

Term 2: Matter and Materials

Mrs Ramuhashi

COMPOUND- Is a pure substance that has two or more kinds of atoms for example water has two hydrogen atoms and one oxygen atoms.

ELEMENT

Has pure substances. Cannot be broken down into simpler substances. Use one or two letter symbol for an element's name e.g. H for hydrogen, C for calcium, Cl for chlorine

COMPOUND

 Has pure substances that has two or more kinds of atoms. Can be broken down into its elements by reaction or electrolysis. Each compound has chemical formula that shows which element are present in the compound and how many atoms of each element there are in one molecule e.g. the chemical formula for water H_2 0

The definition of an atom is the smallest component of an element, characterized by a sharing of the chemical properties of the element and a nucleus with neutrons, protons and electrons.

Atoms

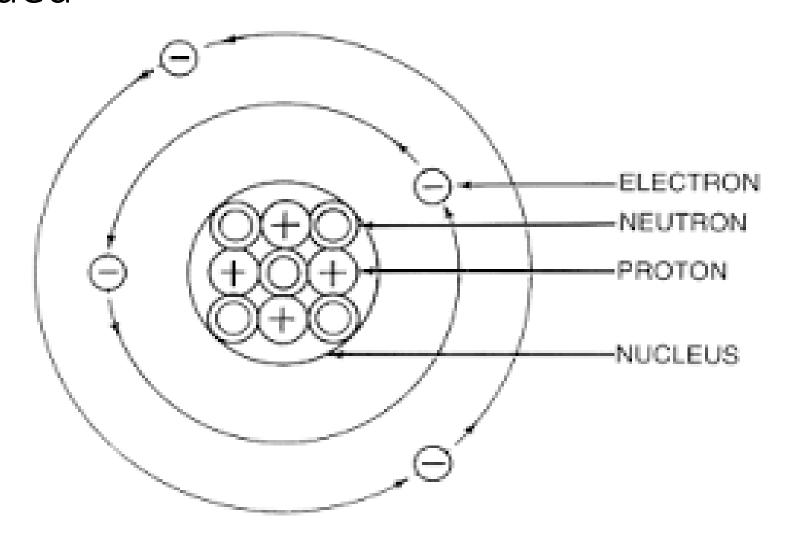
ATOMS-building blocks of matter

Pure elementselements and compound **Atoms**

Sub-atoms particles
-protrons,
neutrons, electrons

- Is made up of tiny particles
- Our body and everything, we see ,taste or smell is made up by matter

matter


Atoms

- Building blocks of all matter
- Are very small to see even with the best microscopes

- Periodic table of elements
- Element is made of atoms of the same kind and cannot be broken down into other elements

Elements

FOUR SUB-ATOMS PARTICLES-atoms that cannot be divided

Nucleus –centre of each atoms is a region

Neutrons

are neutral

No electric charge

Electrons

are negative

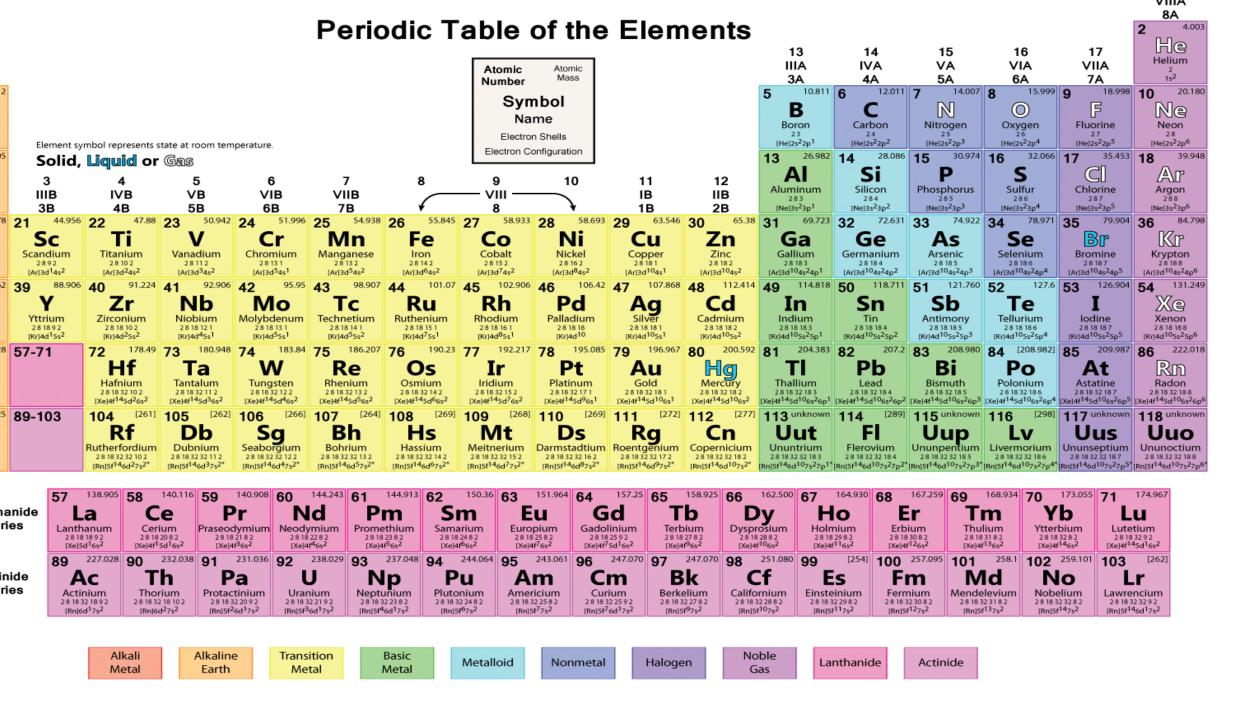
• Has negative charge (-)

Protons

are positive

Has positive charge

Matter (two kinds)

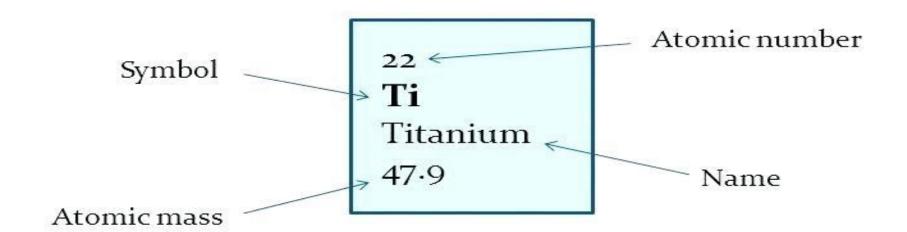

mixture

Cannot be separated by physical means

Pure substance – elements and compounds

Elements-periodic table

The periodic table, also known as the periodic table of elements, is a tabular display of the **chemical** elements, which are arranged by **atomic number**, **electron** configuration, and recurring **chemical** properties.



The first 20 elements of the periodic table:

- 1.H —Hydrogen
- 2.He—Helium
- 3.Li—Lithium
- 4.Be—Beryllium
- 5.B—Boron
- 6.C—Carbon
- 7.N—Nitrogen
- 8.O—Oxygen
- 9.F—Fluorine
- 10.Ne—Neon
- 11.Na—Sodium
- 12.Mg—Magnesium
- 13.Al—Aluminum
- 14.Si—Silicon
- 15.P—Phosphorus
- 16.S—Sulfur
- 17.Cl—Chlorine
- 18.Ar—Argon
- 19.K—Potassium
- 20.Ca—Calcium

Elements of the Periodic Table

 Although there are many versions of the periodic table, most contain the following properties:

NAME OF COMPOUND

• The chemical of a compound is worked out using the elements that make up the compound.e.g. sodium chloride or table salt (NaCl) is made of elements sodium(Na) and chlorine(Cl). Hydrogen sulphide(H_2 s)is made of the elements hydrogen and sulfur.magnesium oxide(MgO) is made of elements magnesium and oxygen.

NAME OF COMPOUND

COMMON AND CHEMICAL NAMES OF SOME COMPOUNDS

Common Name	Chemical Name	Chemical Formulae					
Dry Ice	Solid Carbondioxide	CO_2					
Slaked Lime	Calcium Hydroxide	Ca (OH) ₂					
Bleaching Powder	Calcium Oxychloride	$CaOCl_2$					
Nausadar	Ammonium Chloride	NH₄CI					
Caustic Soda	Sodium Hydroxide	NaOH					
Rock Salt	Sodium Chloride	NaCl					
Caustic Potash	Potassium Hydroxide	KOH					
Potash Alum	Potassium Aluminium Sulphate	K_2SO_4 $AI_2(SO_4)_3.24H_2O_4$					
Epsom	Magnesium Sulphate	$MgSO_4.7H_2O$					
Quick Lime	Calcium Oxide	CaO					
Plaster of Paris	Calcium Sulphate	$(CaSO_4)^{1/2}H_2O$					
Gypsum	Calcium Sulphate	CaSO ₄ .2H ₂ O					
Green Vitriol	Ferrous Sulphate	FeSO ₄ . 7H ₂ O					
Mohr's Salt	Ammonium Ferrous Sulphate	$FeSO_4$ (NH $_4$) $_2SO_4$.6H $_2O$					
Blue Vitriol	Copper Sulphate	CuSO₄ .5H ₂ O					
White Vitriol	Zinc Sulphate	$ZnSO_4$. $7H_20$					
Marsh Gas	Methane	CH ₄					
Vinegar	Acetic Acid	CH₃COOH					
Potash Ash	Potassium Carbonate	K ₂ CO ₃					
Нуро	Sodium Thiosulphate	$\mathrm{Na_2S_2O_3}$. $\mathrm{5H_20}$					
Baking Powder	Sodium Bicarbonate	NaHCO ₃					
Washing Soda	Sodium Carbonate	${ m Na_2CO_3}$. $10{ m H_2O}$					
Magnesia	Magnesium Oxide	Mg⊖					
Chalk (Marble)	Calcium Carbonate	CaCO ₃					

PREFIX IN CHEMICAL NAME

number of atoms	prefix	example
1	mono	NO nitrogen monoxide
2	di	NO ₂ nitrogen dioxide
3	tri	N ₂ O ₃ dinitrogen trioxide
4	tetra	N ₂ O ₄ dinitrogen tetraoxide
5	penta	N ₂ O ₅ dinitrogen pentaoxide
6	hexa	SF ₆ sulphur hexa fluoride
7	hepta	IF ₇ iodine hepta fluoride
8	octa	P4O ₈ tetra phosphur decoxide
9	nona	P4 S9 tetra phusphur nona sulphide
10	deca	AS ₄ O ₁₀ tetra arsinic decoxide

Activity 1

TERM 2

TOP CLASS NATURAL SCIENCE TEXTBOOK

Write answers in your classwork book

QUESTIONS FOR REVISION

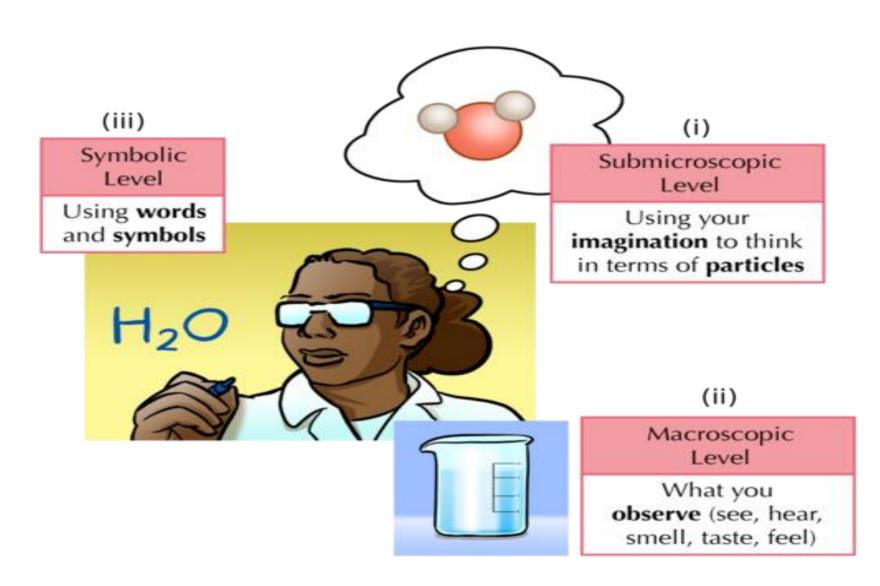
PAGE 90

QUESTION 1

QUESTION 2

QUESTION 3

CHEMICAL REACTION


- During chemical reactions, materials are changed into new materials with new chemical and physical properties.
- The materials we start with are called <u>reactants</u>, and the new materials that form are called **products**.
- During a chemical reaction, atoms are rearranged. This requires that bonds are broken in the reactants and new bonds are formed in the products.

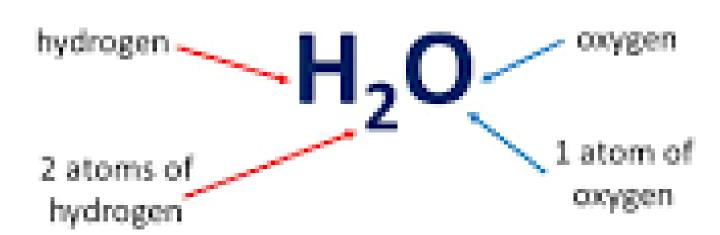
In this chapter we are going to build on these ideas. We will focus on two things:

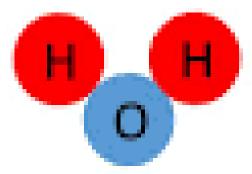
- how to write chemical reaction equations; and
- how to balance chemical reaction equations.

compounds on three different levels

- Macroscopic
- Microscopic
- Submicroscopic

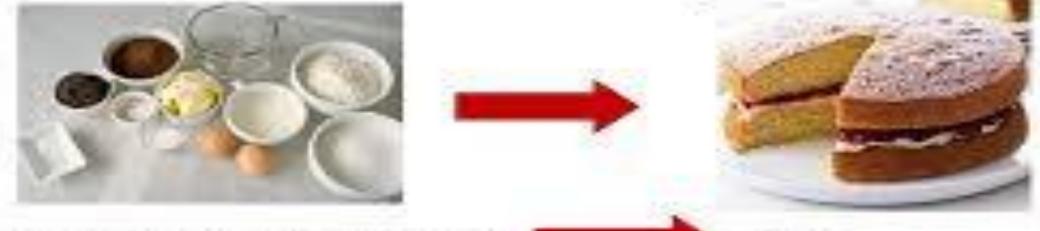
The water molecule in the top right shows what a particle of water would look like (i). We cannot see water particles with our eyes, therefore we have to imagine them. This is why the water molecule is inside a thought bubble. We call this a **submicroscopic representation**.


The beaker of water shows what water looks like to our eyes (ii). We call this a <u>macroscopic representation</u>, because it is observable. That means it can be observed by using our senses such as seeing, feeling, hearing, tasting or touching.


The chemical formula on the left uses chemical symbols to represent water (iii). We have learnt that chemical formulae are made up of element symbols. We can think of chemical symbols and formulae as a chemical 'language', because they tell a story. The 'story' told by the formula H_2O is that a water molecule consists of two atoms of H and one atom of O. The formula H_2O ' is a **microscopic /symbolic representation**.

Chemical Formulae

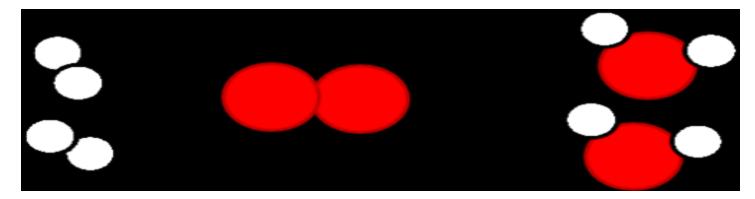
 Chemical formula: tells you how many atoms of each element is in a molecule.


Example: Water

Part 2 - Word Equations

To show what is happening during a chemical reaction we can write a word equation

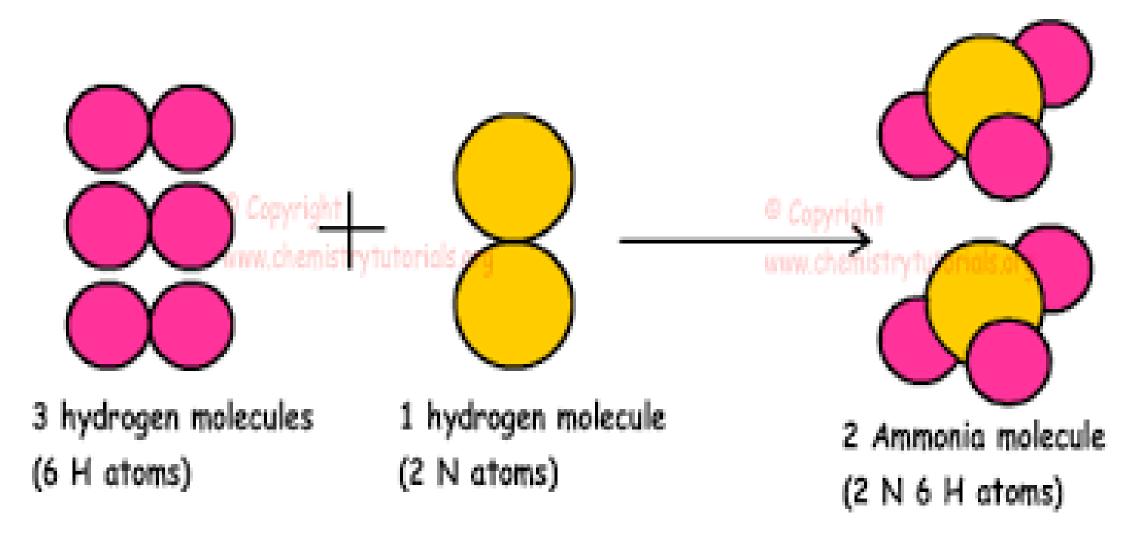
Eggs + flour + milk + butter


Cake

CHEMICAL EQUATIONS

1. Word equation

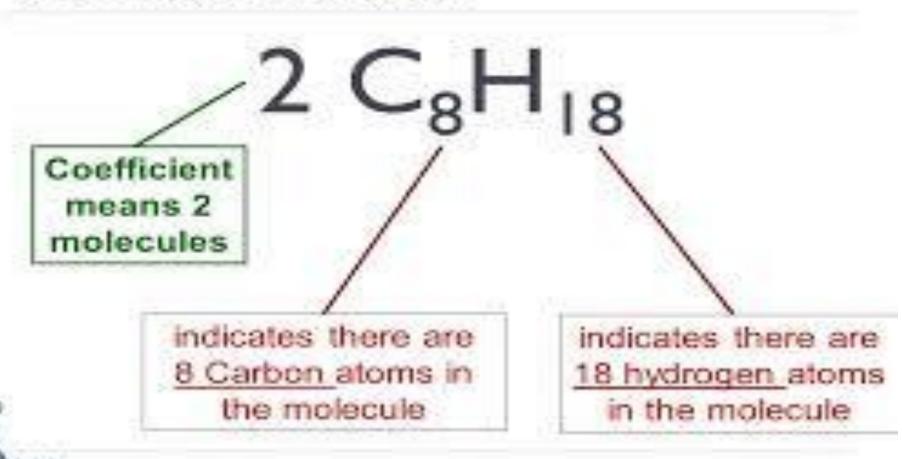
hydrogen + oxygen→ water

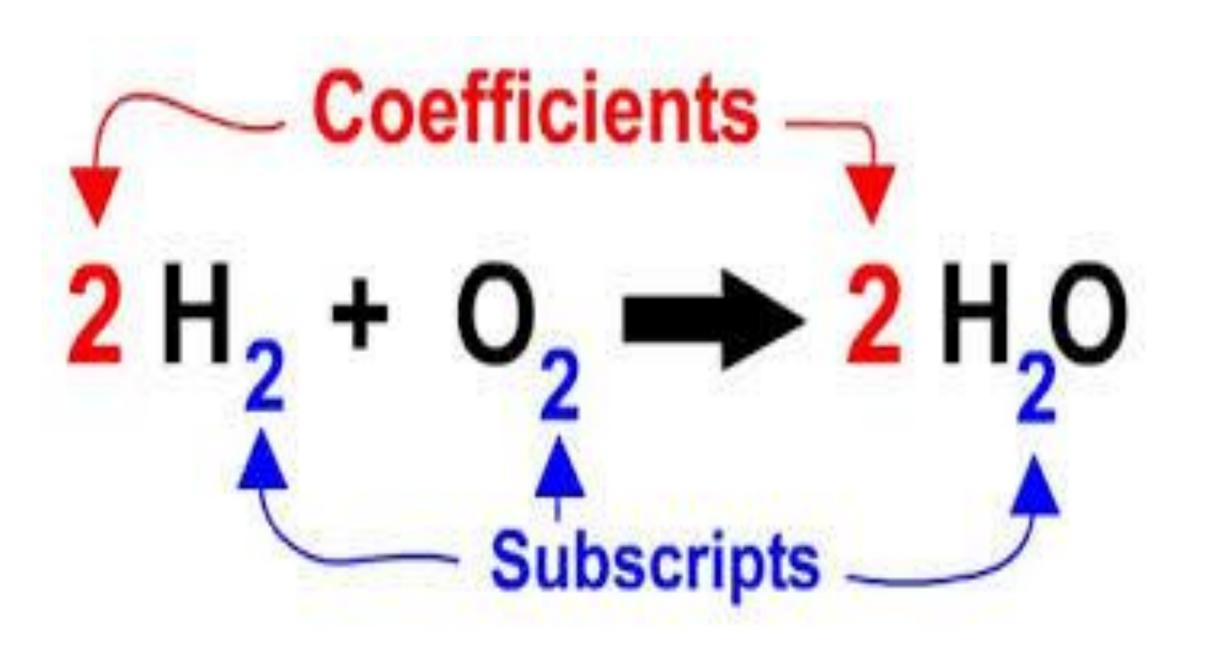

2. Picture equation

3. Chemical equation (balanced)

$$2 H_2 + O_2 \rightarrow 2 H_2O$$

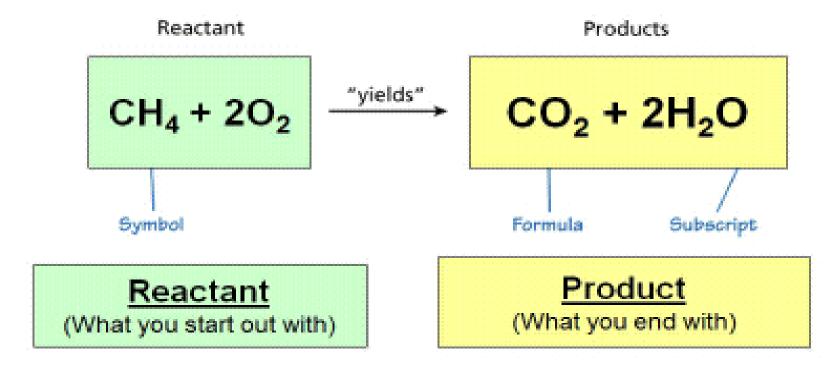
PICTURE, WORD AND CHEMICAL FORMULA


$H_2 + O_2 \rightarrow H_2O$


reactants

products

CHEMICAL FORMULAS


Chemical Formulas

What Are Chemical Equations?

 Chemical equations use chemical formulas and other symbols instead of words to summarize a reaction.

Compare to reading a book (L→R) on the story of the previous and post relationships.

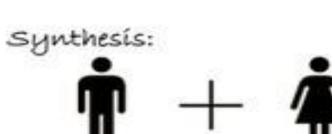
Writing a Chemical Equation

Chemical symbols give a "before-and-after" picture of a chemical reaction

Reactants Products

MgO + C → CO + Mg

magnesium oxide yields carbon monoxide reacts with carbon and magnesium


BALANCING EQUATIONS

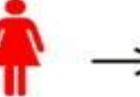
$NaC_2H_3O_2$

How many atoms of each element are in this molecule?

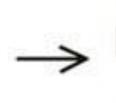
```
Sodium (Na) __1_
Carbon (C) __2_
Hydrogen (H) __3_
Oxygen (O) __2_
```

chemical Reactions

Decomposition:



Single Displacement:



Double Displacement:

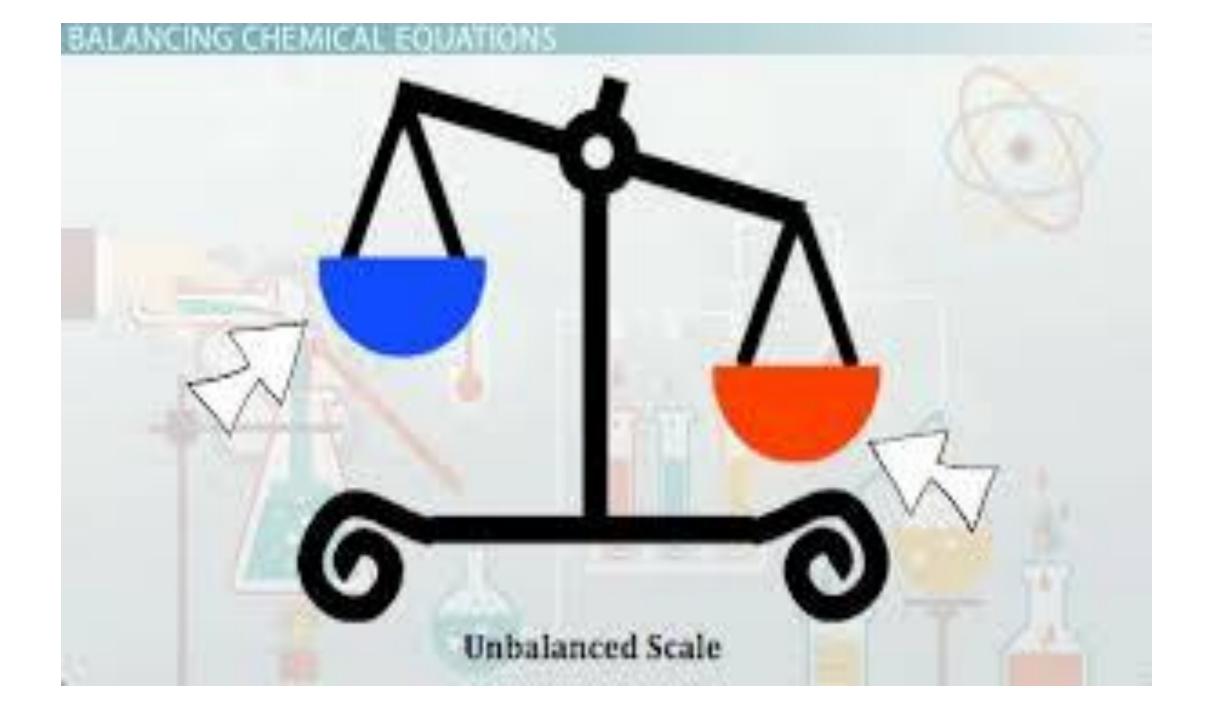
Types of Chemical Reaction

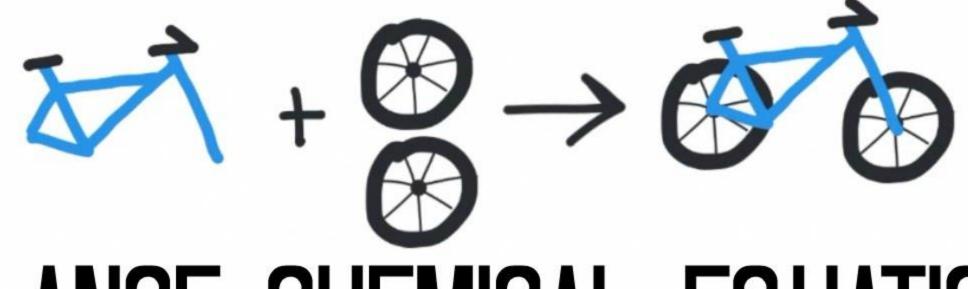
Synthesis

Decomposition

Single Replacement

Double Replacement


Balancing Equations


$$C + 2H_2 \longrightarrow CH_2$$

 $C=1$
 $H=4$
 $H=4$

number of atoms at each side:

	Ag	N	0	Na	CI	
left	1	1	3	1	1	1
right	1	1	3	1	1	1

This equation is balanced

BALANCE CHEMICAL EQUATIONS

STEP BY STEP

Rules to Balance Chemical Equations

1. Counting number of elements in a given formula. For example the water formula as shown below;

H_2O

We have 2 Hydrogen atoms and 1 Oxygen atom in the above formula of water.

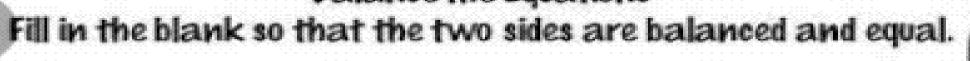
Let's add coefficients to it;

$2H_2O$

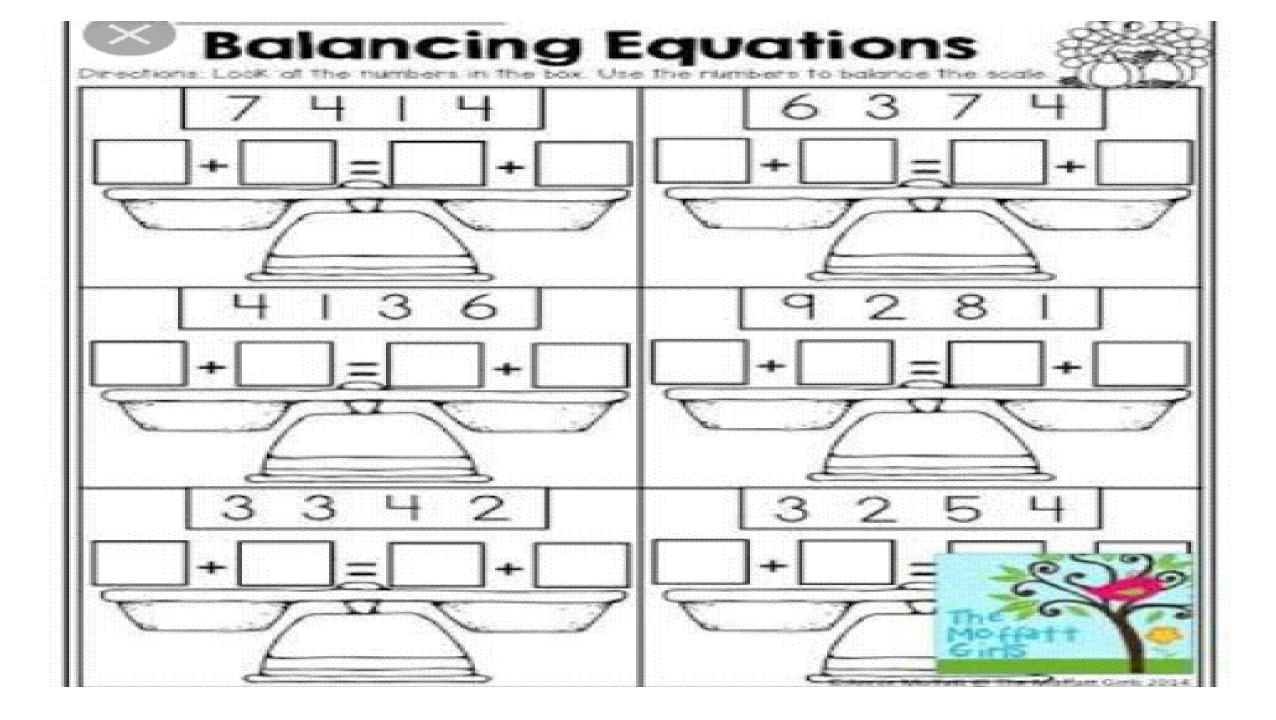
Now we got 4 Hydrogen atoms and 2 Oxygen atoms.

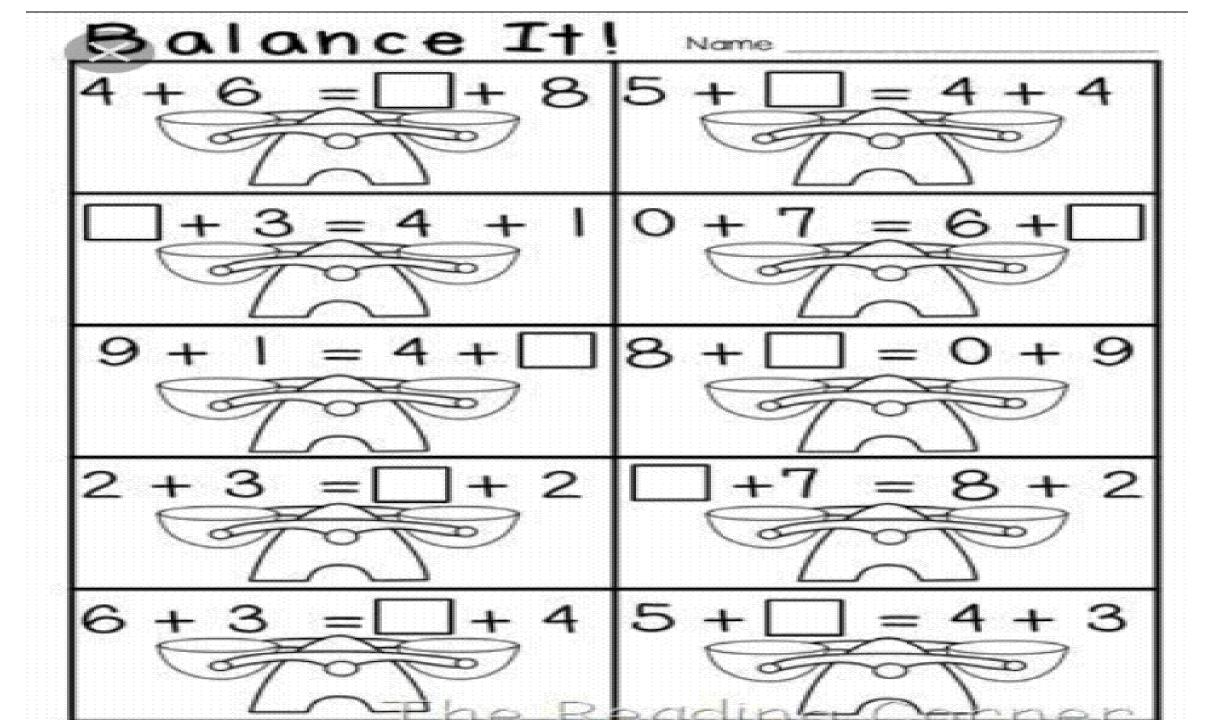
$5H_2O$

Now there are 10 Hydrogen atoms and 5 Oxygen atoms.

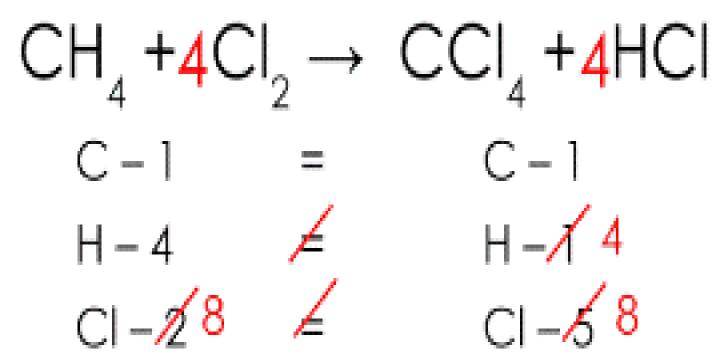

Let's try another molecule of Iron Oxide Fe_2O_3 we got two atoms of Iron and 3 atoms of Oxygen.

We got 4 Iron atoms and 6 Oxygen atoms.


Very Important; Parenthesis


Fe(OH)₂ We got one Iron atom, two Hydrogen atoms and 2 Oxygen atoms.

Balance the Equations



Step 1 – Take Inventory of the elements and atoms on the product and reactant side.

Step 2 – Is it balanced?

Step 3 – If unbalanced, change coefficients until it's balanced.

Balanced!

SO₂ + O₂
$$\rightarrow$$
 SO₃ STRET!

S=\(\) \(

Balanced!

An iron bar rusts. The iron reacts with oxygen in the air to make rust. 4Fe)+ BO2 ->2Fe2O3 Which chemical formula(s) represents Which chemical formula(s) represents the reactants? the *products*? 4 Fe + 30, 2 Fez 03 How many of each atom is present in How many of each atom is present in the reactants? the products? Is this a balanced equation? Explain. he reactants = the products

$$Fe_2O_3 + C \longrightarrow Fe + CO_2$$

Fe = 2 Fe = 1 O = 3 O = 2C = 1 C = 1

$$2Fe_2O_3 + 3C \longrightarrow 4Fe + 3CO_2$$

Fe = 4

0 = 6

C = 3

Fe = 4

O = 6

C = 3

$$2Na_3PO_4 + 2MgCl_2 \longrightarrow$$

$$\underline{6}$$
NaCl + Mg₃(PO₄)₂

$$Na = 6$$

 $PO_4 = 2$
 $Mg = 3$

Cl = 6

Na = 6

$$PO_4 = 2$$

 $Mg = 3$
 $Cl = 6$

Balancing equations

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

$$Carbon$$

$$Hydrogen$$

$$Oxygen$$

$$\frac{2CO}{+} = \frac{2CO_2}{+} = \frac{2CO_2}{+}$$

Balance the following chemical equations.

(a)
$$HNO_3 + Ca(OH)_2 \longrightarrow Ca(NO_3)_2 + H_2O$$

(b)
$$NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O$$

(c)
$$NaCl + AgNO_3 \longrightarrow AgCl + NaNO_3$$

(d)
$$BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 + HCl$$

Answer

(a)
$$2\text{HNO}_3 + \text{Ca}(\text{OH})_2 \longrightarrow \text{Ca}(\text{NO}_3)_2 + 2\text{H}_2\text{O}$$

(b)
$$2NaOH + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$$

(c)
$$NaCl + AgNO_3 \longrightarrow AgCl + NaNO_3$$

(d)
$$BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HCl$$

Activity 2

TERM 2

TOP CLASS NATURAL SCIENCE TEXTBOOK

Write answers in your classwork book

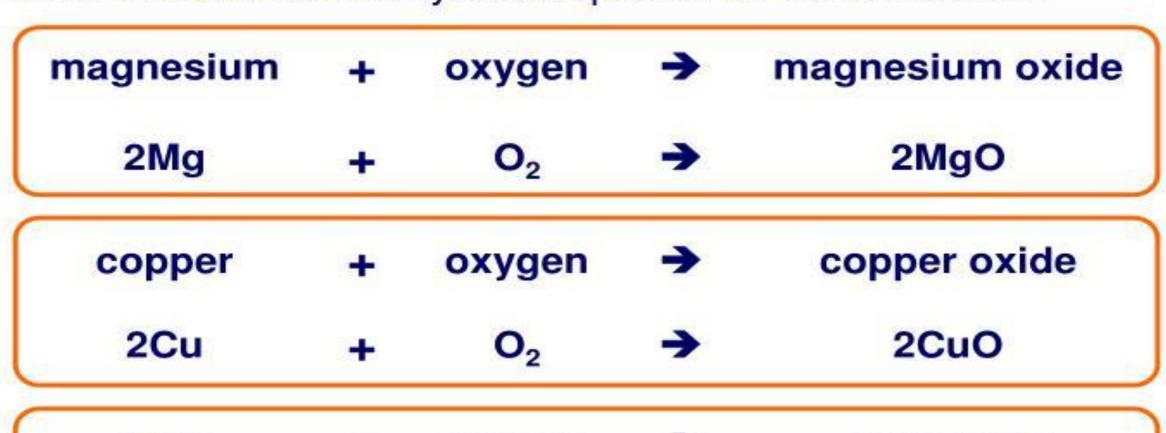
QUESTIONS FOR REVISION

PAGE 95

QUESTION 1

QUESTION 2

QUESTION 3


Difference between Important Chemical Properties of metals and non-metals							
Metal	Non-metal						
Forms basic oxides	Forms acidic oxides when						
when it reacts with	it reacts with oxygen.						
oxygen.							
Some metals displace	Non-metals do not react						
hydrogen from water	with water.						
Some metals displace	Non-metals do not react						

with dilute acids. hydrogen from dilute acids. Metals form ionic Non-metals form covalent compounds.

Equations: reactions of metals with oxygen

What is the balanced symbol equation for each reaction?

iron + oxygen → iron oxide

4Fe + 3O₂ → 2Fe₂O₃

Reaction of Metals with Oxygen.

Reaction of Non Metals with Oxygen.

$$S + O_2 \longrightarrow SO_2$$
Sulphur Sulphur Dioxide

 $C + O_2 \longrightarrow CO_2$
Carbon Dioxide

Formation of rust

Corrosion is defined as the chemical or electrochemical degradation of metals due to their reaction with the environment. The corrosion of iron, better known as rusting, is an oxidation-reduction process that destroys iron objects left out in open, moist air.

Methods of preventing corrosion and rusting

- 1. Tarring
- Painting
- 3. Enameling
- 4. Galvanizing
- Sheradising
- Tin plating
- electroplating

Activity 3 TERM 2

TOP CLASS NATURAL SCIENCE TEXTBOOK

Write answers in your classwork book

QUESTIONS FOR REVISION

PAGE 101

QUESTION 1 QUESTION 2 Activity 4

TERM 2

TOP CLASS NATURAL SCIENCE TEXTBOOK

Write answers in your classwork book

QUESTIONS FOR REVISION

PAGE 105

QUESTION 1

QUESTION 2

QUESTION 3

pH Scale

- (a) Indicators are organic compounds which when added in small amounts to a solution; indicate the nature (acidity or alkalinity) of the solution.
- (b) Universal indicators are preferred to acid-base indicators because these give different colours in different pH ranges. A solution containing a drop of universal indicator is matched against a standard colour chart to find the pH of the solution.

pH range	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Colour of universal inducator		Red		Pink		Yellow		Green		Blue		Indigo		Violet	

Activity 5

TERM 2

TOP CLASS NATURAL SCIENCE TEXTBOOK

Write answers in your classwork book

QUESTIONS FOR REVISION

PAGE 111

QUESTION 1 QUESTION 2

The **reaction** of an **acid** with a **base**

Is called a neutralization **reaction**. The products of this **reaction** are a salt and water. ... For example, the **reaction** of hydrochloric **acid**, HCl, with sodium hydroxide, NaOH, solutions produces a solution of sodium chloride, NaCl, and some additional water molecules.

It has three parts

- 1, Neutralisation and ph
- 2, The general reaction of an acid with a metal oxide and hydroxide (base)
- 3, The general reaction of an acid with metal carbonate (base)

SALTS

- A SALT is a compound formed when a metal is ionically bonded to a non-metal.
- Salts are formed in many acid-base reactions.

Acid + Metal → SALT + hydrogen

Acid + Metal Oxide → SALT + water

Acid + Metal hydroxide → SALT + water

Acid + Metal carbonate → SALT + carbon dioxide + water

Acid + Metal hydrogen carbonate → SALT + carbon dioxide + water

SALT	ACID	BASE	ACID	BASE	SALT	
MgCl ₂			HCI	Mg(OH) ₂	MgCl ₂	(0)
Fe(NO ₃) ₂			H ₂ SO ₃	NaOH	Na ₂ SO ₃	
MgCO ₃			H ₂ CO ₃	CaO	CaCO ₃	
Al ₂ (SO ₄) ₃			H ₂ CO ₃	CaCO ₃	CaCO ₃)
(NH ₄) ₃ PO ₄			H ₂ SO ₄	Mg	MgSO ₄	

Activity 6

TERM 2

TOP CLASS NATURAL SCIENCE TEXTBOOK

Write answers in your classwork book

QUESTIONS FOR REVISION

PAGE 124

QUESTION 1 QUESTION 2

Reaction of acids with metal

When an acid reacts with metal, a salt and hydrogen are produced: acid + metal → salt + hydrogen An example: nitric acid + calcium → calcium nitrate + hydrogen The salt that is produced depends upon which acid and which metal react.

Acids + Metals

Acids react with <u>some metals</u> to form a <u>salt</u> and <u>hydrogen gas</u>.

Acid + Metal → Salt + Hydrogen gas

```
hydrochloric acid + magnesium → magnesium chloride + hydrogen gas

sulfuric acid + magnesium → magnesium sulfate + hydrogen gas
```

Activity 7

TERM 2

TOP CLASS NATURAL SCIENCE TEXTBOOK

Write answers in your classwork book

QUESTIONS FOR REVISION

PAGE 130

QUESTION 1

QUESTION 2

QUESTION 3