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Preface to the English Edition

This is a translation of my work originally published by Iwanami Shoten,
as a volume in their Lecture Series on linear algebra.

We assume, therefore, that readers are familiar with several fundamental
concepts of linear algebra such as vector spaces, matrices, determinants, etc.,
though we review some of these concepts in the text. We have made some
changes in the references.

On this occasion, I would like to express my gratitude to Professor Na-
gayoshi Iwahori for giving me encouragement and many valuable suggestions
during the preparation of the original work and also to Mr. Hideo Arai of
Iwanami Shoten for continued support.

I am grateful to the American Mathematical Society and the staff for their
effort in publishing this English edition. I also thank Kazunari Noda and
Nami Yokonuma for their excellent typing.

Takeo Yokonuma
December 1991
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Preface

The subject matter of the present book is generally called multilinear alge-
bra; we shall discuss mainly tensors and related concepts. The readers may
recall several important tensors that are used in differential geometry, me-
chanics, electromagnetics, and so on. On the other hand, it is generally said
that tensors are difficult to understand. One of the reasons for this is that
formerly tensors and tensor fields (mappings whose values are tensors) were
not distinguished, and tensor fields were discussed without defining tensors
in advance.(') In fact, readers should be aware that sometimes tensor fields
are simply called tensors in the literature. In any case, it is important to
understand clearly what tensors are. Our purpose is to explain tensors to the
readers as clearly as possible. Tensor fields are defined by means of tensors.
The analytic theory of tensor fields is known as tensor calculus. Needless to
say, it is beyond the scope of linear algebra and we shall not discuss it here.
The notions of tensor density and pseudotensor are also important in appli-
cations of tensors. Since they are related to representations of linear groups,
we shall mention only their definitions (§I1.6).

As stated above, the notion of tensor seems to have originated from what
are now called tensor fields. Research has been done, since the end of last
century, with the study of vector calculus and the theory of invariants, on
systems of functions which satisfy certain transformation laws. Ricci and
Levi-Civita founded tensor calculus. It became well known after being used
by Einstein to describe the theory of relativity. When we try to describe a
physical phenomenon, we use a coordinate system. Though the description
depends on the coordinate system, the phenomenon itself does not. To ex-
plain the situation, systems of functions that satisfy a certain transformation
law play an important role. Depending on the type of transformation law,
several kinds of tensor (field) have been defined. By the way, it seems that the
word “tensor” was derived from tension. Thus, a tensor is classically defined
as a system (or an array) of numbers which satisfies a certain transforma-
tion law (see §11.2). We can consider that this system describes an “object”
whose existence does not depend on coordinate systems. This point of view

(l)See R. Godement: Cours d’algebre, Hermann, p. 269.
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is sufficient for computation but it does not explain what the object is.

In order to define tensors, we begin in Chapter I by constructing tensor
products of vector spaces. Then, in Chapter II, we define tensors and study
their properties. In many branches of mathematics the construction of tensor
products is used as a powerful tool to construct new objects from known ones.
For example, we will describe the extension of a field of scalars (§1.8b). The
tensor product of representations is another example.

In Chapter III, we discuss the notion of exterior algebra. Exterior algebras
are basic to the theory of differential forms. In Chapter IV, to show another
aspect of the theory of tensor products, we discuss algebraic systems with
bilinear multiplication. In particular, we discuss Lie algebras.
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