TOPIC 8 and 9 – Polynomial Operations

Chapter 17 – Lesson 1: Understanding Polynomial Expressionss

Monomials a	re expressions that consist of a	,, or
	of numbers and variables with v	vhole number
	However, monomials	have a variable in
its	·	

Monomials						No	t Monomi	als	
4	x	—4 <i>xy</i>	0.25x ³	$\frac{xy}{4}$	4 + <i>x</i>	<i>x</i> – 1	0.7 <i>x</i> ⁻²	0.25 <i>x</i> ⁻¹	$\frac{y}{x^3}$

Term	Is this a monomial	Explain your reasoning
5a b^3		
x ²		
\sqrt{y}		
2 ²		
$\frac{5}{k^2}$		
5x + 7		
$x^2 + 4ab$		
$\frac{k^2}{4}$		
$16^{\frac{1}{3}}$		

Classifying Polynomials

- Classified by number of ______ and ______
- Degrees are calculated by adding the ______ in each ______, NOT ______. The term with the ______ exponent determines the

the _____.

$7x^2 - 5x^3y^3$	$3^2 + 2n^3 + 8n$
$3x^2y^2 + 3xy^2 + 5xy$	$8ab^2 - 3a^2b$

Writing Polynomials in Standard Form

- Written in order from the ______ degree to ______ degree
- First number is called the ______
- Make sure to ______ like terms

$20x - 4x^3 + 1 - 2x^2$	$z^3 - z^6 + 4z$	$10 - 3x^2 + x^5 + 4x^3$
$18y^5 - 3y^8 + 10y$	$10x + 13 - 15x^2$	$-3b^2 + 2b - 7 + 6b^3 + 12b^4 + 7$
$-2y^3 - 8y^2 + y^2 + 2y^3$	$p^2q^3 - 4p^5q^4 - 4p^2q^3 + 3p^5q^4$	$3p^2q^2 - 3p^2q^3 + 4p^2q^3 - 3p^2q^2 + pq$
3(a+b) - 6(b+c) + 8(a-c)	$ab - a^2 + 4^2 - 5ab + 3a^2 + 10$	

Evaluating Polynomials

A skyrocket is launched from a 6-foot-high platform with an initial speed of 200 feet per second. The polynomial $-16t^2 + 200t + 6$ gives the height in feet that the skyrocket will rise in *t* seconds. How high will the rocket rise if it has a 5-second fuse?

Lisa wants to measure the depth of an empty well. She drops a ball from a height of 3 feet into the well and measures how long it takes the ball to hit the bottom of the well. She uses a stopwatch, starting when she lets go of the ball and ending when she hears the ball hit the bottom of the well. The polynomial $-16t^2 + 0t + 3$ gives the height of the ball after *t* seconds where 0 is the initial speed of the ball and 3 is the initial height the ball was dropped from. Her stopwatch measured a time of 2.2 seconds. How deep is the well? (Neglect the speed of sound and air resistance).

Chapter 17 – Lesson 2 and 3: Adding and Subtracting Polynomials

Adding

$5x^2 + 2x - 1$ and $4x^2 - x + 2$	$3y^3 + 2y + 1$ and $y^2 - 1$	$(-6x^2 + 2)$ and $(-4x^2)$
$(-x^3 + 2)$ and $(-4x^3 + y + x)$	(y-7) and $(3y+18)$	
A box company owns two factories in different parts of the country. The profit for each factory is modeled by a polynomial with <i>x</i> representing the number of boxes each produces. Solve by adding the polynomials. The models needed in each situation are provided.	The first factory makes a profit of $-0.03x^2 + 20x - 500$, and the second makes $-0.04x^2 + 25x - 1000$. What is the polynomial modeling the box company's total profit if both factories make the same number of boxes?	The company plans to open a third factory with a projected profit of $-0.03x^2 + 50x - 100$. What will be the total profit of the box company, written as a polynomial, if the projected profit is correct?

Subtracting

$(5x+2) - (-2x^2 - 3x + 4)$	$(y^2 + y - 1) - (-2y^2)$	$(x^2 + y + 1)$	$(2q^2 - q - 8) - (2q^2 + q - 4)$			
$(2ab - b + a) - (2b^2 + b + a + 4)$	$\left(-x^3+y^2+y-x\right)$	$-\left(-x^3+y+x\right)$	(18z + 12) - (11z - 5)			
The cost in dollars of producing <i>x</i> toothbr		The revenue made by a car company from the sale of y cars is given by $0.005y^2 + 10y$. The cost to produce y cars is given by the polynomial $20y + 1,000,000$. Write a polynomial				
polynomial $400,000 + 3x$, and the revenue is given by the polynomial $20x - 0.00004x$ expression for the profit from making and	x². Write a polynomial selling x toothbrushes.		making and selling y cars. Find the profit the company will			
Then find the profit for selling 200,000 to	othbrushes.					

Chapter 18 – Lesson 1 and 2: Multiplying Monomials and Polynomials

When multiplying monomials and polynomials, always remember:

- Multiply numbers with ______
- Exponent rules ______
- Combine _____as needed

$(6x^3)(-4x^4)$	$(5xy^2)(7xy)$	$3x(3x^2+6x-5)$	Design Harry is building a fish tank that is a square prism. He wants the height of the tank to be 6 inches longer than the length and width. If he needs the volume to be as close as possible to 3500 in ³ , what should be the length of the tank? Round to the nearest inch.
$2xy\left(\frac{5x^2y+3xy^2}{7}+7xy\right)$	$2a^2(5b^2+3ab+6a+1)$	$(18y^2x^3z)(3x^8y^6z^4)$	Engineering Diane needs a piece of paper whose length is 4 more inches than the width, and the area is as close as possible to 50 in ² . To the nearest whole inch, what should the dimensions of the paper be?

(x + 1) (x - 2)	(2x + 4)(x + 3)	$(x^2 + 3)(x + 2)$
$(3x^2-2x)(x+5)$	$(3x + 1)(x^3 + 4x^2 - 7)$	Orik has designed a rectangular mural that measures 20 feet in width and 30 feet in length. Laura has also designed a rectangular mural, but it measures x feet shorter on each side. When x = 6, what is the area of Laura's mural?

Chapter 18 – Lesson 3: Special Products of Binomials

Perfect Square Trinomials

(a + b) ² – Perfect Square	(a – b) ² - Perfect Square	<u>(a – b)(a + b)</u> <u>– Difference of Squares</u>
$(x + 4)^2$	$(x-5)^2$	(x + 6)(x - 6)
$(3x+2y)^2$	$(4x-3y)^2$	$(x^2+2y)(x^2-2y)$
$(-x+3)^2$	$(3-x^2)^2$	(7+x)(7-x)

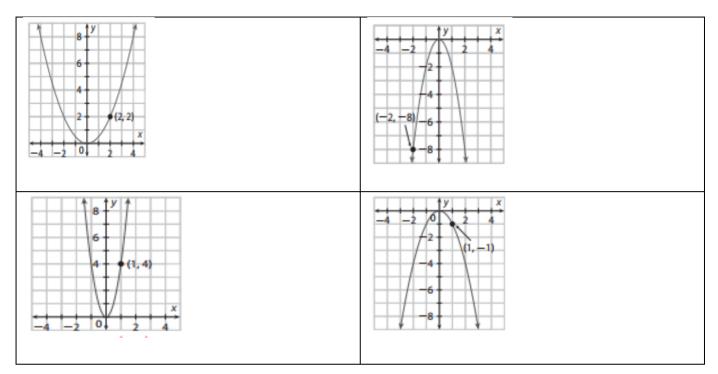
A designer adds a border with a uniform width to a square rug. The original side length of the rug is (x-5) feet. The side length of the entire rug including the original rug and the border is $(x + 5)$ feet. What is the area of the border? Evaluate the area of the border if $x = 10$ feet.	
A square patio has a side length of $(x - 3)$ feet. It is surrounded by a flower garden with a uniform	
width. The side length of the entire square area	
including the patio and the flower garden is (x + 3)	
feet. Write an expression for the area of the	
flower garden.	

Chapter 19 – Lesson 1: Understanding Quadratic Functions

Linear				Exponential			Quadratic								
-2	-1	0	1	2		-2	-1	0	1	2	-2	-1	0	1	2
5	7	9	11	13		2	4	8	16	32	0	1	4	9	16

Quadratic Function -	Simplest quadratic function –

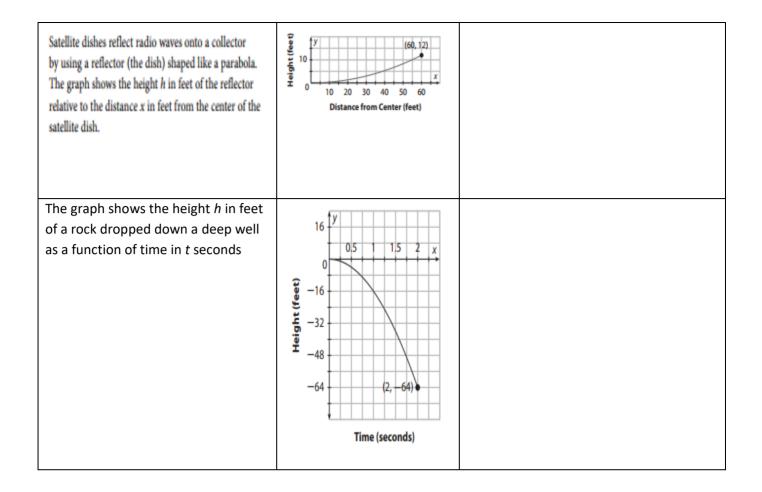
Parabola	Axis of symmetry	Vertex	Minimum/Maximum


Understanding Parent quadratic Function

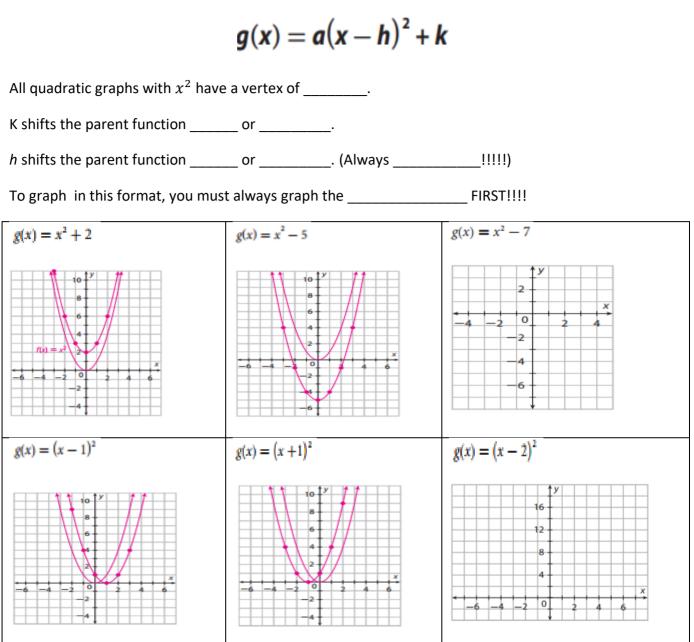
x $f(x) = x^2$ -3 $f(x) = x^2 = (-3)^2 = 9$ -2 4 -1 1 0 0 1 1 2 4 3 9	8 6 4 2 -4 -2 0 2 4 -4 -2 0 2 4	Domain: Range:
Vertical Stretch $g(x) = ax^2$ with $ a > 1$. The graph of $g(x)$ is narrower than the parent function $f(x)$. f(x). f(x) $f(x)$	Vertical Compression $g(x) = ax^2$ with $0 < a < 1$. The graph of $g(x)$ is wider than the parent function $f(x)$. f(x)	

$g(x) = -2x^{2}$ $x g(x) = 2x^{2}$ $-3 -18$ $-2 -8$ $-1 -2$ $0 0$ $1 -2$ $2 -8$ $3 -18$		Domain: Range:
Vertical Stretch $g(x) = ax^2$ with $ a > 1$. The graph of $g(x)$ is narrower than the parent function $f(x)$. f(x)	Vertical Compression $g(x) = ax^2$ with $0 < a < 1$. The graph of $g(x)$ is wider than the parent function $f(x)$. $f(x) = \frac{1}{2} + \frac{1}{2}$	

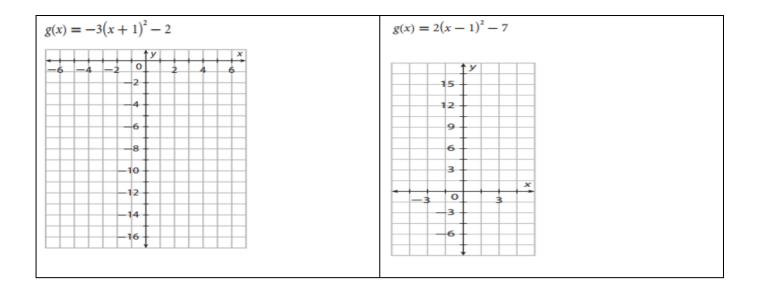
Writing Quadratic Functions from Graphs


- 1) Write formula for quadratic
- 2) ______ x and y values with points from graph, but not ______

Modeling with Quadratic Function


For each model, describe what the vertex, *y*-intercept, and endpoint(s) represent in the situation it models, and then determine the equation of the function.

This graph models the depth in yards below the water's surface of a dolphin before and after it rises to take a breath and descends again. The depth <i>d</i> is relative to time <i>t</i> , in seconds, and $t = 0$ is when dolphin reaches a depth of 0 yards at the surface.	-4 y $x-4$ -2 0 2 $4-8-16-24(-4, -32)(-4, -32)$	The <i>y</i> -intercept occurs at the vertex of the parabola at $(0, 0)$, where the dolphin is at the surface to breathe. The endpoint $(-4, -32)$ represents a depth of 32 yards below the surface at 4 seconds before the dolphin reaches the surface to breathe. The endpoint $(4, -32)$ represents a depth of 32 yards below the surface at 4 seconds after the dolphin reaches the surface to breathe. The endpoint $(4, -32)$ represents a depth of 32 yards below the surface at 4 seconds after the dolphin reaches the surface to breathe. The graph is symmetric about the <i>y</i> -axis with the vertex at the origin, so the function will be of the form $y = ax^2$, or $d(t) = at^2$. Use a point to determine the equation. $d(t) = at^2$ $-32 = a(4)^2$ $-32 = a \cdot 16$ -2 = a The function is $d(t) = -2t^2$.
--	---	--



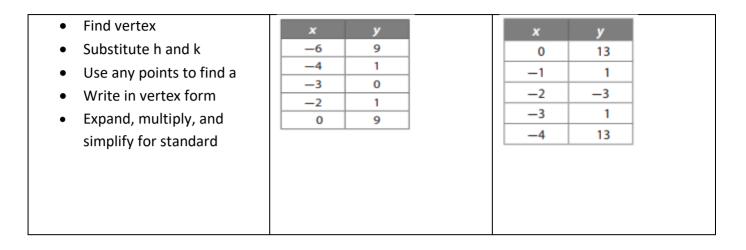
How does the *a* affect the graph of $f(x) = ax^2$?

Value of <i>a</i>	Type of Transformation	Graph Opens
a > 1		
0 < <i>a</i> > 1		
-1 < <i>a</i> > 0		
a = -1		
a < 1		

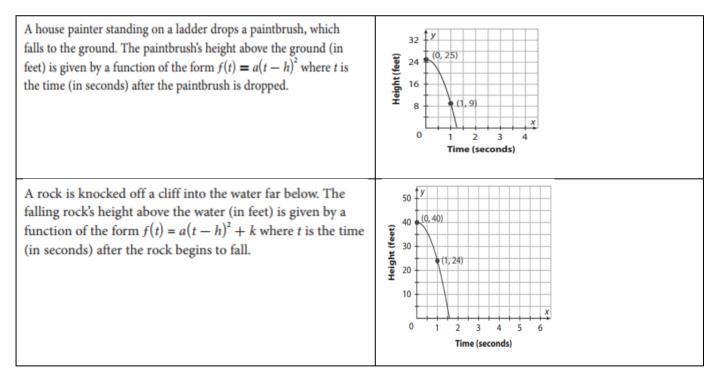
Chapter 19 – Lesson 2: Transforming Quadratic Functions –

Chapter 19 – Lesson 3: Interpreting Vertex Form and Standard Form

Quadratic functions must be able to be written i	n	_form.
--	---	--------


y = -2x + 20	$y + 3x^2 = -4$
$y - 4x + x^2 = 0$	X + 2y = 14x + 6

Changing from vertex form to standard form - Expand, Multiply, and Simplify!!!!


Rewrite a quadratic function from vertex form, $y = a(x - h)^2 + k$, to standard form, $y = ax^2 + bx + c$.

$y = 4(x-6)^2 + 3$	$y = -3(x+2)^2 - 1$

Use each table to write a quadratic function in vertex form, $y = a(x - h)^2 + k$. Then rewrite the function in standard form, $y = ax^2 + bx + c$.

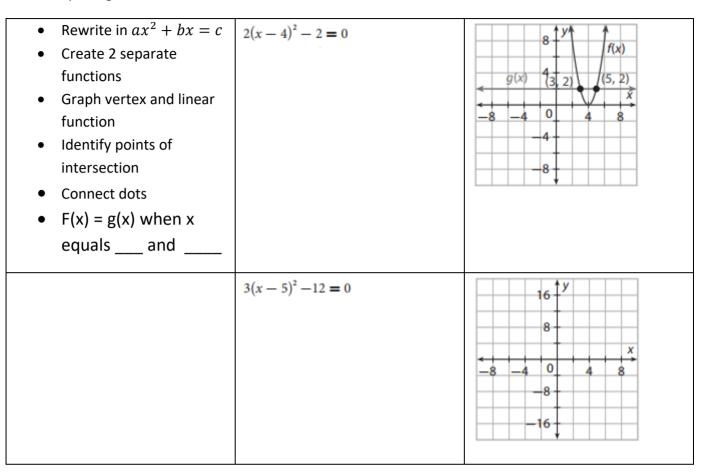
Writing a Quadratic Function given a Table of Values

Reminders:

Chapter 20 – Lesson 1: Connecting Intercepts and Zeros

Finding the vertex and axis of symmetry from standard form

• use axis formula	$f(x) = x^2 + 8x - 14,$	$y = 6x^2 + 24x + 14.$
• substitute to find vertex		

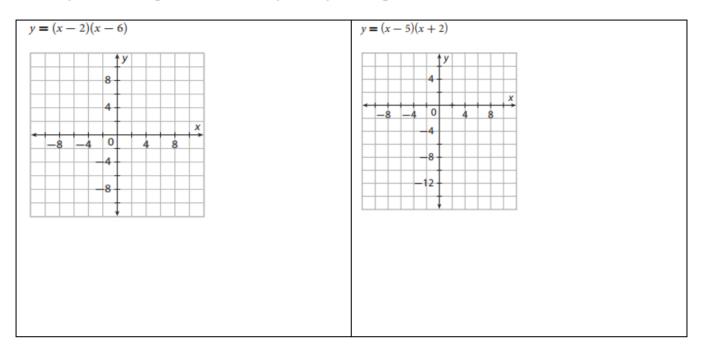

Using zeros to solve quadratic equations graphically

A **zero of a function** is an x value that makes the value of the function _____. These are the _____ intercepts.

		1
 Rewrite equation to equal 0. Replace 0 with y Find vertex Create a table with points on both sides of the vertex and find the zeros of the function (y zone) Graph vertex and zeros and connect 	$2x^2 - 5 = -3$	g(x) 4 f(x) g(x) 4 (5, 2) -8 -4 -4
	$6x + 8 = -x^2$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Using Points of intersection to solve quadratic equations graphically

You can also solve by rewriting in the form $ax^2 + bx = c$ and using the expressions on ______ sides of the equal sign to define a function.


Modeling a Real World Problem

Nature A squirrel is in a tree holding a chestnut at a height of 46 feet above the ground. It drops the chestnut, which lands on top of a bush that is 36 feet below the squirrel. The function $h(t) = -16t^2 + 46$ gives the height in feet of the chestnut as it falls, where *t* represents time. When will the chestnut reach the top of the bush?

Nature An egg falls from a nest in a tree 25 feet off the ground and lands on a potted plant that is 20 feet below the nest. The function $h(t) = -16t^2 + 25$ gives the height in feet of the egg as it drops, where *t* represents time. When will the egg land on the plant?

<u>Chapter 20 – Lesson 2 and 3: Connecting Intercepts and Linear Factors and applying</u> <u>the zero product property to solve equations</u>

Graph each quadratic function and each of its linear factors. Then identify the *x*-intercepts and the axis of symmetry of each parabola.

Write each function in standard form. Determine x-intercepts and zeros of each function.

y = -2(x+5)(x+1)	y = 5(x-3)(x-1)

Given two quadratic functions f(x) = (x - a)(x - b) and g(x) = k(x - a)(x - b), where k is any non-zero real constant, examine the x-intercepts for each quadratic function.

For the given two intercepts and three values of k generate three quadratic functions. Write the functions in factored form and standard form.			
<i>x</i> -intercepts: 1 and 8; $k = 1, k = -4, k = 5$	<i>x</i> -intercepts: -7 and 3; $k = 1, k = -5, k = 7$		

(x+3)(x+8)=0	(x-15)(x+7)=0

Solving Quadratic Equations Using the Distributive Property and the Zero Product Property - "_____" and "_____"

3x(x-4) + 5(x-4) = 0	-9(x+2) + 3x(x+2) = 0
7x(x - 11) - 2x + 22 = 0	-8x(x+6) + 3x + 18 = 0

Solving Real-World Problems Using the Zero Product Property

The height of one diver above the water during a dive can be modeled by the equation $h = -4(4t + 5)(t - 3)$, where <i>h</i> is height in feet and <i>t</i> is time in seconds. Find the time it takes for the diver to reach the water.	The height of a golf ball after it has been hit from the top of a hill can be modeled by the equation $h = -8(2t - 4)(t + 1)$, where <i>h</i> is height in feet and <i>t</i> is time in seconds. How long is the ball in the air?

^{8th} Grade Algebra

TOPIC 8 and 9 – Polynomial Operations

				Home	
Date	Chapter/Lesson	Materials	Assessment	Learning	Rigor
	17.1: Understanding Polynomial Expressions	Guided Notes			 Conceptual understanding Skill and fluency Application
	17.2: Adding Polynomials				 Conceptual understanding Skill and fluency Application
	17.3: Subtracting Polynomials				 Conceptual understanding Skill and fluency Application
	18.1: Multiplying MOnomials				 Conceptual understanding Skill and fluency Application
	18.2: Multiplying Polynomials				 Conceptual understanding Skill and fluency Application
	18.3: Special Products of Binomials				 Conceptual understanding Skill and fluency Application
	19.1: Understanding Quadratic Functions	Guided Notes			 Conceptual understanding Skill and fluency Application
	19.2: Transforming Quadratic Functions				 Conceptual understanding Skill and fluency Application

19.3: Interpreting Vertex Form and Standard Form	 Conceptual understanding Skill and fluency Application
20.1: Graphing Exponential Functions	 Conceptual understanding Skill and fluency Application
20.2: Connecting Intercepts and Zeros	 Conceptual understanding Skill and fluency Application
20.3: Using Graphs and Properties to Solve Equations with Exponents	 Conceptual understanding Skill and fluency Application
Chapter and Standardized Test Review	 Conceptual understanding Skill and fluency Application
Topic Assessment	 Conceptual understanding Skill and fluency Application