

TERRYL™ BIO-BASED NYLON: DEVELOPMENT,

PRODUCTION AND GROWTH POTENTIAL

PAUL J. CASWELL

PRESIDENT

JUNE, 2013

CATHA

INDUSTRIAL BIOTECH

AGENDA

Bio-plastics——driving the evolution of plastics

> A broad range of renewable nylons & monomers

Cathay Industrial Biotech Introduction

Bio-plastics Classification & History

INDUSTRIAL BIOTECH

Bio-plastics Production Capacity 2016 (by type)

Bioplastics production capacity 2016 (by type)

Bio-plastics——drive the evolution of plastics

> A broad range of renewable nylons & monomers

> Cathay Industrial Biotech Introduction

Cathay green nylon project

Bioprocess long chain diacids (LCDAs)

- Green Diamine (DN5)
- DN5-based Green nylon (PA5X)

Diacid Bioprocess Alternative to Chemical Synthesis

Standard Chemical Based Process

7

Cathay Diacid Factory

Broad Innovative Product Range

1,11-Undecanedioic Acid 1,12-Dodecanedioic Acid 1,13-Brassylic Acid 1,14-Tetradecanedioic Acid 1,15-Pentadecanedioic Acid 1,16-Hexadecanedioic Acid 1,18-Octadecanedioic Acid **1,5 Pentane Diamine**

HOOC(CH₂)₉COOH HOOC(CH₂)₁₀COOH **HOOC(CH₂)₁₁COOH** HOOC(CH₂)₁₂COOH $HOOC(CH_2)_{13}COOH$ HOOC(CH₂)₁₄COOH HOOC(CH₂)₁₆COOH $H_2N(CH_2)_5NH_2$

Cathay Major Markets

Engineering Plastics

Polyamide 5-6, 5-X, 6-12 & 6-14 **Adhesives & Performance Coatings Co-polyamide adhesives** Polyester adhesives and paints **Coatings GMA Powder Coat Cross-linker** Wheels **Anti Corrosion** Metal working fluids/Industrial cooling systems Synthetic Lubricants (Dibasic Esters) **High Performance/Automobiles Personal Care-Synthetic Musk & Ketone Fragrances** Household cleaners **Pharmaceutical Intermediates**

Diamine Bioprocess Alternative to Chemical Synthesis

Standard Chemical Process

11

Cathay Diamine Factory

Cathay C-Bio N5 Technical Data

	C-BIO N5	HMDA	
CAS No.	462-94-2	124-09-4	
% Renewable (ASTM D6866)	100%	0%	
Molecular weight	102	116	
Formula	H ₂ N-(CH ₂) ₅ -NH ₂	H ₂ N-(CH ₂) ₆ -NH ₂	
% NH2	31%	28%	
Appearance	clear liquid	clear solid	
Melting point (°C)	9	41	
pKa1	10.05	10.24	
рКа2	10.93	11.02	
pH 5% solution	12.6	12.4	

8% less diamine needed with C-Bio N5

Cathay TerrylTM PA5X

TERRYL[™] product line: current offering includes PA56, PA510, PA512, PA514 and copolymers

Nylons and Monomers

Terryl™	Renewable %	Diamine	Diacid
PA56	47%	5	6
PA510	100%	5	10
PA511	36%	5	11
PA512	34-100%	5	12
PA513	32-100%	5	13
PA612	up to 63%	6	12
PA514	31-100%	5	14
PA1012	46-100%	10	12
PA1212	up to 100%	12	12

Cathay TerrylTM PA56 Properties

	Test Method	Unit	PA66	PA6	Terryl™ PA56
Decomposition temperature	TGA	°C	424.7	426.3	424.3
Melting point	TGA	°C	261.1	217.9	254.0
Crystallization temperature	DSC	°C	222.3	193.7	213.5
Notched Izod Impact	ASTM D256	J/m	42.4	41.8	35.3
Tensile Modulus	ASTM D638	Мра	3087.2	3010.2	2940.1
Tensile Strength at Break	ASTM D638	Мра	75.4	72.4	69.8
Elongation at Break	ASTM D638	%	17.4	8.0	15.7
Flexural Modulus	ASTM D790	Мра	2851.8	2600.0	2870.1
Flexural Strength	ASTM D790	Мра	124.3	118.0	125.6
Density	ASTM D792	g/cm ³	1.14	1.13	1.13
% Renewable	ASTM D6866	%	0	0	47%

PA56 seems more similar to PA66 than PA6

Samples

Green Nylon in Test Products

Pure PA56

Electric part PA56 + 30% glass fiber

Bio-plastics——drive the evolution of plastics

> World's broadest range of renewable nylons

> Cathay Industrial Biotech Introduction

Company History

Our World Footprint

***** Sales Office

Warehouse

Cathay Shandong Province Production Facility (LCDA, DN5, GREEN NYLON)

Cathay Shandong Province Production Facility (bio-butanol, bio-acetone)

Summary

- Biopolymers are the fastest growing segment of the polymer industry
- Cathay's fermentation of long chain diacids has already replaced the chemical process as market leader by providing a "drop in" chemicals.
- New competitive biobased C5 diamine , CBIO N5 is available for new polyamides and adhesives.
- Terryl[™] PA5,6 has comparable performance properties to PA6,6.
- Terryl[™] PA5XX provides unique new performance properties for high performance polyamides.

Thank You

Also Available Biobutanol and Bioacetone

