2
≤

�C �
PL3

48 EI
�

1

2
 ¢P�2

k1
�

P�2
k2
≤

�B �
P�2
k2

�A �
P�2
k1

Substitute numerical values:

� 4.5 mm � 20.5 mm
� 25 mm

�
8.0 kN

4
 ¢ 1

250 kN�m
�

1

160 kN�m
≤

�C �
(8.0 kN)(1.8 m)3

48 (216 kŇ � m̌2)

Problem 9.5-5 What must be the equation y � f (x) of the axis 
of the slightly curved beam AB (see figure) before the load is applied 
in order that the load P, moving along the bar, always stays at the 
same level? 

Solution 9.5-5 Slightly curved beam

A

P

B

y

x

L

Let x � distance to load P
� � downward deflection at load P

Table G-2, Case 5:

� �
P(L � x)  x

6LEI
 [L2 � (L � x)2 � x2 ] �

Px2 (L � x)2

3LEI

Initial upward displacement of the beam must equal �.

∴ y �
Px2 (L � x)2

3LEI



Problem 9.5-7 The cantilever beam ACB shown in the figure 
has flexural rigidity EI � 2.1 � 106 k-in.2 Calculate the downward 
deflections �C and �B at points C and B, respectively, due to the 
simultaneous action of the moment of 35 k-in. applied at point C
and the concentrated load of 2.5 k applied at the free end B. 

Problem 9.5-6 Determine the angle of rotation �B and deflection �B at
the free end of a cantilever beam AB having a uniform load of intensity q
acting over the middle third of its length (see figure). 

Solution 9.5-6 Cantilever beam (partial uniform load)
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A B

q

L
3
—L

3
—L

3
—

q � intensity of uniform load

Original load on the beam:

Load No. 1:

Load No. 2:

SUPERPOSITION: Original load � Load No. 1 minus
Load No. 2

Table G-1, Case 2

�
23qL4

648EI

�B �
q

24EI
 ¢2L

3
≤

3

¢4L �
2L

3
≤�

q

24EI
 ¢1

3
≤

3

¢4L �
L

3
≤

uB �
q

6EI
 ¢2L

3
≤

3

�
q

6EI
 ¢L

3
≤

3

�
7qL3

162EI
A B

q

L
3
—L

3
—L

3
—

B

L
3
—2L

3
—

B

2L
3

—L
3
—

A BC

35 k-in. 2.5 k

48 in. 48 in.
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EI � 2.1 � 106 k-in.2

M0 � 35 k-in.
P � 2.5 k
L � 96 in.

Table G-1, Cases 4.6, and 7

(� � downward deflection)� �
M0L2

8EI
�

5PL3

48EI

�C � �
M0(L�2)2

2EI
�

P(L�2)2

6EI
 ¢3L �

L

2
≤

(� � downward deflection)

SUBSTITUTE NUMERICAL VALUES:

�C � �0.01920 in. � 0.10971 in.
� 0.0905 in.

�B � �0.05760 in. � 0.35109 in.
� 0.293 in.

� �
3M0L

2

8EI
�

PL3

3EI

�B � �
M0(L�2)

2EI
 ¢2L �

L

2
≤�

PL3

3EI

A BC

Mo
P

L/2 L/2

Problem 9.5-8 A beam ABCD consisting of a simple span BD and an
overhang AB is loaded by a force P acting at the end of the bracket CEF
(see figure). 

(a) Determine the deflection �A at the end of the overhang. 
(b) Under what conditions is this deflection upward? Under what

conditions is it downward? 

Solution 9.5-8 Beam with bracket and overhang

EF

BA C
D

P

L
2
—

L
3

— 2L
3

—

a

Consider part BD of the beam.
M0 � Pa

Table G-2, Cases 5 and 9

(� � clockwise angle)�
PL

162EI
 (10L � 9a)

�
Pa

6LEI
 B6 ¢L

2

3
≤� 3 ¢L

2

9
≤� 2L2R

uB �
P (L�3)(2L�3)(5L�3)

6LEI

(a) DEFLECTION AT THE END OF THE OVERHANG

(� � upward deflection)

(b) Deflection is upward when and

downward when 
a

L
7

10

9

a

L
6

10

9

�A � uB ¢L
2
≤�

PL2

324 EI
 (10L � 9a)

B C
D

L
3

— 2L
3

—

P

Mo

Solution 9.5-7 Cantilever beam (two loads)



Problem 9.5-9 A horizontal load P acts at end C of the bracket ABC
shown in the figure. 

(a) Determine the deflection �C of point C. 
(b) Determine the maximum upward deflection �max of member AB. 
Note: Assume that the flexural rigidity EI is constant throughout the

frame. Also, disregard the effects of axial deformations and consider only
the effects of bending due to the load P.

Solution 9.5-9 Bracket ABC
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B
A

C

H

P

L

BEAM AB

M0 � PH

Table G-2, Case 7: uB �
M0 L

3EI
�

PHL

3EI

(a) ARM BC Table G-1, Case 4

(b) MAXIMUM DEFLECTION OF BEAM AB

Table G-2, Case 7: �max �
M0 L2

913EI
�

PHL2

913EI

�
PH 2

3EI
 (L � H)

�C �
PH 3

3EI
� u8H �

PH 3

3EI
�

PH 2L

3EI

BA
�max

L

Mo= PH

Problem 9.5-10 A beam ABC having flexural rigidity EI � 75 kN�m2

is loaded by a force P � 800 N at end C and tied down at end A by a
wire having axial rigidity EA � 900 kN (see figure). 

What is the deflection at point C when the load P is applied? 

Solution 9.5-10 Beam tied down by a wire

A

D

B C

P = 800 N

0.5 m 0.75 m
0.5 m

EI � 75 kN � m2

P � 800 N
EA � 900 kN

H � 0.5 m L1 � 0.5 m
L2 � 0.75 m

CONSIDER BC AS A CANTILEVER BEAM

Table G-1, Case 4: �¿C �
PL3

2

3EI

CONSIDER AB AS A SIMPLE BEAM

M0 � PL2

Table G-2, Case 7:

CONSIDER THE STRETCHING OF WIRE AD

DEFLECTION �C OF POINT C

SUBSTITUTE NUMERICAL VALUES:

�C � 1.50 mm � 1.00 mm � 1.00 mm � 3.50 mm 

�
PL3

2

3EI
�

PL1L
2
2

3EI
�

PL2
2H

EAL2
1

�C � �¿C � u¿B (L2) � �¿A ¢L2

L1
≤

�¿A � (Force in AD)  ¢ H

EA
≤� ¢PL2

L1
≤ ¢ H

EA
≤�

PL2H

EAL1

u¿B �
M0 L1

3EI
�

PL1L2

3EI

A

D

B C

P 

H L1 L2



SECTION 9.5 Method of Superposition 571

Problem 9.5-11 Determine the angle of rotation �B and deflection �B at
the free end of a cantilever beam AB supporting a parabolic load defined
by the equation q � q0x2/L2 (see figure). 

Solution 9.5-11 Cantilever beam (parabolic load)

A B

q0

x

y

L

LOAD: qdx � element of loadq �
q0 x2

L2

TABLE G-1, CASE 5 (Set a equal to x)

�
q0

6EIL2 �
L

0

 (x4) (3L � x)  dx �
13q0 L4

180EI

�
1

6EI
 �

L

0

 ¢q0 x2

L2 ≤ (x2) (3L � x)  dx

�B � �
L

0

 
(qdx)(x2)

6EI
 (3L � x)

�
q0

2EIL2  �
L

0

 x4dx �
q0 L3

10EI

uB � �
L

0

 
(qdx)(x2)

2EI
�

1

2EI �
L

0

 ¢q0 x2

L2 ≤ x2dx

A B

qdx

a

L

Problem 9.5-12 A simple beam AB supports a uniform load of 
intensity q acting over the middle region of the span (see figure). 

Determine the angle of rotation �A at the left-hand support 
and the deflection �max at the midpoint.

Solution 9.5-12 Simple beam (partial uniform load)

A B

L

a a

q

LOAD: qdx � element of load

TABLE G-2, CASE 6

Replace P by qdx

Replace a by x

Integrate x from a to L/2

TABLE G-2, CASE 6

Replace P by qdx

Replace a by x

Integrate x from a to L/2

�max �
Pa

24EI
 (3L2 � 4a2)

�
q

24EI
 (L3 � 6a2L � 4a3)

uA � �
L�2

a

 
qdx

2EI
 (x)(L � x) �

q

2EI
 �

L�2

a

 (xL � x2)  dx

uA �
Pa(L � a)

2EI

A B

L/2 L/2
a a

xx
qdxqdx
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ALTERNATE SOLUTION (not recommended; algebra is
extremely lengthy)

Table G-2, Case 3

�
q

24EI
 (L3 � 6La2 � 4a3)

uA �
q(L � a)2

24LEI
 [2L � (L � a) ] 2 �

qa2

24LEI
 (2L � a)2

�
q

384EI
 (5L4 � 24a2L2 � 16a4)

�
q

24EI
 �

L�2

a

 (3L2x � 4x3)  dx

�max � �
L�2

a

 
qdx

24EI
 (x)(3L2 � 4x2)

�max �
q

384EI
 (5L4 � 24L3a2 � 16a4)

� 6L¢L
2
≤

2

� 2¢L
2
≤

3R
�

qa2

24LEI
 B�La2 � 4L2¢L

2
≤� a2¢L

2
≤

� 4L(L � a)¢L
2
≤

2

� L¢L
2
≤

3R
� 4L2(L � a)2 � 2(L � a)2¢L

2
≤

2

�max �
q(L�2)

24LEI
 B (L � a)4 � 4L(L � a)3

A B

a a

q q

L-a

q

A

a

=

Problem 9.5-13 The overhanging beam ABCD supports two
concentrated loads P and Q (see figure). 

(a) For what ratio P/Q will the deflection at point B be zero? 
(b) For what ratio will the deflection at point D be zero?

Solution 9.5-13 Overhanging beam

(a) DEFLECTION AT POINT B

Table G-2, Cases 4 and 7

P

Q
�

3a

L
�B �

PL3

48EI
� Qa ¢ L2

16EI
≤� 0

(b) DEFLECTION AT POINT D

Table G-2, Case 4; Table G-1, Case 4; 
Table G-2, Case 7

P

Q
�

16a(L � a)

3L2

�D � �
PL2

16EI
 (a) �

Qa3

3EI
� Qa ¢ L

3EI
≤ (a) � 0

A DCB

a

P Q

L
2
—L

2
—



Problem 9.5-14 A thin metal strip of total weight W and length L is
placed across the top of a flat table of width L /3 as shown in the figure. 

What is the clearance � between the strip and the middle of the 
table? (The strip of metal has flexural rigidity EI.) 

Solution 9.5-14 Thin metal strip
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�

L
3
— L

3
—L

6
— L

6
—

W � total weight

EI � flexural rigidity

FREE BODY DIAGRAM (the part of the strip above the
table) 

q �
W

L
TABLE G-2, CASES 1 AND 10

But : ∴ � �
19WL3

31,104EI
q �

W

L

�
19qL4

31,104EI

� �
5qL4

31,104EI
�

qL4

1296EI

� � �
5q

384EI
 ¢L

3
≤

4

�
M0

8EI
 ¢L

3
≤

2

L/6 L/6

q

Mo Mo
 q-L2

18
—=

Problem 9.5-15 An overhanging beam ABC with flexural rigidity
EI � 15 k-in.2 is supported by a pin support at A and by a spring 

of stiffness k at point B (see figure). Span AB has length L � 30 in. 
and carries a uniformly distributed load. The overhang BC has length 
b � 15 in. 

For what stiffness k of the spring will the uniform load produce 
no deflection at the free end C? 

Solution 9.5-15 Overhanging beam with a spring support

A B C

L = 30 in. b = 15 in.

kEI = 15 k-in.2

EI � 15 k-in.2 L � 30 in. b � 15 in.
q � intensity of uniform load

(1) Assume that point B is on a simple support

Table G-2, Case 1

(upward deflection)

(2) Assume that the spring shortens

RB � force in the spring

(downward deflection)�
q

2k
 (L � b)

�–C � �B¢L � b

L
≤

�B �
RB

k
�

qL

2k

�
qL

2

�¿C � uB b �
qL3

24EI
 (b)

(3) Deflection at point C (equal to zero)

Solve for k:

Substitute numerical values: k � 20 lb/in.

k �
12EI

L3  ¢1 �
L

b
≤

�C � �¿C � �–C �
qL3b

24EI
�

q

2k
 (L � b) � 0



Problem 9.5-16 A beam ABCD rests on simple supports at 
B and C (see figure). The beam has a slight initial curvature 
so that end A is 15 mm above the elevation of the supports 
and end D is 10 mm above. 

What loads P and Q, acting at points A and D, respectively,
will move points A and D downward to the level of the supports?
(The flexural rigidity EI of the beam is 2.5 � 106 N � m2.) 

Solution 9.5-16 Beam with initial curvature
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A
D

CB

QP

10 mm15 mm

2.5 m2.5 m2.5 m

�A � 15 mm
�D � 10 mm
EI � 2.5 � 106 N � m2

L � 2.5 m

Table G-2, Case 7:

Table G-1, Case 4:

(Eq. 1)

In a similar manner,

(Eq. 2)

Solve Eqs. (1) and (2):

Substitute numerical values:
P � 3200 N Q � 1600 N

Q �
2EI

5L3  (4�D � �A)P �
2EI

5L3  (4�A � �D)

4Q � P �
6EI�D

L3

�D �
L3

6EI
 (4Q � P)

4P � Q �
6EI�A

L3

�A �
PL3

3EI
� uB L �

L3

6EI
 (4P � Q)

�
L2

6EI
 (2P � Q)

uB � PL ¢ L

3EI
≤� QL ¢ L

6EI
≤

A D

CB

QP

PL QL

�D�A

L LL

CB

L

Problem 9.5-17 The compound beam ABCD shown in the figure 
has fixed supports at ends A and D and consists of three members
joined by pin connections at B and C. 

Find the deflection � under the load P. 

Solution 9.5-17 Compound beam

A D

3b b b b

B C

P

Table G-1, Case 4 and Table G-2, Case 4

� �
1

2
 (�B � �C) �

P(2b)3

48EI
�

5Pb3

2EI

�C �
–PL3–
3EI

� ¢P
2
≤(b3)¢ 1

3EI
≤�

Pb3

6EI

�B �
–PL3–
3EI

� ¢P
2
≤(3b)3¢ 1

3EI
≤�

9Pb3

2EIA D

3b 2b b

B C

P

�B
�C



Problem 9.5-18 A compound beam ABCDE (see figure) consists of two
parts (ABC and CDE) connected by a hinge at C.

Determine the deflection �E at the free end E due to the load P acting
at that point. 

Solution 9.5-18 Compound beam
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2b b b b

A D
E

B C

P

BEAM CDE WITH A SUPPORT AT C

downward deflection of point E

BEAM ABC

�
2Pb3

3EI

�¿E �
Pb3

3EI
� u¿D b �

Pb3

3EI
� Pb ¢ b

3EI
≤ b

�¿E �

upward deflection of point C

The upward deflection �C produces an equal downward

displacement at point E.

DEFLECTION AT END E

�E � �¿E � �–E �
5Pb3

3EI

∴ �–E � �C �
Pb3

EI

�
Pb3

EI

�C �
Pb3

3EI
� QBb �

Pb3

3EI
� Pb ¢ 2b

3EI
≤ b

�C �

b b

D
E

C

P

2b b

A B
C

P

Problem 9.5-19 A steel beam ABC is simply supported at A and held
by a high-strength steel wire at B (see figure). A load P � 240 lb acts
at the free end C. The wire has axial rigidity EA � 1500 � 103 lb, and
the beam has flexural rigidity EI � 36 � 106 lb-in.2

What is the deflection �C of point C due to the load P? A CB

20 in. 30 in.

P = 240 lb

Wire

Beam
20 in.



Solution 9.5-19 Beam supported by a wire

576 CHAPTER 9 Deflections of Beams

P � 240 lb b � 20 in. c � 30 in. h � 20 in.

Beam: EI � 36 � 106 lb-in.2

Wire: EA � 1500 � 103 lb

(1) ASSUME THAT POINT B IS ON A SIMPLE SUPPORT

(2) ASSUME THAT THE WIRE STRETCHES

T � tensile force in the wire

(3) DEFLECTION AT POINT C

Substitute numerical values:
�C � 0.10 in. � 0.02 in. � 0.12 in.

� P(b � c) B c2

3EI
�

h(b � c)

EAb2 R�C � �¿C� �–C

�–C � �B ¢b � c

b
≤�

Ph(b � c)2

EAb2 �(downward)

�B �
Th

EA
�

Ph(b � c)

EAb

�
P

b
(b � c)

�
Pc2

3EI
(b � c)�(downward)

�¿C �
Pc3

3EI
� u¿Bc �

Pc3

3EI
� (Pc)¢ b

3EI
≤ c

A CB

b c

P 
h

A CB

b c

P 

Problem 9.5-20 The compound beam shown in the figure consists of a
cantilever beam AB (length L) that is pin-connected to a simple beam BD
(length 2L). After the beam is constructed, a clearance c exists between the
beam and a support at C, midway between points B and D. Subsequently,
a uniform load is placed along the entire length of the beam. 

What intensity q of the load is needed to close the gap at C and bring
the beam into contact with the support? 

Solution 9.5-20 Compound beam

A

D

B C c

L L L

Pin

q

BEAM BCD WITH A SUPPORT AT B

CANTILEVER BEAM AB

�
11qL4

24EI
�(downward)

�B �
qL4

8EI
�

(qL)L3

3EI

�
5qL4

24EI

�¿C �
5q(2L)4

384EI

� downward displacement of point C due to �B

DOWNWARD DISPLACEMENT OF POINT C

c � clearance

INTENSITY OF LOAD TO CLOSE THE GAP

q �
16EIc

7L4

c � �C �
7qL4

16EI

�C � �¿C � �–C �
5qL4

24EI
�

11qL4

48EI
�

7qL4

16EI

�–C �
1

2
 �B �

11qL4

48EI

�–C

D

B C

L L

q

BA
L

q qL



Problem 9.5-21 Find the horizontal deflection �h and vertical deflection
�v at the free end C of the frame ABC shown in the figure. (The flexural
rigidity EI is constant throughout the frame.) 

Note: Disregard the effects of axial deformations and consider only
the effects of bending due to the load P. 

Solution 9.5-21 Frame ABC
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P

A

B
C

b

c

MEMBER AB:
�h � horizontal deflection
of point B

Table G-1, Case 6:

Since member BC does not change in length,

�h is also the horizontal displacement of point C.

∴  �h �
Pcb2

2EI

uB �
Pcb

EI

�h �
(Pc)b2

2EI
�

Pcb2

2EI

MEMBER BC WITH B FIXED AGAINST ROTATION

Table G-1, Case 4:

VERTICAL DEFLECTION OF POINT C

�v �
Pc2

3EI
 (c � 3b)

�
Pc2

3EI
 (c � 3b)

�C � �v � �¿C � uBc �
Pc3

3EI
�

Pcb

EI
 (c)

�¿C �
Pc3

3EI

P
 Pc

A

B C

b

P

C
c

B

Problem 9.5-22 The frame ABCD shown in the figure is squeezed by
two collinear forces P acting at points A and D. What is the decrease �
in the distance between points A and D when the loads P are applied? 
(The flexural rigidity EI is constant throughout the frame.) 

Note: Disregard the effects of axial deformations and consider only
the effects of bending due to the loads P. 

Solution 9.5-22 Frame ABCD

A

L

B

C
D

P

P

a

MEMBER BC:

Table G-2, Case 10: uB �
(PL)a

2EI
�

PLa

2EI

MEMBER BA:

B

C

P

PL

PL

a

A

L

B

P

Table G-1, Case 4:

DECREASE IN DISTANCE BETWEEN POINTS A AND D

� � 2�A �
PL2

3EI
 (2L � 3a)

�
PL2

6EI
 (2L � 3a)

�
PL3

3EI
�

PLa

2EI
 (L)

�A �
PL3

3EI
� uBL



Problem 9.5-23 A beam ABCDE has simple supports at B
and D and symmetrical overhangs at each end (see figure). 
The center span has length L and each overhang has length b. 
A uniform load of intensity q acts on the beam. 

(a) Determine the ratio b/L so that the deflection �C at the
midpoint of the beam is equal to the deflections �A and �E at 
the ends. 

(b) For this value of b/L, what is the deflection �C at the
midpoint? 

Solution 9.5-23 Beam with overhangs
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A
B C D

E

Lb b

q

BEAM BCD:

Table G-2, Case 1 and Case 10:

(clockwise is positive)

(1)

(downward is positive)
BEAM AB:

Table G-1, Case 1:

(downward is positive)

�
qb

24EI
 (3b3 � 6b2L � L3)

�A �
qb4

8EI
� uBb �

qb4

8EI
�

qL

24EI
 (L2 � 6b2)b

�C �
5qL4

384EI
�

qb2

2
 ¢ L2

8EI
≤�

qL2

384EI
 (5L2 � 24b2)

uB �
qL3

24EI
�

qb2

2
 ¢ L

2EI
≤�

qL

24EI
 (L2 � 6b2)

DEFLECTION �C EQUALS DEFLECTION �A

Rearrange and simplify the equation:

48b4 � 96b3L � 24b2L2 � 16bL3 � 5L4 � 0
or

(a) RATIO

Solve the preceding equation numerically:

Say, 

(b) DEFLECTION �C (EQ. 1)

(downward deflection)

� 0.002870 
qL4

EI

�
qL2

384EI
 [5L2 � 24 (0.40301 L)2 ]

�C �
qL2

384EI
 (5L2 � 24b2)

b

L
� 0.4030

b

L
� 0.40301

b

L

48 ¢b

L
≤

4

� 96 ¢b

L
≤

3

� 24 ¢b

L
≤

2

� 16 ¢b

L
≤� 5 � 0

qL2

384EI
 (5L2 � 24b2) �

qb

24EI
 (3b3 � 6b2L � L3)

B C D

L

q
qb2

2
qb2

2

A B

b

q



Problem 9.5-24 A frame ABC is loaded at point C by a 
force P acting at an angle � to the horizontal (see figure). 
Both members of the frame have the same length and the 
same flexural rigidity. 

Determine the angle � so that the deflection of point C
is in the same direction as the load. (Disregard the effects 
of axial deformations and consider only the effects of 
bending due to the load P.)

Note: A direction of loading such that the resulting
deflection is in the same direction as the load is called a 
principal direction. For a given load on a planar structure,
there are two principal directions, perpendicular to each other. 

Solution 9.5-24 Principal directions for a frame
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�

A

B

L
P

L

C

P1 and P2 are the components of the load P

P1 � P cos �

P2 � P sin �

IF P1 ACTS ALONE

(downward)

IF P2 ACTS ALONE

(upward)

�–v �
P2L

3

3EI
� uBL �

P2L
3

3EI
� ¢P2L

2

EI
≤L �

4P2L
3

3EI

�–H �
P2L

3

2EI
 (to the left)

�¿v � uBL � ¢P1L
2

2EI
≤ L �

P1L
3

2EI

�¿H �
P1L

3

3EI
 (to the right)

DEFLECTIONS DUE TO THE LOAD P

PRINCIPAL DIRECTIONS

The deflection of point C is in the same direction as
the load P.

or

Rearrange and simplity: 

(quadratic equation)

Solving, 

� � 22.5º, 112.5º, �67.5º, �157.5º,

tan � � �1 � �2

tan2� � 2 tan � � 1 � 0

tan � �
�3 � 8 tan �

2 � 3 tan �
∴  tan � �

P2

P1
�

�v

�H

�
�3P cos � � 8P sin �

2P cos � � 3P sin �
�

�3 � 8 tan �

2 � 3 tan �

�v

�H

�
�3P1 � 8P2

2P1 � 3P2

�v � �
P1L

3

2EI
�

4P2L
3

3EI
�

L3

6EI
 (�3P1 � 8P2) (upward)

�H �
P1L

3

3EI
�

P2L
3

2EI
�

L3

6EI
 (2P1 � 3P2) (to the right)

�

A

B

L

P
P2

P1

L

C



Moment-Area Method

The problems for Section 9.6 are to be solved by the moment-area method. 
All beams have constant flexural rigidity EI. 

Problem 9.6-1 A cantilever beam AB is subjected to a uniform load of intensity
q acting throughout its length (see figure).

Determine the angle of rotation �B and the deflection �B at the free end.

Solution 9.6-1 Cantilever beam (uniform load)
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L

B

q

A

M�EI DIAGRAM:

ANGLE OF ROTATION

Use absolute values of areas.

Appendix D, Case 18: 

x �
3L

4

A1 �
1

3
(L)¢qL2

2EI
≤�

qL3

6EI

�A � 0

DEFLECTION

Q1 � First moment of area A1 with respect to B

(These results agree with Case 1, Table G-1.)

�B � Q1 �
qL4

8EI
  (Downward)

Q1 � A1x � ¢qL3

6EI
≤ ¢3L

4
≤�

qL4

8EI

uB �
qL3

6EI
� (clockwise)

uB�A � uB � uA � A1 �
qL3

6EI

C

 M
EI

BA
O

qL2

2EI
�

Parabolic spandrel (area A1)

x�

Problem 9.6-2 The load on a cantilever beam AB has a triangular distri-
bution with maximum intensity q0 (see figure). 

Determine the angle of rotation �B and the deflection �B at the free end.

Solution 9.6-2 Cantilever beam (triangular load)

L

B

q0

A

M/EI DIAGRAM

ANGLE OF ROTATION

Use absolute values of areas.

Appendix D, Case 20:

A1 �
bh

n � 1
�

1

4
(L)¢q0 L2

6EI
≤�

q0 L3

24EI

�A � 0

DEFLECTION

Q1 � First moment of area A1 with respect to B

(These results agree with Case 8, Table G-1.)

�B � Q1 �
q0 L4

30EI
� (Downward)

Q1 � A1x � ¢q0 L3

24EI
≤ ¢4L

5
≤�

q0 L4

30EI

uB �
q0 L3

24EI
� (clockwise)

uB�A � uB � uA � A1 �
q0 L3

24 EI

x �
b(n � 1)

n � 2
�

4L

5

C

 M
EI

BA
O

q
0L2

6EI�

3rd degree curve (n � 3)A1

x�



Problem 9.6-3 A cantilever beam AB is subjected to a concentrated
load P and a couple M0 acting at the free end (see figure). 

Obtain formulas for the angle of rotation �B and the deflection 
�B at end B. 

Solution 9.6-3 Cantilever beam (force P and couple M0)
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L

B M0A

P

M�EI DIAGRAM

NOTE: A1 is the M�EI diagram for M0 (rectangle). 
A2 is the M/EI diagram for P (triangle).

ANGLE OF ROTATION

Use the sign conventions for the moment-area
theorems (page 628 of textbook).

�B/A � �B � �A � A0 �A � 0

(�B is positive when counterclockwise)

uB � A0 �
M0 L

EI
�

PL2

2EI

A0 � A1 � A2 �
M0 L

EI
�

PL2

2EI

A1 �
M0 L

EI
�x1 �

L

2
�A2 � �

PL2

2EI
�x2 �

2L

3

DEFLECTION

Q � first moment of areas A1 and A2 with respect to
point B

tB�A � Q � �B

(�B is positive when upward)

FINAL RESULTS

To match the sign conventions for �B and �B used in
Appendix G, change the signs as follows.

(These results agree with Cases 4 and 6, Table G-1.)

�B �
PL3

3EI
�

M0 L2

2EI
 (positive downward)

uB �
PL2

2EI
�

M0 L

EI
 (positive clockwise)

�B �
M0 L2

2EI
�

PL3

3EI

Q � A1x1 � A2x2 �
M0 L2

2EI
�

PL3

3EI
C1

C2

B
A1

A2

O

 M0
EI

+

 PL
EI

�

x1
�

x2
�

Problem 9.6-4 Determine the angle of rotation �B and the deflection �B
at the free end of a cantilever beam AB with a uniform load of intensity q
acting over the middle third of the length (see figure).

BA

q

L
3
— L

3
— L

3
—



Solution 9.6-4 Cantilever beam with partial uniform load
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M/EI DIAGRAM

ANGLE OF ROTATION

Use absolute values of areas. Appendix D, Cases 1,
6, and 18:

x2 �
2L

3
�

L

6
�

5L

6
A2 � ¢L

3
≤ ¢ qL2

18EI
≤�

qL3

54EI

x1 �
L

3
�

3

4
 ¢L

3
≤�

7L

12
A1 �

1

3
 ¢L

3
≤ ¢ qL2

18EI
≤�

qL3

162EI

�B/A � �B � �A � A0

�A � 0

DEFLECTION

Q � first moment of area A0 with respect to point B

�B � Q �
23qL4

648EI
�(Downward)

Q � A1x1 � A2x2 � A3x3 �
23qL4

648EI

uB �
7qL3

162EI
�(clockwise)

A0 � A1 � A2 � A3 �
7qL3

162EI

x3 �
2L

3
�

2

3
 ¢L

3
≤�

8L

9
A3 �

1

2
 ¢L

3
≤ ¢qL2

9EI
≤�

qL3

54EI

L
—3

L
—3

L
—
3

B

Parabola
A2 A1

A3

O

qL2

6EI

qL2

18EI

x�

�

�

Problem 9.6-5 Calculate the deflections �B and �C at points B and C,
respectively, of the cantilever beam ACB shown in the figure. Assume M0
� 36 k-in., P � 3.8 k, L � 8 ft, and EI � 2.25 � 109 lb-in.2

Solution 9.6-5 Cantilever beam (force P and couple M0)

BCA

M0 P

L
2
— L

2
—

M/EI DIAGRAM

NOTE: A1 is the M/EI diagram for M0
(rectangle). A2 is the M/EI diagram for P
(triangle).

Use the sign conventions for the moment-area
theorems (page 628 of textbook).

DEFLECTION �B

QB � first moment of areas A1 and A2 with respect to point B

tB�A� QB � �B

(�B is positive when upward)

DEFLECTION �C
QC � first moment of area A1 and left-hand part of A2 with

respect to point C

tC�A� QC � �C

(�C is positive when upward)

�C �
L2

48EI
 (6M0 � 5PL)

�
L2

48EI
 (6M0 � 5PL)

�
1

2
 ¢ PL

2EI
≤ ¢L

2
≤ ¢L

3
≤� ¢M0

EI
≤ ¢L

2
≤ ¢L

4
≤� ¢ PL

2EI
≤ ¢L

2
≤ ¢L

4
≤

�B �
L2

24EI
 (9M0 � 8PL)

�
L2

24EI
(9M0 � 8PL)

� A1x1 � A2x2 � ¢M0

EI
≤ ¢L

2
≤ ¢3L

4
≤�

1

2
 ¢PL

EI
≤ (L)¢2L

3
≤

BC

L
2
—

L
2
—

A1 A2

 PL
EI

�

 Mo
EI

�

O

x�
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ASSUME DOWNWARD DEFLECTIONS ARE POSITIVE

(change the signs of �B and �C)

�C �
L2

48EI
 (5PL � 6M0)

�B �
L2

24EI
 (8PL � 9M0)

SUBSTITUTE NUMERICAL VALUES:
M0 � 36 k-in. P � 3.8 k
L � 8 ft � 96in. EI � 2.25 � 106 k-in.2

�B � 0.4981 in. � 0.0553 in. � 0.443 in.

�C � 0.1556 in. � 0.0184 in. � 0.137 in.

Problem 9.6-6 A cantilever beam ACB supports two concentrated loads
P1 and P2 as shown in the figure. 

Calculate the deflections �B and �C at points B and C, respectively.
Assume P1 � 10 kN, P2 � 5 kN, L � 2.6 m, E � 200 GPa, and 
I � 20.1 � 106 mm4. 

Solution 9.6-6 Cantilever beam (forces P1 and P2)

BCA

P1 P2

L
2
—

L
2
—

M/EI DIAGRAMS

P1 � 10 kN P2 � 5 kN L � 2.6 m
E � 200 GPa I � 20.1 � 106 mm4

Use absolute values of areas.

DEFLECTION �B

�B � tB�A � QB � first moment of areas with respect
to point B

DEFLECTION �C

�C � tC�A � QC � first moment of areas to the left
of point C with respect to point C

SUBSTITUTE NUMERICAL VALUES:

�B � 4.554 mm � 7.287 mm � 11.84 mm

�C � 1.822 mm � 2.277 mm � 4.10 mm

(deflections are downward)

�
P1L

3

24EI
�

5P2L
3

48EI
�(downward)

�
1

2
 ¢P2L

2EI
≤ ¢L

2
≤ ¢L

3
≤

�c �
1

2
 ¢P1L

2EI
≤ ¢L

2
≤ ¢L

3
≤�  ¢P2 L

2EI
≤ ¢L

2
≤ ¢L

4
≤

�
5P1L

3

48EI
�

P2L
3

3EI
�(downward)

�B �
1

2
 ¢P1L

2EI
≤ ¢L

2
≤ ¢L

2
�

L

3
≤�

1

2
 ¢P2 L

EI
≤ (L) ¢2L

3
≤

BC

BC

O

O

L
2
— L

2
—

L
2
— L

2
—

P1L
2EI

—

P2L
EI

—



Problem 9.6-7 Obtain formulas for the angle of rotation �A at 
support A and the deflection �max at the midpoint for a simple 
beam AB with a uniform load of intensity q (see figure). 

Solution 9.6-7 Simple beam with a uniform load

584 CHAPTER 9 Deflections of Beams

A

L

q

B

DEFLECTION CURVE AND M�EI DIAGRAM

�max � maximum deflection
(distance CC2)

Use absolute values of areas.

ANGLE OF ROTATION AT END A

Appendix D, Case 17:

tB�A � BB1 � first moment of areas A1 and A2 with
respect to point B

DEFLECTION �max AT THE MIDPOINT C

Distance 

first moment of area A1 with respect 
to point C

(These results agree with Case 1 of Table G-2.)

�
5qL4

384 EI
 (downward)

�max � CC2 � CC1 � C2C1 �
qL4

48EI
�

qL4

128EI

� A1 x1 � ¢ qL3

24EI
≤ ¢3L

16
≤�

qL4

128 EI

tC2
�A � C2C1 �

CC1 �
1

2
 (BB1) �

qL4

48 EI

uA �
BB1

L
�

qL3

24 EI
 (clockwise)

� (A1 � A2)¢L
2
≤�

qL4

24 EI

x1 �
3

8
 ¢L

2
≤�

3L

16

A1 � A2 �
2

3
 ¢L

2
≤ ¢ qL2

8 EI
≤�

qL3

24 EI

BC
L
2
— L

2
—

A

B1

�A

C1

C2

BOA

A1 A2

qL2

8EI
 M
EI

Parabola

x�

Problem 9.6-8 A simple beam AB supports two concentrated
loads P at the positions shown in the figure. A support C at the
midpoint of the beam is positioned at distance d below the beam
before the loads are applied. 

Assuming that d � 10 mm, L � 6 m, E � 200 GPa, and 
I � 198 � 106 mm4, calculate the magnitude of the loads P so
that the beam just touches the support at C. 

C

A B

P P
d

L
4
— L

4
— L

4
— L

4
—
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DEFLECTION CURVE AND M/EI DIAGRAM

�c � deflection at the midpoint C

Use absolute values of areas.

A2 �
PL2

32EI
�x2 �

L

6

A1 �
PL2

16 EI
�x1 �

3L

8

DEFLECTION �c AT MIDPOINT OF BEAM

At point C, the deflection curve is horizontal.

�c � tB�C � first moment of area between B and C
with respect to B 

d � gap between the beam and the support at C

MAGNITUDE OF LOAD TO CLOSE THE GAP

SUBSTITUTE NUMERICAL VALUES:

d � 10 mm L � 6 m E � 200 GPa

I � 198 � 106 mm4 P � 64 kN

P �
384EId

11L3� � d �
11PL3

384EI

�
11PL3

384 EI

� A1x1 � A2x2 �
PL2

16EI
 ¢3L

8
≤�

PL2

32EI
 ¢L

6
≤

Solution 9.6-8 Simple beam with two equal loads

BA
L
2
— L

2
—

�c
�c � t8
             c 

C

BA L
4
— L

4
— L

4
— L

4
—

P
4EI

C
O

A1 A2

 M
EI

x�

Problem 9.6-9 A simple beam AB is subjected to a load in the form 
of a couple M0 acting at end B (see figure). 

Determine the angles of rotation �A and �B at the supports and 
the deflection � at the midpoint. 

Solution 9.6-9 Simple beam with a couple M0

A

M0

B

L

DEFLECTION CURVE AND M/EI DIAGRAM � � deflection at the midpoint C

� � distance CC2

Use absolute values of areas.

ANGLE OF ROTATION �A

tB�A � BB1 � first moment of area between A and B
with respect to B

uA �
BB1

L
�

M0 L

6 EI
 (clockwise)

�
1

2
 ¢M0

EI
≤(L)¢L

3
≤�

M0 L2

6EI

C

A1

A
�A �B

B1

B M0

�

c1

c2

CA BO L
2
— L

2
—

 M
EI

M0
2EI

  M0
EI
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ANGLE OF ROTATION �B

tA�B � AA1 � first moment of area between A and B
with respect to A

DEFLECTION � AT THE MIDPOINT C

Distance CC1 �
1

2
 (BB1) �

M0 L2

12EI

uB �
AA1

L
�

M0 L

3EI
 (Counterclockwise)

�
1

2
 ¢M0

EI
≤(L)¢2L

3
≤�

M0 L2

3 EI

first moment of area between A and C
with respect to C

(These results agree with Case 7 of Table G-2.)

�
M0 L2

16EI
� (Downward)

� � CC1 � C2C1 �
M0 L2

12EI
�

M0 L2

48 EI

�
1

2
 ¢M0

2EI
≤ ¢L

2
≤ ¢L

6
≤�

M0 L2

48 EI

tc2
 �A � C2C1 �

Problem 9.6-10 The simple beam AB shown in the figure 
supports two equal concentrated loads P, one acting downward 
and the other upward. 

Determine the angle of rotation �A at the left-hand end, the 
deflection �1 under the downward load, and the deflection � 2 at 
the midpoint of the beam. 

Solution 9.6-10 Simple beam with two loads

A B

L

aa

P P

Because the beam is symmetric and the load is
antisymmetric, the deflection at the midpoint is zero.

� �2 � 0

ANGLE OF ROTATION �A AT END A

tC�A � CC1 � first moment of area between A and C
with respect to C

uA �
CC1

L�2
�

Pa(L � a)(L � 2a)

6LEI
 (clockwise)

�
Pa(L � a)(L � 2a)

12EI

� A1 ¢L
2

� a �
a

3
≤� A2 ¢2

3
≤ ¢L

2
� a≤

A2 �
1

2
 ¢M1

EI
≤ ¢L

2
� a≤�

Pa(L � 2a)2

4LEI

A1 �
1

2
 ¢M1

EI
≤ (a) �

Pa2(L � 2a)

2LEI

M1

EI
�

Pa(L � 2a)

LEI

C

C1

A
�A

B

B1

�1D

D1

D2

P P

cA
B

A1 A2
O

a �a

a

  M1
EI

  M1
EI

�

L
2

�aL
2
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Problem 9.6-11 A simple beam AB is subjected to couples M0 and 2M0 acting
as shown in the figure. Determine the angles of rotation �A and �B at the ends of
the beam and the deflection � at point D where the load M0 is applied. 

Solution 9.6-11 Simple beam with two couples

A B

M0 2M0

D E

L
3
— L

3
— L

3
—

DEFLECTION CURVE AND M/EI DIAGRAM

A3 � �
M0 L

6EI
A1 � A2 �

1

2
 ¢M0

EI
≤ ¢L

3
≤�

M0L

6EI

ANGLE OF ROTATION �A AT END A

tB�A � BB1 � first moment of area between A and B
with respect to B

ANGLE OF ROTATION �B AT END B

tA�B � AA1 � first moment of area between A and B
with respect to A

DEFLECTION � AT POINT D

Distance

first moment of area between A and
D with respect to D

NOTE: This deflection is also the maximum deflection.

� � DD1 � D2D1 �
M0 L2

27 EI
� (downward)

� A1 ¢L
9
≤�

M0 L2

54EI

tD2
 �A � D2D1 �

DD1 �
1

3
 (BB1) �

M0 L2

18 EI

uB �
AA1

L
� 0

� A1 ¢2L

9
≤� A2 ¢L

3
�

2L

9
≤� A3 ¢2L

3
�

L

9
≤� 0

uA �
BB1

L
�

M0 L

6EI
  (clockwise)

� A1 ¢2L

3
�

L

9
≤� A2 ¢L

3
�

L

9
≤� A3 ¢2L

9
≤�

M0 L2

6EI
D

D1 D2A1

A
�A �B

B1

B
�

E

O
A1 A2

A3

A
BEL

3
— L

3
—

L
3
— M

EI

 M0
EI

 M0
EI

 M
EI

�

DEFLECTION �1 UNDER THE DOWNWARD LOAD

Distance

�
Pa2 (L � a) (L � 2a)

6LEI

DD1 � ¢ a

L�2
≤ (CC1)

first moment of area between A and 
D with respect to D

�1 � DD1 � D2D1

(Downward)�
Pa2(L � 2a)2

6LEI

� A1 ¢a
3
≤�

Pa3(L � 2a)

6LEI

tD2
 �A � D2D1 �
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Use the method of superposition.

(a) DEFLECTION �B AT THE FREE END

(1) Part CB of the beam:

(2) Part AC of the beam:

(�B)2 � �C � uC ¢L
2
≤�

7PL3

24EI2

uC �
P(L �2)2

2EI2
�

(PL �2)(L �2)

EI2
�

3PL2

8EI2

�C �
P(L �2)3

3EI2
�

(PL �2)(L �2)2

2EI2
�

5PL3

48EI2

(�B)1 �
P

3EI1
 ¢L

2
≤

3

�
PL3

24EI1

(3) Total deflection at point B

(b) PRISMATIC BEAM

Ratio:

(c) GRAPH OF RATIO

r �
�B

�1
�

1

8
 ¢1 �

7I1

I2
≤

�1 �
PL3

3 EI1

�B � (�B)1 � (�B)2 �
PL3

24EI1
 ¢1 �

7I1

I2
≤

B
C I1

P

L
2
—

1

0.5

0
1 2 3 4 5 6

I2
I1
—

r

Problem 9.7-2 The cantilever beam ACB shown in the figure supports 
a uniform load of intensity q throughout its length. The beam has moments
of inertia I2 and I1 in parts AC and CB, respectively. 

(a) Using the method of superposition, determine the deflection �B
at the free end due to the uniform load. 

(b) Determine the ratio r of the deflection �B to the deflection �1
at the free end of a prismatic cantilever with moment of inertia I1 carrying
the same load. 

(c) Plot a graph of the deflection ratio r versus the ratio I2 /I1 of the
moments of inertia. (Let I2 /I1 vary from 1 to 5.) 

BCA

I1I2

q

L
2
— L

2
—

C
A I2

P

L
2
—

PL
2
—

Nonprismatic Beams

Problem 9.7-1 The cantilever beam ACB shown in the figure has moments 
of inertia I2 and I1 in parts AC and CB, respectively. 

(a) Using the method of superposition, determine the deflection �B at the 
free end due to the load P. 

(b) Determine the ratio r of the deflection �B to the deflection �1 at the free
end of a prismatic cantilever with moment of inertia I1 carrying the same load. 

(c) Plot a graph of the deflection ratio r versus the ratio I2 /I1 of the moments
of inertia. (Let I2 /I1 vary from 1 to 5.) 

Solution 9.7-1 Cantilever beam (nonprismatic)

B
CA I1

I2

P

L
2
— L

2
—

r

1 1.00
2 0.56
3 0.42
4 0.34
5 0.30

I2

I1



Solution 9.7-2 Cantilever beam (nonprismatic)

SECTION 9.7 Nonprismatic Beams 589

Use the method of superposition

(a) DEFLECTION �B AT THE FREE END

(1) Part CB of the beam:

(2) Part AC of the beam:

(�B)2 � �C � uC ¢L
2
≤�

15qL4

128EI2

�
7qL3

48EI2

uC �
q(L �2)3

6EI2
�

(qL �2)(L �2)2

2EI2
�

(qL2�8)(L �2)

EI2

�c �
q(L �2)4

8EI2
�

¢qL

2
≤(L �2)3

3EI2
�

¢qL2

8
≤ ¢L

2
≤

2

2EI8
�

17qL4

384EI2

(�B)1 �
q

8EI1
 ¢L

2
≤

4

�
qL4

128EI1

(3) Total deflection at point B

(b) PRISMATIC BEAM

Ratio:

(c) GRAPH OF RATIO

r �
�B

�1
�

1

16
 ¢1 �

15I1

I2
≤

�1 �
qL4

8EI1

�B � (�B)1 � (�B)2 �
qL4

128EI1
 ¢1 �

15I1

I2
≤

I1
B

C

q

L
2

I2
C

A

q

L
2
—

qL
 2
—

qL2

 8
—

I2
I1

1

1 2 3 4 5

0.5

O

r

Problem 9.7-3 A simple beam ABCD has moment of inertia I near 
the supports and moment of inertia 2I in the middle region, as shown 
in the figure. A uniform load of intensity q acts over the entire length 
of the beam. 

Determine the equations of the deflection curve for the left-hand 
half of the beam. Also, find the angle of rotation �A at the left-hand 
support and the deflection �max at the midpoint. 

Solution 9.7-3 Simple beam (nonprismatic)

q

A

L

2I
I I

B C D

L
4
— L

4
—

Use the bending-moment equation (Eq. 9-12a).

REACTIONS, BENDING MOMENT, AND DEFLECTION CURVE

M � Rx �
qx 2

2
�

qL x

2
�

qx 2

2
RA � RB �

qL

2

q

A

2I
I I

B C DE

RB
RA x

A B C DE
L
4
— L

4
—

L
4
— L

4
—

�max

x

y

�A

r

1 1.00
2 0.53
3 0.38
4 0.30
5 0.25

I2

I1
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BENDING-MOMENT EQUATIONS FOR THE LEFT-HAND

HALF OF THE BEAM

(1)

(2)

INTEGRATE EACH EQUATION

(3)

(4)

B.C. 1 Symmetry: 

From Eq. (4): 

(5)

SLOPE AT POINT B (FROM THE RIGHT)

Substitute into Eq. (5):

(6)

B.C. 2 CONTINUITY OF SLOPES AT POINT B

From Eqs. (3) and (6):

SLOPES OF THE BEAM (from Eqs. 3 and 5)

(7)

(8)

ANGLE OF ROTATION �A (FROM EQ. 7)

uA � �v¿(0) �
7qL3

256EI
 (positive clockwise)

¢L
4

� x �
L

2
≤EIv¿ �

qLx2

8
�

qx3

12
�

qL3

48

¢0 � x �
L

4
≤EIv¿ �

qLx2

4
�

qx3

6
�

7qL3

256

∴ C1 � �
7qL3

256

qL

4
 ¢L

4
≤

2

�
q

6
 ¢L

4
≤

3

� C1 � �
11qL3

768

(v¿B)Left � (v¿B )Right

EIv¿B � �
11 qL3

768

x �
L

4

¢L
4

� x �
L

2
≤2EIv¿ �

qL x2

4
�

qx3

6
�

qL3

24
 

C2 � �
qL3

24

v¿  ¢L
2
≤� 0

¢L
4

� x �
L

2
≤2EIv¿ �

qL x2

4
�

qx3

6
� C2

¢0 � x �
L

4
≤EIv¿ �

qL x2

4
�

qx3

6
� C1

¢L
4

� x �
L

2
≤E(2I)v– � M �

qL x

2
�

qx 2

2

¢0 � x �
L

4
≤EIv– � M �

qL x

2
�

qx 2

2

INTEGRATE EQS. (7) AND (8)

(9)

(10)

B.C. 3 Deflection at support  A

v(0) � 0 From Eq. (9): C3 � 0

DEFLECTION AT POINT B (FROM THE LEFT)

Substitute into Eq. (9) with C3 � 0:

(11)

B.C. 4 Continuity of deflections at point B

(vB)
Right

� (vB)
Left

From Eqs. (10) and (11):

DEFLECTIONS OF THE BEAM (FROM EQS. 9 AND 10)

MAXIMUM DEFLECTION (AT THE MIDPOINT E)

(From the preceding equation for v.)

(positive downward)�max � �v¢L
2
≤�

31qL4

4096EI

¢L
4

� x �
L

2
≤

v � �
q

12,288EI
 (13L4 � 256L3x � 512Lx3 � 256x4)

¢0 � x �
L

4
≤

v � �
qx

768EI
 (21L3 � 64Lx2 � 32x3)

∴ C4 � �
13qL4

12,288

qL

24
 ¢L

4
≤

3

�
q

48
 ¢L

4
≤

4

�
qL3

48
 ¢L

4
≤� C4 � �

35qL4

6144

EIvB � �
35 qL4

6144

x �
L

4

¢L
4

� x �
L

2
≤EIv �

qL x3

24
�

qx4

48
�

qL3 x

48
� C4

¢0 � x �
L

4
≤EIv �

qL x3

12
�

qx4

24
�

7qL3 x

256
� C3
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Problem 9.7-4 A beam ABC has a rigid segment from A to B and a 
flexible segment with moment of inertia I from B to C (see figure). 
A concentrated load P acts at point B. 

Determine the angle of rotation �A of the rigid segment, the 
deflection �B at point B, and the maximum deflection �max. 

Solution 9.7-4 Simple beam with a rigid segment

A
I C

B

P
Rigid

L
3
— 2L

3
—

FROM A TO B

(1)

(2)

FROM B TO C

(3)

B.C. 1 At x � L/3,

(4)

¢L
3

� x � L≤
EIv �

PLx2

6
�

Px3

18
�

5PL2x

54
�

3EI�Bx

L
� C2

¢L
3

� x � L≤
EIv¿ �

PLx

3
�

Px2

6
�

5PL2

54
�

3EI�B

L

∴ C1 � �
5PL2

54
�

3EI�B

L

v¿ � �
3�B

L

EIv¿ �
PLx

3
�

Px2

6
� C1

EIv– � M �
PL

3
�

Px

3

¢0 � x �
L

3
≤v¿ � �

3�B

L

¢0 � x �
L

3
≤v � �

3�Bx

L

B.C. 2 v(L) � 0

(5)

B.C. 3 At , (vB)
Left

� (vB)
Right

(Eqs. 1 and 5)

Substitute for �B in Eq. (5) and simplify:

(6)

Also,

(7)

MAXIMUM DEFLECTION

gives

Substitute x1 in Eq. (6) and simplify:

�max � �vmax �
4015PL3

6561EI
� 0.01363 

PL3

EI

vmax � �
4015PL3

6561EI

x1 �
L

9
 (9 � 215) � 0.5031Lv¿ � 0

¢L
3

� x � L≤
v¿ �

P

486EI
 (�61L2 � 162Lx � 81x2)

¢L
3

� x � L≤
v �

P

486EI
 (7L3 � 61L2x � 81Lx2 � 27x3)

uA �
�B

L�3
�

8PL2

243EI

∴ �B �
8PL3

729EI

x �
L

3

¢L
3

� x � L≤�
PL2

54
� 3EI�B

EIv �
PLx2

6
�

Px3

18
�

5PL2x

54
�

3EI�Bx

L

∴ C2 � �
PL3

54
� 3EI�B

A B C

�max
�B

x

y

�B

A
I C

B

P
Rigid

L
3
— 2L

3
—
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Problem 9.7-5 A simple beam ABC has moment of inertia 1.5I from A
to B and I from B to C (see figure). A concentrated load P acts at point B. 

Obtain the equations of the deflection curves for both parts of the
beam. From the equations, determine the angles of rotation �A and �C
at the supports and the deflection �B at point B. 

Solution 9.7-5 Simple beam (nonprismatic)

A
I1.5I

C
B

P

L
3
— 2L

3
—

Use the bending-moment equation (Eq. 9-12a).

DEFLECTION CURVE

BENDING-MOMENT EQUATIONS

(1)

(2)

INTEGRATE EACH EQUATION

(3)

(4)

B.C. 1 Continuity of slopes at point B

From Eqs. (3) and (4):

(5)

INTEGRATE EQS. (3) AND (4)

(6)

(7)

B.C. 2 Deflection at support A

v(0) � 0 From Eq. (6): C3 � 0 (8)

B.C. 3 Deflection at support C

v(L) � 0 From Eq. (7): (9)C4 � �
PL3

9
� C2L

¢L
3

� x � L≤EIv �
PLx2

6
�

Px3

18
� C2x � C4

¢0 � x �
L

3
≤EIv �

4Px3

54
� C1x � C3

C2 � C1 �
11PL2

162

P

6
 ¢L

3
≤

2

� C2
4P

18
 ¢L

3
≤

2

� C1 �
PL

3
 ¢L

3
≤�

(v¿B)Left � (v¿B)Right

¢L
3

� x � L≤EIv¿ �
PLx

3
�

Px2

6
� C2

¢0 � x �
L

3
≤EIv¿ �

4Px2

18
� C1

¢L
3

� x � L≤EIv– � M �
PL

3
�

Px

3

¢0 � x �
L

3
≤E ¢3I

2
≤ v– � M �

2Px

3

B.C. 4 Continuity of deflections at point B

(vB)
Left

� (vB)
Right

From Eqs. (6), (8), and (7):

(10)

SOLVE EQS (5), (8), (9), AND (10)

C3 � 0

SLOPES OF THE BEAM (FROM EQS. 3 AND 4)

(11)

(12)

ANGLE OF ROTATION �A (FROM EQ. 11)

(positive clockwise)

ANGLE OF ROTATION �C (FROM EQ. 12)

(positive counterclockwise) 

DEFLECTIONS OF THE BEAM

Substitute C1, C2, C3, and C4 into Eqs. (6) and (7):

DEFLECTION AT POINT B

(positive downward) �B � �v ¢L
3
≤�

32PL3

2187 EI

¢x �
L

3
≤

¢L
3

� x � L≤
v � �

P

1458EI
 (�13L3 � 175L2x � 243Lx2 � 81x3)

¢0 � x �
L

3
≤v � �

2Px

729EI
 (19L2 � 27x2)

uC � v¿(L) �
34PL2

729EI

uA � �v¿(0) �
38PL2

729EI

¢L
3

� x � L≤
v¿ � �

P

1458EI
 (175L2 � 486Lx � 243x2)

¢0 � x �
L

3
≤v¿ � �

2P

729EI
 (19L2 � 81x2)

C4 �
13PL3

1458

C2 � �
175PL2

1458
C1 � �

38PL2

729

C1L �
10PL3

243
� C2L � 3C4

� C2 ¢L3 ≤� C4
4P

54
 ¢L

3
≤

3

� C1¢L3 ≤�
PL

6
 ¢L

3
≤

2

�
P

18
 ¢L

3
≤

3

A B C

�B

x

y

�B�A

1.5I

P

I
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Problem 9.7-6 The tapered cantilever beam AB shown in 
the figure has thin-walled, hollow circular cross sections of
constant thickness t. The diameters at the ends A and B are dA
and dB � 2dA, respectively. Thus, the diameter d and moment
of inertia I at distance x from the free end are, respectively, 

d � �
d
L
A�(L � x)

I � �
�t

8

d3

� � �
�

8

t

L

d
3

3
A� (L � x)3 � �

L

IA
3� (L � x)3

in which IA is the moment of inertia at end A of the beam.
Determine the equation of the deflection curve and the

deflection �A at the free end of the beam due to the load P.

Solution 9.7-6 Tapered cantilever beam

P

A
B

L

x

t

d

dB = 2dAdA

M � �Px

(1)

INTEGRATE EQ. (1)

From Appendix C:

B.C. 1

or

(2)

INTEGRATE EQ. (2)

From Appendix C:

�  
xdx

(L � x)2 �
L

L � x
� ln(L � x)

�  
dx

(L � x)2 � �
1

L � x

v¿ �
PL3

EIA

 B L

2 (L � x)2 R �
PL3

EIA

 B x

(L � x)2 R �
3PL2

8EIA

v¿ �
PL3

EIA

 B L � 2x

2 (L � x)2 R �
3PL2

8EIA

∴ C1 � �
3PL2

8EIA

v¿(L) � 0

v¿ �
PL3

EIA

 B L � 2x

2 (L � x)2 R � C1

�  
xdx

(L � x)3 � �
L � 2x

2(L � x)2

v– � �
Px

EI
� �

PL3

EIA

 B x

(L � x)3 R
I �

IA

L3  (L � x)3EIv– � �Px

(3)

B.C. 2 v(L) � 0

DEFLECTION OF THE BEAM

Substitute C2 into Eq. (3).

DEFLECTION �A AT END A OF THE BEAM

(positive downward)

NOTE: ln 
1

2
� �ln 2

�A � �v(0) �
PL3

8EIA

 (8 ln2 � 5) � 0.06815 
PL3

EIA

v �
PL3

EIA

 B L

2(L � x)
�

3x

8L
�

1

8
� ln ¢L � x

2L
≤ R

∴ C2 �
PL3

EIA

 B 1

8
� ln(2L) R

�
PL3

EIA

 B L

2(L � x)
� ln(L � x) �

3x

8L
R � C2

�
3PL2

8EIA

x � C2

v �
PL3

EIA

 ¢L
2
≤ ¢� 1

L � x
≤�

PL3

EIA

 B L

L � x
� ln(L � x) R
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Problem 9.7-7 The tapered cantilever beam AB shown in the figure has 
a solid circular cross section. The diameters at the ends A and B are dA and
dB � 2dA, respectively. Thus, the diameter d and moment of inertia I at
distance x from the free end are, respectively, 

d � �
d

L
A� (L � x)

I � �
�

6
d
4

4
� � �

6

�

4

d

L

4
A
4�(L � x)4 � �

L

IA
4� (L � x)4

in which IA is the moment of inertia at end A of the beam.
Determine the equation of the deflection curve and the deflection �A

at the free end of the beam due to the load P. 

Solution 9.7-7 Tapered cantilever beam

P

A

L

B

x

dB = 2dAdA

M � �Px

(1)

INTEGRATE EQ. (1)

From Appendix C:

B.C. 1

or

(2)�
PL2

12EIA

v¿ �
PL4

EIA

 B L

6 (L � x)3 R �
PL4

EIA

 B x

2(L � x)3 R

v¿ �
PL4

EIA

 B L � 3x

6 (L � x)3 R �
PL2

12EIA

∴ C1 � �
PL2

12EIA

v¿(L) � 0

v¿ �
PL4

EIA

 B L � 3x

6 (L � x)3 R � C1

�  
xdx

(L � x)4 � �
L � 3x

6(L � x)3

v– � �
Px

EI
� �

PL4

EIA

 B x

(L � x)4 R
I �

IA

L4  (L � x)4EIv– � �Px INTEGRATE EQ. (2)

From Appendix C:

(3)

B.C. 2 v(L) � 0

DEFLECTION OF THE BEAM

Substitute C2 into Eq. (3).

DEFLECTION �A AT END A OF THE BEAM

(positive downward)�A � �v(0) �
PL3

24EIA

v �
PL3

24EIA

 B7 �
4L(2L � 3x)

(L � x)2 �
2x

L
R

∴ C2 �
PL3

EIA

 ¢ 7

24
≤

�
PL3

EIA

 B�
L2

12(L � x)2 �
L(L � 2x)

4(L � x)2 �
x

12L
R � C2

B�
L � 2x

2(L � x)2 R�
PL2

12EIA

x � C2

v �
PL4

EIA

 ¢L
6
≤ ¢�1

2
≤ ¢ 1

L � x
≤

2

�
PL4

EIA

 ¢1
2
≤

�  
xdx

(L � x)3 �
�(L � 2x)

2(L � x)2

�  
dx

(L � x)3 � �
1

2(L � x)2



Problem 9.7-8 A tapered cantilever beam AB supports 
a concentrated load P at the free end (see figure). The 
cross sections of the beam are rectangular with constant 
width b, depth dA at support A, and depth dB � 3dA /2 at 
the support. Thus, the depth d and moment of inertia I
at distance x from the free end are, respectively, 

d � �
2
d
L
A� (2L � x)

I � �
b

1

d

2

3

� � �
9

b

6

d

L

3
A
3� (2L � x)3 � �

8
I
L
A

3�(2L � x)3

in which IA is the moment of inertia at end A of the beam.
Determine the equation of the deflection curve and the

deflection �A at the free end of the beam due to the load P.

Solution 9.7-8 Tapered cantilever beam
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P

A

L

B

x b

ddA 2
dB =

3dA—

M � �Px

(1)

INTEGRATE EQ. (1)

From Appendix C:

B.C. 1

or

(2)

INTEGRATE EQ. (2)

From Appendix C:

�  
xdx

(2L � x)2 �
2L

2L � x
� ln(2L � x)

�  
dx

(2L � x)2 � �
1

2L � x

�
16PL2

9EIA

v¿ �
8PL3

EIA

 B L

(2L � x)2 R �
8PL3

EIA

 B x

(2L � x)2 R

v¿ �
8PL3

EIA

 B L � x

 (2L � x)2 R �
16PL2

9EIA

∴ C1 � �
16PL2

9EIA

v¿(L) � 0

v¿ �
8PL3

EIA

 B L � x

 (2L � x)2 R � C1

�  
xdx

(2L � x)3 � �
2L � 2x

2(2L � x)2

v– � �
Px

EI
� �

8PL3

EIA

 B x

(2L � x)3 R
I �

IA

8L3  (2L � x)3EIv– � �Px

(3)

B.C. 2 v(L) � 0

DEFLECTION OF THE BEAM

Substitute C2 into EQ. (3).

DEFLECTION �A AT END A OF THE BEAM

????  

NOTE: ln 
2

3
� �ln 

3

2

� ln ¢2L � x

3L
≤ ]

v �
8PL3

EIA

 B L

2L � x
�

2x

9L
�

1

9

∴ C2 � �
8PL3

EIA

 B 1

9
� ln(3L) R

�
PL3

EIA

 B 8L

2L � x
� 8 ln(2L � x) �

16x

9L
R � C2

� ln(2L � x) R�
16PL2

9EIA

x � C2

v �
8PL3

EIA

¢� L

2L � x
≤�

8PL3

EIA

B 2L

2L � x



Problem 9.7-9 A simple beam ACB is constructed with square cross sections and
a double taper (see figure). The depth of the beam at the supports is dA and at the
midpoint is dC � 2dA. Each half of the beam has length L. Thus, the depth d and
moment of inertia I at distance x from the left-hand end are, respectively, 

d � �
d

L
A� (L � x)

I � �
d

12

4

� � �
1

d

2L

4
A

4� (L � x)4 � �
L

IA
4� (L � x)4

in which IA is the moment of inertia at end A of the beam. (These equations 
are valid for x between 0 and L, that is, for the left-hand half of the beam.) 

(a) Obtain equations for the slope and deflection of the left-hand half of 
the beam due to the uniform load. 

(b) From those equations obtain formulas for the angle of rotation �A at
support A and the deflection �C at the midpoint. 

Solution 9.7-9 Simple beam with a double taper
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A B
C

L L

q

x

L � length of one-half of the beam

(0 � x � L)

(x is measured from the left-hand support A)

Reactions: RA � RB � qL

Bending moment: 

From Eq. (9-12a):

(0 � x � L) (1)

INTEGRATE EQ. (1)

From Appendix C:

(0 � x � L) (2)

B.C. 1 (symmetry) ∴ C1 � �
qL3

16EIA

v¿(L) � 0

�
qL4x2

2EIA(L � x)3 � C1

�
qL4

2EIA

 B�
L2 � 3Lx � 3x2

3(L � x)3 R � C1

v¿ �
qL5

EIA

 B�
L � 3x

6(L � x)3 R
�  

x2dx

(L � x)4 � �
L2 � 3Lx � 3x2

3(L � x)3

�  
xdx

(L � x)4 � �
L � 3x

6(L � x)3

v– �
qL5x

EIA(L � x)4 �
qL4x2

2EIA(L � x)4

EIv– � M � qLx �
qx2

2

M � RAx �
qx2

2
� qLx �

qx2

2

I �
IA

L4  (L � x)4

SLOPE OF THE BEAM

Substitute C1 into Eq. (2).

(0 � x � L) (3)

ANGLE OF ROTATION AT SUPPORT A

(positive clockwise)

INTEGRATE EQ. (3)

From Appendix C:

(0 � x � L) (4)

B.C. 2 v(0) � 0

DEFLECTION OF THE BEAM

Substitute C2 into Eq. (4) and simplify. (The algebra 
is lengthy.)

(0 � x � L)

DEFLECTION AT THE MIDPOINT C OF THE BEAM

(positive downward)

�C � �v(L) �
qL4

8EIA

 (3 � 4 ln 2) � 0.02843 
qL4

EIA

v � �
qL4

2EIA

 B (9L2 � 14Lx � x2)x

8L (L � x)2 � ln ¢1 �
x

L
≤ R

∴ C2 � �
qL4

2EIA

 ¢3
2

� ln L≤

� 8L ln(L � x) R � C2

v � �
qL3

16EIA

 B x �
8L2(3L � 4x)

2(L � x)2

�  
x2dx

(L � x)3 �
L(3L � 4x)

2(L � x)2 � ln(L � x)

uA � �v¿(0) �
qL3

16EIA

� �
qL3

16EIA

 B1 �
8Lx2

(L � x)3 R
v¿ �

qL4x2

2EIA(L � x)3 �
qL3

16EIA



SECTION 9.8 Strain Energy 597

Strain Energy

The beams described in the problems for Section 9.8 have constant 
flexural rigidity EI.

Problem 9.8-1 A uniformly loaded simple beam AB (see figure) of 
span length L and rectangular cross section (b � width, h � height) 
has a maximum bending stress �max due to the uniform load. 

Determine the strain energy U stored in the beam. 

Solution 9.8-1 Simple beam with a uniform load

A

L

B

b

h

Given: L, b, h, �max Find: U(strain energy)

Bending moment:

Strain energy (Eq. 9-80a):

(1)

Maximum stress:

smax �
qL2h

16I
Mmax �

qL2

8

smax �
Mmaxc

I
�

Mmaxh

2I

�
q2L5

240EI

U � �
L

0

M2dx

2EI

M �
qLx

2
�

qx2

2

Solve for q:

Substitute q into Eq. (1):

Substitute : U �
4bhLs2

max

45E
I �

bh3

12

U �
16Is2

maxL

15h2E

q �
16Ismax

L2h

Problem 9.8-2 A simple beam AB of length L supports a concentrated
load P at the midpoint (see figure). 

(a) Evaluate the strain energy of the beam from the bending moment
in the beam. 

(b) Evaluate the strain energy of the beam from the equation of the
deflection curve. 

(c) From the strain energy, determine the deflection � under the 
load P. 

Solution 9.8-2 Simple beam with a concentrated load

L
2
— L

2
—

BA

P

(a) BENDING MOMENT

Strain energy (Eq. 9-80a):

(b) DEFLECTION CURVE

From Table G-2, Case 4:

d2v

dx2 �
Px

2EI

dv

dx
� �

P

16EI
 (L2 � 4x2)

¢0 � x �
L

2
≤v � �

Px

48EI
 (3L2 � 4x2)

U � 2�
L�2

0

M2dx

2 EI
�

P2L3

96 EI

¢0 � x �
L

2
≤M �

Px

2
Strain energy (Eq. 9-80b):

(c) DEFLECTION � UNDER THE LOAD P
From Eq. (9-82a):

� �
2U

P
�

PL3

48EI

�
P2L3

96EI

U � 2�
L�2

0

EI

2
 ¢d

2v

dx2 ≤
2

dx � EI�
L�2

0

¢ Px

2EI
≤

2

dx



Problem 9.8-3 A cantilever beam AB of length L supports a uniform
load of intensity q (see figure). 

(a) Evaluate the strain energy of the beam from the bending moment
in the beam. 

(b) Evaluate the strain energy of the beam from the equation of the
deflection curve. 

Solution 9.8-3 Cantilever beam with a uniform load
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A

L

B

q

(a) BENDING MOMENT

Measure x from the free end B.

Strain energy (Eq. 9-80a):

(b) DEFLECTION CURVE

Measure x from the fixed support A.
From Table G-1, Case 1:

v � �
qx2

24EI
 (6L2 � 4Lx � x2)

U � �
L

0

M2dx

2EI
� �

L

0

¢ 1

2EI
≤¢�qx2

2
≤

2

dx �
q2L5

40EI

M � �
qx2

2
Strain energy (Eq. 9-80b):

�
q2L5

40EI

�
EI

2 �
L

0

¢� q

2EI
≤

2

(L2 � 2Lx � x2)2dx

U � �
L

0

EI

2
 ¢d 2v

dx2 ≤
2

dx

d 2v

dx2 � �
q

2EI
 (L2 � 2Lx � x2)

dv

dx
� �

q

6EI
 (3L2x � 3Lx2 � x3)

Problem 9.8-4 A simple beam AB of length L is subjected to loads that
produce a symmetric deflection curve with maximum deflection � at the
midpoint of the span (see figure). 

How much strain energy U is stored in the beam if the deflection
curve is (a) a parabola, and (b) a half wave of a sine curve? 

Solution 9.8-4 Simple beam (symmetric deflection curve)

L
2
— L

2
—

BA
�

GIVEN: L, EI, � � � maximum deflection at
midpoint

Determine the strain energy U.
Assume the deflection v is positive downward.

(a) DEFLECTION CURVE IS A PARABOLA

Strain energy (Eq. 9-80b):

U � �
L

0

EI

2
 ¢d

2v

dx2 ≤
2

dx �
EI

2 �
L

0

¢�8�

L2 ≤
2

dx �
32EI�2

L3

d2v

dx2 � �
8�

L2

dv

dx
�

4�

L2  (L � 2x)v �
4�x

L2  (L � x)

(b) DEFLECTION CURVE IS A SINE CURVE

Strain energy (Eq. 9-80b):

�
�4EI�2

4L3

U � �
L

0

EI

2
 ¢d

2v

dx2≤
2

dx �
EI

2 �
L

0

¢��2�

L2 ≤
2

 sin2 
�x

L
 dx

d2v

dx2 � �
�2�

L2  sin 
�x

L

dv

dx
�

��

L
 cos 

�x

L
v � � sin 

�x

L



Problem 9.8-5 A beam ABC with simple supports at A and B and an
overhang BC supports a concentrated load P at the free end C (see figure). 

(a) Determine the strain energy U stored in the beam due to the load P. 
(b) From the strain energy, find the deflection �C under the load P. 
(c) Calculate the numerical values of U and �C if the length L is 8 ft,

the overhang length a is 3 ft, the beam is a W 10 � 12 steel wide-flange
section, and the load P produces a maximum stress of 12,000 psi in the
beam. (Use E � 29 � 106 psi.) 

Solution 9.8-5 Simple beam with an overhang
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L

CA

a

P

B

(a) STRAIN ENERGY (use Eq.9-80a)

FROM A TO B:

FROM B TO C: M � �Px

TOTAL STRAIN ENERGY:

U � UAB � UBC �
P2a2

6EI
 (L � a)

UBC � �
a

0

1

2EI
 (�Px)2dx �

P2a3

6EI

UAB � �M2dx

2EI
� �

L

0

1

2EI
 ¢�Pax

L
≤

2

dx �
P2a2L

6EI

M � �
Pax

L

(b) DEFLECTION �C UNDER THE LOAD P

From Eq. (9-82a):

(c) CALCULATE U AND �
C

Data: L � 8 ft � 96 in. a � 3ft � 36 in.
W 10 � 12 E � 29 � 106 psi
�max �12,000 psi

I � 53.8 in.4 in.

Express load P in terms of maximum stress:

�C �
Pa2(L � a)

3EI
�
smaxa(L � a)

3cE
� 0.133 in.

U �
P2a2(L � a)

6EI
�
s2

maxI(L � a)

6c2E
� 241 in.-lb

∴ P �
smax I

ac
smax �

Mc

I
�

Mmaxc

I
�

Pac

I

c �
d

2
�

9.87

2
� 4.935

�C �
2U

P
�

Pa2

3EI
 (L � a)

Problem 9.8-6 A simple beam ACB supporting a concentrated load P at
the midpoint and a couple of moment M0 at one end is shown in the figure. 

Determine the strain energy U stored in the beam due to the
force P and the couple M0 acting simultaneously. 

Solution 9.8-6 Simple beam with two loads

L
2
— L

2
—

BA C
P M0

L

CA

a

P

B

x x

RB �
P

2
�

M0

L

RA �
P

2
�

M0

L

FROM A TO C

�
L

192EI
 (P2L2 � 4PLM0 � 4M2

0)

UAC � �M2dx

2EI
�

1

2EI �
L�2

0

¢P
2

�
M0

L
≤

2

x2dx

M � RAx � ¢P
2

�
M0

L
≤x

BA C
P M0

L/2 L/2

RA RB

x x



Problem 9.8-7 The frame shown in the figure consists of a beam ACB
supported by a strut CD. The beam has length 2L and is continuous
through joint C. A concentrated load P acts at the free end B. 

Determine the vertical deflection �B at point B due to the load P. 
Note: Let EI denote the flexural rigidity of the beam, and let EA

denote the axial rigidity of the strut. Disregard axial and shearing effects
in the beam, and disregard any bending effects in the strut.

Solution 9.8-7 Frame with beam and strut
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L

L

L

A
B

C

D

P

FROM B TO C

�
L

192EI
 (P2L2 � 8PLM0 � 28M2

0)

UBC � �M 2dx

2EI
�

1

2EI �
L�2

0

B ¢P
2

�
M0

L
≤ x � M0R 2

dx

M � RBx � M0 � ¢P
2

�
M0

L
≤x � M0

STRAIN ENERGY OF THE ENTIRE BEAM

�
P2L3

96EI
�

PM0L
2

16EI
�

M 2
0  L

6EI

U � UAC � UBC �
L

96EI
 (P2L2 � 6PLM0 � 16M 2

0 )

BEAM ACB

For part AC of the beam: M � �Px

For part CB of the beam:

Entire beam:

STRUT CD

UBEAM � UAC � UCB �
P2L3

3 EI

UCB � UAC �
P2L3

6 EI

UAC � �M2dx

2 EI
�

1

2 EI
 �

L

0

(�Px)2dx �
P2L3

6 EI

LCD � length of strut

F � axial force in strut

(Eq. 2-37a)

FRAME

DEFLECTION �B AT POINT B

From Eq. (9-82 a):

�B �
2U

P
�

2 PL3

3 EI
�

812PL

EA

U � UBEAM � USTRUT �
P2L3

3 EI
�

412P2L

EA

USTRUT �
(212P)2(12L)

2 EA
�

412P2L

EA

USTRUT �
F2LCD

2 EA

� 212P

� 12L
BA C

L L

RA � P

x

C

D

2P

2P

2P

2P 45°



Castigliano’s Theorem

The beams described in the problems for Section 9.9 have constant 
flexural rigidity EI.

Problem 9.9-1 A simple beam AB of length L is loaded at the left-hand
end by a couple of moment M0 (see figure). 

Determine the angle of rotation �A at support A. (Obtain the solution
by determining the strain energy of the beam and then using Castigliano’s
theorem.) 

Solution 9.9-1 Simple beam with couple M0

A B

L

M0

SECTION 9.9 Castigliano’s Theorem 601

(downward)

� M0 ¢1 �
x

L
≤

M � M0 � RAx � M0 �
M0x

L

RA �
M0

L

STRAIN ENERGY

CASTIGLIANO’S THEOREM (clockwise)

(This result agree with Case 7, Table G-2)

uA �
dU

dM0
�

M0L

3 EI

U � �M2dx

2 EI
�

M2
0

2 EI �
L

0

¢1 �
x

L
≤

2

dx �
M2

0 L

6 EI
A B

L

M0

x

Problem 9.9-2 The simple beam shown in the figure supports a
concentrated load P acting at distance a from the left-hand support and
distance b from the right-hand support. 

Determine the deflection �D at point D where the load is applied.
(Obtain the solution by determining the strain energy of the beam and
then using Castigliano’s theorem.) 

Solution 9.9-2 Simple beam with load P

A BD

L

a b

P

MDB � RBx �
Pax

L

MAD � RAx �
Pbx

L

RB �
Pa

L
RA �

Pb

L

STRAIN ENERGY

CASTIGLIANO’S THEOREM

(downward)�D �
dU

dP
�

Pa2b2

3 LEI

U � UAD � UDB �
P2a2b2

6 LEI

UDB �
1

2EI �
b

0

¢Pax

L
≤

2

dx �
P2a2b3

6 EIL2

UAD �
1

2 EI �
a

0

¢Pbx

L
≤

2

dx �
P2a3b2

6 EIL2

U � �M2dx

2EI
A B

D

L

a b

P

x x



Problem 9.9-3 An overhanging beam ABC supports a concentrated load
P at the end of the overhang (see figure). Span AB has length L and the
overhang has length a. 

Determine the deflection �C at the end of the overhang. (Obtain 
the solution by determining the strain energy of the beam and then using
Castigliano’s theorem.) 

Solution 9.9-3 Overhanging beam
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A B C

L a

P

(downward)

MCB � �Px

MAB � �RAx � �
Pax

L

RA �
Pa

L

STRAIN ENERGY

CASTIGLIANO’S THEOREM

(downward)�C �
dU

dP
�

Pa2

3EI
 (L � a)

U � UAB � UCB �
P2a2

6 EI
 (L � a)

UCB �
1

2 EI �
a

0

(�Px)2dx �
P2a3

6 EI

UAB �
1

2 EI �
L

0

¢�Pax

L
≤

2

dx �
P2a2L

6 EI

U � �M2dx

2 EIA B C

L a

P

x x

Problem 9.9-4 The cantilever beam shown in the figure supports 
a triangularly distributed load of maximum intensity q0. 

Determine the deflection �B at the free end B. (Obtain the 
solution by determining the strain energy of the beam and then 
using Castigliano’s theorem.) 

Solution 9.9-4 Cantilever beam with triangular load

A

L

B

q0

P � fictitious load corresponding to deflection �B

M � �Px �
q0 x3

6 L

STRAIN ENERGY

CASTIGLIANO’S THEOREM

(downward)

(This result agrees with Cases 1 and 8 of Table G-1.)

SET P � 0: �B �
q0 L4

30 EI

�B �
0U

0P
�

PL3

3 EI
�

q0 L4

30 EI

�
P2L3

6 EI
�

Pq0 L4

30 EI
�

q2
0 L5

42 EI

U � �M2dx

2 EI
�

1

2 EI �
L

0

¢�Px �
q0 x3

6L
≤

2

dx

A

L

B

q0

P

x



Problem 9.9-5 A simple beam ACB supports a uniform load of intensity
q on the left-hand half of the span (see figure). 

Determine the angle of rotation �B at support B. (Obtain the solution
by using the modified form of Castigliano’s theorem.) 

Solution 9.9-5 Simple beam with partial uniform load

SECTION 9.9 Castigliano’s Theorem 603

A B
C

q

L
2
— L

2
—

M0 � fictitious load corresponding to angle of
rotation �B

BENDING MOMENT AND PARTIAL DERIVATIVE FOR

SEGMENT AC

BENDING MOMENT AND PARTIAL DERIVATIVE FOR

SEGMENT CB

0MCB

0M0
� �

x

L
� 1

¢0 � x �
L

2
≤

MCB � RBx � M0 � ¢qL

8
�

M0

L
≤ x � M0

0MAC

0M0
�

x

L

¢0 � x �
L

2
≤

MAC � RA x �
qx2

2
� ¢3 qL

8
�

M0

L
≤x �

qx2

2

RB �
qL

8
�

M0

L
RA �

3 qL

8
�

M0

L

MODIFIED CASTIGLIANO’S THEOREM (EQ. 9-88)

SET FICTITIOUS LOAD M0 EQUAL TO ZERO

(counterclockwise)

(This result agrees with Case 2, Table G-2.)

�
qL3

128 EI
�

qL3

96 EI
�

7qL3

384 EI

�
1

EI �
L�2

0

¢qLx

8
≤ ¢1 �

x

L
≤ dx

uB �
1

EI �
L�2

0

¢3qLx

8
�

qx2

2
≤ ¢ x

L
≤ dx

�
1

EI �
L�2

0

B ¢qL

8
�

M0

L
≤x � M0R B1 �

x

L
Rdx

�
1

EI �
L�2

0

B ¢3qL

8
�

M0

L
≤x �

qx2

2
R B x

L
Rdx

uB � �¢M

EI
≤¢ 0M

0M0
≤ dxA B

C

q

L
2
— L

2
—

M0

x x



Problem 9.9-6 A cantilever beam ACB supports two concentrated loads
P1 and P2, as shown in the figure. 

Determine the deflections �C and �B at points C and B, respectively.
(Obtain the solution by using the modified form of Castigliano’s 
theorem.) 

Solution 9.9-6 Cantilever beam with loads P1 and P2
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L
2
— L

2
—

A
B

C

P1 P2

BENDING MOMENT AND PARTIAL DERIVATIVES FOR

SEGMENT CB

MCB � �P2x

BENDING MOMENT AND PARTIAL DERIVATIVES FOR

SEGMENT AC

MODIFIED CASTIGLIANO’S THEOREM FOR DEFLECTION �C

�
L3

48 EI
 (2 P1 � 5 P2)

� 0 �
1

EI �
L

L�2

B�P1 ¢x �
L

2
≤� P2xR ¢L2 � x≤ dx

�
1

EI �
L

L�2

(MAC)  ¢ 0MAC

0P1
≤ dx

�C �
1

EI �
L�2

0

(MCB)  ¢ 0MCB

0P1
≤ dx

0MAC

0P2
� �x

0MAC

0P1
�

L

2
� x

¢L
2

� x � L≤MAC � �P1 ¢x �
L

2
≤� P2x

0MCB

0P2
� �x

0MCB

0P1
� 0

¢0 � x �
L

2
≤

MODIFIED CASTIGLIANO’S THEOREM FOR DEFLECTION �B

(These results can be verified with the aid of Cases 4
and 5, Table G-1.)

�
L3

48 EI
 (5P1 � 16P2)

�
P2L

3

24 EI
�

L3

48 EI
 (5 P1 � 14 P2)

�
1

EI �
L

L�2

B�P1 ¢x �
L

2
≤� P2xR (�x)  dx

�
1

EI �
L�2

0

(�P2x)  (�x)  dx

�
1

EI �
L

L�2

(MAC)  ¢ 0MAC

0P2
≤ dx

�B �
1

EI �
L�2

0

(MCB)  ¢ 0MCB

0P2
≤ dx

L
2
— L

2
—

A
B

C

P1 P2

x



Problem 9.9-7 The cantilever beam ACB shown in the figure is
subjected to a uniform load of intensity q acting between points A and C. 

Determine the angle of rotation �A at the free end A. (Obtain the 
solution by using the modified form of Castigliano’s theorem.) 

Solution 9.9-7 Cantilever beam with partial uniform load
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L
2
— L

2
—

A BC

q

M0 � fictitious load corresponding to the angle of
rotation �A

BENDING MOMENT AND PARTIAL DERIVATIVE FOR

SEGMENT AC

BENDING MOMENT AND PARTIAL DERIVATIVE FOR

SEGMENT CB

0MCB

0M0
� �1

¢L
2

� x � L≤MCB � �M0 �
qL

2
 ¢x �

L

4
≤

0MAC

0M0
� �1

¢0 � x �
L

2
≤MAC � �M0 �

qx2

2

MODIFIED CASTIGLIANO’S THEOREM (EQ. 9-88)

SET FICTITIOUS LOAD M0 EQUAL TO ZERO

(counterclockwise)

(This result can be verified with the aid of Case 3,
Table G-1.)

�
7qL3

48 EI

�
qL3

48 EI
�

qL3

8 EI

uA �
1

EI �
L�2

0

qx2

2
 dx �

1

EI �
L

L�2

¢qL

2
≤ ¢x �

L

4
≤ dx

�
1

EI �
L

L�2

B�M0 �
qL

2
 ¢x �

L

4
≤ R (�1)dx

�
1

EI �
L�2

0

¢�M0 �
qx2

2
≤(�1)dx

uA � �¢M

EI
≤ ¢ 0M

0M0
≤ dx

L
2
— L

2
—

A BC

q

x

M0

Problem 9.9-8 The frame ABC supports a concentrated load P at point C
(see figure). Members AB and BC have lengths h and b, respectively. 

Determine the vertical deflection �C and angle of rotation �C at end C
of the frame. (Obtain the solution by using the modified form of
Castigliano’s theorem.)

P

A

B

h

b
C



Solution 9.9-8 Frame with concentrated load
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P � concentrated load acting at point C
(corresponding to the deflection �C)

M0 � fictitious moment corresponding to the angle
of rotation �C

BENDING MOMENT AND PARTIAL DERIVATIVES FOR

MEMBER AB

MAB � Pb � M0 (0 � x � h)

BENDING MOMENT AND PARTIAL DERIVATIVES FOR

MEMBER BC

MBC � Px � M0 (0 � x � b)

0MBC

0M0
� 1

0MBC

0P
� x

0MAB

M0
� 1

0MAB

0P
� b

MODIFIED CASTIGLIANO’S THEOREM FOR DEFLECTION �C

Set M0 � 0:

(downward)

MODIFIED CASTIGLIANO’S THEOREM FOR ANGLE OF

ROTATION �C

Set M0 � 0:

(clockwise)�
Pb

2EI
 (2h � b)

uC �
1

EI �
h

0

Pb dx �
1

EI �
b

0

Px dx

�
1

EI �
h

0

(Pb � M0) (1)dx �
1

EI �
b

0

(Px � M0) (1) dx

uC � �¢M

EI
≤ ¢ 0M

0M0
≤  dx

�
Pb2

3 EI
 (3h � b)

�C �
1

EI �
h

0

Pb2dx �
1

EI �
b

0

Px2dx

�
1

EI �
h

0

(Pb � M0) (b)dx �
1

EI �
b

0

(Px � M0) (x)dx

�C � �¢M

EI
≤ ¢ 0M

0P
≤ dx

P

A

B

h

b
C M0

x

x

Problem 9.9-9 A simple beam ABCDE supports a uniform load of 
intensity q (see figure). The moment of inertia in the central part of the
beam (BCD) is twice the moment of inertia in the end parts (AB and DE). 

Find the deflection �C at the midpoint C of the beam. (Obtain the
solution by using the modified form of Castigliano’s theorem.) 

L
4
—

L
4
— L

4
— L

4
—

q

2I
I I

A B C D E



Solution 9.9-9 Nonprismatic beam

SECTION 9.9 Castigliano’s Theorem 607

P � fictitious load corresponding to the deflection �C
at the midpoint

BENDING MOMENT AND PARTIAL DERIVATIVE FOR THE

LEFT-HAND HALF OF THE BEAM (A TO C)

¢0 � x �
L

2
≤0MAC

0P
�

x

2

¢0 � x �
L

2
≤MAC �

qLx

2
�

qx2

2
�

Px

2

RA �
qL

2
�

P

2

MODIFIED CASTIGLIANO’S THEOREM (EQ. 9-88)

Integrate from A to C and multiply by 2.

SET FICTITIOUS LOAD P EQUAL TO ZERO

(downward)�C �
31qL4

4096 EI

�
13 qL4

6,144 EI
�

67 qL4

12,288 EI

�
1

EI �
L�2

L�4

¢qLx

2
�

qx2

2
≤ ¢x

2
≤ dx

�C �
2

EI �
L�4

0

¢qLx

2
�

qx2

2
≤ ¢x

2
≤ dx

� 2 ¢ 1

2 EI
≤�

L�2

L�4

¢qLx

2
�

qx2

2
�

Px

2
≤ ¢x

2
≤ dx

� 2 ¢ 1

EI
≤�

L�4

0

¢qLx

2
�

qx2

2
�

Px

2
≤ ¢x

2
≤ dx

�C � 2�¢MAC

EI
≤ ¢ 0MAC

0P
≤ dx

q

2I
I I

A B C D E

P

L

Problem 9.9-10 An overhanging beam ABC is subjected to a couple MA
at the free end (see figure). The lengths of the overhang and the main span
are a and L, respectively. 

Determine the angle of rotation �A and deflection �A at end A.
(Obtain the solution by using the modified form of Castigliano’s
theorem.) 

Solution 9.9-10 Overhanging beam ABC

A B C

a L

MA

MA � couple acting at the free end A (corresponding
to the angle of rotation �A)

P � fictitious load corresponding to the deflection �A

BENDING MOMENT AND PARTIAL DERIVATIVES FOR

SEGMENT AB

MAB � �MA � Px (0 � x � a)
0MAB

0P
� �x

0MAB

0MA

� �1

BENDING MOMENT AND PARTIAL DERIVATIVES FOR

SEGMENT BC

Reaction at support C: (downward)

(0 � x � L)

0MBC

0P
� �

ax

L

0MBC

0MA

� �
x

L

MBC � �RC x � �
MAx

L
�

Pax

L

RC �
MA

L
�

Pa

L

A B C

a L

MA

P

x x
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MODIFIED CASTIGLIANO’S THEOREM FOR ANGLE OF

ROTATION �A

Set P � 0:

(counterclockwise)�
MA

3 EI
 (L � 3a)

uA �
1

EI �
a

0

MAdx �
1

EI �
L

0

¢MAx

L
≤ ¢ x

L
≤ dx

�
1

EI �
L

0

¢�MAx

L
�

Pax

L
≤ ¢�x

L
≤dx

�
1

EI �
a

0

(�MA � Px)(�1) dx

uA � �¢M

EI
≤ ¢ 0M

0MA

≤ dx

MODIFIED CASTIGLIANO’S THEOREM FOR DEFLECTION �A

Set P � 0:

(downward)�
MAa

6EI
 (2L � 3a)

�A �
1

EI �
a

0

MAxdx �
1

EI �
L

0

¢MAx

L
≤ ¢ax

L
≤ dx

�
1

EI �
L

0

¢�MAx

L
�

Pax

L
≤ ¢�ax

L
≤  dx

�
1

EI �
a

0

(�MA � Px)(�x)dx

�A � �¢M

EI
≤ ¢ 0M

0P
≤  dx

Problem 9.9-11 An overhanging beam ABC rests on a simple support 
at A and a spring support at B (see figure). A concentrated load P acts 
at the end of the overhang. Span AB has length L, the overhang has 
length a, and the spring has stiffness k. 

Determine the downward displacement �C of the end of the 
overhang. (Obtain the solution by using the modified form of
Castigliano’s theorem.)

Solution 9.9-11 Beam with spring support

A C

L a

k

P

B

(downward)

(upward)

BENDING MOMENT AND PARTIAL DERIVATIVE FOR

SEGMENT AB

(0 � x � L )

BENDING MOMENT AND PARTIAL DERIVATIVE FOR

SEGMENT BC

MBC � �Px (0 � x � a)
dMBC

dP
� �x

dMAB

dP
� �

ax

L
MAB � �RAx � �

Pax

L

RB �
P

L
 (L � a)

RA �
Pa

L

STRAIN ENERGY OF THE SPRING (EQ. 2-38a)

STRAIN ENERGY OF THE BEAM (EQ. 9-80a)

TOTAL STRAIN ENERGY U

APPLY CASTIGLIANO’S THEOREM (EQ. 9-87)

�
d

dP �M2dx

2 EI
�

P(L � a)2

kL2

�C �
dU

dP
�

d

dP �M2dx

2 EI
�

d

dP
B P2(L � a)2

2 kL2 R

U � UB � US � �M2dx

2 EI
�

P2(L � a)2

2 kL2

UB � �M2dx

2 EI

US �
R2

B

2k
�

P2(L � a)2

2 kL2

A C
L a

k

P

B

x x

RA
RB
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DIFFERENTIATE UNDER THE INTEGRAL SIGN (MODIFIED

CASTIGLIANO’S THEOREM)

�
1

EI �
L

0

¢�Pax

L
≤ ¢�ax

L
≤ dx

�C � �¢M

EI
≤ ¢dM

dP
≤dx �

P(L � a)2

kL2

�C �
Pa2(L � a)

3 EI
�

P(L � a)2

kL2

�
Pa2L

3 EI
�

Pa3

3 EI
�

P(L � a)2

kL2

�
1

EI �
a

0

(�Px)(�x)dx �
P(L � a)2

kL2

Problem 9.9-12 A symmetric beam ABCD with overhangs at both ends
supports a uniform load of intensity q (see figure).

Determine the deflection �D at the end of the overhang. (Obtain the
solution by using the modified form of Castigliano’s theorem.) 

Solution 9.9-12 Beam with overhangs

L
4
— L

4
—

A
B C D

L

q

q � intensity of uniform load

P � fictitious load corresponding 
to the deflection �D

� length of segments AB and CD

L � length of span BC

BENDING MOMENTS AND PARTIAL DERIVATIVES

SEGMENT AB

SEGMENT BC

0MBC

0P
� �

x

4

(0 � x � L)� �
q

2
 ¢x �

L

4
≤

2

� ¢3 qL

4
�

P

4
≤x

MBC � �Bq ¢x �
L

4
≤ R B 1

2
 ¢x �

L

4
≤ R � RB x

¢0 � x �
L

4
≤0MAB

0P
� 0MAB � �

qx2

2

RC �
3 qL

4
�

5P

4
RB �

3 qL

4
�

P

4

L

4

SEGMENT CD

MODIFIED CASTIGLIANO’S THEOREM FOR DEFLECTION �D

SET P � 0:

(Minus means the deflection is opposite in direction
to the fictitious load P.)

(upward)∴ �D �
37 qL4

6144 EI

� �
5 qL4

768 EI
�

qL4

2048 EI
� �

37 qL4

6144 EI

�
1

EI �
L�4

0

¢�qx2

2
≤(�x)  dx

�D �
1

EI �
L

0

B�
q

2
¢x �

L

4
≤

2

�
3qL

4
xR B�

x

4
Rdx

B�
x

4
Rdx �

1

EI �
L�4

0

¢�qx2

2
� Px≤(�x)dx

�
1

EI �
L

0

B�
q

2
¢x �

L

4
≤

2

� ¢3qL

4
�

P

4
≤xR

�
1

EI �
L�4

0

¢�qx2

2
≤(0)  dx

�D � �¢M

EI
≤ ¢ 0M

0P
≤ dx

0MCD

0P
� �x

¢0 � x �
L

4
≤MCD � �

qx2

2
� Px

A
B C D

q
P

x x x



Deflections Produced by Impact

The beams described in the problems for Section 9.10 have constant 
flexural rigidity EI. Disregard the weights of the beams themselves, 
and consider only the effects of the given loads. 

Problem 9.10-1 A heavy object of weight W is dropped onto the 
midpoint of a simple beam AB from a height h (see figure).

Obtain a formula for the maximum bending stress �max due to the
falling weight in terms of h, �st, and �st, where �st is the maximum 
bending stress and �st is the deflection at the midpoint when the weight 
W acts on the beam as a statically applied load. 

Plot a graph of the ratio �max /�st (that is, the ratio of the dynamic stress
to the static stress) versus the ratio h /�st. (Let h /�st vary from 0 to 10.)

Solution 9.10-1 Weight W dropping onto a simple beam
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L
2
—L

2
—

A B

h
W

MAXIMUM DEFLECTION (EQ. 9-94)

MAXIMUM BENDING STRESS

For a linearly elastic beam, the bending stress � is
proportional to the deflection �.

GRAPH OF RATIO �max/�st

smax �sstB1 � ¢1 �
2h

�st
≤

1�2 R
∴
smax

sst
�

�max

�st
� 1 � ¢1 �

2h

�st
≤

1�2

�max � �st � (�2
st � 2h�st)

1�2

NOTE: for a simple beam with a load 

at the midpoint.

�st �
WL3

48 EI

Problem 9.10-2 An object of weight W is dropped onto the midpoint of a
simple beam AB from a height h (see figure). The beam has a rectangular
cross section of area A. 

Assuming that h is very large compared to the deflection of the beam
when the weight W is applied statically, obtain a formula for the 
maximum bending stress �max in the beam due to the falling weight. A B

h

W

—
L
2

—
L
2

0

2

4

6

2.5 5.0 7.5 10.0

�max
�st

h
�st

0 2.00
2.5 3.45
5.0 4.33
7.5 5.00

10.0 5.58

smax

sst

h

�st



Solution 9.10-2 Weight W dropping onto a simple beam
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Height h is very large.

MAXIMUM DEFLECTION (EQ. 9-95)

MAXIMUM BENDING STRESS

For a linearly elastic beam, the bending stress � is
proportional to the deflection �.

(1)smax �B2 hs2
st

�st

∴
smax

sst
�

�max

�st
�B2h

�st

�max � �2h�st

(2)

For a RECTANGULAR BEAM (with b, depth d):

(3)

Substitute (2) and (3) into (1):

smax �B18 WhE

AL

I

S 2
�

3

bd
�

3

A
S �

bd 2

6
I �

bd 3

12

s2
st

�st
�

3 WEI

S2L
�st �

WL3

48 EI

s2
st �

W2L2

16 S2sst �
M

S
�

WL

4 S

Problem 9.10-3 A cantilever beam AB of length L � 6 ft is
constructed of a W 8 � 21 wide-flange section (see figure). A
weight W � 1500 lb falls through a height h � 0.25 in. onto the
end of the beam. 

Calculate the maximum deflection �max of the end of the
beam and the maximum bending stress �max due to the falling
weight. (Assume E � 30 � 106 psi.) 

Solution 9.10-3 Cantilever beam

W = 1500 lb

h = 0.25 in.

A B

W 8 � 21

L = 6 ft

DATA: L � 6 ft � 72 in. W � 1500 lb
h � 0.25 in. E � 30 � 106 psi
W 8 � 21 I � 75.3 in.4 S � 18.2 in.3

MAXIMUM DEFLECTION (EQ. 9-94)

Equation (9-94) may be used for any linearly elastic
structure by substituting �st � W/k, where k is the
stiffress of the particular structure being considered. For
instance: Simple beam with load at midpoint:

Cantilever beam with load at the free end: Etc.

For the cantilever beam in this problem:

� 0.08261 in.

�st �
WL3

3 EI
�

(1500 lb)(72 in.)3

3(30 � 106 psi)(75.3 in.4)

k �
3 EI

L3

k �
48 EI

L3

Equation (9-94):

MAXIMUM BENDING STRESS

Consider a cantilever beam with load P at the free
end:

Ratio: 

∴ smax �
3 EI

SL2  �max � 21,700 psi

smax

�max
�

3 EI

SL2

�max �
PL3

3 EI
smax �

Mmax

S
�

PL

S

�max � �st � (�2
st � 2 h �st)

1�2 � 0.302 in.

Problem 9.10-4 A weight W � 20 kN falls through a height h � 1.0
mm onto the midpoint of a simple beam of length L � 3 m (see figure).
The beam is made of wood with square cross section (dimension d on
each side) and E � 12 GPa. 

If the allowable bending stress in the wood is �allow � 10 MPa,
what is the minimum required dimension d? 

A B

h
W

—

d

d
L
2

—L
2



Solution 9.10-4 Simple beam with falling weight W
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DATA: W � 20 kN h � 1.0 mm L � 3.0 m
E � 12 GPa �allow � 10 MPa

CROSS SECTION OF BEAM (SQUARE)

d � dimension of each side

MAXIMUM DEFLECTION (EQ. 9-94)

MAXIMUM BENDING STRESS

For a linearly elastic beam, the bending stress � is
proportional to the deflection �.

(1)

STATIC TERMS �st AND �st

(2)

(3)�st �
WL3

48 EI
�

WL3

48 E
 ¢12

d 4
≤�

WL3

4 Ed 4

sst �
M

S
� ¢WL

4
≤ ¢ 6

d3≤�
3 WL

2 d 3

∴
smax

sst
�

�max

�st
� 1 � ¢1 �

2h

�st
≤

1�2

�max � �st � (�2
st � 2 h �st)

1�2

S �
d 3

6
I �

d 4

12

SUBSTITUTE (2) AND (3) INTO EQ. (1)

SUBSTITUTE NUMERICAL VALUES:

(d � meters)

SQUARE BOTH SIDES, REARRANGE, AND SIMPLIFY

2500d3 � 36d � 45 � 0 (d � meters)

SOLVE NUMERICALLY

d � 0.2804 m � 280.4 mm

For minimum value, round upward.
� d � 281 mm

¢1000

9
≤

2

d 3 �
1600

9
 d �

2000

9
� 0

1000

9
 d 3 � 1 � B1 �

1600

9
 d 4R 1�2

� B1 �
8(1.0 mm)(12 GPa)d 4

(20 kN)(3.0 m)3 R 1�22(10 MPa)d3

3(20 kN)(3.0 m)
� 1

2smaxd 3

3 WL
� 1 � ¢1 �

8hEd 4

WL3 ≤
1�2

Problem 9.10-5 A weight W � 4000 lb falls through a height 
h � 0.5 in. onto the midpoint of a simple beam of length L � 10 ft
(see figure). 

Assuming that the allowable bending stress in the beam is 
�allow � 18,000 psi and E � 30 � 106 psi, select the lightest 
wide-flange beam listed in Table E-1 in Appendix E that will be 
satisfactory. 

Solution 9.10-5 Simple beam of wide-flange shape

h = 0.5 in.

W = 4000 lb

A B

— = 5 ftL
2

— = 5 ftL
2

DATA: W � 4000 lb h � 0.5 in.
L � 10 ft � 120 in.
�allow � 18,000 psi E � 30 � 106 psi

MAXIMUM DEFLECTION (EQ. 9-94)

or

MAXIMUM BENDING STRESS

For a linearly elastic beam, the bending stress � is
proportional to the deflection �.

(1)∴
smax

sst
�

�max

�st
� 1 � ¢1 �

2h

�st
≤

1�2

�max

�st
� 1 � ¢1 �

2h

�st
≤

1�2

�max � �st � (�2
st � 2h�st)

1�2

STATIC TERMS �st AND �st

(2)

(3)

SUBSTITUTE (2) AND (3) INTO EQ. (1):

REQUIRED SECTION MODULUS

S �
WL

4sallow
B1 � ¢1 �

96 hEI

WL3 ≤
1�2 R

4sallowS

WL
� 1 � ¢1 �

96hEI

WL3 ≤
1�2

2h

�st
� 2h ¢48 EI

WL3 ≤�
96 hEI

WL3

smax

sst
�sallow¢ 4 S

WL
≤�

4 sallow S

WL

�st �
WL3

48 EI
sst �

M

S
�

WL

4 S
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SUBSTITUTE NUMERICAL VALUES

(4)

(S � in.3; I � in.4)

PROCEDURE

1. Select a trial beam from Table E-1.
2. Substitute I into Eq. (4) and calculate required S.
3. Compare with actual S for the beam.
4. Continue until the lightest beam is found. 

S � ¢20

3
 in.3≤ B1 � ¢1 �

5 I

24
≤

1�2 R
Trial Actual Required
beam I S S

W 8 � 35 127 31.2 41.6 (NG)
W 10 � 45 248 49.1 55.0 (NG)
W 10 � 60 341 66.7 63.3 (OK)
W 12 � 50 394 64.7 67.4 (NG)
W 14 � 53 541 77.8 77.8 (OK)
W 16 � 31 375 47.2 66.0 (NG)
Lightest beam is W 14 � 53

Problem 9.10-6 An overhanging beam ABC of rectangular
cross section has the dimensions shown in the figure. A weight
W � 750 N drops onto end C of the beam. 

If the allowable normal stress in bending is 45 MPa, 
what is the maximum height h from which the weight may 
be dropped? (Assume E � 12 GPa.) 

Solution 9.10-6 Overhanging beam

A
B C

h

W

1.2 m 2.4 m 500 mm

40 mm

40 mm

DATA: W � 750 N LAB � 1.2 in. LBC � 2.4 m
E � 12 GPa �allow � 45 MPa

� 2.6667 � 106 mm4

� 2.6667 � 10�6 m4

� 133.33 � 103 mm3

� 133.33 � 10�6 m3

DEFLECTION �C AT THE END OF THE OVERHANG

P � load at end C
L � length of spear AB
a � length of overhang BC

From the answer to Prob. 9.8-5 or Prob. 9.9-3:

�C �
Pa2(L � a)

3 EI

S �
bd 2

6
�

1

6
 (500 mm)(40 mm)2

I �
bd 3

12
�

1

12
 (500 mm)(40 mm)3

Stiffness of the beam: (1)

MAXIMUM DEFLECTION (EQ. 9-94)

Equation (9-94) may be used for any linearly elastic
structure by substituting �st � W/k, where k is the
stiffness of the particular structure being considered.
For instance:

Simple beam with load at midpoint: 

Cantilever beam with load at free end: Etc.

For the overhanging beam in this problem (see Eq. 1):

(2)

in which a � LBC and L � LAB:

(3)

EQUATION (9-94):

or

(4)
�max

�st
� 1 � ¢1 �

2h

�st
≤

1�2

�max � �st � (�2
st � 2 h �st)

1�2

�st �
W(L2

BC)(LAB � LBC)

3 EI

�st �
W

k
�

Wa2(L � a)

3 EI

k �
3 EI

L3

k �
48 EI

L3

k �
P

�C

�
3 EI

a2(L � a)

A
B C

P

L a
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MAXIMUM BENDING STRESS

For a linearly elastic beam, the bending stress � is
proportional to the deflection �.

(5)

(6)

MAXIMUM HEIGHT h

Solve Eq. (5) for h:

(7)h �
�st

2
 ¢smax

sst
≤ ¢smax

sst
� 2≤

¢smax

sst
≤

2

� 2 ¢smax

sst
≤� 1 � 1 �

2h

�st

smax

sst
� 1 � ¢1 �

2h

�st
≤

1�2

sst �
M

S
�

WLBC

S

∴
smax

sst
�

�max

�st
� 1 � ¢1 �

2h

�st
≤

1�2

Substitute �st from Eq. (3), �st from Eq. (6), and
�allow for �max:

(8)

SUBSTITUTE NUMERICAL VALUES INTO EQ. (8):

or h � 360 mm

h � (0.08100 m) ¢10

3
≤ ¢10

3
� 2≤� 0.36 m

sallow S

WLBC

�
10

3
� 3.3333

W(LBC
2 ) (LAB � LBC)

6 EI
� 0.08100 m

h �
W(L2

BC)(LAB � LBC)

6 EI
 ¢sallowS

WLBC

≤ ¢sallowS

WLBC

� 2≤

Problem 9.10-7 A heavy flywheel rotates at an angular speed �
(radians per second) around an axle (see figure). The axle is rigidly
attached to the end of a simply supported beam of flexural rigidity EI
.and length L (see figure). The flywheel has mass moment of inertia Im
about its axis of rotation. 

If the flywheel suddenly freezes to the axle, what will be the 
reaction R at support A of the beam? 

Solution 9.10-7 Rotating flywheel

�
EI ImA

R L

NOTE: We will disregard the mass of the beam and
all energy losses due to the sudden stopping of the
rotating flywheel. Assume that all of the kinetic
energy of the flywheel is transformed into strain
energy of the beam.

KINETIC ENERGY OF ROTATING FLYWHEEL

STRAIN ENERGY OF BEAM

M � Rx, where x is measured from support A.

U �
1

2 EI �
L

q

(Rx)2dx �
R2L3

6 EI

U � �M 2dx

2 EI

kE �
1

2
 Im �2

CONSERVATION OF ENERGY

kE � U

NOTE: The moment of inertia IM has units of kg � m2

or N � m � s2

R �B3 EI Im �2

L3

1

2
 Im �2 �

R2 L3

6 EI
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Representation of Loads on Beams by Discontinuity Functions

Problem 9.11-1 through 9.11-12 A beam and its loading are shown in
the figure. Using discontinuity functions, write the expression for the
intensity q(x) of the equivalent distributed load acting on the beam
(include the reactions in the expression for the equivalent load).

Solution 9.11-1 Cantilever beam

P

a
L

b

x
BDA

y

FROM EQUILIBRIUM:

RA � P MA � Pa

USE TABLE 9-2.

� �P �x��1 � Pa �x��2 � P�x � a��1

q(x) � �RA �x��1 � MA �x��2 � P �x � a��1

P

a
L

b

x
BDA

y

RA

MA

Problem 9.11-2

Solution 9.11-2 Cantilever beam

q

a

L

b

x
BDA

y

FROM EQUILIBRIUM: RA � qb

USE TABLE 9-2.

� q �x � a�0 � q �x � L�0

� �qb �x��1 �
qb

2
 (2a � b) �x��2

q(x) � �RA �x��1 � MA �x��2 � q �x � a�0 � q �x � L�0

MA �
qb

2
 (2a � b)

q

a

L

b

x
BDA

y

MA

RA



Problem 9.11-3

Solution 9.11-3 Cantilever beam
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q = 2 k/ft P = 4 k

3 ft6 ft

xBA D

y

a � 6 ft � 72 in.
b � 3 ft � 36 in.
L � 9 ft � 108 in.

q � 2 k�ft �
1

6
 k �in.

FROM EQUILIBRIUM:

RA � 16 k MA � 864 k-in.

USE TABLE 9-2. Units: kips, inches

(Units: x � in., q � k�in.)

� 4 �x � 108��1

� �16 �x��1 � 864 �x��2 �
1

6
 �x�0 �

1

6
 �x � 72�0

� P �x � L��1

q(x) � �RA �x��1 � MA �x��2 � q �x�0 � q �x � a�0 

q = 2 k/ft P = 4 k

b � 3 fta � 6 ft

xBA D

y

MA

RA

Problem 9.11-4

Solution 9.11-4 Simple beam

b

L

a

x
BDA

y P

FROM EQUILIBRIUM:

USE TABLE 9-2.

�
Pa

L
 �x � L��1

� �
Pb

L
 �x��1 � P �x � a��1

q(x) � �RA �x��1 � P �x � a��1 � RB �x � L��1

RB �
Pa

L
RA �

pb

L

b

L

a

x
BDA

y P

RA RB



Problem 9.11-5

Solution 9.11-5 Simple beam
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b
L

a

x
BDA

y M0

FROM EQUILIBRIUM:

USE TABLE 9-2.

�
M0

L
 �x � L��1

� �
M0

L
 �x��1 � M0 �x � a��2

q(x) � �RA �x��1 � M0 �x � a��2 � RB �x � L��1

RB �
M0

L
 (downward)RA �

M0

L

b
L

a

x
BDA

y M0

RA RB

Problem 9.11-6

Solution 9.11-6 Simple beam

a

L

x
BD

a

A

y P

E

P

FROM EQUILIBRIUM: RA � RB � P

USE TABLE 9-2.

� P �x � L��1

� �P �x��1 � P �x � a��1 � P �x � L � a��1

�RB �x � L��1

q(x) � �RA �x��1 � P �x � a��1 � P �x � L � a��1

a

L

x
BD

a

A

y P

E

P

RA
RB
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Problem 9.11-7

Solution 9.11-7 Simple beam

10 ft16 ft

x
BDA

y

M0 = 20 k-ft P = 18 k

M0 � 20 k-ft � 240 k-in. P � 18 k
a � 16 ft � 192 in. b � 10 ft � 120 in.
L � 26 ft � 312 in.

FROM EQUILIBRIUM: RA � 7.692 k RB � 10.308 k

USE TABLE 9-2. Units: kips, inches

(Units: x � in., q � k�in.)

� 10.308 �x � 312 ��1

� �7.692 �x��1 � 240 �x��2 � 18 �x � 192��1

� RB �x � L��1

q(x) � �RA �x��1 � M0 �x��2 � P �x � a��1

b = 10 fta = 16 ft

x
BDA

y

M0 = 20 k-ft P = 18 k

RA RB

Problem 9.11-8

Solution 9.11-8 Simple beam

a
L

q

x
BDA

y

FROM EQUILIBRIUM:

USE TABLE 9-2.

� q �x � a�0 � (qa2�2L) �x � L��1

� �(qa�2L)(2L � a) �x��1 � q �x�0
q(x) � �RA �x��1 � q �x�0 � q �x � a�0 � RB �x � L��1

RB �
qa2

2L
RA �

qa

2L
 (2L � a)

a
L

q

x
BDA

y

RA RB
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Problem 9.11-9

Solution 9.11-9 Simple beam

L/3 L/3 L/3

q0

x
BEDA

y

FROM EQUILIBRIUM:

USE TABLE 9-2.

� (5q0 L �54) �x � L��1

� (3q0 �L) �x � 2L �3�1 � q0 �x � 2L �3�0
� �(2q0 L �27) �x��1 � (3q0 �L) �x � L �3�1

�q0 �x �
2L

3
�0 � RB �x � L��1

q(x) � �RA �x��1 �
3q0

L
 �x �

L

3
�1 �

3q0

L
 �x �

2L

3
�1

RB �
5q0 L

54
RA �

2q0 L

27
 

L/3 L/3 L/3

q0

x
BEDA

y

RA RB

Problem 9.11-10

Solution 9.11-10 Simple beam

P = 120 kN
q = 20 kN/m

x
BDCA

y

10 m 5 m 5 m

FROM EQUILIBRIUM: RA � 180 kN RB � 140 kN

USE TABLE 9-2. Units: kilonewtons, meters

(Units: x � meters, q � kN�m)

� 120 �x � 15��1 � 140 �x � 20��1

� �180 �x��1 � 20 �x�0 � 20 �x � 10�0
� P �x � 3L �4��1 � RB �x � L��1

q(x) � �RA �x��1 � q �x�0 � q �x � L �2�0
P = 120 kN

q = 20 kN/m

x
BDCA

y

RA RB

— = 10 mL
2

— = 5 m
L
4

—L
4

= 5 m
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Problem 9.11-11

Solution 9.11-11 Beam with an overhang

6 ft 6 ft 6 ft

M0 = 12 k-ft P = 8 k

x
D

C

BA

y

M0 � 12 k-ft � 144 k-in.

L � 12 ft � 144 in.

L

2
� 6 ft � 72 in.

FROM EQUILIBRIUM: RA � 3 k (downward)
RB � 11 k (upward)

USE TABLE 9-2. Units: kips, inches

(Units: x � in., q � kN�in.)

� 8 �x � 216 ��1

� 3 �x��1 � 144 �x � 72��2 � 11 �x � 144 ��1

� P �x � 3L �2��1

q(x) � RA �x��1 � M0 �x � L �2��2 � RB �x � L��1

RA RB

M0 = 12 k-ft P = 8 k

x
D

C

BA

y

— = 6 ft
L
2

— = 6 ft
L
2

— = 6 ft
L
2

Problem 9.11-12

Solution 9.11-12 Beam with an overhang

q = 12 kN/m

D

1.2 m1.2 m1.2 m

x
C

B

A

y

q � 12 kN�m

L � 2.4 m

FROM EQUILIBRIUM: RA � 2.4 kN (downward)
RB � 24.0 kN (upward)

L

2
� 1.2 m

USE TABLE 9-2. Units: kilonewtons, meters

(Units: x � meters, q � kN�m)

� 24 �x � 2.4��1 � 12 �x � 3.6�0
� 2.4 �x��1 � 10 �x � 1.2�1 � 10 �x � 2.4�1

� 12 �x � 2.4�0 � 12 �x � 3.6�0
� 12 �x � 2.4�0 � 24 �x � 2.4��1

� 2.4 �x��1 � 10 �x � 1.2�1 � 10 �x � 2.4�1
� q �x � 3L �2�0
�q �x � L �0 � RB �x � L��1 � q �x � L�0

q(x) � RA �x��1 �
q

L �2
 �x � L �2�1 �

q

L �2
 �x � L�1

q = 12 kN/m

D
x

C

B

A

y

— = 1.2 mL
2

— = 1.2 mL
2

— = 1.2 mL
2

RA RB
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Beam Deflections Using Discontinuity Functions

The problems for Section 9.12 are to be solved by using discontinuity
functions. All beams have constant flexural rigidity EI. (Obtain the 
equations for the equivalent distributed loads from the corresponding
problems in Section 9.11.)

Problem 9.12-1, 9.12-2, and 9.12-3 Determine the equation of the
deflection curve for the cantilever beam ADB shown in the figure. Also,
obtain the angle of rotation �B and deflection �B at the free end. (For the
beam of Problem 9.12-3, assume E � 10 � 103 ksi and I � 450 in.4)

Solution 9.12-1 Cantilever beam

FROM PROB: 9.11-1:

INTEGRATE THE EQUATION

Note: and

B.C. EI(0) � 0 � 0 � 0 � C1
� C1 � 0

EIv � Px3�6 � Pa x2�2 � (P�6) �x � a�3 � C2

v¿(0) � 0

EIv¿ � Px 2�2 � Pax � (P�2) �x � a�2 � C1

�x�0 � 1�x�1 � x

EIv– � M � P �x�1 � Pa �x�0 � P �x � a�1
EIv‡ � V � P �x�0 � Pa �x��1 � P �x � a�0

EIv–– � �q(x) � P �x��1 � Pa �x��2 � P �x � a��1

B.C. v(0) � 0 EI(0) � 0 � 0 � 0 � C2
� C2 � 0

FINAL EQUATIONS

�B � CLOCKWISE ROTATION AT END B (x � L)

� (PL�2) (L � 2a) � (P�2) (L � a)2

� �Pa2�2

�B � DOWNLOAD DEFLECTION AT END B (x � L)

� (PL2�6) (L � 3a) � (P�6) (L � a)3

� (Pa2�6)(�3L � a)

�B � �v(L) �
Pa2

6 EI
 (3L � a) (downward)

EIv(L) � (PL2�6)(L � 3a) � (P�6) �L � a�3

uB � �v¿(L) �
Pa2

2EI
�(clockwise)

EIv¿(L) � (PL�2)(L � 2a) � (P�2) �L � a�2

EIv � (Px 2�6)(x � 3a) � (P�6) �x � a�3
EIv¿ � (Px�2)(x � 2a) � (P�2) �x � a�2

P

a
L

b

x
BDA

y

RA

Solution 9.12-2 Cantilever beam

FROM PROB: 9.11-2:

Note: and may be dropped from the
equation.

�x � L�0 � 0

� q �x � a�0 � q �x � L�0
EIv–– � �q(x) � qb �x��1 � (qb�2)(2a � b) �x��2

INTEGRATE THE EQUATION

Note: and

B.C. EI (0) � 0 � 0 � 0 � C1

� C1 � 0

B.C. v(0) � 0 EI(0) � 0 � 0 � 0 � C2
� C2 � 0

� (q�24) �x � a�4 � C2EIv � qbx3�6 � (qb�2)(2a � b)(x2�2)

v¿(0) � 0

� (q�6) �x � a�3 � C1EIv¿ � qbx2�2 � (qb�2)(2a � b)x

�x�0 � 1�x�1 � x

� q �x � a�2�2EIv– � M � qb �x�1 � (qb�2)(2a � b)  �x�0
� q �x � a�1EIv‡ � V � qb �x�0 � (qb�2)(2a � b)  �x��1

q

a

L

b

x
BDA

y
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FINAL EQUATIONS

�B � CLOCKWISE ROTATION AT END B (x � L)

� �qabL�2 � (q�6)(L �a)3

� �(q�6)(L 3 � a3)

uB � �v¿(L) �
q

6 EI
 (L3 � a3)�(clockwise)

EIv¿(L) � (qbL�2)(�a) � (q�6) �L � a�3

� (q�24) �x � a�4
EIv � (qbx2�12)(2x � 3a � 3L)

EIv¿ � (qbx�2)(x � L � a) � (q�6) �x � a�3
�B � DOWNWARD DEFLECTION AT END B (x � L)

� (qbL2�12)(�3a � L) � (q�24)(L � a)4

� �(q�24)(3L4 � 4a3L � a4)
(After some lengthy algebra)

�B � �v(L) �
q

24 EI
 (3L4 � 4a3L � a4) (downward)

EIv(L) � (qbL2�12)(�3a � L) � (q�24) �L � a�4

Solution 9.12-3 Cantilever beam

a � 72 in. b � 36 in.
L � 108 in.
E � 10 � 103 ksi. I � 450 in.4

FROM PROB: 9.11-3 Units: kips, inches

Note: and may be dropped from the
equation.

INTEGRATE THE EQUATION

Note: and

Note:

B.C. EI(0) � 0 � 0 � 0 � 0 � C1
� C1 � 0

B.C. v(0) � 0 EI(0) � 0 � 0 � 0 � 0 � C2
� C2 � 0

� (1 �144)  �x � 72�4 � C2

EIv � 8x3�3 � 432 x2 � x4�144

v¿(0) � 0

�x�1 � x

� (1�36) �x � 72�3 � C1

EIv¿ � 8x2 � 864 �x�1 � x3 �36

� (1�12) �x � 72�2EIv– � M � 16x � 864 �x�0 � x2 �12

�x�1 � x�x�0 � 1

� (1�6)  �x � 72�1
EIv‡ � V � 16 �x�0 � 864 �x��1 � (1�6)  �x�1

�x � 108��1 � 0

� (1�6)  �x � 72�0 � 4 �x � 108��1

EIv–– � �q(x) � 16 �x��1 � 864 �x��2 � (1�6)  �x�0

q � 2 k�ft �
1

6
 k�in.

FINAL EQUATIONS

Units: E � ksi, I � in.4,
v � in., x � in.

�B � CLOCKWISE ROTATION AT END B (x � L � 108 in.)

EI � (10 � 103 ksi)(450 in.4) � 4.5 � 106 k-in.2

� 0.007488 radians (clockwise)

�B � DOWNWARD DEFLECTION AT END

B (x � L � 108 in.)

� 0.5806 in. (downward)

�
2,612,736

EI
�

2,612,736

4.5 � 106

�
(108)2

144 EI
(32,400) �

1

144 EI
(1,679,616)

�
1

144 EI
(108 � 72)4

�B � �
(108)2

144EI
[�(108)(108) � 384(108) � 62,208]

�B � �v(L) � �v(108)

uB �
33,696

4.5 � 106

�
108

36 EI
(11,664) �

1

36 EI
(46,656) �

1

EI
(33,696)

� ¢ 1

36 EI
≤(108 � 72)3

uB � �
108

36 EI
[�(108)(108) � 288(108) � 31,104]

uB � �v¿(L) � �v¿(108)

v¿ � radians,

� (1�144) �x � 72�4
EIv � (x2�144)(�x2 � 384x � 62,208)

� (1�36) �x � 72�3EIv¿ � (x�36)(�x2 � 288x � 31,104)q = 2 k/ft P = 4 k

3 ft6 ft

xBA D

y



Problem 9.12-4, 9.12-5, and 9.12-6 Determine the equation of the deflection
curve for the simple beam AB shown in the figure. Also, obtain the angle 
of rotation �A at the left-hand support and the deflection �D at point D.

Solution 9.12-4 Simple beam

SECTION 9.11 Beam Deflections Using Discontinuity Functions 623

FROM

PROB:
9.11-
4:

Note: and may be dropped from the
equation.

INTEGRATE THE EQUATION

Note: and 

B.C. v(0) � 0 EI(0) � 0 � 0 � 0 � C2 � C2 � 0
B.C. v(L) � 0

� PbL2�6 � (P�6)(b3) � C1L

∴ C1 � �
PbL

6
�

Pb3

6L
� �

Pb

6L
 (L2 � b2)

EI(0) � PbL2�6 � (P�6) �L � a�3 � C1L

�x�3 � x3�x�2 � x2

EIv � (Pb�6L) �x�3 � (P�6) �x � a�3 � C1x � C2

EIv¿ � (Pb�2L) �x�2 � (P�2) �x � a�2 � C1

EIv– � M � (Pb�L)�x�1 � P �x � a�1
EIv‡ � V � (Pb�L)�x�0 � P �x � a�0

�x � L��1 � 0

� (Pa�L)�x � L��3

EIv–– � �q(x) � (Pb�L)�x��1 � P �x � a��1

FINAL EQUATIONS

�A � CLOCKWISE ROTATION AT SUPPORT A (x � 0)

�D � DOWNWARD DEFLECTION AT POINT D (x � a)

EIv(a) � (Pba�6L)(a2 � b2 � L2) � (P/6)(0)

� �(Pab�6L)(L2 � b2 � a2)

�D � �v(a) �
Pab

6 LEI
(L2 � b2 � a2) �

Pa2b2

3 LEI

�
Pab

6 LEI
(L � b)

uA �
Pb

6 LEI
(L2 � b2) �

Pb

6 LEI
(L � b)(L � b)

uA � �v¿(0) � (Pb�6L)(L2 � b2) (1�EI)

EIv¿(0) � (Pb�6L)(b2 � L2) � (P�2)(0)

� (P�6) �x � a�3
� (Pbx�6L)(x2 � b2 � L2)

� (Pbx�6L)(L2 � b2)

EIv � (Pb�6L)(x)3 � (P�6) �x � a�3
� (Pb�6L)(3x2 � b2 � L2) � (P�2) �x � a�2

EIv¿ � Pbx2�2L � (P�2) �x � a�2 �
Pb

6L
(L2 � b2)

b

L

a

x
BDA

y P

Solution 9.12-5 Simple beam

FROM PROB: 9.11-5:

Note: and may be dropped from the equation.

INTEGRATE THE EQUATION

Note: and �x�3 � x3�x�2 � x2

EIv � (M0 �6L) �x�3 � (M0 �2) �x � a�2 � C1x � C2

EIv¿ � (M0 �2L) �x�2 � M0 �x � a�1 � C1

EIv– � M � (M0 �L)�x�1 � M0 �x � a�0
EIv‡ � V � (M0 �L)�x�0 � M0 �x � a�1

�x � L��1 � 0

� (M0 �L)�x � L��1

EIv–– � �q(x) � (M0 �L)�x��1 � M0 �x � a��2

B.C. v(0) � 0 EI(0) � 0 � 0 � 0 � C2
� C2 � 0

B.C. v(L) � 0

� M0L2�6 � (M0 �2)(L � a)2 � C1L

∴ C1 � �
M0

6L
� (2 L2 � 6 aL � 3 a2)

EI(0) � M0 L2�6 � (M0 �2) �L � a�2 � C1L

b
L

a

x
BDA

y M0
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FINAL EQUATIONS

�A � CLOCKWISE ROTATION AT SUPPORT A (x � 0)

� (M0 �2)(0)

(6 aL � 3a2 � 2L2) 

(clockwise)

uA � �v¿(0) �
M0

6 LEI

EIv¿(0) � (M0 �6L)(�6 aL � 3a2 � 2L2)

� (M0 �2) �x � a�2
� (M0 x �6L)(x2 � 6 aL � 3a2 � 2L2)

� (M0 x �6L)(2L2 � 6aL � 3a2)

EIv � (M0 �6L)(x)3 � (M0 �2) �x � a�2
� M0 �x � a�1� (M0 �6L)(3x2 � 6aL � 3a2 � 2L2)

� (M0 �6L)(2L2 � 6aL � 3a2)

EIv¿ � (M0 �2L)x2 � M0 �x � a�1
�D � DOWNWARD DEFLECTION AT POINT D (x � a)

EIv(a) � (M0 �6L)(a3) � (M0 �2)(0)

� (M0 a�6L)(2L2 � 6aL � 3a2)

�D � �v(a) �
M0 ab

3 LEI
(2a � L)�(downward)

�
M0 ab

3L
(L � 2a)

�
M0 a

6L
(L � a)(2)(L � 2a)

�
M0 a

6L
(a2 � 2L2 � 6 aL � 3a2)

Solution 9.12-6 Simple beam

FROM PROB: 9.11-6:

Note: and may be dropped from the
equation.

INTEGRATE THE EQUATION

B.C. (symmetry)

0 � (P�2)(L �2)2 � (P�2)(L �2 � a)2 � (P�2)(0) � C1

� (P �6)�x � L � a�3 � (Pa �2)(L � a) x � C2

EIv � (P �6) �x�3 � (P �6) �x � a�3

� (P�  2) �x � L � a�2 � (Pa�  2)(L � a)

EIv¿ � (P�  2) �x�2 � (P�  2) �x � a�2

∴ C1 � �
Pa

2
(L � a)

EIv¿(L �2) � 0

� (P �2) �x � L � a�2 � C1

EIv¿ � (P �2) �x�2 � (P �2) �x � a�2
EIv– � M � P �x�1 � P �x � a�1 � P �x � L � a�1
EIv‡ � V � P �x�0 � P �x � a�0 � P �x � L � a�0

�x � L��1 � 0

� P �x � L � a��1 � P �x � L��1

EIv–– � �q(x) � P �x��1 � P �x � a��1

B.C. EIv(0) � 0 0 � 0 � 0 � 0 � 0 � C2

� C2 � 0

Note: and 

FINAL EQUATIONS

� (3Pax �6)(L � a)

�A � CLOCKWISE ROTATION AT SUPPORT A (x � 0)

� (Pa �2)(�L � a )

�D � DOWNWARD DEFLECTION AT POINT D (x � a)

EIv(a) � (Pa �6)(4a2 � 3aL) � (P�6)(0)

� (Pa �6)(4a2 � 3aL) � (P�6)(0)

� (Pa2�6)(4a � 3L)

�D � �v(a) �
Pa2

6 EI
(3L � 4a) (downward)

� (P �6) ��L � 2a�3

uA � �v¿(0) �
Pa

2EI
(L � a)�(clockwise)

EIv¿(0) � (Pa �2)(�L � a) � (P�  2)(0) � (P�  2)(0)

� (P�  6) �x � L � a�3
� (Px�  6)(x2 � 3 aL � 3 a2) � (P�  6) �x � a�3

� (P �6) �x � L � a�3
EIv � Px 3 �6 � (P�  6) �x � a�3

� (P�2) �x � L � a�2
� (P�2)(x2 � aL � a2) � (P�2) �x � a�2

� (P�2) �x � L � a�2 � (Pa�2) (L � a)

EIv¿ � Px2 �2 � (P�2) �x � a�2

�x�3 � x3�x�2 � x2

a

L

x
BD

a

A

y P

E

P



Problem 9.12-7 Determine the equation of the deflection curve for
the simple beam ADB shown in the figure. Also, obtain the angle of
rotation �A at the left-hand support and the deflection �D at point D.
Assume E � 30 � 106 psi and I � 720 in.4

Solution 9.12-7 Simple beam

SECTION 9.11 Representation of Loads on Beams by Discontinuity Functions 625

M0 � 20 k-ft � 240 k-in.
P � 18 k
a � 16 ft � 192 in.
b � 10 ft � 120 in.
L � a � b � 312 in.
E � 30 � 103 ksi
I � 720 in.4

FROM PROB. 9.11-7: Units: kips, inches

Note: and may be dropped from the
equation.

INTEGRATE THE EQUATION

� C1

Note: and

B.C. EIv (0) � 0 0 � 0 � 0 � 0 � C1(0) � C2

� C2 � 0

EIv � 1.282 x3 � 120 x2 � 3�x � 192�3 � C1x � C2

EIv¿ � 3.846 x2 � 240 x � 9�x � 192�2 � C1

�x�1 � x�x�2 � x2

EIv¿ � (7.692�2)  �x�2 � 240 �x�1 � (18�2)  �x � 192�2
EIv– � M � 7.692 �x�1 � 240 �x�0 � 18 �x � 192�1
EIv‡ � V � 7.692 �x�0 � 240 �x��1 � 18 �x � 192�0

�x � 312��1 � 0

� 18 �x � 192��1 � 10.308 �x � 312��1

EIv–– � �q(x) � 7.692 �x��1 � 240 �x��2

B.C. EIv (312) � 0

Note: 
0 � 22,071 � 103 � C1(312) � C1 � �70,740

FINAL EQUATIONS

(Note: x � in., E � ksi, I � in.4, ,
v � in.)

� 70,740x

�A � CLOCKWISE ROTATION AT SUPPORT A (x � 0)

� 0.00327 rad (clockwise)

�D � DOWNWARD DEFLECTION AT POINT D (x � 192)

EIv(192) � 1.282(192)3 � 120(192)2 � 70,740(192)
� �8.932 � 106

� 0.414 in. (downward)

�D � �v(192) �
8.932 � 106

EI
�

8.932 � 106

(30 � 103)(720)

uA � �v¿(0) �
70,740

EI
�

70,740

(30 � 103)(720)

EIv¿(0) � �9��192�2 � 70,740 � �70,740

EIv � 1.282x3 � 120x2 � 3�x � 192�3
EIv¿ � 3.846x2 � 240x � 9�x � 192�2 � 70,740

v¿ � rad

�120�3 � (120)3

0 � 1.282(312)3 � 120(312)2 � 3�120�3 � C1(312)

10 ft16 ft

x
BDA

y

M0 = 20 k-ft P = 18 k



Problem 9.12-8, 9.12-9, and 9.12-10 Obtain the equation of the
deflection curve for the simple beam AB (see figure). Also, determine
the angle of rotation �B at the right-hand support and the deflection �D
at point D. (For the beam of Problem 9.12-10, assume E � 200 GPa
and I � 2.60 � 109 mm4.)

Solution 9.12-8 Simple beam
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FROM PROB. 9.11-8:

Note: and may be dropped from the
equation

INTEGRATE THE EQUATION

Note: , , and 

B.C. EIv(0) � 0 0 � 0 � 0 � (q�24)(0)

� C1(0) � C2
� C2 � 0

B.C. EIv(L) � 0

0 � (qaL2�12)(2L � a) � qL4�24 � (q/24)(L � a)4

� C1L

After lengthy algebra,

C1 � �
qa2

24 L
 (2L � a)2

�x�4 � x4�x�3 � x3�x�2 � x2

� (q�24)�x � a�4 � C1x � C2

EIv � (qa�12L)(2L � a)�x�3 � (q�24)�x�4
� (q�6)�x � a�3 � C1

EIv¿ � (qa�4L)(2L � a)�x�2 � (q�6)�x�3
� (q�2)�x � a�2

EIv– � M � (qa�2L)(2L � a)�x�1 � (q�2)�x�2
EIv‡ � V � (qa�2L)(2L � a)�x�0 � q�x�1 � q�x � a�1

�x � L��1 � 0

� q�x � a�0 � (qa2�2L)�x � L��1

EIv–– � �q(x) � (qa�2L)(2L � a)�x��1 � q�x�0

FINAL EQUATIONS

� (qa2�24L)(2L � a)2

� (qa2x�24L)(2L � a)2

�B � COUNTERCLOCKWISE ROTATION AT SUPPORT B
(x � L)

� (q�6)(L � a)3 � (qa2�24L)(2 L � a)2

After lengthy algebra,

(counterclockwise)

�D � DOWNWARD DEFLECTION AT POINT D (x � a)

EIv(a) � qa[�a2(2L � a)2 � 2a3(2L � a)
� a3L]�24L � q(0)

� (qa3�24L)[�(2L � a)2 � 2a(2L � a) � aL]
� (qa3�24L)(�4L2 � 7aL � 3a2)

(downward)�D � �v(a) �
qa3

24 LEI
 (4L2 � 7 aL � 3a2)

uB � v¿(L) �
qa2

24 LEI
 (2L2 � a2)

EIv¿(L) � (qa2�24L)(2L2 � a2)

EIv¿(L) � (qaL�4)(2L � a) � qL3�6

� q�x � a�4�24

� qx[�a2(2L � a)2 � 2a(2L � a)x2 � L x3 ] �24L

EIv � (qax3�12L)(2L � a) � qx4�24 � (q�24)�x � a�4

EIv¿ � (qax2�4L)(2L � a) � qx3�6 � (q�6)�x � a�3

a
L

q

x
BDA

y



Solution 9.12-9 Simple beam
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FROM PROB. 9.11-9:

Note: and may be dropped from the
equation

INTEGRATE THE EQUATION

Note: 

B.C. EIv (0) � 0 0 � 0 � 0 � 0 � 0 � C1(0)� C2

� C2 � 0

B.C. EIv(L) � 0

∴ C1 � �
47q0 L3

4860
0 �

47q0 L4

4860
� C1L

� (q0 �24)(L �3)4 � C1L

0 � q0 L4 �81 � (q0 �40L)(2L �3)5 � (q0 �40L)(L �3)5

� C1x � C2

� (q0 �40L)�x � 2L�3�5 � (q0 �24)�x � 2L�3�4
EIv � (q0 L�81)x3 � (q0 �40 L)�x � L�3�5

� (q0 �6)�x � 2L�3�3 � C1

� (q0 �8L)�x � 2L�3�4
EIv¿ � (q0 L�27)x2 � (q0 �8L)�x � L�3�4

� (q0 �2)�x � 2L�3�2
� (q0 �2L)�x � 2L�3�3

EIv– � M � (2 q0 L�27)x � (q0 �2L)�x � L�3�3
�x�0 � 1

� (3q0 �2L)�x � 2L�3�2 � q0 �x � 2L�3�1
EIv‡ � V � (2q0 L�27)�x�0 � (3q0 �2L)�x � L�3�2

�x � L��1 � 0

� (5q0 L�54)�x � L��1
� q0�x � 2L�3�0
� (3q0 �L)�x � L�3�1 � (3q0 �L) �x � 2L�3�1

EIv–– � �q(x) � (2q0 L �27)�x��1

FINAL EQUATIONS

�47q0L3/4860

�47q0L3x/4860

�B � COUNTERCLOCKWISE ROTATION AT SUPPORT B
(x � L)

� (q0 �8L)(L�3)4 � (q0 �6)(L�3)3

� 47q0L3�4860

� 101q0L3�9720

(counterclockwise)

�D � DOWNWARD DEFLECTION AT POINT D (x � L/3)

EIv(L/3) � (q0L�81)(L/3)3 � (q0 �40L)(0)

� (q0 �40L)(0) � (q0 �24)(0)

� 47q0L3(L/3)/4860

� �121q0 L4�43,740

(downward)�D � �v ¢L
3
≤�

121q0 L4

43,740 EI

uB � v¿(L) �
101q0 L3

9720 EI

EIv¿(L) � q0 L3�27 � (q0 �8L)(2L�3)4

� (q0 �40 L)�x � 2L�3�5 � (q0 �24)�x � 2L�3�4
EIv � (q0 L�81)x3 � (q0 �40 L)�x � L�3�5

� (q0 �8L)�x � 2L�3�4 � (q0 �6)�x � 2L�3�3
EIv¿ � (q0 L �27)x2 � (q0 �8L)�x � L�3�4

L/3 L/3 L/3

q0

x
BEDA

y



Solution 9.12-10 Simple beam
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q � 20 kN/m
P � 120 kN

L � 20 m
E � 200 GPa
I � 2.60 � 10�3 m4

FROM PROB. 9.11-10: Units: kilonewtons, meters

Note: and may be dropped from the
equation

INTEGRATE THE EQUATION

Note: and 

B.C. EIv (0) � 0 0 � 0 � 0 � 0 � 0 � C1(0) � C2

� C2 � 0

B.C. EIv(20) � 0

0 � 30(20)3 � (5/6)(20)4 � (5/6)(10)4

� 20(5)3� C1(20)
0 � 112,500 � 20C1 � C1 � �5625

� C1x � C2

EIv � 30x3 � (5�6)x4 � (5�6)�x � 10�4 � 20 �x � 15�3
� 60 �x � 15�2 � C1

EIv¿ � 180(x2�2) � 20(x3�6) � (10�3)�x � 10�3
� 120 �x � 15�1

EIv– � M � 180x � 20(x2�2) � (20�2)  �x � 10�2
�x�1 � x�x�0 � 1

� 120 �x � 15�0
EIv‡ � V � 180 �x�0 � 20 �x�1 � 20 �x � 10�1

�x � 20��1 � 0

� 120 �x � 15��1 � 140 �x � 20��1

EIv–– � �g(x) � 180 �x��1 � 20 �x�0 � 20 �x � 10�0

L

2
� 10 m

FINAL EQUATIONS

�5625x

(x � meters, v � meters, , 
E � kilopascals, I � meters4)

�B � COUNTERCLOCKWISE ROTATION AT SUPPORT B
(x � 20)

� 60(5)2 � 5625 
� 5541.67

� 0.01066 rad (counterclockwise)

�D � DOWNWARD DEFLECTION AT POINT D (x � 15)

EIv(15) � 30(15)3 � (5�6)(15)4 � (5�6)(5)4

� 20(0) � 5625(15)
� �24,791.7

� 0.04768 m � 47.68 mm (downward)

�
24,791.7

(200 � 106 kPa)(2.60 � 10�3 m)

�D � �v(15) �
24,791.7

EI

�
5541.67

(200 � 106 kPa)(2.60 � 10�3 m)

uB � v¿(20) �
5541.67

EI

Eiv¿(20) � 90(20)2 � (10�3)(20)3 � (10�3)(10)3

v¿ � radians

EIv � 30x3 � (5�6)x4 � (5�6)�x � 10�4 � 20�x � 15�3
� 60 �x � 15�2 � 5625

EIv¿ � 90 x2 � (10�3)x3 � (10�3)�x � 10�3P = 120 kN
q = 20 kN/m

x
BDCA

y

10 m 5 m 5 m



Problem 9.12-11 A beam ACBD with simple supports at A and B
and an overhang BD is shown in the figure. (a) Obtain the equation
of the deflection curve for the beam. (b) Calculate the deflections �C
and �D at points C and D, respectively. (Assume E � 30 � 106 psi
and I � 280 in.4)

Solution 9.12-11 Beam with an overhang

SECTION 9.11 Representation of Loads on Beams by Discontinuity Functions 629

M0 � 144 k-in.

L � LAB � 144 in.

E � 30 � 103 ksi
I � 280 in.4

FROM PROB. 9.11-11: Units: kips, inches

Note: and may be dropped from the
equation.

INTEGRATE THE EQUATION

B.C. EIv(0) � 0 0 � 0 � 0 � 0 � C1(0) � C2

� C2 � 0

B.C. EIv(144) � 0 0 � �(1�2)(144)3 � (72)(72)2

� (11�6)(0) � C1(144)
0 � �1,866,240 � 144 C1
� C1 � 12,960

� (11�6)�x � 144�3 � C1x � C2

EIv � �(1�2)�x�3 � (144�2)�x � 72�2
� C1

EIv¿ � �(3�2)�x�2 � 144�x � 72�1 � (11�2)�x � 144�2
EIv– � M � �3�x�1 � 144�x � 72�0 � 11�x � 144�1
EIv‡ � V � �3�x�0 � 144�x � 72��1 � 11�x � 144�0

�x � 216��1 � 0

� 11�x � 144��1 � 8 �x � 216��1

EIv–– � �q(x) � �3 �x��1 � 144 �x � 72��2

3L

2
� 216 in.

L

2
� 72 in.

FINAL EQUATIONS

� 12,960

� 12,960 x

(x � in., v � in., , E � 30 � 103 ksi,
I � 280 in.4)

�C � UPWARD DEFLECTION AT POINT C (x � 72)

EIv(15) � �(72)3�2 � 72(0) � (11�6)(0)
� 12,960(72)

� 746,496

� 0.08887 in. (upward)

�D � DOWNWARD DEFLECTION AT POINT D (x � 216)

EIv(216) � �(216)3�2 � 72(144)2 � (11�6)(72)3

� 12,960(216)
� �3,048,192

� 0.3629 in. (downward)

�D � �v(216) �
3,048,192

EI
�

3,048,192

(30 � 103)(280)

�C � v(15) �
746,496

EI
�

746,496

(30 � 103)(280)

v¿ � rad

EIv � �x3�2 � 72�x � 72�2 � (11�6)�x � 144�3

EIv¿ � �3x2�2 � 144 �x � 72�1 � (11�2)�x � 144�2

6 ft 6 ft 6 ft

M0 = 12 k-ft P = 8 k

x
D

C

BA

y



Problem 9.12-12 The overhanging beam ACBD shown in the figure 
is simply supported at A and B. Obtain the equation of the deflection 
curve and the deflections �C and �D at points C and D, respectively.
(Assume E � 200 GPa and I � 15 � 106 mm4.)

Solution 9.12-12 Beam with an overhang

630 CHAPTER 9 Deflections of Beams

q � 12 kn�m

L � LAB � 2.4 m
E � 200 GPa
I � 15 � 10�6 mm4

FROM PROB. 9.11-12: Units: kilometers, meters

Note: and may be dropped from
the equation. 

INTEGRATE THE EQUATION

Note:

B.C. EIv(0) � 0 0 � 0 � 0 � 0 � 0 � C1(0) � C2

� C2 � 0

� 4 �x � 2.4�3 � C1x � C2

EIv � �0.4x3 � (1�12) �x � 1.2�5 � (1�12) �x � 2.4�5
� 12 �x � 2.4�2 � C1

EIv¿ � �1.2x2 � (5�12) �x � 1.2�4 � (5�12) �x � 2.4�4
�x�¿ � x

� (5�3) �x � 2.4�3 � 24 �x � 2.4�¿

EIv– � M � �2.4 �x�¿ � (5�3) �x � 1.2�3
� (10�2) �x � 2.4�2 � 24�x � 2.42�0

EIv‡ � v � �2.4 �x�0 � (10�2) �x � 1.2�2

�x � 3.6�0 � 0

� 24 �x � 2.4��1 � 12 �x � 3.6�0
� 10 �x � 2.4�1

EIv–– � �q(x) � �2.4 �x��1 � 10�x � 1.2�1

L

2
� 1.2 m

B.C. EIv(2.4) � 0

0 � �0.4(2.4)3 � (1/12)(1.2)5 � (1/12)(0) � 4(0)
� 2.4 C1

0 � �5.73696 � 2.4 C1
� C1 � 2.3904

FINAL EQUATION

(x � meters, v � meters, 
E � 200 � 106 kPa, I � 15 � 10�6 m4)

�C � UPWARD DEFLECTION AT POINT C (x � 1.2)

� 4 (0) � 2.3904 (1.2) � 2.17728

� 0.00072576 m � 0.7258 mm (upward)

�D � DOWNWARD DEFLECTION AT POINT D (x � 3.6)

� (1/12) (1.2)5

� 4 (1.2)3 � 2.3904 (3.6)

� �9.57312

� 0.00319104 m � 3.191 mm (downward)

�D � �v(3.6) �
9.57312

EI
�

9.57312

(200 � 106)(15 � 10�6)

EIv(3.6) � �0.4(3.6)3 � (1�12) (2.4)5

�C � v(1.2) �
2.17728

EI
�

2.17728

(200 � 106)(15 � 10�6)

EIv(1.2) � �0.4(1.2)3 � (1�12) (0) � (1�12) (0)

v¿ � radians,

� 4 �x � 2.4�3 � 2.3904x

EIv � �0.4x3 � (1�12) �x � 1.2�5 � (1�12) �x � 2.4�5
� 12 �x � 2.4�2 � 2.3904

EIv¿ � �1.2x2 � (5�12) �x � 1.2�4 � (5�12) �x � 2.4�4

q = 12 kN/m

D

1.2 m1.2 m1.2 m

x
C

B

A

y



Temperature Effects

The beams described in the problems for Section 9.13 have constant 
flexural rigidity EI. In every problem, the temperature varies linearly
between the top and bottom of the beam. 

Problem 9.13-1 A simple beam AB of length L and height h undergoes 
a temperature change such that the bottom of the beam is at temperature
T2 and the top of the beam is at temperature T1 (see figure). 

Determine the equation of the deflection curve of the beam, the
angle of rotation �A at the left-hand support, and the deflection �max at

the midpoint. 

Solution 9.13-1 Simple beam with temperature differential

SECTION 9.11 Representation of Loads on Beams by Discontinuity Functions 631

Eq. (9-147):

B.C. 1 (Symmetry)

v �
�(T2 � T1)x2

2h
�

�L(T2 � T1)x

2h
� C2

∴ C1 � �
�L(T2 � T1)

2h

v¿¢L
2
≤� 0

v¿ �
dv

dx
�

�(T2 � T1)x

h
� C1

v– �
d 2v

dx 2
�

�(T2 � T1)

h
B.C. 2 V(0) � 0 � C2 � 0

(positive v is upward deflection)

(positive �A is clockwise rotation)

(positive �max is downward deflection)

�max � �v ¢L
2
≤�

�L2(T2 � T1)

8h

uA � �v¿(0) �
�L(T2 � T1)

2h

v¿ � �
�(T2 � T1) (L � 2x)

2h

v � �
�(T2 � T1) (x)(L � x)

2h

A

y

x
B

hT1

T2

L

Problem 9.13-2 A cantilever beam AB of length L and height h (see figure)
is subjected to a temperature change such that the temperature at the top is T1
and at the bottom is T2. 

Determine the equation of the deflection curve of the beam, the angle
of rotation �B at end B, and the deflection �B at end B. 

Solution 9.13-2 Cantilever beam with temperature differential

L

B
hA T1

T2

y

x

Eq. (9-147):

B.C. 1 � C1 � 0

v �
�(T2 � T1)

h
 ¢x

2

2
≤� C2

v¿ �
�(T2 � T1)

h
x

v¿(0) �  0

v¿ �
dv

dx
�

�(T2 � T1)

h
x � C1

v– �
d 2v

dx 2
�

�(T2 � T1)

h
B.C. 2 v(0) � 0 � C2 � 0

(positive v is upward deflection)

(positive �B is counterclockwise rotation)

(positive �B is upward deflection)

�B � v(L) �
�L2(T2 � T1)

2h

uB � v¿(L) �
�L(T2 � T1)

h

v �
�(T2 � T1)x2

2h



Problem 9.13-3 An overhanging beam ABC of height h is heated to a
temperature T1 on the top and T2 on the bottom (see figure). 

Determine the equation of the deflection curve of the beam, the angle
of rotation �C at end C, and the deflection �C at end C. 

Solution 9.13-3 Overhanging beam with temperature differential

632 CHAPTER 9 Deflections of Beams

B

L a

T1

T2

T1

T2

h
A

y

x
C

Eq. (9-147):

(This equation is valid for the entire length of the
beam.)

B.C. 1 v(0) � 0 � C2 � 0

B.C. 2 v(L) � 0 ∴ C1 � �
�(T2 � T1)L

2h

v �
�(T2 � T1)x2

2h
� C1x � C2

v¿ �
�(T2 � T1)x

h
� C1

v– �
d 2v

dx 2
�

�(T2 � T1)

h
(positive v is upward deflection)

(positive �C is counterclockwise rotation)

(positive �C is upward deflection)

�C � v(L � a) �
�(T2 � T1) (L � a) (a)

2h

uC � v¿(L � a) �
�(T2 � T1)

2h
(L � 2a)

v¿ �
�(T2 � T1)

2h
 (2x � L)

v �
�(T2 � T1)

2h
 (x2 � Lx)

Problem 9.13-4 A simple beam AB of length L and height h (see figure)
is heated in such a manner that the temperature difference T2 � T1
between the bottom and top of the beam is proportional to the distance
from support A; that is, 

T2 � T1 � T0 x

in which T0 is a constant having units of temperature (degrees) per unit 
distance. 

Determine the maximum deflection �max of the beam. 

Solution 9.13-4 Simple beam with temperature differential proportional to distance x

A

y

x
B

L

x

T1

T2

h

T2 � T1 � T0x

Eq. (9-147):

B.C. 1 v (0) � 0 � C2 � 0

B.C. 2 v (L) � 0

(positive v is upward deflection)

v � �
�T0 x

6h
 (L2 � x2)

∴ C1 � �
�T0 L2

6h

v �
�T0 x3

6h
� C1x � C2

v¿ �
dv

dx
�

�T0 x2

2h
� C1

v– �
d 2v

dx 2
�

�(T2 � T1)

h
�

�T0 x

h (positive is upward to the right)

MAXIMUM DEFLECTION

Set and solve for x.

L2 � 3x2 � 0

(positive �max is downward)

�max � �vmax �
�T0 L3

9�3h

vmax � v(x1) � �
�T0 L3

9�3h

x1 �
L

�3

v¿ � 0

v¿

v¿ � �
�T0

6h
 (L2 � 3x2)



#
Chapter Title
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Idealized Buckling Models

Problem 11.2-1 through 11.2-4 The figure shows an idealized structure
consisting of one or more rigid bars with pinned connections and linearly
elastic springs. Rotational stiffness is denoted �R and translational 
stiffness is denoted �.

Determine the critical load Pcr for the structure.

11
Columns

A

B

L

�R

P

L�

P

C

B

a

A

L
2
—

L
2
—

A

C

B

�R

P

L
2
—

L
2
—

A

C

B

�R

�R

P

Prob. 11.2-1
Prob. 11.2-2

Prob. 11.2-3 Prob. 11.2-4



Solution 11.2-1 Rigid bar AB

672 CHAPTER 11 Columns

Pcr �
bR

L

P(uL) � bR u� 0

aMA � 0

A

B

P

�

�L

M � �R �

Solution 11.2-2 Rigid bar ABC

Pcr �
ba2

L

PuL � bua2 � 0

aMA � 0

A

C

B

P
�L

F � ��a
�a

�

Solution 11.2-3 Two rigid bars with a pin
connection

Shows that there are no horizontal
reactions at the supports.

FREE-BODY DIAGRAM OF BAR BC

Pcr �
6bR

L

bR(2u) � bRu�
PLu

2

aMB � 0�MB � MC � Pu ¢L
2
≤� 0

MB � bR(2u)

MC � bRu

aMA � 0

A

C

B

� � �R�

� � �R�

P

�

�

C

B

MC � �R�

P

�

MC

  ( L
        2 )�

Solution 11.2-4 Two rigid bars with a pin
connection

FREE-BODY DIAGRAM OF BAR BC

Pcr �
H

u
�
bR

L

aMB � 0�H ¢L
2
≤� P ¢uL

2
≤� 0

H �
bR u

L

aMA � 0 � HL � bR u� 0

A

C

B

� � �R�

P

P

�

�

H

H

P

P

C

B

�

H

H



Critical Loads of Columns with Pinned Supports

The problems for Section 11.3 are to be solved using the assumptions 
of ideal, slender, prismatic, linearly elastic columns (Euler buckling). 
Buckling occurs in the plane of the figure unless stated otherwise. 

Problem 11.3-1 Calculate the critical load Pcr for a W 8 � 35 steel 
column (see figure) having length L � 24 ft and E � 30 � 106 psi 
under the following conditions:

(a) The column buckles by bending about its strong axis (axis 1-1),
and (b) the column buckles by bending about its weak axis (axis 2-2). 
In both cases, assume that the column has pinned ends.

Solution 11.3-1 Column with pinned supports

SECTION 11.3 Critical Loads of Columns with Pinned Supports 673

1
C

1

2

2

W 8 � 35 steel column

L � 24 ft � 288 in. E � 30 � 106 psi
I1 � 127 in.4 I2 � 42.6 in.4 A � 10.3 in.2

(a) BUCKLING ABOUT STRONG AXIS

Pcr �
�2EI1

L2 � 453 k

(b) BUCKLING ABOUT WEAK AXIS

NOTE: 

� Solution is satisfactory if sPL � 44 ksi

scr �
Pcr

A
�

453 k

10.3 in.2
� 44 ksi

Pcr �
�2EI2

L2 � 152 k

Probs. 11.3-1 through 11.3-3

Problem 11.3-2 Solve the preceding problem for a W 10 � 60 
steel column having length L � 30 ft.

Solution 11.3-2 Column with pinned supports
W 10 � 60 steel column

L � 30 ft � 360 in. E � 30 � 106 psi
I1 � 341 in.4 I2 � 116 in.4 A � 17.6 in.2

(a) BUCKLING ABOUT STRONG AXIS

Pcr �
�2EI1

L2 � 779 k

(b) BUCKLING ABOUT WEAK AXIS

NOTE: 

� Solution is satisfactory if sPL � 44 ksi

scr �
Pcr

A
�

779 k

17.6 in.2
� 44 ksi

Pcr �
�2EI2

L2 � 265 k

Problem 11.3-3 Solve Problem 11.3-1 for a W 10 � 45 steel 
column having length L � 28 ft. 

Solution 11.3-3 Column with pinned supports

W 10 � 45 steel column

L � 28 ft � 336 in. E � 30 � 106 psi
I1 � 248 in.4 I2 � 53.4 in.4 A � 13.3 in.2

(a) BUCKLING ABOUT STRONG AXIS

Pcr �
�2EI1

L2 � 650 k

(b) BUCKLING ABOUT WEAK AXIS

NOTE: 

� Solution is satisfactory if sPL � 49 ksi

scr �
PCR

A
�

650 k

13.3 in.2
� 49 ksi

Pcr �
�2EI2

L2 � 140 k
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Problem 11.3-4 A horizontal beam AB is pin-supported at end A and
carries a load Q at end B, as shown in the figure. The beam is supported
at C by a pinned-end column. The column is a solid steel bar 
(E � 200 GPa) of square cross section having length L � 1.8 m 
and side dimensions b � 60 mm. 

Based upon the critical load of the column, determine the allowable
load Q if the factor of safety with respect to buckling is n � 2.0. 

Solution 11.3-4 Beam supported by a column

B

D

A C

L
b

Q

d 2d

COLUMN CD (STEEL)

E � 200 GPa L � 1.8 m

Square cross section: b � 60 mm

Factor of safety: n � 2.0

Pcr �
�2EI

L2 � 657.97 kN

I �
b4

12
� 1.08 � 106 mm4

BEAM ACB

Qallow �
Pallow

3
�

Pcr

3n
�

Pcr

6.0
� 109.7 kN

aMA � 0�Q �
P

3

Problem 11.3-5 Solve the preceding problem if the column is aluminum
(E � 10 � 106 psi), the length L � 30 in., the side dimension b � 1.5 in.,
and the factor of safety n � 1.8. 

Solution 11.3-5 Beam supported by a column
COLUMN CD (STEEL)

E � 10 � 106 psi L � 30 in.

Square cross section: b � 1.5 in.

Factor of safety: n � 1.8

Pcr �
�2EI

L2 � 46.264 k

I �
b4

12
� 0.42188 in.4

BEAM ACB

Qallow �
Pallow

3
�

Pcr

3 n
�

Pcr

5.4
� 8.57 k

aMA � 0�Q �
P

3

Problem 11.3-6 A horizontal beam AB is pin-supported at end A and
carries a load Q at end B, as shown in the figure. The beam is supported
at C and D by two identical pinned-end columns of length L. Each
column has flexural rigidity EI.

What is the critical load Qcr? (In other words, at what load Qcr does
the system collapse because of Euler buckling of the columns?)

BA C D

L

Q

d d 2d

Probs. 11.3-4 and 11.3-5
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Collapse occurs when both columns reach the critical load.

� Qcr �
3�2EI

4 L2Pcr �
�2EI

L2

aMA � 0�Qcr �
3 Pcr

4

BA C D

Qcr

d d 2d

Pcr Pcr

Solution 11.3-6 Beam supported by two columns

Problem 11.3-7 A slender bar AB with pinned ends and length L is held
between immovable supports (see figure). 

What increase �T in the temperature of the bar will produce buckling
at the Euler load? 

Solution 11.3-7 Bar with immovable pin supports

A B

L

�T

L � length A � cross-sectional area
I � moment of inertia E � modulus of elasticity

� � coefficient of thermal expansion
�T � uniform increase in temperature

AXIAL COMPRESSIVE FORCE IN BAR (EQ. 2-17)

P � EA�(¢T )

EULER LOAD

INCREASE IN TEMPERATURE TO PRODUCE BUCKLING

P � Pcr�EA�(¢T ) �
�2EI

L2 �¢T �
�2I

�AL2

Pcr �
�2EI

L2

Problem 11.3-8 A rectangular column with cross-sectional dimensions 
b and h is pin-supported at ends A and C (see figure). At midheight, the
column is restrained in the plane of the figure but is free to deflect 
perpendicular to the plane of the figure. 

Determine the ratio h/b such that the critical load is the same 
for buckling in the two principal planes of the column. 

Solution 11.3-8 Column with restraint at midheight

L
2
—

L
2
—

C

B

A

b

X X

P

b

h

Section X-X

Critical loads for buckling about axes 1-1 and 2-2:

P2 �
�2EI2

(L�2)2 �
4�2EI2

L2P1 �
�2EI1

L2

FOR EQUAL CRITICAL LOADS

P1 � P2 � I1 � 4I2

h

b
� 2bh3 � 4hb3

I2 �
hb3

12
I1 �

bh3

12
b

h

2

2

1 1



676 CHAPTER 11 Columns

Problem 11.3-9 Three identical, solid circular rods, each of radius r and length
L, are placed together to form a compression member (see the cross section shown
in the figure). 

Assuming pinned-end conditions, determine the critical load Pcr as follows: 
(a) The rods act independently as individual columns, and (b) the rods are bonded
by epoxy throughout their lengths so that they function as a single member. 

What is the effect on the critical load when the rods act as a single member?

Solution 11.3-9 Three solid circular rods

2 r

R � Radius L � Length

(a) RODS ACT INDEPENDENTLY

(b) RODS ARE BONDED TOGETHER

Pcr �
3�3Er4

4L2

Pcr �
�2EI

L2 (3)�I �
�r4

4

The x and y axes have their origin at the centroid of
the cross section. Because there are three different
centroidal axes of symmetry, all centroidal axes are
principal axes and all centroidal moments of inertia
are equal (see Section 12.9).

From Case 9, Appendix D:

NOTE: Joining the rods so that they act as a single
member increases the critical load by a factor of
11�3, or 3.67.

Pcr �
�2EI

L2 �
11�3Er4

4L2

I � IY �
�r 4

4
� 2 ¢5�r 4

4
≤�

11�r 4

4

x

y

Problem 11.3-10 Three pinned-end columns of the same material have
the same length and the same cross-sectional area (see figure). The columns
are free to buckle in any direction. The columns have cross sections as 
follows: (1) a circle, (2) a square, and (3) an equilateral triangle. 

Determine the ratios P1 : P2 : P3 of the critical loads for these columns. 

Solution 11.3-10 Three pinned-end columns

(3)(2)(1)

E, L, and A are the same for all three columns.

� P1 : P2 : P3 � I1 : I2 : I3

(1) CIRCLE Case 9, Appendix D

(2) SQUARE Case 1, Appendix D

I �
b4

12
�A � b2�∴ I2 �

A2

12

I �
�d4

64
�A �

�d2

4
�∴ I1 �

A2

4�

Pcr �
�2EI

L2

(3) EQUILATERAL TRIANGLE Case 5, Appendix D

� 1.000 : 1.047 : 1.209

NOTE: For each of the above cross sections, every
centroidal axis has the same moment of inertia 
(see Section 12.9).

P1 : P2 : P3 � I1 : I2 : I3 � 1 : 
�

3
 : 

2��3

9

I �
b4�3

96
�A �

b2�3

4
�∴ I3 �

A2�3

18
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Problem 11.3-11 A long slender column ABC is pinned at ends A and 
C and compressed by an axial force P (see figure). At the midpoint B, 
lateral support is provided to prevent deflection in the plane of the 
figure. The column is a steel wide-flange section (W 10 � 45) with 
E � 30 � 106 psi. The distance between lateral supports is L � 18 ft.

Calculate the allowable load P using a factor of safety n � 2.4, taking
into account the possibility of Euler buckling about either principal 
centroidal axis (i.e., axis 1-1 or axis 2-2). 

Solution 11.3-11 Column with restraint at midheight

C

A

B

P

X X
L

L

1 1

2

2

Section  X - X  

W 10 � 45

W 10 � 45 E � 30 � 106 psi
L � 18 ft � 216 in. I1 � 248 in.4 I2 � 53.4 in.4

n � 2.4

BUCKLING ABOUT AXIS 1-1

Pcr �
�2EI1

(2L)2 � 393.5 k

BUCKLING ABOUT AXIS 2-2

ALLOWABLE LOAD

Pallow �
Pcr

n
�

338.9 k

2.4
� 141 k

Pcr �
�2EI2

L2 � 338.9 k

Problem 11.3-12 The multifaceted glass roof over the lobby of a museum
building is supported by the use of pretensioned cables. At a typical joint in
the roof structure, a strut AB is compressed by the action of tensile forces F
in a cable that makes an angle � � 75° with the strut (see figure). The strut
is a circular tube of aluminum (E � 72 GPa) with outer diameter d2 � 50 mm
and inner diameter d1 � 40 mm. The strut is 1.0 m long and is assumed to
be pin-connected at both ends.

Using a factor of safety n � 2.5 with respect to the critical load, 
determine the allowable force F in the cable. 

Solution 11.3-12 Strut and cable

d2

F

B

A

F

Strut

Cable

�

�

P � compressive force in strut

F � tensile force in cable

� � angle between strut and cable

� 75º

PROPERTIES OF STRUT E � 72 GPa

d2 � 50 mm d1 � 40 mm L � 1.0 m

EQUILIBRIUM OF JOINT B

P � 2F cos 75º

∴ Fallow �
Pallow

2 cos 75�
� 99.5 kN

Pallow �
Pcr

n
�

128.71 kN

2.5
� 51.49 kN

Pcr �
�2EI

L2 � 128.71 kN

I �
�

64
(d 42 � d 41) � 181.13 � 103 mm4

d2

F

B

A

F

�

�

P
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Problem 11.3-13 The hoisting arrangement for lifting 
a large pipe is shown in the figure. The spreader is a steel
tubular section with outer diameter 2.75 in. and inner
diameter 2.25 in. Its length is 8.5 ft and its modulus of
elasticity is 29 � 106 psi.

Based upon a factor of safety of 2.25 with respect to
Euler buckling of the spreader, what is the maximum weight
of pipe that can be lifted? (Assume pinned conditions at the
ends of the spreader.) 

Solution 11.3-13 Hoisting arrangement for a pipe

F

1010
7 7

A BSpreader

Cable

Cable

Pipe

T � tensile force in cable
P � compressive force in spreader
W � weight of pipe

PROPERTIES OF SPREADER E � 29 � 106 psi

d2 � 2.75 in. d1 � 2.25 in. L � 8.5 ft � 102 in.

Pallow �
Pcr

n
�

42.61 k

2.25
� 18.94 k

Pcr �
�2EI

L2 � 42.61 k

I �
�

64
(d 42 � d 41) � 1.549 in.4

tan � �
7

10

EQUILIBRIUM OF JOINT A

Fhoriz� 0 �P � T cos � � 0

SOLVE THE EQUATION

W � 2P tan �

MAXIMUM WEIGHT OF PIPE

Wmax � 2Pallow tan � � 2(18.94 k)(0.7)

� 26.5 k

a Fvert � 0�    T sin � �
w

2
� 0

a�

P

A

T

W
2

Problem 11.3-14 A pinned-end strut of aluminum (E � 72 GPa) with
length L � 1.8 m is constructed of circular tubing with outside diameter 
d � 50 mm (see figure). The strut must resist an axial load P � 18 kN
with a factor of safety n � 2.0 with respect to the critical load. 

Determine the required thickness t of the tube. d = 50 mm

t
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Solution 11.3-14 Aluminum strut

E � 72 GPa L � 1.8 m

Outer diameter d � 50 mm

t � thickness

Inner diameter � d � 2 t

P � 18 kN n � 2.0

CRITICAL LOAD Pcr � nP � (2.0)(18 kN) � 36 kN

Pcr �
�2EI

L2 �∴ I �
PcrL

2

�2E
� 164.14 � 103 mm4

MOMENT OF INERTIA

REQUIRED THICKNESS

d4 � (d � 2t)4 � 3.3438 � 106 mm4

(d � 2t)4 � (50 mm)4 � 3.3438 � 106 mm4

� 2.9062 � 106 mm4

d � 2t � 41.289 mm

2t � 50 mm � 41.289 mm � 8.711 mm

tmin � 4.36 mm

I �
p

64
[d4 2 (d 2 2t)4 ] � 164.14 3 103 mm4

Problem 11.3-15 The cross section of a column built up of two steel 
I-beams (S 6 � 17.25 sections) is shown in the figure on the next page.
The beams are connected by spacer bars, or lacing, to ensure that they act
together as a single column. (The lacing is represented by dashed lines in
the figure.) The column is assumed to have pinned ends and may buckle
in any direction. Assuming E � 30 � 106 psi and L � 27.5 ft, calculate
the critical load Pcr for the column.

Solution 11.3-15 Column of two steel beams

4 in.

S 6 � 17.25

S 6 � 17.25

E � 30 � 106 psi

L � 27.5 ft � 330 in.

I1 � 26.3 in.4

I2 � 2.31 in.4

A � 5.07 in.2

COMPOSITE COLUMN Ix � 2I1 � 52.6 in.4

Iy � 2[2.31 in.4 � (5.07 in.2)(2 in.)2]

� 45.18 in.4 Iy 	 Ix

� Buckling occurs about the y axis.

CRITICAL LOAD

Pcr �
�2EIy

L2 � 123 k

Iy � 2(I2 � Ad2)�d �
4 in.

2
� 2 in.

4 in.

y

y

xx
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Problem 11.3-16 The truss ABC shown in the figure supports a 
vertical load W at joint B. Each member is a slender circular steel pipe 
(E � 200 GPa) with outside diameter 100 mm and wall thickness
6.0 mm. The distance between supports is 7.0 m. Joint B is restrained
against displacement perpendicular to the plane of the truss.

Determine the critical value Wcr of the load. 

Solution 11.3-16 Truss ABC with load W

W

A

B

C
40° 55°

7.0 m

100 mm

STEEL PIPES AB AND BC

E � 200 GPa L � 7.0 m
d2 � 100 mm t � 6.0 mm
d1 � d2 � 2t � 88 mm

LENGTHS OF MEMBERS AB AND BC

use the law of sines (see Appendix C)

Buckling occurs when either member reaches its
critical load.

CRITICAL LOADS

(Pcr)BC �
�2EI

L2
BC

� 190.1 kN

(Pcr)AB �
�2EI

L2
AB

� 117.1 kN

LBC � L ¢sin 40�

sin 85�
≤� 4.517 m

LAB � L ¢sin 55�

sin 85�
≤� 5.756 m

I �
�

64
(d 42 � d 41) � 1.965 � 106 mm4

FREE-BODY DIAGRAM OF JOINT B

Fhoriz � 0

Fvert � 0

SOLVE THE TWO EQUATIONS

W � 1.7368 FAB W � 1.3004 FBC

CRITICAL VALUE OF THE LOAD W

Based on member AB: Wcr � 1.7368 (Pcr)AB

� 203 kN

Based on member BC: Wcr � 1.3004 (Pcr)BC

� 247 kN

lower load governs. Member AB buckler.

Wcr � 203 kN

FAB cos 50� � FBC cos 35� � W � 0a
FAB sin 50� � FBC sin 35� � 0a

W

A

B

C

40° 55°

L � 7 m

W

B

FBC
FAB

35°
50°
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Problem 11.3-17 A truss ABC supports a load W at joint B, as
shown in the figure. The length L1 of member AB is fixed, but the
length of strut BC varies as the angle � is changed. Strut BC has a
solid circular cross section. Joint B is restrained against displacement
perpendicular to the plane of the truss.

Assuming that collapse occurs by Euler buckling of the strut, 
determine the angle � for minimum weight of the strut. 

Solution 11.3-17 Truss ABC (minimum weight)

A

C

B

W

�

L1

LENGTHS OF MEMBERS

LAB � L1 (a constant)

Strut BC may buckle.

FREE-BODY DIAGRAM OF JOINT B

Fvert � 0 FBC sin � � W � 0

STRUT BC (SOLID CIRCULAR BAR)

Solve for area A: 

For minimum weight, the volume VS of the strut
must be a minimum.

VS � ALBC �
AL1

cos u
�

2L2
1

cos2 u
 ¢ W

�E sin u
≤

1�2

A �
2 L1

cos u
 ¢ W

�E sin u
≤

1�2

FBC � Pcr�or� W

sin u
�

�EA2 cos2 u

4 L2
1

Pcr �
�2EI

L2
BC

�
�EA2 cos2u

4 L2
1

A �
�d2

4
�I �

�d4

64
�∴  I �

A2

4�

FBC �
W

sin u

a

LBC �
L1

cos u
(angle u is variable)

All terms are constants except cos � and sin �.
Therefore, we can write VS in the following form:

where k is a constant.

GRAPH OF

�min � angle for minimum volume (and minimum
weight)

For minimum weight, the term  must be
a maximum.

For a maximum value, the derivative with respect to
� equals zero.

Therefore, 

Taking the derivative and simplifying, we get
cos2 � � 4 sin2 � � 0

or 1 � 4 tan2 � � 0 and tan u�
1

2

d

du
(cos2 u�sin u) � 0

cos2 u�sin u

VS

k

VS �
k

cos2 u�sin u

W

B

FBC

FAB
�

0

2

90�

4

45�

6

8


min 


Vs
k



682 CHAPTER 11 Columns

Columns with Other Support Conditions

The problems for Section 11.4 are to be solved using the assumptions 
of ideal, slender, prismatic, linearly elastic columns (Euler buckling).
Buckling occurs in the plane of the figure unless stated otherwise. 

Problem 11.4-1 An aluminum pipe column (E � 10,400 ksi) with
length L � 10.0 ft has inside and outside diameters d1 � 5.0 in. and 
d2 � 6.0 in., respectively (see figure). The column is supported only 
at the ends and may buckle in any direction.

Calculate the critical load Pcr for the following end conditions: 
(1) pinned-pinned, (2) fixed-free, (3) fixed-pinned, and (4) fixed-fixed.

Solution 11.4-1 Aluminum pipe column

d1 d2

d2 � 6.0 in. d1 � 5.0 in. E � 10,400 ksi

L � 10.0 ft � 120 in.

(1) PINNED-PINNED

� 235 k

Pcr �
�2EI

L2 �
�2(10,400  ksi) (32.94  in.4)

(120  in.)2

I �
�

64
(d4

2 � d4
1) � 32.94 in.4

(2) FIXED-FREE

(3) FIXED-PINNED

(4) FIXED-FIXED Pcr �
4�2EI

L2 � 939 k

Pcr �
2.046 �2EI

L2 � 480 k

Pcr �
�2EI

4L2 � 58.7 k

Problem 11.4-2 Solve the preceding problem for a steel pipe column 
(E � 210 GPa) with length L � 1.2 m, inner diameter d1 � 36 mm, and
outer diameter d2 � 40 mm. 

Solution 11.4-2 Steel pipe column

d2 � 40 mm d1 � 36 mm E � 210 GPa

(1) PINNED-PINNED Pcr �
�2EI

L2 � 62.2 kN

I �
�

64
(d4

2 � d4
1) � 43.22 � 103 mm4�L � 1.2 m

(2) FIXED-FREE

(3) FIXED-PINNED

(4) FIXED-FIXED Pcr �
4�2EI

L2 � 249 kN

Pcr �
2.046 �2EI

L2 � 127 kN

Pcr �
�2EI

4L2 � 15.6 kN

Probs. 11.4-1 and 11.4-2
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Problem 11.4-3 A wide-flange steel column (E � 30 � 106 psi) of
W 12 � 87 shape (see figure) has length L � 28 ft. It is supported only 
at the ends and may buckle in any direction. 

Calculate the allowable load Pallow based upon the critical load with 
a factor of safety n � 2.5. Consider the following end conditions: 
(1) pinned-pinned, (2) fixed-free, (3) fixed-pinned, and (4) fixed-fixed. 

Solution 11.4-3 Wide-flange column

1 1

2

2

W 12 � 87 E � 30 � 106 psi

L � 28 ft � 336 in. n � 2.5 I2 � 241 in.4

(1) PINNED-PINNED

� 253 k

(2) FIXED-FREE

Pallow �
�2 EI2

4 n L2 � 63.2 k

Pallow �
Pcr

n
�

�2 EI2

nL2

(3) FIXED-PINNED

(4) FIXED-FIXED

Pallow �
4�2 EI2

n L2 � 1011 k

Pallow �
2.046�2 EI2

n L2 � 517 k

Problem 11.4-4 Solve the preceding problem for a W 10 � 60 shape
with length L � 24 ft. 

Solution 11.4-4 Wide-flange column

W 10 � 60 E � 30 � 106 psi

L � 24 ft � 288 in. n � 2.5 I2 � 116 in.4

(1) PINNED-PINNED

(2) FIXED-FREE

Pallow �
�2 EI2

4 nL2 � 41.4 k

Pallow �
Pcr

n
�

�2 EI2

nL2 � 166 k

(3) FIXED-PINNED

(4) FIXED-FIXED

Pallow �
4�2 EI2

nL2 � 663 k

Pallow �
2.046�2 EI2

nL2 � 339 k

Probs. 11.4-3 and 11.4-4
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Problem 11.4-5 The upper end of a W 8 � 21 wide-flange steel column
(E � 30 � 103 ksi) is supported laterally between two pipes (see figure).
The pipes are not attached to the column, and friction between the pipes
and the column is unreliable. The base of the column provides a fixed
support, and the column is 13 ft long.

Determine the critical load for the column, considering Euler 
buckling in the plane of the web and also perpendicular to the plane 
of the web. 

Solution 11.4-5 Wide-flange steel column

W 8 � 21

W 8 � 21 E � 30 � 103 ksi

L � 13 ft � 156 in. I1 � 75.3 in.4

I2 � 9.77 in.4

AXIS 1-1 (FIXED-FREE)

AXIS 2-2 (FIXED-PINNED)

Buckling about axis 1-1 governs.

Pcr � 229 k

Pcr �
2.046�2 EI2

L2 � 243 k

Pcr �
�2 EI1

4 L2 � 229 k

1

1

2 2

Problem 11.4-6 A vertical post AB is embedded in a 
concrete foundation and held at the top by two cables 
(see figure). The post is a hollow steel tube with modulus 
of elasticity 200 GPa, outer diameter 40 mm, and thickness 
5 mm. The cables are tightened equally by turnbuckles.

If a factor of safety of 3.0 against Euler buckling in the
plane of the figure is desired, what is the maximum allowable
tensile force Tallow in the cables? 

Solution 11.4-6 Steel tube

40 mm
Cable

Steel tube

Turnbuckle

2.1 m

A

B

2.0 m 2.0 m

E � 200 GPa d2 � 40 mm d1 � 30 mm
L � 2.1 m n � 3.0

Buckling in the plane of the figure means fixed-
pinned end conditions.

Pcr �
2.046�2 EI

L2 � 78.67 kN

I �
�

64
 (d4

2 � d4
1) � 85,903 mm4

Pallow �
Pcr

n
�

78.67 kN

3.0
� 26.22 kN
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FREE-BODY DIAGRAM OF JOINT B

T � tensile force in each cable
Pallow � compressive force in tube

EQUILIBRIUM

ALLOWABLE FORCE IN CABLES

Tallow � (Pallow) ¢1
2
≤ ¢2.9 m

2.1 m
≤� 18.1 kN

a Fvert � 0�Pallow � 2T ¢2.1 m

2.9 m
≤� 0B

Pallow

T T

Problem 11.4-7 The horizontal beam ABC shown in the figure is 
supported by columns BD and CE. The beam is prevented from moving
horizontally by the roller support at end A, but vertical displacement at
end A is free to occur. Each column is pinned at its upper end to the
beam, but at the lower ends, support D is fixed and support E is pinned.
Both columns are solid steel bars (E � 30 � 106 psi) of square cross 
section with width equal to 0.625 in. A load Q acts at distance a from 
column BD.

(a) If the distance a � 12 in., what is the critical value Qcr
of the load? 

(b) If the distance a can be varied between 0 and 40 in., what is 
the maximum possible value of Qcr? What is the corresponding value 
of the distance a? 

Solution 11.4-7 Beam supported by two columns

BA
a

C

E

D

Q

0.625 in.0.625 in.

40 in.
35 in.

45 in.

COLUMN BD E � 30 � 106 psi L � 35 in.

COLUMN CE E � 30 � 106 psi L � 45 in.

(a) FIND Qcr IF a � 12 in.

PCR �
�2 EI

L2 � 1859 lb

b � 0.625 in.�I �
b4

12
� 0.012716 in.4

Pcr �
2.046 �2 EI

L2 � 6288 lb

b � 0.625 in.�I �
b4

12
� 0.012716 in.4

If column BD buckles: 

If column CE buckles:

(b) MAXIMUM VALUE OF Q
CR

Both columns buckle simultaneously.
PBD � 6288 lb PCE � 1859 lb

�
(1859 lb)  (40 in.)

6288 lb � 1859 lb
� 9.13 in.

a �
PCE (40 in.)

Qcr
�

(1859 lb)  (40 in.)

PBD � PCE

aMB � 0�QCR(a) � PCE(40 in.)

a Fvert � 0�QCR � PBD � PCE � 8150 lb

∴ Qcr � 6200 lb

Q �
10

3
 (1859 lb) � 6200 lb

Q �
10

7
 (6288 lb) � 8980  lb

PCE �
12

40
 Q �

3

10
 Q�Q �

10

3
 PCE

PBD �
28

40
 Q �

7

10
 Q�Q �

10

7
 PBD

B
a

C

Q

40 in.

PCE
PBD
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Problem 11.4-8 The roof beams of a warehouse are supported 
by pipe columns (see figure on the next page) having outer 
diameter d2 � 100 mm and inner diameter d1 � 90 mm. The 
columns have length L � 4.0 m, modulus E � 210 GPa, and 
fixed supports at the base.

Calculate the critical load Pcr of one of the columns using the 
following assumptions: (1) the upper end is pinned and the beam 
prevents horizontal displacement; (2) the upper end is fixed against
rotation and the beam prevents horizontal displacement; (3) the upper
end is pinned but the beam is free to move horizontally; and (4) the
upper end is fixed against rotation but the beam is free to move 
horizontally. 

Solution 11.4-8 Pipe column (with fixed base)

d2

Pipe column

Roof beam

L

E � 210 GPa L � 4.0 m

d1 � 90 mm

(1) UPPER END IS PINNED (WITH NO HORIZONTAL

DISPLACEMENT)

(2) UPPER END IS FIXED (WITH NO HORIZONTAL

DISPLACEMENT)

Pcr �
4�2 EI

L2 � 875 kN

Pcr �
2.046�2 EI

L2 � 447 kN

d2 � 100 mm�I �
�

64
 (d4

2 � d4
1) � 1688 � 103 mm4

(3) UPPER END IS PINNED (BUT NO HORIZONTAL

RESTRAINT)

(4) UPPER END IS GUIDED

(no rotation; no horizontal restraint)

The lower half of the column is in the same
condition as Case (3) above.

Pcr �
�2 EI

4(L�2)2 �
�2 EI

L2 � 219 kN

Pcr �
�2 EI

4L2 � 54.7 kN
P

P

P

P

L
2

L
2
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Problem 11.4-9 Determine the critical load Pcr and the equation of 
the buckled shape for an ideal column with ends fixed against rotation
(see figure) by solving the differential equation of the deflection curve.
(See also Fig. 11-17.)

Solution 11.4-9 Fixed-end column

B

A

P

L

v � deflection in the y direction

DIFFERENTIAL EQUATION (EQ.11-3)

GENERAL SOLUTION

v � C1 sin kx � C2 cos 

B.C. 1 v(0) � 0 � 

B.C. 2

v �
M0

P
(1 � cos kx)

v¿(0) � 0�∴ C1 � 0

v¿ � C1 k  cos kx � C2 k sin kx

 C2 � �
M0

P

kx �
M0

P

v– � k 2v �
M0

EI

EIv– � M � M0 � Pv�k 2 �
P

EI

BUCKLING EQUATION

B.C. 3 v(L) � 0

� cos kL � 1 and kL � 2�

CRITICAL LOAD

BUCKLED MODE SHAPE

v �
�

2
 ¢1 � cos 

2�x

L
≤

�
2M0

P
�

M0

P
�

�

2

kL

2
� ��∴ �� �

M0

P
 (1 � cos �)

v ¢L
2
≤� � �

M0

P
 ¢1 � cos  

kL

2
≤

Let � � deflection at midpoint  ¢x �
L

2
≤

Pcr �
4�2EI

L2

k 2 � ¢2�

L
≤

2

�
4�2

L2 �P

EI
�

4�2

L2 �

0 �
M0

P
(1 � cos kL)

y

P

P

L
4

M0

M0

x

L
4

Le � L         2
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Problem 11.4-10 An aluminum tube AB of circular cross section is
fixed at the base and pinned at the top to a horizontal beam supporting 
a load Q � 200 kN (see figure). 

Determine the required thickness t of the tube if its outside 
diameter d is 100 mm and the desired factor of safety with respect 
to Euler buckling is n � 3.0. (Assume E � 72 GPa.) 

Solution 11.4-10 Aluminum tube

B

A

d � 100 mm

Q � 200 kN

1.0 m 1.0 m

2.0 m

End conditions: Fixed-pinned

E � 72 GPa L � 2.0 m n � 3.0
d2 � 100 mm t � thickness (mm)
d1 � 100 mm � 2t

MOMENT OF INERTIA (mm4)

(1)

HORIZONTAL BEAM

Q � 200 kN

P � compressive force in tube

Q �
P

2
�∴  P � 2Q � 400  kN

aMc � 0�Pa � 2Qa � 0

�
�

64
 [ (100)4 � (100 � 2t)4 ]

I �
�

64
 (d4

2 � d4
1)

ALLOWABLE FORCE P

(2)

MOMENT OF INERTIA

� 3.301 � 10�6 m4 � 3.301 � 106 mm4 (3)

EQUATE (1) AND (3):

(100 � 2t)4 � 32.74 � 106 mm4

100 � 2t � 75.64 mm tmin � 12.2 mm

�

64
[ (100)4 � (100 � 2t)4 ] � 3.301 � 106

I �
nL2Pallow

2.046�2 E
�

(3.0)(2.0 m)2 (400 kN)

(2.046)(�2) (72 GPa)

Pallow �
Pcr

n
�

2.046�2 EI

nL2

Q

C B

a a

P
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Problem 11.4-11 The frame ABC consists of two 
members AB and BC that are rigidly connected at joint 
B, as shown in part (a) of the figure. The frame has pin
supports at A and C. A concentrated load P acts at joint 
B, thereby placing member AB in direct compression.

To assist in determining the buckling load for member
AB, we represent it as a pinned-end column, as shown in
part (b) of the figure. At the top of the column, a rotational
spring of stiffness �R represents the restraining action of
the horizontal beam BC on the column (note that the 
horizontal beam provides resistance to rotation of joint 
B when the column buckles). Also, consider only bending
effects in the analysis (i.e., disregard the effects of axial
deformations).

(a) By solving the differential equation of the 
deflection curve, derive the following buckling 
equation for this column: 

�
�

E
R

I

L
� (kL cot kL � 1) � k2L2 � 0

in which L is the length of the column and EI is its 
flexural rigidity. 

(b) For the particular case when member BC is 
identical to member AB, the rotational stiffness �R
equals 3EI /L (see Case 7, Table G-2, Appendix G). 
For this special case, determine the critical load Pcr. 

Solution 11.4-11 Column AB with elastic support at B

A

B

L

P

�R

P

B
C

A

L

EI

(a) (b)

x

y

FREE-BODY DIAGRAM OF COLUMN

v � deflection in the y direction

MB � moment at end B

�B � angle of rotation at end B (positive clockwise)

MB � �R�B

H � horizontal reactions at ends A and B

EQUILIBRIUM

DIFFERENTIAL EQUATION (EQ. 11-3)

GENERAL SOLUTION

B.C. 1 v (0) � 0 � C2 � 0

B.C. 2 v (L) � 0 �

v¿ � C1k cos kx �
bRuB

PL

v � C1 sin kx �
bRuB

PL
x

C1 �
bRuB

P sin kL

v � C1  sin kx � C2 cos  kx �
bRuB

PL
x

v– � k 2v �
bRuB

LEI
x

EIv– � M � Hx � Pv�k 2 �
P

EI

H �
MB

L
�
bRuB

L

aM0 � aMA � 0�MB � HL � 0

MB

0

P

P

H

H
y

v

L
x
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Columns with Eccentric Axial Loads

When solving the problems for Section 11.5, assume that bending occurs
in the principal plane containing the eccentric axial load. 

Problem 11.5-1 An aluminum bar having a rectangular cross section
(2.0 in. � 1.0 in.) and length L � 30 in. is compressed by axial loads 
that have a resultant P � 2800 lb acting at the midpoint of the long side
of the cross section (see figure). 

Assuming that the modulus of elasticity E is equal to 
10 � 106 psi and that the ends of the bar are pinned, calculate the 
maximum deflection � and the maximum bending moment Mmax.

Solution 11.5-1 Bar with rectangular cross section

(a) BUCKLING EQUATION

B.C. 3

� �

Cancel �B and multiply by PL:

�PL � � �R kL cot kL � �R

Substitute P � k2EI and rearrange:

bRL

EI
(kL cot kL � 1) � k 2L2 � 0

uB � �
bRuB

P sin kL
(k cos kL) �

bRuB

PL

v¿(L) � � uB

(b) CRITICAL LOAD FOR �R � 3EI�L

3(kL cot kL � 1) � (kL)2 � 0
Solve numerically for kL: kL � 3.7264

Pcr � k 2EI � (kL)2¢EI

L2 ≤� 13.89 
EI

L2

P = 2800 lb

2.0 in.
1.0 in.

b � 2.0 in. h � 1.0 in. L � 30 in.
P � 2800 lb e � 0.5 in. E � 10 � 106 psi

kL � LB P

EI
� 1.230I �

bh3

12
� 0.1667 in.4

Eq. (11-51):

Eq. (11-56):

� 1710 lb-in.

Mmax � Pe sec 
kL

2

� � e ¢sec
kL

2
� 1≤� 0.112 in.

Problem 11.5-2 A steel bar having a square cross section 
(50 mm � 50 mm) and length L � 2.0 m is compressed by axial
loads that have a resultant P � 60 kN acting at the midpoint of
one side of the cross section (see figure). 

Assuming that the modulus of elasticity E is equal to 210
GPa and that the ends of the bar are pinned, calculate the 
maximum deflection � and the maximum bending moment Mmax. 

Solution 11.5-2 Bar with square cross section

P = 60 kN

50 mm
50 mm

b � 50 mm. L � 2 m. P � 60 kN e � 25 mm

E � 210 GPa

kL � LB P

EI
� 1.481

I �
b4

12
� 520.8 � 103  mm4

Eq. (11-51): 

Eq. (11-56): Mmax � Pe sec 
kL

2
� 2.03 kŇ � ˇm

� � e ¢sec
kL

2
� 1≤� 8.87 mm



SECTION 11.5 Columns with Eccentric Axial Loads 691

Problem 11.5-3 Determine the bending moment M in the pinned-end
column with eccentric axial loads shown in the figure. Then plot the
bending-moment diagram for an axial load P � 0.3Pcr. 

Note: Express the moment as a function of the distance x from the
end of the column, and plot the diagram in nondimensional form with
M/Pe as ordinate and x /L as abscissa.

Solution 11.5-3 Column with eccentric loads

A

B

P

M0 � Pe

M0 � Pe

PP

P

y

�v

e

x

L

e

Column has pinned ends.

Use EQ. (11-49):

From Eq. (11-45): M � Pe � Pv

�

FOR P � 0.3 Pcr:

From Eq. (11-52):

� 1.7207

kL � �B P

Pcr
� ��0.3

M � Pe ¢tan 
kL

2
 sin kx � cos kx≤

v � �e ¢tan 
kL

2
 sin kx � cos kx � 1≤

or

(Note: kL and kx are in radians)

BENDING-MOMENT DIAGRAM FOR P � 0.3 Pcr

M

Pe
� 1.162 ¢sin 1.721

x

L
≤� cos 1.721

x

L

M

Pe
� ¢tan 

1.7207

2
≤ ¢sin 1.7207

x

L
≤� cos 1.7207

x

L

M
Pe

x
L

2

1 1

1.00
0.5

1.533

Problem 11.5-4 Plot the load-deflection diagram for a pinned-end 
column with eccentric axial loads (see figure) if the eccentricity e of the
load is 5 mm and the column has length L � 3.6 m, moment of inertia 
I � 9.0 � 106 mm4, and modulus of elasticity E � 210 GPa. 

Note: Plot the axial load as ordinate and the deflection at the 
midpoint as abscissa.

Solution 11.5-4 Column with eccentric loads

Column has pinned ends.

Use Eq. (11-54) for the deflection at the midpoint
(maximum deflection):

(1)� � eB sec ¢�
2B P

Pcr
≤� 1R

DATA

e � 5.0 mm L � 3.6 m E � 210 GPa
I � 9.0 � 106 mm4

CRITICAL LOAD

Pcr �
�2 EI

L2 � 1439.3 kN

Probs. 11.5-3, 11.5-4, and 11.5-5



Problem 11.5-5 Solve the preceding problem for a column with 
e � 0.20 in., L � 12 ft, I � 21.7 in.4, and E � 30 � 106 psi. 

Solution 11.5-5 Column with eccentric loads
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MAXIMUM DEFLECTION (FROM EQ. 1)

(2)

Units: P � kN
angles are in radians.

SOLVE EQ. (2) FOR P:

P � 583.3B arccos ¢ 5.0

5.0 � �
≤ R 2

� � mm

� � (5.0) [sec (0.041404�P) � 1]

LOAD-DEFLECTION DIAGRAM

P
(kN)

20

500

1000

1500

10
0

5 15
�

(mm)

Pcr

Column has pinned ends
Use Eq. (11-54) for the deflection at the midpoint
(maximum deflection):

(1)

DATA

e � 0.20 in. L � 12 ft � 144 in.
E � 30 � 106 psi
I � 21.7 in.4

CRITICAL LOAD

MAXIMUM DEFLECTION (FROM EQ. 1)

(2)

Units: P � kips � � inches
Angles are in radians.

� � (0.20) [ˇsec (0.08924�P) � 1̌]

Pcr �
�2 EI

L2 � 309.9 k

� � eB sec ¢�
2B P

Pcr
≤� 1R

SOLVE EQ. (2) FOR P:

LOAD-DEFLECTION DIAGRAM

P � 125.6B arccos ¢ 0.2

0.2 � �
≤ R 2

P
(kips)

0.8

100

200

300

0.4
0

0.2 0.6
�

(in.)

Pcr

Problem 11.5-6 A wide-flange member (W 8 � 15) is compressed
by axial loads that have a resultant P acting at the point shown in the
figure. The member has modulus of elasticity E � 29,000 ksi and
pinned conditions at the ends. Lateral supports prevent any bending
about the weak axis of the cross section. 

If the length of the member is 20 ft and the deflection is limited 
to 1/4 inch, what is the maximum allowable load Pallow? 

P

W 8 � 15



Solution 11.5-6 Column with eccentric axial load
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Wide-flange member: W 8 � 15
E � 29,000 psi L � 20 ft � 240 in.
Maximum allowable deflection � 0.25 in. (� �)
Pinned-end conditions
Bending occurs about the strong axis (axis 1-1)

From Table E-1: I � 48.0 in.4

CRITICAL LOAD

Pcr �
�2 EI

L2 � 238,500 lb

e �
8.11 in.

2
� 4.055 in.

MAXIMUM DEFLECTION (EQ. 11-54)

Rearrange terms and simplify:

(Note: Angles are in radians)
Solve for P: P � 11,300 lb

ALLOWABLE LOAD

Pallow � 11,300 lb

0.003216�P � arccos 0.9419 � 0.3426

cos(0.003216�P) � 0.9419

0.25 in. � (4.055 in.) [sec(0.003216�P) � 1]

�max � eB sec ¢�
2B P

Pcr
≤� 1R

Problem 11.5-7 A wide-flange member (W 10 � 30) is compressed by
axial loads that have a resultant P � 20 k acting at the point shown in the
figure. The material is steel with modulus of elasticity E � 29,000 ksi.
Assuming pinned-end conditions, determine the maximum permissible
length Lmax if the deflection is not to exceed 1/400th of the length. 

Solution 11.5-7 Column with eccentric axial load

P = 20 k

W 10 � 30

Wide-flange member: W 10 � 30
Pinned-end conditions.
Bending occurs about the weak axis (axis 2-2).
P � 20 k E � 29,000 ksi L � length (inches)

Maximum allowable deflection � (� �)

From Table E-1: I � 16.7 in.4

k �B P

EI
� 0.006426 in.�1

e �
5.810 in.

2
� 2.905 in.

L

400

DEFLECTION AT MIDPOINT (EQ. 11-51)

Rearrange terms and simplify:

(Note: angles are in radians)
Solve the equation numerically for the length L:
L � 150.5 in.

MAXIMUM ALLOWABLE LENGTH

Lmax � 150.5 in. � 12.5 ft

sec(0.003213 L) � 1 �
L

1162 in.
� 0

L

400
� (2.905 in.) [sec (0.003213 L) � 1]

� � e ¢sec
kL

2
� 1≤



Problem 11.5-8 Solve the preceding problem (W 10 � 30) if the 
resultant force P equals 25 k. 

Solution 11.5-8 Column with eccentric axial load
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Wide-flange member: W 10 � 30
Pinned-end conditions
Bending occurs about the weak axis (axis 2-2)
P � 25 k E � 29,000 ksi L � length (inches)

Maximum allowable deflection (� �)

From Table E-1: I � 16.7 in.4

k �B P

EI
� 0.007185 in.�1

e �
5.810 in.

2
� 2.905 in.

�
L

400

DEFLECTION AT MIDPOINT (EQ. 11-51)

Rearrange terms and simplify:

(Note: angles are in radians)
Solve the equation numerically for the length L:
L � 122.6 in.

MAXIMUM ALLOWABLE LENGTH

Lmax � 122.6 in. � 10.2 ft

sec(0.003592 L) � 1 �
L

1162 in.
� 0

L

400
� (2.905 in.) [sec(0.003592 L) � 1]

� � e ¢sec
kL

2
� 1≤

Problem 11.5-9 The column shown in the figure is fixed at the base and
free at the upper end. A compressive load P acts at the top of the column
with an eccentricity e from the axis of the column. 

Beginning with the differential equation of the deflection curve,
derive formulas for the maximum deflection � of the column and the
maximum bending moment Mmax in the column. 

Solution 11.5-9 Fixed-free column

L

P P

(a) (b)

ee

y

x

�

B

A

e � eccentricity of load P
� � deflection at the end of the column
v � deflection of the column at distance x
from the base

DIFFERENTIAL EQUATION (EQ. 11.3)

GENERAL SOLUTION

v � C1 sin kx � C2 cos kx � e � �

v– � k 2v � k 2(e � �)

v– � k 2 (e � � � v)

EIv– � M � P(e � � � v)�k 2 �
P

EI

B.C. 1 v(0) � 0 � C2 � � e � �
B.C. 2 � C1 � 0
v � (e � �)(1 � cos kx)
B.C. 3 v(L) � � � � � (e � �)(1 � cos kL)

or � � e(sec kL � 1)

MAXIMUM DEFLECTION � � e(sec kL � 1)

MAXIMUM LENDING MOMENT (AT BASE OF COLUMN)

Mmax � P(e � �) � Pe sec kL

NOTE: v � (e � �)(1 � cos kx)

� e(sec kL) (1 � cos kx)

v¿(0) � 0

v¿ � C1 k cos kx � C2 k sin kx



Problem 11.5-10 An aluminum box column of square cross section is
fixed at the base and free at the top (see figure). The outside dimension b
of each side is 100 mm and the thickness t of the wall is 8 mm. The
resultant of the compressive loads acting on the top of the column is a
force P � 50 kN acting at the outer edge of the column at the midpoint of
one side.

What is the longest permissible length Lmax of the column if the
deflection at the top is not to exceed 30 mm? (Assume E � 73 GPa.) 

Solution 11.5-10 Fixed-free column
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P

A A

L

Section A-A

t

b

� � deflection at the top
Use Eq. (11-51) with L�2 replaced by L:
� � e(sec kL � 1) (1)
(This same equation is obtained in Prob. 11.5-9.)

SOLVE FOR L FROM EQ. (1)

(2)L �BEI

P
 arccos 

e

e � �

k �B P

EI
L �

1

k
 arccos 

e

e � �

kL � arccos 
e

e � �
cos kL �

e

e � �

sec kL � 1 �
�

e
�

e � �

e

NUMERICAL DATA

E � 73 GPa b � 100 mm t � 8 mm

P � 50 kN � � 30 mm

MAXIMUM ALLOWABLE LENGTH

Substitute numerical data into Eq. (2).

Lmax � (2.4717 m)(0.89566) � 2.21 m

arccos 
e

e � �
� 0.89566 radians

e

e � �
� 0.625BEI

P
� 2.4717 m

I �
1

12
[b4 � (b � 2t)4 ] � 4.1844 � 106 mm4

e �
b

2
� 50 mm

Problem 11.5-11 Solve the preceding problem for an aluminum 
column with b � 6.0 in., t � 0.5 in., P � 30 k, and E � 10.6 � 103 ksi. 
The deflection at the top is limited to 2.0 in. 

Solution 11.5-11 Fixed-free column

� � deflection at the top

Use Eq. (11-51) with L�2 replaced by L:
� � e(sec kL � 1) (1)
(This same equation is obtained in Prob. 11.5-9.)

SOLVE FOR L FROM EQ. (1)

(2)L �BEI

P
 arccos 

e

e � �

k �B P

EI
L �

1

k
 arccos 

e

e � �

kL � arccos 
e

e � �
cos kL �

e

e � �

sec kL � 1 �
�

e
�

e � �

e

NUMERICAL DATA

E � 10.6 � 103 ksi b � 6.0 in. t � 0.5 in.

P � 30 k � � 2.0 in.

I �
1

12
[b4 � (b � 2t)4 ] � 55.917 in.4

e �
b

2
� 3.0 in.

Probs. 11.5-10 and 11.5-11



Problem 11.5-12 A steel post AB of hollow circular cross 
section is fixed at the base and free at the top (see figure). The
inner and outer diameters are d1 � 96 mm and d2 � 110 mm,
respectively, and the length L � 4.0 m. 

A cable CBD passes through a fitting that is welded to the
side of the post. The distance between the plane of the cable
(plane CBD) and the axis of the post is e � 100 mm, and the
angles between the cable and the ground are � � 53.13°. 
The cable is pretensioned by tightening the turnbuckles.

If the deflection at the top of the post is limited to 
� � 20 mm, what is the maximum allowable tensile force 
T in the cable? (Assume E � 205 GPa.)

Solution 11.5-12 Fixed-free column

696 CHAPTER 11 Columns

MAXIMUM ALLOWABLE LENGTH

Substitute numerical data into Eq. (2).

e

e � �
� 0.60BEI

P
� 140.56 in.

Lmax � (140.56 in.)(0.92730)

� 130.3 in. � 10.9 ft

arccos 
e

e � �
� 0.92730 radians

A

B

C D

L = 4.0 m

Cable

d2
� = 53.13° � = 53.13°

d1

d2

e = 100 mm

� � deflection at the top

P � compressive force in post

Use Eq. (11-51) with replaced by L:

� � e(sec kL � 1) (1)
(This same equation in obtained in Prob. 11.5-9.)

SOLVE FOR P FROM EQ.(1)

Square both sides and solve for P:

(2)

NUMERICAL DATA

E � 205 GPa L � 4.0 m e � 100 mm
� � 20 mm d2 � 110 mm d1 � 96 mm

I �
�

64
(d4

2 � d4
1) � 3.0177 � 106 mm4

P �
EI

L2 ¢arccos 
e

e � �
≤

2

kL �BPL2

EI
�BPL2

EI
� arccos 

e

e � �

kL � arccos 
e

e � �
cos kL �

e

e � �

sec kL � 1 �
�

e
�

e � �

e

L�2

k �B P

EI

MAXIMUM ALLOWABLE COMPRESSIVE FORCE P

Substitute numerical data into Eq. (2).

Pallow � 13,263 N � 13,263 kN

MAXIMUM ALLOWABLE TENSILE FORCE T IN THE CABLE

Free-body diagram of joint B:
� � 53.13�

Fvert � 0 P � 2T sin � � 0

T �
P

2 sin �
�

5P

8
� 8289 N

a

B

TT

� �



SECTION 11.5 Columns with Eccentric Axial Loads 697

Problem 11.5-13 A frame ABCD is constructed of steel wide-flange
members (W 8 � 21; E � 30 � 106 psi) and subjected to triangularly
distributed loads of maximum intensity q0 acting along the vertical 
members (see figure). The distance between supports is L � 20 ft and 
the height of the frame is h � 4 ft. The members are rigidly connected 
at B and C.

(a) Calculate the intensity of load q0 required to produce a maximum
bending moment of 80 k-in. in the horizontal member BC. 

(b) If the load q0 is reduced to one-half of the value calculated in 
part (a), what is the maximum bending moment in member BC? What 
is the ratio of this moment to the moment of 80 k-in. in part (a)?

Solution 11.5-13 Frame with triangular loads

Section E-E

E

E

B

A

h

L

D

C

q0 q0

P � resultant force
e � eccentricity

MAXIMUM BENDING MOMENT IN BEAM BC

From Eq. (11-56):

(1)

NUMERICAL DATA

W 8 � 21 I � I2 � 9.77 in.4 (from Table E-1)
E � 30 � 106 psi L � 20 ft � 240 in.
h � 4 ft � 48 in.

e �
h

3
� 16 in.

k �B P

EI
�∴ Mmax � Pe secBPL2

4EI

Mmax � Pe sec 
kL

2

P �
q0h

2
�e �

h

3

(a) LOAD q0 TO PRODUCE Mmax � 80 k-in.

Substitute numerical values into Eq. (1).
Units: pounds and inches

(radians)

(2)

SOLVE EQ. (2) NUMERICALLY

P � 4461.9 lb

(b) LOAD q0 IS REDUCED TO ONE-HALF ITS VALUE

� P is reduced to one-half its value.

Substitute numerical values into Eq. (1) and solve 
for Mmax.

Mmax � 37.75 k-in.

This result shows that the bending moment varies
nonlinearly with the load.

Ratio: 
Mmax

80 k-in.
5

37.7

80
5 0.47

P �
1

2
(4461.9 lb) � 2231.0 lb

q0 �
2P

h
� 186 lb�in. � 2230 lb�ft

P � 5,000[cos(0.0070093�P) ] � 0

5,000 � P sec(0.0070093�P)

80,000 � P(16 in.) [sec(0.0070093�P) ]

� 0.0070093�P

Mmax � 80,000 lb-in. BPL2

4EI

B

A

h

L

D

C

h
3

h
3

P
P



Problem 11.6-2 A brass bar (E � 100 GPa) with a square cross section
is subjected to axial forces having a resultant P acting at distance e from
the center (see figure). The bar is pin supported at the ends and is 0.6 m
in length. The side dimension b of the bar is 30 mm and the eccentricity 
e of the load is 10 mm. 

If the allowable stress in the brass is 150 MPa, what is the allowable
axial force Pallow? 

Solution 11.6-2 Bar with square cross section

698 CHAPTER 11 Columns

The Secant Formula

When solving the problems for Section 11.6, assume that bending occurs
in the principal plane containing the eccentric axial load. 

Problem 11.6-1 A steel bar has a square cross section of width 
b � 2.0 in. (see figure). The bar has pinned supports at the ends and is 
3.0 ft long. The axial forces acting at the end of the bar have a resultant 
P � 20 k located at distance e � 0.75 in. from the center of the cross 
section. Also, the modulus of elasticity of the steel is 29,000 ksi.

(a) Determine the maximum compressive stress �max in the bar. 
(b) If the allowable stress in the steel is 18,000 psi, what is the 

maximum permissible length L max of the bar? 

Solution 11.6-1 Bar with square cross section

P
e

bb

Pinned supports.

DATA

b � 2.0 in. L � 3.0 ft � 36 in. P � 20 k
e � 0.75 in. E � 29,000 ksi

(a) MAXIMUM COMPRESSIVE STRESS

Secant formula (Eq. 11-59):

(1)

L
r

� 62.354�P

EA
� 0.00017241

ec

r 2 � 2.25

r 2 �
I

A
� 0.3333 in.2I �

b4

12
� 1.333 in.4

c �
b

2
� 1.0 in.

P

A
�

P

b2 � 5.0 ksi

smax �
P

A
B1 �

ec

r 2 sec ¢ L

2rB P

EA
≤ R

Substitute into Eq. (1):

�max � 17.3 ksi

(b) MAXIMUM PERMISSIBLE LENGTH

�allow = 18,000 psi

Solve Eq. (1) for the length L:

(2)

Substitute numerical values:
Lmax � 46.2 in.

L � 2BEI

P
 arccos B P(ec�r 2)

smax A � P
R

Pinned supports.

DATA

b � 30 mm L � 0.6 m �allow � 150 MPa
e � 10 mm E � 100 GPa

SECANT FORMULA (Eq. 11-59):

(1)smax �
P

A
B1 �

ec

r 2 sec ¢ L

2rB P

EA
≤ R

Probs. 11.6-1 through 11.6-3



Problem 11.6-3 A square aluminum bar with pinned ends carries a load
P � 25 k acting at distance e � 2.0 in. from the center (see figure on the
previous page). The bar has length L � 54 in. and modulus of elasticity 
E � 10,600 ksi. 

If the stress in the bar is not to exceed 6 ksi, what is the minimum
permissible width bmin of the bar? 

Solution 11.6-3 Square aluminum bar

SECTION 11.6 The Secant Formula 699

Units: Newtons and meters

�max � 150 � 106 N�m2

A = b2 � 900 � 10�6 m2

ec

r 2 � 2.0�P � newtons�L

2rB P

EA
� 0.0036515�P

c �
b

2
� 0.015 m�r 2 �

I

A
�

b2

12
� 75 � 10�6 m2

SUBSTITUTE NUMERICAL VALUES INTO Eq. (1):

or

(2)

SOLVE EQ. (2) NUMERICALLY:

Pallow � 37,200 N � 37.2 kN

P[1 � 2 sec(0.0036515�P) ] � 135,000 � 0

[1 � 2 sec(0.0036515�P) ]150 � 106 �
P

900 � 10�6

Pinned ends

DATA

Units: pounds and inches
P � 25 k � 25,000 psi e � 2.0 in.
L � 54 in. E � 10,600 ksi � 10,600,000 psi
�max = 6.0 ksi � 6,000 psi

SECANT FORMULA (Eq. 11-59)

(1)

ec

r2 �
12

b
       

L

2rB P

EA
�

4.5423

b2

A � b2      c �
b

2
      r2 �

I

A
�

b2

12

smax �
P

A
B1 �

ec

r 2 sec ¢ L

2rB P

EA
≤ R

SUBSTITUTE TERMS INTO EQ. (1):

or

(2)

SOLVE EQ. (2) NUMERICALLY:

bmin � 4.10 in.

1 �
12

b
sec ¢4.5423

b2 ≤� 0.24 b2 � 0

6,000 �
25,000

b2 B1 �
12

b
 sec ¢4.5423

b2 ≤ R

Problem 11.6-4 A pinned-end column of length L � 2.1 m is 
constructed of steel pipe (E � 210 GPa) having inside diameter 
d1 � 60 mm and outside diameter d2 � 68 mm (see figure). A
compressive load P � 10 kN acts with eccentricity e � 30 mm.

(a) What is the maximum compressive stress �max in the column? 
(b) If the allowable stress in the steel is 50 MPa, what is the 

maximum permissible length Lmax of the column? 

P
e

d1

d2

Probs. 11.6-4 through 11.6-6



Problem 11.6-5 A pinned-end strut of length L � 5.2 ft is constructed of steel
pipe (E � 30 � 103 ksi) having inside diameter d1 � 2.0 in. and outside diame-
ter d2 � 2.2 in. (see figure). A compressive load P � 2.0 k is applied with
eccentricity e � 1.0 in.

(a) What is the maximum compressive stress �max in the strut? 
(b) What is the allowable load Pallow if a factor of safety n � 2 with respect

to yielding is required? (Assume that the yield stress �Y of the steel is 42 ksi.) 

Solution 11.6-5 Pinned-end strut

700 CHAPTER 11 Columns

Pinned ends.

DATA Units: Newtons and meters

L � 2.1 m E � 210 GPa � 210 � 109 N�m2

d1 � 60 mm � 0.06 m d2 � 68 mm � 0.068 m
P � 10 kN � 10,000 N e � 30 mm � 0.03 m

TUBULAR CROSS SECTION

(a) MAXIMUM COMPRESSIVE STRESS

Secant formula (Eq. 11-59):

(1)

P

A
� 12.434 � 106 N�m2

smax �
P

A
B1 �

ec

r 2 sec ¢ L

2rB P

EA
≤ R

I �
�

64
(d4

2 � d4
1) � 413.38 � 10�9m4

A �
�

4
(d2

2 � d2
1) � 804.25 � 10�6m2

Substitute into Eq. (1):

�max � 38.8 � 106 N�m2 � 38.8 MPa

(b) MAXIMUM PERMISSIBLE LENGTH

�allow � 50 MPa
Solve Eq. (1) for the length L:

(2)

Substitute numerical values:
Lmax � 5.03 m

L � 2BEI

P
arccos B P(ec�r 2)

smax A � P
R

ec

r2 � 1.9845        
L

2rB P

EA
� 0.35638

r � 22.671 � 10�3 m     c �
d2

2
� 0.034 m

r 2 �
I

A
� 513.99 � 10�6 m 2

Solution 11.6-4 Steel pipe column

Steel pipe.

DATA Units: kips and inches

L � 5.2 ft � 62.4 in. E � 30 � 103 ksi
d1 � 2.0 in. d2 � 2.2 in.
P � 2.0 k e � 1.0 in.

TUBULAR CROSS SECTION

(a) MAXIMUM COMPRESSIVE STRESS

Secant formula (Eq. 11-59):

(1)smax �
P

A
B1 �

ec

r 2 sec ¢ L

2rB P

EA
≤ R

I �
�

64
(d4

2 � d4
1) � 0.36450 in.4

A �
�

4
(d2

2 � d2
1) � 0.65973 in.2

Substitute into Eq. (1):
�max � 9.65 ksi

(b) ALLOWABLE LOAD

�Y � 42 ksi n � 2 find  Pallow

Substitute numerical values into Eq. (1):

(2)

Solve Eq. (2) numerically: P � PY � 7.184 k

Pallow �
PY

n
� 3.59 k

42 �
P

0.65973
[1 � 1.9910 sec(0.29836�P) ]

r � 0.74330 in.�L

2rB P

EA
� 0.42195

ec

r 2 � 1.9910r 2 �
I

A
� 0.55250 in.2

c �
d2

2
� 1.1 in.

P

A
� 3.0315 ksi



Problem 11.6-6 A circular aluminum tube with pinned ends supports 
a load P � 18 kN acting at distance e � 50 mm from the center (see 
figure). The length of the tube is 3.5 m and its modulus of elasticity is 
73 GPa. 

If the maximum permissible stress in the tube is 20 MPa, what is the
required outer diameter d2 if the ratio of diameters is to be d1/d2 � 0.9? 

Solution 11.6-6 Aluminum tube

SECTION 11.6 The Secant Formula 701

Pinned ends.

DATA P � 18 kN e � 50 mm

L � 3.5 m E � 73 GPa
�max � 20 MPa d1/d2 � 0.9

SECANT FORMULA (EQ. 11-59)

(1)

(d2 � mm; A � mm2)

(d2 � mm; I � mm4)

r � 0.33634 d2 (r � mm)

r 2 �
I

A
� 0.11313 d2

2�(d2 � mm; r 2 � mm2)

I �
�

64
(d4

2 � d4
1) �

�

64
[d4

2 � (0.9 d2)4 ] � 0.016881 d4
2

P

A
�

18,000 N

0.14923 d2
2

�
120,620

d2
2

 ¢P
A

� MPa≤

A �
�

4
(d2

2 � d2
1) �

�

4
[d2

2 � (0.9 d2)2 ] � 0.14923 d2
2

smax �
P

A
B1 �

ec

r 2 sec ¢ L

2rB P

EA
≤ R

SUBSTITUTE THE ABOVE EXPRESSIONS INTO EQ. (1):

+ (2)

SOLVE EQ. (2) NUMERICALLY:

d2 � 131 mm

B1 �
220.99

d2
 sec ¢6688.2

d2
2

≤ Rsmax � 20 MPa �
120,620

d2
2

L

2rB P

EA
�

5,203.1

d2 B1.6524

d2
2

�
6688.2

d2
2

P

EA
�

18,000 N

(73,000 N�mm2)(0.14923 d2
2)

�
1.6524

d2
2

L

2r
�

3500 mm

2(0.33634 d2)
�

5,203.1

d2

ec

r 2 �
(50 mm)(d2�2)

0.11313 d2
2

�
220.99

d2
c �

d2

2

Problem 11.6-7 A steel column (E � 30 � 103 ksi) with pinned
ends is constructed of a W 10 � 60 wide-flange shape (see figure).
The column is 24 ft long. The resultant of the axial loads acting on 
the column is a force P acting with an eccentricity e � 2.0 in.

(a) If P � 120 k, determine the maximum compressive stress 
�max in the column. 

(b) Determine the allowable load Pallow if the yield stress is 
�Y � 42 ksi and the factor of safety with respect to yielding of 
the material is n � 2.5.

W 10 � 60

P
e = 2.0 in.



Solution 11.6-7 Steel column with pinned ends

702 CHAPTER 11 Columns

E � 30 � 103 ksi L � 24 ft � 288 in.
e � 2.0 in.
W 10 � 60 wide-flange shape

A � 17.6 in.2 I � 341 in.4 d � 10.22 in.

(a) MAXIMUM COMPRESSIVE STRESS (P � 120 k)

Secant formula (Eq. 11-59):

(1)smax �
P

A
B1 �

ec

r 2 sec ¢ L

2rB P

EA
≤ R

ec

r 2 � 0.5273
L
r

� 65.42

r 2 �
I

A
� 19.38 in.2�r � 4.402 in.�c �

d

2
� 5.11 in.

Substitute into Eq. (1): �max � 10.9 ksi

(b) ALLOWABLE LOAD

�Y � 42 ksi n � 2.5 find Pallow

Substitute into Eq. (1):

Solve numerically: P � PY � 399.9 k

Pallow � PY �n � 160 k

42 �
P

17.6
[1 � 0.5273 sec(0.04502�P) ]

P

A
� 6.818 ksi 

L

2rB P

EA
� 0.4931

Problem 11.6-8 A W 16 � 57 steel column is compressed by a force 
P � 75 k acting with an eccentricity e � 1.5 in., as shown in the figure.
The column has pinned ends and length L. Also, the steel has modulus of
elasticity E � 30 � 103 ksi and yield stress �Y � 36 ksi.

(a) If the length L � 10 ft, what is the maximum compressive
stress �max in the column? 

(b) If a factor of safety n � 2.0 is required with respect to yielding,
what is the longest permissible length Lmax of the column?

Solution 11.6-8 Steel column with pinned ends

P = 75 k

W 16 � 57

e = 1.5 in.

W 16 � 57 A � 16.8 in.2 I � I2 � 43.1 in.4

b � 7.120 in.
c � b�2 � 3.560 in.

(a) MAXIMUM COMPRESSIVE STRESS

Secant formula (Eq. 11-59):

(1)

L � 10 ft � 120 in.

Substitute into Eq. (1):

L

2rB P

EA
� 0.4569

P

A
� 4.464 ksi

smax �
P

A
B1 �

ec

r 2 sec ¢ L

2rB P

EA
≤ R

P � 75 k�E � 30 � 103 ksi�P

EA
� 148.8 � 10�6

ec

r2 � 2.082     r � 1.602 in.

e � 1.5 in.       r2 �
I

A
� 2.565 in.2

�max � 4.464 [1 � 2.082 sec (0.4569)]
� 14.8 ksi

(b) MAXIMUM LENGTH

Solve Eq. (1) for the length L:

(2)

�Y � 36 ksi n � 2.0 PY � n P � 150 k

Substitute PY for P and �Y for �max in Eq. (2):

(3)

Substitute numerical values in Eq. (3) and solve 
for Lmax:

Lmax � 151.1 in. � 12.6 ft

Lmax � 2BEI

PY

 arccos B
PY(ec�r 2)

sY A � PY

R

L � 2BEI

P
 arccosB P(ec�r2)

smax A � P
R



Problem 11.6-9 A steel column (E � 30 � 103 ksi) that is fixed at the
base and free at the top is constructed of a W 8 � 35 wide-flange member
(see figure). The column is 9.0 ft long. The force P acting at the top of the
column has an eccentricity e � 1.25 in.

(a) If P � 40 k, what is the maximum compressive stress in the 
column? 

(b) If the yield stress is 36 ksi and the required factor of safety 
with respect to yielding is 2.1, what is the allowable load Pallow? 

Solution 11.6-9 Steel column (fixed-free)

SECTION 11.6 The Secant Formula 703

P

P

L

A A

e

e

Section A-A

E � 30 � 103 ksi e � 1.25 in.
Le � 2 L � 2 (9.0 ft) � 18 ft � 216 in.

W 8 � 35 WIDE-FLANGE SHAPE

A � 10.3 in.2 I � I2 � 42.6 in.4 b � 8.020 in.

(a) MAXIMUM COMPRESSIVE STRESS (P � 40 k)

Secant formula (Eq. 11-59):

(1)smax �
P

A
B1 �

ec

r 2 sec ¢Le

2rB P

EA
≤ R

Le
r

� 106.2      
ec

r2 � 1.212c �
b

2
� 4.010 in.

r 2 �
I

A
� 4.136 in.2�r � 2.034 in.

Substitute into Eq. (1): �max � 9.60 ksi

(b) ALLOWABLE LOAD

�Y � 36 ksi n � 2.1 find Pallow

Substitute into Eq. (1):

Solve numerically: P � PY � 112.6 k

Pallow � PY �n � 53.6 k

36 �
P

10.3
[1 � 1.212 sec(0.09552�P) ]

P

A
� 3.883 ksi      

Le

2rB P

EA
� 0.6042

Problem 11.6-10 A W 12 � 50 wide-flange steel column with length 
L � 12.5 ft is fixed at the base and free at the top (see figure). The load 
P acting on the column is intended to be centrally applied, but because of
unavoidable discrepancies in construction, an eccentricity ratio of 0.25 is
specified. Also, the following data are supplied: E � 30 � 103 ksi, 
�Y � 42 ksi, and P � 70 k.

(a) What is the maximum compressive stress �max in the column? 
(b) What is the factor of safety n with respect to yielding of the steel? 

Solution 11.6-10 Steel column (fixed-free)

Le � 2L � 2 (12.5 ft) � 25 ft � 300 in.

W 12 � 50 WIDE-FLANGE SHAPE

A � 14.7 in.2 I � I2 � 56.3 in.4

r2 �
I

A
� 3.830 in.2      r � 1.957 in.

ec

r 2 � 0.25E � 30 � 103 ksi (a) MAXIMUM COMPRESSIVE STRESS (P � 70 k)

Secant formula (Eq. 11-59):

(1)

Le

2rB P

EA
� 0.9657

P

A
� 4.762 ksi

smax �
P

A
B1 �

ec

r 2 sec ¢Le

2rB P

EA
≤ R

Probs. 11.6-9 and 11.6-10



Problem 11.6-11 A pinned-end column with length L � 18 ft is 
constructed from a W 12 � 87 wide-flange shape (see figure). The 
column is subjected to a centrally applied load P1 � 180 k and an 
eccentrically applied load P2 � 75 k. The load P2 acts at distance s
� 5.0 in. from the centroid of the cross section. The properties of the
steel are E � 29,000 ksi and �Y � 36 ksi.

(a) Calculate the maximum compressive stress in the column. 
(b) Determine the factor of safety with respect to yielding. 

Solution 11.6-11 Column with two loads

704 CHAPTER 11 Columns

Substitute into Eq. (1): �max � 6.85 ksi

(b) FACTOR OF SAFETY WITH RESPECT TO YIELDING

�Y � 42 psi

Substitute into Eq. (1) with �max � �Y and P � PY:

42 �
PY

A
[1 � 0.25 sec(0.1154�PY) ]

Solve numerically: PY = 164.5 k

P � 70 k�n �
PY

P
�

164.5 k

70 k
� 2.35

Wide-flange
column

P2 P1s

Probs. 11.6.11 and 11.6.12

Pinned-end column. W 12 � 87

DATA

L � 18 ft � 216 in.

P1 � 180 k P2 � 75 k s � 5.0 in.

E � 29,000 ksi �Y � 36 ksi

A � 25.6 in.2 I � I1 � 740 in.4 d � 12.53 in.

P

A
� 9.961 ksi      

L

2rB P

EA
� 0.3723

ec

r 2 � 0.3188c �
d

2
� 6.265 in.

r � 5.376 in.r 2 �
I

A
� 28.91 in.2

e �
P2s

P
� 1.471 in.P � P1 � P2 � 255 k

(a) MAXIMUM COMPRESSIVE STRESS

Secant formula (Eq. 11-59):

(1)

Substitute into Eq. (1): �max � 13.4 ksi

(b) FACTOR OF SAFETY WITH RESPECT TO YIELDING

�max � �Y � 36 ksi P � PY

Substitute into Eq. (1):

Solve numerically: PY � 664.7 k

P � 2.55 k�n �
PY

P
�

664.7 k

255 k
� 2.61

36 �
PY

25.6
[1 � 0.3188 sec(0.02332�PY) ]

smax �
P

A
B1 �

ec

r 2 sec ¢ L

2rB P

EA
≤ R



Problem 11.6-12 The wide-flange pinned-end column shown in the 
figure carries two loads, a force P1 � 100 k acting at the centroid and 
a force P2 � 60 k acting at distance s � 4.0 in. from the centroid. The
column is a W 10 � 45 shape with L � 13.5 ft, E � 29 � 103 ksi, 
and �Y � 42 ksi.

(a) What is the maximum compressive stress in the column? 
(b) If the load P1 remains at 100 k, what is the largest permissible

value of the load P2 in order to maintain a factor of safety of 2.0 with
respect to yielding? 

Solution 11.6-12 Column with two loads
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Pinned-end column. W 10 � 45

DATA

L � 13.5 ft � 162 in.
P1 � 100 k P2 � 60 k s � 4.0 in.

E � 29,000 ksi �Y � 42 ksi

A � 13.3 in.2 I � I1 � 248 in.4 d � 10.10 in.

(a) MAXIMUM COMPRESSIVE STRESS

Secant formula (Eq. 11-59):

(1)

Substitute into Eq. (1): �max � 17.3 ksi

smax �
P

A
B1 �

ec

r 2 sec ¢ L

2rB P

EA
≤ R

L

2rB P

EA
� 0.3821

P

A
� 12.03 ksi

ec

r 2 � 0.4062c �
d

2
� 5.05 in.   

r 2 �
I

A
� 18.65 in.2�r � 4.318 in.

e �
P2s

P
� 1.50 in.P � P1 � P2 � 160 k

(b) LARGEST VALUE OF LOAD P2

P1 � 100 k (no change)

n � 2.0 with respect to yielding

Units: kips, inches

P � P1 � P2 � 100 � P2

�max � �Y � 42 ksi PY � n P � 2.0 (100 � P2)

Use Eq. (1) with �max replaced by �Y and P replaced
by PY :

(2)

Substitute into Eq. (2):

Solve numerically: P2 � 78.4 k

B1 �
1.0831 P2

100 � P2
 sec (0.04272�100 � P2)R

42 �
2.0(100 � P2)

13.3

sY �
PY

A
 B1 �

ec

r 2 sec ¢ L

2rB PY

EA
≤ R

e �
P2s

P
�

P2(4.0)

100 � P2
     �ec

r2 �
1.0831 P2

100 � P2

Problem 11.6-13 A W 14 � 53 wide-flange column of length L � 15 ft
is fixed at the base and free at the top (see figure). The column supports a
centrally applied load P1 � 120 k and a load P2 � 40 k supported on a
bracket. The distance from the centroid of the column to the load P2 is
s � 12 in. Also, the modulus of elasticity is E � 29,000 ksi and the yield
stress is �Y � 36 ksi.

(a) Calculate the maximum compressive stress in the column. 
(b) Determine the factor of safety with respect to yielding. 

P1 P2

L
A A

Section A-A

s

Probs. 11.6-13 and 11.6-14



Solution 11.6-13 Column with two loads
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Fixed-free column. W 14 � 53

DATA

L � 15 ft � 180 in. Le � 2 L � 360 in.

P1 � 120 k P2 � 40 k s � 12 in.

E � 29,000 ksi �Y � 36 ksi

A � 15.6 in.2 I � I1 � 541 in.4 d � 13.92 in.

Le

2rB P

EA
� 0.5748

P

A
� 10.26 ksi

c �
d

2
� 6.960 in.        

ec

r2 � 0.6021

r 2 �
I

A
� 34.68 in.2 r � 5.889 in.

P � P1 � P2 � 160 k�e �
P2s

P
� 3.0 in.

(a) MAXIMUM COMPRESSIVE STRESS

Secant formula (Eq. 11-59):

(1)

Substitute into Eq. (1): �max � 17.6 ksi

(b) FACTOR OF SAFETY WITH RESPECT TO YIELDING

�max � �Y � 36 ksi P � PY

Substitute into Eq. (1):

Solve numerically: PY � 302.6 k

P � 160 k�n �
PY

P
�

302.6 k

160 k
� 1.89

36 �
PY

15.6
[1 � 0.6021 sec(0.04544�PY) ]

smax �
P

A
B1 �

ec

r 2   sec ¢Le

2rB P

EA
≤ R

Problem 11.6-14 A wide-flange column with a bracket is fixed at the base and
free at the top (see figure on the preceding page). The column supports a load 
P1 � 75 k acting at the centroid and a load P2 � 25 k acting on the bracket at
distance s � 10.0 in. from the load P1. The column is a W 12 � 35 shape with 
L � 16 ft, E � 29 � 103 ksi, and �Y � 42 ksi.

(a) What is the maximum compressive stress in the column? 
(b) If the load P1 remains at 75 k, what is the largest permissible value of the

load P2 in order to maintain a factor of safety of 1.8 with respect to yielding? 

Solution 11.6-14 Column with two loads
Fixed-free column. W 12 � 35

DATA

L � 16 ft � 192 in. Le � 2 L � 384 in.
P1 � 75 k P2 � 25 k s � 10.0 in.
E � 29,000 ksi �Y � 42 ksi

A � 10.3 in.2 I � I1 � 285 in.4 d � 12.50 in.

(a) MAXIMUM COMPRESSIVE STRESS

Secant formula (Eq. 11-59):

(1)

Substitute into Eq. (1): �max � 16.7 ksi

smax �
P

A
B1 �

ec

r 2 sec ¢Le

2rB P

EA
≤ R

Le

2rB P

EA
� 0.6679

P

A
� 9.709 ksi

ec

r 2 � 0.5647c �
d

2
� 6.25 in.

r � 5.260 in.r 2 �
I

A
� 27.67 in.2

P � P1 � P2 � 100 k�e �
P2s

P
� 2.5 in.

(b) LARGEST VALUE OF LOAD P2

P1 � 75 k (no change)

m � 1.8 with respect to yielding

Units: kips, inches

P � P1 � P2 � 75 � P2

�max � �Y � 42 ksi PY � n P � 1.8 (75 � P2)

Use Eq. (1) with �max replaced by �Y and P replaced
by PY :

(2)

Substitute into Eq. (2):

Solve numerically: P2 � 34.3 k

B1 �
2.259 P2

75 � P2
 sec (0.08961�75 � P2)R

42 �
1.8(75 � P2)

10.3

sY �
PY

A
B1 �

ec

r 2 sec ¢Le

2rB PY

EA
≤ R

e �
P2s

P
�

P2(10.0)

75 � P2
     �ec

r2 �
2.259 P2

75 � P2



Design Formulas for Columns

The problems for Section 11.9 are to be solved assuming that the axial
loads are centrally applied at the ends of the columns. Unless otherwise
stated, the columns may buckle in any direction. 

STEEL COLUMNS

Problem 11.9-1 Determine the allowable axial load Pallow for a
W 10 � 45 steel wide-flange column with pinned ends (see figure) 
for each of the following lengths: L � 8 ft, 16 ft, 24 ft, and 32 ft.
(Assume E � 29,000 ksi and �Y � 36 ksi.) 

Solution 11.9-1 Steel wide-flange column
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P

A A
L

Section  A - A  

Pinned ends (K � 1).
Buckling about axis 2-2 (see Table E-1).
Use AISC formulas.
W 10 � 45 A � 13.3 in.2 r2 � 2.01 in.

E � 29,000 ksi �Y � 36 ksi

Eq. (11-76): 

Lc � 126.1 r � 253.5 in. � 21.1 ft

¢L
r
≤

c

�B2�2E
sY

� 126.1

¢L
r
≤

max
� 200

L 8 ft 16 ft 24 ft 32 ft

L�r 47.76 95.52 143.3 191.0

n1 (Eq. 11-79) 1.802 1.896 – –

n2 (Eq. 11-80) – – 1.917 1.917

�allow ��Y (Eq. 11-81) 0.5152 0.3760 – –

�allow��Y (Eq. 11-82) – – 0.2020 0.1137

�allow (ksi) 18.55 13.54 7.274 4.091

Pallow � A �allow 247 k 180 k 96.7 k 54.4 k

Probs. 11.9-1 through 11.9-6

Problem 11.9-2 Determine the allowable axial load Pallow for a
W 12 � 87 steel wide-flange column with pinned ends (see figure) 
for each of the following lengths: L � 10 ft, 20 ft, 30 ft, and 40 ft.
(Assume E � 29,000 ksi and �Y � 50 ksi.) 

Solution 11.9-2 Steel wide-flange column

Pinned ends (K � 1).
Buckling about axis 2-2 (see Table E-1).
Use AISC formulas.

W 12 � 87 A � 25.6 in.2 r2 � 3.07 in.

E � 29,000 ksi �Y � 50 ksi

Eq. (11-76): 

Lc � 1.070 r � 328.5 in. � 27.4 ft

¢L
r
≤

c

�B2�2E
sY

� 107.0

¢L
r
≤

max
� 200

L 10 ft 20 ft 30 ft 40 ft

L�r 39.09 78.18 117.3 156.4

n1 (Eq. 11-79) 1.798 1.892 – –

n2 (Eq. 11-80) – – 1.917 1.917

�allow ��Y (Eq. 11-81) 0.5192 0.3875 – –

�allow��Y (Eq. 11-82) – – 0.2172 0.1222

�allow (ksi) 25.96 19.37 10.86 6.11

Pallow � A �allow 665 k 496 k 278 k 156 k



Problem 11.9-3 Determine the allowable axial load Pallow for a
W 10 � 60 steel wide-flange column with pinned ends (see figure) 
for each of the following lengths: L � 10 ft, 20 ft, 30 ft, and 40 ft.
(Assume E � 29,000 ksi and �Y � 36 ksi.) 

Solution 11.9-3 Steel wide-flange column
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Pinned ends (K � 1).
Buckling about axis 2-2 (see Table E-1).
Use AISC formulas.
W 10 � 60 A � 17.6 in.2 r2 � 2.57 in.

E � 29,000 ksi �Y � 36 ksi

Eq. (11-76): 

Lc � 126.1 r � 324.1 in. � 27.0 ft

¢L
r
≤

c

�B2�2E
sY

� 126.1

¢L
r
≤

max
� 200

L 10 ft 20 ft 30 ft 40 ft
L�r 46.69 93.39 140.1 186.8

n1 (Eq. 11-79) 1.799 1.894 – –

n2 (Eq. 11-80) – – 1.917 1.917

�allow ��Y (Eq. 11-81) 0.5177 0.3833 – –

�allow��Y (Eq. 11-82) – – 0.2114 0.1189

�allow (ksi) 18.64 13.80 7.610 4.281

Pallow � A �allow 328 k 243 k 134 k 75.3 k

Problem 11.9-4 Select a steel wide-flange column of nominal depth 
10 in. (W 10 shape) to support an axial load P � 180 k (see figure). The 
column has pinned ends and length L � 14 ft. Assume E � 29,000 ksi
and �Y � 36 ksi. (Note: The selection of columns is limited to those 
listed in Table E-1, Appendix E.) 

Solution 11.9-4 Select a column of W10 shape

P � 180 k L � 14 ft � 168 in. K � 1
�Y � 36 ksi

E � 29,000 ksi

Eq. (11-76): 

(1) TRIAL VALUE OF �allow

Upper limit: use Eq. (11-81) with L �r � 0

Try �allow � 16 ksi

(2) TRIAL VALUE OF AREA

(3) TRIAL COLUMN W 10 � 45

A �
P
sallow

�
180 k

16 ksi
� 11.25 in.2

max. sallow �
sY

n1
�
sY

5�3
� 21.6 ksi

¢L
r
≤

c

�B2�2E
sY

� 126.1

A � 13.3 in.2 r � 2.01 in.
(4) ALLOWABLE STRESS FOR TRIAL COLUMN

Eqs. (11-79) and (11-81): n1 � 1.879

(5) ALLOWABLE LOAD FOR TRIAL COLUMN

Pallow � �allow A � 199 k � 180 k (ok)

(W 10 � 45)

(6) NEXT SMALLER SIZE COLUMN

W10 � 30 A � 8.84 in.2 r � 1.37 in.

n � 1.916 �allow � 9.903 ksi

Pallow � 88 k � P � 180 k (Not satisfactory)

L
r

� 122.6� 6 ¢L
r
≤

c

sallow

sY
� 0.4153�sallow � 14.95 ksi

L
r

�
168 in.

2.01 in.
� 83.58�L

r
6  ¢L

r
≤

c



Problem 11.9-5 Select a steel wide-flange column of nominal depth 
12 in. (W 12 shape) to support an axial load P � 175 k (see figure). 
The column has pinned ends and length L � 35 ft. Assume E � 29,000
ksi and �Y � 36 ksi. (Note: The selection of columns is limited to those 
listed in Table E-1, Appendix E.) 

Solution 11.9-5 Select a column of W12 shape

SECTION 11.9 Design Formulas for Columns 709

P � 175 k L � 35 ft � 420 in. K � 1
�Y � 36 ksi E � 29,000 ksi

Eq. (11-76): 

(1) TRIAL VALUE OF �allow

Upper limit: use Eq. (11-81) with L�r � 0

Try �allow � 8 ksi (Because column is very long)

(2) TRIAL VALUE OF AREA

(3) TRIAL COLUMN W 12 � 87

A � 25.6 in.2 r � 3.07 in.

A �
P
sallow

�
175 k

8 ksi
� 22 in.2

max. sallow �
sY

n1
�
sY

5�3
� 21.6 ksi

¢L
r
≤

c

�B2�2E
sY

� 126.1

(4) ALLOWABLE STRESS FOR TRIAL COLUMN

Eqs. (11-80) and (11-82): n2 � 1.917

(5) ALLOWABLE LOAD FOR TRIAL COLUMN

Pallow � �allow A �204 k � 175 k (ok)

(6) NEXT SMALLER SIZE COLUMN

W 12 � 50 A � 14.7 in.2 r � 1.96 in.

Since the maximum permissible value of

L�r is 200, this section is not satisfactory.

Select W 12 � 87

L
r

� 214

sallow

sY
� 0.2216�sallow � 7.979 ksi

L
r

�
4.20 in.

3.07 in.
� 136.8   �L

r
7  ¢L

r
≤

c

Problem 11.9-6 Select a steel wide-flange column of nominal depth 
14 in. (W 14 shape) to support an axial load P � 250 k (see figure). The
column has pinned ends and length L � 20 ft. Assume E � 29,000 ksi
and �Y � 50 ksi. (Note: The selection of columns is limited to those 
listed in Table E-1, Appendix E.) 

Solution 11.9-6 Select a column of W14 shape

P � 250 k L � 20 ft � 240 in. K � 1
�Y � 50 ksi

E � 29,000 ksi

Eq. (11-76): 

(1) TRIAL VALUE OF �allow

Upper limit: use Eq. (11-81) with L �r � 0

Try �allow � 12 ksi

max. sallow �
sY

n 1
�
sY

5�3
� 30 ksi

¢L
r
≤

c

�B2�2E
sY

� 107.0

(2) TRIAL VALUE OF AREA

(3) TRIAL COLUMN W 14 � 82

A � 24.1 in.2 r � 2.48 in.

(4) ALLOWABLE STRESS FOR TRIAL COLUMN

Eqs. (11-79) and (11-81): n1 � 1.913

sallow

sY
� 0.3089�sallow � 15.44 ksi

L
r

�
240 in.

2.48 in.
� 96.77�L

r
6  ¢L

r
≤

c

A �
P
sallow

�
250 k

12 ksi
� 21 in.2



Problem 11.9-7 Determine the allowable axial load Pallow for a steel
pipe column with pinned ends having an outside diameter of 4.5 in. and
wall thickness of 0.237 in. for each of the following lengths: L � 6 ft, 
12 ft, 18 ft, and 24 ft. (Assume E � 29,000 ksi and �Y � 36 ksi.) 

Solution 11.9-7 Steel pipe column
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(5) ALLOWABLE LOAD FOR TRIAL COLUMN

Pallow � �allow A �372 k � 250 k (ok)

(W 14 � 82)

(6) NEXT SMALLER SIZE COLUMN

W 14 � 53 A � 15.6 in.2 r � 1.92 in.

n � 1.917 �allow � 9.557 ksi

Pallow � 149 k � P � 250 k (Not satisfactory)

Select W 14 � 82

L
r

� 125.0 7 ¢L
r
≤

c

Pinned ends (K � 1).
Use AISC formulas.
d2 � 4.5 in. t � 0.237 in. d1 � 4.026 in.

E � 29,000 ksi �Y � 36 ksi

Eq.(11-76):

Lc � 126.1 r � 190.4 in. � 15.9 ft

¢L
r
≤

c

�B2�2E
sY

� 126.1

r �B I

A
� 1.5095 in.     ¢L

r
≤

max
� 200

I �
�

64
(d 42 � d 41) � 7.2326 in.4

A �
�

4
(d 22 � d 21) � 3.1740 in.2

Problem 11.9-8 Determine the allowable axial load Pallow for a
steel pipe column with pinned ends having an outside diameter of
220 mm and wall thickness of 12 mm for each of the following
lengths: L � 2.5 m, 5 m, 7.5 m, and 10 m. (Assume E � 200 GPa
and �Y � 250 MPa.) 

Solution 11.9-8 Steel pipe column

Pinned ends (K � 1).
Use AISC formulas.
d2 � 220 mm t � 12 mm d1 � 196 mm

E � 200 GPa �Y � 250 MPa

r �B I

A
� 73.661 mm     ¢L

r
≤

max
� 200

I �
�

64
(d 42 � d 41) � 42.548 � 106 mm4

A �
�

4
(d2

2 � d 21) � 7841.4 mm2

Eq.(11-76):

Lc � 125.7 r � 9257 mm � 9.26 m

¢L
r
≤

c

�B2�2E
sY

� 125.7

L 2.5 m 5.0 m 7.5 m 10.0 m

L�r 33.94 67.88 101.8 135.8

n1 (Eq. 11-79) 1.765 1.850 1.904 –

n2 (Eq. 11-80) – – – 1.917

�allow ��Y (Eq. 11-81) 0.5458 0.4618 0.3528 –

�allow��Y (Eq. 11-82) – – – 0.2235

�allow (MPa) 136.4 115.5 88.20 55.89

Pallow � A �allow 1070 kN 905 kN 692 kN 438 kN

L 6 ft 12 ft 18 ft 24 ft

L�r 47.70 95.39 143.1 190.8

n1 (Eq. 11-79) 1.802 1.896 – –

n2 (Eq. 11-80) – – 1.917 1.917

�allow ��Y (Eq. 11-81) 0.5153 0.3765 – –

�allow��Y (Eq. 11-82) – – 0.2026 0.1140

�allow (ksi) 18.55 13.55 7.293 4.102

Pallow � A �allow 58.9 k 43.0 k 23.1 k 13.0 k
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Problem 11.9-9 Determine the allowable axial load Pallow for a steel
pipe column that is fixed at the base and free at the top (see figure) for
each of the following lengths: L � 6 ft, 9 ft, 12 ft, and 15 ft. The column
has outside diameter d � 6.625 in. and wall thickness t � 0.280 in.
(Assume E � 29,000 ksi and �Y � 36 ksi.) 

Solution 11.9-9 Steel pipe column

P

L

A A

Section A-A

t

d

Probs. 11.9-9 through 11.9-12

Fixed-free column (K � 2).

Use AISC formulas.
d2 � 6.625 in. t � 0.280 in. d1 � 6.065 in.

E � 29,000 ksi �Y � 36 ksi

r �B I

A
� 2.2455       ¢KL

r
≤

max
� 200

I �
�

64
(d 42 � d 41) � 28.142 in.4

A �
�

4
(d 22 � d 21) � 5.5814 in.2

Eq.(11-76):

Lc � � 141.6 in. � 11.8 ft126.1 
r

k

¢KL
r
≤

c

�B2�2E
sY

� 126.1

L 6 ft 9 ft 12 ft 15 ft

KL�r 64.13 96.19 128.3 160.3

n1 (Eq. 11-79) 1.841 1.897 – –

n2 (Eq. 11-80) – – 1.917 1.917

�allow ��Y (Eq. 11-81) 0.4730 0.3737 – –

�allow��Y (Eq. 11-82) – – 0.2519 0.1614

�allow (ksi) 17.03 13.45 9.078 5.810

Pallow � A �allow 95.0 k 75.1 k 50.7 k 32.4 k

Problem 11.9-10 Determine the allowable axial load Pallow for a steel
pipe column that is fixed at the base and free at the top (see figure) for
each of the following lengths: L � 2.6 m, 2.8 m, 3.0 m, and 3.2 m. The
column has outside diameter  d � 140 mm and wall thickness t � 7 mm.
(Assume E � 200 GPa and �Y � 250 MPa.)

Solution 11.9-10 Steel pipe column 

Fixed-free column (K � 2).
Use AISC formulas.
d2 � 140 mm t � 7.0 mm d1 � 126 mm

E � 200 GPa �Y � 250 MPa

r �B I

A
� 47.09 mm       ¢KL

r
≤

max
� 200

I �
�

64
(d 4

2 � d 4
1 ) � 6.4851 � 106 mm4

A �
�

4
(d 22 � d 2

1 ) � 2924.8 mm2

Eq.(11-76):

Lc � � 2959 mm � 2.959 m125.7 
r

K

¢KL
r
≤

c

�B2�2E
sY

� 125.7

L 2.6 m 2.8 m 3.0 m 3.2 m

KL�r 110.4 118.9 127.4 135.9

n1 (Eq. 11-79) 1.911 1.916 – –

n2 (Eq. 11-80) – – 1.917 1.917

�allow ��Y (Eq. 11-81) 0.3212 0.2882 – –

�allow��Y (Eq. 11-82) – – 0.2537 0.2230

�allow (MPa) 80.29 72.06 63.43 55.75

Pallow � A �allow 235 kN 211 kN 186 kN 163 kN



Problem 11.9-11 Determine the maximum permissible length Lmax for a steel
pipe column that is fixed at the base and free at the top and must support an
axial load P � 40 k (see figure). The column has outside diameter d � 4.0 in.,
wall thickness t � 0.226 in., E � 29,000 ksi, and �Y � 42 ksi. 

Solution 11.9-11 Steel pipe column
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Fixed-free column (K � 2). P � 40 k
Use AISC formulas.
d2 � 4.0 in. t � 0.226 in. d1 � 3.548 in.

E � 29,000 ksi �Y � 42 ksi

Eq.(11-76):

Lc � 116.7 
r

K
� 78.03 in. � 6.502 ft

¢KL
r
≤

c

�B2�2E
sY

� 116.7

r �B I

A
� 1.3367       ¢KL

r
≤

max
� 200

I �
�

64
 (d 42 � d 41) � 4.7877 in.4

A �
�

4
 (d 22 � d 2

1 ) � 2.6795 in.

Select trial values of the length L and calculate the
corresponding values of Pallow (see table). Interpolate
between the trial values to obtain the value of L that
produces Pallow � P.
Note: If L � Lc, use Eqs. (11-79) and (11-81).

If L � Lc, use Eqs. (11-80) and (11-82).

For P � 40 k, Lmax � 5.23 ft

L(ft) 5.20 5.25 5.23

KL�r 93.86 94.26 93.90

n1 (Eq. 11-79) 1.903 1.904 1.903

n2 (Eq. 11-80) – – –

�allow ��Y (Eq. 11-81) 0.3575 0.3541 0.3555

�allow��Y (Eq. 11-82) – – –

�allow (ksi) 15.02 14.87 14.93

Pallow � A �allow 40.2 k 39.8 k 40.0 k

Problem 11.9-12 Determine the maximum permissible length Lmax for 
a steel pipe column that is fixed at the base and free at the top and must
support an axial load P � 500 kN (see figure). The column has outside
diameter d � 200 mm, wall thickness t � 10 mm, E � 200 GPa, and
�Y � 250 MPa. 

Solution 11.9-12 Steel pipe column

Fixed-free column (K � 2). P � 500 kN
Use AISC formulas.
d2 � 200 mm t � 10 mm d1 � 180 mm

E � 200 GPa �Y � 250 MPa

Eq. (11-76): 

Lc � 125.7  
r

K
� 4.226 m

¢KL
r
≤

c

�B2�2E
sY

� 125.7

r �B I

A
� 67.27 mm  ¢KL

r
≤

max
� 200

I �
�

64
 (d 2

4 � d1
4) � 27.010 � 106 mm4

A �
�

4
(d 2

2 � d 1
2) � 5,969.0 mm2

Select trial values of the length L and calculate the
corresponding values of Pallow (see table). Interpolate
between the trial values to obtain the value of L that
produces Pallow � P.

Note: If L � Lc, use Eqs. (11-79) and (11-81).

If L � Lc, use Eqs. (11-80) and (11-82).

For P � 500 kN, L � 3.59 m

L(m) 3.55 3.60 3.59

KL�r 105.5 107.0 106.7

n1 (Eq. 11-79) 1.908 1.909 1.909

n2 (Eq. 11-80) – – –

�allow ��Y (Eq. 11-81) 0.3393 0.3338 0.3349

�allow��Y (Eq. 11-82) – – –

�allow (MPa) 84.83 83.46 83.74

Pallow � A �allow 506 kN 498 kN 500 kN



Problem 11.9-13 A steel pipe column with pinned ends supports an
axial load P � 21 k. The pipe has outside and inside diameters of 3.5 in.
and 2.9 in., respectively. What is the maximum permissible length Lmax
of the column if E � 29,000 ksi and �Y � 36 ksi?

Solution 11.9-13 Steel pipe column
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Pinned ends (K � 1). P � 21 k
Use AISC formulas.
d2 � 3.5 in. t � 0.3 in. d1 � 2.9 in.

E � 29,000 ksi �Y � 36 ksi

Eq. (11-76): 

Lc � 126.1 r � 143.3 in. � 11.9 ft

¢L
r
≤

c

�B2�2E
sY

� 126.1

r �B I

A
� 1.1363 in.        ¢L

r
≤

max
� 200

I �
�

64
 (d 42 � d 41) � 3.8943 in.4

A �
�

4
(d 2

2 � d 1
2) � 3.0159 in.2

Select trial values of the length L and calculate the
corresponding values of Pallow (see table). Interpolate
between the trial values to obtain the value of L that
produces Pallow � P.

Note: If L � Lc, use Eqs. (11-79) and (11-81).

If L � Lc, use Eqs. (11-80) and (11-82).

For P � 21 k, L � 13.9 ft

L(ft) 13.8 13.9 14.0

L�r 145.7 146.8 147.8

n1 (Eq. 11-79) – – –

n2 (Eq. 11-80) 1.917 1.917 1.917

�allow ��Y (Eq. 11-81) – – –

�allow��Y (Eq. 11-82) 0.1953 0.1925 0.1898

�allow (ksi) 7.031 6.931 6.832

Pallow � A �allow 21.2 k 20.9 k 20.6 k

Problem 11.9-14 The steel columns used in a college recreation 
center are 55 ft long and are formed by welding three wide-flange 
sections (see figure). The columns are pin-supported at the ends and
may buckle in any direction. 

Calculate the allowable load Pallow for one column, assuming 
E � 29,000 ksi and �Y � 36 ksi. 

Solution 11.9-14 Pinned-end column (K � 1)   

W 12 � 87

W 12 � 87

W 24 � 162

L � 55 ft � 660 in.
E � 29,000 ksi

�Y � 36 ksi

W 12 � 87
A � 25.6 in.2 d � 12.53 in.
I1 � 740 in.4 I2 � 241 in.4

W 24 � 162
A � 47.7 in.2 tw � 0.705 in.
I1 � 5170 in.4 I2 � 443 in.4

FOR THE ENTIRE CROSS SECTION

A � 2 (25.6) � 47.7 � 98.9 in.2

IY � 2 (241) � 5170 � 5652 in.4

h � d�2 � tw �2 � 6.6175 in.

Iz � 443 � 2 [740 � (25.6)(6.6175)2] � 4165 in.4

Eq. (11-76): ¢L
r
≤

c

�B2�2E
sY

� 126.1

min. r �B Iz

A
�B4165

98.9
� 6.489 in.

W 12 � 87

W 24 � 162

y

z
h



Problem 11.9-15 A W 8 � 28 steel wide-flange column with pinned ends
carries an axial load P. What is the maximum permissible length Lmax of
the column if (a) P � 50 k, and (b) P � 100 k? (Assume E � 29,000 ksi
and �Y � 36 ksi.) 

Solution 11.9-15 Steel wide-flange column
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� Use Eqs. (11-79) and (11-81).

From Eq. (11-79): n1 � 1.904

From Eq. (11-81): �allow��Y � 0.3544

L
r

6 ¢L
r
≤

c

L
r

�
660 in.

6.489 in.
� 101.7 �allow � 0.3544 �Y � 12.76 ksi

Pallow � �allow A � (12.76 ksi) (98.9 in.2)

� 1260 k

Pinned ends (K � 1).
Buckling about axis 2-2 (see Table E-1).
Use AISC formulas.
W 8 � 28 A � 8.25 in.2 r2 � 1.62 in.

E � 29,000 ksi �Y � 36 ksi

Eq. (11-76):

Lc � 126.1 r � 204.3 in. � 17.0 ft

For each load P, select trial values of the length L
and calculate the corresponding values of Pallow (see
table). Interpolate between the trial values to obtain
the value of L that produces Pallow � P.

Note: If L � Lc, use Eqs. (11-79) and (11-81).

If L � Lc, use Eqs. (11-80) and (11-82).

(a) P � 50 k

For P � 50 k, Lmax � 21.2 ft

¢L
r
≤

c

�B2�2E
sY

� 126.1

¢L
r
≤

max
� 200

(b) P � 100 k

For P � 100 k, Lmax � 14.4 ft

L (ft) 21.0 21.5 21.2

L�r 155.6 159.3 157.0

n1 (Eq. 11-79) – – –

n2 (Eq. 11-80) 1.917 1.917 1.917

�allow ��Y (Eq. 11-81) – – –

�allow��Y (Eq. 11-82) 0.1714 0.1635 0.1682

�allow (ksi) 6.171 5.888 6.056

Pallow � A �allow 50.9 k 48.6 k 50.0 k

L (ft) 14.3 14.4 14.5

L�r 105.9 106.7 107.4
n1 (Eq. 11-79) 1.908 1.908 1.909
n2 (Eq. 11-80) – – –
�allow ��Y (Eq. 11-81) 0.3393 0.3366 0.3338
�allow��Y (Eq. 11-82) – – –
�allow (ksi) 12.21 12.12 12.02
Pallow � A �allow 100.8 k 100.0 k 99.2 k k

Probs. 11.9-15 and 11.9-16



Problem 11.9-16 A W 10 � 45 steel wide-flange column with pinned
ends carries an axial load P. What is the maximum permissible length 
Lmax of the column if (a) P � 125 k, and (b) P � 200 k? (Assume 
E � 29,000 ksi and �Y � 42 ksi.) 

Solution 11.9-16 Steel wide-flange column
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Pinned ends (K � 1).
Buckling about axis 2-2 (see Table E-1).
Use AISC formulas.
W 10 � 45 A � 13.3 in.2 r2 � 2.01 in.

E � 29,000 ksi �Y � 42 ksi

Eq. (11-76):

Lc � 116.7 r � 235 in. � 19.6 ft

For each load P, select trial values of the length L
and calculate the corresponding values of Pallow (see
table). Interpolate between the trial values to obtain
the value of L that produces Pallow � P.

Note: If L � Lc, use Eqs. (11-79) and (11-81).

If L � Lc, use Eqs. (11-80) and (11-82).

¢L
r
≤

c

�B2�2E
sY

� 116.7

¢L
r
≤

max
� 200

(a) P � 125 k

For P � 125 k, Lmax � 21.1 ft

(b) P � 200 k

For P � 200 k, Lmax � 15.6 ft

L (ft) 21.0 21.1 21.2

L�r 125.4 126.0 126.6

n1 (Eq. 11-79) – – –

n2 (Eq. 11-80) 1.917 1.917 1.917

�allow ��Y (Eq. 11-81) – – –

�allow��Y (Eq. 11-82) 0.2202 0.2241 0.2220

�allow (ksi) 9.500 9.411 9.322

Pallow � A �allow 126.4 k 125.2 k 124.0 k

L(ft) 15.5 15.6 15.7

L�r 92.54 93.13 93.73

n1 (Eq. 11-79) 1.902 1.902 1.903

n2 (Eq. 11-80) – – –

�allow ��Y (Eq. 11-81) 0.3607 0.3584 0.3561

�allow��Y (Eq. 11-82) – – –

�allow (ksi) 15.15 15.05 14.96

Pallow � A �allow 201.5 k 200.2 k 198.9 k

Problem 11.9-17 Find the required outside diameter d for a steel pipe
column (see figure) of length L � 20 ft that is pinned at both ends and
must support an axial load P � 25 k. Assume that the wall thickness 
t is equal to d /20. (Use E � 29,000 ksi and �Y � 36 ksi.) 

Solution 11.9-17 Pipe column

t

dProbs. 11.9-17 through 11.9-20

Pinned ends (K � 1).

L � 20 ft � 240 in. P � 25 k

d � outside diameter t � d/20

E � 29,000 ksi �Y � 36 ksi

A �
�

4
[d2 � (d � 2t)2 ] � 0.14923 d2

r �B I

A
� 0.33634 d

I �
�

64
[d4 � (d � 2t)4 ] � 0.016881 d4



Problem 11.9-18 Find the required outside diameter d for a steel pipe
column (see figure) of length L � 3.5 m that is pinned at both ends and
must support an axial load P � 130 kN. Assume that the wall thickness 
t is equal to d /20. (Use E � 200 GPa and �Y � 275 MPa). 

Solution 11.9-18 Pipe column
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Select various values of diameter d until we obtain
Pallow � P.

If L � Lc, Use Eqs. (11-79) and (11-81).

If L 	 Lc, Use Eqs. (11-80) and (11-82).

For P � 25 k, d � 4.89 in.

Lc � (126.1)r¢L
r
≤

c

�B2�2E
sY

� 126.1
d (in.) 4.80 4.90 5.00

A (in.2) 3.438 3.583 3.731

I (in.4) 8.961 9.732 10.551

r (in.) 1.614 1.648 1.682

Lc (in.) 204 208 212

L�r 148.7 145.6 142.7

n2 (Eq. 11-80) 23�12 23�12 23�12

�allow ��Y (Eq. 11-82) 0.1876 0.1957 0.2037

�allow (ksi) 6.754 7.044 7.333

Pallow � A �allow 23.2 k 25.2 k 27.4 k

Pinned ends (K � 1).
L � 3.5 m P � 130 kN
d � outside diameter t � d�20
E � 200 GPa �Y � 275 MPa

Lc � (119.8)r¢L
r
≤

c

�B2�2E
sY

� 119.8

r �B I

A
� 0.33634 d

I �
�

64
[d4 � (d � 2t)4 ] � 0.016881 d4

A �
�

4
[d2 � (d � 2t)2 ] � 0.14923 d2

Select various values of diameter d until we obtain
Pallow � P.

If L � Lc, Use Eqs. (11-79) and (11-81).
If L 	 Lc, Use Eqs. (11-80) and (11-82).

For P � 130 kN, d � 99 mm

d (mm) 98 99 100

A (mm2) 1433 1463 1492

I (mm4) 1557 � 103 1622 � 103 1688 � 103

r (mm) 32.96 33.30 33.64

Lc (mm) 3950 3989 4030

L�r 106.2 105.1 104.0

n1 (Eq. 11-79) 1.912 1.911 1.910

�allow ��Y (Eq. 11-81) 0.3175 0.3219 0.3263

�allow (MPa) 87.32 88.53 89.73

Pallow � A �allow 125.1 kN 129.5 kN 133.9 kN

Problem 11.9-19 Find the required outside diameter d for a steel pipe
column (see figure) of length L � 11.5 ft that is pinned at both ends and
must support an axial load P � 80 k. Assume that the wall thickness t is
0.30 in. (Use E � 29,000 ksi and �Y � 42 ksi.) 

Solution 11.9-19 Pipe column

Pinned ends (K � 1).
L � 11.5 ft � 138 in. P � 80 k
d � outside diameter t � 0.30 in.
E � 29,000 ksi �Y � 42 ksi

A �
�

4
[d2 � (d � 2t)2 ] Select various values of diameter d until we obtain

Pallow � P.

Lc � (116.7)r¢L
r
≤

c

�B2�2E
sY

� 116.7

r �B I

A
I �

�

64
[d4 � (d � 2t)4 ]



Problem 11.9-20 Find the required outside diameter d for a steel pipe
column (see figure) of length L � 3.0 m that is pinned at both ends and
must support an axial load P � 800 kN. Assume that the wall thickness 
t is 9 mm. (Use E � 200 GPa and �Y � 300 MPa.) 

Solution 11.9-20 Pipe column
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If L � Lc, Use Eqs. (11-79) and (11-81).
If L 	 Lc, Use Eqs. (11-80) and (11-82).

For P � 80 k, d � 5.23 in.

d (in.) 5.20 5.25 5.30

A (in.2) 4.618 4.665 4.712

I (in.4) 13.91 14.34 14.78

r (in.) 1.736 1.753 1.771

Lc (in.) 203 205 207

L�r 79.49 78.72 77.92

n1 (Eq. 11-79) 1.883 1.881 1.880

�allow ��Y (Eq. 11-81) 0.4079 0.4107 0.4133

�allow (ksi) 17.13 17.25 17.36

Pallow � A �allow 79.1 k 80.5 k 81.8 k

Pinned ends (K � 1).
L � 3.0 m P � 800 kN
d � outside diameter t � 9.0 mm
E � 200 GPa �Y � 300 MPa

Select various values of diameter d until we obtain
Pallow � P.

If L � Lc, Use Eqs. (11-79) and (11-81).
If L 	 Lc, Use Eqs. (11-80) and (11-82).

Lc � (114.7)r¢L
r
≤

c

�B2�2E
sY

� 114.7

r �B I

A
I �

�

64
[d4 � (d � 2t)4 ]

A �
�

4
[d2 � (d � 2t)2 ]

For P � 800 kn, d � 194 mm

d (mm) 193 194 195

A (mm2) 5202 5231 5259

I (mm4) 20.08 � 106 22.43 � 106 22.80 � 106

r (mm) 65.13 65.48 65.84

Lc (mm) 7470 7510 7550

L�r 46.06 45.82 45.57

n1 (Eq. 11-79) 1.809 1.809 1.808

�allow ��Y (Eq. 11-81) 0.5082 0.5087 0.5094

�allow (MPa) 152.5 152.6 152.8

Pallow � A �allow 793.1 kN 798.3 kN 803.8 kN

Aluminum Columns

Problem 11.9-21 An aluminum pipe column (alloy 2014-T6) with
pinned ends has outside diameter d2 � 5.60 in. and inside diameter 
d1 � 4.80 in. (see figure). 

Determine the allowable axial load Pallow for each of the following
lengths: L � 6 ft, 8 ft, 10 ft, and 12 ft. 

Solution 11.9-21 Aluminum pipe column

d1 d2

Alloy 2014-T6

Pinned ends (K � 1).

d2 � 5.60 in.

d1 � 4.80 in.

I �
�

64
 (d 2

2 � d 1
2) � 22.22 in.4

A �
�

4
 (d 2

2 � d 1
2) � 6.535 in.2

Probs. 11.9-21 through 11.9-24



Problem 11.9-22 An aluminum pipe column (alloy 2014-T6) with
pinned ends has outside diameter d2 � 120 mm and inside diameter 
d1 � 110 mm (see figure). 

Determine the allowable axial load Pallow for each of the following
lengths: L � 1.0 m, 2.0 m, 3.0 m, and 4.0 m.

(Hint: Convert the given data to USCS units, determine the required
quantities, and then convert back to SI units.)

Solution 11.9-22 Aluminum pipe column
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Use Eqs. (11-84 a and b):
�allow � 30.7 � 0.23 (L�r) ksi
�allow � 54,000/(L�r)2 ksi L�r 	 55

L�r � 55

r �B I

A
� 1.844 in.

L (ft) 6 ft 8 ft 10 ft 12 ft

L�r 39.05 52.06 65.08 78.09

�allow (ksi) 21.72 18.73 12.75 8.86

Pallow � �allow A 142 k 122 k 83 k 58 k

Alloy 2014-T6
Pinned ends (K � 1).
d2 � 120 mm � 4.7244 in.

d1 � 110 mm � 4.3307 in.

r �B I

A
� 40.697 mm � 1.6022 in.

I �
�

64
(d 22 � d 21) � 7.188 in.4

A �
�

4
(d 22 � d 21) � 2.800 in.2

Use Eqs. (11-84 a and b):

�allow � 30.7 � 0.23 (L�r) ksi
�allow � 54,000�(L�r)2 ksi L�r 	 55

L�r � 55

L (m) 1.0 m 2.0 m 3.0 m 4.0 m

L (in.) 39.37 78.74 118.1 157.5

L�r 24.58 49.15 73.73 98.30

�allow (ksi) 25.05 19.40 9.934 5.588

Pallow � �allow A 70.14 k 54.31 k 27.81 k 15.65 k

Pallow (kN) 312 kN 242 kN 124 kN 70 kN

Problem 11.9-23 An aluminum pipe column (alloy 6061-T6) that is
fixed at the base and free at the top has outside diameter d2 � 3.25 in.
and inside diameter d1 � 3.00 in. (see figure). 

Determine the allowable axial load Pallow for each of the following
lengths: L � 2 ft, 3 ft, 4 ft, and 5 ft. 

Solution 11.9-23 Aluminum pipe column

Alloy 6061-T6
Fixed-free ends (K � 2).
d2 � 3.25 in.
d1 � 3.00 in.

r �B I

A
� 1.106 in.

I �
�

64
(d 22 � d 21) � 1.500 in.4

A �
�

4
(d 22 � d 21) � 1.227 in.2

Use Eqs. (11-85 a and b):

�allow � 20.2 � 0.126 (KL�r) ksi

�allow � 51,000�(KL�r)2 ksi KL�r 	 66

KL�r � 66

L (ft) 2 ft 3 ft 4 ft 5 ft

KL�r 43.40 65.10 86.80 108.5

�allow (ksi) 14.73 12.00 6.77 4.33

Pallow � �allow A 18.1 k 14.7 k 8.3 k 5.3 k



Problem 11.9-24 An aluminum pipe column (alloy 6061-T6) that is
fixed at the base and free at the top has outside diameter d2 � 80 mm 
and inside diameter d1 � 72 mm (see figure). 

Determine the allowable axial load Pallow for each of the following
lengths: L � 0.6 m, 0.8 m, 1.0 m, and 1.2 m.

(Hint: Convert the given data to USCS units, determine the required
quantities, and then convert back to SI units.)

Solution 11.9-24 Aluminum pipe column
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Alloy 6061-T6
Fixed-free ends (K � 2).

d2 � 80 mm � 3.1496 in.

d1 � 72 mm � 2.8346 in.

r �B I

A
� 26.907 mm � 1.059 in.

I �
�

64
(d 22 � d 21) � 1.661 in.4

A �
�

4
(d 22 � d 21) � 1.480 in.2

Use Eqs. (11-85 a and b):

�allow � 20.2 � 0.126 (KL�r) ksi

�allow � 51,000�(KL�r)2 ksi KL�r 	 66

KL�r � 66

L (m) 0.6 m 0.8 m 1.0 m 1.2 m

KL (in.) 47.24 62.99 78.74 94.49

KL�r 44.61 59.48 74.35 89.23

�allow (ksi) 14.58 12.71 9.226 6.405

Pallow � �allow A 21.58 k 18.81 k 13.65 k 9.48 k

Pallow (kN) 96 kN 84 kN 61 kN 42 kN

Problem 11.9-25 A solid round bar of aluminum having diameter 
d (see figure) is compressed by an axial force P � 60 k. The bar has
pinned supports and is made of alloy 2014-T6.

(a) If the diameter d � 2.0 in., what is the maximum allowable
length Lmax of the bar? 

(b) If the length L � 30 in., what is the minimum required 
diameter dmin? 

Solution 11.9-25 Aluminum bar

d

Alloy 2014-T6
Pinned supports (K = 1). P = 60 k

(a) FIND Lmax IF d = 2.0 IN.

Assume L�r is less than 55:

Eq. (11-84a): �allow � 30.7 � 0.23 (L�r) ksi 

or 19.10 � 30.7 � 0.23 (L�r)

Solve for L�r: 

Lmax � (50.43) r � 25.2 in.

L
r

� 50.43�L
r

6 55�∴  ok

sallow �
P

A
�

60 k

3.142 in.2
� 19.10 ksi

r �B I

A
�

d

4
� 0.5 in.

A �
�d2

4
� 3.142 in.2�I �

�d4

64

(b) FIND dmin IF L � 30 IN.

Assume L�r is greater than 55:

Eq. (11-84b): 

d4 � 20.37 in.4 dmin � 2.12 in.

L�r � 120�d � 120�2.12 � 56.6 � 55 � ok

or�76.39

d2 �
54,000

(120�d)2

sallow �
54,000 ksi

(L�r)2

sallow �
P

A
�

60 k

�d2�4
�

76.39

d2  (ksi)

A �
�d2

4
�r �

d

4
�L

r
�

30 in.

d�4
�

120 in.

d

Probs. 11.9-25 through 11.9-28



Problem 11.9-26 A solid round bar of aluminum having diameter 
d (see figure) is compressed by an axial force P � 175 kN. The bar 
has pinned supports and is made of alloy 2014-T6. 

(a) If the diameter d � 40 mm, what is the maximum allowable
length Lmax of the bar? 

(b) If the length L � 0.6 m, what is the minimum required 
diameter dmin? 

(Hint: Convert the given data to USCS units, determine the 
required quantities, and then convert back to SI units.)

Solution 11.9-26 Aluminum bar
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Alloy 2014-T6
Pinned supports (K � 1). P � 175 kN � 39.34 k

(a) FIND Lmax IF d � 40 MM � 1.575 IN.

Assume L�r is less than 55:

Eq. (11-84a): �allow � 30.7 � 0.23 (L�r) ksi

or 20.20 � 30.7 � 0.23 (L �r)

Solve for L�r:
L
r

� 45.65�L
r

6 55�∴  ok

sallow �
P

A
�

39.34 k

1.948 in.2
� 20.20 ksi

r �B I

A
�

d

4
� 0.3938 in.

A �
�d2

4
� 1.948 in.2�I �

�d4

64

Lmax � (45.65) r � 17.98 in. � 457 mm

(b) FIND dmin IF L � 0.6 m � 23.62 in.

Assume L�r is greater than 55:

Eq. (11-84b): 

d4 � 8.280 in.4 dmin � 1.696 in. � 43.1 mm

L�r � 94.48�d � 94.48�1.696 � 55.7 � 55 � ok

or�50.09

d2 �
54,000

(94.48�d)2

sallow �
54,000 ksi

(L�r)2

sallow �
P

A
�

39.34 k

�d2�4
�

50.09

d2 �(ksi)

A �
�d2

4
�r �

d

4
�L

r
�

23.62 in.

d�4
�

94.48 in.

d

Problem 11.9-27 A solid round bar of aluminum having diameter 
d (see figure) is compressed by an axial force P � 10 k. The bar has
pinned supports and is made of alloy 6061-T6. 

(a) If the diameter d � 1.0 in., what is the maximum allowable
length Lmax of the bar? 

(b) If the length L � 20 in., what is the minimum required 
diameter dmin? 

Solution 11.9-27 Aluminum bar

Alloy 6061-T6
Pinned Supports (K � 1). P � 10 k

(a) FIND Lmax IF d � 1.0 IN.

sallow �
P

A
�

10  k

0.7854  in.2
� 12.73  ksi

r �B I

A
�

d

4
� 0.2500 in.

I �
�d4

64
A �

�d2

4
� 0.7854 in.2

Assume L�r is less than 66:

Eq. (11-85a): �allow � 20.2 � 0.126 (L�r) ksi

or 12.73 � 20.2 � 0.126 (L�r)

Solve For L�r: � ok

Lmax � (59.29)r � 14.8 in.

L
r

6 66
L
r

� 59.29



Problem 11.9-28 A solid round bar of aluminum having diameter 
d (see figure) is compressed by an axial force P � 60 kN. The bar 
has pinned supports and is made of alloy 6061-T6. 

(a) If the diameter d � 30 mm, what is the maximum allowable
length Lmax of the bar? 

(b) If the length L � 0.6 m, what is the minimum required 
diameter dmin? 

(Hint: Convert the given data to USCS units, determine the required
quantities, and then convert back to SI units.)

Solution 11.9-28 Aluminum bar

SECTION 11.9 Wood Columns 721

(b) FIND dmin IF L � 20 in.

sallow �
P

A
�

10 k

�d2�4
�

12.73

d2  (ksi)

L
r

�
20 in.

d�4
�

80 in.

d
r �

d

4
A �

�d2

4

Assume L�r is Greater than 66:

Eq. (11-85b):

or

d4 � 1.597 in.4 dmin � 1.12 in.

L�r � 80�d � 80�1.12 � 71 � 66 � ok

12.73

d2 �
51,000

(80�d)2

sallow �
51,000 ksi

(L�r)2

Alloy 6061-T6
Pinned Supports (K � 1). P � 60 kN � 13.49 k

(a) FIND Lmax IF d � 30 MM � 1.181 IN.

Assume L�r is less than 66:
Eq. (11-85a): �allow � 20.2 � 0.126 (L�r) ksi

or 12.32 � 20.2 � 0.126 (L�r)

Solve For L�r: � ok

Lmax � (62.54)r � 18.47 in. � 469 mm

L
r

6 66
L
r

� 62.54

sallow �
P

A
�

13.49 k

1.095 in.2
� 12.32 ksi

r �B I

A
�

d

4
� 0.2953 in.

I �
�d4

64
A �

�d2

4
� 1.095 in.2

(b) FIND dmin IF L � 0.6 M � 23.62 IN.

Assume L�r is Greater than 66:

Eq. (11-85b): 

or

d4 � 3.007 in.4 dmin � 1.317 in. � 33.4 mm

L�r � 94.48�d � 94.48�1.317 � 72 � 66 � ok

17.18

d2 �
51,000

(94.48�d)2

sallow �
51,000 ksi

(L�r)2

sallow �
P

A
�

13.48 k

�d2�4
�

17.18

d2  (ksi)

L
r

�
23.62 in.

d�4
�

94.48 in.

d
r �

d

4
A �

�d2

4

Wood Columns

When solving the problems for wood columns, assume that the columns
are constructed of sawn lumber (c � 0.8 and KcE � 0.3) and have
pinned-end conditions. Also, buckling may occur about either principal
axis of the cross section.

Problem 11.9-29 A wood post of rectangular cross section (see figure)
is constructed of 4 in. � 6 in. structural grade, Douglas fir lumber 
(Fc � 2,000 psi, E � 1,800,00 psi). The net cross-sectional dimensions 
of the post are b � 3.5 in. and h � 5.5 in. (see Appendix F). 

Determine the allowable axial load Pallow for each of the following
lengths: L � 5.0 ft, 7.5 ft, and 10.0 ft. 

h

b

Probs. 11.9-29 through 11.9-32



Solution 11.9-29 Wood post (rectangular cross section)

722 CHAPTER 11 Columns

Fc � 2,000 psi E � 1,800,000 psi c � 0.8

KcE � 0.3 b � 3.5 in. h � 5.5 in. d � b

Find Pallow

Eq. (11-94):

Eq. (11-95):

Eq. (11-92): Pallow � FcCPA � FcCPbh

CP �
1 � f

2c
�B B 1 � f

2c
R 2

�
f

c

f�
KcE E

Fc(Le  �d)2

Le 5 ft 7.5 ft 10.0 ft

Le/d 17.14 25.71 34.29

� 0.9188 0.4083 0.2297

CP 0.6610 0.3661 0.2176

Pallow 25.4 k 14.1 k 8.4 k

Problem 11.9-30 A wood post of rectangular cross section 
(see figure) is constructed of structural grade, southern pine lumber 
(Fc � 14 MPa, E � 12 GPa). The cross-sectional dimensions of 
the post (actual dimensions) are b � 100 mm and h � 150 mm. 

Determine the allowable axial load Pallow for each of the 
following lengths: L � 1.5 m, 2.0 m, and 2.5 m. 

Solution 11.9-30 Wood post (rectangular cross section)

Fc � 14 MPa E � 12 GPa c � 0.8 KcE � 0.3
b � 100 mm h � 150 mm d � b

Find Pallow

Eq. (11-94):

Eq. (11-95):

Eq. (11-92): Pallow � FcCP A � FcCPbh

CP �
1 � f

2c
�B B 1 � f

2c
R 2

�
f

c

f�
KcE E

Fc(Le �d)2

Le 1.5 m 2.0 m 2.5 m

Le/d 15 20 25

� 1.1429 0.6429 0.4114

CP 0.7350 0.5261 0.3684

Pallow 154 kN 110 kN 77 kN

Problem 11.9-31 A wood column of rectangular cross section 
(see figure) is constructed of 4 in. � 8 in. construction grade, 
western hemlock lumber (Fc � 1,000 psi, E � 1,300,000 psi). 
The net cross-sectional dimensions of the column are b � 3.5 in. 
and h � 7.25 in. (see Appendix F). 

Determine the allowable axial load Pallow for each of the 
following lengths: L � 6 ft, 8 ft, and 10 ft. 

Solution 11.9-31 Wood column (rectangular cross section)

Fc � 1,000 psi E � 1,300,000 psi c � 0.8

KcE � 0.3 b � 3.5 in. h � 7.25 in. d � b

Find Pallow

Eq. (11-94):

Eq. (11-95):

Eq. (11-92): Pallow � FcCFA � FcCPbh

CP �
1 � f

2c
�B B 1 � f

2c
R 2

�
f

c

f�
KcE E

Fc(Le  �d)2

Le 6 ft 8 ft 10 ft

Le/d 20.57 27.43 34.29

� 0.9216 0.5184 0.3318

CP 0.6621 0.4464 0.3050

Pallow 16.8 k 11.3 k 7.7 k



Problem 11.9-32 A wood column of rectangular cross section 
(see figure) is constructed of structural grade, Douglas fir lumber 
(Fc � 12 MPa, E � 10 GPa). The cross-sectional dimensions of the
column (actual dimensions) are b � 140 mm and h � 210 mm. 

Determine the allowable axial load Pallow for each of the 
following lengths: L � 2.5 m, 3.5 m, and 4.5 m. 

Solution 11.9-32 Wood column (rectangular cross section)
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Fc � 12 MPa E � 10 GPa c � 0.8 KcE � 0.3
b � 140 mm h � 210 mm d � b

Find Pallow

Eq. (11-94):

Eq. (11-95):

Eq. (11-92): Pallow � FcCPA � FcCPbh

CP �
1 � f

2c
�B B 1 � f

2c
R 2

�
f

c

f�
KcE E

Fc(Le �d)2

Le 2.5 m 3.5 m 4.5 m

Le/d 17.86 25.00 32.14

� 0.7840 0.4000 0.2420

CP 0.6019 0.3596 0.2284

Pallow 212 kN 127 kN 81 kN

Problem 11.9-33 A square wood column with side dimensions 
b (see figure) is constructed of a structural grade of Douglas fir for
which Fc � 1,700 psi and E � 1,400,000 psi. An axial force 
P � 40 k acts on the column. 

(a) If the dimension b � 5.5 in., what is the maximum allowable
length Lmax of the column?

(b) If the length L � 11 ft, what is the minimum required 
dimension bmin? 

Solution 11.9-33 Wood column (square cross section)

b

b

Probs. 11.9-33 through 11.9-36

Fc � 1,700 psi E � 1,400,000 psi c � 0.8

KcE � 0.3 P � 40 k

(a) MAXIMUM LENGTH Lmax FOR b � d � 5.5 IN.

From Eq. (11-92):

From Eq. (11-95):

Trial and error: � � 1.3225

From Eq. (11-94):

� Lmax � 13.67 d � (13.67)(5.5 in.)

� 75.2 in.

L

d
�BKcEE

fFc

� 13.67

CP � 0.77783 �
1 � f

1.6
�B B 1 � f

1.6
R 2

�
f

0.8

CP �
P

Fcb
2 � 0.77783

(b) MINIMUM DIMENSION bmin FOR L � 11 ft

Trial and error:

P � FcCPb2

Given load: P � 40 k

� bmin � 6.71 in.

CP �
1 � f

1.6
�B B 1 � f

1.6
R 2

�
f

0.8

f�
KcE E

Fc(L�d)2

L

d
�

L

b

Trial b � CP P
(in.) (kips)

6.50 20.308 0.59907 0.49942 35.87

6.70 19.701 0.63651 0.52230 39.86

6.71 19.672 0.63841 0.52343 40.06

L

d
�

L

b



Problem 11.9-34 A square wood column with side dimensions b
(see figure) is constructed of a structural grade of southern pine for
which Fc � 10.5 MPa and E � 12 GPa. An axial force P � 200 kN
acts on the column. 

(a) If the dimension b � 150 mm, what is the maximum 
allowable length Lmax of the column? 

(b) If the length L � 4.0 m, what is the minimum required 
dimension bmin?

Solution 11.9-34 Wood column (square cross section)

724 CHAPTER 11 Columns

Fc � 10.5 MPa E � 12 GPa c � 0.8

KcE � 0.3 P � 200 kN

(a) MAXIMUM LENGTH Lmax FOR b � d � 150 mm

From Eq. (11-92):

From Eq. (11-95):

Trial and error: � � 1.7807

From Eq. (11-94):

� Lmax � 13.876 d � (13.876)(150 mm)

� 2.08 m

L

d
�BKcE E

fFc

� 13.876

CP � 0.84656 �
1 � f

1.6
�B B 1 � f

1.6
R 2

�
f

0.8

CP �
P

Fc b2 � 0.84656

(b) MINIMUM DIMENSION bmin FOR L � 4.0 M

Trial and error:

P � FcCPb2

Given load: P � 200 kN

� bmin � 184 mm

CP �
1 � f

1.6
�B B 1 � f

1.6
R 2

�
f

0.8

f�
KcE E

Fc(L�d)2

L

d
�

L

b

Trial b � CP P
(mm) (kN)

180 22.22 0.69429 0.55547 189.0

182 21.98 0.70980 0.56394 196.1

183 21.86 0.71762 0.56814 199.8

184 21.74 0.72549 0.57231 203.5

L

d
�

L

b

Problem 11.9-35 A square wood column with side dimensions b
(see figure) is constructed of a structural grade of spruce for which 
Fc � 900 psi and E � 1,500,000 psi. An axial force P � 8.0 k acts 
on the column. 

(a) If the dimension b � 3.5 in., what is the maximum allowable
length Lmax of the column? 

(b) If the length L � 10 ft, what is the minimum required 
dimension bmin? 

Solution 11.9-35 Wood column (square cross section)

Fc � 900 psi E � 1,500,000 psi c � 0.8

KcE � 0.3 P � 8.0 k

(a) MAXIMUM LENGTH Lmax FOR b � d � 3.5 IN.

From Eq. (11-92): 

From Eq. (11-95):

CP � 0.72562 �
1 � f

1.6
�B B 1 � f

1.6
R 2

�
f

0.8

CP �
P

Fcb
2 � 0.72562

Trial and error: � � 1.1094

From Eq. (11-94): 

� Lmax � 21.23 d � (21.23)(3.5 in.) � 74.3 in.

L

d
�BKcEE

fFc

� 21.23



Problem 11.9-36 A square wood column with side dimensions b
(see figure) is constructed of a structural grade of eastern white pine 
for which Fc � 8.0 MPa and E � 8.5 GPa. An axial force P � 100 kN
acts on the column. 

(a) If the dimension b � 120 mm, what is the maximum allowable
length Lmax of the column? 

(b) If the length L � 4.0 m, what is the minimum required 
dimension bmin?

Solution 11.9-36 Wood column (square cross section)

SECTION 11.9 Wood Columns 725

(b) MINIMUM DIMENSION bmin FOR L � 10 FT

Trial and error. 

Given load: P � 8000 lb
� bmin � 4.20 in.

P � FcCPb2CP �
1 � f

1.6
�B B 1 � f

1.6
R 2

�
f

0.8

f�
KcEE

Fc(L�d)2

L

d
�

L

b
Trial b � CP P

(in.) (lb)

4.00 30.00 0.55556 0.47145 6789

4.20 28.57 0.61250 0.50775 8061

4.19 28.64 0.60959 0.50596 7994

L

d
�

L

b

Fc � 8.0 MPa E � 8.5 GPa c � 0.8

KcE � 0.3 P � 100 kN

(a) MAXIMUM LENGTH Lmax FOR b � d � 120 mm

From Eq. (11-92): 

From Eq. (11-95):

Trial and error: � � 2.0102

From Eq. (11-94): 

� Lmax � 12.592 d � (12.592)(120 mm)

L

d
�BKcEE

fFc

� 12.592

CP � 0.86806 �
1 � f

1.6
�B B 1 � f

1.6
R 2

�
f

0.8

CP �
P

Fcb
2 � 0.86806

� 1.51 m

(b) MINIMUM DIMENSION bmin FOR L � 4.0 m

Trial and error. 

Given load: P � 100 kN

� bmin � 165 mm

P � FcCPb2CP �
1 � f

1.6
�B B 1 � f

1.6
R 2

�
f

0.8

f�
KcEE

Fc(L�d)2

L

d
�

L

b

Trial b � CP P
(mm) (kN)

160 25.00 0.51000 0.44060 90.23

164 24.39 0.53582 0.45828 98.61

165 24.24 0.54237 0.46269 100.77

L

d
�

L

b





Differential Equations of the Deflection Curve

The problems for Section 12.2 are to be solved by integration. 

Problem 12.2-1 Determine the distances x� and y� to the centroid C of a right
triangle having base b and altitude h (see Case 6, Appendix D). 

Solution 12.2-1 Centroid of a right triangle

12
Review of Centroids and
Moments of Inertia

dA � x dy � b(1 � y�h) dy

Similarly, x �
b

3

y �
Qx

A
�

h

3

 �
bh2

6
Qx � �y dA � �

h

0

yb(1 � y �h)  dy

 �
bh

2
A � �dA � �

h

0

b(1 � y �h)  dy

y

y

dy

x

h

bO

C

x

y

x � b (1 � 
y 

)                  h

Problem 12.2-2 Determine the distance y� to the centroid C of a trapezoid
having bases a and b and altitude h (see Case 8, Appendix D). 

Solution 12.2-2 Centroid of a trapezoid

Width of element � b � (a � b)y �h

dA � [b � (a � b)y �h] dy

�
h(a � b)

2
A � �dA � �

h

0

[b � (a � b)y �h ]  dy

y �
Qx

A
�

h(2a � b)

3(a � b)

�
h2

6
(2a � b)

Qx � �y dA � �
h

0

y[b � (a � b)  y�h ]dy

y y

dy

xb

a

O

h C
y
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Problem 12.2-3 Determine the distance y� to the centroid C of a semicircle
of radius r (see Case 10, Appendix D). 

Solution 12.2-3 Centroid of a semicircle

Qx � �y dA � �
r

0

2y�r 2 � y2 dy �
2r 3

3

�
�r 2

2
A � �dA � �

r

0

2�r 2 � y2 dy

dA � 2�r 2 � y2 dy y �
Qx

A
�

4r

3�
y

y
dy

x
O

C
y r

2   r2 � y2

Problem 12.2-4 Determine the distances x� and y� to the centroid C of a 
parabolic spandrel of base b and height h (see Case 18, Appendix D). 

Solution 12.2-4 Centroid of a parabolic spandrel

dA � ydx �
hx 2 dx

b2 y �
Qx

A
�

3h

10

Qx � �  y�2 dA � �
b

0

1

2
¢hx 2

b2 ≤ ¢hx 2

b2 ≤ dx �
bh2

10

x �
Qy

A
�

3b

4

�
b2h

4
� �

b

0

hx 3

b2  dxQy � �x dA

A � �dA � �
b

0

hx 2

b2  dx �
bh

3y dx

xO

C

y

y � hx2

       b2

h

x

x

b

Problem 12.2-5 Determine the distances x� and y� to the centroid C of a semisegment
of nth degree having base b and height h (see Case 19, Appendix D).

Solution 12.2-5 Centroid of a semisegment of nth degree

� bh2B n2

(n � 1)(2n � 1)
R

Qx � � y

2
 dA � �

b

0

1

2
 h ¢1 �

xn

bn≤(h)¢1 �
xn

bn≤ dx

x �
Qy

A
�

b(n � 1)

2(n � 2)

�
hb2

2
 ¢ n

n � 2
≤Qy � �x dA � �

b

0

xh ¢1 �
xn

bn≤ dx

� bh ¢ n

n � 1
≤A � �dA � �

b

0

h ¢1 �
xn

bn≤ dx

dA � y dx � h ¢1 �
xn

bn≤ dx y �
Qx

A
�

hn

2n � 1

y

dx
O

y � h(1 � 
xn

                    bn )

x

b

C
h

y

x

x

n � 0



SECTION 12.3 Centroids of Composite Areas 3

Centroids of Composite Areas

The problems for Section 12.3 are to be solved by using the formulas for 
composite areas.

Problem 12.3-1 Determine the distance y� to the centroid C of a trapezoid
having bases a and b and altitude h (see Case 8, Appendix D) by dividing the
trapezoid into two triangles. 

Solution 12.3-1 Centroid of a trapezoid

y �
Qx

A
�

h(2a � b)

3(a � b)

Qx � a yi Ai �
2h

3
 ¢ah

2
≤�

h

3
 ¢bh

2
≤�

h2

6
 (2a � b)

A � a Ai �
ah

2
�

bh

2
�

h

2
(a � b)

y2 �
h

3
A2 �

bh

2
y1 �

2h

3
A1 �

ah

2

y

b

a

O

h
C

C2

C1

y

x

A1

A2

Problem 12.3-2 One quarter of a square of side a is removed (see figure).
What are the coordinates x� and y� of the centroid C of the remaining area?

Solution 12.3-2 Centroid of a composite area

y

y

xO

C

a
2
—

a
2
—

a
2
—

a
2
—

xPROBS. 12.3-2 and 12.5-2

x � y �
Qx

A
�

5a

12

Qx � a yi Ai �
3a

4
 ¢a

2

4
≤�

a

4
 ¢a

2

2
≤�

5a3

16

A � a Ai �
3a2

4

y2 �
a

4
A2 �

a2

2

y1 �
3a

4
A1 �

a2

4

y

aO x

A2

A1

a
2

a
2

a
2

a
2



4 CHAPTER 12 Review of Centroids and Moments of Inertia

Solution 12.3-3 Centroid of a channel section

a � 6 in. b � 1 in. c � 2 in.

A1 � bc � 2 in.2

A2 � ab � 6 in.2

y �
Qx

A
� 1.10 in.

Qx � a yi Ai � 2y1A1 � y2A2 � 11.0 in.3

A � a Ai � 2A1 � A2 � 10 in.2

y2 �
b

2
� 0.5 in.

y1 � b � c �2 � 2 in.

a
2
—

a
2
—

b

b

c c

b
y

x

C

y A2

A1A1

O

Problem 12.3-4 What must be the relationship between the dimensions a,
b, and c of the channel section shown in the figure in order that the centroid
C will lie on line BB?

Solution 12.3-4 Dimensions of channel section

A1 � bc

A2 � ab

Set and solve: 2c2 � aby � b

y �
Qx

A
�

4bc � 2c2 � ab

2(2c � a)

Qx � a yi Ai � 2y1A1 � y2A2 � b �2(4bc � 2c2 � ab)

A � a Ai � 2A1 � A2 � b(2c � a)

y2 � b �2

y1 � b � c �2

a
2
—

a
2
—

b

b

c c

b
y

x

C
y A2

A1A1

O

BB

Problem 12.3-5 The cross section of a beam constructed of a W 24 �
162 wide-flange section with an 8 in. � 3/4 in. cover plate welded to the
top flange is shown in the figure. 

Determine the distance y� from the base of the beam to the centroid C
of the cross-sectional area.

x

y

y

C

O

W 24 � 162

Plate 8 in. � 
3—
4 in.

Problem 12.3-3 Calculate the distance y� to the centroid C of the channel
section shown in the figure if a � 6 in., b � 1 in., and c � 2 in.

a
2
—

a
2
—

b

c

b

b BB

y

y

xO

C

PROBS. 12.3-3, 12.3-4, and 12.5-3

PROBS. 12.3-5 and 12.5-5



Solution 12.3-5 Centroid of beam cross section

SECTION 12.3 Centroids of Composite Areas 5

W 24 � 162 A1 � 47.7 in.2 d � 25.00 in.

PLATE: 8.0 � 0.75 in. A2 � (8.0)(0.75) � 6.0 in.2

y �
Qx

A
� 13.94 in.

Qx � a yi Ai � y1A1 � y2A2 � 748.5 in.3

A � a Ai � A1 � A2 � 53.70 in.2

y2 � 25.00 � 0.75 �2 � 25.375 in.

y1 � d �2 � 12.5 in.

xx

y

C

A2

A1

Problem 12.3-6 Determine the distance y� to the centroid C of the
composite area shown in the figure. 

Solution 12.3-6 Centroid of composite area

y

y

x

30 mm

30 mm

15 mm 30 mm

90 mm

90 mm

30 mm

120 mm

180 mm 180 mm

105 mm

O

C

A2

A1

A1 � (360)(30) � 10,800 mm2

A2 � 2(120)(30) � (120)(30) � 10,800 mm2

y �
Qx

A
� 52.5 mm

Qx � a yi Ai � y1A1 � y2A2 � 1.134 � 106 mm3

A � a Ai � A1 � A2 � 21,600 mm2

y2 � 0

y1 � 105 mm

y

y

x

30 mm

30 mm

15 mm 30 mm

90 mm

90 mm

30 mm

120 mm

180 mm 180 mm

105 mm

O

C

A2

A1

PROBS. 12.3-6, 12.5-6 and 12.7-6



Problem 12.3-7 Determine the coordinates x� and y� of the centroid C of the
L-shaped area shown in the figure. 

Solution 12.3-7 Centroid of L-shaped area

6 CHAPTER 12 Review of Centroids and Moments of Inertia

y

x
x

0.5 in.

0.5 in.

4 in.

6 in.

y

C

O

A1 � (3.5)(0.5) � 1.75 in.2

A2 � (6)(0.5) � 3.0 in.2

y �
Qx

A
� 1.99 in.

Qx � a yi Ai � y1A1 � y2A2 � 9.438 in.3

x �
Qy

A
� 0.99 in.

Qy � a x i Ai � x 1A1 � x 2A2 � 4.688 in.3

A � a Ai � A1 � A2 � 4.75 in.2

x 2 � 0.25 in.y2 � 3.0 in.

x 1 � 2.25 in.y1 � 0.25 in.y

x

x

4 in.

6 in.

y

C

O

A2

A1

Problem 12.3-8 Determine the coordinates x� and y� of the centroid C of the
area shown in the figure. 

y

x

170 mm

50 mm 50 mm

80
mm

80
mm

80
mm

80
mm

280 mm

150 mm

300 mm

O

PROBS. 12.3-7, 12.4-7, 12.5-7 and 12.7-7



Moments of Inertia

Problems 12.4-1 through 12.4-4 are to be solved by integration. 

Problem 12.4-1 Determine the moment of inertia Ix of a triangle of base b
and altitude h with respect to its base (see Case 4, Appendix D). 

Solution 12.4-1 Moment of inertia of a triangle

SECTION 12.4 Moments of Inertia 7

y

x

170

280

150

300O

A2

A3

A1

A4

130

130

Solution 12.3-8 Centroid of composite area

A1 � large rectangle
A2 � triangular cutout
A3 � A4 � circular holes

All dimensions are in millimeters.
Diameter of holes � 50 mm
Centers of holes are 80 mm from edges.

A1 � (280)(300) � 84,000 mm2

y1 � 140 mmx 1 � 150 mm

A2 � 1�2(130)2 � 8450 mm2

A4 � 1963 mm2

� 9.842 � 106 mm3

� 9.446 � 106 mm3

y �
Qx

A
�

9.446 � 106

71,620
� 132 mm

Qx � a yiAi � y1A1 � y2A2 � y3A3 � y4A4

x �
Qy

A
�

9.842 � 106

71,620
� 137 mm

Qy � a x i Ai � x 1A1 � x 2A2 � x 3A3 � x 4A4

A � a Ai � A1 � A2 � A3 � A4 � 71,620 mm2

y4 � 80 mmx 4 � 220 mm

y3 � 80 mmx 3 � 80 mm

A3 �
�d2

4
�

�

4
(50)2 � 1963 mm2

y2 � 280 � 130 �3 � 236.7 mm

x 2 � 300 � 130 �3 � 256.7 mm

Width of element

�
bh3

12

Ix � �y2dA � �
h

0

y2b 
(h � y)

h
 dy

dA �
b(h � y)

h
 dy

� b ¢h � y

h
≤

y

h

xb

y

O

dy
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Width of element

�
h3(3a � b)

12

IBB � �y2dA � �
h

0

y2Ba � (b � a)¢h � y

h
≤ R  dy

dA � Ba � (b � a)¢h � y

h
≤ R  dy

� a � (b � a)¢h � y

h
≤

y

h

x
bO

dy

y

a

BB

Problem 12.4-3 Determine the moment of inertia Ix of a parabolic spandrel
of base b and height h with respect to its base (see Case 18, Appendix D). 

Solution 12.4-3 Moment of inertia of a parabolic spandrel

Width of element

Ix � �y2dA � �
h

0

y2b (1 � �y �h)  dy �
bh3

21

dA � b(1 � �y �h)  dy

� b(1 � �y �h)

� b � x � b � bB y

h

b

y

xO

y � hx2

       b2

h
dy

y

Problem 12.4-4 Determine the moment of inertia Ix of a circle of radius 
r with respect to a diameter (see Case 9, Appendix D). 

Solution 12.4-4 Moment of inertia of a circle

�
�r 4

4

Ix � �y2dA � �
r

�r

y2(2�r 2 � y2)  dy

dA � 2�r 2 � y2 dy

Width of element � 2�r 2 � y2

y

y

dy

x

r
C

Problem 12.4-2 Determine the moment of inertia IBB of a trapezoid having
bases a and b and altitude h with respect to its base (see Case 8, Appendix D). 

Solution 12.4-2 Moment of inertia of a trapezoid
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Problems 12.4-5 through 12.4-9 are to be solved by considering the area 
to be a composite area. 

Problem 12.4-5 Determine the moment of inertia IBB of a rectangle 
having sides of lengths b and h with respect to a diagonal of the rectangle 
(see Case 2, Appendix D). 

Solution 12.4-5 Moment of inertia of a rectangle with respect to a diagonal

L � length of diagonal BB

h1 � distance from A to diagonal BB triangle BBC: 

Triangle ADB: 

I1 � moment of inertia of triangle ABB with respect
to its base BB

From Case 4, Appendix D:

For the rectangle:

IBB � 2I1 �
b3h3

6(b2 � h2)

I1 �
Lh 1

3

12
�

L

12
 ¢bh

L
≤

3

�
b3h3

12L2

h1 � h sin � �
bh

L
sin � �

h1

h

sin � �
b

L

L � �b2 � h2

Dh1

h

L

b

B

B

A

C

�

�

Problem 12.4-6 Calculate the moment of inertia Ix for the composite 
circular area shown in the figure. The origin of the axes is at the center 
of the concentric circles, and the three diameters are 20, 40, and 60 mm. 

Solution 12.4-6 Moment of inertia of composite area

x

y

Diameters � 20, 40, and 60 mm

Ix � 518 � 103 mm4

Ix �
�

64
[ (60)4 � (40)4 � (20)4]

Ix �
�d4

64
 (for a circle)

x

y
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Ix � I1 � I2

� 36.1 in.4

Iy � I3 � I4

� 10.9 in.4

�
1

3
(0.5)(4)3 �

1

3
(5.5)(0.5)3

�
1

3
(3.5)(0.5)3 �

1

3
(0.5)(6)3

y

x
4 in.

6 in.

y

x4 in.

6 in.

OO

A2

A1

A2

A1

Problem 12.4-8 A semicircular area of radius 150 mm has a rectangular
cutout of dimensions 50 mm � 100 mm (see figure). 

Calculate the moments of inertia Ix and Iy with respect to the x and 
y axes. Also, calculate the corresponding radii of gyration rx and ry. 

Solution 12.4-8 Moments of inertia of composite area

x

y

O

50
mm

50
mm

50
mm

150 mm 150 mm

All dimensions in millimeters

r � 150 mm b � 100 mm h � 50 mm

� 194.6 � 106 mm4

Iy � Ix

ry � rx

rx � �Ix �A � 80.1 mm

A �
�r 2

2
� bh � 30.34 � 103 mm2

Ix � (Ix)semicircle � (Ix)rectangle �
�r4

8
�

bh3

3

x

y

O

50
mm

50
mm

50
mm

150 mm 150 mm

Problem 12.4-7 Calculate the moments of inertia Ix and Iy with respect to
the x and y axes for the L-shaped area shown in the figure for Prob. 12.3-7. 

Solution 12.4-7 Moments of inertia of composite area
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Problem 12.4-9 Calculate the moments of inertia I1 and I2 of a W 16 � 100
wide-flange section using the cross-sectional dimensions given in Table E-l,
Appendix E. (Disregard the cross-sectional areas of the fillets.) Also, calculate
the corresponding radii of gyration r1 and r2, respectively. 

Solution 12.4-9 Moments of inertia of a wide-flange section

W 16 � 100 d � 16.97 in.

tw � tweb � 0.585 in.

b � 10.425 in.

tF � tFlange � 0.985 in.

All dimensions in inches.

� 1478 in.4 say, I1 � 1480 in.4

� 186.3 in.4 say, I2 � 186 in.4

A � 2(btF) � (d � 2tF)tw
� 2(10.425)(0.985) � (15.00)(0.585)

� 29.31 in.2

Note that these results are in close agreement with
the tabulated values.

r2 � �I2 �A � 2.52 in.

r1 � �I1 �A � 7.10 in.

�
1

6
 (0.985)(10.425)3 �

1

12
(15.00)(0.585)3

I2 � 2 ¢ 1

12
≤ tF b3 �

1

12
 (d � 2tF)t w

3

�
1

12
 (10.425)(16.97)3 �

1

12
(9.840)(15.00)3

I1 �
1

12
 bd3 �

1

12
 (b � tw)(d � 2tF)3

2

2
b

11 d

tw

tF

C

Parallel-Axis Theorem

Problem 12.5-1 Calculate the moment of inertia Ib of a W 12 � 50 
wide-flange section with respect to its base. (Use data from Table E-l,
Appendix E.) 

Solution 12.5-1 Moment of inertia

W 12 � 50 I1 � 394 in.4 A � 14.7 in.2

d � 12.19 in.

� 394 � 14.7(6.095)2 � 940 in.4

Ib � I1 � A ¢d
2
≤

2

11 C

B B
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From Prob. 12.3-2:

�
11a4

192

Ic � IxC
� Ix � Ay2

�
3a4

16
�

3a2

4
 ¢5a

12
≤

2
Ix � IxC

� Ay2

Ix �
1

3
 ¢a

2
≤(a3) �

1

3
 ¢a

2
≤ ¢a

2
≤

3

�
3a4

16

y � 5a �12

A � 3a2 �4

y

y

xO

C
a
2
—

a
2
—

a
2
—

a
2
—

xc

yc

A2

A1

Problem 12.5-3 For the channel section described in Prob. 12.3-3, 
calculate the moment of inertia Ixc

with respect to an axis through 
the centroid C and parallel to the x axis. 

Solution 12.5-3 Moment of inertia

From Prob. 12.3-3:

A � 10.0 in.2

Ix � 1�3(4)(1)3 � 2(1�3)(1)(3)3 � 19.33 in.4

� 7.23 in.4
Ixc � Ix � Ay2 � 19.33 � (10.0)(1.10)2

Ix � IxC
� Ay2

y � 1.10 in.
y

1 in. 1 in.

1 in.

3 in.
2 in.

3 in. O 3 in.

y yC

C xC

x

Problem 12.5-4 The moment of inertia with respect to axis 1-1 of 
the scalene triangle shown in the figure is 90 � 103 mm4. Calculate 
its moment of inertia I2 with respect to axis 2-2. 

Solution 12.5-4 Moment of inertia

40 mm 15 mm
1

2 2

1

b � 40 mm I1 � 90 � 103 mm4 I1 � bh3�12

Ic � bh3�36 � 30 � 103 mm4

�
1

2
(40) (30) (25)2 � 405 � 103 mm4

I2 � Ic � Ad2 � Ic � (bh �2)  d2 � 30 � 103

h �  B3 12I1

b
� 30 mm

40 mm
1

2 2

1

C

15 mm

h
3

h

Problem 12.5-2 Determine the moment of inertia Ic with respect to an 
axis through the centroid C and parallel to the x axis for the geometric 
figure described in Prob. 12.3-2. 

Solution 12.5-2 Moment of inertia
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Problem 12.5-5 For the beam cross section described in Prob. 12.3-5,
calculate the centroidal moments of inertia Ixc

and Iyc
with respect to axes

through the centroid C such that the xc axis is parallel to the x axis and 
the yc axis coincides with the y axis. 

Solution 12.5-5 Moment of inertia

From Prob. 12.3-5:

W 24 � 162 d � 25.00 in. d �2 � 12.5 in.

I1 � 5170 in.4 A � 47.7 in.2

I2 � Iy � 443 in.4

� 5269 in.4

I¿yc � I2 � 443 in.4

I¿xc � I1 � A(y � d �2)2 � 5170 � (47.7)(1.44)2

y � 13.94 in.

PLATE

� 0.2813 � 6(25.00 � 0.375 � 13.94)2

� 0.2813 � 6(11.44)2 � 785 in.4

ENTIRE CROSS SECTION

Iyc � I¿yc � I–yc � 443 � 32 � 475 in.4

Ixc � I¿xc � I–xc � 5269 � 785 � 6050 in.4

I–yc � 1 �12(3 �4)(8)3 � 32.0 in.4

I–xc � 1 �12(8)(3 �4)3 � (8)(3 �4)(d � 3 �8 � y)2

x

y, yC

y

C

O

W 24 � 162

8 � 
3—
4 in.

1
xC

d
2

d
2

Problem 12.5-6 Calculate the moment of inertia Ixc
with respect to an axis

through the centroid C and parallel to the x axis for the composite area shown
in the figure for Prob. 12.3-6. 

Solution 12.5-6 Moment of inertia

From Prob. 12.3-6:

t � 30 mm A � 21,600 mm2

A1: Ix � 1�12(360) (30)3 � (360) (30) (105)2

� 119.9 � 106 mm4

A2: Ix � 1�12(120) (30)3 � (120) (30) (75)2

� 20.52 � 106 mm4

A3: Ix � 1�12(30) (120)3 � 4.32 � 106 mm4

A4: Ix � 20.52 � 106 mm4

ENTIRE AREA:

� 106 � 106 mm4

IxC
� Ix � Ay2 � 165.26 � 106 � (21,600)̌(52.50)2

Ix � a Ix � 165.26 � 106 mm4

y � 52.50 mm

y

y

x

30 mm

30 mm
120 mm

360 mm

O

C

A1

A2

A3

120
mm

A4
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From Prob. 12.3-7:

t � 0.5 in. A � 4.75 in.2

From Problem 12.4-7:

Ix � 36.15 in.4

Iy � 10.90 in.4

� 17.40 in.4

� 6.27 in.4
Iyc � Iy � Ax2 � 10.90 � (4.75)(0.9869)2

Ixc � Ix � Ay2 � 36.15 � (4.75) (1.987)2

x � 0.9869 in.

y � 1.987 in.

y

x

x

3.5 in.

0.5 in.

4 in.

6 in.

C

O

A2

yC

xC

y

A1

Problem 12.5-8 The wide-flange beam section shown in the figure 
has a total height of 250 mm and a constant thickness of 15 mm. 

Determine the flange width b if it is required that the centroidal 
moments of inertia Ix and Iy be in the ratio 3 to 1, respectively. 

Solution 12.5-8 Wide-flange beam

y

b

b

x250 mm

15 mm15 mm

15 mm

C

t � 15 mm b � flange width

All dimensions in millimeters.

� 0.4147 � 106 b � 13.31 � 106 (mm)4

� 25 b3 � 61,880 (mm4)

Equate Ix to 3Iy and rearrange:

7.5 b3 � 0.4147 � 106 b � 13.12 � 105 � 0

Solve numerically:

b � 250 mm

Iy � 2 ¢ 1

12
≤ (15)(b)3 �

1

12
 (220)(15)3

Ix �
1

12
 (b)(250)3 �

1

12
 (b � 15)(220)3

y

b

b

x250 mm

15 mm15 mm

15 mm

C

Problem 12.5-7 Calculate the centroidal moments of inertia Ixc
and Iyc

with respect to axes through the centroid C and parallel to the x and y axes,
respectively, for the L-shaped area shown in the figure for Prob. 12.3-7.

Solution 12.5-7 Moments of inertia



Problem 12.6-2 Determine the polar moment of inertia (IP)C with 
respect to the centroid C for a circular sector (see Case 13, Appendix D). 

Solution 12.6-2 Polar moment of inertia

SECTION 12.6 Polar Moments of Inertia 15

Polar Moments of Inertia

Problem 12.6-1 Determine the polar moment of inertia IP of an isosceles 
triangle of base b and altitude h with respect to its apex (see Case 5, Appendix D)

Solution 12.6-1 Polar moment of inertia

POINT C (CENTROID) FROM CASE 5:

(IP)c �
bh

144
 (4h2 � 3b2)

POINT A (APEX):

IP �
bh

48
 (b2 � 12h2)

�
bh

144
(4h2 � 3b2) �

bh

2
 ¢2h

3
≤

2

IP � (IP)c � A ¢2h

3
≤

2

h

C

b

A
y

2/3 h

POINT O (ORIGIN) FROM CASE 13:

(� � radians)(IP)o �
�r 4

2

A � �r 2

POINT C (CENTROID):

�
r 4

18 �
 (9 �2 � 8 sin2�)

(IP)C � (IP)O � Ay2 �
� r4

2
� �r2 ¢2r sin �

3�
≤

2

y �
2r sin �

3�

y

C

r

O
x

� �y

Problem 12.6-3 Determine the polar moment of inertia IP for a W 8 � 21
wide-flange section with respect to one of its outermost corners.

Solution 12.6-3 Polar moment of inertia
W 8 � 21 I1 � 75.3 in.4 I2 � 9.77 in.4

A � 6.16 in.2

Depth d � 8.28 in.

Width b � 5.27 in.

Ix � I1 � A(d�2)2 � 75.3 � 6.16(4.14)2 � 180.9 in.4

Iy � I2 � A(b�2)2 � 9.77 � 6.16(2.635)2 � 52.5 in.4

IP � Ix � Iy � 233 in.4x

C
1 1

2

2

y

O
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Problem 12.6-4 Obtain a formula for the polar moment of inertia IP with
respect to the midpoint of the hypotenuse for a right triangle of base b and
height h (see Case 6, Appendix D). 

Solution 12.6-4 Polar moment of inertia  

POINT C FROM CASE 6:

(IP)c �
bh

36
 (h2 � b2)

POINT P:

�
bh

24
 (b2 � h2)

IP �
bh

36
 (h2 � b2) �

bh

2
 ¢b

2 � h2

36
≤

�
b2

36
�

h2

36
�

b2 � h2

36

d2 � ¢b
2

�
b

3
≤

2

� ¢h
2

�
h

3
≤

2

A �
bh

2

IP � (IP)c � Ad2

h

h/2 C

b

b/3

b/2

h/3

P

d = CP

Problem 12.6-5 Determine the polar moment of inertia (IP)C with 
respect to the centroid C for a quarter-circular spandrel (see Case 12,
Appendix D). 

Solution 12.6-5 Polar moment of inertia

POINT O FROM CASE 12:

A � ¢1 �
�

4
≤r 2

y �
(10 � 3�)r

3(4 � �)

Ix � ¢1 �
5�

16
≤r 4

POINT C (CENTROID):

COLLECT TERMS AND SIMPLIFY:

(by symmetry)

(IP)c � 2 IxC
�

r4

72
 ¢176 � 84� � 9�2

4 � �
≤

IyC
� IxC

IxC
�

r4

144
 ¢176 � 84 � � 9 �2

4 � �
≤

� ¢1 �
�

4
≤(r 2) B (10 � 3�)r

3(4 � �)
R 2

Ixc � Ix � Ay2 � ¢1 �
5�

16
≤r 4

x

y yC

y

r

O
C

xC

x
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Products of Inertia

Problem 12.7-1 Using integration, determine the product of inertia Ixy for the 
parabolic semisegment shown in Fig. 12-5 (see also Case 17 in Appendix D). 

Solution 12.7-1 Product of inertia
Product of inertia of element dA with respect to axes
through its own centroid equals zero.

dIxy � product of inertia of element dA with respect
to xy axes

d1 � x d2 � y �2

Parallel-axis theorem applied to element dA:

dIxy � 0 � (dA)(d1d2) � (y dx)(x)(y �2)

Ixy � �dIxy �
h2

2
 �

b

0

x ¢1 �
x 2

b2≤
2

 dx �
b2h2

12

�
h2x

2
 ¢1 �

x 2

b2≤
2

 dx

dA � y dx � h ¢1 �
x 2

b2≤ dx
y

h

O x
b dx

x

y/2

dA

y � h(1 �      )x2

b2

Problem 12.7-2 Using integration, determine the product of inertia Ixy

for the quarter-circular spandrel shown in Case 12, Appendix D. 

Solution 12.7-2 Product of inertia

EQUATION OF CIRCLE:

x 2 � (y � r)2 � r 2

or r2 � x2 � (y � r)2

ELEMENT dA:

d1 � distance to its centroid in x direction
� (r � x)�2

d2 � distance to its centroid in y direction � y
dA � area of element � (r � x) dy
Product of inertia of element dA with respect to axes
through its own centroid equals zero.
Parallel-axis theorem applied to element dA:

Ixy � 1�2�
r

0

y(y � r)2 dy �
r 4

24

�
1

2
 (r 2 � x 2) y dy �

1

2
 (y � r)2y dy

dIxy � 0 � (dA)(d1d2) � (r � x)(dy)¢r � x

2
≤(y)

y
r

x
dA

dy

y

x
(r � x)/2
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TRIANGLE (CASE 7):

Ixy �
b2h2

24
�

b2(2r)2

24
�

b2r 2

6

SEMICIRCLE (CASE 10):

d1 � r

COMPOSITE AREA (Ixy � 0)

� b � 2rIxy �
b2r 2

6
�

2r 4

3
� 0

Ixy � 0 � ¢�r 2

2
≤(r)¢� 4r

3�
≤� �

2r 4

3

d2 � �
4r

3�
A �

�r 2

2
Ixcyc

� 0

Ixy � Ixcyc
� Ad1d2

yyC

r

x

b
O

C
xC

C � centroid of
        semicircle

Problem 12.7-4 Obtain a formula for the product of inertia Ixy of the 
symmetrical L-shaped area shown in the figure. 

Solution 12.7-4 Product of inertia

y

t

b

b

t

xO

AREA 1:

(Ixy)1 �
t2b2

4

AREA 2:

COMPOSITE AREA:

Ixy � (Ixy)1 � (Ixy)2
�

t2

4
 (2b2 � t2)

�
t 2

4
(b2 � t 2)

� 0 � (b � t)(t)(t�2)¢b � t

2
≤

(Ixy)2 � Ixc yc
� A2d1d2

y

t

b

b

t
xO

A1
A2

b � t

Problem 12.7-3 Find the relationship between the radius r and the 
distance b for the composite area shown in the figure in order that 
the product of inertia Ixy will be zero. 

Solution 12.7-3 Product of inertia

y

r

x

b
O
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Problem 12.7-5 Calculate the product of inertia I12 with respect to the cen-
troidal axes 1-1 and 2-2 for an L 6 � 6 � 1 in. angle section (see Table E-4,
Appendix E). (Disregard the cross-sectional areas of the fillet and rounded
corners.) 

Solution 12.7-5 Product of inertia
y

xO

A1

A2

1 in.

1 in.
5 in.

6 in.

2

2

1 1

y

x

6 in. C

Problem 12.7-6 Calculate the product of inertia Ixy for the composite area
shown in Prob. 12.3-6. 

Solution 12.7-6 Product of inertia

All dimensions in millimeters
A1 � 360 � 30 mm A2 � 90 � 30 mm
A3 � 180 � 30 mm A3 � 90 � 30 mm
d1 � 60 mm d2 � 75 mm

AREA A1: (Ixy)1 � 0 (By symmetry)

AREA A2: (Ixy)2 � 0 � A2 d1d2 � (90 � 30)(60)(75)
� 12.15 � 106 mm4

AREA A3: (Ixy)3 � 0 (By symmetry)

AREA A4: (Ixy)4 � (Ixy)2 � 12.15 � 106 mm4

Ixy � (Ixy)1 � (Ixy)2 � (Ixy)3 � (Ixy)4

� (2)(12.15 � 106 mm4)

� 24.3 � 106 mm4

y

xO

A1

d1

A3

A4

A2
d2

All dimensions in inches.

A1 � (6)(1) � 6.0 in.2

A2 � (5)(1) � 5.0 in.2

A � A1 � A2 � 11.0 in.2

With respect to the x axis:

x � y � 1.8636 in.

y �
Q1 � Q2

A
�

20.5 in.3

11.0 in.2
� 1.8636 in.

Q2 � (5.0 in.2)¢1.0 in.

2
≤� 2.5 in.3

Q1 � (6.0 in.2)¢6 in.

2
≤� 18.0 in.3

Coordinates of centroid of aera A1 with respect to 1–2 axes:

Product of inertia of area A1 with respect to 1-2 axes:

� (6.0 in.2)(�1.3636 in.)(1.1364 in.) � �9.2976 in.4

Coordinates of centroid of area A2 with respect to 1–2 axes:

Product of inertia of area A2 with respect to 1-2 axes:

� (5.0 in.2)(1.6364 in.)(�1.3636 in.)

� �11.1573 in.4

ANGLE SECTION: I12 � I¿12 � I–12 � �20.5 in.4

I–12 � 0 � A2d1d 2

d2 � � (y � 0.5) � �1.3636 in.

d1 � 3.5 � x � 1.6364 in.

I¿12 � 0 � A1d1d2

d2 � 3.0 � y � 1.1364 in.

d1 � � (x � 0.5) � � 1.3636 in.
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Rotation of Axes

The problems for Section 12.8 are to be solved by using the transformation
equations for moments and products of inertia. 

Problem 12.8-1 Determine the moments of inertia Ix1
and Iy1

and the 
product of inertia Ix1y1

for a square with sides b, as shown in the figure. (Note
that the x

1
y

1
axes are centroidal axes rotated through an angle � with respect

to the xy axes.)

Solution 12.8-1 Rotation of axes

FOR A SQUARE:

Ixy � 0

EQ. (12-25):

 �
Ix � Iy

2
� 0 � 0 �

b4

12

 Ix1
�

Ix � Iy

2
�

Ix � Iy

2
 cos 2u� Ixy sin 2u

Ix � Iy � �
b4

12

EQ. (12-29):

�

EQ. (12-27):

� 0

Since � may be any angle, we see that all moments
of inertia are the same and the product of inertia is
always zero (for axes through the centroid C).

Ix1y1
�

Ix � Iy

2
 sin 2u� Ixy cos 2u

Iy1
�

b4

12
Ix1

� Iy1
� Ix � Iy

y

x

x1

y1

b

b

C
�

y

x

x1

y1

b

b

C
�

Problem 12.7-7 Determine the product of inertia Ixcyc
with respect to centroidal axes xc

and yc parallel to the x and y axes, respectively, for the L-shaped area shown in Prob. 12.3-7. 

Solution 12.7-7 Product of inertia

All dimensions in inches.
A1 � (6.0)(0.5) � 3.0 in.2

A2 � (3.5)(0.5) � 1.75 in.2

A � A1 � A2 � 4.75 in.2

With respect to the x axis:

� 9.0 in.3

y �
Q1 � Q2

A
�

9.4375 in.3

4.75 in.2
� 1.9868 in.

Q2 � A2 y2 � (1.75 in.2) (0.25 in.) � 0.4375 in.3
Q1 � A1 y1 � (3.0 in.2) (3.0 in.)

With respect to the y axis:

Product of inertia of area A1 with respect to xy axes:

(Ixy)1 � (Ixy)centroid � A1 d1 d2
� 0 � (3.0 in.2)(0.25 in.)(3.0 in.) � 2.25 in.4

Product of inertia of area A2 with respect to xy axes:

(Ixy)2 � (Ixy)centroid � A2 d1 d2
� 0 � (1.75 in.2)(2.25 in.)(0.25 in.) � 0.98438 in.4

ANGLE SECTION

Ixy � (Ixy)1 � (Ixy)2 � 3.2344 in.4

CENTROIDAL AXES

� 3.2344 in.4 � (4.75 in.2)(0.98684 in.)(1.9868 in.)
� �6.079 in.4

Ixcyc
� Ixy � Ax  y

x �
Q1 � Q2

A
�

4.6875 in.3

4.75 in.2
� 0.98684 in.

Q2 � A2x 2 � (1.75 in.2) (2.25 in.) � 3.9375 in.3
Q1 � A1x 1 � (3.0 in.2) (0.25 in.) � 0.75 in.3

y

xO

A1

A2

3.5

4.0

2

xc

x

6.0
C

y
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Problem 12.8-2 Determine the moments and product of inertia with 
respect to the x1y1 axes for the rectangle shown in the figure. (Note that 
the x1 axis is a diagonal of the rectangle.) 

Solution 12.8-2 Rotation of axes (rectangle)

y

x

x1

y1

h

b

C

CASE 1:

Ixy � 0Iy �
hb3

12
Ix �

bh3

12

ANGLE OF ROTATION:

cos 2� � cos2 � � sin2 �

sin 2� � 2 sin � cos �

SUBSTITUTE INTO EQS. (12-25), (12-29), AND (12-27)
AND SIMPLIFY:

Ix1y1
�

b2h2(h2 � b2)

12(b2 � h2)

Iy1
�

bh(b4 � h4)

12(b2 � h2)
Ix1

�
b3h3

6(b2 � h2)

�
2 bh

b2 � h2

�
b2 � h2

b2 � h2

sin u�
h

�b2 � h2
cos u�

b

�b2 � h2

y

x

x1

y1

h

b

C

�

Problem 12.8-3 Calculate the moment of inertia Id for a W 12 � 50
wide-flange section with respect to a diagonal passing through the centroid
and two outside corners of the flanges. (Use the dimensions and properties
given in Table E-1.) 

Solution 12.8-3 Rotation of axes

W 12 � 50 Ix � 394 in.4

Iy � 56.3 in.4 Ixy � 0

Depth d � 12.19 in.
Width b � 8.080 in.

� � 56.46º 2� � 112.92º

EQ. (12-25):

� 225 in.4 � 66 in.4 � 159 in.4

�
394 � 56.3

2
�

394 � 56.3

2
 cos (112.92�) � 0

Id �
Ix � Iy

2
�

Ix � Iy

2
 cos 2u� Ixy sin 2u

Tan u�
d

b
�

12.19

8.080
� 1.509

�

b

d C x

y
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Problem 12.8-4 Calculate the moments of inertia Ix1
and Iy1

and the product
of inertia Ix1y1

with respect to the x1y1 axes for the L-shaped area shown in the
figure if a � 150 mm, b � 100 mm, t � 15 mm, and � � 30°. 

Solution 12.8-4 Rotation of axes

All dimensions in millimeters.

a � 150 mm b � 100 mm
t � 15 mm � � 30º

� 16.971 � 106 mm4

� 5.152 � 106 mm4

�
1

3
 (135)(15)3 �

1

3
 (15)(100)3

Iy �
1

3
 (a � t)  t 3 �

1

3
 tb3

 �
1

3
 (15)(150)3 �

1

3
 (85)(15)3

 Ix �
1

3
 ta3 �

1

3
 (b � t)  t 3

A = (b�t)(t)

� 1.815 � 106 mm4

SUBSTITUTE into Eq. (12-25) with � � 30º:

� 12.44 � 106 mm4

SUBSTITUTE into Eq. (12-25) with � � 120º:

SUBSTITUTE into Eq. (12-27) with � � 30º:

� 6.03 � 106 mm4

Ix1y1
�

Ix � Iy

2
 sin 2u� Ixy cos 2u

Iy1
� 9.68 � 106 mm4

Ix1
�

Ix � Iy

2
�

Ix � Iy

2
 cos 2u� Ixy sin 2u

Ixy �
1

4
 (15)2(150)2 � (85)(15)(57.5)(7.5)

d1 � t �
b � t

2
�d2 �

t

2

Ixy �
1

4
 t 2a2 � Ad1d2

y

a

b x

y1

x1

� � 30°

O

y

t

t

a

b
x

y1

x1

�

O

Problem 12.8-5 Calculate the moments of inertia Ix1
and Iy1

and the product
of inertia Ix1y1

with respect to the x1y1 axes for the Z-section shown in the 
figure if b � 3 in., h � 4 in., t � 0.5 in., and � � 60°. 

h
2
—

h
2
—

y

x

b

b

t t

t

y1

x1

C
�

Probs. 12.8-4 and 12.9-4

Probs. 12.8-5, 12.8-6, 12.9-5 and 12.9-6
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Solution 12.8-5 Rotation of axes

All dimensions in inches.

b � 3.0 in. h � 4.0 in. t � 0.5 in. � � 60º

MOMENT OF INERTIA Ix

Area A1:

� 3.8542 in.4

Area A2:

Area A3:

MOMENT OF INERTIA Iy

Area A1:

� 3.4635 in.4

I¿y �
1

12
 (t)(b � t)3 � (b � t)(t)¢b

2
≤

2

Ix � I¿x � I–x � I‡x � 10.3751 in.4
I‡x � I¿x � 3.8542 in.4

I–x �
1

12
 (t)(h3) � 2.6667 in.4

I¿x �
1

12
 (b � t)(t 3) � (b � t)(t)¢h

2
�

t

2
≤

2

Area A2:

Area A3:

PRODUCT OF INERTIA Ixy

Area A1: 

� �3.2813 in.4

Area A2: Area A3: 

SUBSTITUTE into Eq. (12-25) with � � 60º:

� 13.50 in.4

SUBSTITUTE into Eq. (12-25) with � � 150º:

SUBSTITUTE into Eq. (12-27) with � � 60º:

� 4.76 in.4Ix1y1
�

Ix � Iy

2
 sin 2u� Ixy cos 2u

Iy1
� 3.84 in.4

Ix1
�

Ix � Iy

2
�

Ix � Iy

2
 cos 2u� Ixy sin 2u

Ixy � I¿xy � I–xy � I‡xy � �6.5625 in.4
I‡xy � I¿xyI–xy � 0

� �
1

4
 (bt)(b � t)(h � t)

I¿xy � 0 � (b � t)(t)¢�b

2
≤ ¢h

2
�

t

2
≤

Iy � I¿y � I–y � I‡y � 6.9688 in.4

I‡y � I¿y � 3.4635 in.4

I–y �
1

12
 (h)(t 3) � 0.0417 in.4

h
2
—

h
2
—

y

x

b

b
y1

x1

C
�

A2
A3

A1

Problem 12.8-6 Solve the preceding problem if b � 80 mm, h � 120 mm,
t � 12 mm, and � � 30°. 

Solution 12.8-6 Rotation of axes

All dimensions in millimeters.

b � 80 mm h � 120 mm
t � 12 mm � � 30º

MOMENT OF INERTIA Ix

Area A1: 

� 2.3892 � 106 mm4

Area A2: 

Area A3: 

Ix � I¿x � I–x � I‡x � 6.5065 � 106 mm4

I‡x � I¿x � 2.3892 � 106 mm4

I–x �
1

12
 (t)(h3) � 1.7280 � 106 mm4

I¿x �
1

12
 (b � t)(t 3) � (b � t)(t)¢h

2
�

t

2
≤

2

h
2
—

h
2
—

y

x

b

b

y1

x1

C
�

A2
A3

A1

t � thickness
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Principal Axes, Principal Points, and Principal Moments of Inertia

Problem 12.9-1 An ellipse with major axis of length 2a and minor axis 
of length 2b is shown in the figure. 

(a) Determine the distance c from the centroid C of the ellipse to the 
principal points P on the minor axis (y axis). 

(b) For what ratio a/b do the principal points lie on the circumference 
of the ellipse? 

(c) For what ratios do they lie inside the ellipse? 

Solution 12.9-1 Principal points of an ellipse

MOMENT OF INERTIA Iy

Area A1: 

� 1.6200 � 106 mm4

Area A2: 

Area A3: 

PRODUCT OF INERTIA Ixy

Area A1: 

Area A2: Area A3: 

Ixy � I¿xy � I–xy � I‡xy � �3.5251 � 106 mm4

I‡xy � I¿xyI–xy � 0

� �
1

4
 (bt)(b � t)(h � t) �

I¿xy � 0 � (b � t)(t)  ¢�
b

2
≤ ¢h

2
�

t

2
≤

Iy � I¿y � I–y � I‡y � 3.2573 � 106 mm4

I‡y � I¿y � 1.6200 � 106 mm4

I–y �
1

12
 (h)(t 3) � 0.01728 � 106 mm4

I¿y �
1

12
 (t)(b � t)3 � (b � t)(t)¢b

2
≤

2

SUBSTITUTE into Eq. (12-25) with � � 30º:

� 8.75 � 106 mm4

SUBSTITUTE into Eq. (12-25) with � � 120º:

SUBSTITUTE into Eq. (12-27) with � � 30º:

� �0.356 � 106 mm4

Ix1y1
�

Ix � Iy

2
 sin 2u� Ixy cos 2u

Iy1
� 1.02 � 106 mm4

Ix1
�

Ix � Iy

2
�

Ix � Iy

2
 cos 2u� Ixy sin 2u

y

c

c b

a a

b

x

P

P

C

(a) LOCATION OF PRINCIPAL POINTS

At a principal point, all moments of inertia are equal.

At point P1: Eq. (1)Ixp
� Iy

From Case 16: 

A � �ab

Parallal-axis theorem:

Substitute into Eq. (1):

Solve for c: c �
1

2
�a2 � b2

�ab3

4
� �abc2 �

�ba3

4

Ixp
� Ix � Ac2 �

�ab3

4
� �abc2

Ix �
�ab3

4

Iy �
�ba3

4

y

c

c b

a a

b

x

P1

P2

C

xp
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Problem 12.9-2 Demonstrate that the two points P1 and P2, 
located as shown in the figure, are the principal points of the 
isosceles right triangle. 

Solution 12.9-2 Principal points of an isosceles right triangle

(b) PRINCIPAL POINTS ON THE CIRCUMFERENCE

� c � b and 

Solve for ratio :
a

b
� �5

a

b

b �
1

2
�a2 � b2

(c) PRINCIPAL POINTS INSIDE THE ELLIPSE

� 0 � c � b For c � 0: a � b and 

For c � b:

� 1 �
a

b
6 �5

a

b
� �5

a

b
� 1

y

xb—
6

b—
6

b
—
2

b
—
2

b
—
2

b
—
6

P2

C
P1

CONSIDER POINT P1:

because y1 is an axis of symmetry.

because areas 1 and 2 are symmetrical about
the y2 axis and areas 3 and 4 are symmetrical 
about the x2 axis.

Two different sets of principal axes exist at point P1.
� P1 is a principal point

Ix2 y2
� 0

Ix1 y1
� 0

CONSIDER POINT P2:

because y2 is an axis of symmetry.

(see above).

Parallel-axis theorem:

Parallel-axis theorem:

Two different sets of principal axes (x3y3 and x4y4)
exist at point P2.
� P2 is a principal point

Ix4y4
� �

b4

288
�

b2

4
 ¢� b

6�2
≤

2

� 0

d1 � d2 � �
b

6�2
Ix4y4

� Ixcyc
� Ad1d2

Ixcyc
� � ¢b

2

4
≤ ¢ b

6�2
≤

2

� �
b4

288

A �
b2

4
 d � d1 � d2 �

b

6�2
Ix2y2

� Ixcyc
� Ad1d2

Ix2 y2
� 0

Ix3 y3
� 0

y1

x1

P1

x2
y2

1 4

2 3

y3

xC

P2

x2y2

x4
yC

y4

C

x3

d
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Problem 12.9-3 Determine the angles �p1
and �p2

defining the orientations
of the principal axes through the origin O for the right triangle shown in the
figure if b � 6 in. and h � 8 in. Also, calculate the corresponding principal
moments of inertia I1 and I2. 

Solution 12.9-3 Principal axes

y

x

h

b
O

x1

y1

�

RIGHT TRIANGLE

b � 6.0 in. h � 8.0 in.

CASE 7:

Ixy �
b2h2

24
� 96 in.4

Iy �
hb3

12
� 144 in.4

Ix �
bh3

12
� 256 in.4

EQ. (12-30): tan 

2�p ��59.744º and 120.256º

�p ��29.872º and 60.128º

SUBSTITUTE into Eq. (12-25) with � � �29.872º:

SUBSTITUTE into Eq. (12-25) with � � 60.128º:

THEREFORE, I1 � 311.1 in.4

I2 � 88.9 in.4

NOTE: The principal moments of inertia can be
verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� 60.13�

up1
� � 29.87�

Ix1
� 88.9 in.4

Ix1
� 311.1 in.4

2up � �
2Ixy

Ix � Iy

� �1.71429

y

x

h

b
O

x1

y1

�

Problem 12.9-4 Determine the angles �p1
and �p2

defining the orientations
of the principal axes through the origin O and the corresponding principal
moments of inertia I1 and I2 for the L-shaped area described in Prob. 12.8-4
(a � 150 mm, b � 100 mm, and t � 15 mm). 

Solution 12.9-4 Principal axes

ANGLE SECTION

a � 150 mm b � 100 mm t � 15 mm

FROM PROB. 12.8-4:

Ix � 16.971 � 106 mm4

Iy � 5.152 � 106 mm4 Ixy � 1.815 � 106 mm4

EQ. (12-30):

2�p � �17.07º and 162.93º
�p � �8.54º and 81.46º

tan 2up � �
2 Ixy

Ix � Iy

� � 0.3071

y

a

b x

y1

x1

�

O

t � thickness
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Problem 12.9-5 Determine the angles �p1
and �p2

defining the orientations of 
the principal axes through the centroid C and the corresponding principal centroidal
moments of inertia I1 and I2 for the Z-section described in Prob. 12.8-5 (b � 3 in., 
h � 4 in., and t � 0.5 in.). 

Solution 12.9-5 Principal axes

SUBSTITUTE into Eq. (12-25) with � � �8.54º:

SUBSTITUTE into Eq. (12-25) with � � 81.46º:

Ix1
� 4.88 � 106 mm4

Ix1
� 17.24 � 106 mm4

THEREFORE,

I1 � 17.24 � 106 mm4

I2 � 4.88 � 106 mm4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� �81.46�

up1
� �8.54�

Z-SECTION

t � thickness � 0.5 in.
b � 3.0 in h � 4.0 in

FROM PROB. 12.8-5:

Ix � 10.3751 in.4 Iy � 6.9688 in.4

Ixy ��6.5625 in.4

EQ. (12-30):

2�p � 75.451º and 255.451º

�p � 37.726º and 127.726º

SUBSTITUTE into Eq. (12-25) with � � 37.726º:

SUBSTITUTE into Eq. (12-25) with � � 127.726º:

THEREFORE, I1 � 15.45 in.4

I2 � 1.89 in.4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� 127.73�

up1
� 37.73�

Ix1
� 1.892 in.4

Ix1
� 15.452 in.4

tan 2up � �
2 Ixy

Ix � Iy

� 3.8538

h
2
—

h
2
—

y

x

b

y1

x1

C

�

Problem 12.9-6 Solve the preceding problem for the Z-section described 
in Prob. 12.8-6 (b � 80 mm, h � 120 mm, and t � 12 mm). 

Solution 12.9-6 Principal axes

Z-SECTION

t � thickness
� 12 mm

b � 80 mm
h � 120 mm

FROM PROB. 12.8-6:

Ix � 6.5065 � 106 mm4 Iy � 3.2573 � 106 mm4

Ixy ��3.5251 � 106 mm4

h
2
—

h
2
—

y

x

b

y1

x1

C

�
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Problem 12.9-7 Determine the angles �p1
and �p2

defining the 
orientations of the principal axes through the centroid C for the 
right triangle shown in the figure if h � 2b. Also, determine the 
corresponding principal centroidal moments of inertia I1 and I2. 

Solution 12.9-7 Principal axes

Eq. (12-30):

2�p � 65.257º and 245.257º
�p � 32.628º and 122.628º

SUBSTITUTE into EQ. (12-25) with � � 32.628º:

SUBSTITUTE into Eq. (12-25) with � � 122.628º:

Ix1
� 1.000 � 106 mm4

Ix1
� 8.763 � 106 mm4

tan 2up � �
2 Ixy

Ix � Iy

� 2.1698 THEREFORE,

I1 � 8.76 � 106 mm4

I2 � 1.00 � 106 mm4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� 122.63�

up1
� 32.63�

y

x

h

b

C

x1

y1

�

RIGHT TRIANGLE

h � 2b

CASE 6

Ixy � �
b2h2

72
� �

b4

18

Iy �
hb3

36
�

b4

18

Ix �
bh3

36
�

2b4

9

EQ. (12-30):

2�p � 33.6901º and 213.6901º
�p � 16.8450º and 106.8450º

SUBSTITUTE into Eq. (12-25) with � � 16.8450º:

SUBSTITUTE into Eq. (12-25) with � � 106.8450º:

THEREFORE, I1 � 0.2390 b4

I2 � 0.0387 b4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� 106.85�

up1
� 16.85�

Ix1
� 0.03873 b4

Ix1
� 0.23904 b4

tan 2up � �
2 Ixy

Ix � Iy

�
2

3

y

x

h � 2b

b

C

x1

y1

�
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Problem 12.9-8 Determine the angles �p1
and �p2

defining the orientations
of the principal centroidal axes and the corresponding principal moments of
inertia I1 and I2 for the L-shaped area shown in the figure if a � 80 mm, 
b � 150 mm, and t � 16 mm. 

Solution 12.9-8 Principal axes (angle section)

a

C

t

t

b

�

y1
yc

x1

xc

a � 80 mm b � 150 mm t � 16 mm
A1 � at � 1280 mm2

A2 � (b � t)(t) � 2144 mm2

A � A1 � A2 � t (a � b � t) � 3424 mm2

LOCATION OF CENTROID C

� 68,352 mm3

� 188,192 mm3

MOMENTS OF INERTIA (xy AXES)

Use parallel-axis theorem.

� (2144)(8)2

� 2.91362 � 106 mm4

 �
1

12
(16)(80)3 � (1280)(40)2 �

1

12
(134)(16)3

Ix �
1

12
(t)(a3) � A1 ¢a2≤

2

�
1

12
(b � t)(t 3) � A2 ¢ t

2
≤

2

x �
Qy

A
�

188,192 mm3

3,424 mm2 � 54.9626 mm

Qy � a Ai xi � (at)  ¢ t

2
≤� (b � t)(t)¢b � t

2
≤

y �
Qx

A
�

68,352 mm3

3,424 mm2 � 19.9626 mm

Qx � a Ai y2 � (at)  ¢a
2
≤� (b � t)(t)¢ t

2
≤

� 18.08738 � 106 mm4

MOMENTS OF INERTIA (xcyc AXES)

Use parallel-axis theorem.

� 1.54914 � 106 mm4

� 7.74386 � 106 mm4

PRODUCT OF INERTIA

Use parallel-axis theorem: Ixy � Icentroid � A d1d2

Area A1: 

� (1280)(8 � 54.9626)(40 � 19.9626)

� � 1.20449 � 106 mm4

Area A2: 

� (2144)(83 � 54.9626)(8 � 19.9626)

� � 0.71910 � 106 mm4

SUMMARY

IxCyC
� � 1.92359 � 106 mm4

IyC
� 7.74386 � 106 mm4IxC

� 1.54914 � 106 mm4

IxCyC
� I¿xCyC

� I–xCyC
� �1.92359 � 106 mm4

I–xCyC
� 0 � A2B b � t

2
� xR B�¢y �

t

2
≤ R

I¿xCyC
� 0 � A1B � ¢x �

t

2
≤ R B e

2
� yR

IyC
� Iy � Ax2 � 18.08738 � 106 � (3424)(54.9626)2

IxC
� Ix � Ay2 � 2.91362 � 106 � (3424)(19.9626)2

� (2144)¢166

2
≤

2

�
1

12
(80)(16)3 � (1280)(8)2 �

1

12
(16)(134)3

� A2 ¢b � t

2
≤

2

Iy �
1

12
(a)(t 3) � A1 ¢ t

2
≤

2

�
1

12
(t)(b � t 3)

a

C

b

�

y1

yc
x1

xc

x
A1

A2

y
x

O

y

t � thickness

Probs. 12.9-8 and 12.9-9
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Problem 12.9-9 Solve the preceding problem if a � 3 in., b � 6 in., 
and t � 5/8 in. 

Solution 12.9-9 Principal axes (angle section)

PRINCIPAL AXES

Eq. (12-30):

2�p � �31.8420° and 148.1580°

�p � �15.9210° and 74.0790°

SUBSTITUTE into Eq. (12-25) with � � � 15.9210°

Ix1
� 1.0004 � 106 mm4

tan 2up � �
2Ixy

Ix � Iy

� � 0.621041

SUBSTITUTE into Eq. (12-25) with � � 74.0790°

THEREFORE,

I1 � 8.29 � 106 mm4

I2 � 1.00 � 106 mm4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� �15.92�

up1
� 74.08�

Ix1
� 8.2926 � 106 mm4

a � 3.0 in.
b � 6.0 in.
t � 5�8 in.

A1 � at � 1.875 in.2

A2 � (b � t)(t) � 3.35938 in.2

A � A1 � A2 � t (a � b � t) � 5.23438 in.2

LOCATION OF CENTROID C

� 3.86230 in.3

� 11.71387 in.3

x �
Qy

A
�

11.71387 in.3

5.23438 in.2
� 2.23787 in.

Qy � a Ai xi � (at)  ¢ t

2
≤� (b � t)(t)¢b � t

2
≤

y �
Qx

A
�

3.86230 in.3

5.23438 in.2
� 0.73787 in.

Qx � a Aiy2 � (at)  ¢a
2
≤� (b � t)(t)¢ t

2
≤

MOMENTS OF INERTIA (xy AXES)

Use parallel-axis theorem.

� 6.06242 in.4

� 45.1933 in.4

MOMENTS OF INERTIA (xcyc AXES)

Use parallel-axis theorem.

� 3.21255 in.4

� 18.97923 in.4
IyC

� Iy � Ax2 � 45.1933 � (5.23438)(2.23787)2

IxC
� Ix � Ay2 � 6.06242 � (5.23438)(0.73787)2

� (3.35938)¢6.625

2
≤

2

�
1

12
(3.0)¢5

8
≤

3

� (1.875)¢ 5

16
≤

2

�
1

12
 ¢5

8
≤(5.375)3

� A2 ¢b � t

2
≤

2

Iy �
1

12
(a)(t 3) � A1 ¢ t

2
≤

2

�
1

12
(t)(b � t 3)

� (3.35938)¢ 5

16
≤

2

�
1

12
¢ 5
8
≤(3.0)3 � (1.875)(1.5)2 �

1

12
(5.375)¢5

8
≤

3

Ix �
1

12
(t)(a3) � A1 ¢a2≤

2

�
1

12
(b � t)(t 3) � A2 ¢ t

2
≤

2

a

C

b

�

y1

yc
x1

xc

x
A1

A2

y
x

O

y
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PRODUCT OF INERTIA

Use parallel-axis theorem: Ixy � Icentroid � A d1d2

Area A1: 

� (1.875)(�1.92537)(0.76213)

� �2.75134 in.4

Area A2: 

� (3.35938)(1.07463)(�0.42537)

� �1.53562 in.4

SUMMARY

PRINCIPAL AXES

EQ. (12-30):

2�p � �28.5374° and 151.4626°
�p � �14.2687° and 75.7313°

tan 2up � �
2Ixy

Ix � Iy

� �0.54380

IxCyC
� � 4.28696 in.4

IyC
� 18.97923 in.4IxC

� 3.21255 in.4

IxCyC
� I¿xCyC

� I–xCyC
� �4.28696 in.4

I–xCyC
� 0 � A2B b � t

2
� xR B ˇ�¢y�

t

2
≤ R

I¿xCyC
� 0 � A1B ˇ�¢x �

t

2
≤ R B a

2
� yR

SUBSTITUTE into Eq. (12-25) with � � �14.2687°

SUBSTITUTE into Eq. (12-25) with � � 75.7313º

THEREFORE,

I1 � 20.07 in.4

I2 � 2.12 in.4

NOTE: The principal moments of inertia I1 and I2 can
be verified with Eqs. (12-33a and b) and Eq. (12-29).

up2
� �14.27�

up1
� 75.73�

Ix1
� 20.0695 in.4

Ix1
� 2.1223 in.4




