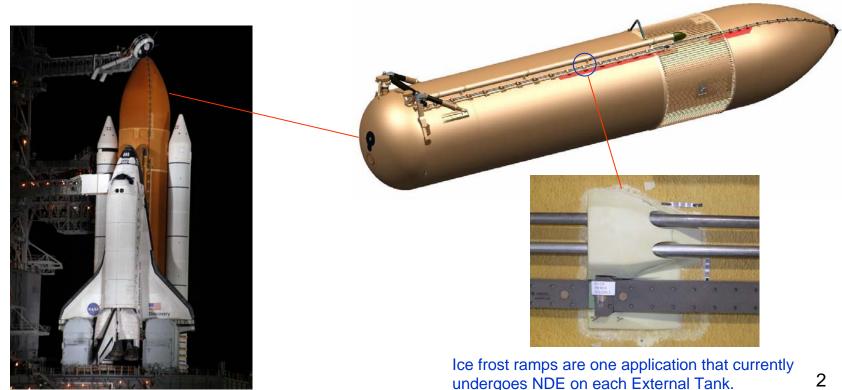


Terahertz Imaging and Backscatter Radiography Probability of Detection Study for Space Shuttle Foam Inspections

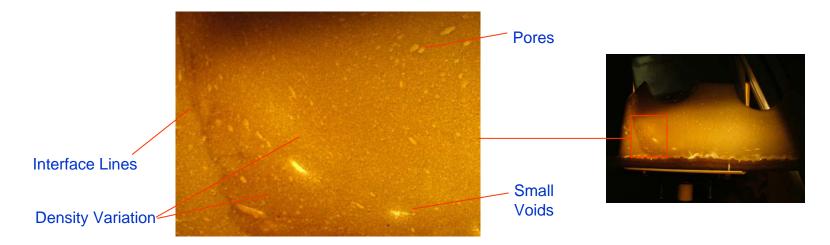
Warren Ussery Lockheed Martin Space Systems Company 504-257-1934

Kenneth Johnson NASA MSFC 256-544-0108 James Walker NASA MSFC 256-961-1784


Ward Rummel D&W Enterprises Ltd. 303-791-1940

External Propellant Tank (ET) Background

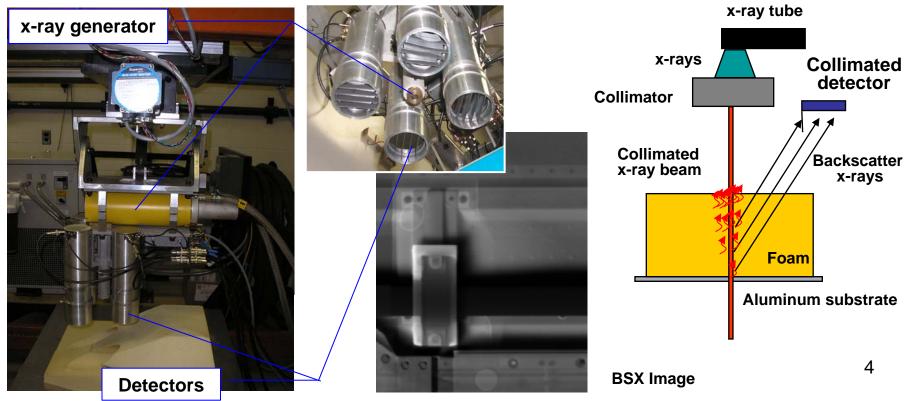
- ET holds cryogenic liquid hydrogen and oxygen fuel for shuttle main engines
- Polyurethane foam insulation prevents cryogenic fuel from boiling as well as ice formation
- Aero loads during launch can produce foam debris potentially damaging the shuttle orbiter
- After the Columbia accident, ET foam debris was identified as a likely cause of the orbiter wing damage
- NDE is performed on ET foam as one method of preventing critical foam debris during launch



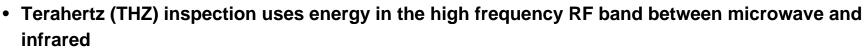
- NDE Difficulties in Polyurethane Foam Inspection
 - Does not lend itself to conventional NDE methods
 - Very low density (~2.5 lbs/cu ft) so air voids do not exhibit significant density change
 - Non homogeneous material with density variations
 - Inspection must be single sided due to access restrictions
 - No history of industrial inspection of foam

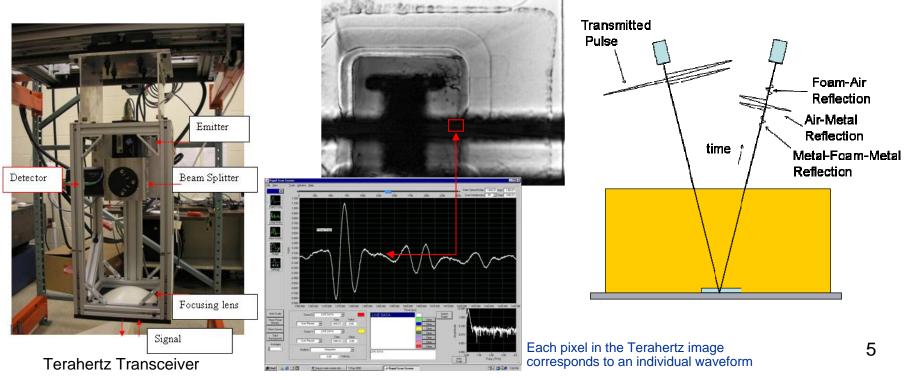
Conventional NDE Method Assessment

- UT: Foam attenuates UT
- X-ray: Requires two sided access
- Thermography: Foam is an insulator
- Air-Coupled, Low Freq. UT: Non-homogeneous foam structure impairs technique

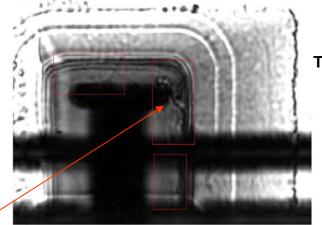


Typical Slice of ET Foam (Backlit to Emphasize Density Variations and Voids)

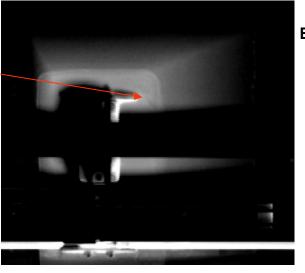



- Backscatter x-rays are emitted (Compton Scattering), possibly after multiple subsequent scattering events, and detected by Nal or YSO detectors
- Collimation provides some preferential sensitivity to selected depth
- The x-ray beam and detectors are scanned across the part to generate a 2-D presentation of the internal make-up of the foam

- THZ beam is transmitted through object and reflects off the aluminum substrate
- Due to foam attenuation, received pulse is approx. 0.1 to 0.3 THz (100 GHz to 300 GHz)
- Presence of defects produces changes in amplitude, phase and frequency of received beam
- Less attenuation can indicate less material such as the presence of a void
- THZ beam is scanned across the part to generate a 2-D presentation of the internal make-up of the foam

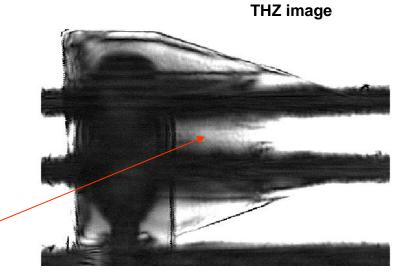


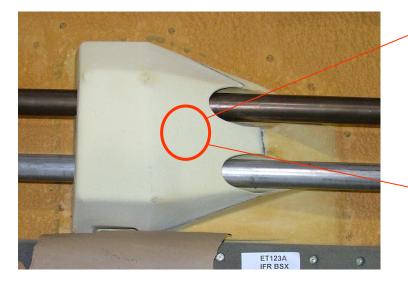
Background: BSX and THZ Examples



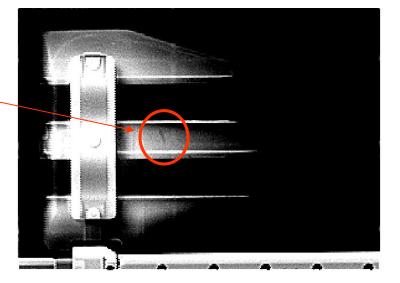
- Example 1
 - THZ image has distinct response from void
 - BSX image has marginal response from void

THZ image


BSX image

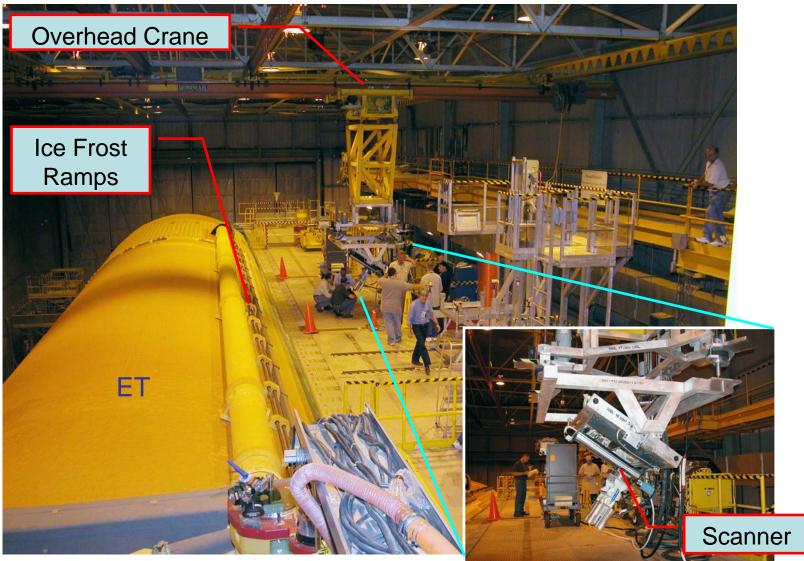


Background: BSX and THZ Examples



- Example 2
 - BSX image has distinct response from void
 - THZ image has marginal response from void

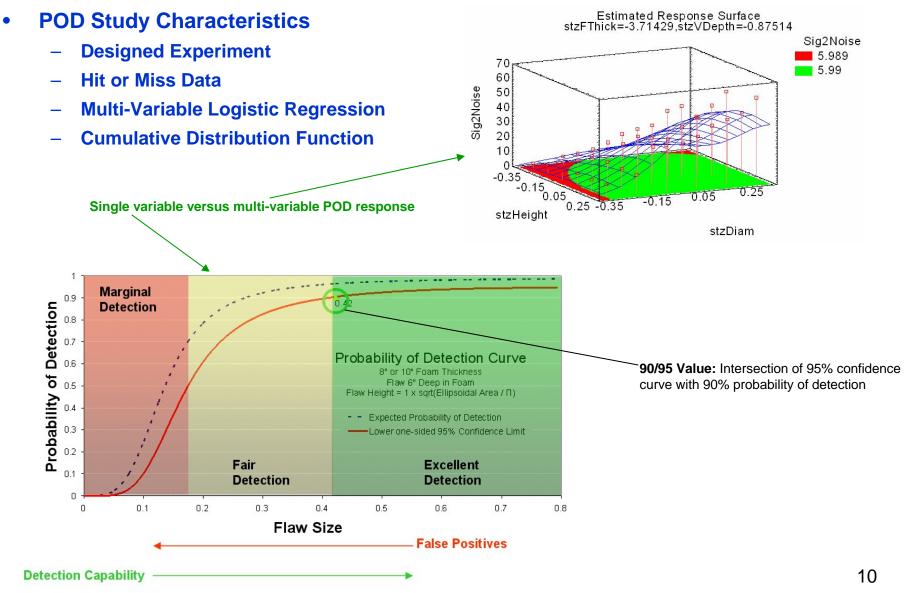
BSX image



EXTERNAL TANK FOAM INSPECTION SYSTEM

8

NDE Activity in Building 420 at the Michoud Assembly Facility

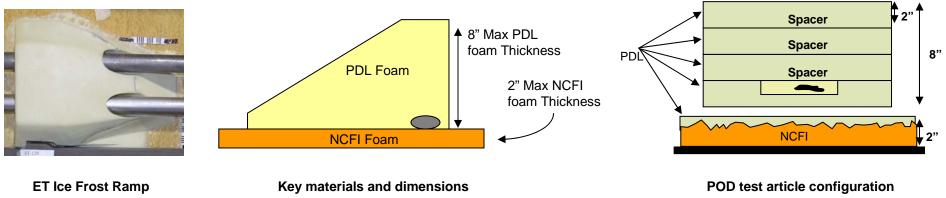


- Purpose of Probability of Detection (POD) Study
 - Statistical study used to assess performance and reliability of an NDE method
 - 90/95 detectability/confidence is common requirement in NASA, Air Force, etc.
 - BSX and THZ are used in a unique application with no existing POD history
 - POD result is necessary for future certification

• Goals for the BSX/THZ POD Study

- Follow guidelines in MIL-HNBK-1823
- Follow production requirements in inspection procedure
 - BSX and THZ methods are combined for a single result
 - Certified personnel
 - Material configuration
 - Production test procedures
 - Production equipment configuration
- Establish 90/95 POD result
 - Multiple material thicknesses
 - Multiple defect depths
 - Exceed critical defect requirement of 0.9" by 0.4" voids
- Establish false positive rate
- Provide pedigree to techniques and personnel



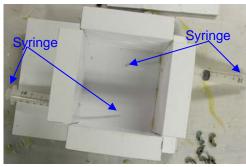


POD Approach for BSX/THZ of Ice Frost Ramps (IFRs)

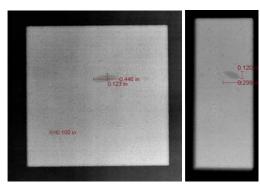
- Test article consisted of flat blocks with inserted seminatural defects
- This design allowed POD calculation for different defect depths and foam thicknesses
- Sample population of 400 composed of 100 defects and 300 blanks
- A POD sample consisted of a BSX and THZ inspection of one coupon
- Three interpreters analyzed the 400 samples for a total of 1200 discrete results

POD test article

11



- Test matrix and experimental design:
 - Ken Johnson (MSFC Statistics and Trending group)
 - Ward Rummel (Independent Contractor)
- Randomized inspection order
- Interpreters were blind to sample contents
- Three Level II certified radiographers evaluated data
- All 400 samples were dissected to confirm defect sizes or false positives

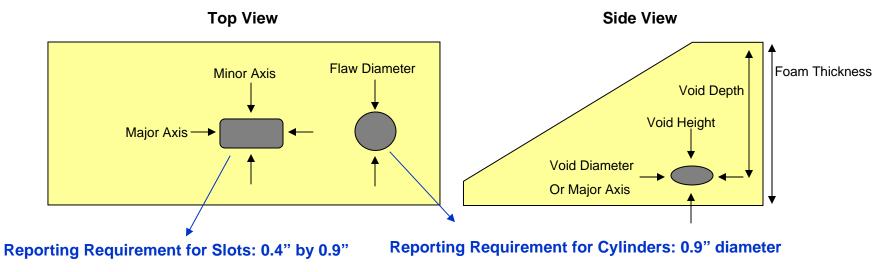


Coupon with defects after final dissection

Mold and syringes used to produce voids.

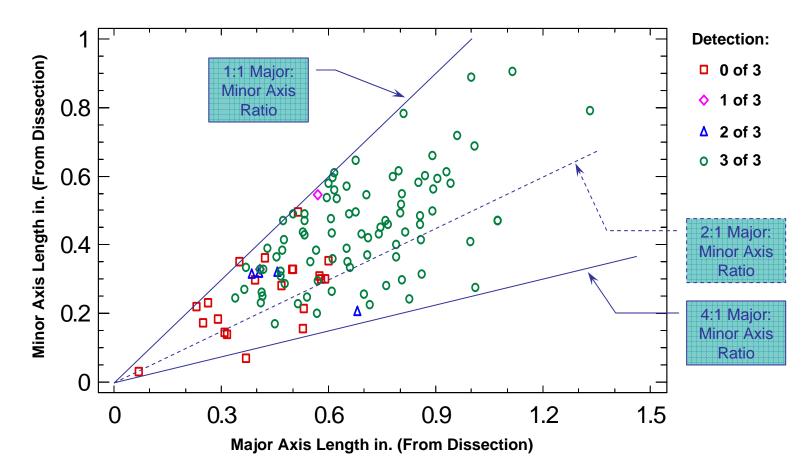
X-ray images of internal voids in coupon

Coupon with defects marked after x-ray inspection


12

POD Variables

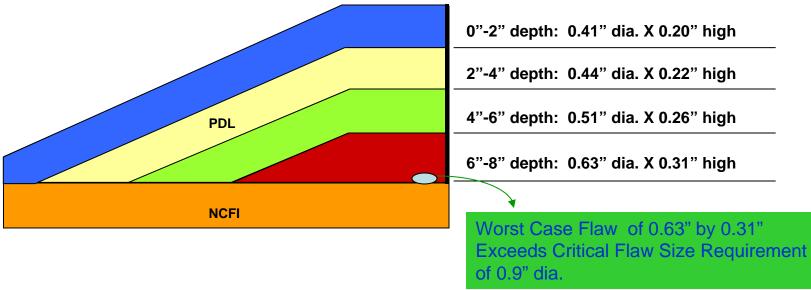
- POD results are computed for multiple values of these variables
 - Interpreter: Three interpreters were used in the study
 - Foam thickness: Total foam thickness that contained the defect
 - Void depth: How far below the surface the void was located
 - Void height: Air gap or thru thickness of void
 - Void diameter: Diameter of cylinder void
 - Void major axis: Length of major axis of a slot void



Observations

- More elongated flaws require larger major axis dimension for detection
- Thinner flaws (smaller height or thru-thickness) require larger major axis dimension for detection
- Deeper flaws (under larger amounts of foam) require larger major axis dimension for detection

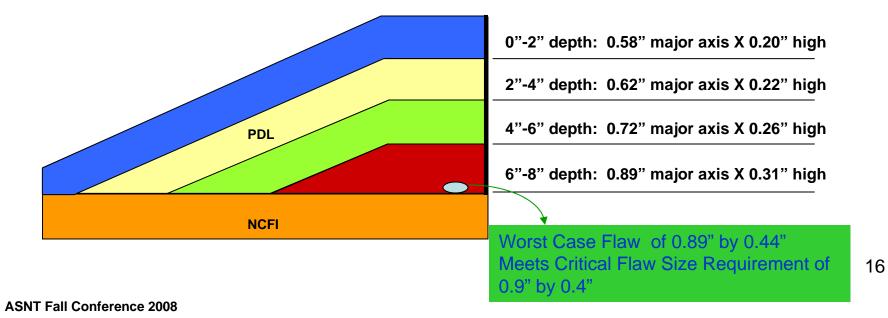
Plot of Major v Minor Axis Lengths



5

• POD Results for Combined BSX/THZ Inspection: Cylinders

	90/95 POD Value		
Foam Thickness (in)	s Void Depth Flaw Height (in) (in)		Flaw Diameter (in)
10	2	0.20	0.41
10	4	0.22	0.44
10	6	0.26	0.51
10	8	0.31	0.63



POD Results for Combined BSX/THZ Inspection: Slots

	90/95 POD Value		
Foam Thickness (in)	Void Depth (in)	Flaw Height (in)	Flaw Maj. Axis (in)
10	2	0.29	0.58
10	4	0.31	0.62
10	6	0.36	0.72
10	8	0.44	0.89

All false positives were below reportable size of 0.4" x 0.9"

- BSX/THZ false positive results
 - False positive rate was approx. 0.24 per square foot or approx. one false positive per IFR
 - However, all false positives were below the reportable size of 0.4" x 0.9"
 - No false positive indications from this study would have been formally reported based on their small size

Inter- preter	Spl No.	ID	Lab Cpn. No.	Foam Thickness	BSX Hit/Miss	BSX Long Axis Dim.	BSX Short Axis Dim.	THz Hit/Miss
1	023a	Blank260	62B1X	4	1	0.580	0.220	0
1	023b	Blank260	62B1X	4	1	0.250	0.180	0
1	027	Blank046	76BX	4	1	0.930	0.250	0
3	082	Blank064	191X	4	1	0.235	0.235	0
2	181b	84.625	198BX	2	1	0.480	0.140	0
2	181c	84.625	198BX	2	1	0.550	0.210	0
1	295	Blank038	334X	4	1	0.250	0.120	0
3	362a	Blank175	384B1X	6	1	0.325	0.300	0
3	362b	Blank175	384B1X	6	1	0.300	0.300	0
1	400	Blank030	444X	2	1	0.160	0.160	0
2	382	Blank101	396B1X	8	1	0.360	0.260	0
2	400	Blank030	444X	2	1	0.170	0.150	0

- POD Summary
 - POD Test Plan was developed following the guidelines of MIL-HNBK-1823
 - ET production procedures were used in the POD study
 - POD studies completed for combined BSX and THZ detection of voids
 - Worst case 90/95 POD value for BSX/THZ:
 - Cylinders: 0.63" diameter by 0.31" thick void under 8" of foam
 - Slots: 0.89" x 0.45" slot by 0.31" thick void under 8" of foam
 - False positive rate established
 - No false positive results at or above critical flaw size