
TESSE, Task-based Environment for
Scientific Simulation at Extreme Scale

https://www.iacs.stonybrook.edu/project/tesse

7th JLESC, July 18th, 2017

Damien Genet, Innovative Computing Laboratory,
University of Tennessee, Knoxville

• Outline

• TESSE project, main objectives

• MADNESS, TiledArray, PaRSEC

• Integration TiledArray+MADNESS and PaRSEC

• Ongoing work

Application-driven design of a general-purpose
and production quality software framework
addressing programmer productivity and
portable performance for advanced scientific
applications on massively-parallel, hybrid,
many-core systems of today and tomorrow.

TESSE
• Task-based environment for scientific simulation at extreme scale
• Stony Brook University

• Robert J. Harrison

• University of Tennessee
• George Bosilca and Thomas Herault

• Virginia Tech
• Eduard Valeev

NSF SSI project ACI-1450344 (SBU), ACI-1450262 (VT), ACI-1450300 (UTK)

Main project objectives
• Provide a robust and scalable directed acyclic graph (DAG)

execution model and intelligent runtime that can
• adapt to evolving numerical theories and HPC platforms,
• enhance scientific productivity

• Transform the scalability of key parts of existing numerical
simulation codes by
• extending domain specific languages (DSLs),
• utilizing the API of the TESSE runtime,
• furnishing a migration path for both applications and application programmers

• Demonstrate the feasibility through new science capabilities and
proof-of-principle science studies using TESSE-enabled versions of
MADNESS, MPQC (TiledArray) and other codes

• Outline

• TESSE project, main objectives

• MADNESS, TiledArray, PaRSEC

• Integration TiledArray+MADNESS and PaRSEC

• Ongoing work

MADNESS
• Provides a general purpose numerical environment for reliable and fast

scientific simulation
• Supports Chemistry, nuclear physics, atomic physics, material science,

nanoscience, climate, fusion, ...
• Highest-level DSL
• Provides a runtime environment based on futures
• Composes directly in terms of functions and operators with guaranteed

precision

<= This is a Latex rendering of a program to solve the Hartree-Fock equations
for the helium atom. The compiler outputs C++ code that without modification
can be compiled and run in parallel (threads+MPI)

• Evaluates functions on Haar basis, constant piecewise
• Uses local adaptive refinement until local error measurement is satisfied

• Facile path from laptop to exaflop

https://github.com/m-a-d-n-e-s-s/madness

TiledArray https://github.com/ValeevGroup/tiledarray/

• Generic massively parallel framework for dense and sparse tensor
algebra

• State of the art application to electronic structure of chemistry and
materials in Massively Parallel Quantum Chemistry (MPQC) package

• Prototyping platform for DOE Exascale Chemistry App
• Experimental use by research codes, e.g. ChronusQuantum (Xiaosong Li/UW)

• Reduces communication and load imbalance of sparse tensor algebra
using data-driven MADNESS runtime

• High-level DSL from math to C++ expressions:

Dense square GEMM on IBM Blue Gene/Q

Calvin, Lewis, Valeev, Proceedings of IA^3 Workshop (2015)

Co
nc

ep
ts

• Clear separation of concerns: compiler optimize
each task class, developer describe
dependencies between tasks, the runtime
orchestrate the dynamic execution

• Interface with the application developers
through specialized domain specific languages
(PTG/JDF, Python, insert_task, fork/join, …)

• Separate algorithms from data distribution
• Make control flow executions a relic

Ru
nt

im
e

• Portability layer for
heterogeneous architectures

• Scheduling policies adapt every
execution to the hardware &
ongoing system status

• Data movements between
producers and consumers are
inferred from dependencies.
Communications/computations
overlap naturally unfold

• Coherency protocols minimize
data movements

• Memory hierarchies (including
NVRAM and disk) integral part of
the scheduling decisions

PaRSEC: a generic runtime
system for asynchronous,

architecture aware scheduling
of fine-grained tasks on
distributed many-core

heterogeneous architectures

PaRSEC
• Extends Parallel Scheduling and

Execution Controller (PaRSEC) to larger
classes of dynamic (data-dependent)
computation; data distribution;
composition and execution of multiple
DAGs

• Addresses
• – heterogeneous hardware by runtime selection between

multiple implementations
• – heterogeneous data distribution by separate specification of

data and algorithm, and runtime management of data motion
• – heterogeneous task duration through lightweight scheduling

policies

• Automatic latency hiding enabled by
knowledge of the dataflow of the program
to enable all communications to occur in
the background of the execution itself

• Outline

• TESSE project, main objectives

• MADNESS, TiledArray, PaRSEC

• Integration TiledArray+MADNESS and PaRSEC

• Ongoing work

Concept

• Inputs and Outputs of existing PaRSEC DAGs (e.g.
DPLASMA) are presented to MADNESS as Futures

• acquire/scatter steps of the input/output tasks are
specialized to expose the task as a MADNESS Future

• Operations are made asynchronous:
• If a future is not set at acquire time, the task
• is unscheduled, and a callback to reschedule it is registered with

MADNESS when the future is set
• Get operation on output tasks is empty (does not allocate resource)

until the data is ready

• Use PaRSEC as a support for MADNESS ready-tasks
• Similar to providing another threading management support

• With benefits of thread binding, NUMA- aware schedulers
• Data movement, dependencies are still managed entirely by MADNESS
• Enables seamless integration of new PaRSEC-enabled components:

• Interaction between TTG (TESSE) and other MADNESS programming paradigms
• Interaction between DPLASMA (PaRSEC, Linera Algebra library) and MADNESS operations

PaRSEC side
Legacy data structure for matrices computation,
• Matrix data structure embeds tile size at the top level
• Tile sizes are unique per matrix (mb x nb), which makes

communication predictable and enable data mechanism for
recycling blocks of memory

• Tile sizes can be finely tuned for a machine

What has been done,
• Tile sizes go down the data structure hierarchy and are

embedded by the tile itself
• Each matrix has an irregular tiling along each dimension,

communication are all different
• Each tile will have a different size, impacting overall performance
• Tiles may be recursively tiled and the GEMM is resubmitted to

the runtime.
• Tiles are re-tiled until the resulting GEMMs completion times fall

around the average time for a PaRSEC task (~1ms)

Processor Grid

P

Q

Not a communication.
This happens on the
same node.

For k = 1 … KT

Communication

Com
m

unication

Summa algorithm in PaRSEC

Regular SUMMA with TiledArray data

SUMMA from the PaRSEC driver using TiledArray
testcase metadata.

4 nodes, each with 4 Nvidia P100 accelerators
GEMM peak for one card in double precision, 4Tflop/s

Performance as a function of the imbalance between
the ‘M’ dimension and the others.

Þ The regular GEMM is not fit for this problem
Þ Aggregation of tiles, reduces the parallelism,

improves single GEMM performance

PaRSEC side, modified broadcast
TA_cc_abcd, coupled cluster application is a hard problem,
Parameters UOCC = 300, NUOCC = 2 .. 16, OCC = 30, NOCC = 2 .. 5
• All the tiles are irregular;
• B is square (UOCC^2 x UOCC^2, tiled by NUOCC^2 on each dimension);
• A and C are wide but small (M dimension is OCC^2 tiled in

NOCC^2 pieces);

• Tiles on dimension M are really small (OCC / NOCC)
• Tiles of C and A are small, meaning that they are cheap to communicate
• compared to B.
• Regular GEMM or SUMMA algorithm localizing computation on C are not feat

for this problem.
• B should be fix, computation localized on B.
• A and C tiles move, we set up a reduction on C using a ring, targetting the

rank supposed to write C ”on disk”.

Results

TA_cc_abcd, coupled cluster application
Running with MADNESS and PaRSEC

OCC: 30
NOCC: 3
UOCC: 250
NUOCC: 5

9 nodes (arc):
20 cores Intel Xeon CPU E5-2650 v3

GEMM peak: 453Gflops/node

Trace of the previous result

• Outline

• TESSE project, main objectives

• MADNESS, TiledArray, PaRSEC

• Integration TiledArray+MADNESS and PaRSEC

• Ongoing work

Ongoing work, Collaborations
• TTG, Templated Task Graph

• C++ backend for incoming DSL
• Set of classes mapping on the runtime internal structure, that describes best a directed acyclic graph
Þ Development of a frontend to generate the DAG from a domain specific language

• Expand PaRSEC capabilities to support multiple data representation (low-
rank tiles) with operators to change representation, and dynamic algorithm
for block sparse.

• Larger runs of TiledArray / ta_cc_abcd coupled cluster

• Open Collaborations
• GEMM strategies for irregular, highly ill-shaped tiles
• Aggregation strategies that will not destroy performance

