TERRAIN

Terrain FUZE

High performance HDPE system for non-pressure drainage
Technical Manual

At Polypipe, conceiving, designing, manufacturing and delivering the most advanced products and systems isn't merely an occupation. It's a passion. One that's based around a few simple beliefs. Expertise isn't an option. Quality always beats quantity. Products are nothing without service and support. Sustainability isn't just a 'green' word. And working with our customers is much better than simply supplying them.

Application Based Technical Support

Intelligent Engineered Solutions

Industry Authority

COMPETENCE

Product Innovation

Breadth and Depth of Product Systems

Manufacturing \& Logistics Scale

Bespoke Product
Solutions

Sustainable Products and Practices

SUSTAINABILITY

Enabling Sustainable Building Technology

Contents

Terrain FUZE

Standards \& Qualities	$04-05$
Features and benefits	$06-07$
Soil and Waste Drainage	$08-18$
Rainwater Drainage	$19-21$
Chemical Drainage	$22-26$
Fabrication	$27-31$
Jointing Methods	$32-42$
Adapting to Other Materials	$43-44$
Installation	$45-56$
Firetrap Sleeves and Collars	$57-59$
System Testing	$60-61$
Soil Pipes and Fittings	$62-95$
FUZE Tooling	$96-97$

Terrain FUZE

A modern high density polyethylene system with many advantages over cast iron and other traditional systems. Terrain FUZE is a top-tobottom solution for all above and below ground drainage and many chemical waste applications.

It allows specifiers and installers to benefit, by providing them maximum flexibility in their design process. Utilising the intrinsic properties of high-
density polyethylene, Terrain FUZE offers greater benefits above and beyond more traditional materials and performs significantly better when tested for impact and abrasion resistance, chemical corrosion and extreme temperatures. The lightweight nature of Terrain FUZE allows the product to be installed quickly and efficiently, giving direct, resource-saving benefits to specifiers and installers.

For further information see contact details on the back cover of this brochure.

Standards and Quality

Polypipe Quality Assurance

Our Terrain products are accredited to the following Quality Management Systems:
BS EN ISO 9001:2000
BS EN ISO 14001:2004
OHSAS 18001
PASS 99
BES 6001

Terrain FUZE Quality Assurance

Terrain FUZE is manufactured to the standards set out within BS EN 1519:2000 and has achieved third part approval from the British Board of Agrément (BBA) certificate number 07/4479.

Terrain Siphonic Roof Drainage

Terrain Siphonic System complies with BS EN 12056-3:2000 and designs in accordance with BS 8490:2007.

Further information and assistance

Terrain products are backed by a comprehensive technical advisory service, available to provide advice and design guidance on all aspects of above and below ground drainage.

Technical services include:

- On site advice and problem solving.
- Terrain fabrication and fabrication design service.
- For prompt assistance, please contact the Terrain Technical Services Department:

Tel: 01622795200
Fax: 01622795263
www.polypipe.com/commercial-property-public-buildings

Terrain FUZE

Terrain High Density Polyethylene HDPE: Density 945 - 965 kg/m ${ }^{3}$
Polyethylene density varies between 945 - $965 \mathrm{~kg} / \mathrm{m}^{3}$. Terrain FUZE retains exceptional quality and durability at up to $965 \mathrm{~kg} / \mathrm{m}^{3}$ giving great confidence to specifiers and installers. HDPE is a lighter material than water, offering direct benefits in handling, transportation and installation.

Resistance to cold

Terrain FUZE pipes are resistant to freezing within the pipeline. When tested, the pipes simply expand with the ice and then return to their original dimensions without any damage.

Flexibility

Flexibility of a pipeline can be a major factor on certain building projects where concern must be given to the route of the pipeline through expansion joints or areas subject to vibrations.

Resistance to abrasion

HDPE offers greater abrasion resistance through increased strength within the walls of the pipeline. This additional protection of the pipe makes HDPE an effective material for branch pipes, soil stacks and ground pipes.

Heat expansion $0.2 \mathrm{~mm} / \mathrm{m}$ - K

Expansion of the HDPE pipeline should be anticipated when put under heat stress. As a general rule, an expansion rate of 10 mm per linear metre for every $50^{\circ} \mathrm{C}$ should be allowed.

Resistance to hot water

Terrain FUZE offers substantial durability against the flow of hot water. A waste pipe with no mechanical load will tolerate temperatures of up to $80^{\circ} \mathrm{C}$ and up to $95^{\circ} \mathrm{C}$ is permissible for a maximum of two minutes.

Resistance to impact

Terrain FUZE ensures maximum strength against impact stresses and is unbreakable at room temperature. It still maintains a high impact resistance at temperatures as low as $-40^{\circ} \mathrm{C}$ thus meets the requirements for outlet pipes.

Condensate

Terrain FUZE is a poor heat conductor thus preventing condensation from forming as the pipeline undergoes short periods of intense undercooling.

Behaviour in fire

HDPE in open construction is a flammable material. However, the material has been installed throughout Europe for over 40 years and poses no greater risk to fire spread than other similar plastic based systems when installed in accordance with local fire regulations. For further prevention, Terrain FUZE should be fitted with Terrain fire collars (See Polypipe Terrain Trade Price List) and these should be installed in strict accordance with instructions provided.

Features and Benefits

Noise

HDPE has a low E-modulus and limits solid-borne conduction along the pipeline. Airborne noise should be insulated by utilising a duct wall.

Resistance to chemicals

Terrain FUZE offers high resistance against chemical corrosion and is insoluble in all inorganic and organic solutions at $20^{\circ} \mathrm{C}$. Terrain FUZE is only susceptible to aliphatic and aromatic carbons and relative chlorination products over $90^{\circ} \mathrm{C}$. The material is also vulnerable to attack by heavily oxidised media conc. HNO_{3} (chemical equation), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (chemical equation) when exposed over long periods at room temperature.

Non-conductive

HDPE like most plastics has an exceptional reputation as an insulator.

Protection against blockages

Terrain FUZE enables the continual flow of waste through the pipe, reducing the possibility of blockages along the pipeline.

Sealing material

The rubber ring on the seal is installed under compression on all sides and is protected from expansion so, although the chemical resistance of the seal does not equate to that of HDPE, there is no risk of the seal being destroyed.

Welding temperature

With a much lower welding temperature of $210^{\circ} \mathrm{C}$, HDPE is a much safer and easier material to work with compared to metal. This enables processing of the material using simple tools and in a more energy efficient manner.

Non-toxic

Terrain FUZE pipes are non-toxic, ensuring safe handling during installation. With no risk of contamination to the flow through the pipeline, HDPE is even suitable for use in the food or liquid transportation industries

Scope of use

Terrain FUZE offers exceptional performance as a drainage system. A maximum load of 15 m Water Column (1.5 bar) temperature of $30^{\circ} \mathrm{C}$ (10years) should be considered when utilising the pipes in a low-pressure environment.

A waste system should be installed on a project to facilitate:

- Ease of access and maintenance to all parts of the system
- Flexible expansion of the system and integration with other pipe systems

Straight sections of horizontal pipe must be installed in perfect alignment with the pipe's axis and parallel to the wall. Vertical sections of the pipeline should be fixed in perfect alignment with the axis. Right angle bends must only be used to connect horizontal and vertical pipes and not within horizontal pipe networks.

Branches in the soil stack must be created using fittings with an angle less than 90°. Eccentric reductions must be used, when the pipe diameter varies in the horizontal branch pipes, to ensure a centred connection of the pipes at the axis line. To minimise reductions in speed and other negative effects variances in the direction of the horizontal and vertical pipe system must be kept to a minimum and use large radius bends. The stack vent should protrude by 2 m above the roof structure where possible, and never less than 0.3 m . Ventilating pipes to the outside air should finish at least 900 mm above any opening into the building within $3 m$.

The access pipes must have the same opening as all pipes up to diameter 110 mm , where the diameter is greater than 110 mm the access pipe must be at least 110 mm .
Access pipes should be installed in the following cases:

- At the beginning of the main manifolds in the waste system and at the base of every internal soil stack
- Access pipes should be installed every 15 m for a linear stretch of pipe with a diameter equal to or less than 110 mm and every 30 m for larger diameter pipes
- Wherever two or more branches connect

Access pipes must be within easy reach throughout the system and must offer sufficient space for the use of utensils to clean the pipes.

The use of HDPE soil \& waste pipe and fittings

The elements of the HDPE total pipe system offer direct benefits to the specifier and installer over more traditional materials. These benefits cover:

- HDPE is easier than more traditional materials to transport and handle safely due to its light weight.
- HDPE is installed quicker and easier than more traditional materials, offering increased time and labour savings on-site
- HDPE is resistant to impact shock
- Due to its composition, HDPE is highly resistant to chemical attack and will not erode, ensuring a long life for the system
- Terrain FUZE offers system flexibility, where alterations can be made easily to a completed system
- A smooth inner surface of the pipe minimises the risk of build-up or scaling
- HDPE welded joints will not deteriorate over time as no other materials or solvents are used
- HDPE can be used in close proximity to electrical installations or systems as it is not subject to electrolytic action
- Terrain FUZE offers a broad range of bespoke and fabricated items to be used in conjunction with the product ranges

Terrain FUZE offers a wide range of additional drains, traps, hoses and adaptors to be used with the standard catalogue of pipes and fittings, enabling HDPE products to be connected to other materials such as PVC, cast iron and cement pipes. This enables Terrain FUZE products to be used in an extensive range of applications, for example, in below ground applications when waste pipes with butt welded or electrofusion welded joints are utilised.

Soil and Waste Drainage

Table A: Discharge units (DU) Values

Appliance	System III DU I/s
Wash basin, bidet	0.3
Shower without plug	0.4
Shower with plug	1.3
Single urinal with cistern	0.4
Urinal with flushing valve	-
Slab urinal	0.2*
Bath	1.3
Kitchen sink	1.3
Dishwasher (household)	0.2
Washing machine up to 6 kg	0.6
Washing machine up to 12 Kg	1.2
WC with 4.0L cistern	**
WC with 6.0L cistern	1.2 to 1.7***
WC with 7.5L cistern	1.4 to 1.8***
WC with 9.0L cistern	1.6 to 2.0***
Floor gully DN 50	-
Floor gully DN 70	-
Floor gully DN 100	-

* Per person.
** Not permitted.
*** Depending upon type (valid for WC's with siphon
flush cistern only).
- Not used or no data.

Table B: Typical frequency factors (K)

Usage of appliances	K
Intermittent use, e.g. in dwelling, guest- house, office	$\mathbf{0 . 5}$
Frequent use, e.g. in hospital, school, restaurant, hotel	$\mathbf{0 . 7}$
Congestred use, e.g. in toilets and/or showers open to public	$\mathbf{1 . 0}$
Special use, e.g. laboratory	$\mathbf{1 . 2}$

Example:
10 storey building with
2 WC
4 WHB
2 Baths
On each floor
2 Sinks
2 W/MC
$2 \times 1.5=3.0$
$4 \times 0.3=1.2$
$2 \times 1.3=2.6$
$2 \times 1.3=2.6$
$2 \times 0.6=1.2$
$10.6 \times 9=95.4 \mathrm{DU}$
Domestic Building Use $K=0.7$
$0.7 \sqrt{ } 95.4=6.84 \mathrm{I} / \mathrm{s}$
See Table C and D for capacities of pipes.

Frequency factor (K)
Typical frequency factors associated with different usage of appliances Table B.

Calculation of flowrate
Waste water flowrate (Qww)
Qww is the expected flowrate of waste water in a part or in the whole drainage system where only domestic sanitary appliances are connected to the system

```
Qww = K}\sqrt{}{}\sumD
where:
Qww = Waste water flowrate (L/s)
K = Frequency factor
\sumDU = Sum of discharge units.
```

NB: Under no circumstances should pipe of a larger diameter be connected to pipe of a smaller diameter in the direction of flow.

Terrain FUZE

Table C: Stack with only Primary Vent

 Stack Vent	System I, II, III, IV Q max (L/s)	
DN	Square \# entries	Swept entries
60	0.5	0.7
70	1.5	2.0
80^{*}	2.0	2.6
90^{*}	2.7	3.5
$100^{* *}$	4.0	5.2
125	5.8	7.6
150	9.5	12.4
200	16.0	21.0

** Minimum size where WC's are connected in system II.
** Minimum size where WC's are connected in system I, III, IV. \# Equal branch junctions that are more than 45°, or has a centre line radius less than the internal pipe diameter.

Table D: Stack with Secondary Venting

Stack $\boldsymbol{\&}_{2}$ Stack Vent	Secondary Vent	System I, II, II, IV Q max (L/s)	
DN	DN	Square \# entries	Swept entries
60	50	0.7	0.9
70	50	2.0	2.6
80*	50	2.6	3.4
90*	50	3.5	4.6
100**	50	5.6	7.3
125	70	7.6	10.0
150	80	12.4	18.3
200	100	21.0	27.3

* Minimum size where WC's are connected in system II.
** Minimum size where WC's are connected in system I, III, IV. \# Equal branch junctions that are more than 45°, or has a centre line radius less than the internal pipe diameter.

For branch pipe sizing based on System III the following sizing charts should be used.

Appliance	Dia. DN	Min. trap seal depth (mm)	Max. length (L) of pipe from trap outlet to stack (m)	Pipe gradient	Max. no. of bends	Max. drop (H) (m)
Limitations for unventilated branch discharge pipes, system III						
Washbasin, bidet (30mm diameter trap)	30	75	1.7	$2.2{ }^{1)}$	0	0
Washbasin, bidet (30mm diameter trap)	30	75	1.1	$4.4{ }^{1)}$	0	0
Washbasin, bidet (30mm diameter trap)	30	75	0.7	$8.7^{1)}$	0	0
Washbasin, bidet (30mm diameter trap)	40	75	3.0	1.8 to 4.4	2	0
Shower, bath	40	50	No Limit ${ }^{2)}$	1.8 to 9.0	No Limit	1.5
Bowl urinal	40	75	$3.0^{3)}$	1.8 to 9.0	No Limit ${ }^{4}$	1.5
Trough urinal	50	75	$3.0^{3)}$	1.8 to 9.0	No Limit ${ }^{4}{ }^{\text {a }}$	1.5
Slab urinal ${ }^{3)}$	60	50	$3.0^{3)}$	1.8 to 9.0	No Limit ${ }^{4}$	1.5
Kitchen sink (40 mm diameter trap)	40	75	No Limit ${ }^{2)}$	1.8 to 9.0	No Limit	1.5
Household dishwasher or washing machine	40	75	3.0	1.8 to 4.4	No Limit	1.5
WC with outlet up to $80 \mathrm{~mm}^{6}$)	75	50	No Limit	1.8 min	No Limit ${ }^{4}$)	1.5
WC with outlet greater than $80 \mathrm{~mm}^{6}$)	100	50	No Limit	1.8 min	No Limit ${ }^{4}$)	1.5
Food waste disposal ${ }^{7}$)	$\begin{gathered} 40 \\ \mathrm{~min} \\ \hline \end{gathered}$	$75^{8)}$	$3.0{ }^{3)}$	13.5 min	No Limit ${ }^{4}$)	1.5
Sanitary towel disposal unit	$\begin{gathered} 40 \\ \text { min } \end{gathered}$	$75^{8)}$	$3.0{ }^{3)}$	5.4 min	No Limit ${ }^{4}$)	1.5
Floor drain	50	50	No Limit ${ }^{3}$)	1.8 min	No Limit	1.5
Floor drain	50	50	No Limit ${ }^{3}$)	1.8 min	No Limit	1.5
Floor drain	100	50	No Limit ${ }^{3}$)	1.8 min	No Limit	1.5
4 basins	50	75	4.0	1.8 to 4.4	0	0
Bowl urinals ${ }^{3)}$	50	75	No Limit ${ }^{3)}$	1.8 to 1.9	No Limit ${ }^{4}$	1.5
Maximum of $8 \mathrm{WC}^{\prime} \mathrm{s}^{6}$)	100	50	15.0	0.9 to 9.0	2	1.5
Up to 5 spray tap basins ${ }^{9)}$	$\begin{gathered} \hline 30 \\ \max \\ \hline \end{gathered}$	50	$4.5{ }^{3)}$	1.8 to 4.4	No Limit ${ }^{4}$	0

Appliance	Dia. DN	Min. trap seal depth mm	Max. length (L) of pipe from trap outlet to stack m	Pipe gradient	Max. no. of bends	Max. drop (H) m
Limitations for ventilated branch discharge pipes, system III						
Washbasin, bidet (30mm diameter trap)	30	75	3.0	1.8 min	2	3.0
Washbasin, bidet (30mm diameter trap)	40	75	3.0	1.8 min	No Limit	0
Shower, bath	40	50	No Limit ${ }^{2)}$	1.8 min	No Limit	Limit
Bowl urinal	40	75	$3.0^{3)}$	1.8 min	No Limit ${ }^{4}$)	3.0
Trough urinal	50	75	$3.0^{3)}$	1.8 min	No Limit ${ }^{4}$	3.0
Slab urinal ${ }^{3 /}$	60	50	$3.0{ }^{3)}$	1.8 min	No Limit ${ }^{4}$)	3.0
Kitchen sink (40mm diameter trap)	40	75	No Limit ${ }^{2)}$	1.8 min	No Limit	No Limit
Household dishwasher or washing machine	40	75	No Limit ${ }^{3)}$	1.8 min	No Limit	No Limit
WC with outlet up to $80 \mathrm{~mm}^{6)}$ \& 14)	75	50	No Limit	1.8 min	No Limit ${ }^{4}$	1.5
WC with outlet greater than $80 \mathrm{~mm}^{6}$ \& 14)	100	50	No Limit	1.8 min	No Limit ${ }^{4}$	1.5
Food waste disposal ${ }^{7}$	40 min	$75^{8)}$	$3.0^{3)}$	13.5 min	No Limit ${ }^{4)}$	3.0
Sanitary towel disposal unit	40 min	$75^{8)}$	$3.0{ }^{3)}$	5.4 min	No Limit ${ }^{4}$	3.0
Bath drain, floor drain	50	50	No Limit ${ }^{3)}$	1.8 min	No Limit	No Limit
Floor drain	70	50	No Limit ${ }^{3)}$	1.8 min	No Limit	No Limit
Floor drain	100	50	No Limit ${ }^{3)}$	1.8 min	No Limit	No Limit
5 basins $^{9}{ }^{\text {a }}$	50	75	7.0	1.8 to 4.4	2)	0
10 basins $^{9)}$ \& 10)	50	75	10.0	1.8 to 1.9	No Limit	0
Bowl urinals ${ }^{9)}$ \& 11)	50	70	No Limit ${ }^{3)}$	1.8 min	No Limit ${ }^{\text {4 }}$	No Limit
More than $8 \mathrm{WC}^{\prime} \mathrm{s}^{6}$)	100	50	No Limit	0.9 min	No Limit	No Limit
Up to 5 spray tap basins ${ }^{9)}$	30 max	50	No Limit ${ }^{3)}$	1.8 to 4.4	No Limit ${ }^{4}$	0

1) For maximum distances from trap to vent (see Figure 8 of BS EN 1205-2:2000).
2) If length is greater than 3 m noisy discharge may result with an increased risk of blockage.
3) Should be as short as possible to limit problems with deposition.
4) Sharp throated bends should be avoided.
5) For slab urinal for up to 7 persons. Longer slabs to have more than one outlet.
6) Steeper gradient permitted if pipe is less than maximum permitted length.
7) If length is greater than 3 m noisy discharge may result with an increased risk of blockage.
8) Should be as short as possible to limit problems with deposition.
9) Sharp throated bends should be avoided.
10) For slab urinal for up to 7 persons. Longer slabs to have more than one outlet.
11) Swept-entry branches serving WC's.
12) Includes small potato-peeling machines.
13) Tubular not bottle or resealing traps.
14) Spray tap basins shall have flush-grated wastes without plugs.

Ventilated discharge branches: Sizes and limitations upon the use of ventilated discharge branches are given in the tables above. Limitations given in the second table are simplifications, for further information see national and local regulations and practice.

Soil and Waste Drainage

Terrain Drainage Ventilation System

Terrain soil \& waste products represent the industry benchmark for quality, installation, flexibility and product innovation, backed by the highest levels of customer service. Terrain systems comprise of an extensive range of soil \& waste drainage products, including the Terrain Pleura system, a unique alternative engineered ventilation solution for high-rise buildings.

- Unique products offering unrivalled installation options
- High quality finish
- Suitable for all types of commercial and residential high-rise buildings
- Extensive technical experience to support and advise on all aspects of design and installation
- Fully accredited product systems

As you would expect from a market leader our products come with all relevant standards including:

Manufacturing Standards

BS EN 12380 A1 Air Admittance Valve (Pleura System)

Quality Management Systems Standards
EN ISO 9001:2008 Management System EN ISO14001:2004 Management System BS OHSAS 18001:2007 Management System
PASS 99:2006 Integrated Management Registration

LABC

Terrain FUZE

Ventilation Drainage Pipework Systems

The design of modern building drainage and ventilation systems has been developing since the 19th century.

Pressure falls below atmosphere below top of stack

Negative pressure increases down

A minimum of 50 mm of water is all that protects the occupants of a building from potentially harmful sewer gases and 'particulates'. Therefore, a good design must consider the integrity of the trap seal and protect it from being lost. One way of doing this is to consider the air flow within the system, as this is the primary reason for trap seal breach. The flow of air within the drainage pipework system is equally as important as the flow of
water in maintaining a safe and hygienic drainage system. This is because the flow of water creates both positive and negative air fluctuations which can compromise water trap seals and upset the equilibrium in the system. Installation of a secondary stack is traditionally the answer to help alleviate the pressure within the system, however, this modern method of drainage ventilation saves cost, time, floor space and is a more efficient solution.

Soil and Waste Drainage

Terrain P.A.P.A ${ }^{\circledR}$ and Pleura Drainage Ventilation System

The smarter air pressure and drainage ventilation system for high-rise buildings.

Following several years of theoretical and practical research into both positive and negative transient pressure fluctuations in drainage systems, the Terrain Pleura system provides both an intelligent and integrated solution for balancing the ambient air pressure within a drainage system.

Terrain P.A.P.A ${ }^{\oplus}$ and Pleura drainage ventilation system; how it works:

Terrain Pleura regulators balance negative air pressure fluctuations whilst a positive pressure reduction device (P.A.P.A) balances positive pressures. Together, they protect the water trap seal from damage by forming a highly effective alternative solution for maintaining ambient air pressure within the drainage pipework system - whilst trapping foul air and introducing fresh air into the built environment.

Terrain P.A.P.A can be installed with all of our fabricated soil and waste drainage stacks.

To find out more, visit
www.polypipe.com/terrain-drainage-stacks

Conventional stack assembly

Stack assembly using Pleura venting system

Terrain FUZE

Terrain Pleura 50

The Terrain Pleura 50 air regulator provides ventilation to branch pipework. It is generally installed on the pipe behind the appliance trap.

The Terrain Pleura 50 opens and admits fresh air into the branch pipe when the negative (suction) pressure occurs from an appliance discharging into the pipework system. This equalises the ambient air pressure within the pipework and protects the trap seal.

When the flow stops and the internal ambient air pressure in the pipework balances, the Terrain Pleura 50 closes by gravity and prevents foul air entering the built environment.

Terrain Pleura 100

The Terrain Pleura 100 air regulator can be fitted on to the top of a foul or waste stack or at the end of long low gradient branch drains to provide ventilation.

The Terrain Pleura 100 opens and admits fresh air under condition of reduced pressure in the discharge pipes and prevents trapped water seals being drawn. As the internal ambient air pressure in the pipework balances, the Terrain Pleura 100 closes by gravity and prevents foul air entering the built environment.

Terrain P.A.P.A ${ }^{\circledR}$

The Terrain P.A.P.A is a positive pressure reduction device, designed to mitigate the affects of positive air fluctuations in the drainage pipework system. As water descends down the drainage stack it creates a negative pressure; if that flow is interrupted or is approaching a change of direction, the negative pressure changes to a positive pressure and moves up the pipe. This low amplitude air wave typically travels at $320 \mathrm{~m} / \mathrm{s}$, the speed of sound.

As the positive air fluctuation approaches the branch-off point for the Terrain P.A.P.A, the bladder within the unit reacts very quickly, within 0.2 seconds, and starts to expand; this creates a pressure differential at the branch-off point. The branch to the Terrain P.A.P.A then becomes the path of least resistance and the majority of the positive air pressure is absorbed within the unit.

As the ambient air pressure within the pipework starts to equalise, the bladder slowly releases the small volume of air into the pipework system at only $12 \mathrm{~m} / \mathrm{s}$, which will have no effect on the trap seals.

Pleura 50
9301.253

Soil and Waste Drainage

Owen Street Towers, Manchester, UK
A range of Terrain's drainage ventilation and soil and waste systems are installed at Owen Street Towers - one of Manchester's most prestigious residential developments. The 1,508-apartment luxury development has been fitted with a Terrain P.A.P.A and Pleura Vent System, eliminating the need for a secondary vent system, while Terrain FUZE HDPE drainage stacks and Terrain PVC piping systems helped meet the project's drainage and soil and waste requirements.

Fenchurch Avenue, London, UK

The landmark Fenchurch Avenue in London benefits from an extensive range of Terrain FUZE drainage products. FUZE is made of high-density polyethylene and is manufactured in a wide range of lengths, this along with the support of a market leading fabrication department makes FUZE an ideal drainage solution for tall buildings.

InterContinental London \mathbf{O}^{2} Hotel, London, UK
A Terrain FUZE HDPE system has been installed in the InterContinental London O 2 Hotel, providing an innovative drainage solution for the 19-storey luxury property.

D1 Tower, Dubai, UAE

Terrain P.A.P.A is installed in D1 Tower, an 80 floor luxury residential building, providing a simplified, but efficient drainage ventilation system.

Terrain FUZE

Base Stack/Transition Areas

As the waste water discharge in a drinage stack reaches the base of the stack, it will need to change direction to flow horizontally into either a high-level collector drain or into the below-ground drainage system.

The flow velocity in the horizontal drainage pipework will be controlled by the installed gradient and pipe diameter; this will be appreciably less than the velocity of the vertical drainage stack. At the base of the drainage stack the waste water discharge undergoes a rapid deceleration in velocity, creating an increase in the depth of the flow at the change of direction. This increase in depth is generally sufficient to fill the cross section area of the pipe.

This phenomenon is known as the 'hydraulic jump'.
The distance at which the hydraulic jump occurs varies from immediately at the stack change of direction, up to 10 times the diameter of the stack downstream.

This is dependent upon:

- The entrance velocity
- Depth of water that may already exist within the horizontal drainage pipe

- Roughness co-efficient of the pipe
- Pipe diameter
- Pipe gradient
- Bend formation at the base of the stack

The surged flow condition will extend until the frictional resistence of the pipe reduces the velocity to the designed flow condition.

To mitigate the air fluctuation problems associated at the base of the drainage stack, Building Regulations Approved Document H, states that the following design details are incorporated.

Soil and Waste Drainage

Base of Stack Requirements

Terrain FUZE

Basic Principles for Rainwater Designs

Sizing of rainwater installations

The following general guidelines are based on BS EN 120563:2000 Gravity Drainage Systems Inside Buildings - Roof Drainage, Layout and Calculations.

There are two factors to consider when calculating the rainwater flow from a roof, firstly the design rainfall intensity to be used and the effective roof area to be drained.

Rainfall intensity

It is important to confirm the design rainfall intensity with the client before carrying out any design work; this can be done by calculation (refer to BS EN 12056-3:2000) or based on local requirements.

Effective roof area

Before the effective roof area can be calculated it is necessary to determine if the calculation will be affected by:
a) Snow, (Section NB4, BS EN 12056-3:2000) details the design requirements for snow which should be taken into account.
b) Wind, there is no requirement to allow for the effect of wind when designing a rainwater system for flat roofs or roofs protected from the wind by adjacent buildings. However, the wind and the roof slope can have the effect of increasing the flow of rainwater from the roof of unprotected pitched roofs.

Note: Flat roofs should be designed to allow for structural deflection under dead and imposed loads, BS 6229:2003, table 6 details the minimum finished falls for a flat roof dependent upon the roof covering.
C) Tall Buildings, when draining onto a lower level roof the effective catchment area of a wall should be taken as 50% of its area up to a maximum exposed height of 10 m

The effective roof area can be calculated using the following formulae,
Flat roof
$A\left(m^{2}\right)=L \times B \quad$ where:
A = Effective roof area (square metres)
L = Length of roof (metres)
$B=$ Width of roof (metres)
Pitched roof
$A\left(m^{2}\right)=L x(B+H / 2)$ where:

$$
\begin{aligned}
A= & \text { Effective roof area (square metres) } \\
L= & \text { Length of roof (metres) } \\
B= & \text { Width of roof (metres) } \\
H= & \text { Height of rood between eaves and } \\
& \text { ridge (metres) }
\end{aligned}
$$

If an adjacent wall is to incorporated into the equation then the following needs to be added to the two formulae 0.5 (x w)
where:
L is up to maximum of 10 m

Calculating design flow

Having determined the rainfall intensity ($\mathrm{mm} / \mathrm{hr}$) and effective roof area, $A(m 2)$, the following calculation is required to establish the actual design flow from the roof.

Flow rate,

$$
\mathrm{Q}(\mathrm{I} / \mathrm{s})=\mathrm{A}(\mathrm{~m} 2) \times \mathrm{RI}(\mathrm{~mm} / \mathrm{hr})
$$

3600

Fixing small roof outlet to proprietary plastic finish

Applicable to: all 2180 and 2181 Roof Outlets

- Apply recommended adhesive to flange of outlet body
- Dress plastic material over flange to the edge of opening
- Secure the flat or domed grid with brass screw supplied, lightly clamping the roof finish material in position

Fixing small roof outlet to mineral felt finish

Applicable to: all 2180 and 2181 Roof Outlets

- Apply suitable bitumastic primer to flange of outlet body
- Apply liquid bitumen or activator to roof and prepared area of flange
- Lay first layer of felt to edge of flange
- Dress second and third layers over the flange to the edge of the opening
- Secure the flat or domed grid with the brass screw supplied, lightly clamping the edge of the second and third layers of felt

Rainwater Drainage

Terrain Siphonic Rainwater System

Why use a Siphonic roof drainage system?

With average UK annual tempreatures predicted to rise by up to $3.5^{\circ} \mathrm{C}$ over the next 70 years, climate change is already driving the need for innovative solutions to the management of rainfall and surface water.

With ten times the flow capacity of a conventional gravity system and significantly faster water removal rates, Terrain Siphonic Roof Drainage System 'sucks' water from a roof to cope with downpours that would overwhelm a gravity system and is ideal for complex roof shapes.

Offering valuable total project cost savings of typically 20-45\% over a conventional system, Terrain Siphonic Roof Drainage System can be factory fabricated and gives important structural and space savings, with a reduced build programme.

The system has a comprehensive range of roof drains for every flat and pitched roof membrane, from asphalt to bitumen to modern single ply membranes. Ideal for commercial, industrial, sports, leisure, education and healthcare buildings, the roof drains are extremely compact and the range includes an inlet for the top deck of multistorey car parks.

- 10 times the flow capacity of a conventional gravity system
- Faster water removal rates 20-45\% cost savings over a conventional gravity system
- Reduces underground drainage
- Ideal for complex roof shapes structural and space saving
- Accurate design software

Flow Capacity

A 75 ml roof drain can remove up to 25 litres of rainwater per second, whilst the 125 mm drain can remove up to 100 litres of rainwater per second with certain piping configurations

Terrain FUZE

How it works

The Terrain Siphonic Roof Drainage System 'sucks' water from the roof, using a powerful hydraulic force created by water accelerating down the full height of the building to deliver far greater capacity and flow rates than a gravity system. In a gravity drainage system, pipework carries both air and water. The flow in gravity pipes is extremely inefficient because of the large core of air which enables the water to flow resulting in the need for larger pipes and more of them as well as extensive underground systems.

In the Terrain Siphonic Roof Drainage System as rain falls, the roof drain prevents the ingress of air, rapidly purging it until the system is fully primed and running full bore. Water is transported in smaller diameter pipes to fewer, more convenient locations. The system responds quickly to rainfall changes, is self-cleaning, drains rapidly when rainfall ceases, and is designed to prevent blockage by leaves, twigs and other debris.

The Terrain Siphonic roof drain incorporates a one-piece inducer or air baffle plate, which becomes submerged in shallow water to exclude air. The height of the inducer above the body ensures the system primes rapidly with a minimum depth of water.

Rainwater Drainage

The piping system

The collector pipe is normally installed horizontally without slope at high level and runs to a convenient point where it drops to ground level with a transition break connection into the below-ground gravity drainage system or manhole chamber.

Recommended pipes

Terrain FUZE pipes are manufactured in the UK to BS EN 1519-1:2000 and BBA certification. Fully welded to withstand high negative pressures, they offer excellent performance and durability with high weather and corrosion resistance.

With a wide range of diameters and fittings for maximum design flexibility, they are lightweight with electro-weld joints for rapid and simple installation. In addition, stainless steel and cast iron pipes can be used for aesthetics or as dictated by the site.

Correct installation

Essential to the success and performance of a siphonic system, correct installation is ensured by the system design software and prefabrication of specified pipework. In addition, installation time may be reduced by fabricating pipe work. This can be completed offsite by Terrain if required and installation is completed by approved intallers.

Terrain FUZE high density polyethylene pipes are manufactured in the UK to BS EN 1519-1:2000

Diameters 56 mm to 200 mm

Diameters 160 mm to 450 mm

Chemical drainage systems for Commercial and Public Buildings

Terrain FUZE can be used for a range of chemical applications due to their chemical resistance characteristics. This makes Terrain Soil \& Waste pipe systems ideal for use in laboratories, hospitals and educational establishments, as well as a number of other commercial drainage applications.

Terrain FUZE

Chemical Resistance

The following tables provide a list of inorganic compounds, which may be conveyed through HDPE systems with no internal pressure or mechanical stress, at temperatures up to $20^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ and those fluids which are unsuitable.

Fluid concentration classifications used in table	
	$=$ No Data
-	$=$ Not recommended
0	$=$ Conditionally Resistant
+	$=$ Resistant

Chemical	Concentration	Temperature		
		20	40	60
Acetaldehyde	40\% aqueous solution	+	+	0
Acetaldehyde	Technically pure	+	0	
Acetic acid	50\% Aqueous	+	+	+
Acetic acid	Technically pure, glacial	+	+	0
Acetic acid anhydride	Technically pure	+	0	
Acetic acid ethylester		+		
Acetic acid isobutyl ester	Technically pure	+		
Acetone	up to 10% aqueous	+	+	+
Acetone	Technically pure	+	$+$	+
Acetonitrile	100\%	0		
Acetophenone	100\%	0		
Acrylic acid methyl ester	Technically pure	0		
Acrylicethyl	Technically pure	0		
Acrylonitrile	Technically pure	+	+	+
Adipic acid	Saturated, aqueous	+	+	+
Allyl alcohol	96\%	+	+	+
Ammonia	Gaseous, technically pure	+	+	+
Ammonium acetate	Aqueous, all	+	+	+
Ammonium persulphate		+		
Amonium salts, aqueous inorganic	Saturated	+	+	+
Amyl acetate	Technically pure	+	+	+
Amyl alcohol	Technically pure	+	+	+
Aniline	Technically pure	+	0	
Antimony trichloride	90\% aqueous	+	+	+

Chemical	Concentration	Temperature		
		20	40	60
Aqua regia	Mixing ratio	-		
Arsenic acid	80\% aqueous	+	+	+
Barium salts, aqueous inorganic	Saturated	+	+	+
Beer	Usual commercial	+		
Benzaldehyde	Saturated, aqueous	+	+	0
Benzene	Technically pure	0	0	
Benzene sulfonic acid	Technically pure	+	+	0
Benzine (Gasoline)	Free of lead and aromatic compounds	+	+	
Benzoic acid	Aqueous, all	+	+	+
Benzyl alcohol	Technically pure	+	+	0
Beryllium salts, aqueous, inorganic		+	+	+
Borax	Aqueous, all	+	+	+
Boric acid	All, aqueous	+	+	+
Bromine water	Saturated, aqueous	-		
Butadiene	Technically pure	0		
Butane	Technically pure	+		
Butanediol	Aqueous 10\%	+	+	+
Butanol	Technically pure	+	+	+
Butyl acetate	Technically pure	+		
Butyl phenol p-tertiary	Technically pure	0		
Butylene glycol	Technically pure	+	+	+
Butylene liquid	Technically pure	-		
Butyric acid	Technically pure	+		
Cadmium salts aqueous inorganic	< Saturated acid	+	+	+

[^0]
Chemical Drainage

Tables of fluids* which can be conveyed through HDPE pipes and fittings with no internal pressure, mechanical stress and temperatures up to $60^{\circ} \mathrm{C}$

Chemical	Concentration	Temperature		
		20	40	60
Caesium salts, aqueous, inorganic	<Saturated acid	+	+	+
Calcium acetate	Saturated	+	+	+
Calcium hydroxide	Saturated aqueous	$+$	$+$	+
Calcium lactate	Saturated	+	+	$+$
Calcium salts, aqueous, inorganic	Saturated acid	+	+	+
Carbon dioxide	Technically pure, anhydrous	+	+	+
Carbon tetrachloride	Technically pure	-		
Carbonic acid		+	+	+
Caro's acid				
Caustic potash solution (potassium hydroxide)	50\% aqueous	+	+	$+$
Caustic soda solution	50\% Aqueous	+	+	+
Chloric acid	10\% aqueous	$+$	+	
Chloric acid	20\% aqueous	0		
Chlorine	moist, 97%, gaseous	-		
Chlorine	Liquid, technically pure, as double pipe system	-		
Chlorine	Anhydrous, technically pure, as double pipe system	0	0	
Chlorine water	saturated	0	0	
Chloroacetic acid, mono	50\% Aqueous	+	+	0
Chloroacetic acid, mono	Technically pure	+	+	0
Chlorobenzene	Technically pure	0		
Chloroethanol	Technically pure	+	+	+
Chlorosulphonic acid	Technically pure	-		
Chromic acid	All, aqueous	0		
"Chromic acid + water + sulphuric acid"	$\begin{aligned} & " 50 \mathrm{~g} \\ & 15 \mathrm{~g} \\ & 35 \mathrm{~g} " \end{aligned}$			
Chromium (II)- salts, aqueous, inorganic	<Saturated acid			
Compressed air, containing oil		+	+	
Copper salts, aqueous inorganic	<Saturated acid	+	+	+
Cresol	Cold saturated, aqueous	+	+	0
Crotonic aldehyde	Technically pure	$+$		
Cyclohexane	Technically pure	+	+	+

Chemical	Concentration	Temperature		
		20	40	60
Cyclohexanol	Technically pure	+	+	+
Cyclohexanone	Technically pure	+	0	0
Dextrine	Usual commercial	+	+	+
Di isobutyl ketone	Technically pure	+	0	
Dibrombenzene	<Saturated acid	0		
Dibuthyl ether	Technically pure	0		
Dibutyl phthalate	Technically pure	+	0	0
Dichloroacetic acid	50\% Aqueous	+	$+$	0
Dichloroacetic acid	Technically pure	+	$+$	0
Dichloroacetic acid methyl ester	Technically pure	+	+	+
Dichlorobenzene	Technically pure	0		
Dichloroethylene	Technically pure	-		
Diesel oil		+		
Diethyl ether		-		
Diethylamine	Technically pure	+		
Dimethyl formamide	Technically pure	+	+	0
Dimethylamine	Technically pure	+		
Dioxane	Technically pure	+	+	$+$
Ethanolamine	Technically pure	$+$		
Ethyl alcohol (Ethnause)	Technically pure 96\%	+	+	+
Ethyl benzene	Technically pure	0		
Ethyl chloride (G)	Technically pure	0		
Ethyl ether	Technically pure	+		
Ethylene diamine	Technically pure	+	+	$+$
Ethylene glycol	< 50%	+	+	+
Ethylene glycol	Technically purre	+	+	+
Ethylenediaminetetraacetic acid (EDTA)		+		
Fluorine	Technically pure	-		
Fluorosilicic acid	32\% aqueous	+	+	+
Formaldehyde	40\% aqueous	+	+	+
Formamide	Technically pure	+	+	+
Formic acid	<25\%	+	+	+

[^1]
Terrain FUZE

Tables of fluids* which can be conveyed through HDPE pipes and fittings with no internal pressure, mechanical stress and temperatures up to $60^{\circ} \mathrm{C}$

Chemical	Concentration	Temperature		
		20	40	60
Formic acid	up to 50% aqueous	+	+	+
Formic acid	Technically pure	+	+	+
Frigen 12 (freon 12)	Technically pure	-		
Fuel oil		+		
Furfuryl alcohol	Technically pure	+	$+$	+
Gelatin	All, aqueous	$+$	+	+
Glucose	All, aqueous	+	$+$	+
Glycerol	Technically pure	+	+	$+$
Glycin	10\% aqueous	+	+	
Glycolic acid	37% aqueous	+	+	$+$
Heptane	Technically pure	+	+	
Hexane	Technically pure	+	$+$	
Hydrazine hydrate	aqueous	+	+	+
Hydrochloric acid	up to 30% aqueous	+	+	+
Hydrochloric acid	38% aqueous	+	$+$	
Hydrocyanic acid	Technically pure	+	+	+
Hydrofluoric acid	40\%	+	$+$	0
Hydrogen	Technically pure	+	+	+
Hydrogen chloride	Technically pure, gaseous	+	+	+
Hydrogen peroxide	30% aqueous	$+$		
Hydrogen peroxide	90\% aqueous	0		
Hydrogen sulphide	Saturated aqueous	$+$	+	+
Hydrogen sulphide	Technically pure	+	+	0
Hydroquinone	30\%	+	$+$	+
Lodine-potassium iodide solution (Lugol's solution)		+		
Iron salts, aqueous inorganic	<Saturated acid	+	+	+
Isooctane	Technically pure	+		
Isopropyl alcohol (ESC)	Technically pure	$+$	+	0
Isopropyl ether	Technically pure	0		
Lactic acid	10\% aqueous	+	+	+
Lead acetate	aqueous saturated	+	+	+
Lead salts, aqueous, inorganic	<Saturated acid	+	+	+

Chemical	Concentration	Temperature		
		20	40	60
Linseed oil	Technically pure	$+$	$+$	+
Lithium salts, aqueous, inorganic	<Saturated acid	+	+	+
Magnesium salts, aqueous, inorganic	<Saturated acid	+	$+$	+
Maleic acid	Cold saturated, aqueous	+	$+$	+
Mercury	pure	$+$	+	+
Mercury salts	<Saturated	$+$	$+$	+
Methane (natural gas)	Technically pure	$+$		
Methanol	All	$+$	$+$	$+$
Methyl acetate	Technically pure	$+$		
Methyl amine	32%, aqueous	+		
Methyl bromide	Technically pure	0		
Methyl ethyl ketone	Technically pure	$+$		
Methyl isobutyl ketone		$+$		
Methyl methacrylate		+		
Methyl phenyl ketone (acetophenon)		+		
Milk		$+$	$+$	$+$
Mineral water		$+$	$+$	+
Mixed acids -nitric 15\% -hydrofluoric 15\% -sulphuric 18\%	3 parts 1 part 2 parts	0		
Mixed acids -sulphuric -nitric -water	$\begin{aligned} & 10 \% \\ & 20 \% \\ & 70 \% \end{aligned}$	+		
Mixed acids -sulphuric -nitric -water	$\begin{aligned} & 50 \% \\ & 33 \% \\ & 17 \% \end{aligned}$	-		
Mixed acids -sulphuric -nitric -water	$\begin{aligned} & 50 \% \\ & 31 \% \\ & 19 \% \text { " } \end{aligned}$	-		
Mixed acids -sulphuric -phosphoric -water	$\begin{aligned} & 30 \% \\ & 60 \% \\ & 10 \% \end{aligned}$	$+$	$+$	+
N,N-Dimethylaniline	Technically pure	$+$		
N, methylpyrrolidon		+		
Naphthalene	Technically pure	$+$		
Nickel salts, aqeous in organic	<saturated acid	+	+	+

[^2]Tables of fluids* which can be conveyed through HDPE pipes and fittings with no internal pressure, mechanical stress and temperatures up to $60^{\circ} \mathrm{C}$

[^3]
Terrain FUZE

Tables of fluids* which can be conveyed through HDPE pipes and fittings with no internal pressure, mechanical stress and temperatures up to $60^{\circ} \mathrm{C}$

Chemical	Concentration	Temperature		
		20	40	60
Sulphur dioxide	All, moist	$+$	+	+
Sulphuric acid	saturated aqueous	+	+	+
Sulphuric acid	Up to 80% aqueous	+	+	0
Sulphuric acid	Up to 96% aqueous	-		
Sulphuric acid	98\%	-		
Tannic acid	All, aqueous	+	+	+
Tetrachlorethylene (perchloroethylene)		-		
Tetrachloroethane	Technically pure	0		
Tetraethylene lead	Technically pure	+		
Tetrahydrofurane	Technically pure	0		
Tin salts, aqueous, inorganic	<saturated acid	+	+	+
Toluene	Technically pure	0		
Trichloromethane	100\%			
Trichloroacetic acid	50\% aqueous	+	+	+
Trichloroacetic acid	Technically pure	+	0	-
Trichloroethane	Technically pure	0		
Trichloroethylene	Technically pure	-		
Triethylamine	Technically pure	+		
Trifluoroacetic acid	up to 50%	$+$		
Turpentine oil	Technically pure	0	0	
Urea	Up to 30% aqueous	+	+	+
Urine		+	+	+
Vinyl acetate	Technically pure	+	+	
Vinyl chloride	Technically pure	-		
Waste gases, containing Alkaline		+	+	+
Waste gases, containing hydrochloric acid	all	+	+	+
Waste gases, containing hydrogen fluride	Traces	+	+	+
Waste gases, containing nitrous gases	Traces	+	0	0
Waste gases, containing sulphur dioxide	Traces	+	+	

[^4]
Fabrication

For over 40 years the Terrain Fabrication Service has been at the forefront of providing drainage solutions. From unique one-off fittings to complete fabricated drainage stacks, we have the expertise to overcome the challenges found within construction sites in the UK.

Terrain fabricated drainage stacks

By working with your design team we can take your plans and provide you with a drainage solution tailor made for your building. Because we understand the constraints of site storage we will work with your build schedule to ensure that the fabricated solutions are delivered when required. With the additional ability to pre-air test the stacks prior to delivery, the system can be installed more efficiently by reducing both installation and testing times.

Key Benefits

Simple on-site connections
Straightforward installation saves on labour costs

Reduces on-site labour costs

Reduced installation time keeps overall project costs down

Reduces on-site installation time
Installation is simple and quicker than assembling loose fittings

Reduces on-site waste
Made to measure engineered solutions means there is a reduction in wasted materials

YEARS

Pre-air testing available

Removes the time and skills required for on-site testing

Widest portfolio of bespoke solutions
Providing customised solutions for tricky one-off projects

Terrain has over 40 years experience of fabricating
You can expect quality from a brand you can trust

BES 6001 accreditation

Our materials have all been responsibly sourced with full traceability throughout the supply chain

Unique fitting - Terrain FUZE HDPE low level waste manifold

Due to the growing demand for space saving and low level connections, we have developed the low level waste manifold specifically for use with the Terrain Fabrication Service. Available in 110 mm and 160 mm , the low level waste manifold is the ideal solution for overcoming the technical difficulties of bringing in up to $6 \times 56 \mathrm{~mm}$ connections at low level into the drainage stack. With side entries it is ideally suited for installation at slab level and can be fabricated with a close coupled WC connection. Fitting can be fabricated with long spigots or ring seal connections for easy connection onto MuPVC or HDPE waste systems.

Terrain FUZE

By working closely to your schedule and applying the same standardised methods throughout every stage, you can rest assured that your bespoke system is undergoing the same rigorous process that has made our systems so sought after across some of the UK's most iconic buildings.

The four simple steps

From the moment you submit your enquiry, wheels are set in motion that results in a fully bespoke system being delivered to your site.

4

 PRODUCT DISPATCHED

After the product is completed it will be dispatched quickly and efficiently; meeting your build timelines.

1

ENQUIRY RECEIVED \& DRAFT PROPOSAL GENERATED

Your enquiry will be addressed swiftly and forwarded to the technical team for appraisal.

3

ORDER PLACED AND PRODUCT MANUFACTURED

Production will begin at our fabrication facility, where your bespoke design will be manufactured to our exacting standards.

2

FABRICATION DRAWINGS PRODUCED FOR SIGN OFF BY CLIENT

The technical team will assess your enquiry and draw up draft proposals and CAD
designs for approval by client.

Fabrication

Terrain FUZE installed throughout major central London residential project

Polypipe Terrain met challenging requirements at a mixed-use housing development in the heart of London's Docklands.

Working alongside main contractor Balfour Beatty Construction and M\&E contractor Briggs and Forrester MEP Ltd, Polypipe designed and delivered prefabricated drainage stacks utilising its popular Terrain FUZE for the Providence Tower and Bar Building apartment buildings, which stand at 42 and 12 storeys respectively.

Terrain FUZE incorporates a number of engineered fittings to aid installation and is ideally suited to off-site fabrication where repetition is prevalent, such as in high rise buildings.

Unique to this development, which encompasses high-end luxury apartments and affordable housing, was the use of 160 mm diameter low entry manifold piping,
a wide pipe suitable for the project.
This ability to prefabricate bespoke products off-site, in turn driving quick turn around times, and the reduced labour, made Polypipe a key project partner.

The light weight nature of Terrain FUZE brought many advantages over traditional materials, not least in its manoeuvrability on site, while the use of prefabrication meant that the system could be installed quickly and efficiently, providing significant time and resource savings.

Paul Campbell, Project Director of Briggs and Forrester MEP Ltd, said: "Whilst there were many benefits to using Terrain FUZE over alternative solutions, it was Polypipe Terrain's ability to custom engineer low entry manifold piping that really impressed us. Being engineered specific to the project, in Polypipe's on site fabrication facilities, meant the turnaround time was minimal, ensuring a smooth installation."

Damian Farrell, London \& South East Sales Director, of Polypipe Terrain, said: "Our experience on delivering on projects of this nature, combined with our extensive system knowledge, means that we can create engineered solutions that meet the needs of the development, such as the 160 mm diameter low entry manifold piping that was unique to this project."
The shell and core of the buildings are now complete and the fit out is due to complete in 2016.

CASE STUDY

Project

Providence Tower and
Bar Building

Client

Briggs and Forrester
MEP Ltd

Application

Fabricated drainage system

Products

Terrain FUZE

Terrain FUZE

Live stack replacement service

By utilising the inherent benefits of the Terrain Fabrication Service we can help in particularly difficult situations; where old, often decaying cast iron soil stacks in local authority housing have deteriorated to the point that they may pose a public health issue.

When you have issues with drainage systems in a typical high rise building which is occupied it can be of great expense to temporarily rehouse the residents whilst the issue is resolved. In the most severe of cases, the entire soil stack may need to be replaced. Below are some photos of some actual cast iron soil stacks removed from a high rise Local Authority building where ongoing system breakdown has caused sanitation issues, such as leaking and blocked pipes.

No one wants to have to move out of the comfort of their own home, and it's often not easy to find suitable replacement housing when refurbishment work is required. Thanks to our fabricated soil stack offering, old soil stacks can now be replaced live with very limited disturbance
to residents. Live Stack Replacement sees contractors replacing old soil stacks with complete new Terrain FUZE HDPE or Terrain Acoustic soil stacks quickly, often floor-by-floor, so that residents can remain in their homes and housing providers do not need to re-house them elsewhere.

Fabrication Case Studies

Residential 'live stack replacement' made possible with Terrain fabricated solution

Large scale 'live' drainage replacement works were able to take place thanks to a time saving solution from Polypipe.

Terrain FUZE

Having worked closely with M\&E Contractor IDS and Birmingham City Council on a refurbishment programme since 2009, Polypipe Terrain's fabrications team devised a solution which would enable residents to stay in their homes while essential works were undertaken to replace the original cast iron soil and waste pipes across three separate high rise towers.

Polypipe Terrain manufactured 200 metres of 110 mm Terrain dB12 and 75 mm Terrain FUZE fabricated soil and waste stacks to exact specifications and delivered them to site in Kings Norton, where sub-contractor Lovell was able to complete installations across 96 properties 40% faster than the average for such works.

Polypipe Terrain's ability to fabricate its drainage products off-site in its UK manufacturing facilities, along with the unique features of the soil and waste solution provided, ensured that the number of joints and cuts were kept to a minimum.

Using fabricated drainage stacks meant that average installation times per property were reduced from five hours to just three.

A vital element of this project was to complete work with as little intrusion as possible. As a result of the type of works programme put into place it was possible to successfully deliver live stack replacements across 96 individual properties ahead of the timescales set out, with minimum disruption to residents.

The challenges presented on this project, not only with residents in place but also a lack of space for installation teams to work, were easily overcome thanks to Polypipe Terrain's ability to provide a high quality 'one fitting solution'.

CASE STUDY

Project

Loweswater House,
Waltham House and
Sandhurst House
Kings Norton,
Birmingham

Client

IDS

Application

Drainage stacks

Products

Terrain Acoustic dB12
Terrain FUZE

Terrain FUZE

Good Site Practice

- Do not throw or drop pipes, or drag them along hard surfaces.
- In case of mechanical handling, use protective slings and padded supports. Metal chains and hooks should not make contact with the pipe.

On-site storage

- Stack pipe lengths
- either on a flat base
- or on level ground
- or on $75 \mathrm{~mm} \times 75 \mathrm{~mm}$ timber at 1 meter centres (Fig. 1)
- Provide side support with 75 mm wide battens at 1 m centres (Fig. 1).
- Maximum stack (normal conditions): seven layers high.
- Ideally, stacks should contain one diameter pipe size only. Where this is not possible, stack largest diameter pipes at base of stack. Small pipes may be nested inside larger pipes.
- If stored in the open for long periods or exposed to strong sunlight, cover the stack with opaque sheeting.
- Store fittings under cover. Do not remove from cartons or packaging until required.

Storage in hot climates

- Ultra-violet light can affect pipes and fittings: pipe colour may change and rubber seals may be degraded.
- Accordingly:
- store all materials in well-ventilated, shady conditions - do NOT expose to direct sunlight
- keep fittings in original packaging until required for use
- Maximum stack (hot conditions): six layers high.

Site safety

- The relevant regulations detailed in the Health \& Safety at Work Act 1974, and Construction (Design \& Management Regulations 1995, must be adhered to on site.
- MSDS data sheets are available on request.

[^5]
Jointing Methods

Terrain FUZE offers workable and effective solutions to a wide range of project constraints through the availability of a number of jointing methods. Each connection is categorised according to its varying properties, with the different classifications assembled as follows:
a) Removable

Connections which can be disconnected after assembly.
b) Non-removable

Connections which cannot be disconnected after assembly.
c) Tension-resistant

Connections which cannot be disconnected by tensional forces.
d) Non-tension-resistant

Connections which can be disconnected by tensional forces.

Butt weld

Screw-threaded coupling

Electrofusion coupling

Expansion socket

Ring-seal socket

Flange joint

Terrain FUZE

Electrofusion Welding

1. Cut the pipe or fitting using the appropriate pipe cutter or saw. Make sure the end of the pipe or fitting is square and clean.

2. Scrape the oxidation layer from the spigot of the pipe or fitting to at least the insertion depth of the coupling using the appropriate pipe scraper. Ensure that the spigot ends and the couplers are kept clean and free from dirt, water and grease.

3. Insert into the centre stop of the coupling. Mark the spigots using a wax pencil.

4. Unpack your Polypipe Terrain FUZE electrofusion welding machine and ensure you have the correct leads attached.

5. Ensuring that the pipe work is supported correctly, attach the leads to the coupling and push the start/stop button. This will begin the electrofusion welding process.

6. There will be two visual indications showing that the weld has been completed successfully. The first will be on the screen showing that the welding is 100% complete. The second will be a visual indication on the coupling, as shown below.

Jointing Methods

Electrofusion Welding

The before and after

Before

After

Examples of electrofusion welded joints which have been made correctly and incorrectly:
Example of a good electrofusion weld joint

You can see that the pipe surface has been scraped and the fitting has been welded once.
The pipe and coupling surfaces have welded together to make a good joint.

Examples of incorrectly prepared electrofusion weld joints

[^6]
Terrain FUZE

In the above joint the pipe has not been cut square and you can also see that the pipe surface has not been scraped. This joint is likely to leak.

Butt Welding

1. Prepare pipe ends and insert into butt welding machine

2. Press the pipe/fitting ends lightly against the hot plate melting the pipe ends until a small bead is visible around both ends.

3. Use the planing tool to ensure that the pipe ends are square and free of any burr's

4. Remove hot plate and press the ends together with the necessary pressure (as advised by welding machine) and lock the clamps in place until the weld begins to cool.

Jointing Methods

Butt Welding

Examples of butt welded joints which have been made correctly and incorrectly. These can be easily identified with a visual inspection:

Example of a good butt weld joint

Two equal size beads continuing all the way around the pipe on both sides of the joint

Examples of incorrect butt weld joints

The pipes have been misaligned during the welding process

Too much pressure has been exerted during the welding process when the pipe ends are on the hot plate. No pressure should be applied at this stage

The two pipe ends have not heated evenly on the hotplate.
Possibly one of the pipe ends was not cut/planed square

Terrain FUZE

Ring Seal Joints

Available in sizes 40 - 315mm

Connection Properties:
a) Removable
d) Non-tension-resistant

Use

Ring-seal sockets facilitate the assembly of pre-fabricated sections.

The pipe should be chamfered to approximately 15° and lubricated with suitable Polypipe product. Do not use oil or grease which can damage the rubber seal.

Expansion Joints

Available in sizes $40-315 \mathrm{~mm}$
Connection Properties:
a) Removable
d) Non-tension-resistant

Use

Expansion sockets can be used in underground pipe systems as normal push-fit fittings but must be provided on vertical stacks running from floor to floor and for rainwater pipes both inside and outside the building.

Installation

Expansion sockets are suitable for use in both vertical and horizontal applications with the depth of the sleeve enabling the assembly of stacks and collector pipelines. The design of the seal allows for pipe movement during expansion and contraction, ensuring that the connection remains water tight even under substantial hydraulic load.

To ensure easy assembly of the sleeve, the following conditions must be observed:

Assembly

The ring-seal socket is suitable for use on both horizontal and vertical applications with the small dimensions providing a space-saving advantage. Assembly instructions are replicated for both ring-seal sockets and screwthreaded joints, with the insertion depth corresponding for the same diameters. Ring seal sockets are also provided with a cap to prevent dirt entering the pipe on-site. The pipe must be fully inserted into the socket as it is not intended to act as an expansion socket.

A flush fit is obtained by chamfering the pipe end to approximately 15° and lubricating it with silicone oil. To avoid damage to the rubber seal, do not use oil or grease.

Protection Cap.

- Chamfer the inserted pipe end to approximately 15°.
- Lubricate the pipe end with a suitable Terrain product.

Note - do not use oil or grease which can compromise the rubber seal.

- Observe the indications on the outer surface of the expansion socket for insertion depth.

Horizontal assembly (e.g. at an ambient temperature of $20^{\circ} \mathrm{C}$).

Jointing Methods

Compression Joints

Available in sizes $40 \mathbf{- 1 1 0 m m}$

Connection Properties:
a) Removable
d) Non-tension-resistant

Use

Screw-threaded joints are used for the assembly of pre-fabricated parts which need to be dismantled easily. See ring seal for assembly instructions.

Screw-threadon inint

Flanged Joints

Available in sizes 50 - 315mm
Connection Properties
a) Removable
c) Tension-resistant

Use

The flanges are made of a special, painted aluminium alloy and have standard dimensions (PN 10 and 16). These are most commonly used to create a removable connection in industrial plants.

By using a blank flange, it is possible to create an inspection access opening for large diameter pipes (200, 250 and 315 mm).

Terrain FUZE

Key Features

Specific products for adapting in direction of flow

Direction of flow

	OD						
Material	Size						
	$11_{4}^{\prime \prime}$	$11^{\prime \prime}$	$2^{\prime \prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$	$6^{\prime \prime}$	
PVC-u	36 mm	43 mm	56 mm	82 mm	110 mm	160 mm	
PP	35 mm	41 mm	54 mm				
HDPE	40 mm	50 mm	56 mm	90 mm	110 mm	160 mm	
dB12	40 mm		50 mm		110 mm	160 mm	
Iron	42 mm	47.8 mm	60 mm				
Copper	35 mm	42 mm	54 mm		108 mm		
Clay					100 mm		
Vulcathene		48 mm	60 mm	89 mm	114 mm		
Cast iron					112 mm		
Ridgidrain					118 mm	176 mm	
Chrome	32 mm						

	ID						
Material	Size						
	$11_{4}^{\prime \prime}$	$11 / 2^{\prime \prime}$	$2^{\prime \prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$	$6^{\prime \prime}$	
PVC-u	32 mm	39 mm	52 mm	76 mm	104 mm	154 mm	
PP	31 mm	37 mm	50 mm				
HDPE	34 mm	44 mm	50 mm	83 mm	101 mm	148 mm	
dB12	36 mm		46 mm		104 mm	153 mm	
Iron	32 mm	38 mm	50 mm				
Copper	32 mm	39 mm	51 mm		104 mm		
Clay					76 mm		
Vulcathene		38 mm	51 mm	76 mm	102 mm		
Cast iron					98 mm		
Ridgidrain					100 mm	150 mm	
Chrome	28 mm						

Note: Pipes to be chamfered and lubricated when being used with ring seal, use 9136250 L Silicone grease.
References: 1. Terrain Soil and Waste Product Installation guide. 2. BSEN12056 Gravity drainage systems inside buildings. Sanitary pipework, layout and calculation. For more information please call our Technical Team on 01622795200

Jointing Methods

Vulcathene - FUZE (HDPE)

Chrome - FUZE (HDPE)

Terrain FUZE

PVC-u - FUZE (HDPE)

COMPATIBILITY TABLE

Part number	Terrain FUZE size	COMPATIBILITY TABLE			
		Compatibility			
		PVC (200 series)	PP (300 series)	ABS (600 series)	Copper
927.4036B	40mm	32 mm	$32 \mathrm{~mm}$	32 mm	35 mm
927.5036B	50mm	$32 \mathrm{~mm}$	$32 \mathrm{~mm}$	32mm	32 mm
927.5043B	50 mm	32 mm	32mm	$32 \mathrm{~mm}$	32 mm
927.5636B	56 mm	$32 \mathrm{~mm}$	$32 \mathrm{~mm}$	$32 \mathrm{~mm}$	32 mm
927.5643B	56 mm	$32 \text { mm }$	$32 \mathrm{~mm}$	$32 \mathrm{~mm}$	32 mm

Adapting to other materials

HDPE Thermal Expansion

Terrain FUZE HDPE pipe work systems expand and contract with changes in temperature, both ambient temperature and from the temperature of the waste discharge through the pipework. This guide describes the principles of thermal movement allowance and provides advice covering assembly and jointing techniques.

The advice and guidance is based on typical situations only. For further information contact the Terrain Technical Services Department.

Terrain FUZE HDPE offers substantial durability against the flow of hot water. A waste pipe with no mechanical load will tolerate temperatures of up to $80^{\circ} \mathrm{C}$ and up to $95^{\circ} \mathrm{C}$ is permissible for a maximum of two minutes.

Thermal movement MUST always be accounted for in both locked and expansion systems (explained in the next set of pages).

Calculating thermal movement

Terrain FUZE HDPE has a coefficient of expansion of 0.2 $\left(\mathrm{mm} / \mathrm{m} /{ }^{\circ} \mathrm{C}\right)$, the design and installation of above ground drainage systems must be able to accommodate for this. Calculate the thermal movement on straight lengths between anchors using:

$$
\Delta \mathrm{L}=\underline{\alpha} \mathrm{L} \Delta \mathrm{~T}
$$

Where

$\Delta \mathbf{L}=$ expansion (mm) OR contraction (-mm)
$\alpha=$ co-efficient of linear expansion $\left(\mathrm{mm} / \mathrm{m} /{ }^{\circ} \mathrm{C}\right)$ Terrain FUZE HDPE, 0.2
$\mathbf{L}=$ Total length of the pipe between anchor points (m)
$\Delta \mathbf{T}=$ Temperature difference $\left({ }^{\circ} \mathrm{C}\right)$

NB. For waste discharges $\Delta \mathrm{T}$ should always be calculated from $0^{\circ} \mathrm{C}$, so if the temperature of the water in the pipe is to be $60^{\circ} \mathrm{C}$, then $\Delta \mathrm{T}$ is $60^{\circ} \mathrm{C}$.

Example 1 - Typical vertical stack

Example 1 - Typical vertical stack A 10 storey foul drainage stack will collect and convey domestic waste (assumed temperature $60^{\circ} \mathrm{C}$) and connect directly to drain. Each storey is 3 m high.
$\Delta \mathrm{L}=\underline{\alpha \mathrm{L} \Delta \mathrm{T}}$
$\Delta \mathbf{L}=0.2 \times 3.0 \times 60=36 \mathrm{~mm}$ thermal movement per floor.

Example 2 - Typical suspended pipe run

A 20 metre, high-level lateral run has been designed in an open car park area. The maximum length between anchor points should be 5 m . The assumed temperature of the waste fluid is $50^{\circ} \mathrm{C}$.
$\Delta \mathrm{L}=\underline{\alpha \mathrm{L} \Delta \mathrm{T}}$
$\Delta \mathbf{L}=\underline{0.2 \times 5.0 \times 50}=50 \mathrm{~mm}$ thermal movement between anchor points.

Terrain FUZE

Vertical Expansion System

Expansion system anchored below slab

Rail system rules apply as per page 44.

Expansion system anchored above slab

Rail system rules apply as per page 44.

Examples of expansion system anchored to a structural wall

Installation details

Horizontal Expansion System

Support and expansion socket distances

Unless there is an alternative provision for thermal movement, pipework should be fitted with expansion sockets in the following locations:

- At spacing's no greater than $5 m$ for pipework OD $\varnothing 75 \mathrm{~mm}$ and above
- At spacing's no greater than $2 m$ for pipework OD 63 mm and below
- Where the maximum distance between fixed points exceeds $2 m$
- At changes of direction or branch runs greater than 1 m in length
- Any point where pipework passes through a floor or wall and is made good or fire-stopped must be treated as an anchor point when determining positions of

Pipe size diameter (OD mm)	Horizontal Expansion System Mexween expansion sockets (m)	Intermediate support at any change of direction and at below maximum centres (mm)
40	2.0	400
50	2.0	500
56	2.0	560
63	2.0	630
75	5.0	750
90	5.0	900
110	5.0	1100
125	5.0	1250
160	5.0	1600
200	5.0	2000
250	5.0	2500
315	5.0	3000

* See table on page 49 for pipe weights (empty and full). expansion sockets
- Low Level WC Manifolds incorporate ring seal adaptors at each branch connection to compensate for thermal movement and also allow the branch to be 'turned' to the correct angle to allow connection to the WC

Terrain FUZE

Bracketing an Expansion System

- Terrain FUZE HDPE can be anchored from the slab or off a rail system
- Cross bracing must be used for drop rods longer than figures shown below
- Rails are not supplied by Polypipe Terrain

Installation details

Example of an Expansion System

Expansion sockets may be omitted if alternative provision is created in one of the following ways.

- Above the highest branch connection to a foul and/or waste stack is free to move through a weatherproof sleeve

- At the base of an external drainage stack that is connected to a drainage connection that allows movement through an EPDM seal

Suspended Pipe in Basement detail:

Guide Bracket or Intermediate Support

Terrain FUZE

Vertical Locked System

Locked system anchored below slab

Rail system rules apply as per page 46 .

Locked system anchored above slab

Rail system rules apply as per page 46.

Locked system anchored to a structural wall

Installation details

Horizontal Locked System

Support and anchor brackets

Unless there is an alternative provision for thermal movement, pipework should be fitted with anchor brackets in the following locations:

- At spacing's no greater than $5 m$ for pipework OD $\varnothing 75 \mathrm{~mm}$ and above
- At spacing's no greater than $2 m$ for pipework OD 63 mm and below
- Where the maximum distance between fixed points exceeds $2 m$
- At changes of direction or branch runs greater than 1 m in length
- Any point where pipework passes through a floor or wall and is made good or fire-stopped must be treated as a fixed point when determining positions of anchor

Pipe size diameter (OD mm)	Horizontal Expansion System Metween anchor brackets on straight pipe run (m)	Maximum distance between intermediate supports (mm)
40	2.0	400
50	2.0	500
56	2.0	560
63	2.0	630
75	5.0	750
90	5.0	900
110	5.0	1100
125	5.0	1250
160	5.0	1600
200	5.0	2000
250	5.0	2500
315	5.0	3000

* See table on page 49 for pipe weights (empty and full).

Pipe will still expand and contract into itself in a locked system. Even in a locked system, thermal movement needs to be accounted for.

Example - Ø160mm Pipe

Key

Anchor bracket

Intermediate support

Terrain FUZE

Bracketing a Locked System

Types of Anchor Brackets on locked rail system

$\varnothing 40-\varnothing 160 \mathrm{M} 10$
Close - 100mm
ø 200-ø 315 M16
Close - 100mm

Ø 40- $\varnothing 160 \mathrm{M} 10$
Close - 100mm
ø 200-ø315 M16
Close -100 mm

$\varnothing 40-\varnothing 160$ M10
Close - 100mm
ø 200-ø315 M16
Close - 100mm

Use anchor shell
(9145.XXB) with HDPE Bracket ø 40- $\varnothing 160$
*Support bracket made by others

Use anchor shell (9145.XXB) with HDPE Bracket $\varnothing 40-\varnothing 160$
*Support bracket made by others

$\varnothing 40-\varnothing 160 \mathrm{M} 10$ Close - 100mm ø 200-ø315 M16 Close -100 mm

Installation details

Summary of Expansion \& Locked Systems

Expansion systems

Rulings for anchor brackets in an expansion system:

- Pipe diameters up to $160 \mathrm{~mm}-\mathrm{M} 10$ drop rods up to 100 mm below slab or rail
- Pipe diameters up to 160 mm - M10 drop rods with M10 cross brace up to 500 mm below slab or rail
- Pipe diameters up to 160 mm where the vertical drop is greater than listed above use either the rail system or use Unistrut as a drop rod with a cross brace and an M10 connection to the bracket
- Pipe diameters 200-315mm - M16 drop rods up to 100 mm below slab or rail
- Pipe diameters $200-315 \mathrm{~mm}$ where the vertical drop is greater than listed above use either the rail system or use Unistrut as a drop rod with a cross brace and an M16 connection to the bracket

Locked systems

Rulings for anchor brackets in a locked system:

- In no circumstances should drop rods alone be used to support a locked anchor point
- Close coupled rail system up to 160 mm diameter - M10 connection between bracket and rail
- Close coupled rail system 200-315mm diameter - M16 connection between bracket and rail
- Pipe diameters 200-315mm - M16 drop rods up to 100 mm below slab or rail
- If the rail is not being used a suitable drop support needs to be created using Unistrut and a cross brace with the same size connections to brackets as listed above for a rail system

FUZE HDPE pipe diameter (OD mm)	Horizontal Expansion System Pipe weight full of water $(\mathrm{Kg} / \mathrm{m})$	Pipe weight empty (Kg/m)
40	1.278	0.370
50	1.986	0.460
56	2.493	0.530
63	3.147	0.595
75	4.479	0.740
90	6.391	0.980
110	9.525	1.450
125	12.283	1.860
160	20.190	3.080
200	31.741	4.100
250	49.252	6.100
315	78.045	9.510

Terrain FUZE

WC connections

Float laid to a Fall of 1° (17mm drop/1metre run)
Note: If a secondary ventilation system is being installed then expansion must be provided to both the soil and waste stack and

WC position (height \mathbf{H}^{*} from FFL)							
H^{*}	1	2	3	4	6	6	
mm	170	156	142	128	114	100	

Risers and branches

It is recommended that an expansion socket is incorporated at each floor level when designing and installing FUZE HDPE stacks in multi-storey buildings. Where a branch is taken off a main run, the thermal movement of the main run is going to affect the branch.

- Establish the distance between the branch and the nearest anchor
- Calculate the movement at the point where the branch joins the run
- Establish the hole size through the wall and ensure that there is enough space for the branch to naturally flex, taking into account that the movement of the branch will be limited where it passes through a wall
- If there is not enough room for the required offset, think about adding expansion sockets and anchor points to the main run to reduce the amount of movement experienced by the branch

Installation details

Deflection Leg

The flexibility of Terrain FUZE permits expansion or contraction to be compensated for by means of directional change within a pipe system (deflection leg) as shown below. To allow the pipe to deflect at a change in direction it is essential to calculate the distance to the first bracket (a) so that the pipe is free to expand and contract.

Step 1: Calculate the change in length
$\Delta \mathbf{L}=\boldsymbol{\alpha} \times \mathbf{L} \times \Delta \mathbf{T}$

Where:

$\Delta \mathrm{L}=$ Expansion (mm) or contraction (-mm)
$\alpha=$ Co-efficient of linear expansion $\left(\mathrm{mm} / \mathrm{m} /{ }^{\circ} \mathrm{C}\right)$. For Terrain FUZE $\alpha=0.2$
$\mathrm{L}=$ Total length of the pipe between anchor points (m)
$\Delta \mathrm{T}=$ Temperature difference $\left({ }^{\circ} \mathrm{C}\right)$
Note: For waste discharges $\Delta \mathrm{T}$ should always be calculated from $0^{\circ} \mathrm{C}$ so if the max. water temperature is $60^{\circ} \mathrm{C}, \Delta \mathrm{T}$ is $60^{\circ} \mathrm{C}$

Step 2: Determine the length of the deflection leg
$a=10 \times \sqrt{ }(\Delta L \times \varnothing)$

Where:
a = Deflection leg length (distance to first bracket)
$\Delta \mathrm{L}=$ Expansion (mm) or contraction (-mm) from Step 1 above
\varnothing = Pipe outside diameter (mm)

Terrain FUZE

Non-pressure Underground Installation

HDPE pipes marked (BD) are also suitable for underground applications.

Strict attention must be given to the trench where the pipe is to be laid. This must be completely flat and should be void of any sharp objects or stones which could cause localised deformation of the pipeline. A minimum bedding of 10 cm of sand should be used to provide continual support along the whole length of the pipe and minimise the risk of point-loading within the trench. Following this, the first $15-20 \mathrm{~cm}$ of cover should be of sand again and this must be compressed to avoid pipe movement. Compacting of the cover material should take place immediately after the pipe has been covered to restrict the initial stages of movement. The depth of the trench is dependant upon whether the application is trafficked or non-trafficked and the possibility of freezing temperatures. Official guidelines, standards and regulations should be observed to calculate this requirement. (See illustrations)

A minimum depth of 80 cm must cover the pipe. To evenly distribute ground pressure on trafficked applications it is recommended to cover the layer of sand with a light concrete casting.

Two or more pipes laid in the same trench should not come into contact. A recommended distance of $10-15 \mathrm{~cm}$ should remain between each pipeline to facilitate future maintenance. As with a standard pipe installation, this void should be filled with sand and compacted.

Rigid installations, where the pipeline is covered with concrete, do not undergo the same stresses as normal laying conditions and therefore the pipe is at no risk of deformation.

In underground installations, the ambient temperature is fairly stable and the fluid temperatures from the varying inlets have mixed and stabilised within the above ground pipe system. Expansion sockets are not required every six metres.

Installation details

Special Consideration for Buried Drain Application

The Terrain FUZE HDPE system is suitable for buried drain applications under the envelope of the building at reasonable shallow depths and normal conditions.

When any of the following conditions exist please contact Polypipe Terrain for confirmation on its suitability:

- Pipes at depths greater than 4 metres below ground level
- Pipes subjected to external water pressures exceeding 2 metres head (high water table)
- Contaminated ground conditions
- Pipes subjected to internal negative pressures
- If during the construction stage high point loads will be experienced due to heavy plant etc.
- If other manufacturers components are to be incorporated into the system
- Non domestic type discharges are expected, for example:
- High volume discharges that could subject the pipe to more than 1.5 bar pressure
- Combined high temperature and high volume discharges
- Chemical waste
- Radioactive waste

When leaving the footprint of the building we would recommend adapting onto a system designed for this purpose. Ridgidrain, for surface water drainage, or Polysewer, for foul sewers from Polypipe Civils are suitable systems for these applications.

Ridgidrain

- Surface water applications
- $100-900 \mathrm{~mm}$ diameter HDPE pipes and fittings
- BBA approved

Polysewer

- Foul and combined applications
- $150-300 \mathrm{~mm}$ diameter PVCu pipes and fittings
- BSi Kitemarked and BBA approved

Terrain FUZE

The Terrain Firetrap Sleeve is a cost-effective product for the fire stopping of pipe penetrations whilst maintaining similar thermal and acoustic properties as standard mineral fibre insulation. Terrain Firetrap Sleeve was developed with ease of installation in mind. The sleeve can be quickly and simply fitted onto the pipe and slid into the penetration ensuring that there are no air gaps around the sleeves by filling with mortar or mastic. In a fire situation, the sleeve expands to fill the available space (15 mm max) between the pipe and the penetration and will crush and close off plastic drainage pipes. The pipe forms a solid char preventing the passage of fire and smoke to the adjacent compartment.

Applications

- For Terrain PVC, Terrain FUZE and Terrain Acoustic dB12 above ground drainage through:
- Concrete, masonry or plasterboard partitions
- Concrete floor constructions

Benefits

- Up to 4 Hour Fire Rating to BS 476 Part 20, BS EN 1366-3
- Protects pipe above and below the slab
- Cost effective
- One sleeve can replace two collars
- Easy installation
- Don't have to drill slab
- No need for mechanical fixings
- No mastic is required, providing close fit
- Easily cut to size to minimise wastage
- Simple to install without special tools or skills
- Will accept hole irregularities of up to 15 mm
- Can be retro-fitted
- Offers excellent acoustic insulation
- Maintains the thermal insulation of the pipe through the slab or wall penetration
- Maintains vapour seal of existing insulation
- Allows for thermal movement of pipe

Part no	Pipe diameter suitable for (mm)	Sleeve hole diameter (mm)	Sleeve outside diameter (mm)	Length (mm)
1925.42	40	42	$92-104$	300
1925.54	50	54	$104-116$	300
1925.60	56	60	$110-122$	300
1925.67	63	67	$117-129$	300
1925.76	75	76	$126-138$	300
1925.102	90	114	$152-164$	300
1925.114	110	127	$164-176$	300
1925.127	125	169	$219-231$	300
1925.169	160			300

Firetrap Sleeves

Fire protection for vertical Terrain drainage pipework in a NON fire rated duct

Note: Metal brackets
to be installed to support pipework accordingly

Brackets not shown

Terrain FUZE

Terrain Firetrap Collars have been specifically designed to re-instate the fire resistance of a wall or floor which has been penetrated by services such as Terrain PVC, Terrain FUZE or Terrain Acoustic dB12.

Manufactured in steel, each fire collar contains an internal lining of intumescent graphite impregnated organic polymer. Anchoring hooks are also supplied. The collars will seal pipes from 50 mm to 315 mm diameter and can be face fixed or set-in to a wall or ceiling structure. They are suitable for use on concrete, masonry and plasterboard partitions.

They have a up to 2 hour fire rating and feature mounting tabs for quick and easy installation.

Applications

For Terrain PVC, Terrain FUZE and Terrain Acoustic dB12 above ground drainage through:

- Concrete, masonry or plasterboard partitions
- Concrete floor construction
- Fire-proof concrete
- Brickwork walls

Features

- Up to 2 Hour fire rating
- Powder coated steel sleeve
- Can be surface mounted or built in
- Mounting tabs for quick and easy installation
- Seals against smoke, toxic gases, flames and heat
- Can be installed in a recessed area to minimize overall dimensions
- Maintains vapour seal of existing insulation
- Allows for thermal movement of pipe

Product code	\varnothing	Fire rating
1625.40 R	40 mm	2 Hour
1625.55 R	55 mm	2 Hour
1625.63 R	63 mm	2 Hour
1625.75 R	75 mm	2 Hour
1625.82 R	82 mm	2 Hour
1625.90 R	90 mm	2 Hour
1625.110 R	110 mm	2 Hour
$1625.125 R$	125 mm	2 Hour
1625.160 R	160 mm	2 Hour
1625.200 R	200 mm	2 Hour
1625.250 R	250 mm	2 Hour
1625.315 R	315 mm	2 Hour

Firetrap Collars

Fire protection for vertical Terrain drainage pipework in a NON fire rated duct

Note: Metal brackets
to be installed to
support pipework accordingly

Brackets not shown

Note: Insulation may be required
to meet standard building
requirements and regulations

Terrain insulated
Firetrap Fire Sleeve 4 hour rating top and bottom of slab

Maximum allowable gap around fire sleeve to be 15 mm all round. Above this must be filled with Firestop compound or concrete

Fire rated wall or floor

Terrain FUZE

Terrain FUZE should be tested in accordance with guidelines stated within BS EN 12056-2: 2000 (Annex NG.3.1) which lays out the following:

NG. 3 Testing

NG.3.1 Air test

NOTE Normally this test is carried out to confirm that all pipes and fittings are airtight. It should be completed in one operation but for large multi-storey systems testing in sections may be necessary.

NG.3.1.1 Preparation

The water seals of sanitary appliances should be fully charged and test plugs or bags inserted into the open ends of the pipework to be tested. To ensure that there is a satisfactory air seal at the base of the stack, or at the lowest plug or bag in the stack if only a section of the pipework is to be tested, a small quantity of water sufficient to cover the plug or bag can be allowed to enter the system. One of the remaining test plugs should be fitted with a tee piece, with a cock on each branch, and one branch being connected by means of a flexible tube to a manometer. Alternatively, a flexible tube from a tee piece fitted with cocks on its other two branches can be passed through the water seal of a sanitary appliance. Any water trapped in this tube should be removed and then a manometer can be connected to one of the branches.

NG.3.1.2 Application

Air is pumped into the system through the other branch of the tee piece until a pressure equal to 38 mm water gauge is obtained. The air inlet cock is then closed and pressure in the system should remain constant for a period of not less than 3 min.

NG.3.1.3 Leak location

NOTE Defects revealed by an air test may be located by the methods given in NG.3.1.3.1, NG.3.1.3.2 and NG.3.1.3.3.

NG.3.1.3.1 Smoke

A smoke producing machine may be used which will introduce smoke under any pressure into the defective pipework. Leakage may be observed as the smoke escapes. Smoke cartridges containing special chemicals should be used with caution, taking care that the ignited cartridge is not in direct contact with the pipework and that the products of combustion do not have a harmful effect upon the materials used for the discharge pipe system. Smoke testing of plastics pipework should be avoided due to naphtha having a detrimental effect, particularly on ABS, PVC-U and MUPVC. Rubber jointing components can also be adversely affected.

NG.3.1.3.2 Soap solution

With the pipework subject to an internal pressure using the smoke machine method as described in NG.3.1.3.1, a soap solution can be applied to the pipes and joints. Leakage can be detected by the formation of bubbles.

NG.3.1.3.3 Water test

There is no justification for a water test to be applied to the whole of the plumbing system. The part of the system mainly at risk is that below the lowest sanitary appliance, and this may be tested by inserting a test plug in the lower end of the pipe and filling the pipe with water up to the flood level of the lowest sanitary appliance, provided that the static head does not exceed 6 m .
*For accurate readings, please ensure equipment is regularly checked.

Permission to reproduce extracts from BS EN 12056-2:2000 is granted by BSI. British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hardcopies only: Tel: +44 (0)20 8996 9001 , Email: cservices@bsigroup.com.

System testing

Air pressure test to comply with BS EN 12056-2

For testing a stack with connections

Screwed Test Plug

- Blank or open
- For use in pipe ends
- Manufactured and supplied by others

Air Bag

- Blank
- For use in access pipe/ expansion socket/pipe ends
- Manufactured and supplied by others

Traps must be filled with water to ensure there is positive pressure within the system to seal the waste inlet.

KEY	
NO.	PART
1	Pipework to test
2	Bellow
3	Hose
4	U-Gauge (should read 38mm)
5	Screwed Test Plug
6	Air Bag
7	Trap (must be filled with water)
8	Screwed End Cap (for access door)

Note: *For accurate readings, please ensure equipment is regularly checked.

Terrain FUZE pipes

HDPE fittings

\varnothing	S	L_{1}	$\mathrm{~L}_{2}$	R	K	Kg	Code
HDPE 90° BEND							
40	3	150	30	30	120	0.070	907.40 .90 B
50	3	180	40	40	140	0.095	907.50 .90 B
56	3	210	40	40	170	0.120	907.56 .90 B
63	3	210	50	50	160	0.145	907.63 .90 B
75	3	210	70	70	140	0.180	907.75 .90 B
90	3.5	240	90	90	150	0.280	907.90 .90 B
110	4.3	270	100	100	170	0.490	907.110 .90 B
125	4.9	200	110	110	90	0.490	907.125 .90 B
160	6.2	140	140	140	-	0.690	907.160 .90 B

Terrain FUZE Fittings

HDPE ftutingS							
\varnothing	S	L_{1}	$\mathrm{~L}_{2}$	R	K	Kg	Code
HDPE 90° WIDE RADIUS BEND							
200^{*}	6.2	300	300	240	75	1.745	907.200 .90 B
250^{*}	7.8	335	335	320	30	3.4	907.250 .90 B
315^{*}	9.8	370	370	350	30	5.89	907.315 .90 B

* Segmented

\varnothing	S	L	K	Kg	Code
HDPE 91.5	$\left(88.5^{\circ}\right)$ BEND				
40	3	50	20	0.035	901.40 .92 B
50	3	60	20	0.05	901.50 .92 B
56	3	65	20	0.06	901.56 .92 B
63	3	70	20	0.075	901.63 .92 B
75	3	75	20	0.095	901.75 .92 B
90	3.5	80	20	0.135	901.90 .92 B
110	4.3	103	25	0.23	901.110 .92 B
125	4.9	123	35	0.33	901.125 .92 B
160	6.2		0.7	901.160 .92 B	

\varnothing	S	L	K	Kg	Code
HDPE 112.5	$\left(67.5^{\circ}\right)$ BEND				
110^{*}	4.3	125	50	0.34	901.110 .112 B
160^{*}	6.2	161	70	0.91	901.160 .112 B
200^{*}	6.2	183	80	1.30	901.200 .112 B
250^{*}	7.8	196	80	2.19	901.250 .112 B
315^{*}	9.8	295	139	5.2	901.315 .112 B

* Segmented

$\varnothing / \varnothing_{1}$	S	$\mathrm{~L}_{1}$	$\mathrm{~L}_{2}$	L_{3}	Kg	Code
HDPE 45°	BEND WITH SOCKET BRANCH					
$90 / 40$	3.5	55	45	100	0.15	901.9040 .135 B
$110 / 40$	4.3	60	55	110	0.21	901.11040 .135 B
$110 / 50$	4.3	60	55	110	0.21	901.11050 .135 B

\varnothing	S	L_{1}	K	Kg	Code
HDPE 45° BEND					
40	3	45	20	0.03	901.40 .135 B
50	3	45	20	0.04	901.50 .135 B
56	3	45	20	0.045	901.56 .135 B
63	3	50	20	0.06	901.63 .135 B
75	3	50	20	0.07	901.75 .135 B
90	3.5	65	20	0.11	901.90 .135 B
110	4.3	65	25	0.17	901.110 .135 B
125	6.2	69	20	0.245	901.125 .135 B
160				901.160 .135 B	

Terrain FUZE Fittings

HDPE fittings

\varnothing	S	L	R	K	Kg	Code
HDPE 45° WIDE RADIUS BEND						
200^{*}	6.2	180	420	75	1.33	901.200 .135 B
250^{*}	7.8	185	430	30	2.15	901.250 .135 B
315^{*}	9.8	185	440	30	3.4	901.315 .135 B

* Segmented

\varnothing	5	L	K	Kg	Code
HDPE $150^{\circ}\left(30^{\circ}\right)$ BEND					
110^{*}	4.3	50	35	0.15	901.110.150B
160^{*}	6.2	64	42	0.38	901.160.150B
200*	6.2	113	86	0.86	901.200.150B
250^{*}	7.8	117	83	1.39	901.250.150B
315*	9.8	128	85	2.41	901.315.150B

* Segmented

\varnothing	S	L	K	Kg	Code
HDPE $165^{\circ}\left(15^{\circ}\right) \mathrm{BEND}$					
110^{*}	4.3	43	35	0.13	901.110.165B
160^{*}	6.2	50	39	0.30	901.160.165B
200*	6.2	92	79	0.70	901.200.165B
250^{*}	7.8	99	82	1.18	901.250.165B
315*	9.8	104	84	1.97	901.315.165B

* Segmented

$\varnothing_{1} 1 \varnothing_{2}$	S	$\mathrm{~L}_{1}$	$\mathrm{~L}_{2}$	R	Kg	Code
HDPE $9 \mathbf{9 0}^{\circ}$	REDUCING BEND					
$50 / 40$	3	40	40	40	0.025	$\mathbf{9 0 1 . 5 0 4 0 . 9 0 B}$
$63 / 50$	3	50	50	50	0.045	$\mathbf{9 0 1 . 6 3 5 0 . 9 0 B}$

\varnothing	S	L_{1}	R	Kg	Code
HDPE $\mathbf{1 8 0}$	BEND				
110	4.3	103	99	0.450	$\mathbf{9 0 1 . 1 1 0 . 1 8 0}$
63	3.0	63	64	0.115	$\mathbf{9 0 1 . 6 3 . 1 8 0}$
75	3.0	75	74	0.210	$\mathbf{9 0 1 . 7 5 . 1 8 0}$
90	3.5	90	88	0.330	$\mathbf{9 0 1 . 9 0 . 1 8 0}$

HDPE ffttings									
\varnothing_{1}	S/S ${ }_{1}$	L	L_{1}	$\mathrm{L}_{2} / \mathrm{L}_{3}$	K_{1}	K_{2}	K_{3}	Kg	Code
HDPE $45^{\circ} \mathrm{Y}$ BRANCH									
40	3	135	45	90	25	30	30	0.07	904.40.135B
50	3	165	55	110	35	20	20	0.105	904.50.135B
56	3	180	60	120	40	25	25	0.13	904.56.135B
63	3	195	65	130	40	25	25	0.155	904.63.135B
75	3	210	70	140	40	25	25	0.205	904.75.135B
90	3.5	240	80	160	50	20	20	0.32	904.90.135B
110	4.3	270	90	180	55	20	20	0.53	904.110.135B
125	4.9	300	100	200	60	20	20	0.765	904.125.135B
160	6.2	375	125	250	75	25	25	1.475	904.160.135B
200*	6.2	540	180	360	85	10	10	2.99	904.200.135B
250*	7.8	660	220	440	115	55	55	5.8	904.250.135B
315*	9.8	840	280	560	160	95	95	11.1	904.315.135B

* Segmented

$\varnothing / \varnothing_{1}$	$\mathrm{~S} / \mathrm{S}_{1}$	L	$\mathrm{~L}_{1}$	$\mathrm{~L}_{2} / \mathrm{L}_{3}$	$\mathrm{~K}_{1}$	$\mathrm{~K}_{2}$	$\mathrm{~K}_{3}$	Kg	Code
HDPE 90° BRANCH									
40	3	130	75	55	45	20	20	0.06	904.40 .90 B
50	3	150	90	60	55	25	25	0.085	904.50 .90 B
56	3	175	105	70	65	30	30	0.105	904.56 .90 B
63	3	175	105	70	60	25	25	0.12	904.63 .90 B
75	3	175	105	70	55	25	25	0.145	904.75 .90 B
90	3.5	200	120	80	65	25	25	0.22	904.90 .90 B
110	4.3	225	135	90	65	20	20	0.365	904.110 .90 B
125	4.9	250	150	100	70	20	20	0.51	904.125 .90 B
160	6.2	350	210	140	105	30	30	1.19	904.160 .90 B
200^{*}	6.2	360	180	180	25	30	25	1.705	904.200 .90 B
250^{*}	7.8	440	220	220	40	40	40	3.1	904.250 .90 B
315^{*}	9.8	560	280	280	70	65	70	6.15	904.315 .90 B

[^7]
Terrain FUZE Fittings

[^8]| HDPE fittings | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| øø | S/S ${ }_{1}$ | L | L_{1} | L_{2} | L_{3} | K_{1} | K_{2} | K_{3} | Kg | Code |
| HDPE SWEPT BRANCH FITTING | | | | | | | | | | |
| 110/110 | 4.3 | 230 | 140 | 120 | 90 | 90 | 40 | 20 | 0.415 | 904.110.92B |

$\varnothing / \varnothing_{1}$	S	$\mathrm{~S}_{1}$	L	$\mathrm{~L}_{1}$	$\mathrm{~L}_{2} / \mathrm{L}_{3}$	$\mathrm{~K}_{1}$	$\mathrm{~K}_{2}$	$\mathrm{~K}_{3}$	Kg	Code
HDPE 45° DOUBLE REDUCING BRANCH										
$110 / 40$	4.3	3	270	90	180	95	30	15	0.435	906.11040 .135 B
$110 / 50$	4.3	3	270	90	180	95	30	15	0.455	906.11050 .135 B
$110 / 110$	4.3	4.3	270	90	180	50	15	15	0.63	906.110 .135 B

$\varnothing / \varnothing_{1}$	S	$\mathrm{~S}_{1}$	$\mathrm{~L}_{1}$	$\mathrm{~L}_{2}$	$\mathrm{~K}_{1}$	$\mathrm{~K}_{2}$	Kg	Code
HDPE DOUBLE Y BRANCH 60°								
$50 / 40$	3	3	55	110	40	50	0.093	906.5040 .60 B
$63 / 50$	3	3	65	130	50	40	0.141	906.6350 .60 B
$110 / 110$	4.3	4.3	90	120	50	-	0.393	906.110 .60 B

Terrain FUZE Fittings

$\varnothing 1 \varnothing_{1}$	S	S_{2}	L	L_{1}	L_{2} / L_{3}	K_{1}	K_{2}	K_{3}	Kg	Code
HDPE REDUCING BRANCH 90										
50/40	3	3	150	90	60	60	25	30	0.08	904.5040.90B
56/50	3	3	175	105	70	70	30	35	0.105	904.5650.90B
63/40	3	3	175	105	70	70	30	35	0.115	904.6340.90B
63/50	3	3	175	105	70	70	30	35	0.125	904.6350.90B
63/56	3	3	175	105	70	60	30	30	0.125	904.6356 .90
75/40	3	3	175	105	70	75	25	35	0.14	904.7540.90B
75/50	3	3	175	105	70	70	25	35	0.14	904.7550.90B
75/56	3	3	175	105	70	65	25	30	0.14	904.7556.90B
75/63	3	3	175	105	70	60	25	25	0.145	904.7563.90B
90/40	3.5	3	200	120	80	85	25	45	0.205	904.9040.90B
90/50	3.5	3	200	120	80	85	25	45	0.41	904.9050.90B
90/56	3.5	3	200	120	80	85	25	35	0.41	904.9056.90B
90/63	3.5	3	200	120	80	75	25	35	0.41	904.9063.90B
90/75	3.5	3	200	120	80	70	25	30	0.43	904.9075.90B
110/40	4.3	3	225	135	90	100	25	60	0.345	904.11040.90B
110/50	4.3	3	225	135	90	95	25	50	0.345	904.11050.90B
110/56	4.3	3	225	135	90	90	25	45	0.345	904.11056.90B
110/63	4.3	3	225	135	90	95	25	35	0.34	904.11063.90B
110/75	4.3	3	225	135	90	85	25	35	0.345	904.11075.90B
110/90	4.3	3.5	225	135	90	75	25	30	0.36	904.11090.90B
125/110	4.9	4.3	250	150	100	80	20	30	0.49	904.125110.90B
160/110	6.2	4.3	350	210	140	135	45	60	1.12	904.160110.90B
160/125	6.2	4.9	350	210	140	125	45	50	1.145	904.160125.90B
200/110	6.2	4.3	360	180	180	70	60	70	1.51	904.200110.90B
200/125	6.2	4.9	360	180	180	65	60	65	1.46	904.200125.90B
200/160	6.2	6.2	360	180	180	45	50	45	1.6	904.200160.90B
250/110	7.8	4.3	440	220	220	110	75	110	2.715	904.250110.90B
250/125	7.8	4.9	440	220	220	105	75	105	2.42	904.250125.90B
250/160	7.8	6.2	440	220	220	85	65	85	2.8	904.250160.90B
250/200	7.8	6.2	440	220	220	65	60	65	2.82	904.250200.90B
315/110	9.8	4.3	560	280	280	170	100	170	5.315	904.315110.90B
315/125	9.8	4.9	560	280	280	165	100	165	5.42	904.315125.90B
315/160	9.8	6.2	560	280	280	145	90	145	5.37	904.315160.90B
315/200	9.8	6.2	560	280	280	120	65	120	5.57	904.315200.90B
315/250	9.8	7.8	560	280	280	95	65	95	5.62	904.315250.90B

HDPE fittings									
\varnothing	5	-	L_{1}	L_{2}	L_{3}	K	K_{2}	Kg	Code
HDPE 88° CORNER BRANCH									
110	4.4	231	134	120	97	43	37	0.479	906.11090.92B

\varnothing	S	L	L_{1}	$\mathrm{~L}_{2}$	$\mathrm{~L}_{3}$	$\mathrm{~K}_{1}$	$\mathrm{~K}_{2}$	Kg	Code
HDPE 88°	3	WAY CORNER BRANCH							
110	4.4	231	134	120	97	43	37	0.579	$\mathbf{9 0 6 . 1 1 0 9 3 . 9 2 B}$

$\varnothing \varnothing_{1}$	5	S_{1}	L	L_{1}	L_{2}	L_{3}	K	K_{2}	K_{3}	Kg	Code
HDPE 4 WAY BRANCH											
110/56	4.3	3	257	177	90	79	133	37	37	0.483	920.110.56B
160/56	6.2	3	146	73	120	73	15	15	15	0.699	920.160.56B

øl $\boldsymbol{\theta}_{1}$	S	$\mathrm{~S}_{1}$	L	$\mathrm{~L}_{1}$	$\mathrm{~L}_{2}$	$\mathrm{~L}_{3}$	$\mathrm{~K}_{1}$	$\mathrm{~K}_{2}$	$\mathrm{~K}_{3}$	Kg	Code
HDPE 88°	SINGLE BOSS BRANCH										
$110 / 56$	4.3	3	338	240	90	97	73	37	27	0.575	904.11090 .12 B

\varnothing_{1}	S	L	$\mathrm{~L}_{1}$	$\mathrm{~L}_{2}$	$\mathrm{~L}_{3}$	$\mathrm{~K}_{1}$	$\mathrm{~K}_{2}$	Kg	Code
HDPE 88	DOUBLE BRANCH								
$110 / 110$	4.3	231	134	120	97	43	37	0.553	$\mathbf{9 0 6 . 1 1 0 . 9 2 B}$

Terrain FUZE Fittings

HDPE fittings

$\varnothing / \varnothing_{1}$	S	$\mathrm{~S}_{1}$	H	DE	$\mathrm{L}_{1} / \mathrm{L}_{3}$	$\mathrm{~L}_{2}$	$\mathrm{~K}_{1} / \mathrm{K}_{3}$	$\mathrm{~K}_{2}$	Kg	Code
HDPE 180°	DOUBLE BRANCH BALL FITTING									
$110 / 50$	4.3	3	220	170	105	120	15	15	0.44	916.11050 .180 B
$110 / 56$	4.3	3	220	170	105	120	15	15	0.45	916.11056 .180 B
$110 / 75$	4.3	3	220	170	105	120	15	15	0.43	916.11075 .180 B
$110 / 90$	4.3	3.5	220	170	105	120	15	15	0.47	916.11090 .180 B
$110 / 110$	4.3	4.3	220	170	105	120	15	15	0.48	916.110 .180 B
$125 / 50$	4.9	3	220	190	110	125	15	15	0.495	916.12550 .180 B
$125 / 56$	4.9	3	220	190	110	125	15	15	0.5	916.12556 .180 B
$125 / 75$	4.9	3	220	190	110	125	15	15	0.555	916.12575 .180 B
$125 / 90$	4.9	3.5	220	190	110	125	15	15	0.555	916.12590 .180 B
$125 / 110$	4.9	4.3	220	190	110	125	15	25	0.565	$916.125110 .180 B$
$125 / 125$	4.9	4.9	220	190	110	125	15	25	0.625	916.125 .180 B

$\varnothing / \varnothing_{1}$	S	$\mathrm{~S}_{1}$	H	DE	$\mathrm{L}_{1} / \mathrm{L}_{3}$	$\mathrm{~L}_{2}$	$\mathrm{~K}_{1} / \mathrm{K}_{3}$	$\mathrm{~K}_{2}$	Kg	Code
HDPE 90° DOUBLE BRANCH BALL FITTING										
$110 / 50$	4.3	3	220	170	105	120	15	15	0.45	916.11050 .90 B
$110 / 56$	4.3	3	220	170	105	120	15	15	0.425	916.11056 .90 B
$110 / 75$	4.3	3	220	170	105	120	15	15	0.5	916.11075 .90 B
$110 / 90$	4.3	3.5	220	170	105	120	15	15	0.465	916.11090 .90 B
$110 / 110$	4.3	4.3	220	170	105	120	15	15	0.505	916.110 .90 B
$125 / 50$	4.9	3	220	190	110	125	15	15	0.5	916.12550 .90 B
$125 / 56$	4.9	3	220	190	110	125	15	15	0.5	916.12556 .90 B
$125 / 75$	4.9	3	220	190	110	125	15	15	0.53	916.12575 .90 B
$125 / 90$	4.9	3.5	220	190	110	125	15	15	0.54	916.12590 .90 B
$125 / 110$	4.9	4.3	220	190	110	125	15	25	0.605	$916.125110 .90 B$
$125 / 125$	4.9	4.9	220	190	110	125	15	25	0.62	916.125 .90 B

$\varnothing / \varnothing_{1}$	S	$\mathrm{~S}_{1}$	H	DE	$\mathrm{L}_{1} / \mathrm{L}_{3}$	$\mathrm{~L}_{2}$	$\mathrm{~K}_{1} / \mathrm{K}_{3}$	$\mathrm{~K}_{2}$	Kg	Code
HDPE		135°	DOUBLE BRANCH BALL FITTING							
$110 / 50$	4.3	3	220	170	105	120	15	15	0.44	$916.11050 .135 B$
$110 / 56$	4.3	3	220	170	105	120	15	15	0.445	$916.11056 .135 B$
$110 / 75$	4.3	3	220	170	105	120	15	15	0.455	$916.11075 .135 B$
$110 / 90$	4.3	3.5	220	170	105	120	15	15	0.47	$916.11090 .135 B$
$110 / 110$	4.3	4.3	220	170	105	120	15	25	0.5	$\mathbf{9 1 6 . 1 1 0 . 1 3 5 B}$
$125 / 50$	4.9	3	220	190	110	125	15	15	0.49	$\mathbf{9 1 6 . 1 2 5 5 0 . 1 3 5 B}$
$125 / 56$	4.9	3	220	190	110	125	15	15	0.555	$916.12556 .135 B$
$125 / 75$	4.9	3	220	190	110	125	15	15	0.565	$916.12575 .135 B$
$125 / 90$	4.9	3.5	220	190	110	125	15	15	0.575	$\mathbf{9 1 6 . 1 2 5 9 0 . 1 3 5 B}$
$125 / 110$	4.9	4.3	220	190	110	125	15	25	0.6	$\mathbf{9 1 6 . 1 2 5 1 1 0 . 1 3 5 B}$
$125 / 125$	4.9	4.9	220	190	110	125	15	25	0.74	$\mathbf{9 1 6 . 1 2 5 . 1 3 5 B}$

HDPE fittings										
		5								
HDPE 90° MUTTI BRANCH BaLL Fitting										
11050	4.3	3	220	170	105	120	15	15	0.32	916.11050.033
11056	4.3	3	220	170	105	120	15	15	0.47	916.1056.033
11075	4.3	3	220	170	105	120	15	15	0.46	91.11107
11090	4.3	3.5	220	170	105	120	15	15	0.51	916.1109
110110	4.3	4.3	220	170	105	120	15	15	0.545	916.11
12550	4.9	3	220	190	110	125	15	15	0.57	916.125
12556	4.9	3	220	190	110	125	15	15	0.515	916.1255.9
12575	4.9	3	220	190	110	125	15	15	0.515	916.1257
12590	4.9	3.5	220	190	110	125	15	15	0.525	916.1259
125110	4.9	4.3	220	190	110	125	15	25	0.95	916.12510.9038

$\varnothing / \varnothing_{1}$	S	$\mathrm{~S}_{1}$	H	DE	$\mathrm{L}_{1} / \mathrm{L}_{3}$	$\mathrm{~L}_{2}$	$\mathrm{~K}_{1} / \mathrm{K}_{3}$	$\mathrm{~K}_{2}$	Kg	Code
HDPE	135°	MULTI BRANCH BALL FITTING								
$110 / 50$	4.3	3	220	170	105	120	15	15	0.465	916.11050 .1353 B
$110 / 56$	4.3	3	220	170	105	120	15	15	0.455	916.11056 .1353 B
$110 / 75$	4.3	3	220	170	105	120	15	15	0.44	916.11075 .1353 B
$110 / 90$	4.3	3.5	220	170	105	120	15	15	0.45	916.11090 .1353 B
$110 / 110$	4.3	4.3	220	170	105	120	15	15	0.54	$\mathbf{9 1 6 . 1 1 0 . 1 3 5 3 B}$
$125 / 50$	4.9	3	220	190	110	125	15	15	0.63	$\mathbf{9 1 6 . 1 2 5 5 0 . 1 3 5 3 B}$
$125 / 56$	4.9	3	220	190	110	125	15	15	0.515	$916.12556 .1353 B$
$125 / 75$	4.9	3	220	190	110	125	15	15	0.62	$916.12575 .1353 B$
$125 / 90$	4.9	3.5	220	190	110	125	15	15	0.63	$916.12590 .1353 B$
$125 / 110$	4.9	4.3	220	190	110	125	15	25	0.62	$916.125110 .1353 B$
$125 / 125$	4.9	4.9	220	190	110	125	15	25	0.67	$\mathbf{9 1 6 . 1 2 5 . 1 3 5 3 B}$

$\varnothing / \varnothing_{1}$	S	$\mathrm{~S}_{1}$	H	DE	$\mathrm{L}_{1} / \mathrm{L}_{3}$	$\mathrm{~L}_{2}$	$\mathrm{~K}_{1} / \mathrm{K}_{3}$	$\mathrm{~K}_{2}$	Kg	Code
HDPE MULTI BRANCH BALL FITTING										
$110 / 50$	4.3	3	220	170	105	120	15	15	0.48	916.11050 .904 B
$110 / 56$	4.3	3	220	170	105	120	15	15	0.48	916.11056 .904 B
$110 / 75$	4.3	3	220	170	105	120	15	15	0.475	916.11075 .904 B
$110 / 90$	4.3	3.5	220	170	105	120	15	15	0.535	916.11090 .904 B
$110 / 110$	4.3	4.3	220	170	105	120	15	15	0.575	916.110 .904 B
$125 / 50$	4.9	3	220	190	105	125	15	15	0.53	916.12550 .904 B
$125 / 56$	4.9	3	220	190	105	125	15	15	0.485	916.12556 .904 B
$125 / 75$	4.9	3	220	190	105	125	15	15	0.425	916.12575 .904 B
$125 / 90$	4.9	3.5	220	190	105	125	15	15	0.68	916.12590 .904 B
$125 / 110$	4.9	4.3	220	190	105	125	15	25	0.69	916.125110 .904 B
$125 / 125$	4.9	4.3	220	190	105	125	15	25	0.74	$916.125 .904 B$

Terrain FUZE Fittings

HDPE fittings

ø๐,	s	DE	L	L_{1}	Kg/m	Code
HDPE SHORT RING SEAL ADAPTOR WITH CAP						
90	3.5	108	42	31.5	0.07	909.90B
110	4.3	130	42	31.5	0.115	909.110 B

$\varnothing \varnothing_{1}$	S	DE	L	L_{1}	Kg	Code
HDPE RING SEAL ADAPTOR WITH CAP						
40	3	56.5	65	13	0.04	927.40B
50	3	66.5	65	13	0.05	927.50B
56	3	72.5	65	13	0.05	927.56B
63	3	79	65	11	0.065	927.63B
75	3	92	90	17	0.11	927.75B
90	3.5	108	90	17	0.15	927.90B
110	4.3	130	95	17	0.22	927.110B
125	4.9	149	95	15	0.23	927.125B
160	6.2	188	130	30	0.53	927.160B
200	6.2	225	170	18	1.075	927.200B
250	7.8	278	170	22	1.37	927.250B
315	9.8	350	180	22	1.97	927.315B

o Without cap

\varnothing	S	DE	L	L_{1}	K	Kg	Code
HDPE EXPANSION JOINT WITH CAP							
40	3	73	235	60	40	0.16	911.40B
50	3	81	235	56	40	0.2	911.50B
56	3	90	235	50	40	0.22	911.56B
63	3	96	235	56	40	0.25	911.63B
75	3	109	235	56	40	0.3	911.75B
90	3.5	117	235	54	40	0.335	911.90B
110	4.3	140	255	46	20	0.5	911.110 B
125	4.9	154	235	53	40	0.625	911.125B
160	6.2	192	260	72	40	1.01	911.160B
200	6.2	228	350	80	40	1.85	911.200B
250	7.8	280	440	183	100	3.38	911.250B
315	9.8	350	480	183	100	6.1	911.315B

HDPE ftitings						
$\varnothing / \varnothing_{1}$	S	DE	L	L_{1}	Kg	Code
HDPE - PVC RING SEAL ADAPTOR						
40×36	3	49	92	35	0.05	927.4036B
50×36	3	49	92	35	0.06	927.5036B
50×43	3	56	92	35	0.06	927.5043B
56×36	3	49	92	35	0.06	927.5636B
56×43	3	56	92	35	0.06	927.5643B

| $\varnothing / \varnothing_{1}$ | S | DE | L | L_{1} | $\mathrm{~L}_{2}$ | Kg | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HDP SPIGOT BEND WITH CAP | | | | | | | |
| $40 / 46$ | 3 | 52 | 60 | 51 | 22 | 0.055 | 917.4046 .90 B |
| $50 / 46$ | 3 | 52 | 62 | 51 | 22 | 0.06 | 917.5046 .90 B |
| $50 / 58$ | 3 | 64 | 68 | 55 | 24 | 0.07 | 917.5058 .90 B |
| 5646 | 3 | 52 | 64 | 60 | 22 | 0.07 | 917.5646 .90 B |
| $56 / 58$ | 3 | 64 | 65 | 60 | 22 | 0.075 | 917.5658 .90 B |

[^9]

\varnothing	S	DE	L	L_{1}	Kg	Code
HDPE EXTENDED SPIGOT BEND						
56	3	50	100	80	0.085	902.56 .90 B

\varnothing	S	DE	L	L_{1}	Kg	Code
HDPE SLEEVE						
$40 / 46$	3	52	30	20	0.015	917.4046 B
$50 / 46$	3	52	30	20	0.015	917.5046 B
$50 / 58$	3	64	38	20	0.02	917.5058 B
$56 / 46$	3	52	38	20	0.02	917.5646 B
$56 / 58$	3	64	38	20	0.025	$\mathbf{9 1 7 . 5 6 5 8 B}$

Terrain FUZE Fittings

HDPE fittings

$\varnothing 1$	$\varnothing 2$	L	Kg	Code
GASKET				
46	$36-40$	22	0.01	917.4636 .908 B
58	$36-40$	22	0.2	917.5836 .908 B
58	$47-50$	22	0.3	917.5847 .908 B

A

	$\varnothing / \varnothing_{1}$	S	S1	L	L_{1}	L_{2}	K	Kg	Code
	HDPE CONCENTRIC REDUCERS								
\checkmark	50/40	3	3	80	30	30	15	0.04	924.5040B
	56/50	3	3	80	30	30	15	0.04	924.5650B
\checkmark	63/40	3	3	80	30	30	15	0.04	924.6340B
	63/50	3	3	80	30	30	15	0.05	924.6350B
V	63/56	3	3	80	30	30	15	0.045	924.6356B
V	75/40	3	3	80	30	30	15	0.045	924.7540B
V	75/50	3	3	80	30	30	15	0.05	924.7550B
\checkmark	75/56	3	3	80	30	30	15	0.06	924.7556B
V	75/63	3	3	80	30	30	15	0.06	924.7563B
V	90/40	3.5	3	80	30	30	15	0.085	924.9040B
∇	90/50	3.5	3	80	30	30	15	0.065	924.9050B
∇	90/56	3.5	3	80	30	30	15	0.07	924.9056B
V	90/63	3.5	3	80	30	30	15	0.09	924.9063B
V	90/75	3.5	3	80	30	30	15	0.095	924.9075B
V	110/40	4.3	3	80	30	30	15	0.09	924.11040B
V	110/50	4.3	3	80	30	30	15	0.115	924.11050B
V	110/56	4.3	3	80	30	30	15	0.095	924.11056B
V	110/63	4.3	3	80	30	30	15	0.105	924.11063B
V	110/75	4.3	3	80	30	30	15	0.125	924.11075B
V	110/90	4.3	3.5	80	30	30	15	0.125	924.11090B
V	125/110	4.9	4.3	80	30	40	20	0.325	924.125110B
V	125/50	4.9	3	80	30	30	15	0.125	924.12550B
V	125/56	4.9	3	80	30	30	15	0.125	924.12556B
V	125/63	4.9	3	80	30	30	15	0.125	924.12563B
V	125/75	4.9	3	80	30	30	15	0.135	924.12575B
V	125/90	4.9	3.5	80	30	30	15	0.255	924.12590B
V	160/110	6.2	4.3	115	30	30	15	0.255	924.160110B
\bullet	200/160	9.2	6.2	180	60	60	20	0.325	924.200160B
	- A	B -							

MDPE fittings								
$\varnothing / \varnothing_{1}$	S	L	L_{1}	L_{2}	L_{3}	DE	Kg	Code
HDPE THREADED COUPLING								
40	3	74	30	34	66	60	0.075	912.40B
50	3	76	30	33	66	70	0.08	912.50B
56	3	46	30	34	66	80	0.12	912.56B
56/63	3	48	-	34	66	80	0.1	912.5663B
63	3	79	30	43	66	85	0.13	912.63B
75	3	106	30	45	87	109	0.25	912.75B
90	3.5	86	30	46	88	128	0.34	912.90B
110	4.3	113	30	65	89	144	0.47	912.110B

\varnothing	S	Kg	Code
HDPE RING			
50	4	0.0015	9118.50 B
56	4	0.002	9118.56 B
63	4	0.002	9118.63 B
75	3	0.004	9118.75 B
90	4	0.002	9118.90 B
110	0.006	9118.110 B	

\varnothing	S	Kg	Code
HDPE RING SEAL			
50	6	0.004	9119.50 B
56	6	0.005	9119.56 B
63	7	0.006	9119.63 B
75	10	0.02	9119.75 B
90	7	0.01	9119.90 B
110	10	0.025	9119.110 B

\varnothing_{1}	RG	DE	L_{2}	Kg	Code
HDPE NUT					
50	62	70	33	0.03	9120.50 B
56	71	80	34	0.05	9120.56 B
63	76	85	43	0.06	9120.63 B
75	96	109	45	0.1	9120.75 B
110	132	144	65	0.21	9120.110 B

Terrain FUZE Fittings

HDPE fittings

\varnothing	S	L	L_{1}	$\mathrm{~L}_{2}$	$\mathrm{~L}_{3}$	DE	Kg	Code
HDPE SCREWED END CAP								
40	3	75	30	34	66	60	0.075	936.40 B
50	3	75	30	33	66	70	0.08	936.50 B
56	3	77	30	34	66	80	0.12	936.56 B
63	3	76	30	43	66	85	0.135	936.63 B
75	3	103	30	45	87	109	0.28	936.75 B
90	3.5	103	30	46	88	128	0.355	936.90 B
110	4.3	106	30	65	89	144	0.5	936.110 B

\varnothing	RG	DE	L_{2}	Kg	Code
HDPE SHORT END CAP WITH SEAL					
110	132	149	33	0.215	9938.110 B

\varnothing	S	L	L_{1}	$\mathrm{~L}_{2}$	$\mathrm{~L}_{3}$	DE	Kg	Code
HDPE SHORT SCREWED CAP								
110	4.3	63	12	33	50	149	0.315	935.110 B

\varnothing	S	L_{1}	$\mathrm{~L}_{3}$	Kg	Code
HDPE THREADED UNION					
50	3	30	66	0.03	9122.50 B
56	3	30	66	0.025	9122.56 B
63	3	30	66	0.04	9122.63 B
75	3	30	87	0.095	9122.75 B
90	3.5	30	88	0.085	9122.90 B
110	4.3	30	89	0.17	9122.110 B

\varnothing	RG	DE	L_{2}	Kg	Code
HDPE END CAP WITH SEAL					
50	63	70	33	0.035	9121.50 B
56	71	80	34	0.075	9121.56 B
63	77	85	43	0.085	9121.63 B
75	97	109	45	0.16	9121.75 B
90	113	128	46	0.215	9121.90 B
110	132	144	65	0.3	9121.110 B

HDPE fittings				
\varnothing	S	L		Code
HDPE BLANK END				
40	3	10	0.01	930.40 B
50	3	10	0.01	930.50 B
56	3	10	0.01	990.56 B
63	3	10	0.015	930.63 B
75	3	10	0.02	930.75 B
90	3.5	10	0.03	930.90 B
110	4.3	10	0.05	930.110 B
125	4.9	10	0.07	930.125 B

\varnothing	S	L	Kg	Code
HDPE END CAP				
160	6.2	72	0.31	930.160 B
200	6.2	110	0.56	930.200 B
250	7.8	93	0.75	930.250 B
315	9.2	117	1.42	930.315 B

\varnothing	S	S_{1}	DE	L	L_{1}	Kg	Code
HDPE ANCHOR PIPE							
50	3	4	57	68	32	0.03	970.50 B
56	3	4	64	68	32	0.035	970.56 B
63	3	4	71	72	34	0.045	970.63 B
75	3	5	84	83	39.5	0.06	970.75 B
90	3.5	5	100	100	47.5	0.1	970.90 B
110	4.3	6	120	112	53.5	0.165	970.110 B

M/ \varnothing	L	For Flange	Kg	Code
HDPE GALVANISED BOLT SET WITH WASHER FOR FLANGE				
16	90	$50-56$	0.215	984.1650 B
16	100	$63-75$	0.23	984.1663 B
16	100	90	0.23	984.1690 B
16	100	$110-125-140$	0.25	$\mathbf{9 8 4 . 1 6 1 1 0 \mathrm { B }}$
20	110	160	0.41	$\mathbf{9 8 4 . 2 0 1 6 0 B}$
20	130	$200-250-315$	0.45	$\mathbf{9 8 4 . 2 0 2 5 0 B}$

Terrain FUZE Fittings

HDPE FAGAOS

\varnothing	S	DI	D_{1}	D_{2}	M	Hole No	Kg	Code
PAINTED ALUMINIUM BACKING FLANGE								
50	20	62	120	150	18	4	0.625	981.50 B
56	20	64	123	159	18	4	0.71	981.56 B
63	17	78	128	165	18	4	0.65	981.63 B
75	21	93	148	185	18	4	0.885	981.75 B
90	22	108	160	200	17	8	1.005	981.90 B
110	22	128	182	220	19	8	1.05	981.110 B
125	22	136	176	220	18	8	1.15	981.125 B
160	25	179	240	285	22	8	1.84	981.160 B
200	26	235	295	337	22	8	2.325	981.200 B
250	30	285	350	396	22	12	3.78	981.250 B
315	30	340	400	444	22	12	3.945	981.315 B

\varnothing	S	D_{1}	D_{2}	M	Hole No	Kg	Code
PAINTED ALUMINIUM BLANK FLANGE							
50	20	120	150	18	4	0.76	983.50 B
56	20	123	159	18	4	0.865	983.56 B
63	17	128	165	18	4	1.02	983.63 B
75	21	148	185	18	4	1.305	983.75 B
90	22	162	200	17	8	1.525	983.90 B
110	22	176	220	18	8	1.7	983.110 B
125	22	182	280	19	8	1.8	983.125 B
160	25	240	285	22	8	2.945	983.160 B
200	26	295	337	22	8	4.485	983.200 B
250	30	350	396	22	12	7.495	983.250 B
315	30	400	444	22	12	9.345	983.315 B

\varnothing	S	L	L_{1}	$\mathrm{~L}_{2}$	H	DE	K_{1}	$\mathrm{~K}_{2}$	Kg	Code
HDPE 90° ACCESS PIPE WITH SCREW CAP										
40	3	130	75	55	69	54	45	20	0.085	938.40 .90
50	3	150	90	60	75	70	55	25	0.13	938.50 .90 B
56	3	175	105	70	84	85	65	30	0.195	938.56 .90 B
63	3	175	100	75	80	82	60	25	0.175	938.63 .90 B
75	3	175	105	70	117	117	55	25	0.365	938.75 .90 B
90	3.5	200	120	80	125	123	65	25	0.52	938.90 .90 B
110	4.3	240	140	100	94	146	65	20	0.62	938.110 .90 B
125	4.9	250	150	100	124	146	70	20	0.77	938.125 .90 B
160	6.2	350	210	140	145	146	105	30	1.355	938.160 .90 B
200	6.2	360	180	180	165	146	180	25	1.71	938.200 .90 B
250	7.8	440	220	220	190	146	220	40	3.075	938.250 .90 B
315	9.8	560	280	280	225	146	280	70	5.5	938.315 .90 B

$\varnothing / \varnothing_{1}$	S	$\mathrm{~S}_{1}$	L	$\mathrm{~L}_{1}$	$\mathrm{~L}_{2}$	H	DE	K_{1}	Kg	Code
HDPE 45° ACCESS PIPE WITH SCREW CAP										
$110 / 110$	4.3	4.3	270	90	180	220	150	55	0.84	938.110 .135 B
$160 / 110$	6.2	4.3	375	125	275	280	150	110	1.76	938.160 .135 B
$125 / 110$	4.9	4.3	300	100	200	230	150	70	1.24	$938.125 .135 B$

Terrain FUZE Fittings

HDPE fittings

\varnothing	L	DE	H	H_{1}	Kg
HDPE ELECTROFUSION COUPLINGS					

40	64	52	68	3	0.055	910.40 B
50	60	63	80	3	0.07	910.50 B
56	60	70	86	3	0.085	910.56 B
63	60	77	92	3	0.08	910.63 B
75	60	90	105	3	0.105	910.75 B
90	60	106	121	3	0.135	910.90 B
110	60	126	143	3	0.165	910.110 B
125	60	142	158	3	0.21	910.125 B
160	60	178	194	3	0.26	910.160 B
200	153	233	248	3	1.705	910.200 B
250	153	285	300	3	2.135	910.250 B
315	153	350	365	3	2.61	$910.315 B$

$\varnothing / \varnothing_{1}$	S	$\mathrm{~S}_{1}$	L	$\mathrm{~L}_{1}$	H_{1}	H_{2}	Kg	
Code								
HDPE MALE PVC ADAPTOR WITH RING SEAL								
$110 / 100$	4.3	6	105	30	25	25	0.162	9113.110100 B

\varnothing	S	DI	DE	L_{1}	$\mathrm{~L}_{1}$	Kg	Code
HDPE WC PAN CONNECTOR WITH CAP							
90	3.5	120	131	67	12	0.12	$\mathbf{9 2 5 . 9 0 B}$
110	4.3	120	131	68	15	0.13	$\mathbf{9 2 5 . 1 1 0 B}$

ø $1 \varnothing_{1}$	s	DI	DE	L	L_{1}	Kg	Code
HDPE WC CONNECTOR FOR PVC WITH RING SEAL							
90/100	3.5	102 ± 5	140	166	130	0.28	925.90100B
110/100	4.3	102 ± 5	140	166	130	0.39	925.110100 B

$\varnothing / \varnothing_{1}$	S	DI	DE	L	L_{1}	H_{1}	H_{2}	Kg	Code
HDPE MALE PVC ADAPTOR WITH RING SEAL									
100	4.3	102 ± 5	140	166	125	17	30	0.35	$\mathbf{9 2 5 . 1 0 0 B}$

HDPE ffttings							
\varnothing	S	DI	DE	L	L_{1}	Kg	Code
HDPE EXTENDED WC PAN CONNECTOR WITH CAP							
90	3.5	110	117	125	9	0.175	993.90B
100	4.3	110	117	125	11	0.17	993.100B

\varnothing	S	L	DE	Kg	Code
HDPE SLIDING CONNECTOR					
110	4.3	196	140	1.0	911 S .110 B
160	6.7	230	185	1.225	911 S .160 B
200	6.7	270	226	1.445	911 S .200 B
250	8.3	300	284	2.91	911 S .250 B
315	10.4	320	354	5.1	911 S .315 B

\varnothing	S	H	DE	Kg	Code	
HDPE RING SEAL SOCKET						
110	4.3	176	6	130	0.43	910P.110B
160	6.7	230	6	185	1.24	910P.160B
200	6.7	270	6	226	1.815	910P.200B
250	8.3	300	7	284	5.14	910P.250B
315	10.4	320	9	354	7.33	910P.315B

\varnothing	S	Dl	DE	L	L_{1}	Kg	Code
HDPE EXTENDED FLOOR PAN CONNECTOR WITH	2	SEALS					
110	4.3	102 ± 5	140	166	125	0.42	993.110DB

Terrain FUZE Fittings

HDPE fittings

$\varnothing / \varnothing_{1}$	S	S_{1}	L	L_{1}	L_{2}	Kg	Code
HDPE ECCENTRIC REDUCER							
50/40	3	3	80	35	35	0.035	923.5040B
56/40							923.5640B
56/50	3	3	80	37	35	0.04	923.5650B
63/40	3	3	80	37	35	0.04	923.6340B
63/50	3	3	80	37	35	0.04	923.6350 B
63/56	3	3	80	40	35	0.045	923.6356 B
75/40	3	3	80	37	35	0.055	923.7540 B
75/50	3	3	80	37	35	0.05	923.7550 B
75/56	3	3	80	37	35	0.05	923.7556 B
75/63	3	3	80	35	35	0.055	923.7563B
90/40	3.5	3	80	37	35	0.065	923.9040 B
90/50	3.5	3	80	37	35	0.065	923.9050 B
90/56	3.5	3	80	37	35	0.075	923.9056 B
90/63	3.5	3	80	37	35	0.07	923.9063 B
90/75	3.5	3	80	37	35	0.095	923.9075B
110/40	4.3	3	80	37	35	0.095	923.11040B
110/50	4.3	3	80	37	35	0.1	923.11050B
110/56	4.3	3	80	37	35	0.1	923.11056B
110/63	4.3	3	80	37	35	0.105	923.11063
110/75	4.3	3	80	37	35	0.105	923.11075B
110/90	4.3	3.5	80	37	35	0.14	923.11090B
125/110	4.9	4.3	80	37	35	0.135	923.125110B
125/50	4.9	3	80	37	35	0.13	923.12550B
125/56	4.9	3	80	37	35	0.125	923.12556B
125/63	4.9	3	80	37	35	0.125	923.12563B
125/75	4.9	3	80	37	35	0.13	923.12575B
125/90	4.9	3.5	80	37	35	0.13	923.12590B
160/110	6.2	4.3	80	37	35	0.23	923.160110B
160/125	6.2	4.9	80	37	35	0.22	923.160125B

$\varnothing \varnothing_{1}$	S	S_{1}	L	L_{1}	L_{2}	K_{1}	K_{2}	Kg	Code
HDPE LONG ECCENTRIC REDUCER									
160/110	6.2	4.3	215	35	37	20	20	0.43	923.160110LB
160/125	6.2	4.9	140	45	40	20	20	0.33	923.160125LB
200/110	6.2	4.3	285	80	40	50	10	0.94	923.200110LB
200/125	6.2	4.9	285	80	40	50	10	0.91	923.200125LB
200/160	6.2	6.2	210	80	37	50	10	0.72	923.200160LB
250/200	7.8	6.2	405	160	140	100	100	1.965	923.250200LB
315/200	9.8	6.2	540	160	140	100	100	3.49	923.315200LB
315/250	9.8	7.8	450	160	150	100	100	3.295	923.315250LB

HDPE fftingS							
\varnothing	S	L	L_{1}	R	K	Kg	Code
HDPE SHORT RADIUS BEND							
90	3.5	270	50	50	200	0.3	902.90 .90 B
110	4.3	300	60	60	220	0.5	902.110 .90 B

\varnothing	S	DI	DE	L	L_{1}	K	Kg	Code
HDPE WC BEND WITH CAP								
110	4.3	120	132	300	125	220	0.600	929.110 .90
90	3.5	120	132	270	115	200	0.420	929.90 .90

| $\varnothing / \varnothing_{1}$ | Mod | S | L | L_{1} | $\mathrm{~L}_{2}$ | DE | K | Kg | Code |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HDPE WC BEND HANGING PAN WITH SEAL AND CAP | | | | | | | | | |
| $90 / 90$ | A | 3.5 | 270 | 90 | 40 | 108 | 150 | 0.398 | 999.90 .90 B |
| $110 / 110$ | A | 4.3 | 300 | 87 | 40 | 130 | 180 | 0.596 | 999.110 .90 B |

\varnothing	S	L	L_{1}	R	K	Kg	Code
HDPE WC PAN CONNECTOR	WHITE						
90	3.5	102 ± 5	140	166	130	0.285	925.90 W
110	4.3	102 ± 5	140	166	130	0.355	925.110W

Terrain FUZE Fittings

HDPE fittings

$\varnothing \varnothing_{1}$	Iod	S	S_{1}	DE	L	L_{1}	L_{2}	L_{3}	L_{4}	Kg	Code
HDPE STRAIGHT WC PAN CONNECTOR WITH SEAL AND CAP											
90/100	A	3.5	5.5	109	232	31	70	15	28	0.332	999.90100.00B
90/100	C	4.3	4.3	109	300	31	180	-	-	0.48	998.90100.00B

\varnothing	5	DE	DI	L	L_{1}	K	Kg	Code
HDPE LONG WC PAN CONNECTOR WITH SEAL								
90	3.5	140	102 ± 5	250	200	150	0.36	925L.90B
90	3.5	140	102 ± 5	300	260	200	0.42	925XL.90B

$\varnothing \varnothing_{1}$	S	DI	DE	L	L_{1}	L_{2}	L_{3}	Kg	Code
HDPE WC CONNECTOR FOR HANGING PAN WITH SEAL AND WHITE COVERINGS									
90/45	3.5	102 ± 5	132	166	122	195	24	0.45	925.9044B
110/45	4.3	102 ± 5	132	166	129	199	24	0.53	925.11044B

$\varnothing \varnothing_{1}$	S	S_{1}	DE	L	L_{2}	L_{3}	L_{4}	K	Kg	Code
HDPE DOUBLE WC PAN CONNECTOR WITH LIP SEALS AND CAPS										
90/110	4.3	3.5	108	210	-	270	-	50	0.764	929.90110.90DB
110/110	4.3	4.3	130	205	37	285	240	50	0.816	929.110.90DB

HDPE fittings									
	s	DE		4	L	L	k	Kg	
HDPE WC bend for hanging pan with 1-LIP SEAL And Cap, Left									
110	4.3	130	320	100	35	85	170	0.72	999.11018
9090	3.5	108	290	100	35	85	150	0.42	999.9018
							170		949.110

$\varnothing \varnothing_{1}$	5	DE	L	L_{1}	L_{2}	L_{3}	K	Kg	Code
HDPE WC BEND FOR HANGING PAN WITH 1-LIP SEAL AND CAP, RIGHT									
110/110	4.3	130	320	100	35	85	170	0.72	949.110RB
90/90	3.5	108	290	100	35	85	150	0.442	949.90RB
110/90	4.3	108	315	100	35	85	170	0.616	949.11090RB

$\varnothing \varnothing_{1}$	S	S_{1}	DE	L	L_{1}	L_{2}	L_{3}	L_{4}	K	Kg	Code
HDPE WC PAN CONNECTORS											
110/110	4.3	4.3	130	340	95	37	285	240	120	1.09	949.110DB
110/90	4.3	3.5	108	335	100	-	285	-	120	1.02	949.11090DB

Terrain FUZE Fittings

\varnothing	S	L	L_{1}	$\mathrm{~L}_{2}$	H	H_{1}	K	Kg	Code
HDPE UNIVERSAL TRAP, VERTICAL INLET AND HORIZONTAL OUTLET									
110	4.3	270	160	310	370	260	220	1.92	931.110 B
63	3	210	95	185	235	160	160	0.52	931.63 B
75	3	210	135	245	335	245	140	0.92	931.75 B
90	3.5	240	140	270	320	225	200	1.19	931.90 B

$\varnothing / \varnothing_{1}$	S	L	$\mathrm{~L}_{1}$	H	H_{1}	Kg	Code
HDPE TRAP, VERTICAL INLET AND HORIZONTAL OUTLET							
$40 / 40$	3	150	80	140	110	0.22	931.4040 B
$40 / 50$	3	180	80	160	110	0.31	931.4050 B
$40 / 56$	3	210	80	155	110	0.31	931.4056 B
$50 / 50$	3	180	100	170	110	0.31	931.5050 B
$50 / 56$	3	210	100	165	110	0.31	931.5056 B

Terrain FUZE Fittings

HDPE fittings

σ / \varnothing_{1}	S	L	$\mathrm{~L}_{1}$	$\mathrm{~L}_{2}$	H	H_{1}	Kg	Code
HDPE TRAP, VERTICAL INLET AND OUTLET								
$40 / 40$	3	160	60	80	110	60	0.235	932.4040 B
$40 / 50$	3	180	80	80	110	65	0.34	932.4050 B
$40 / 56$	3	238	80	80	110	65	0.34	932.4056 B
$50 / 50$	3	180	80	100	110	70	0.34	932.5050 B
$50 / 56$	3	190	80	100	120	70	0.37	932.5056 B

$\varnothing \varnothing_{1}$	S	L	$\mathrm{~L}_{1}$	$\mathrm{~L}_{2}$	H	H_{1}	Kg	Code
HDPE TRAP, HORIZONTAL INLET AND OUTLET								
$40 / 40$	3	150	80	90	140	40	0.31	945.4040 B
$40 / 50$	3	180	80	90	160	65	0.37	945.4050 B
$40 / 56$	3	210	80	90	160	40	0.4	$\mathbf{9 4 5 . 4 0 5 6 B}$
$50 / 50$	3	180	100	90	170	70	0.42	$\mathbf{9 4 5 . 5 0 5 0 \mathrm { B }}$
$50 / 56$	3	210	100	90	165	80	0.44	$\mathbf{9 4 5 . 5 0 5 6 B}$

\varnothing	S	D_{1}	D_{2}	L	$\mathrm{~L}_{1}$	Kg	
HDPE WASHING MACHINE CONNECTOR							
50	3	$15 / 20$	1 " G	120	65	0.065	933.50 B

\varnothing	ØG	S	L	\varnothing ¢	H	Nut	Kg	Code
HDPE FITTING WITH NUT - BRASS								
40	$11 / 4^{\prime \prime}$	3	45	40	2	Brass	0.08	918.40.125BN
40	$11 / 2^{\prime \prime}$	3	45	45	2	Brass	0.09	918.40.15BN
50	$11 / 4^{\prime \prime}$	3	45	40	2	Brass	0.08	918.50.125BN
50	$11 / 2^{\prime \prime}$	3	45	45	2	Brass	0.09	918.50.15BN

\varnothing	øG	S	L	\varnothing ¢	H	Nut	Kg	Code
HDPE FITTING WITH NUT - PLASTIC								
40	11/4"	3	45	40	2	Plastic	0.03	918.40.125B
40	11/2"	3	45	45	2	Plastic	0.03	918.40.15B
50	$11 / 4 "$	3	45	40	2	Plastic	0.03	918.50.125PN
50	11/2"	3	45	45	2	Plastic	0.03	918.50.15PN

HDPE ffttings									
\varnothing	\varnothing ¢	S	L	\varnothing E	H	Nut	K	Kg	Code
HDPE EXTENDED FITTING WITH NUT - BRASS									
40	$11 / 4^{\prime \prime}$	3	195	40	2	Brass	110	0.13	918.40.125EB
40	$11 / 2^{\prime \prime}$	3	195	45	2	Brass	110	0.145	918.40.15EBN
50	$11 / 4^{\prime \prime}$	3	195	40	2	Brass	110	0.15	918.50.125EBN
50	$11 / 2 "$	3	195	45	2	Brass	110	0.155	918.50.15EBN

\varnothing	$\varnothing G$	S	L	$\varnothing \mathrm{E}$	H	Nut	K	Kg	Code
HDPE EXTENDED FITTING WITH NUT - PLASTIC									
40	$11 / 4^{\prime \prime}$	3	195	40	2	Plastic	110	0.08	$918.40 .125 E P N$
40	$11 / 2^{\prime \prime}$	3	195	45	2	Plastic	110	0.085	$918.40 .15 E P N$
50	$11 / 4^{\prime \prime}$	3	195	40	2	Plastic	110	0.1	$918.50 .125 E P N$
50	$11 / 2^{\prime \prime}$	3	195	45	2	Plastic	110	0.095	$918.50 .15 E P N$

\varnothing	$\varnothing \mathrm{G}$	S	L	H	Nut	K	Kg	Code
HDPE BEND WITH NUT								
40	$11 / 4^{\prime \prime}$	3	130	25	Brass	100	0.1	918.40 .125 .90 BN
40	$11 / 2^{\prime \prime}$	3	130	30	Brass	100	0.105	918.40 .15 .90 BN
40	$11 / 4^{\prime \prime}$	3	130	25	Plastic	100	0.035	918.40 .125 .90 B
40	$11 / 2^{\prime \prime}$	3	130	30	Plastic	100	0.04	918.40 .15 .90 PN

| \varnothing | $\varnothing \mathrm{G}$ | S | L | L_{1} | $\mathrm{~L}_{2}$ | H | Nut | Kg | Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HDPE REDUCING BEND WITH NUT | | | | | | | | | |
| $40 / 50$ | $11 / 4^{\prime \prime}$ | 3 | 130 | 50 | 54 | 25 | Brass | 0.11 | 918.4050 .125 .90 BN |
| $40 / 50$ | $11 / 2^{\prime \prime}$ | 3 | 120 | 50 | N.C. | 30 | Brass | 0.12 | 918.4050 .15 .90 BN |
| $40 / 50$ | $11 / 4^{\prime \prime}$ | 3 | 130 | 50 | 54 | 25 | Plastic | 0.06 | 918.4050 .125 .90 PN |
| $40 / 50$ | $11 / 2^{\prime \prime}$ | 3 | 120 | 50 | N.C. | 30 | Plastic | 0.055 | 918.4050 .15 .90 PN |

Terrain FUZE Fittings

HDPE fittings

$\varnothing U$	$\varnothing G$	S	DE	H	Kg	Code
HDPE END WITH INTERNAL THREADING, REINFORCED WITH STEEL RING						
40	$1 / 2^{\prime \prime}$	3	40.5	55	0.065	916.40 .05 B
40	$3 / 4^{\prime \prime}$	3	40.5	55	0.06	916.40 .075 B
40	$1^{\prime \prime}$	3	40.5	55	0.06	916.40 .1 B
50	$1 / 2^{\prime \prime}$	3	50	60	0.075	916.50 .05 B
50	$3 / 4^{\prime \prime}$	3	50	60	0.075	916.50 .075 B
50	$1^{\prime \prime}$	3	50	60	0.075	916.50 .1 B
50	$11 / 4^{\prime \prime}$	3	50	60	0.07	916.50 .125 B
50	$11 / 2^{\prime \prime}$	3	58.5	60	0.07	916.50 .15 B
56	$2^{\prime \prime}$	3	70	65	0.1	916.56 .2 B
63	$2^{\prime \prime}$	3	70	65	0.105	916.63 .2 B
75	$2^{\prime \prime \prime} 1 / 2$	3	89	70	0.135	916.75 .25 B

øU	øG	S	DI	H	Kg	Code
HDPE END WITH EXTERNAL THREADING, REINFORCED WITH STEEL RING						
50	$11 / 4 "$	3	29	60	0.055	917.50.125B
50	11/2"	3	29	60	0.065	917.50.15B
56	2"	3	47	65	0.09	917.56.2B
63	2"	3	47	65	0.095	917.63.2B
75	$2^{\prime \prime 1 / 2}$	3	57	70	0.125	917.75.25B

\varnothing	$\varnothing \mathrm{C}$	S	DE	H	H_{1}	Kg	Code
HDPE THREADED FITTING WITH BRASS NIPPLE							
40	$1 / 2^{\prime \prime} \times 15 \mathrm{~mm}$	3	60	81	74	0.18	936.40 .05 NB
40	$3 / 4^{\prime \prime} \times 18 \mathrm{~mm}$	3	60	84	74	0.24	936.40 .075 NB
50	$1 / 2^{\prime \prime} \times 15 \mathrm{~mm}$	3	71	92	76	0.15	936.50 .05 NB
50	$3 / 4^{\prime \prime} \times 18 \mathrm{~mm}$	3	71	95	76	0.185	936.50 .075 NB
50	$1^{\prime \prime} \times 22 \mathrm{~mm}$	3	71	95	76	0.245	936.50 .1 NB

Size mm	Fire Rating	D	W	Colour	Kg	Code
HDPE END WITH EXTERNAL THREADING, REINFORCED WITH STEEL RING						
40	2 hour	52	60	RED	0.15	1625.40R
55	2 hour	67	60	RED	0.21	1625.55R
63	2 hour	83	60	RED	0.32	1625.63R
75	2 hour	95	60	RED	0.37	1625.75R
82	2 hour	102	60	RED	0.4	1625.82R
90	4 hour	110	60	RED	0.42	1625.90R
110	2 hour	130	60	RED	0.48	1625.110R
125	4 hour	161	60	RED	0.94	1625.125R
160	4 hour	209	60	RED	1.33	1625.160R
200	4 hour	255	60	RED	1.96	1625.200R
250	2 hour	305	200	RED	2.35	1625.250R
315	2 hour			RED	13	1625.315R

Terrain FUZE Fittings

HDPE fittings

\varnothing	DE	L	Kg	Code
HDPE PROTECTIVE CAP FOR SOCKET				
56	62	25	0.01	9130.56 B
63	71	38	0.015	9130.63 B
75	85	38	0.02	9130.75 B
90	102	38	0.03	9130.90 B
110	123	39	0.04	9130.110 B
125	135	38	0.055	9130.125 B
160	167	36	0.055	9130.160 B
200	220	50	0.13	9130.200 B

\varnothing	DE	H	B	Kg	Code
HDPE 1 LIP SEAL FOR SOCKETS					
100	114	9.3	8.2	0.02	927.100 .908 B
90	103	8.9	7.5	0.015	927.90 .908 B
110	123.9	8.9	7.9	0.02	927.110 .908 B
125	142.2	10.2	8.9	0.025	$\mathbf{9 2 7 . 1 2 5 . 9 0 8 B}$
160	179.8	11.5	10.2	0.045	927.160 .908 B
200	223.7	12.8	11.2	0.045	$\mathbf{9 2 7 . 2 0 0 . 9 0 8 B}$
250	282	19.5	1.6	0.5	927.250 .908 B
315	350	20.5	17.15	0.055	$\mathbf{9 2 7 . 3 1 5 . 9 0 8 B}$

\varnothing	H	For Codes	Kg	Code
O-RING FOR ADAPTORS (PVC)				
100	2.62	$353-354$	0.002	$\mathbf{9 1 1 3 . 9 0 8 B}$

\varnothing	DI	H	Kg	Code
HDPE O RING FOR SOCKETS				
40	$39+1$	6	0.005	9116.40 B
50	$49+1$	6	0.005	9116.50 B
56	$54+1$	6	0.005	9116.56 B
63	$62+1$	6	0.01	9116.63 B
75	$79+1$	6	0.01	9116.75 B
90	$89+1$	6	0.01	9116.90 B
110	$109+1.5$	7	0.015	9116.110 B
125	$124+1.5$	8	0.025	9116.125 B
160	$159+1.5$	9	0.035	9116.160 B

\varnothing ext. pipe	D	H	H_{1}	Kg	Code
HDPE M10 BRACKET					
40	43	30	15	0.2	9144.40 B
50	53	30	15	0.195	9144.50 B
56	59	30	15	0.21	9144.56 B
63	66	30	15	0.225	9144.63 B
75	78	30	15	0.34	9144.75 B
90	93	30	15	0.31	9144.90 B
110	113	30	15	0.35	9144.110 B
125	128	30	15	0.35	$\mathbf{9 1 4 4 . 1 2 5 B}$
160	163	30	15	0.4	$\mathbf{9 1 4 4 . 1 6 0 B}$

$\varnothing_{\text {ext. pipe }}$	D	H	H_{1}	Kg	Code
ADJUSTABLE PIPE BRACKET G1"					
200	203	40	43	1.05	9144.200 B
250	253	40	43	1.25	9144.250 B
315	318	40	43	1.55	9144.315 B

\varnothing ext. pipe	D	H	H_{1}	Kg	Code
HDPE M16 BRACKET					
200	202	38	43	1.07	9149.200 B
250	254	38	43	1.32	9149.250 B
315	325	48	43	1.56	9149.315 B

HDPE pipe anchoring shells not required

Terrain FUZE Fittings

HDPE fittings

L	G	L_{1}	H	H_{1}	S	Kg	Code
GALVANISED STEEL FLANGE 1"							
80	M 10	52	30	13	2	0.06	9148.19 B
120	$1^{\prime \prime}$	82	40	20	4	0.165	9148.10 B
120	$1^{\prime \prime}$	90	40	48	4	0.250	9148.25 B

\varnothing ext. pipe	D	H	L_{1}	L_{2}	Kg	Code
HDPE M10 ANCHOR BRACKET						
40	43	30	120	75	0.23	9142.40B
50	53	30	120	75	0.24	9142.50B
56	59	30	120	75	0.255	9142.56B
63	66	30	120	75	0.27	9142.63B
75	78	30	120	75	0.28	9142.75B
90	93	30	120	75	0.33	9142.90B
110	113	30	120	75	0.345	9142.110B
125	128	30	120	75	0.32	9142.125B
160	163	30	120	75	0.435	9142.160B

$\varnothing_{\text {ext. pipe }}$	D	H	H_{1}	Kg	Code
HDPE 1/2" BRACKET					
40	43	30	15	0.2	9143.40 B
50	53	30	15	0.195	9143.50 B
56	59	30	15	0.21	9143.56 B
63	66	30	15	0.225	9143.63 B
75	78	30	15	0.34	9143.75 B
90	93	30	15	0.31	9143.90 B
110	113	30	15	0.35	$\mathbf{9 1 4 3 . 1 1 0 \mathrm { B }}$
125	128	30	15	0.35	9143.125 B
160	163	30	15	0.4	9143.160 B

HDPE ffttings							
\varnothing ext. pipe	D	L	S	Kg	Code		
HDPE PIPE ANCHORING SHELL							
40	43	30	1	0.035	9145.40B		
50	53	30	1	0.045	9145.50B		
56	59	30	1	0.05	9145.56B		
63	66	30	15	0.055	9145.63B		
75	78	30	15	0.065	9145.75B		
90	93	30	15	0.075	9145.90B	$\xrightarrow{s_{s}} \leftarrow-\downarrow$	
110	113	30	15	0.095	9145.110B		
125	128	30	15	0.105	9145.125B		
160	163	30	15	0.13	9145.160B		
200	203	30	15	0.3	9145.200B		
250	253	30	15	0.35	9145.250B		
315	318	30	15	0.4	9145.315B		

\varnothing ext. pipe	D	H	H_{1}	Kg	Code
ACOUSTIC PIPE BRACKET					
90	93	30	9	0.075	9146.90 B
110	113	30	9	0.095	9146.110 B
160	163	30	9	0.105	9146.160 B

L	L_{1}	H	H_{1}	Kg	Code
RUBBER	NSERT STRIP				
30	34	4	2	5.015	9104.40 B
40	45	6	4	1.580	9104.30 B

L	L_{1}	H	H_{1}	Kg	Code
ANTI VIBRATION RUBBER	INSERT FOR CLIPS	$(30$	METRE LENGTH)		
30	36	9	3	6.11	9105.30B

Terrain FUZE Tooling

Terrain FUZE Electrofusion Welding Machine

Product code: 9000.40315 .110 V

Supplied complete with yellow cable for pipe diameters up to and including 160 mm and blue cables for pipe diameters greater than 160 mm .

General Properties:

Supply voltage	110 V
Pipe diameters	$40-315 \mathrm{~mm}$
Supply current	10 A
Supply power	3500 W
Supply protection	Class 1 - earthed
Weight	15 Kg
Size	$410 \times 350 \times 200 \mathrm{~mm}$
Protection level	-150 C to +45 oC
Operating temp.	

Part number	Description	Pipe diameters
AW00-2003	Yellow replacement leads	Up to and including 160 mm
AW00-2004	Blue replacement leads	Above 160 mm

Terrain Fuze Plpe Cutter		
Part number	Description	Pipe diameters
9500.663 T	Pipe Cutter - Model T1	40 to 63 mm
9500.50140 T	Pipe Cutter - Model T2	50 to 140 mm
9500.100160 T	Pipe Cutter - Model T3	100 to 160 mm

General Properties:

Model T1

Weight:
Pipe diameters:
0.6 Kg
$40-63 \mathrm{~mm}$

Model T2

Weight:
Pipe diameters:
1.4 Kg
$50-140 \mathrm{~mm}$
Model T3
Weight:
Pipe diameters:
1.6 Kg
$100-160 \mathrm{~mm}$

Spare cutting wheels

Part number	Pipe diameters
$\mathbf{9 5 0 1 . 6 3 T}$	40 to 63 mm
$\mathbf{9 5 0 1 . 1 6 8 \mathrm { T }}$	50 to 160 mm

Terrain FUZE Pipe Chamfer Tool		
Part number	Description	Pipe diameters
$\mathbf{9 5 0 2 . 3 2 1 6 0 T}$	Pipe Chamfer Tool - Model 1	32 to 160 mm
9500.50140 T	Pipe Chamfer Tool - Model 2	40 to 250 mm

General Properties:

Model 1

Weight:	0.8 Kg
Pipe diameters:	$32-160 \mathrm{~mm}$

Model 2

Weight:	1.4 Kg
Pipe diameters:	$40-250 \mathrm{~mm}$

Notes

Information in this publication must not be reproduced in whole or in part without the permission of Polypipe. The contents are given in good faith and no warranty is given or implied in respect of such information. Polypipe reserve the right to amend this specification without prior notice and all transactions are subject to our standard Conditions of Sale. ©Polypipe and Dare registered Trademarks of Polypipe. All Polypipe products are protected by Design Right under CDPA 1988. Copyright © 2006 Polypipe. All rights reserved.

Terrain FUZE

Polypipe Building Services
New Hythe Business Park
College Road
Aylesford
Kent
ME20 7PJ
United Kingdom
Tel: +44 (0)1622 795200
Fax: +44 (0)1622 716796
commercialenquiries@polypipe.com
www.polypipe.com/building-services

[^0]: * Plastic pipe and fittings combined chemical resistance clarification table ISO/TR10358-1993

[^1]: * Plastic pipe and fittings combined chemical resistance clarification table ISO/TR10358-1993

[^2]: * Plastic pipe and fittings combined chemical resistance clarification table ISO/TR10358-1993

[^3]: * Plastic pipe and fittings combined chemical resistance clarification table ISO/TR10358-1993

[^4]: * Plastic pipe and fittings combined chemical resistance clarification table ISO/TR10358-1993

[^5]: Fig. 1 Pipe stacking

[^6]: The above coupling was welded twice without the coupling being left to cool down after the first weld. This has resulted in the pipe becoming distorted due to the excess heat.

[^7]: * Segmented

[^8]: * Welded

[^9]: * with protective plug for socket

