
Abstract

GFP1105

Teradyne CTS TPS Database

A Major Qualifying Project Report:

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

Jonathan Marokhovsky

Date: August 29, 2012

Approved:

Professor Gary F. Pollice, Major Advisor

1. Workflow

2. Data driven

3. State machine

Abstract

 i

Abstract

This project implements a system for Teradyne Corp. that provides a workflow for their

Quality Assurance Engineers’ Test Program Set (TPS) verification process. To make the system

flexible and accessible regardless of what software is available to the engineers, the Spectrum

Common Test System (CTS) Database is designed to work using web browsers and uses a

centralized database at its heart. Contained in this database is a data-driven state machine which

controls the path of the TPS logs. This creates the system which can replace Teradyne’s tedious

spreadsheet tracking system with a modern process flow and detailed tracking. The CTS

Database became a reality through the use of JavaServer Pages (JSP), Java, Expression

Language (EL), Oracle Structured Query Language (SQL), and JavaScript.

Acknowledgements

 ii

Acknowledgements

Teradyne:

• Tarra Marchetti – Organized this project and set up onsite meetings

• Luis Villalta – Firsthand Engineer’s input and help with setting up the application.

WPI

• Gary Pollice, project advisor.

• Nicholas Deapen

Table of Contents

ABSTRACT .. I
ACKNOWLEDGEMENTS ... II
LIST OF ILLUSTRATIONS ... III
LIST OF TABLES ... IV
1. INTRODUCTION ... 1
2. BACKGROUND .. 3
3. METHODOLOGY ... 4

3.1. ARCHITECTURE .. 4
3.2. PROCESS FLOW .. 5
3.3. STATE MACHINE.. 6
3.4. DATABASE DESIGN .. 9

3.4.1. Transactional Database ... 9
3.4.2. Third Normal Form ... 9
3.4.3. ID Number Sequences .. 10
3.4.4. Using Triggers to Log all Tables which Need History ... 10
3.4.5. Priming Insert Statements ... 10

3.5. LOGIN AND SECURITY ... 11
3.5.1. The Password Changer .. 11

3.6. USER PRIVILEGES .. 12
3.7. WEB DESIGN .. 14

3.7.1. Dynamic Pages .. 14
3.7.2. Expression Language (EL) ... 14
3.7.3. Using JavaScript for form validation .. 14

3.8. THE JAVA LAYER ... 15
3.8.1. The Database Connection .. 15
3.8.2. Managers ... 16
3.8.3. Factories .. 16
3.8.4. Why Java? .. 17
3.8.5. Java Beans and Bean Factories ... 17

4. RESULTS AND ANALYSIS .. 17
5. FUTURE WORK AND CONCLUSIONS ... 18

5.1. FUTURE WORK .. 18
5.2. CONCLUSIONS .. 19

6. APPENDIX A: INSTALLATION DOCUMENTATION... 20
7. APPENDIX B: MAINTENANCE DOCUMENTATION ... 31
8. APPENDIX C: USER DOCUMENTATION .. 46
9. GLOSSARY ... 74
10. REFERENCES .. 75

List of Illustrations

 iii

List of Illustrations

Figure 1: TPS Overall Architecture. ... 4
Figure 2: System Interaction Diagram. ... 5
Figure 3: State Machine Entity Relationship Diagram. .. 7
Figure 4: The Flow of the Login Screen ... 11

List of Tables

 iv

List of Tables

Table 1: The first three states in the States table. ... 8
Table 2: A Description of User Privileges. ... 13

Introduction

 1

1. Introduction

This project involves creating a database system that automates the process of verifying

the creation or changes of Test Program Sets (TPSs). Teradyne uses TPSs to adapt their

Spectrum Common Test System (CTS) to different airplane parts. Teradyne must constantly

verify that their TPSs align with the parts they are designed to test. It is the logs of this

verification process which the results of this project will replace. Currently at Teradyne this

involves three Excel spreadsheets which require engineers to manually input timestamps and

copy and paste information throughout. The CTS Database combines and centralizes all the

information in those three spreadsheets and automatically timestamps the process to remove as

much human error as possible. The flow of TPSs is programmed into the database to make it

easy to modify should the process change since TPSs all follow a static process flow. The design

is entirely data-driven with rules and conditions which makes it malleable. A CTS Database

administrator can easily change the process flow with existing database tools by inserting and

updating the metadata stored in the database.

Most projects do not run as smoothly as they were originally planned to and this project

was almost as far from an exception to that rule as possible. When this project started I knew

very little about Web programming and using servlets to make the web programs dynamic. My

area of expertise before this project was in Java with some experience in programming

databases. After my partner left the project I quickly had to fill the gaps in my knowledge and

had to teach myself to know this project completely, even though the entire project had been

overhauled just prior to my partner’s departure to address some design shortcomings. Even with

all of these setbacks I managed to make a system which suited Teradyne’s needs.

Introduction

 2

The sections to come in this report are:

• Background – A more in-depth description of Teradyne and the problem this project

addresses.

• Methodology – How the main problem is approached, mainly focusing on the state

machine and how it affects the rest of the system.

• Results and Analysis – How well the system meets the initial requirements and how it

meets expectations.

• Future Work and Conclusions – A description of any work which could further improve

the experience the CTS Database provides and any closing thoughts.

Background

 3

2. Background

Teradyne is a leading supplier of automated test equipment. They develop and sell

equipment which tests complex electronics ranging from hard disk drives to military and

aerospace parts. The organization within Teradyne sponsoring this project is the Quality

Assurance (QA) group. This organization tests the equipment meant to test other complex

equipment. The problem the Teradyne QA engineers have is that their test data logging process

is not as reliable as it could be. Teradyne engineers need a system that can automatically

timestamp items, let them add notes on different parts, and send Test Program Sets (TPSs) down

a specified path. Other systems that engineers looked into are not specialized enough to support

what the engineers want to do and not all of the systems that did fit their criteria allow for group

collaboration.

Methodology

 4

3. Methodology

3.1. Architecture

The TPS application’s design is based on the Model-View-Controller (MVC) paradigm: a

design pattern that separates the display of content from the logic used to obtain and manipulate

that content (Christensen 2010). In the case of this system, the View is the User Interface (UI),

the part of the system which the user sees. The Model is the database which stores all the

information. The Controllers are all of the Servlets that run to support a user’s actions on the

database. This architecture employs a powerful metadata driven state machine for ease of use

and flexibility to change the flow and rules for the process flow of the entire system.

Overall TPS Architecture

Test Data

Metadata

State Machine

Oracle DatabaseTomcat Server

Servlet

Generic Servlet

HTTPServlet

MyServlet

Web
Client(s)

User Interface

Figure 1: TPS Overall Architecture.

Methodology

 5

3.2. Process Flow

The CTS TPS application is a workflow application where users sign in to create TPSs,

assign tasks to the appropriate individuals, and track the progress until completion. The system is

built with the Basic User in mind (see the Basic Users section) whose general workflow is

repetitive and follows a set of steps and conditions to bring a TPS from its creation to its

completion. Figure 2: System Interaction Diagram illustrates the general flow driven by a Basic

User’s choices and the state machine’s possible outcomes.

Interaction Diagram
1. User Login

2. User selects the
TPS they are
working on

4. State Machine lists
options

3. User makes
the necessary
edits to the
TPS

5. User makes
decision

Database

Figure 2: System Interaction Diagram.

The system is built on a relational database which contains the state machine. The state

machine takes a user’s interaction on a TPS and uses that information to determine the possible

next steps for the user’s TPS. Users interact with the Java web client which interfaces with

multiple servlets that serve as clients to the state machine. The logic, rules and conditions of the

Methodology

 6

state machine are not maintained in Java, but instead consist of metadata in the relational

database. The role of the servlets is to translate the user information into input parameters to the

state machine then translate the output of the state machine into a form that can be displayed to

the user so the user can make a selection or acknowledge state change and start the cycle anew.

The following is a step-by-step breakdown of this process flow.

Step 1: User login. User has received a notification assigning him/her for a new task or the

user has test results to input in the system to update the system and pass it on to the

next state.

Step 2: User selects the TPS to work on. Or the User creates a new TPS (not shown in

diagram).

Step 3: User makes the necessary edits based on their results.

Step 4: State machine lists options for the next state for the TPS.

Step 5: User makes decision. The TPS now goes to the next user who owns it and the

process begins again from Step 1.

3.3. State Machine

The state machine is the core of the system; driving the process flow, paths, and

conditions for moving from one state to another. Metadata stored in the relational database drives

the system and gives system developers the ability to modify the process flow without needing to

Methodology

 7

change any of the program code (see Figure 3: State Machine Entity Relationship Diagram.).

Creator
O

w
ner

Prev.
ow

ner

M
odified

by

State Machine Entity Relationship Diagram

Current State

New State
Old State

New State

O
ld U

ser

N
ew

 U
ser

States

TPSLogs
StateActions StateLogs

Actions

Users

DeveloperTypes

Path

Default Path

TPS

Figure 3: State Machine Entity Relationship Diagram.

The state machine consists of two driving tables: States and StateActions. The ‘States’

table defines each of the possible states of the process flow. States are numbered sequentially

starting from 0. State 0 is the starting state for all newly created TPSs; it is never visible to users

because the system automatically forwards the TPS to its next state depending on the TPS’s path

given by the user when the TPS was created. Every step after the first is directly driven by a

user’s selected action.

The ‘StateActions’ table controls which states a TPS can progress to. Each potential state

change (e.g. moving from State 0 to State 1) is defined by a single row in the StateActions table.

Methodology

 8

It is possible to have more than one state to progress to from a single state; for example from

State 0 it is possible to move to either State 1 or State 2 depending on the developer type that is

assigned the TPS record which stands for the path. Other state changes are driven by a user’s

chosen action which comes from the Actions table. The StateActions table provides the

mechanism to specify the driving table, driving column, and driving value in order to offer

flexibility for the various paths a TPS record can take. For example to proceed from State 1 to

the next state, the system knows the user must select from a list of specific actions. A Servlet

queries for all rows in StateActions where ‘current_state’ is 1 which returns two rows driven by

the Actions table. The servlet then creates a query on the fly to display the possible actions to a

user. This drives the next possible state according to the resulting possible values retrieved on the

SQL statement is executed.

Table 1: The first three states in the States table.

The design of this state machine allows users to create new driving tables and column-

value-pairs to shape the flow of the process according to the needs of the end users. SQL

State ID State Name Path Description

0 Created
but
Without
Developer

N/A Initial state of all TPSs where the

Developer is chosen.

1 Created Ter

Apps

This is the first state after TPS is

created with Developer specified. The

Developer is Ter Apps in this case.

2 Created ASP This is the first state after TPS is

created with Developer specified. The

Developer is ASP in this case.

Methodology

 9

statements are generated during the execution of each step for maximum flexibility and choices

of outcomes.

The next tables are the Actions and DeveloperTypes tables which govern the current

possible conditions for each TPS state change. The TPS table is where the various attributes of a

TPS record are persisted and also where the current state and the current owner are recorded.

3.4. Database Design

3.4.1. Transactional Database

For peak stability, the database connection is completely transactional. This means for

every call to the database a new connection is created to the database, the command is processed

in the database, the result is given, and then the connection is closed. The advantage of this is it

is very hard to put the database in an unstable state due to a connection being interrupted since

the actual connection times are so short. The disadvantage of this is for every connection to the

database the user must wait for the connection to occur which is affected by the client’s physical

connection to the database. This makes the system respond slower than a constant connection

however stability outweighs speed in the case of this system.

3.4.2. Third Normal Form

The backing database is designed to be maintained by Teradyne’s IT department. As

such, the IT department requires an Oracle 10g database in Third Normal Form (3NF). This

means each attribute in a table had to represent information unique to its given row (Chapple

2012). For example the Notes table has a note Identification number (ID), its content, a

timestamp, a foreign key for the TPS the note relates to, and a foreign key referencing the user

Methodology

 10

that created the note. If the creator’s foreign key was instead the creator’s name and that user’s

email the Notes table would violate 3NF because the table is no longer completely about Notes;

it is instead partially about the creator.3NF forces the database to be modular, a common theme

in the design of the CTS Database. This means it is possible to change a table without the change

affecting other tables in the database.

3.4.3. ID Number Sequences

Every object has its own unique ID in order to make passing and finding objects in the

system easier. This allows a user to have the same name as another user without causing the

database to throw an error. There is an ID sequence for each main object (Users, TPSs, and

Notes) generated in the database. This prevents synchronization errors between clients since the

unique ID is handled in a centralized location.

3.4.4. Using Triggers to Log all Tables which Need History

Every table which needs to be logged has its own trigger for every necessary action. An

example of this is the State Update trigger, which records the information from the old TPS state

and the new information coming in into another table named the StateLogs table when the new

TPS information contains a state different from the old information.

3.4.5. Priming Insert Statements

When the system’s database is first created the system will not work without first having

its database primed because many parts of the system are data-driven. An example of this is the

fact that this is a user-run system, but upon initial installation of the schema the Users table is

empty. For this reason there are primary insert statements in the database schema script that

populate all of the parts of the database upon installation.

Methodology

 11

3.5. Login and Security

A good example of how the whole system works together is the login screen, Figure 4.

Figure 4: The Flow of the Login Screen

3.5.1. The Password Changer

A temporary password changer is in place to enable Administrator users to change the

passwords of users in the system. Other users in the system must seek out an Administrator in

Methodology

 12

order to change their passwords because of this. This functionality is easily removable for

Teradyne because this responsibility should be handled by Teradyne’s Login Service

mechanism.

3.6. User Privileges

The following table, Table 2, provides a basic overview of the User Privilege Levels

available to users of the CTS TPS Database system. For a more in-depth description of their

available functions see Appendix C: User Documentation: the User Documentation which is

supplied with the system.

Methodology

 13

Privilege Level Abilities in the CTS Database Best Suited For

Administrator • Adding and Removing
users.

• Managing users’
privileges.

• Managing users’
passwords.

• Managing TPSs
regardless of those TPSs’
owners.

• Correcting issues in
TPSs.

• Change TPS Owners
without changing the
TPS’s state.

• Change TPS States
without abiding by the
state machine.

• All the abilities of the
other two privilege
levels.

• Senior engineers who have had

extensive experience with TPSs

Basic User • Create new TPSs.
• Progress TPSs which the

user owns through the
state machine.

• Add notes to TPSs which
the user owns.

• Change values of TPSs
which the user owns.

• All actions which a
View-Only User can do.

• Engineers who deal with TPSs.

View-Only User • View information on
TPSs in the system.

• Search the system for
certain TPSs.

• Managers looking for
inefficiencies in the system or
want to make sure engineers are
working as expected.

Table 2: A Description of User Privileges.

Methodology

 14

3.7. Web Design

3.7.1. Dynamic Pages

JavaServer Pages (JSP) allows the User Interface (UI) to be made out of common parts

(“Java EE Tutorial”). This, coupled with the use of Expression Language (EL), make sure the UI

follows the theme of modularity present throughout the CTS Database.

3.7.2. Expression Language (EL)

A drawback to using JSP is the inconsistent behavior of embedding Java in JSPs via JSP

scriptlets. The JSP 2.0 protocol has a solution for this: Expression Language (EL). EL is a tag-

based language which removes the need for scriptlets in JSP by hard-coding values at compile

time in JSP pages. Converting pages to use EL instead of scriptlets allows the system to keep the

functionality of the scriptlets while removing the risk of having live code on the page (Lubke,

Ball, and Delisle). Despite not having scriptlets, the system can still dynamically choose how

many tabs to display in the header according to a user’s privilege level among other things. This

makes EL extremely valuable throughout the pages of the system.

3.7.3. Using JavaScript for form validation

JavaScript in the system validates any user input at the form level. It makes sure that no

information is sent to the server that could break the system and makes sure that mistakes can be

fixed by the user before a form’s input is committed. Form-validation is compartmentalized by

functions that are used as validation rules to make it easy to remove a rule if necessary once

again adhering to the theme of modularity. Each rule has a single type of check. For example, on

some forms there are required fields that cannot be left blank. There are other fields on the same

Methodology

 15

form that can only be numbers. As a result there is a single rule to make sure all the fields

labeled to only have numbers are checked as such and there is another rule to make sure all

required fields are checked and made sure they are filled out. The check scripts use the “on

submit” action to make sure the checks are run before the form submits and will only allow the

form to submit if all the checks pass. This makes it very easy to add more rules or remove

unnecessary rules in the future.

 One example of this is a rule to check that either two fields of one type were filled out or

two fields of another type were filled out. All four fields could not be filled out nor could three

fields be filled out nor could a single field. When engineers at Teradyne reviewed the system, it

was found that those rules are not necessary. Engineers could review how the system worked

without the rule in the amount of time it took to reload the page because of the

compartmentalized rules.

3.8. The Java Layer

The original documentation from Teradyne coupled with the available skillset of the

developers made it easy to begin designing the system in the early planning stages of the project.

Java is a forte of both of the original designers and a web design is flexible and portable. The

only remaining variable is the database. With the object-oriented Java language, the database

could be left as a variable, designed as an interface, and implemented later.

3.8.1. The Database Connection

The system code linking the Java code to the database is abstracted using Interfaces and

factories to keep with the theme of a modular system. The current code supports Oracle 10g but

Methodology

 16

the system is designed in such a way to allow for a simple transition to a different database if

need be by implementing another version of the database interfaces available in the system.

3.8.2. Managers

Every part of the CTS Database which must interact with another non-Java portion of the

System must go through a Manager interface. Each Manager manages and interprets information

from a connection to a non-Java part of a system. For example the database connection is

managed by the Oracle Database Manager. In the future if Oracle is no longer supported at

Teradyne, developers can make a MySQL Database Manager and as long as it instantiates the

original Database Manager interface, no other parts of the system would have to be tampered

with. Part of what makes the Managers work with the CTS Database is the Factories which act as

interfaces between the Database Manager level and the rest of the system.

3.8.3. Factories

Factories in this system are full objects that handle the creation of certain parts of the

system. A good example is the TPS Factory class that handles every action to do with TPSs.

When the TPS Factory class is first made it takes in a Database Manager which is what it uses

for all database actions such as getting a whole TPS from the database or sending an entire TPS

to the database to be stored. The TPS Factory does all operation on a TPS that can be done in

Java without consulting the database. This keeps the amount of commands to instantiate when

changing databases at a minimum and minimizes the chance that changing a database will be

incompatible.

Results and Analysis

 17

3.8.4. Why Java?

Both developers knew how to program in Java. Also the object-oriented paradigm makes

organizing the system simple for anyone who inherits the code base. Finally, Java makes it easier

to send information to the two ends of the system – the database end (using JDBC) and the Web

end (using Java Beans).

3.8.5. Java Beans and Bean Factories

Java Beans are Java objects which are optimized in passing information. They only use

getter and setter methods and must conform to a particular convention (“JavaBeans”). This

makes them very powerful when it comes to sending organized information to a front end (“Java

EE Tutorial”). Another plus is EL can easily interpret Java Beans making complex information

transfer simple. The only problem with Java Beans is the fact that information cannot be sent to

the bean through a constructor. Bean Factories solve this dilemma. Bean Factories convert the

information from a complex object (one with a constructor to automatically load it) into Beans.

For example there is a complex User object which is passed around within the system and there

is a much less complex User Bean which is sent to the front end when necessary. There is a User

Bean Factory that converts from the User object to the User Bean object. This means a

programmer who needs to send a user’s information to the front end must only get the User

object, convert it to a Bean, and send that Bean to the UI.

4. Results and Analysis

When this project began it seemed simple: make a database and then make a website to

put on top of it with some logic between the two to make the process flow work as directed. All

of the little parts of the system which had to be made and accounted for made the project much

Future Work and Conclusions

 18

more complicated. When some requirements were not followed and the system was built with an

object database instead of an Oracle database the project became much more difficult and after a

complete redesign and a lost partner difficulty peaked. After learning how to utilize JSP, Java

servlets, Web servers, Oracle databases, and EL the system took shape. The system became

organized so that developers in the future do not have the same difficulties. The resulting data-

driven state machine allows Teradyne to progress their TPSs from creation to closing

automatically and reliably.

This project did not go as expected. But that does not make it any less of a success.

Working with Teradyne showed me that requirements are destined to change the importance of

designing software in a modular fashion to help cope with changing requirements and prevent

the loss of precious time switching out pieces of the system. In the end, Teradyne is receiving a

system which will solve their TPS logging problems smoothly.

5. Future Work and Conclusions

5.1. Future Work

There are several parts of the system which became requirements but had to be put aside

due to time constraints or lack of information. The most pressing and the most likely to be

worked on soon is the fact that the system is not connected to Teradyne’s login service. This was

put aside because information on how to connect to that service was not available but it is a

higher priority requirement because it puts the system at a heightened security risk. With this

update comes another topic of future work – linking the system to Teradyne’s email service. This

was in the original specifications for the system but, like the login service, information on

connecting to the service could not be attained. This capability of the system would be very

Future Work and Conclusions

 19

useful to have though as it could make it easier for TPSs to be passed from engineer to engineer

and there are also some standardized emails which would be automatically sent for handoffs.

Some other future work on this includes a protocol which allows users to attach files to TPSs and

more work on improving the GUI.

5.2. Conclusions

The goal of this project is to deliver to Teradyne a workflow system to improve the

productivity of their test engineers. Teradyne has a well-defined process to test various parts but

they are challenged to follow the process methodically. As a result, they asked WPI to look into

automating the steps of the process to reduce errors and missteps that affect their effectiveness.

The project started with taking their requirements and interpreting them into a computer system

automating and guiding the engineers during each step of the test cycle. The project took a life of

its own with significant challenges along the way. After design changes and bug fixes Teradyne

is receiving a system that will automatically progress TPSs down a flow and dynamically choose

which states the TPS will be able to go to next. In the ever changing market a company needs

methods of making sure their product is validated reliably that is adaptable enough to evolve

with the company, this software addresses both issues.

Appendix A: Installation Documentation

 20

6. Appendix A: Installation Documentation

WORCESTER POLYTECHNIC INSTITUTE

Installation Documentation
Teradyne CTS TPS Database

Version 1.0.2

Jonathan Marokhovsky

8/11/2012

Appendix A: Installation Documentation

 21

Contents
DELIVERABLE LIST .. 22
DATABASE SCHEMA INSTALLATION .. 23
DOWNLOADING AND INSTALLING ECLIPSE ... 24
IMPORTING THE TERADYNECTSDATABASE.ZIP FILE INTO ECLIPSE .. 25
CTS SYSTEM DATABASE LINKING ... 27
DEPLOYING TO THE TOMCAT SERVER .. 29
CREATING THE FIRST USER .. 30

Deliverable List

 22

Deliverable List

• The TeradyneCTSDeliverable.zip file which contains:

o Installation Documentation.docx

o User Documentation.docx

 User help with in depth directions on how to do all of the functionality which

a User of the Teradyne CTS Database system might need to use.

o Maintenance Documentation.docx

 Directions on where to look to add new functionality to the Teradyne CTS

Database system and tips on how to maintain the code base.

o database.sql

 This is the SQL script file which will build the database schema which makes

up the backbone of the Teradyne CTS Database system.

o TeradyneCTSDatabase.zip

 This is the code of the rest of the system exported into a .ZIP file. Directions

on unpacking this .ZIP file into Eclipse are in IMPORTING THE

TERADYNECTSDATABASE.ZIP FILE INTO ECLIPSE.

Database Schema Installation

 23

Database Schema Installation

These are directions for building the Oracle Database Schema. This is the backbone for the

whole CTS System. These instructions will customize an empty database so that it can work with

the CTS System.

Prerequisites

• Have an empty Oracle database created for the purpose of this system.

• Have the database.sql file for the CTS Database System. This should be in the

TeradyneCTSDatabase.zip file received which contains the CTS System.

• A User for the database with CREATE privileges.

Steps

1) Run the database.sql file as a script on the database. If possible pipe the output of the script

to a text file to make the next step easier.

2) Check over the output of the script and make sure there were no errors. There will be four

warnings which say “SP2-0272: escape character cannot be alphanumeric or whitespace”,

these can be ignored.

Downloading and Installing Eclipse

 24

Downloading and Installing Eclipse

These are the steps to install the Eclipse IDE so that it will work in importing from the

TeradyneCTSDatabase.zip file correctly.

NOTE: The Eclipse IDE is constantly being updated. The system was developed using Eclipse

3.7 (Indigo) and at the time of writing this the Eclipse version at Eclipse.org is Eclipse 4.2

(Juno). The idea behind the directions will still work but where to find the commands may

change.

Prerequisites

• Know whether the system you are working on has a 32 bit operating system or a 64 bit

operating system.

Steps

1. Go to http://www.eclipse.org/downloads/.

2. Look for the Eclipse IDE for Java EE Developers and download the appropriate bit

version. You should be downloading a .ZIP file.

3. Extract the given .ZIP file to a place you will remember. This should extract an eclipse

directory to this place.

4. Open the eclipse directory where you can find the eclipse.exe file. Clicking this will start

up Eclipse.

5. The first time Eclipse is started it will ask for a workspace, either choose a location on

your own pressing the Browse button or stick with the default. After loading this should

http://www.eclipse.org/downloads/

Importing the TeradyneCTSDatabase.zip File into Eclipse

 25

come up with a screen. Press the Workspace button and it should show the main coding

space. This step should not have to be repeated after the first time starting up.

Importing the TeradyneCTSDatabase.zip File into Eclipse

These directions are to import the TeradyneCTSDatabase.zip file into Eclipse to create the

appropriate class structure automatically.

Prerequisites

• Have the TeradyneCTSDatabase.zip file.

• Complete the DOWNLOADING AND INSTALLING ECLIPSE section to install Eclipse.

Steps

1. Start Eclipse.

2. Make a new Project

a. Right click the Project Explorer section usually on the Left side of the screen.

b. Select New > Project…

c. Scroll down to Web > Dynamic Web Project double click on it.

d. For a “Project name” make it TeradyneCTSDatabase.

e. Press Finish.

3. Right click the new Project named TeradyneCTSDatabase.

4. Go to File > Import.

5. Select General > Archive File.

6. Browse for the TeradyneCTSDatabase.zip.

7. Make sure the “Into folder” field reads TeradyneCTSDatabase.

Importing the TeradyneCTSDatabase.zip File into Eclipse

 26

8. Press Finish and it should all be imported correctly.

CTS System Database Linking

 27

CTS System Database Linking

Prerequisites

• Completed the Database Installation section.

• Have the database name, hostname, and a port number for the database made in the

DATABASE INSTALLATION section.

• Have an Application User solely for the system to connect to the database which has

INSERT and UPDATE privileges.

• Have the source files for the CTS System. This should be in the form of a .ZIP file.

• Have the Eclipse Enterprise Edition IDE installed on a computer, or some other way to

modify Java files.

o Another IDE which can convert a Java Project to a .WAR file could work but

some steps might be different. The following steps describe how to perform this

action using Eclipse.

Steps

1) Start Eclipse and make sure it has access to the TeradyneCTSDatabase project

2) Open the TeradyneCTSDatabase project in the Project Explorer.

3) Under Java Resources navigate to the src folder.

4) Navigate to com.teradyne.tpsdb.database.OracleDatabaseConnector.java.

5) Find the class variables DEFAULT_HOST, DEFAULT_DB, and DEFAULT_PORT and

modify them to be the hostname, database name, and port number respectively to reflect the

database which the database.sql script was run on.

CTS System Database Linking

 28

6) Find the class variables UN and PW and modify them to be the Application User name and

password respectively.

7) Save your changes.

8) Right click on the TeradyneCTSDatabase project and go to Export > WAR file.

9) Make sure the Web project field reads TeradyneCTSDatabase.

10) Browse for a Destination you can easily find to save the .WAR file to.

11) After having found a Destination the Finish button should be clickable, click it.

12) Make sure that the TeradyneCTSDatabase.war file is in the place you would expect it to be

and that it was modified at the time you made the .WAR file.

Deploying to the Tomcat Server

 29

Deploying to the Tomcat Server

Prerequisites

• Completed the Database Installation and CTS System Database Linking sections.

• Have a system which has Apache Tomcat 7.0 installed on it. These directions should

work for any Java container Web server but it has been tested exclusively on Apache

Tomcat 7.0.

o Have a User on this system which has privileges to install .WAR files.

• Have access to the .WAR file made in the CTS System Database Linking chapter.

• A web browser to access the Apache Tomcat Manager App.

Steps

1) Log in to the Apache Tomcat Manager App using your browser of choice and the User with

install privileges.

2) Go to the bottom of the screen under Deploy a Web app and press the Browse button.

3) Navigate to the .WAR file from the CTS System Database Linking chapter.

4) Press the Deploy button to deploy it.

5) Make sure the TeradyneCTSDatabase is green, deployed, and is running.

Creating the First User

 30

Creating the First User

Prerequisites

• Complete the first three sections (Database Installation, CTS System Database Linking,

and Deploying to the Tomcat Server)

Steps

1) Navigate to the CTS System. This should be the link to the Tomcat Server followed by

“/TeradyneCTSDatabase/”. (Example: tomcat.teradyne.com:8080/TeradyneCTSDatabase/).

2) Log in as the default admin by using the following credentials:

• Username: admin

• Password: 1234

3) Create a new Administrator User which will be your user by filling out your credentials.

4) Log out by pressing the Logout button in the upper right corner of the screen.

5) Log in with your new User.

6) Remove the admin user.

7) Log out again.

Appendix B: Maintenance Documentation

 31

7. Appendix B: Maintenance Documentation

WORCESTER POLYTECHNIC INSTITUTE

Maintenance Documentation
Teradyne CTS TPS Database

Version 1.0.2
GFP 1105

Jonathan Marokhovsky

8/11/2012

Appendix B: Maintenance Documentation

 32

Table of Contents
LINKING THE SYSTEM TO LDAP ... 33
HOW TO DISCONNECT THE ADMIN CHANGE PASSWORD ... 34
UNHOOKING THE BUILD HISTORY IN THE HELP SECTION ... 35
HOW TO CONNECT TO A NEW TYPE OF DATABASE .. 36
HOW TO MODIFY THE STATE MACHINE ... 37
HOW TO ADD ATTRIBUTES TO TPS OBJECTS ... 43
HOW TO MOVE AN EXISTING ORACLE DATABASE ... 45

Linking the System to LDAP

 33

Linking the System to LDAP

Goal: To allow the CTS Database to utilize the Teradyne login service.

1) Configure com.teradyne.tpsdb.teradyne.TeradyneConnection.java so that it connects to the

Teradyne login system. Currently all the methods in this class are placeholders which don’t

do anything so replacing the contents of those methods with code that does what the javadocs

say the methods should do using the connection to the services will not break anything.

2) Configure com.teradyne.tpsdb.security.SecurityManager.java’s login method so that instead

of checking the internal database for a password field, it is instead checking using the

com.teradyne.tpsdb.teradyne.ITeradyneConnection.java interface to connect to the

Teradyne login system and check with the password there.

3) Modify the WebContent/administration/useradministration/AddUser.jsp file so that it can

better utilize the Teradyne connection.

4) Modify com.teradyne.tpsdb.users.AddUserServlet.java so that it will take in the new User’s

information, still add the username to the database, and search the Teradyne system for the

given user, possibly redirecting to a different page if the user is not found.

5) Make the password field nullable in the Oracle database so that system user passwords are no

longer in clear text and no longer supported from the Oracle database (the Teradyne

connection should handle this now).

6) Remove the Change Your Password ability as that will now be handled through the Teradyne

service.

How to disconnect the Admin Change Password

 34

How to disconnect the Admin Change Password

This is how to remove the Change Password functionality when it becomes unnecessary or a

security risk.

Requirements

The CTS System is already connected to Teradyne’s login service.

Directions

1) Open the project for the system.

2) Navigate to WebContent/administration/useradministration/UserManagement.jsp.

3) Find the line which starts with and delete from the line

above to the line below. At the time of writing this this would be deleting lines 43-45.

4) Find the line which says <c:if test=”${param.form==’changePW’ }”> and

delete from that line to the end of where it says </c:if> two lines under it. At the time of

writing this this would be deleting lines 19-21.

Unhooking the Build History in the Help Section

 35

Unhooking the Build History in the Help Section

This is how to remove the Build History section of the Help portion of the system.

Directions

1) Open the project for the system.

2) Navigate to WebContent/help/help.jsp.

3) Find lines 41-43 and remove them. Line 41 should read <c:when

test=”${param.section == ‘buildHist’ }”>.

4) Find lines 29-36 and remove them. Line 30 should also read <c:when

test=”${param.section == ‘buildHist’ }”>.

How to connect to a new type of database

 36

How to connect to a new type of database

This is how to configure the CTS Database to be able to connect to a new type of database that

previously was not supported. For example, the CTS Database currently only supports Oracle

databases, this section is if you want the system to be able to connect to a MySQL database or

some other database.

Requirements

The database must be able to support

• Triggers

• Inserts, Updates

• Sequences

If any of the above are not supported then the same functionality must be developed in Java.

Interfaces to Instantiate

These are interfaces which must be implemented for a new database connection.

• com.teradyne.tpsdb.database.IDatabaseConnector.java

• com.teradyne.tpsdb.environment.IDatabaseEnvironment.java

• com.teradyne.tpsdb.process.IStateProgressionManager.java

• com.teradyne.tpsdb.tps.IStateHistoryManager.java

• com.teradyne.tpsdb.tps.ITPSManager.java

• com.teradyne.tpsdb.users.IUserManager.java

These are the current implementations of the preceding interfaces which can be used as examples

of how to implement the interfaces.

How to Modify the State Machine

 37

• com.teradyne.tpsdb.database.OracleDatabaseConnector.java

• com.teradyne.tpsdb.environment.OracleDatabaseEnvironment.java

• com.teradyne.tpsdb.process.OracleStateProgressionManager.java

• com.teradyne.tpsdb.tps.OracleStateHistoryManager.java

• com.teradyne.tpsdb.tps.OracleTPSManager.java

• com.teradyne.tpsdb.users.OracleUserManager.java

The naming convention is to replace the “I” in the class name which denotes the class as an

Interface with the name of the database getting supported. For example, for a MySQL database

implementation of the IDatabaseConnector.java class one would name the implementing class

MySQLDatabaseConnector.java.

Creating the Schema

To make a new database schema, convert createSchema.sql to a form which the new database

will understand.

How to Modify the State Machine

This is how to change the logic of the State machine which TPSs progress down. The state

machine is simple and is completely data-driven which means one must only change rows in the

database to modify the State table. There is a more in depth explanation of the state machine in

the MQP Report.

Tables to Look at / Insert Rows Into

• States

How to Modify the State Machine

 38

o These are the actual states, inserting rows into this table will add points in the

state machine

• StateActions

o These are the connections between states, inserting rows into this table will

connect states in the machine

• Actions

o These are the names of actions as they will show up to Users, inserting rows into

this table will give more possible names of actions for the StateActions table to

use.

• DeveloperTypes

o These are the paths which States follow; currently there are only three, Not

Applicable, Teradyne Apps, and ASP. Not Applicable is used for paths which

both Teradyne Apps and ASP follow.

o CAUTION: this also affects the types of developers as the name implies.

Example case

Say I wanted to add a state in the state machine right before the Closed state named “Ice Cream

Party” with an Action coming from it and leading it to the Closed state named “Recover from

Stomach Ache”. I would:

1. First I would focus on making the new State.

a. Query the database to find the largest state_ID. The code I would use (first

result is what you care about):

How to Modify the State Machine

 39

i. SELECT state_ID FROM States ORDER BY state_ID

DESC;

b. Say the largest ID in this case is 21. Adding 1 to this will give you your new

state_ID. So the new state_ID will be 22.

c. Find out the state_path to use by running the following query on the database

and then choosing the dev_ID which corresponds to the desired path.

i. SELECT dev_ID, dev_name FROM DeveloperTypes;

d. In this case we are on the main path so the state_path will be 0.

e. Now we can build our INSERT statement for the new state:

i. INSERT INTO States (state_ID, state_name,

state_desc, state_path) VALUES(22, ‘Ice Cream

Party’, ‘Throw an ice cream party to celebrate

closing a TPS’, 0);

f. Make a new .SQL file and put this INSERT statement into it. I would name the

.SQL file newState.sql. Save this file and set it aside.

2. Now make the new Action.

a. Find the largest action_ID.

i. SELECT action_ID FROM Actions ORDER BY action_ID

DESC;

b. Say in this case the highest action_ID is 22. Add 1 to this to make it your new

action_ID. So the new action_ID will be 23.

c. Build the INSERT statement for the new Action:

How to Modify the State Machine

 40

i. INSERT INTO Actions (action_ID, action_name)

VALUES(23, ‘Recover from stomach ache’);

d. Add this INSERT statement to newState.sql.

3. Now make the new StateAction.

a. Find out the ID of the State which will be on the other end of the Action you are

implementing.

i. SELECT state_ID, state_name FROM States

b. Since we are going to the Closed state the state_ID for that is 21.

c. Knowing this we can now build the StateAction INSERT statement with this

information:

i. Current_state = 22, new_state=21, event_value = 23.

ii. INSERT INTO StateActions (current_state,

new_state, event_table, event_col_name,

event_value_key, event_value) VALUES(22, 21,

‘Actions’, ‘Action_name’, ‘Action_ID’, 23);

d. Add this INSERT statement to newState.sql. Make sure this statement is under

the State INSERT statement and the Action INSERT statement.

4. Make the Revert StateAction to go from our new state to the state before it by following

the last step and having the event_value be 0 which is the ID for the Revert action.

a. Make the revert StateAction should end up looking like this:

i. INSERT INTO StateActions (current_state,

new_state, event_table, event_col_name,

How to Modify the State Machine

 41

event_value_key, event_value) VALUES(22, 20,

‘Actions’, ‘Action_name’, ‘Action_ID’, 0);

b. Add this INSERT statement to newState.sql. Make sure this statement is under

the State INSERT statement and the Action INSERT statement.

5. Update the StateActions which are displaced by adding this new State in the flow.

a. Look up the old StateAction which used to connect the State before our new State

to the State after our new state. We already know its ID from the last step. We are

doing this to find out the action ID to use because StateActions are unique by a

combination of their current_state, event_table, and

event_value columns.

i. SELECT * FROM StateActions WHERE current_state =

20 AND new_state = 21;

b. The columns values in this case are event_table = ‘Actions’ and

event_value = 22

c. Take all the information from that to make the UPDATE statement.

i. UPDATE StateActions SET new_state = 22 WHERE

current_state = 20 AND event_table = ‘Actions’

AND event_value=22;

d. Add this UPDATE statement to newState.sql. Make sure this statement is under

the State INSERT statement and the Action INSERT statement.

6. In most cases the last step would have to be repeated for the Revert StateAction

belonging to the State after our Ice Cream state but since that State is the Closed state in

this case That is unnecessary.

How to Modify the State Machine

 42

7. Run the newState.sql script on the database now.

8. Add the contents of the newState.sql script to the bottom of the createSchema.sql script

to make sure when creating a new database for this system these changes are also

included.

How to Add Attributes to TPS Objects

 43

How to Add Attributes to TPS Objects

This is how to change what fields a TPS has. For example, if there is now an attribute for a sub-

owner for TPSs this section is where one should start.

Places to Look to Change

• Database Level

o In createSchema.sql

 TPSs table (search for “CREATE TABLE TPSs”)

• This is where all TPS information is stored

 The TPS Update Trigger (search for “trg_before_update_tps”)

• This controls how a TPS acts when it is updated

• Java Level

o com.teradyne.tpsdb.tps.ITPS.java

 The interface controlling what information can be acquired from a TPS

object in Java

o com.teradyne.tpsdb.tps.TPS.java

 The instantiated class which controls how the information is actually

controlled in Java

o com.teradyne.tpsdb.tps.ITPSManager.java

 The interface which handles how TPS information is acquired from

whatever database the system is connected to.

o com.teradyne.tpsdb.tps.OracleTPSManager.java

How to Add Attributes to TPS Objects

 44

 How the system actually interprets the TPS information it gets from an

Oracle database.

o com.teradyne.tpsdb.tps.TPSBean.java

 This is used to make it easier for the information in a TPS to be interpreted

by the view.

 com.teradyne.tpsdb.tps.TPSBeanFactory.java

• This controls the conversion from the TPS object to the TPSBean

object.

• Any attributes added to the TPSBean should be added to the

convertor in this class

o com.teradyne.tpsdb.tps.TPSFactory.java

 This abstracts to another level how information is gathered from

databases.

o Any other class in the com.teradyne.tpsdb.tps package

• JSP Level (View)

o WebContent/management/searchResults.jsp,

WebContent/engineering/viewMyTPS.jsp, and

WebContent/engineering/superViewMyTPS.jsp

 These are the views where a list of TPSs and some important information

o WebContent/engineering/wholeTPS.jsp

 This is the screen which will show all information for a given TPS

o Most other files in the WebContent/engineering/ directory and the

adminTPSFunctions sub-directory

How to Move an existing Oracle Database

 45

How to Move an existing Oracle Database

• This is assuming that the Oracle Database is 10g and above, any database older than that

should use the export/import commands

• In the command line use the expdp/impdp commands

• See www.orafaq.com/wiki/Data_Pump for actual directions on how to do this.

http://www.orafaq.com/wiki/Data_Pump

Appendix C: User Documentation

 46

8. Appendix C: User Documentation

WORCESTER POLYTECHNIC INSTITUTE

User Documentation
Teradyne CTS TPS Database

Version: 1.0.2

GFP 1105

Jonathan Marokhovsky

8/11/2012

Appendix C: User Documentation

 47

Table of Contents
ALL FORMS ... 48

THE RESET BUTTON... 48
THE CLEAR BUTTON .. 48
CANCEL BUTTONS ... 48

User Administration .. 48
Administrator TPS Functions ... 48
TPS Management ... 49

ADMINISTRATOR FUNCTIONS .. 50

Precondition to All Administrator Functions .. 50
Precondition to All Administrator TPS Management Functions .. 50

ADD USER .. 51
REMOVE USER ... 53
CHANGE USER PRIVILEGE ... 54
CHANGE A USER’S PASSWORD ... 55
ADMINISTRATOR TPS MANAGEMENT | VIEW ALL TPSS IN THE SYSTEM .. 56
ADMINISTRATOR TPS MANAGEMENT | TPS EDIT ... 56
ADMINISTRATOR TPS MANAGEMENT | VIEW ALL OF THE INFORMATION PERTAINING TO A TPS ... 57
ADMINISTRATOR TPS MANAGEMENT | CHANGE A TPS'S STATE TO ANY STATE ... 58
ADMINISTRATOR TPS MANAGEMENT | CHANGE A TPS'S OWNER ... 60

BASIC USER FUNCTIONS ... 62

Preconditions to All Basic User Functions .. 62
CREATE A NEW TPS ... 63
VIEW ALL TPSS OWNED BY THE LOGGED IN USER .. 65
VIEW ALL OF THE INFORMATION PERTAINING TO A TPS ... 66
EDIT A TPS .. 67
CHANGE A TPS'S STATE ... 69

VIEW-ONLY USER FUNCTIONS .. 71

QUERYING FOR TPSS ... 71

All Forms

 48

All Forms

The following buttons are present on all forms in the system.

The Reset Button

The Reset button, if present on a form, will set all fields on the form back to what was present

upon loading of the page. For example, if a date field says 08/15/2013 and you change it to

say 09/23/3013 pressing the Reset button will make it say once again 08/15/2013.

The Clear Button

The Clear button, if present on a form, will set all fields on the form back to a blank. This is

typically present on a form which starts out with all fields completely blank.

Cancel Buttons

User Administration

Pressing the Cancel button on any of the forms under the Administration tab results in returning

to the main User Management screen without changing anything in the database. This is the

same result as pressing the “Back to User Management” link at the top of the screen, the User

Management button on the left side of the screen, or the Administration tab again.

Administrator TPS Functions

Pressing the Cancel button on any of the forms that are classified as Administrator TPS

Management will send the User back to the Admin TPS View screen. This is the same result as

pressing the Admin TPS View button.

All Forms

 49

TPS Management

Pressing the Cancel button on any form from the TPS Management screen other than those that

are Administrator TPS Functions will return the User to the View My TPSs screen.

Administrator Functions

 50

Administrator Functions

An administrator is a User who has the responsibility of maintaining the CTS system. These

responsibilities include User Maintenance and correcting mistakes in TPSs by being able to

move any TPS to any state. Because of their responsibilities in maintenance of the system,

Administrators also have access to the same functions as Basic Users and View-Only Users.

Note: The Administrator TPS Management Functions are functions which only an Administrator

has access to help maintain TPSs in the system.

Precondition to All Administrator Functions

• Log in as a User with administrator privileges. This should place the User automatically
at the Administration screen.

Precondition to All Administrator TPS Management Functions

Administrator Functions

 51

1) Navigate to the TPS Management screen.

2) Press the Admin TPS View button. This should place the User at the View All TPSs screen.

Add User

Goal: To add a new User to the Teradyne CTS Database System. This new User must already be

an employee of Teradyne.

Administrator Functions

 52

How to use it:

1) Press the Add User link.

2) Fill out the new User's information.

3) Press the Add User button.

Administrator Functions

 53

Remove User

Goal: To remove an existing User from the Teradyne CTS Database System.

Warning: This cannot be undone from the application and requires someone who manages the

SQL database to undo this.

How to use it:

1) Press the Remove User link.

2) Select the User to be removed from the Select User dropdown menu.

Administrator Functions

 54

3) Press the Remove User button. This will immediately remove the User from the system.

Change User Privilege

Goal: To change an existing User's privileges.

How to use it:

1) Press the Change User Privilege link.

2) Select the User who's privilege will be changed from the “Select User” dropdown menu.

3) Select the new User Privilege from the “New User Privilege” dropdown menu.

4) Press the Change User's Privilege button.

Administrator Functions

 55

Change A User’s Password

Goal: To change a User’s password.

How to use it:

1. Press the Change A User’s Password link.

2. Select the User who’s password is to be changed.
3. Type in the User’s new password.
4. Confirm the User’s new password by typing it again in the confirmation field.

Administrator Functions

 56

Administrator TPS Management | View All TPSs in the System

Goal: To view all TPSs in the system regardless of owner.

How to use it:

1) Follow the steps under the PRECONDITION TO ALL ADMINISTRATOR TPS MANAGEMENT

FUNCTIONS section; this will land the User on the Admin TPS View page.

• This will show all TPSs in the system, for all users.

Administrator TPS Management | TPS Edit

Goal: To edit all fields in a TPS.

How to use it:

1) Find the TPS to be edited in the list of TPSs.

2) Press the Edit button next to the TPS's information under the Actions column.

3) Change whatever information is necessary.

4) Add a note if necessary.

Administrator Functions

 57

5) Press Submit to submit the edits on the TPS.

Administrator TPS Management | View All of the Information Pertaining to a TPS

Goal: To view information on any TPS which exists in the system.

How to use it:

1) Find the TPS in the list of TPSs.

Administrator Functions

 58

2) Press on the TPS's TPS Number.

3) The information will show up in a new window or tab depending on browser settings.

• This is so that a User can continue to work in the system while keeping the information
up.

4) Close out of the window when done using the information.

Administrator TPS Management | Change a TPS's State to Any State

Goal: To move a TPS to any possible state.

How to use it:

1) Find the TPS to progress in the list of TPSs.

Administrator Functions

 59

2) Press the Change State button next to the TPS's information under the Actions column.

3) Select the correct action to be done to the TPS from the “Choose the Action” dropdown list.

Administrator Functions

 60

4) Press the Submit button to submit the state change.

Administrator TPS Management | Change a TPS's Owner

Goal: To send a TPS to another owner without changing the TPS's state.

How to use it:

1) Find the TPS to progress in the list of TPSs.

Administrator Functions

 61

2) Press the Change Owner button next to the TPS's information under the Actions column.

3) Select the new owner of the TPS from the “The New Owner Will Be” dropdown list.

4) Press the Submit button to submit the state change.

Basic User Functions

 62

Basic User Functions

A Basic User is the average user of the CTS TPS Database. This privilege level is meant for

those with the responsibility of creating new TPSs and progressing them from creation to

completion. Basic Users also have access to all View-Only User functions.

Preconditions to All Basic User Functions

1) Log in as a User with Basic Privileges or higher.

Basic User Functions

 63

2) If not automatically on the TPS Management tab, click on the tab to navigate to the correct
screen.

Create a new TPS

Goal: To Create a new TPS and put it in the system.

Basic User Functions

 64

How to use it:

1) Press the “Create a TPS” button to go to the Create TPS screen.

2) Fill in all necessary information for the TPS.

Basic User Functions

 65

3) Any additional information can go in the Notes section.

4) Press Create TPS Report to create the TPS.

View All TPSs Owned by the Logged in User

Goal: To view all TPSs which the currently logged in User owns.

Basic User Functions

 66

How to use it:

1) The list of TPSs there are all TPSs owned by the currently logged in User.

View All of the Information Pertaining to a TPS

Goal: To view information on a TPS which already exists in the system and is owned by the

User.

How to use it:

1) Find the TPS in the list of owned TPSs.

Basic User Functions

 67

2) Press on the TPS's TPS Number.

3) The information will show up in a new window or tab depending on browser settings.

a) This is so that one can continue to work in the system while keeping the information up.

4) Close out of the window when done using the information.

Edit a TPS

Goal: To edit the information of a TPS which already exists in the system and is owned by the

User.

How to use it:

1) Find the TPS to be edited in the list of owned TPSs.

Basic User Functions

 68

2) Press the Edit button next to the TPS's information under the Actions column.

3) Change whatever information that is necessary.

Basic User Functions

 69

4) Add a note if necessary.

5) Press Submit to submit the edits on the TPS.

Change a TPS's state

Goal: To move a TPS which the logged in User owns to a new state. Changing a TPS’s state

requires that a new Owner be assigned to the TPS as well.

How to use it:

1) Find the TPS to progress in the list of owned TPSs.

Basic User Functions

 70

2) Press the Change State button next to the TPS's information under the Actions column.

3) Select the correct action to be done to the TPS from the “Choose the Action” dropdown list.

4) Select the new owner of the TPS from the “The New Owner Will Be” dropdown list.

5) Press the Submit button to submit the state change.

View-Only User Functions

 71

View-Only User Functions

A View-Only User only has access to see information in the CTS TPS Database. This User

privilege does not have any way of modifying information. This privilege level is good for those

who do not need access to modify or progress any TPSs, but need to gather information on how

TPSs are progressing and see patterns.

Querying for TPSs

Goal: To find information on a given TPS.

How to use it:

1) Log in as a User with at least view-only privileges.

View-Only User Functions

 72

2) If not already on the Queries and Reports tab, press the tab to go to the appropriate section.

3) Type in the TPS number of the desired TPS.

4) Make sure the TPS Number radio button is selected.

View-Only User Functions

 73

5) Press the Search button.

Glossary

 74

9. Glossary

JSP – JavaServer Pages, a technology which allows for the dynamic creation of web pages based

on HTML using Java. (EN.WIKIPEDIA.ORG/WIKI/JAVASERVER_PAGES)

EL – Expression Language, a tag-based language used in a JSP file which allows for the page it

is on to dynamically access data from JavaBeans classes.

(DOCS.ORACLE.COM/JAVAEE/6/TUTORIAL/DOC/BNAHQ.HTML)

JavaBeans – Classes used to encapsulate many objects into a single object which conforms to a

particular convention. (EN.WIKIPEDIA.ORG/WIKI/JAVABEANS)

JDBC – An API to connect from Java code to a database.

(EN.WIKIPEDIA.ORG/WIKI/JAVA_DATABASE_CONNECTIVITY)

TPS – Test Program Sets, a set of instructions which go with the Spectrum CTS to allow the

Spectrum CTS to test a specific airplane part.

Spectrum CTS – The Spectrum Common Test System is a functional test platform made by

Teradyne to test commercial avionics.

References

 75

10. References

Basham, B. Sierra, K. Bates, B. Head First Servlets and JSP. Tran. 2nd ed. O'Reilly, 2008. Print.

Chapple, Mike. "Database Normalization Basics." About.com Databases. 2012.Web.

<http://databases.about.com/od/specificproducts/a/normalization.htm>.

Christensen, Henrik. "Model-View-Controller Pattern." Flexible, Reliable Software using

Patterns and Agile Development. Ed. Impagliazzo, John and McGettrick, Andrew. 6000

Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487: Chapman & Hall/CRC,

2010. 338-340. Print. Textbooks in Computing .

Eclipse.org. Eclipse Indigo. Tran. . Ed. . 3.7 Vol. The Eclipse Foundation, 2011. Print.

"JavaBeans." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 29 August 2012.

Web. 30 Aug. 2012. <http://en.wikipedia.org/wiki/JavaBeans>

"Java EE Tutorial." Ed. . September 2010 2010.Web. August 2012

<http://docs.oracle.com/javaee/5/tutorial/doc/bnakc.html>.

"JDBC Documentation." Ed. . 2010.Web.

<http://docs.oracle.com/javase/1.4.2/docs/guide/jdbc/>.

Lubke, Ryan. Ball, Jennifer. Delisle, Pierre. "Unified Expression Language." Sun Developer

Network. Ed. . August 2005 2005.Web.

<http://java.sun.com/products/jsp/reference/techart/unifiedEL.html>.

http://databases.about.com/od/specificproducts/a/normalization.htm
http://en.wikipedia.org/wiki/JavaBeans
http://docs.oracle.com/javaee/5/tutorial/doc/bnakc.html
http://docs.oracle.com/javase/1.4.2/docs/guide/jdbc/
http://java.sun.com/products/jsp/reference/techart/unifiedEL.html

References

 76

"SQL Query Reference." SQL Tutorial. Ed. . 2012.Web.

<http://www.1keydata.com/sql/sql.html>.

The Apache Software Foundation. Tomcat. Tran. . Ed. . 7.0.29 Vol. , 2011. Print.

Wheaton, Paul. "JavaRanch." Coderanch. Ed. . August 2012 2012.Web.

<http://www.coderanch.com/forums/f-50/JSP>.

http://www.1keydata.com/sql/sql.html
http://www.coderanch.com/forums/f-50/JSP

	Abstract
	Acknowledgements
	List of Illustrations
	List of Tables
	1. Introduction
	2. Background
	3. Methodology
	1.
	2.
	3.
	3.1. Architecture
	1.
	2.
	3.
	4.
	5.
	6.
	7.1.
	3.2. Process Flow
	3.3. State Machine
	3.4. Database Design
	3.4.1. Transactional Database
	1.
	2.
	3.
	3.1.
	3.2.
	3.3.
	3.4.
	3.4.1.
	3.4.2. Third Normal Form
	3.4.3. ID Number Sequences
	3.4.2.
	3.4.3.
	3.4.4. Using Triggers to Log all Tables which Need History
	3.4.5. Priming Insert Statements

	3.5. Login and Security
	1.
	2.
	3.
	3.1.
	3.2.
	3.3.
	3.4.
	3.5.
	3.5.1. The Password Changer

	3.6. User Privileges
	3.6.

	3.7. Web Design
	3.7.1. Dynamic Pages
	3.7.2. Expression Language (EL)
	3.7.3. Using JavaScript for form validation

	3.8. The Java Layer
	3.8.1. The Database Connection
	3.8.2. Managers
	3.8.3. Factories
	3.8.4. Why Java?
	3.8.5. Java Beans and Bean Factories

	4. Results and Analysis
	5. Future Work and Conclusions
	1.
	2.
	3.
	4.
	5.
	5.1. Future Work
	5.2. Conclusions

	6. Appendix A: Installation Documentation
	Deliverable List
	Database Schema Installation
	Prerequisites
	Steps

	Downloading and Installing Eclipse
	Prerequisites
	Steps

	Importing the TeradyneCTSDatabase.zip File into Eclipse
	Prerequisites
	Steps

	CTS System Database Linking
	Prerequisites
	Steps

	Deploying to the Tomcat Server
	Prerequisites
	Steps

	Creating the First User
	Prerequisites
	Steps

	7. Appendix B: Maintenance Documentation
	Linking the System to LDAP
	How to disconnect the Admin Change Password
	Requirements
	Directions

	Unhooking the Build History in the Help Section
	Directions

	How to connect to a new type of database
	Requirements
	Interfaces to Instantiate
	Creating the Schema

	How to Modify the State Machine
	Tables to Look at / Insert Rows Into
	Example case

	How to Add Attributes to TPS Objects
	Places to Look to Change

	How to Move an existing Oracle Database
	8. Appendix C: User Documentation
	All Forms
	The Reset Button
	The Clear Button
	Cancel Buttons
	User Administration
	Administrator TPS Functions
	TPS Management

	Administrator Functions
	Precondition to All Administrator Functions
	Precondition to All Administrator TPS Management Functions
	Add User
	How to use it:

	Remove User
	How to use it:

	Change User Privilege
	How to use it:

	Change A User’s Password
	How to use it:

	Administrator TPS Management | View All TPSs in the System
	How to use it:

	Administrator TPS Management | TPS Edit
	How to use it:

	Administrator TPS Management | View All of the Information Pertaining to a TPS
	How to use it:

	Administrator TPS Management | Change a TPS's State to Any State
	How to use it:

	Administrator TPS Management | Change a TPS's Owner
	How to use it:

	Basic User Functions
	Preconditions to All Basic User Functions
	Create a new TPS
	How to use it:

	View All TPSs Owned by the Logged in User
	How to use it:

	View All of the Information Pertaining to a TPS
	How to use it:

	Edit a TPS
	How to use it:

	Change a TPS's state
	How to use it:

	View-Only User Functions
	Querying for TPSs
	How to use it:

	8.
	9. Glossary
	10. References

