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Abstract
”Marcel Ndengo Rugengamanzi” (2013). Term structure estimation based
on a generalized optimization framework. Doctoral dissertation. No.1539
ISBN 978-91-7519-526-1. ISSN 0345-7524.

The current work is devoted to estimating the term structure of interest rates based
on a generalized optimization framework. To fix the ideas of the subject, we introduce
representations of the term structure as they are used in finance: yield curve, discount
curve and forward rate curve.

Yield curves are used in empirical research in finance and macroeconomic to support
financial decisions made by governments and/or private financial institutions. When
governments (or financial corporations) need fundings, they issue to the public (i.e. the
market) debt securities (bills, bonds, notes, etc ) which are sold at the discount rate at
the settlement date and promise the face value of the security at the redemption date,
known as maturity date. Bills, notes and bonds are usually sold with maximum maturity
of 1 year, 10 years and 30 years respectively.

Let us assume that the government issues to the market zero-coupon bonds, which
provide a single payment at maturity of each bond. To determine the price of the security
at time of settlement, a single discount factor is used. Thus, the yield can be defined as the
discount rate which makes the present value of the security issued (the zero-coupon bond)
equal to its initial price. The yield curve describes the relationship between a particular
yield and a bond’s maturity. In general, given a certain number of bonds with different
time to maturity, the yield curve will describe the one-to-one relationship between the
bond yields and their corresponding time to maturity. For a realistic yield curve, it is
important to use only bonds from the same class of issuer or securities having the same
degree of liquidity when plotting the yields.

Discount factors, used to price bonds, are functions of the time to maturity. Given
that yields are positive, these functions are assumed to be monotonically decreasing as
the time to maturity increases. Thus, a discount curve is simply the graph of discount
factors for different maturities associated with different securities.

Another useful curve uses the forward rate function which can be deduced from both
the discount factor and the yield function. The forward rate is the rate of return for an
investment that is agreed upon today but which starts at some time in the future and
provides payment at some time in the future as well. When forward rates are used, the
resulting curve is referred to as the forward rate curve. Thus, any of these curves, that
is, the yield curve, the discount curve or the forward rate curve, can be used to represent
what is known as the term structure of interest rate. The shapes that the term structure of
interest rates can assume include upward sloping, downward sloping, flatness or humped,
depending on the state of the economy. When the expectations of market participants
are incorporated in the construction of these curves representing the term structure, their
shapes capture and summarize the cost of credit and risks associated with every security
traded.

However, constructing these curves and the choice of an appropriate representation of
the term structure to use is not a straightforward task. This is due to the complexity of the
market data, precisely, the scarcity of zero-coupon bonds which constitutes the backbone
of the term structure. The market often provides coupons alongside market security prices
for a small number of maturities. This implies that, for the entire maturity spectrum,
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yields can not be observed on the market. Based on available market data, yields must
be estimated using traditional interpolation methods. To this end, polynomial splines as
well as parsimonious functions are the methods mostly used by financial institutions and
in research in finance. However, it is observed in literature that these methods suffer from
the shape constraints which cause them to produce yield curves that are not realistic with
respect to the market observations. Precisely, the yield curves produced by these methods
are characterized by unrealistic fit of the market data, either in the short end or in the
long end of the term structure of interest rate.

To fill the gap, the current research models the yield curve using a generalized opti-
mization framework. The method is not shape constrained, which implies that it can
adapt to any shape the yield curve can take across the entire maturity spectrum. While
estimating the yield curve using this method in comparison with traditional methods on
the Swedish and US markets, it is shown that any other traditional method used is a
special case of the generalized optimization framework. Moreover, it is shown that, for
a certain market consistency, the method produces lower variances than any of the tra-
ditional methods tested. This implies that the method produces forward rate curve of
higher quality compared to the existing traditional methods.

Interest rate derivatives are instruments whose prices depend or are derived from the
price of other instruments. Derivatives instruments that are extensively used include
the forward rate agreement (FRA) contracts where forward rate is used and the interest
rate swap (IRS) where LIBOR rate is used as floating rate. These instruments will only
be used to build up the term structure of interest rates. Since the liquidity crisis in
2007, it is observed that discrepancies in basis spread between interest rates applied to
different interest rate derivatives have grown so large that a single discount curve is no
longer appropriate to use for pricing securities consistently. It has been suggested that
the market needs new methods for multiple yield curves estimation to price securities
consistently with the market. As a response, the generalized optimization framework is
extended to a multiple yield curves estimation. We show that, unlike the cubic spline for
instance, which is among the mostly used traditional method, the generalized framework
can produce multiple yield curves and tenor premium curves that are altogether smooth
and realistic with respect to the market observations.

U.S. Treasury market is, by size and importance, a leading market which is considered as
benchmark for most fixed-income securities that are traded worldwide. However, existing
U.S. Treasury yield curves that are used in the market are of poor quality since they have
been estimated by traditional interpolation methods which are shape constrained. This
implies that the market prices they imply contain lots of noise and as such, are not safe to
use. In this work, we use the generalized optimization framework to estimate high-quality
forward rates for the U.S. Treasury yield curve. Using efficient frontiers, we show that the
method can produce low pricing error with low variance as compared to the least squares
methods that have been used to estimate U.S. Treasury yield curves.

We finally use the high-quality U.S. Treasury forward rate curve estimated by the
generalized optimization framework as input to the essentially affine model to capture the
randomness property in interest rates and the time-varying term premium. This premium
is simply a compensation that is required for additional risks that investors are exposed
to. To determine optimal investment in the U.S. Treasury market, a two-stage stochastic
programming model without recourse is proposed, which model borrowing, shorting and
proportional transaction cost. It is found that the proposed model can provide growth of
wealth in the long run. Moreover, its Sharpe ratio is better than the market index and its

iv
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Jensen’s alpha is positive. This implies that the Stochastic Programming model proposed
can produce portfolios that perform better than the market index.
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Populävetenskaplig sammanfattning

”Marcel Ndengo Rugengamanzi” (2013). Term structure estimation based
on a generalized optimization framework. Doctoral dissertation. No.1539
ISBN 978-91-7519-526-1. ISSN 0345-7524.

Detta arbete handlar om att estimera räntestrukturen utifr̊an ett generaliserat
optimeringsramverk. För att beskriva arbetet kommer de vanligaste använda
representationerna av räntestrukturen att presenteras: nollkupongsräntor,
diskonteringsfaktorer och terminsräntor.

Räntekurvor används i empirisk forskning inom finans och i makroekonomi för att
stödja finansiella beslut som fattas av staten eller andra privata finansiella institutioner.
När stater (eller fretag) behöver finansiering fr̊an marknaden, utfärdar de värdepapper
(t.ex. statsskuldsväxlar eller obligationer) som sedan säljs till dess nuvärde, och utbetalar
det nominella beloppet p̊a förfallodagen. Statsskuldsväxlar har en löptid p̊a upp till ett
år och obligationer har löptider ver 1 år.

Utställaren av en obligation betalar ofta även ut en sekvens av kassaflöden under
obligationens löptid, s̊a kallade kuponger, antingen halv̊arsvis eller en g̊ang per år. P̊a
förfallodagen erh̊aller obligationsinnehavaren b̊ade det nominella beloppet och en
kupongutbetalning. Varje kassaflöde diskonteras med en diskonteringsränta. När utfärdaren
endast betalar det nominella värdet p̊a förfallodagen, kallas obligationen för en
nollkupongsobligation. För att bestämma värdet p̊a obligationen används en
diskonteringsfaktor, som även kan uttryckas som en diskonteringsränta.
Nollkupongräntekurvan beskriver sambandet mellan räntan för olika löptider, och det
finns en koppling mellan nollkupongräntekurvan och obligationspriserna. För att
nollkupongräntekurvan skall vara realistisk måste obligationerna ha samma emittent och
vara lika likvida.

Diskonteringsfaktorer som används för att prissätta obligationer beror p̊a löptiden.
Givet att räntorna är positiva, kommer funktionen att vara monotont avtagande för
ökande löptider.

En annan användbar räntekurva beskriver terminsräntorna, vilka kan härledas fr̊an
diskonteringsfaktorer eller nollkupongräntor. Terminsräntan är en idag överenskommen
ränta för ett l̊an som startar vid en framtida tidpunkt och som förfaller vid en senare
tidpunkt. När terminsräntor används, kallas räntekurvan för terminsräntekurvan. Därmed
kan vilken som helst av diskonteringsfaktorkurvan, nollkupongräntekurvan eller
terminsräntekurvan användas för att beskriva räntekurvan. Räntekurvor antar vanligen
en form som är upp̊atlutande, ned̊atlutande, platt eller att den har en puckel beroende p̊a
konjunkturen. Räntekurvorna innefattar marknadsaktörernas förväntningar, och f̊angar
därmed premier för exponering mot kreditrisker och andra risker som finns i de handlade
tillg̊angarna.

Att estimera en räntekurva och att välja en lämplig beskrivning av den är inte enkelt.
Det grundläggande problemet är att räntekurvan måste estimeras fr̊an ett begränsat
antal instrument, och ofta innefattar instrumenten även kupongräntor. Det innebär att
de eftersökta räntorna inte är direkt observerbara i marknadspriserna. Baserat p̊a de
tillgängliga marknadspriserna, estimeras därför räntekurvorna med traditionella
interpolationsmetoder. Vanligtvis används d̊a polynomiska spline funktioner eller
funktioner med ett f̊atal parametrar av marknadsaktörer och forskare inom finans. Dock
har det observerats i forskning att de här metoderna ger upphov till räntekurvor som är
orealistiska, de har i allmänhet sv̊arigheter att estimera antingen korta eller l̊anga räntor.
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För att förbättra estimeringen av räntekurvor, används i den här avhandlingen ett nytt
generaliserat optimeringsramverk för att estimera räntekurvorna. Den här metoden är
inte begränsad till olika specifika former p̊a räntekurvan, vilket betyder att den kan anta
alla möjliga former p̊a alla delar av räntekurvan. I avhandlingen visas att de traditionella
metoderna är specialfall till modellen. I utvärderingar av det nya optimeringsbaserade
ramverket och de traditionella metoderna p̊a den svenska och amerikanska marknaden
framkommer det att, för en viss niv̊a av konsistens med marknadspriserna s̊a erh̊alls lägre
varians med den nya metoden jämfört med alla traditionella metoder. Det här innebär
att metoden producerar mer högkvalitativa räntekurvor än traditionella metoder.

Räntederivat är instrument vars priser beror p̊a priset av en annan tillg̊ang.
Derivatinstrument som används mycket inkluderar FRA kontrakt och ränteswappar, som
används för att estimera räntekurvan. Sedan likviditetskrisen, som inleddes 2007, har
prissättningen p̊a kontrakt som baseras p̊a LIBOR med olika löptider vuxit s̊a pass mycket
att det inte längre räcker med en räntekurva för att prissätta alla de här kontrakten
konsistent. Det finns ett behov av nya metoder för att estimera multipla räntekurvor.
Det generaliserade optimeringsramverket har därför vidareutvecklats till ett ramverk för
att estimera multipla räntekurvor. Vi kan d̊a visa att jämfört med en traditionellt vanligt
använd metod som kubisk spline, s̊a kan det generaliserade optimeringsramverket estimera
multipla räntekurvor som är jämna och konsistenta med marknadspriserna.

Marknaden för amerikanska statspapper är storleksmässigt en betydande marknad,
och fungerar som referens för många andra delar av räntemarknaden. De nuvarande
räntekurvorna är av d̊alig kvalitet, d̊a de estimerats med traditionella metoder som är
begränsade till vissa bestämda former. Det innebär att priserna som räntekurvorna
implicerar inneh̊aller mycket brus, och inte alltid är tillförlitliga. I den här avhandlingen
använder vi det generaliserade optimeringsramverket för att estimera högkvalitativa
terminsräntor för amerikanska statspapper. Vi visar att vi kan bestämma stabila räntekurvor
med lägre varians i kombination med lägre prissättningsfel jämfört med traditionella
minstakvadratmetoder som använts för att estimera amerikanska statsräntekurvor.

Vi har slutligen använt de högkvalitativa amerikanska statsräntekurvorna i en
huvudsakligen affin modell för att f̊anga osäkerheten i räntekurvor och den tidsvarierande
räntepremien. Den här premien är en kompensation för den risk som investerare p̊a
räntemarknaden exponeras mot. För att bestämma optimala investeringar används en
stokastisk programmeringsmodell med tv̊a tidssteg, där vi modellerar blankning, bel̊aning
och proportionella transaktionskostnader. Modellen genererar positiva avkastningar, och
vid utvärdering har den bättre Sharpekvot än marknadsportföljen, och Jensens alfa är
positiv. Stokastisk programmeringsmodellen kan därmed ta fram optimala beslut, som är
bättre än marknadsportföljen.
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1. Introduction

The relationship between interest rates and the term to maturity, commonly called
the term structure of interest rates, is fundamental for financial institutions. The term
structure of interest rates is used for various financial objectives. Given the current interest
rate and the implied forward rate curves, the yield curve is used to assess the impact of
economic policy over the entire economy. This includes forecasting the yields on long-
term securities, supporting monetary policy and debt policy, ensuring reasonableness in
derivative pricing and hedging. Thus, appropriate methods for estimating the yield curves
need be identified which can be used to support decisions making.
In literature, two main streams of yield curves are discussed. On the one hand, scholars

explore extensively yield curve models which focus on the dynamics of the term structure.
The need for such models is motivated by the ever growing necessity to price accurately
on long term basis interest rate derivatives. To achieve such goal, it requires to model,
not only the yield curves but also the volatility of interest rates as they evolve in time.
A succinct exposé on short rate models can be found in textbooks such as (Brigo and
Mercurio 2006) and the like. These models are deduced from equilibrium condition or/and
no-arbitrage condition in assets pricing and will not be part of the current work. On the
other hand, scholars develop spline-based models and parametric models of the yield
curves whose implementations have been popular for financial institutions. Well known
models include Hagan and West (2006) for simple interpolation methods, McCulloch
(1971, 1975), and Adams and Deventer (1994) for the spline-based models, Nelson and
Siegel (1987), Svensson (1994) for the parsimonious functions. This second stream of yield
curve models constitute a building block for the current research.
The current work is composed of four papers covering each one of the following aims:

The first aim of the thesis is to show that the generalized optimization framework for es-
timating the yield curves proposed in Blomvall (2011) produces high-quality yield curves,
i.e. yield curve that are smooth, reasonable and consistent with the market prices. We
show that, for a certain level of market consistency, the method produces smaller vari-
ance than all other interpolation methods. We also show that all traditional methods
for estimating yield curves are special cases of the generalized optimization framework.
From PCA analysis, we find that the short end rates move independently of the long end.
This is supported by the fact that it is the central bank which regulates the short end
rate to control and regulate inflation and that longer term rates are affected by the future
expectation of the inflation. The second aim is to extend the method to a multiple yield
curve estimation in order to satisfy the current market trends where discrepancies are ob-
served between overnight index swap (OIS), forward rate agreement (FRA) and interest
rate swap (IRS). These price differences necessitate a new pricing methodology where ap-
propriate discount functions corresponding to each tenor are used for market consistency.
The third aim is to use the same framework to estimate the U.S. Treasury yield curve.
This is motivated by the fact that the U.S. Treasury yield curves are considered as the
benchmark from market and influence the pricing of other debt securities. Finally, we
use high-quality yield curves estimated using the generalized optimization framework as
input to the essentially affine term structure (Duffee 2002) to capture the time-varying
term premium, which is a compensation required for investors who are exposed to the
duration risks. These high-quality yields are subsequently used in a two-stage Stochastic
Programming model that is proposed to study the long run consequences of Stochastic
Programming investments in the U.S. Treasury market.
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2. Representations of the Term structure of interest rates

In this section, we introduce basic theoretical constructs that are used to represent
the term structure of interest rates and highlight the relationship among them: the yield
curve, the forward rate curve and the discount curve.
A discount bond which starts at time t and matures at time T is a security with the

promise from the bond issuer to pay a unit currency, say USD 1, to the bond holder when
it matures. Its price at time t ≤ T , denoted by P (t, T ), attains its maximum at time T .
Thus, by definition, it follows that

P (T, T ) = 1.(1)

To emphasize the single payment embedded in a discount bond, most literature refers to
this security as a zero-coupon bond. The cash flow of a T -bond that pays one unit of
currency at maturity time T can be visualized in the figure below

�
time (years)

�

P (t, T )

�

P (T, T ) = 1

t T

where t is usually considered as the bond settlement date.

The yield, denoted by y (t, T ), is regarded as the continuously compounded rate of
return for investment which causes the price of a discount bond, P (t, T ), to increase up
to 1 at time T . Thus, by definition, it holds that

P (t, T ) ey(t,T )(T−t) = 1(2)

which implies

P (t, T ) = e−y(t,T )(T−t).(3)

From (3), it follows that

y (t, T ) = − logP (t, T )

T − t
.(4)

A bond that provides multiple payments (or coupons) to the bond holder at regular
frequencies is referred to as a coupon-bearing bond. These intermediate payments are
naturally included in the valuation proceedings of this security. Let p (t) denote the
time t market value of a fixed coupon bond, having coupon payment dates scheduled as
T1 < T2 < . . . < Tn with corresponding coupons, c1, . . . , cn and a nominal investment, N .
Then, using equation (3), the time t market price of the bond is given by

p (t) =
n∑

i=1

ciP (t, Ti) + P (t, Tn)N =
n∑

i=1

cie
−y(t,Ti)(Ti−t) +Ne−y(t,Tn)(Tn−t) , t ≤ T1(5)
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where P (t, Ti), depicted in the figure below, are appropriate discount factors associated

�
time (years)

�

p (t)

�

P (t, T1)

�

P (t, T2)

�

P (t, Tn)

t T1 T2 Tn

with the coupon payment ci and y (t, Ti), i = 1, . . . , n, is then the continuously com-
pounded yield defined in (4).
The instantaneous spot rate at time t, denoted by r (t), is thought of as the yield on

the currently maturing bond. Using equation (4), this rate is given by

r (t) = lim
T→t

y (t, T ) = y (t, t) .(6)

In other words, the instantaneous spot rate is the rate of return that is earned by investors
over the next very short interval of time. From equation (4), the yield curve is simply
the function T → y (t, T ) which, at time t, describes the relationship between the bonds’
yields and their respective time to maturity.

Using the figure below, we now consider the rate of return of an investor who, at time
t, holds a bond with maturity at time T1 > t whose price is P (t, T1) and decides to roll
it over the next equivalent period of time, T2 > T1 to a fixed rate which is agreed upon
today, denoted by f (t, T1, T2). This should be equivalent to investing, at time t, in a bond
maturing at time T2 which trades for the price P (t, T2). This considerations imply that
the forward rates are interest rates, or the rate of return, which are locked in today for an
investment in a future time period, and most importantly, they are set consistently with
the current term structure of discount factors.

�
time (years)

�

P (t, T1)

� �

P (t, T2)

t T1 T2

Formally, these rates are deduced from the equation

P (t, T1) = P (t, T2) e
(T2−T1)f(t,T1,T2).(7)

which, must hold for any pair of maturities Ti < Tj. Solving for f (t, T1, T2), we obtain
the formal definition of the forward rate as

f (t, T1, T2) =
1

T2 − T1

log

[
P (t, T1)

P (t, T2)

]
.(8)

Using the definitions in (3) and (4), equation (8) can be written as

f (t, T1, T2) =
y (t, T2) (T2 − t)− y (t, T1) (T1 − t)

T2 − T1

.(9)
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Equation (9) defines the rate of return for an investment on a forward contract entered
at time t but starting at time T1 and provides payment at time T2.
To define the instantaneous forward rate, denoted by f (t, T ), we set T1 = T and let

T2 → T . This yields

(10) f (t, T ) = lim
T2 →T+

f (t;T, T2) = −∂ logP (t, T )

∂T
.

In other words, the instantaneous forward rate can be seen as the overnight forward rate
which has only one day after the settlement date. The forward rate curve is thus the
function T → f (t, T ), which is the graph of forward rates for all maturities.
Using (4), equation (10), can also be written as

f (t, T ) = − ∂

∂T
log (P (t, T )) =

∂

∂T
[y (t, T ) (T − t)] .(11)

Thus, given the values of f (t, T ), for 0 ≤ t ≤ T , in (11), we recover the price P (t, T ) in
(3) as follows ∫ T

t

f (t, u) du = − [logP (t, T )− logP (t, t)] .

From P (t, t) = 1, we have that∫ T

t

f (t, u) du = − logP (t, T ) .

Hence, for 0 ≤ t ≤ T , it holds that

P (t, T ) = exp

(
−
∫ T

t

f (t, u) du

)
.(12)

Equating (3) and (12), it then follows that

y (t, T ) =
1

T − t

∫ T

t

f (t, u) du(13)

in which the continuously compounded spot rate is seen as the average of the forward
rates prevailing between t and T .
To define the discount factor, we introduce the relationship between the saving account

and the short rate. According to (12), an investment of USD 1 at time t = 0 for period
(0,Δt) yields a return given by

1

P (0,Δt)
= exp

(∫ Δt

0

f (0, u) du

)
= 1 + r (0)Δt+ o(Δt)(14)

where o(Δt)/Δt → 0 as Δt → 0. A saving account, or bank account, B (t), is an asset
growing instantaneously between time t and t + Δt, at short rate r (t) and is computed
as

B (t+Δt) = B (t) (1 + r (t)Δt).(15)

As Δt → 0, we obtain

dB (t) = r (t)B (t) dt.(16)

Since B (0) = 1, it follows that

B (t) = exp

{∫ t

0

r (s) ds

}
.(17)
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As such, B (t) is the risk-free asset since the future value in the short interval, from t to
t+Δt is known with certainty. The discount factor, denoted by D (t, T ), between time t
and T is thus defined, from equation (17), as

D (t, T ) =
B (t)

B (T )
=

exp

{∫ t

0

r (s) ds

}

exp

{∫ T

0

r (s) ds

} = exp

{
−
∫ T

t

r (s) ds

}
(18)

which is the amount, at time t, equivalent US 1$ that is payed at time T .
The difference between P (t, T ) and D (t, T ) lies in the nature of the short rate r(t).

Following Brigo and Mercurio (2006, p.4),

(19) D (t, T ) =

{
P (t, T ) , if r (t) is deterministic

random variable, if r (t) is stochastic

in which case it depends upon the evolution of r (t) from time t to T . The link between
both quantities is defined by the relation

P (t, T ) = EQ [D (t, T ) |Ft](20)

where EQ [·] is the expectation operator under a certain probability measure Q, and Ft is
the information available up to time t. For now, we assume that the short rate, r (t) is
deterministic and so the discount factor, equivalent then to (12), can be expressed as

(21) D (t, T ) = exp

(
−
∫ T

t

f (t, u) du

)
.

Thus, the discount curve, denoted by T → D (t, T ), is simply the graph that describes
the relationship between discount factors and their associated maturities.
To construct the term structure of interest rates, any of the following representations

can be used

• the forward rate curve, T → f (t, T ),
• the yield curve, T → y (t, T ) or
• the discount curve, T → D (t, T ).

since they are all equivalent.
Depending on the state of the economy, the yield curve can take different shapes ranging

from ascending, descending, horizontal or humped. For notation, we set the time t = 0 so
as we can use a more simpler notation, d (T ), f (T ) and y (T ) for discount factor, forward
rate and yield respectively.
In practice, yield curves, forward rate curves or discount curves can not be observed

because the market provides only bond prices for a limited number of maturities as well
as coupon payments. Therefore, yield curves must be estimated from bond prices using
adequate interpolation methods. The current research is concerned with methods for
estimating yield curve (or forward rate curve). We seek to identify and test, against
traditional methods, an estimation method with high-quality yield curves. Yield curves
are widely and extensively used by financial institutions to support financial decisions.

3. Overview of previous works and current research contribution

The main objective each interpolation method for estimating yield curves seeks to
achieve is to determine yields, that is, y (T ) for all T . It is preferable if these yields in
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either of the representation of the term structure, (11), (12) and (21) or (13) are smooth,
realistic and consistent with the market observations.

3.1. Previous research on estimation of the term structure. Pioneer works on
interpolation methods for estimating yield curves can be put into three groups. The first
group of scholars uses spline functions. Early works in this group include McCulloch
(1971, 1975) and McCulloch and Kwon (1993) who model the discount curve with a
spline. They found that the fitted discount curve provides poor fit of the yield curves,
especially at the longest maturities where the yield curve exhibited flatness behavior. For
this group, the forward rate curve, T → f (T ), implied by the method is not smooth and
could be even negative, since the slope of the discount curve is not explicitly constrained
to be strictly decreasing.
The second group of scholars use the exponential splines. To circumvent discontinuity

of the forward rate curve observed with the spline-based functions, Vasicek and Fong
(1982) model the discount curve with exponential splines. To ensure that the forward
rates and zero-coupon bond yields converge to an asymptote as the maturity tends to
infinity, they instead used a negative transformation of maturity. If their model fits the
long end as desired, its drawback is that it does not guarantee a positive forward rate
since its estimation requires iterative nonlinear optimization where it is tricky to constrain
the method to produce positive forward rates always. This makes these methods prone
to arbitrage opportunities.
The third group uses a parsimonious functional to enhance varying shapes of the yield

curve. Nelson and Siegel (1987) introduces a parsimonious function to model the instan-
taneous forward rates as a solution to a second-order differential equation with constant
coefficients whose characteristic equation has real and equal roots, which later was ex-
tended by Svensson (1994) to increase its flexibility. The forward rate curves produced
from these methods are smooth but still unable to price accurately instruments at the
longest end of the yield curve due to high level of non-convexity of the methods, which
can cause large fluctuations in long rates.

3.2. Contribution of this work. Given results from previous researches, the main prob-
lem of finding a method that produces high-quality yield curve has remained partially
unanswered as each method exhibits noticeable drawbacks that prevent the methods to
produce yield curve of high-quality. The current research is an attempt to fill this gap.
To this end, we first suggest an approach that uses a generalized optimization method

discussed in (Blomvall 2011). Unlike previous approaches, which rely entirely on the
functional forms that are used to model any of (11), (12) and (21) or (13), this method
is a constrained optimization-based method which produces high-quality yield curves (or
forward rate curves). The improvement in quality is validated in tests using actual mar-
ket data, traditional methods and Kalman filtering. Secondly, the method is extended
to a multiple yield curve framework. This is done to respond to the current increasing
market demand after the liquidity crisis (2008) for a new methodology to price contracts
of different tenors consistently. Thirdly, since available U.S. Treasury yield curves contain
lots of noise, the method is used to estimate high-quality forward rates for U.S. Treasury
market which can be employed in research as source of high-quality data. Lastly, we use
high-quality yield curves estimated using the generalized optimization framework as input
to the essentially affine term structure (Duffee 2002) to capture the time-varying term
premium, which is a compensation required for investors who are exposed to the duration
risks. These high-quality yields are then used in a two-stage Stochastic Programming
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model that is proposed to determine the long run consequences of Stochastic Program-
ming investments in the U.S. Treasury market.

3.3. Description of the model. In discrete time space, the forward rates (10), at time
t = 0, 1, 2, . . . , n, are given by

(22) ft =
rt+1Tt+1 − rtTt

ξt
; ξt = Tt+1 − Tt.

where rt are spot rates. The roughness in the forward rate curve is measured as
(23)

h(f) =
1

2

n−2∑
t=0

γt

(
ft+1 − ft

ξt

)2

ξt+
1

2

n−2∑
t=1

ϕt

(
2

ξt−1 + ξt

(
ft+1 − ft

ξt
− ft − ft−1

ξt−1

))2
ξt−1 + ξt

2
.

where γt and ϕt are respectively penalty functions.
Denote by ze and zb deviations from the market prices of unique prices and of bid/ask

prices1, Fe and Fb diagonal matrices indicating instruments that are allowed to deviate
from market prices, Ee and Eb are both diagonal matrices containing penalties for instru-
ments that deviate from the market price. The functions, ge(f) and gb(f) are respectively
functions that transform the forward rates into the market unique price and bid/ask price,
xl and xu being respectively lower and upper limits market prices.

We solve the optimization problem

(24)

min
f,x,ze,zb

h(f) + 1
2
zTe Eeze +

1
2
zTb Ebzb

s.t. ge(f) + Feze = ρ
xl ≤ gb(f) + Fbzb ≤ xu

f ≥ fl
f ∈ F ,

where fl is a lower bound, often set to zero, and F contains additional constraints on the
forward rate curve.
The model above is a generalized framework for estimating forward rates. Through

setting of parameters, we have shown that the model has ability to capture movements of
yields and can provide a high-quality yield curve. We show that traditional methods for
estimating yield curves are special cases of (24) with the difference being the formulation
of constraints which are adapted to each interpolation method which defines the set F .
In out-of-sample tests, using Swedish and U.S. market, we show that for the same level
of market consistency, the method produces lower variance than all other interpolation
methods tested.

4. Criteria for judging interpolation methods and evaluation measures

To assess the quality of the yield curve interpolation method, appropriate criteria and
statistical measures are used. Criteria for assessing the quality of the yield curve interpo-
lation methods are proposed in (Hagan and West 2006, p.91-92).

1By definition, bid price is the highest price that the buyer or bidder is willing to pay for a instruments
while ask price is the lowest price the seller is willing to sell the instruments.
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4.1. Criteria for assessing high-quality yield curves. LetM = {m1, . . . ,mτ} denote
the set of available methods for estimating yield curves. Assume that we want to estimate
a zero-coupon bond curve, T → Pm (T ) from the market quotes P = (p1, . . . , pn)

T by using
method m ∈ M.

In general, given the graph, T → Pm (T ), we first examine how ”good” the forward
rate, ft, looks like. In this instance, we seek to determine whether ft ≥ 0 and also whether
it is continuous. The first requirement guarantees no-arbitrage opportunity while the
second improves the ability to price interest rate derivatives. Recently, some cases have
been observed where ft < 0 due to the extreme conditions on financial markets.
Secondly, we study localness property of the method. In other word, we examine if a

perturbation in the input data at some time does affect also points elsewhere over the
entire yield curve.
Lastly, stability of the forward rates can be checked. This is measured by considering

the maximum basis points2 change in the forward rate curve that corresponds to a fixed
change in one of the inputs. The presence of oscillations in the forward rate curve or
yield curve signals instability of the forward rate curve or the yield curve estimated by a
method m ∈ M.

To conclude, the best method is the one that produces a smooth and realistic yield
curve and also a yield curve that is consistent with the market prices. The latter property
can be captured using least squares measures.

4.2. Criterion for assessing the reasonableness of yield curve: Shimko test.
This is an out-of-sample test which examines reasonableness of asset prices when the
interpolation method, m ∈ M is used. It is described in (Deventer and Imai 1997, p.127,
133) and is considered as the ultimate test of accuracy and realism. The main idea of
the test is to remove one asset from the data set, use a method to estimate the yield
curve with the remaining of the data to estimate the missing data point, then compute
the interpolated value for the missing asset.
The test is used in Adams and Deventer (1994), with the Mean absolute deviation

on prices, MADP . The Shimko test is also suitable for both prices and yields. When
it is used, it is recommended that all maturities be considered and that sample size be
large in order to get a complete picture of how accurate all predictions are compared to
all corresponding market observations. Although results from applying Shimko test have
been satisfactory, critiques from practitioners point out the risk of inaccurately predicting
the price of the asset left out of the estimation because of loss of valuable information.

4.3. The Least Squares Measures and absolute errors. To measure consistency
with the market data of the yield curve using interpolation method, m ∈ M, least squares
measures are used (Tables 1, 2).
It is important to note that each least squares measure listed discloses on the average

how far apart the predicted values ŷi (or P̂i) are from the observed data point yi (or Pi)
over time.
To capture the observed heteroscedasticity of fitted-price errors (in Table 2) and the

theoretical relation between prices and interest rate levels, the duration-based weight,

ωi =

(
(1/di)/(

n∑
i=1

1/di)

)2

(25)

2A basis point is equal to 0.01%.
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Table 1. To measure goodness of fit relative to the yield curve, measures listed in this table are

used but the choice of which one to use depends with the objective of the analysis.

Weights

Weighted Mean

Least squares measures Computation formula

N∑
i=1

ωi = 1 ωi =
1
N

Residual Sum of Squares (RSSy) RSSy =

N∑
i=1

ωi (ŷi − yi)
2 WRSSy MRSSy

Root Residual Sum of Squares (RRSSy) RRSSy =

√√√√ N∑
i=1

ωi (ŷi − yi)
2 WRRSSy MRRSSy

Absolute Deviation (ADy) ADy =

N∑
i=1

ωi |ŷi − yi| WADy MADy

Table 2. To measure goodness of fit relative to the price curve, measures listed in this table are
used but the choice of which one to use depends with the objective of the analysis.

Weights

Weighted Mean

Least squares measures Computation formula
N∑
i=1

ωi = 1 ωi =
1
N

Residual Sum of Squares (RSSP ) RSSP =

N∑
i=1

ωi

(
P̂i − Pi

)2
WRSSP MRSSP

Root Residual Sum of Squares (RRSSP ) RRSSP =

√√√√ N∑
i=1

ωi

(
P̂i − Pi

)2
WRRSSP MRRSSP

Relative Residual Errors (RREP ) RREP =

N∑
i=1

ωi

(
P̂i − Pi

Pi

)2

WRREP MRREP

Root Relative Residual Errors (RRREP ) RRREP =

√√√√ N∑
i=1

ωi

(
P̂i − Pi

Pi

)2

WRRREP MRRREP

Absolute Deviation (ADP ) ADP =
N∑
i=1

ωi

∣∣∣P̂i − Pi

∣∣∣ WADP MADP

Relative Absolute Error (RAEP ) RAEP =
N∑
i=1

ωi

∣∣∣P̂i − Pi

∣∣∣
Pi

WRAEP MRAEP

is commonly used where di is the Macaulay duration for bond i and N is the number of
bonds in the valuation (Bliss 1996; Jordan and Mansi 2003).
Observe that the residual sum of squares (RSS), the root residual sum of squares

(RRSS), the relative residual error (RRE) and the root relative residual errors (RRRE)
are sensitive to outliers. To avoid mispricing when comparing the forward rate curves or
the yield curves, it is therefore convenient to use absolute deviation (AD), a measure which
exhibits the magnitude of deviation from the observations or to use the relative absolute
error (RAE). Another measure that is widely used is the coefficient of determination
(R2

p), defined as

R2
p = 1− SSE

SST
; SSE =

N∑
i=1

(ŷi − yi)
2 ; SST =

N∑
i=1

(yi − ȳ)2 ; ȳ =
1

N

N∑
i=1

yi(26)

where SSE is the sum of squares error, SST is the total sum of squares residual, ȳ is
the mean, N is the number of observations, and p is the total number of regressors in the
model. R2

p measures the proportion of variability in the data set that is accounted for the
statistical model.
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Notice that there is no guideline as to which error measure is the best to use. Prac-
titioners are left with the task of selecting an error measure which is suitable for the
functional form used in modeling of the yield (or price) curves as well as for underlying
securities which are subjected to the pricing process.

5. Estimating yield curves using traditional interpolation method

In this section, some traditional interpolation methods for estimating yield curves are
reviewed within the scope of the generalized optimization framework described by (24).

5.1. Simple Interpolation methods. These methods are described in (Hagan andWest
2006) and are designed to price contracts exactly. Considered as special cases of the
optimization model (24), these methods can be written as follows:

(27)
min 0
s.t. ge(f) = ρ

f ∈ FI ,

where FI is a set of forward rates which is specific for each method. To determine the
constraints ge(f), it is necessary to discount cash flows, which can be done with r (T )T
through (11) and (21) where r (T ) is continuously compounded spot rate. Independent of
which traditional method is used, as long as r (T )T is known, the value of the function
ge(f) can be computed.
Let {di}ni=0 and {ri}ni=0 with ri = r (Ti), denote respectively discount factors and spot

rates defined on a discrete time space, 0 = T0 < T1 < . . . < Tn.

5.1.1. Linear interpolation on the discount factors. By definition, the discount factor is
given by

(28) d (T ) = e−r(T )T .

where r (T ) is the continuously compounded spot rate. In discrete space, we have (28) di
and di+1 defined respectively at time Ti and Ti+1. Linear interpolation on (28) yields

(29) d(T ) =
Ti+1 − T

Ti+1 − Ti

di +
T − Ti

Ti+1 − Ti

di+1 ; Ti ≤ T < Ti+1.

Using (28) and (29), the spot rates can be computed as

(30) r (T ) = − 1

T
ln

[
Ti+1 − T

Ti+1 − Ti

di +
T − Ti

Ti+1 − Ti

di+1

]
.

In view of (11) and (30), the forward rates can also be computed as

(31) f (T ) = −
− 1

Ti+1−Ti
di +

1
Ti+1−Ti

di+1

Ti+1−T
Ti+1−Ti

di +
T−Ti

Ti+1−Ti
di+1

=
di − di+1

(Ti+1 − T )di + (T − Ti)di+1

To implement this method, equation (30) is used. To determine r (T )T , with the help of
(31), we have

(32) r (T )T =

∫ T

0
f(t)dt = r(Ti)Ti +

∫ T

Ti

f(t)dt = r(Ti)Ti +

∫ T

Ti

di − di+1

(Ti+1 − t)di + (t− Ti)di+1
dt.

The drawbacks of the method are that the function defined in (29) may not be necessarily
a decreasing function and the forward rate function in (31) is not continuous since the
information held at time Ti is still active by the time T reaches Ti+1. As consequence,
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the curve, T → f (T ) produces jumps at each node. However, since the method is local,
it has the advantage that noise in one yield affects only two intervals of the spline.

5.1.2. Raw Interpolation. The method is referred to as linear on the logarithm of discount
factors and uses the function

(33) ln d(T ) =
Ti+1 − T

Ti+1 − Ti

ln di +
T − Ti

Ti+1 − Ti

ln di+1.

For each interval T ∈ [Ti, Ti+1], constant instantaneous forward rates are given by

(34) fi =
ri+1Ti+1 − riTi

Ti+1 − Ti

.

Analogously to (32) and using equation (34), we have that

(35)

r(T )T = riTi +
∫ T

Ti
fidt = riTi +

ri+1Ti+1−riTi

Ti+1−Ti
(T − Ti)

= Ti+1−Ti

Ti+1−Ti
riTi +

T−Ti

Ti+1−Ti
ri+1Ti+1 − T−Ti

Ti+1−Ti
riTi

= Ti+1−T
Ti+1−Ti

riTi +
T−Ti

Ti+1−Ti
ri+1Ti+1.

The method is also known as the exponential interpolation, because it involves exponential
interpolation of the discount factor. As such, one can write

(36) d(T ) = e−r(T )T (35)
= e

−Ti+1ri+1
T−Ti

Ti+1−Ti e
−Tiri

Ti+1−T

Ti+1−Ti = d
T−Ti

Ti+1−Ti

i+1 d

Ti+1−T

Ti+1−Ti

i

which, in terms of the forward rates, is equivalent to the linear interpolation of the loga-
rithm of the discount factors. To show this, we use equation (36) and write

(37) f(T ) = −∂ln d(T )

∂T
= −

∂ T−Ti

Ti+1−Ti
ln di+1 +

Ti+1−T
Ti+1−Ti

ln di

∂T
=

ln di − ln di+1

Ti+1 − Ti

.

The implied spot rate can be determined by dividing (35) through, which yields

(38) r(T ) =
riTi

T
+

1

T

[
ri+1Ti+1 − riTi

Ti+1 − Ti

]
(T − Ti) =

1

T

(
T − Ti

Ti+1 − Ti
ri+1Ti+1 +

Ti+1 − T

Ti+1 − Ti
riTi

)
.

Observe that, for each Ti , i = 1, 2, . . . , n, the instantaneous forward rate, defined in
equation (10), is not defined. As consequence, the forward rate curve, T → f (T ), has
jumps at each node, an effect which indicates clearly that the curve is not continuous.
An advantage of this method is its localness, but the method does not guarantee positive
forward rates.

5.1.3. Linear interpolation on the spot rates. Given the spot rates {ri}ni=0 with ri = r (Ti),
for Ti ≤ T < Ti+1, the rates at time T are interpolated as

(39) r(T ) =
Ti+1 − T

Ti+1 − Ti

ri +
T − Ti

Ti+1 − Ti

ri+1.

Note that the spot rate, r0, for time point T0 = 0 can not be observed in the market.
Using (11) and (39), the instantaneous forward rates can be written as

(40) f(T ) =
2T − Ti

Ti+1 − Ti

ri+1 +
Ti+1 − 2T

Ti+1 − Ti

ri.

To determine the prices, we compute

(41) r(T )T =
T − Ti

Ti+1 − Ti

ri+1T +
Ti+1 − T

Ti+1 − Ti

riT.
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Observe that r(T )T is not differentiable at Ti since r (T ) is piecewise linear. Consequently,
f(T ) will not be defined for each Ti, i = 1, . . . , n and so the resulting forward rate curve
will not be continuous. Moreover, the method does not guarantee positive forward rates
but it is local.

5.1.4. Interpolation on the Logarithm of rates. This is the log-linear interpolation defined
by the expression

(42) ln r(T ) =
Ti+1 − T

Ti+1 − Ti

ln ri +
T − Ti

Ti+1 − Ti

ln ri+1.

It is also referred to as the exponential interpolation, because, for every index i, the spot
rates can be written as

(43) r(T ) = r
T−Ti

Ti+1−Ti

i+1 r

Ti+1−T

Ti+1−Ti

i ;T ∈ [Ti, Ti+1] .

Adding lnT to equation (42) above, yields

(44) ln(r(T )T ) =
T − Ti

Ti+1 − Ti

ln ri+1 +
Ti+1 − T

Ti+1 − Ti

ln ri + lnT.

Expressing the instantaneous forward rate, defined in (11), using (44), one writes

(45) f(T ) =
∂r(T )T

∂T
=

∂eln r(T )T

∂T
= eln r(T )T ∂ln r(T )T

∂T
= r(T )T

∂ln r(T )T

∂T
.

It then follows that

(46)
f(T )

r(T )T
=

∂ln(r(T )T )

∂T
=

1

Ti+1 − Ti

ln
ri+1

ri
+

1

T
.

Hence

(47) f(T ) = r(T )

[
T

Ti+1 − Ti

ln
ri+1

ri
+ 1

]
= r

T−Ti
Ti+1−Ti

i+1 r

Ti+1−T

Ti+1−Ti

i

[
T

Ti+1 − Ti

ln
ri+1

ri
+ 1

]
.

Prices are determined using (43) as

(48) r (T )T = r
T−Ti

Ti+1−Ti

i+1 r

Ti+1−T

Ti+1−Ti

i T.

Drawbacks of the method is that it produces discontinuous local forward rate curves.
Besides, the method does not guarantee a positive forward rate and when used, the
discount function is not always decreasing.

5.2. Other interpolation methods. To circumvent discontinuity of the yield curve
observed with simple interpolation methods, polynomial functions are used because they
are continuously differentiable functions. A family of functions that is of great interest in
our subject are the splines.

5.2.1. Cubic splines. The method is described in, for instance, (Hagan and West 2006).
For 1 ≤ i ≤ n− 1, the discrete spot rate, ri (T ), is modeled by a cubic polynomial as

(49) ri(T ) = ai(T − Ti)
3 + bi(T − Ti)

2 + ci(T − Ti) + di , T ∈ [Ti, Ti+1],

where ai, bi, ci and di are parameters to be determined for all n − 1 intervals. Thus a
total of 4(n − 1) constraints are required to solve (49). To determine these parameters,
the equations must fit the observable data (knot) points, their first and second derivatives
must be equal at n−2 knot points. Formally, we solve (49) subject to ri (Ti) = ri+1 (Ti), n-1
equations of the form, r

′
i (Ti) = r

′
i+1 (Ti) and n-1 equations of the form, r

′′
i (Ti) = r

′′
i+1 (Ti).

1313
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If the splines are natural, then at T0 and Tn, the constraints r′′0(T0) = 0 and r′′n(Tn) = 0
apply. This makes the yield curve straight at the beginning as well as at the longest
maturity. However, if the financial cubic spline (see Adams and Deventer (1994)) is used,
then the constraints r′′0(T0) = 0 and r′n(Tn) = 0 are added. The latter constraint ensures
there is a horizontal rate asymptotic to the yield curve. This signifies that the rate can
be extrapolated beyond the longest maturity. The table below gives a summary of all
constraints that are needed for a continuous yield curve. The drawback of this method

Number of equations Formulation of constraints Description of the constraints

1 n-1 ri (Ti) Equation (49) fits all n data points: T0, . . . , Tn−1

2 n-1 ri (Ti+1) Equation (49) fit the n data points: T1, . . . , Tn
3 n-2 r′i (Ti) = r′i+1 (Ti) Continuity of first derivative at the knot points

4 n-2 r′′i (Ti) = r′′i+1 (Ti) Continuity of second derivative at the knot points

5 1 r′′0 (T0) = 0; The yield curve is linear at the left hand side of the yield curve

6 1 r′′n (Tn) = 0; The yield curve is linear at the longest maturity of the yield curve

Total 4(n-1)

Table 3. Summary of constraints that are used when the cubic spline is implemented to model yield curves.

when forward rate curve is used is that the second derivative of the forward rate, f(T ),
is not continuous at the knot points because it depends on the third derivative of (49),
which is not restricted to be continuous at the knot points.

As consequence, the forward rate curve will not be twice differentiable, therefore not
smooth. Moreover, the cubic spline based on the yield (or price) curve produces an
implausible forward rate curve (Deventer et al. 2005, p.147). To remedy the unsmoothness
of the yield curve by the cubic splines, the Adam-Deventer method can be used.

5.2.2. The Adams-Deventer method. The Quartic spline is discussed in Adams and De-
venter (1994) and Deventer et al. (2005). For this method, the forward rate function (11)
is modeled by the quartic polynomial

(50) fi(T ) = ai(T − Ti)4 + bi(T − Ti)3 + ci(T − Ti)2 + di(T − Ti) + ei,

where ai, bi, ci, di and ei are parameters to be estimated for each interval [Ti, Ti+1],
for i = 0, . . . n − 1. To obtain a smooth forward rate curve, a total of 5n constraints,
summarized in Table (4) are imposed on (50).

Number of constraints Formulation of constraints Description of the constraints

1 n-1 fi (Ti) = fi (Ti+1) the forward rates are equal at each knot point
2 n-1 f ′i (Ti) = f ′i (Ti+1) the first derivative of (50) are equal at each knot point

3 n-1 f ′′i (Ti) = f ′′i (Ti+1) the second derivative of (50) are equal at the knot point

4 n-1 f ′′′i (Ti) = f ′′′i (Ti+1) the third derivative of (50) are equal at the knot point

5 n

∫ Ti+1

Ti

f (t) dt = − ln

[
P (Ti+1)

P (Ti)

]
the forward rate curve should be consistent with observable data

6 1 f0 (T0) = r0 (T0) the forward rate curve is consistent with an observable short rate
7 1 f ′n−1 (Tn) = 0 the slope of (50) at the rhs of the yield curve is zero

8 1 f ′′0 (T0) = 0 the second derivative of (50) at the lhs of the yield curve is zero

9 1 f ′′n−1 (Tn) = 0 the second derivative of (50) at the rhs of the yield curve is zero

Total 5n

Table 4. The table gives a summary of constraints that are needed when the quartic polynomial

is used to model the yield curve. The abbreviations lhs and rhs stand respectively for left hand side and

right hand side.

14
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For zero coupon bonds, equation (50) has been shown to be the optimal solution to

(51)
min

∫ Tn

0
[f”(t)]2 dt

s.t
∫ Ti

0
f(t)dt = − lnPi, i = 1, 2, . . . , n

where Pi is the price of a zero-coupon bond with maturity Ti. However (Deventer and
Imai 1997, p.160-163) has replaced the constraint that the third order derivative should
be equal to zero at T0 and Tn with constraint 6 and 7 in Table (4) to improve the quality of
the yield curves. The technique outperforms cubic spline and linear smoothing techniques
considerably and is more accurate in modeling true market yields according to (Adams
and Deventer 1994, p.160).

5.3. The Least squares methods. The least squares methods do not require to reprice
contracts exactly. To model the yield curve, the methods admit pricing errors to improve
smoothness of the yield curve while remaining consistent with the market data. Viewed
as special case of (24), one solves the optimization problem

(52)

min
f,z

1
2
zTe Eeze

s.t. ge(f) + Feze = ρ
f ∈ FLS

where FLS indicates a set of feasible forward rate functions and other parameters are as
in (24). In this section, we consider a few methods which belong to this family.

5.3.1. McCulloch quadratic splines (1971). To fit the observed market data for US Trea-
sury yield curve, McCulloch (1971) uses the discount function defined by

(53) d(T ) = 1 +
n∑

i=1

aihi (T ) ; hi (0) = 0 ; a0 = 1

where {ai}ni=1 are parameters to be estimated and hi (T ) , i = 1, . . . , n, is a piecewise
quadratic basic function of the form,

(54) h1 (T ) =

{
T − 1

2T2
T 2 if 0 ≤ T ≤ T2,

1
2
T2 if T2 < T ≤ Tn,

for i = 2, 3, · · · , n− 1, the quadratic polynomial takes the form

(55) hi (T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 for 0 ≤ T ≤ Ti−1
(T−Ti−1)

2

2(Ti−Ti−1)
if Ti−1 < T ≤ Ti

1
2
(Ti − Ti−1) + (T − Ti)− (T−Ti)

2

2(Ti+1−Ti)
if Ti < T ≤ Ti+1

1
2
(Ti+1 − Ti−1) if Ti+1 < T ≤ Tn

and for i = n

(56) hn (T ) =

{
0, if 0 ≤ T ≤ Tn−1
(T−Tn−1)2

2(Tn−Tn−1)
if Tn−1 < T ≤ Tn.

To ensure that (53) is continuously differentiable, the choice of the basic function is made
such that, for adjacent intervals, (T1−1, Ti) and (Ti, Ti+1), the function has the same slope
and the same value at Ti. Given that (53) is linear in the discount function, ordinary
least squares regression methods is used to estimates all the parameters of the model.
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Selection of knot points. Given nc, the total number of securities alongside their re-
spective maturities, Mj, j = 1, . . . , nc, such that Mj < Mj+1, choose n, the number
of intervals as n =

⌊√
nc +

1
2

⌋
. The interval [0, Tn] is divided into (n− 1) subintervals

with T1 = 0, Tn = Mnc , and Ti = (1− θi)MLi
+ θiMLi+1, where Li =

⌊
(i−1)nc

n−1

⌋
and

θi =
(i−1)nc

n−1
− Li. This selection of knots ensures greater resolution of the yield curve in

any part of the interval [0, Tn] with greater number of securities.
The main drawback of this method is that it provides forward rate curve with dis-

continuous first derivative. This affects the forward rate curve with kinks at some knot
points. The drawback of the method is that the equivalent forward rate curve is not
smooth because it has knuckles corresponding to the knot points. To improve smoothness
of the forward rate curve, a cubic splines is proposed in (McCulloch 1975).

5.3.2. The McCulloch splines (1975). The method uses the discount function described
in (53) with the difference that the basic function is now a cubic polynomial defined as
follows. For i = 1,

(57) h1(T ) =

{
T 2

2
− T 3

6T2
if 0 ≤ T < T2

T2

(
T2

3
+ (T−T2)

2

)
if T2 ≤ T.

For i = 2,

(58) h2(T ) =

⎧⎪⎨
⎪⎩

T 3

6T2
if 0 ≤ T ≤ T2

T 2
2

6
+ T2(T−T2)

2
+ (T−T2)2

2
− (T−T2)3

6(T3−T2)
if T2 < T ≤ T3

T3

(
2T3−T2

6
+ T−T3

2

)
ifT3 ≤ T

For i = 3, . . . , n− 2

(59) hi(T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if 0 ≤ T ≤ Ti−1
(T−Ti−1)

3

6(Ti−Ti−1)
if Ti−1 < T ≤ Ti

(Ti−Ti−1)
2

6
+ (Ti−Ti−1)(T−Ti)

2
+ (T−Ti)

2

2
− (T−Ti)

3

6(Ti+1−Ti)
if Ti < T ≤ Ti+1

(Ti+1 − Ti−1)
[
2Ti+1−Ti−Ti−1

6
+ T−Ti+1

2

]
if Ti+1 ≤ T

For i = n− 1,

(60) hn−1(T ) =

{
0 if 0 ≤ T ≤ Tn−2

(T−Tn−2)
3

6(Tn−1−Tn−2)
if Tn−2 < T ≤ Tk−1

Finally, for i = n,

(61) hn(T ) = T.

Selection of knots points. The selection of knots is mainly the same as in section (5.3.1)
except that T0 = T1 = 0 in the interval [0, Tn]. Analogously to the quadratic splines, the
regression techniques are used to estimate the parameters of the model. For this method,
it requires that at every knot, adjacent cubic spline curve have same value, same first
order derivative and second order derivative which preserves continuity and smoothness
of the resulting curve. As noted by Shea (1984), the method still produces yield curve
having kinks corresponding to the knots points.
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5.3.3. The Nelson-Siegel (1994) method. Nelson and Siegel (1987) introduce a parsimo-
nious function to model the instantaneous forward rates as a solution to a second-order
differential equation with real and equal roots

(62) f (T ) = β0 + β1e
−T

τ + β2
T

τ
e−

T
τ

where β0, β1 and β2 are interpreted respectively as the level factor, the slope factor and
the curvature factor and τ is the rate of exponential decay. Using (11), the spot rate can
be deduced as

(63) r(T ) = β0 + β1

(
1− e−

T
τ

T
τ

)
+ β2

(
1− e−

T
τ

T
τ

− e−
T
τ

)
.

From (63), observe that as T → 0, r (T ) → β0 + β1, and so does f (T ) and as T → ∞,
r (T ) → β0 and so does f (T ). Both Nelson and Siegel (1987) and Diebold and Li (2006)
consider the parameters, β0, β1 and β2 as the three latent dynamic factors for (62) or
(63). As such, they observed that the weight on β0 is a constant for all T . It is therefore

considered as the long-term factor. The weight on β1 is
(

1−e−
T
τ

T
τ

)
which starts at 1 but

decays monotonically (of increases, if β1 < 0) to 0. Hence, it is the short-term factor. The

weight on β2 is β2

(
1−e−

T
τ

T
τ

− e−
T
τ

)
which starts at 0 then increases and at last decreases

to 0. Given this behavior, it is seen as a medium-term factor. These factors coincide
with shift, twist and butterfly for (62) or (63) curves. The assumption that f (T ) > 0
implies that β0 > 0 and β0+β1 > 0. The parameter τ measures the location of the hump.
Given the nature of the optimization model which is non-convex, all the parameters in
the model must be estimated using nonlinear optimization methods.
Concerning the performance of the model, with only a few parameters, the method

is able to capture the underlying relationship between yield and term to maturity. A
desirable property of the model is that the term structures built from (62) and (63) are
both smooth and the specification of model parameters can produce a wide range of curve
shape, including U-shape, S-shape, monotonic or humped. The drawback of this method
is that it is not flexible enough to produce as many shapes as is required for yield curves.

5.3.4. The Extended Nelson-Siegel (1994) method. To increase the flexibility of the Nelson-
Siegel (1994) method and improve its fitting performance, Svensson (1994) adds the term

β3

(
T
τ2
e
− T

τ2

)
to (62) to have the instantaneous forward rate as

f (T ) = β0 + β1e
− T

τ1 + β2

(
T

τ1
e
− T

τ1

)
+ β3

(
T

τ2
e
− T

τ2

)
(64)

where β0, β1, β2, β3 ∈ R, τ1, τ2 > 0 are parameters to be estimated using nonlinear con-
strained optimization methods. Using (11), the spot rates can be expressed as

(65) r(T ) = β0 + β1

(
1− e

− T
τ1

T
τ1

)
+ β2

(
1− e

− T
τ1

T
τ1

− e
− T

τ1

)
+ β3

(
1− e

− T
τ2

T
τ2

− e
− T

τ2

)

Analogously to (62), β0 is asymptotic to r (T ) for lim
T→∞

r (T ) which implies β0 > 0. β1 de-

termine the rate of convergence with which r (T ) approaches its long-term interest rate.
The slope is negative if β1 > 0. β2 determines the size and the form of the hump. When
β2 > 0, the hump is located at τ1 and whereas for β2 < 0, the curve is in U shape. τ1
specifies the location of the first hump or the U-shape of the curve. β3 determine the size
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and shape of the second hump and τ2, its location. To get a meaningful financial interpre-
tation of the yield curve, it requires that τ1, τ2 > 0. The estimation of all parameters in
the model is carried out via nonlinear optimization methods because the problem at hand
is non-convex in which case it has multiple local optima. This property implies that the
solution to the problem depends heavily on the numerical solution of the starting values.

5.3.5. Penalized Least Squares measure. To improve smoothing in the spline methods
discussed in (McCulloch 1971, 1975), Fisher’s method and the variable roughness penalty
(VRP) method proposed in (Waggoner 1997) are used.
In Fisher’s method, the forward rate curve is the cubic spline that minimizes the ob-

jective function

(66) min
n∑

i=1

(
Pi − P̂i (f)

)2

+ λ

∫ Tn

0

(
f

′′
(u)

)2

du ;T0 < T1 < . . . < Tn

where Pi are the observed bond prices, P̂i, the estimated bond prices. The parameter λ

controls the trade-off between smoothness, as measured by

∫ Tn

0

(
f

′′
(u)

)2

du and goodness

of fit, measured by the term
n∑

i=1

(
Pi − P̂i (f)

)2

. According to Fisher, the value of λ is

selected by minimizing the function

(67) min

n∑
i=1

(
Pi − P̂i (f)

)2

(n− θep (λ))2

where n is the number of bonds, ep (λ) is the effective number of parameters which depends
on the choice of λ and θ is the cost or tuning parameter3. The larger θ, the smoother the
forward rate curve and the poorer the goodness of fit (Bank for International Settlements
2005, p .17).
In evaluating the effect of different values of λ, it is observed that if λ increases, the cubic

spline, whose flexibility depends on the spacing of the nodes and magnitude of λ, tends
to be linear function. When λ grows larger, the spacing of node becomes unimportant.
This implies that the flexibility of the spline remains invariant across all regions for large
values of λ. To improve this effect, the VRP method is used (Waggoner 1997).

In the VRP method, which is still a smoothing spline method, one solves the optimiza-
tion problem

(68) min
N∑
i=1

(
Pi − P̂ f

i (f)
)2

+

∫ TN

0

λ (u) (f ′′ (u))
2
du

3In relation to Spline function, a larger value of θ tends to produce stiff spline.
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where λ (u), is no longer a constant4 but assumes values that reflect the segmentation of
the market. Applied on US market, Waggoner (1997) assigns to λ (u), the values

(69) λ (u) =

⎧⎪⎨
⎪⎩
0.1 0 ≤ u ≤ 1

100 1 ≤ u ≤ 10

100000 u > 10

where u is measured in years. Waggoner (1997)’s choices of different values for λ reflects
effectively the segmentation structure of the US market for fixed-income securities: bills,
notes and bonds. Applied on other markets embedded with different segmentation for
fixed-income instruments, adaptive values for λ can be used. Since the roughness penalty,
λ, can take different values across maturities, oscillations can be damped on the long
end while retaining flexibility on the short end to accommodate instruments of shorter
maturity.

6. Overview of papers

The problems embedded in the traditional interpolation methods for estimating yield
curves can be considered from two aspects, mainly on the behavior of functional forms
that the method uses and also the inability to adapt to the complexity of the market
data.
On the one hand, the functional forms used by the methods may fail to be continuous,

differentiable and to provide positive forward rates, i.e. ft > 0, as in the case of simple
interpolation methods. These defects alone compromise the ability of these methods to
produce smooth yield curves. Moreover, they expose the methods to arbitrage opportu-
nities. On the other hand, even when continuity or differentiability of the forward rate is
guaranteed, as in the case of least squares methods, the mathematical properties of the
polynomial forms or the parsimonious functions used may not be flexible enough to price
accurately securities at both the short end and at the long end of the yield curves.
The current research, summarized in the following papers attempt to fill in the gap by

proposing to use the generalized optimization framework for estimating the yield curve
discussed in Blomvall (2011). The method encompasses traditional interpolation methods
as special cases and produces high-quality yield curves.

6.1. Paper 1: High-quality yield curve from a generalized optimization frame-
work. In this paper, it is shown that traditional methods (i.e. simple interpolation
methods and least squares methods) are indeed special cases of the generalized optimiza-
tion framework. Using the Shimko test5 (i.e. an out-of-sample test) in the Swedish and
U.S. interest rate swap markets, it is shown that the framework dominates or is close to
dominating all other methods by first order stochastic dominance, except simple interpo-
lation methods for the U.S. market when the short end of the yield curve includes shorter
tenors.
When measuring risks which are implied by the traditional methods, it is shown that,

with the same level of market consistency, the framework incurs lower variance than the
traditional methods (Figure 1).

4A constant smoothing parameter λ is not ideal because theoretically, short term rate should fluctu-
ate more than long term rate. That also justifies the distributions alloted to λ in which shorter term
instruments are less penalized than longer term instruments.

5For this test, we considered instruments that could not be used in the in-sample set of data.
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Figure 1. The method implied interest rate risk and consistency with market prices. Given a level
of consistency with market prices, lower interest rate risk measure can be obtained by using the LSExp

methods instead of the standard methods

Figure 2. The left panels display the first three factor loadings for the forward rate innovations

obtained using the LSExp 10 method. We see that the shift, twist and butterfly all converge to zero.
The right panel depicts share of variance explained forward rate between the first three and the next

three factor loadings for the same method. In this panel, we see clearly that the PC 1-3 do not explain

movements in the short end but rather explain uncorrelated movements in the long end. In the same line
of thoughts, it can be seen also that subsequent loadings (i.e. PC 4-6) explain uncorrelated movements

of the forward rate innovations in the short end.

In studying the movements of the yield curve produced by the generalized optimization
framework via principal component analysis (PCA) of innovations in forward rates, we
find that the short end rates move independently with the long term rates (right panel of
Figure 2). This is consistent with the fact that it is the central bank which regulates the
short term rate to control inflation while long term rates are affected by future expectation
of the inflation. We also find that the first three factor loadings explain the movement
of the forward rates from 2 years onwards and the subsequent PC explain movement of
the forward rates in the short end (left panel of Figure 2). Theses findings are validated
using traditional methods, market prices and Kalman filtering.

2020



TERM STRUCTURE ESTIMATION BASED ON A GENERALIZED OPTIMIZATION FRAMEWORK21

6.2. Paper 2: Multiple yield curve estimation using the generalized optimiza-
tion framework. Since the liquidity crisis which began in 2007, discrepancies between
market quotes on FRA, LIBOR and IRS have reached levels where they can no longer
be neglected. To adapt to these new market conditions, traditional interpolation meth-
ods are extended to a multiple yield curve framework (Mercurio 2008), (Ametrano and
Bianchetti 2009), where the instability of these methods become obvious. To provide
to the market with smooth multiple yield curves as well as smooth spread curves, the
generalized optimization framework described in section (6.1) is extended to a multiple
yield curves estimation framework.
To model the FRA, the IRS and Tenor Swap (TS) contracts, the tenor premium is

considered. For each tenor τ , the risk neutral expectation of the LIBOR rate, Lτ (Ti, Tj)
with time, Δti, being measured with a day count convention, is defined by

E
Tj

t [Lτ (Ti, Tj)] =

exp

{∫ Tj

Ti

fτ (t) dt

}
− 1

Δti
(70)

where fτ (t) = f0 (t) + π̄τ (t), which is the sum of the forward rate described in (11) plus
a compensation, π̄τ (t), for being exposed to risks of tenor τ at time t. Equation (70) is
important to the valuation of securities because it guarantees that the increase in risks
for each tenor τ leads to an increase in the risk premium.
We compare the performance of the generalized optimization framework with the finan-

cial cubic spline method, also extended to a multiple yield curve estimation framework.
To achieve this, parameters in the generalized optimization framework are set is such
a way that, on the one hand, the method prices instruments exactly, as does any ex-
act traditional interpolation method. We refer to the resulting generalized optimization
framework as the E model. On the other hand, parameters in the generalized optimization
framework are also set to retain its least squares property. In this instance, the method
is referred to as the LS model.
We use snapshots data from ICAP retrieved with Thomson Reuters 3000 Xtra, and

examine the smoothness of the multiple yield curves as well as tenor premium curves
associated with each method tested on twenty-seven dates. For the date when the financial
cubic spline performs the worst, we find that the cubic spline and the E model are both
consistent with respect to the market prices. However, due to the shape constraints,
the former method exhibits non smooth multiple yield curves (Figure 3). To remedy to
the instability that is observed with the financial cubic spline, the E model can be used
instead (Figure 5). However, it has been observe that, due to noise in the input data,
the E model does not provide entirely smooth tenor premium curves. To obtain, both
smooth multiple yield curves as well as smooth tenor premium curves, the LS method
can be used (Figure 6). We also show that, when the market data are adjusted by the LS
model’s residuals, the multiple yield curve produced by the financial cubic spline improve
quite remarkably, even though its instability still persists (Figure 4).
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Figure 3. 14 Nov 2012 at 12:15. The

current window depicts forward rate and QT -
expected 1m, 3m, 6m and 12m EURIBOR curves

estimated sequentially using the financial cubic

spline. This is the date when the cubic spline
produced the worst performance among all 27

snapshots.

Figure 4. The 14th of November 2012 at

12:15: The current panel depicts also forward

rates alongside QT -expected 1-month, 3-month,
6-month and 12-month EURIBOR curves es-

timated sequentially using the financial cubic
spline for the modified market data.

Figure 5. 14 Nov 2012 at 12:15. The fig-

ure displays the forward rate, QT -expected 1m,
3m, 6m and 12m EURIBOR curves estimated si-

multaneously using the generalized optimization

framework. The results in the left panel is for
the E model, which reprice the contracts exactly.

Figure 6. 14 Nov 2012 at 12:15. The fig-
ure displays the forward rate, QT -expected 1m,

3m, 6m and 12m EURIBOR curves estimated si-

multaneously using the generalized optimization
framework. The results in the left panel is for

the LS model, which allows deviations from the

market prices.

6.3. Paper 3: Estimating U.S. Treasury yield curves using a generalized op-
timization framework. The U.S. Treasury yield curve is the most used yield curve in
many financial applications. As such, it is required to be of higher quality to avoid unre-
alistic output which might distort the results. The most frequently used data sets relative
to U.S. Treasury yields are provided in McCulloch and Kwon (1993) , Bliss (1996) and
Gurkaynak et al. (2007). Using Principal component analysis, we show that traditional
data sets for the U.S. Treasury yield curves contain lots of noise. Consequently, they all
produce yield curves of poor quality.

The objective of this paper is twofold. We first estimate high-quality U.S. Treasury
yield curves using the generalized optimization framework, then seek to validate the per-
formance of the method against the performance of some traditional least squares meth-
ods that are used in such context. These traditional methods include the McCulloch
quadratic, the McCulloch cubic splines, the Nelson-Siegel and the Svensson methods. To
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this end, we examine the efficient frontier attributed to the generalized estimation method
for in-sample and out-of-sample and assess the performance of each method implemented,
especially for the out-of-sample test (Figure 7).

Figure 7. Efficient frontier for out-of-sample performance for the McCulloch quadratic, the Mc-
Culloch cubic, the Nelson-Siegel and the Svensson methods as compared to the LSExp method. In terms
of weighted price error and average variance, both panels show that the LSexp method is more efficient
than all the methods implemented.

In both evaluation periods, we clearly see that the LSExp parameter setting, which is a
version of the generalized optimization framework, is more efficient than other methods. In
term of weighted price error and average variance associated with each methods, Figure 7
shows clearly that, for certain level of market consistency, the LSExp method can produce
smaller variance as compared to other methods.
Secondly, we also seek to confirm the behavior of factor loadings for forward rate changes

obtained in Blomvall and Ndengo (2013), according to which the short end rates move
independently from the long end rates. This is achieved by studying PCA (Figure 8)
Findings from PCA (left panel of Figure 8) show that factor loadings for forward rate

innovations where the short end of forward rates moves independently of the long end,
which validates the findings in Blomvall and Ndengo (2013). These findings are consistent
with markets where the central bank governs the short rate and where longer rates are
governed by the term premium and the markets expectations about e.g. inflation. Hence,
the U.S. Treasury yield curves produced by this method is better to use, due to its high
quality and its consistency with respect to the market prices.

6.4. Paper 4: Optimal Investment in the fixed-income market with focus in
the term premium. Stochastic programming models are used in financial industry,
precisely in areas including asset and liability management (Kusy and Ziemba 1986) and

2323



24 MARCEL NDENGO RUGENGAMANZI

Figure 8. The left and right panels display respectively the first three factor loadings for LSExp
method and explained variance attributed to PC 1-3 and PC 4-9.

(Carino et al. 1994). It is well known that there exists a time-varying term premium on
the interest rate market for bonds with longer maturities. This is a compensation for
additional duration risks investors are exposed to. But to our knowledge, there is no
Stochastic Programming model which has included the time-varying term premium.
The objective of this paper is twofold. We first use the high-quality U.S. Treasury yield

curve estimated by the generalized optimization framework as input to the essentially
affine model (Duffee 2002) to capture the randomness in interest rate and the time-
varying term premium as well. Secondly, to determine the optimal investment in the
U.S. Treasury market, we propose the following two-stage Stochastic Programming model
without recourse, which model borrowing, shorting and proportional transaction cost and
makes use of the power utility function

(71) U(x) =
{

1
γ
xγ if 0 < γ ≤ 1; γ < 0 .

ln x if γ = 0.
,

Given a set of assets, A, such that asset a ∈ A, a set of scenarios, I, we solve the
optimization problem

max
∑
i∈I

piU
(
c+

∑
a∈A

Pi,axa

)
s.t. xa = ha + (ba − sa) , a ∈ A

c =

(
hc −

∑
a∈A

Pa (ba − sa)− T
∑
a∈A

Pa (ba + sa)

)
ert

ba ≥ 0 , sa ≥ 0 , a ∈ A

(72)
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where pi ∈ (0, 1), is the probability of scenario i ∈ I, U (·) is the utility function, c, the
amount of cash flow owned, Pi,a, the price of asset a ∈ A in scenario i, T , the transaction
cost, r, the risk-free continuously compounded interest rate, t is the time step of one
period, xa is the total amount of asset a ∈ A, ha is the initial holding of assets a ∈ A, ba
and sa are respectively the amount of assets purchased and sold, and finally Pa the price
of asset a ∈ A.
We use Monte Carlo simulation to generate sample of bond prices of size 10000 for

some degree of risk aversion γ. The overall assessment of the model is that, in the long
run, the model provides increase in wealth which corresponds to the degree of exposure
to risks.
The model is validated by examining the Sharpe ratio and the Jensen’s alpha for each

portfolio the method generates against the market portfolio. Findings reveal that the
proposed Stochastic Programming model can produce portfolios that perform better than
the equity index.
This is the first Stochastic Programming model which captures this compensation for

risk. As such, it can make adequate and well-balanced decision about the exposure to
interest rate risk and be used for optimal investment in the U.S. Treasury market.
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