
Teradata Can Do SAS Too !

Harry Droogendyk, Stratia Consulting Inc.

2014-05-29

Typical Architecture

Typical Architecture

why is
P11

dying?!

Principles

� processing data

� do it where it makes sense

� don’t move data unnecessarily

� detail vs summary

� s t r e t c h your brain – learn new functionality

� use the right tool / environment

� strengths / weaknesses

� do it once

� do not store what you can easily compute

� Unix space emails ?

Complications

� SQL is “set” oriented

� remember Relational Algebra ?

� data normalization

� Employee set joined to Department set

� yields “result set”

� requires abstraction

� we (and SAS) are “row oriented”

� read a row, deal with it, read another row

� 1st row ? Last row ?

� columns ? eg. array structures

Complications

� data step is so friendly

� granular control

� explicit control

� comfort zone

� bits and bytes

� SQL can be nebulous

� “sets” are uncomfortable

� uncontrollable

� but, preferred by the DB

� why a cartesian product join ?!

� why are results sometimes different ?! eg. ORDER BY

Agenda

� Teradata can do SAS !!!

� don’t move the data !!

� start simple – all in Teradata

� sorting correctly for SAS

� conditional processing

� useful intermediate tables

� OLAP / Analytical functions

� first.

� lag & lead

� cumulative / specialized sums

why is
P11

dying?!

Sorting

create table tables as

select * from connection to teradata (

select databasename, tablename

from dbc.tables

where databasename in ('DDWV01' , 'DDWV04I')

order by tablename);

� how many tables are in both views?

� could use SQL EXCEPT

� using data step MERGE

Sorting

data idm;

merge tables (where = (databasename = 'DDWV01')

in = ddwv01)

tables (where = (databasename = 'DDWV04I')
in = ddwv04i) ;

by tablename;

flag = ddwv01 + ddwv04i * 2 ;

run ;

ERROR: BY variables are not properly sorted on data set
WORK.TABLES.

ddwv01=1 ddwv04i=0 DatabaseName=DDWV01 TableName=tln_loans
FIRST.TableName=1 LAST.TableName=1 flag=. _ERROR_=1 _N_=2199

NOTE: The SAS System stopped processing this step b ecause of
errors.

Sorting

� ASCII collation ?

� Teradata ignores case by default

� data step MERGE / BY does not

� add a PROC SORT step ?!

Sorting

� mode=ANSI / Teradata – no effect

� MERGE / BY now happy
Cumulative

flag Frequency Frequency

1 1351 1351

2 891 2242

3 4 2246

order by tablename (casespecific)

Conditional Logic

� call data

� queue_cd determines call centre category

� ‘HA’, ‘H’ Home / Auto

� ‘CR’, ‘C’ Creditor

� ‘GN’,’GEN’ General line

� records call metrics

� inbound / outbound calls

� offered, abandoned

� need wide table of call data by date

� transpose by queue

� data step “IF” or “SELECT” ?

� noooooo

Conditional Logic
select c.call_dt, c.operator_id, n.operator_nm

, sum(case when queue_cd in ('HA' , 'H')

then ib_cnt

else 0 end) as ha_ib_cnt

, sum(case when queue_cd in ('CR','C') then ib_cnt else 0 end) as cr_ib_cnt

, sum(case when queue_cd in ('GN','GEN') then ib_cnt else 0 end) as gen_ib_cnt

, sum(case when queue_cd in ('HA','H') then ob_cnt else 0 end) as ha_ob_cnt

, sum(case when queue_cd in ('CR','C') then ob_cnt else 0 end) as cr_ob_cnt

, sum(case when queue_cd in ('GN','GEN') then ob_cnt else 0 end) as gen_ob_cnt

…

from db.call_data c

…

group by 1, 2, 3

Conditional Logic

� CASE statements can be used anywhere

� SELECT

� within functions, e.g. SUM ()

� WHERE

� HAVING

� etc…

� functions like data step SELECT / WHEN

� granular control

WORK tables

� intermediate tables can be helpful

� reduce query complexity

� outer joins - left, right, full, inner

� verify intermediate results

� SAS WORK lib

� no need to define, allocate space, cleanup

� Teradata temporary tables

� disconnect – gonzo

WORK tables

� need data for 2,000 accounts supplied in Excel

� import

� create macro variable of IDs using SQL into:

� acct_no in (&mother_of_all_macro_vars)

� > 64K bytes ?

� IN () performance ?

� pull entire account table down to SAS

� subset

� use volatile table

� define Teradata libname

� proc append

� pass-thru inner-join query

why is
P11

dying?!

Teradata Temporary Tables

� CREATE GLOBAL TEMPORARY TABLE

� cannot be created WITH DATA

� CREATE, subsequent INSERT

� toooo lazy to get column definitions

� CREATE VOLATILE TABLE

� create WITH DATA

� define a PRIMARY INDEX

� COLLECT STATS

Teradata Temporary Tables

connect to teradata (&password database = ddwv04i

mode=teradata connection=global);

execute (

create volatile table travel_case_active as (

select distinct r.clm_bnft_cse_id

from ddwv04i.ins_clm_fncl_evnt e,

ddwv04i.ins_clm_bnft_cse_evnt_reltn r

where e.evnt_sys_src_id = 75

<snip>

group by r.clm_bnft_cse_id

) with data primary index (clm_bnft_cse_id)

on commit preserve rows) by teradata;

Teradata Temporary Tables

� temporary table had a primary index

� align indexes as much as possible – think AMPS

� show view teradata_view.view_name; � get table name

� show table teradata_db.table_name; � get PI

with data primary index (clm_bnft_cse_id)

� assist optimizer in formulating query plan

execute (

collect statistics

column clm_bnft_cse_id

on travel_case_active

) by teradata;

�

Teradata Temporary Tables

� volatile tables are …. temporary !

disconnect from teradata;

quit ; � say b’bye

� to persist across SQL Connections

libname tdtemp teradata &password

database = ddwv04i mode=teradata

connection=global dbmstemp=yes ;

... multiple SQL connects / disconnects / quits ...

libname tdtemp clear ; � say b’bye

Teradata Temporary Tables

� Teradata v14

execute (create table claim_master as (

with claim_status_int as (

select i_ocactvty_changes

, max(i) as i_x

from fineos..v ocstagechange

group by 1

)

select a. *

from fineos..v occase a,

claim_status_int b

where a.i = b.i_x

) by netezza; * TD v14 ;

first.by_var

proc sort data = sashelp.class

out = class;

by sex age;

run ;

data unique_class;

set class;

by sex;

if first.sex;

run ;

19 observations read from WORK.CLASS.

WORK.UNIQUE_CLASS has 2 observations

first.by_var

� requires use of special database functions

� Windowing

� OLAP or Analytical

� QUALIFY

� limits result set, analogous to HAVING

� OVER

� defines grouping criteria

� PARTITION

� similar to GROUP BY

� ORDER BY

� sorts result set before QUALIFY is applied

first.by_var

� move SAS data to Teradata volatile table
- remember the 2,000 account Excel file ?

� no Teradata fastload options available for volatile tables �

libname tdtemp teradata &password database = ddwv04i
mode=teradata
connection=global dbmstemp=yes ;

proc append base = tdtemp .sashelp_class
data = sashelp.class;

run ;

%drop_td_table(lib=tdtemp, table=unique_class);

first.by_var

execute (create volatile table unique_class as (
select * from sashelp_class

qualify row_number() over
(partition by sex

order by age desc, name) = 1

) with data on commit preserve rows
) by teradata;

� QUALIFY row_number = 1
� OVER defines grouping criteria

� PARTITION
� sex first.sex, specified row_number = 1

� ORDER BY descending age and name

� SAS default is EQUALS
� Teradata parallel processing

� explicitly define order

first.by_var - results

first. - SAS

Obs Name Sex Age Height Weight

1 Janet F 15 62.5 112.5
2 Philip M 16 72.0 150.0

first. - Teradata

Obs Name Sex Age Height Weight

1 Janet F 15 62.5 112.5
2 Philip M 16 72.0 150.0

� could we use RANK instead of ROW_NUMBER ?
� what if we want last.sex ?

%drop_td_table macro

%macro drop_td_table(lib=, table=);

%if %sysfunc (exist(& lib.. &table)) %then %do;

proc sql;
drop table & lib.. &table;

quit;

%end;

%mend drop_td_table;

Lag / Lead Functionality

� SAS has LAG() function

� found in some databases as well

� Analyical / OLAP functionality

� MIN / MAX / AVG with OVER

� rows between 1 following and 1 following - lead

� rows between 1 preceding and 1 preceding - lag

� rows unbounded preceding - all before

� etc…

� PERIOD data type

� range of date values

� use EXPAND ON to generate rows

Lag / Lead Functionality

period (captr_dt,

coalesce (min (captr_dt)

over (partition by ip_rol_id, alt_no

order by captr_dt

/*

return the next row, i.e. next highest value of

captr_dt, if there isn't a next row, return the

Teradata current_date value

*/

rows between 1 following and 1 following

), current_date

)

) as period_dt

Lag / Lead Functionality

Partition by Captr_Dt

1 2014-03-01

1 2014-03-12

Teradata current_date

2 2014-05-02

2 2014-05-11

2 2014-05-29

Teradata current_date

PERIOD data type – EXPAND ON

/*

Now that we have the period() data value, create a row

for each date between the beginning / ending date value

in the period_dt field.

We're only interested in dates that have a range from

the MOR Start date - 6 months to the current IDM snap dt.

*/

expand on period_dt as captr_dt2

by interval '1' day

for period (cast ('2011-04-30' as date),

cast(% single(&idm_snap_dt) as date))

…………

select begin(captr_dt2) as captr_dt

Conditional Logic Anywhere

� PERIOD requires begin date > end date

� data isn’t always pretty

� but you can do conditional logic in SQL to deal with it

period(coalesce(req_received_dt,req_created_dt),

case when app_sts_cd = 'CLOSED'

and app_sts_dt > coalesce(req_received_dt,req_creat ed_dt)

and (req_closed_dt is null or app_sts_dt < req_clo sed_dt)

then app_sts_dt

when req_closed_dt is null

or req_closed_dt >= cast (% single(&idm_snap_dt) as date)

then cast (% single(&idm_snap_dt) as date)

else req_closed_dt end

) as period_dt

Summing Data

� SAS is easy going

create table class_sum as

select name, sex, age, weight, height,

sum(weight) as wgt_sum

from sashelp.class

group by sex;

NOTE: The query requires remerging summary

statistics back with the original data

Summing Data

� databases are not so tolerant

ERROR: Teradata prepare: Selected non-aggregate

values must be part of the associated group

� cumulative sums

� using OLAP / Analytical functions

� using CSUM

� other similar functions available, “moving”

� MAVG

� MDIFF

� MSUM

Summing Data

� cumulative claim reserves

� adjuster sets reserve at claim open

� reserve transactions occur as time goes on

� increase if new costs come to light

� decrease as payments are made, or severity lessens

� outstanding reserves are a liability

� need to know outstanding reserves by day

1. calculate cumulative reserves

2. generate daily reserve totals

Summing Data

Claim
No

Trans Dt Reserve
Amt

Pymt
Amt

Note Accum
Reserve

1 2014-04-10 +500 Open 500

1 2014-04-12 -350 350 Payment 150

1 2014-04-13 +600 Adding 750

2 2014-04-09 +1,200 Open 1,200

2 2014-04-11 -800 800 Payment 400

2 2014-04-12 -400 Close 0

outstanding reserves on Apr 11?

Summing Data - ANSI

select clm_bnft_cse_id, event_dt

, sum (evnt_amt)

over (partition by clm_bnft_cse_id

order by event_dt

rows unbounded preceding)

as os_reserve_amt

from travel_reserves;

� what’s missing ?

� partition by – reset sum on claim case ID change
� order by – regulates order of rows into sum
� rows … – include this row and all rows before it

Summing Data - Teradata

select clm_bnft_cse_id

, event_dt

, csum(evnt_amt, event_dt) as os_reserve_amt

from travel_reserves

group by clm_bnft_cse_id

� what’s missing ?

� CSUM – Teradata only, not ANSI

� evnt_amt – summed column
� event_dt – sort column(s)

� GROUP BY – specifies “reset” column(s)

� GROUP BY is equivalent to PARTITION BY in previous query

Generate Daily Reserve Rows

select clm_bnft_cse_id

, os_reserve_amt

, period(event_dt,

coalesce(min(event_dt)

over (partition by clm_bnft_cse_id

order by event_dt

rows between 1 following and 1 following

), current_date)) as period_dt

from travel_cum_os_reserves

� create PERIOD with adjacent rows by EVENT_DT

Generate Daily Reserve Rows

select clm_bnft_cse_id

, begin(event_dt2) as event_dt

, os_reserve_amt

from (select …

coalesce(…)) as period_dt

)

expand on period_dt as event_dt2

by interval '1' day

for period (cast(% single(&MORStartDate) as date),

cast(% single(&idm_snap_dt) as date))

� voila, daily outstanding reserves

Conclusion

• do stuff where it makes sense
o use Teradata's power

o summarize, subset, sort in DB
o don’t move data unnecessarily
o rarely, if ever, move detail data

• be concerned with efficiency
o coding, execution & storage

• be inquisitive
o new releases bring new functionality
o exploit the strengths of your tools

Conclusion

• web resources

http://teradatafaqs.blogspot.ca/

http://teradata.weizheng.net/

http://developer.teradata.com/

Dieter Noeth

http://stackoverflow.com/users/25279
05/dnoeth

Contact

Harry Droogendyk

harry@stratia.ca

Phone: 905-512-3827

Web: www.stratia.ca/papers

