

 HSC PROPRIETARY

Test Automation Tools for Mobile Applications: A brief

survey

1.0 EXECUTIVE SUMMARY

While UI test automation is well understood for the
desktop market, with a plethora of good tools available, the
mobile market is different. Due to platform fragmentation
and restrictions imposed by mobile device OSs, UI
automation is a harder problem to solve. Over time,
several tools have evolved that offer different mechanisms
for UI automation for mobile devices, each with certain
advantages and disadvantages.

The goal of this document is to compare and contrast
some of the popular tools against various dimensions to
help developers assess suitability of such tools for their
need. The document limits itself only to provide
information about the features / capabilities available in
different tools and does not describe in detail on how to
use that particular tool. Further, this document will only
focus on Android and iOS when comparing such tools.

CONTENTS

SECTION

1.0 EXECUTIVE SUMMARY 1

2.0 MOBILE TEST AUTOMATION
CHALLENGES ... 2

3.0 TYPES OFTEST AUTOMATION TOOLS 3

4.0 SIKULI ... 1

5.0 MONKEYRUNNER (FOR ANDROID).............. 5

6.0 UITESTAUTOMATION (FOR IOS) 8

7.0 TEST STUDIO (FOR IOS) 11

8.0 FROGLOGIC SQUISH 13

9.0 FRANK .. 15

10.0 FEATURE COMPARISION: SUMMARY 16

11.0 REFERENCES .. 17

 HSC PROPRIETARY

2.0 MOBILE TEST AUTOMATION CHALLENGES

Test automation is the use of software to automate and control the setting up of test preconditions,
execution of tests, test control and test reporting functions, with minimal user intervention. It is not
practical to try to automate everything, especially for mobile devices. However, leveraging Common Off
The Shelf (COTS) tools can greatly benefit the automation process.

The following are some of the reasons that make effective testing automation of mobile applications
challenging:

 A mobile device is much more restricted compared to desktops – the underlying OS typically

sandboxes each application and allows very limited inter process access, unless a phone is

‘rooted’.

 Controlling the UI navigation of a mobile device is harder – in addition to lack of control

mentioned in the previous point, mobile UIX response times are harder to predict than

desktop equivalents and hence makes screen grab based predictions of pass/fail harder.

 Mobile devices, by definition are not statically located entities – depending on where the

device is, the network may introduce many challenges that completely break down a prior

tested use-case

 The proliferation of different screen sizes and form factors make UI based testing more

challenging as well

However, mobile test automation provides many advantages, including:

 Improves testing efficiency

 Consistent and repeatable testing process

 Improved regression tests

 More tests can be run in less time - Improved coverage in shorter time

 24/7 operation - better resources utilization

 Human resources are free to perform advanced manual tests

 Simple reproduction of found defects

 HSC PROPRIETARY

3.0 TYPES OFTEST AUTOMATION TOOLS

Figure 1 describes the typical phases in mobile application testing and feature enhancement. Most mobile
applications today are developed in tandem with an Agile software development methodology which
involves very frequent interim releases. In such cases, implementing test automation can greatly help
reduce iterative time to market. To achieve test automation it is worthwhile to discuss various tools
available and the nature of testing they enable that could be aligned to the an Agile software delivery
process. This is discussed next.

Figure 1Mobile Application Development

3.1 GUI Test Automation Tools for iOS and Android

There are quite a few GUI test automation tools available in the market. We have broadly categorized
these tools as below:

1. Platform Specific Tools -. These are often provided by the Phone OS vendor (example, bundled by

Google as part of the SDK, or by Apple as part of Xcode) and have integrated support with the SDK
IDE. Platform specific tools are capable of testing the application both on the target device and on the
emulator. The more popular platform specific tools are:

 Instrument
1
–Instrument is a Mac application provided by Apple as part of Xcode (IDE for

IOS Application Development). A new feature called “Automation” was added in Xcode
4(onwards) to automate GUI testing of iOS Apps. The Automation instrument requires a basic
understanding of JavaScript for test scripts development. Apple provides a set of JavaScript
libraries that can be used to drive tests and simulate user interaction.

1
http://bit.ly/fZDCKT

 HSC PROPRIETARY

 Monkeyrunner
2
 - monkeyrunner provides an API for writing programs that can control an

Android device or emulator remotely. With monkeyrunner, you can write a Python program
that installs an Android application or test package, run it, send keystrokes to it, take
screenshots of its user interface, and store screenshots on the workstation. This provides a
powerful hook to integrate monkey runner with other Desktop based test tools to control the
device and compare the resulting screenshots with reference screenshots for automation
purposes. The monkeyrunner tool is primarily designed to test applications and devices at the
functional/framework level and for running unit test suites.

2. Generic Script Based Tools– These tools are typically developed by third parties and usually control
the execution of the application using scripts. These scripts can be written in a text editor or it can be
generated automatically by recording events from your application. Below are the list of few tools in
this category. In general, generic script based tools often need to integrate with some type of platform
specific tool to complete automation, where the platform specific tool is responsible for
communicating with the device, while the generic script based tool interfaces with it via an adaptor
(that either is provided by the third party, or needs to be developed). Some of the popular tools here
are:

 Sikuli
3
- Sikuli is a visual technology to automate and test graphical user interfaces (GUI)

using images (screenshots). Sikuli includes Sikuli Script, a visual scripting API for Jython, and
Sikuli IDE, an integrated development environment for writing visual scripts with screenshots
easily. Sikuli Script automates anything you see on the screen without internal API support.
You can programmatically control a web page, a Windows/Linux/Mac OS X desktop
application, or even an iPhone or android application running in a simulator or via VNC.

 Robot Framework
4
- Robot Framework is a generic test automation framework for

acceptance testing and acceptance test-driven development (ATDD). It has a easy-to-use
tabular test data syntax and utilizes a keyword-driven testing approach. Its testing capabilities
can be extended by test libraries implemented either with Python or Java, and users can
create new keywords from existing ones using the same syntax that is used for creating test
cases

3. Random Event Generator – There are many testing tools available, which test the stability of the

application by sending random events to it. These tools are not intended to run any particular test
case but quite often use to test stability of the application.

 UI/Application Exerciser Monkey
5
 - Monkey (not to be confused with Monkeyrunner above)

is a program that runs on an Android emulator on Android device and generates pseudo-
random streams of user events such as clicks, touches, or gestures, as well as a number of
system-level events. You can use Monkey to stress-test applications that you are developing,
in a random yet repeatable manner.

 Automation – By default iOS Automation template doesn't have any random event generator
but one can easily develop it utilizing the JavaScript and iOS automation API's. Using
automation JavaScript one can create custom modules which can provide all the capabilities
like touches, gestures, system-level events and add the capabilities to test the application for
custom designed tests suits.

4. Whitebox testing tools –Whitebox testing tools can examine the internal structure of the application

via control flow testing, data flow testing, and code branch testing. For white box testing, the test

2
http://developer.android.com/tools/help/monkeyrunner_concepts.html

3
http://www.sikuli.org/

4
http://code.google.com/p/robotframework/

5
http://developer.android.com/tools/help/monkey.html

http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://www.sikuli.org/
http://code.google.com/p/robotframework/
http://developer.android.com/tools/help/monkey.html

 HSC PROPRIETARY

developer needs to have access to the source code for application under test, or at the least be able
to link their test library to the Application Under Test (AUT) for a special build. Following are some of
the tools that can be used for whitebox testing of mobile applications:

 Android Instrumentation: Android instrumentation test framework is based on JUnit. It
allows JUnit to be used for testing of Classes/Method that does not use Android specific
APIs. For testing of Android specific Classes/Methods Android extensions of JUnit are used.

 Instruments: Instruments tool is part of the iOS application development IDE and allows
Whitebox testing of iOS applications. Frank and TestStudio tools also allow Whitebox testing.

5. Blackbox testing tools –Blackbox testing tools check the functionality of the application and not how

that functionality is achieved. Blackbox test tools do not require the test developer to have access to
application code or to know how the code is organized or how it internally works. Following are some
of the tools that can be used for Blackbox testing of mobile applications:

 Sikuli: As explained earlier, Sikuli uses a visual technology for test automation and does not
requires test developer to have any knowledge of the application code.

 Robotium
6
: Robotium is a test framework for Android that allows test developers to create

blackbox as well as white box test cases for Android applications.

Subsequent chapters will describe the applicability of some of these tools in more detail.

66

http://code.google.com/p/robotium/

 HSC PROPRIETARY

4.0 SIKULI

4.1 Introduction

Sikuli is a visual technology tool to automate testing of graphical user interfaces (GUI) using image
recognition.

7
Sikuli scripts can be used to take a snapshot of a GUI element and compare it with some

reference snapshot. Since Sikuli uses a visually driven approach (i.e. drag/drop images to test against), a
test script writer can write test cases without any knowledge of the target application code. Sikuli provides
an IDE that allows for rapid development of test scripts with application screen shots. It allows automation
of anything that is visible on a screen. Sikuli can be used to control a web page, a desktop application, an
android application or even an iPhone application running in a Simulator.

An application that satisfies the following criteria can be tested with Sikuli:

1. Application screen can be transferred to a desktop (Windows/Mac/Linux) where Sikuli is being
run.

2. User input to application can be transferred from desktop to application

Sikuli scripts are Jython scripts and can be extended to use other available Jython modules.

4.2 How Sikuli works

Sikuli uses images patterns to deliver mouse/keyboard events to appropriate GUI elements. Sikuli
consists of two main parts

1. Java.awt.Rotot: This component of Sikuli delivers user events to the desired location on screen.
2. C++ Engine: Sikuli’s core image processing engine is based on OpenCV (Open Source

Computer Vision). This component is responsible for searching image patterns on screen.

4.3 Sikuli for Mobile Platforms

7
http://www.sikuli.org/

 HSC PROPRIETARY

Sikuli runs on Windows/Linux/Mac platforms. To be able to test mobile applications with Sikuli, the mobile
phone/tablet screen should be transferred to Desktops where Sikuli is installed. Following are some of the
ways to test mobile applications with Sikuli:

4.3.1 iOS application testing with Sikuli

One of the possible way to test an iOS application with Sikuli is to run the iOS application in an
iPhone/iPad simulator within Xcode. The other possibility is to run a VNC server on the iOS device and
run a VNC client on the desktop to get the iPhone/iPad screen on the Desktop. This approach has a
disadvantage that it can only be used with a jail broken iOS device because VNC servers are not
available for non-jail broken devices.

4.3.2 Android application testing with Sikuli

For testing Android applications there are two possibilities to transfer the mobile phone/tablet screen to
the desktop.

 Screen Cast application which uses the Android Debug Bridge

 VNC server
The Screen cast application can transfer an Android phone/tablet screen to the desktop. However, it
requires the phone to be rooted to be able to pass keyboard/touch events to the phone. Most of the VNC
servers also require rooted Android phones. One VNC server, “VNCLite” available at Google Play does
not require a rooted phone and works well with Sikuli.

Note: For ICS and later releases, Screen cast application cannot pass type/touch event to phone even for
rooted phones.

4.4 Sample Script

Below is a sample Sikuli test script. This test script automates the test case to add a news category and
RSS news feed for Hughes Systique Pace

8
application. Following is the list of activities performed by the

test script
1. Click on Home button so that any running application is put in background
2. Click on application tray button and then launch “HSC Pace” Application
3. Wait for splash screen to finish
4. Click on button to add news category
5. Type the category name
6. Check for successful addition of category
7. Click on button to add RSS feed and then type RSS URL
8. Check for successful addition of URL

8
https://play.google.com/store/apps/details?id=com.hsc.android.pace

 HSC PROPRIETARY

 HSC PROPRIETARY

4.5 Pros

1. Does not require any knowledge of the application code/design
2. Easy and quick to automate
3. Scripts are not dependent on underlying platform
4. Can be used for testing any GUI
5. Sikuli provides a ‘fuzzy logic’ image comparison that can be adjusted during the testing process

to determine degree of match.

4.6 Cons
1. Its not easy to match images if their dimensions/locations change – Sikuli offers various primitives

but depending on nature of change, matching logic may or may not work.
2. Not suitable for performance testing of mobile application because mobile phone screen transfer

to Desktop using VNC/Screencast is not very smooth. This is actually a VNC/Screencast
limitation rather than Sikuli limitation.

 HSC PROPRIETARY

5.0 MONKEYRUNNER (FOR ANDROID)

5.1 Introduction

Monkeyrunner tool is part of AOSP (Android Open Source Project) which provides APIs for writing
programs that can control an Android device remotely. With MonkeyRunner, we can write python
programs that install an Android application, send keystrokes to it, take screenshots of its user interface,
and store screenshots on the Test Driver. The screen shots can then be compared with sample baseline
screenshots and checked for accuracy.

MonkeyRunner, in general, provides the facilities for functional testing, regression testing as well as ways
to extend the tool and write frameworks on top of it. MonkeyRunner provides access to three basic
classes MonkeyRunner, MonkeyDevice and MonkeyImage. These classes provide a set of APIs which
could be invoked from custom Python programs to create and execute test cases.

The Plug-in architecture of MonkeyRunner also allows users to add their own classes to the API.

5.2 Setup and Installation
Monkey Runner does not need to be installed separately as it is part of Android SDK.

5.3 Sample Script
The sample script below demonstrates a simple test case for the following actions:

1. Install an Android Application
2. Open a UI screen
3. Click on a button to open another screen
4. Take the UI snapshot
5. Compare it with the reference snapshot

Import Monkeyrunner Classes

fromcom.android.monkeyrunner import MonkeyRunner, MonkeyDevice

#This class is not documented

fromcom.android.monkeyrunner.easy import EasyMonkeyDevice

Connect to Android Device

mydevice = MonkeyRunner.waitForConnection()

Install the Android Application on connected device

device.installPackage(‘hscTest.apk’)

Package Name

package = ‘com.hsc.TestApp’

set variable with Activity Name

activity = 'com.hsc.TestApp.LandingPage'

sets the name of the component to start

runComponent = package + '/' + activity

sets the name of the component to start

runComponent = package + ‘/’ + activity

Runs the component

device.startActivity(component=runComponent)

 HSC PROPRIETARY

Wait for few seconds

MonkeyRunner.sleep(10)

Create instance of Easy device

easyDevice = EasyMonkeyDevice(device)

Presses the Start button on landing page

easyDevice.touch(By.id('id/startButton'), 'downAndUp')

Wait for few seconds

MonkeyRunner.sleep(5)

Takes a screenshot

result = device.takeSnapshot()

Writes the screenshot to a file

result.writeToFile(‘activityTwo.png’,’png’)

Wait for few seconds

MonkeyRunner.sleep(2)

#Load refernceshapshot from Disk

refImg = MonkeyRunner.loadImageFromFile(path='reference.png')

#Compare two snapshots. for 99% similarity

ifresult.sameAs (refImg, 99.0) :

print 'PASS

else :

print 'FAIL'

Note: Please note that com.android.monkeyrunner.easy class of monkeyrunner used in the code snippet
above is still (Android Jellybean) under development and may change without notice.

9

5.4 Pros

1. MonkeyRunner can be used for testing on an actual device without any need to export screens to
the desktop

2. Good documentation
3. MonkeyRunner can take screenshots for offline analysis. Screenshots can also be used for doing

automated image comparisons against reference images using an inbuilt functionality or using
external tools.

4. Monkeyrunner can be extended using a plug-in architecture
5. Monkeyrunner can be used to control multiple devices at the same time

5.5 Cons

1. Requires some knowledge of the application code; for example the user need to know the name
of the activities and views.

9
 Reference <Android Source Base>/sdk/monkeyrunner/src/com/android/monkeyrunner/easy/README

 HSC PROPRIETARY

2. MonkeyRunner is a low level API based tool – there is no GUI/IDE that is provided along with it
by default.

 HSC PROPRIETARY

6.0 UITESTAUTOMATION (FOR IOS)

Instruments is a performance, analysis, and testing tool for dynamically tracing and profiling OS X and
iOS code.
Automation is a type of template in Instruments, which allows performing testing of user interfaces on iOS
device/simulator. Testers can write test cases in JavaScript utilizing the UI Automation APIs (provided by
Apple) and automate them using the Automation template. It enables testers to quickly track regression
and performance issues. Automation comes with an in-line editor and it supports recording of
events/gestures in an easy manner. These scripts/tests can be used to not only automate a user's
interaction with the application, but can also contain “asserts” which can test if the application is behaving
according to the developer's expectations.UITestAutomation is a part of the Automation template that
Instruments invoke for the purpose of UI test automation.

6.1 Various Instruments tools

Instruments not only provides GUI Test automation tool but it has various other automation tools, which
help a developers perform various kind of tests related to memory leaks, graphics, animation, time
profiling and other areas as shown below:

6.2 Setup and Installation

Instruments is part of the Xcode developer tool suite and it come as a pre-bundled tool with Xcode 4.0+.

6.3 Automated GUI Testing

UI Automation is an instrument that uses JavaScript to drive interaction with an
application's User Interface. These scripts can be structured as a series of
tests to be run against the application. Based on the presence of certain UI
elements or their value (object id), these tests can be made to pass or fail.
Additionally, one can script repetitive tasks to run over a long duration, and then
log performance data using other instruments, such as memory usage or CPU
load.

There are however some limitations to the UI Automation instrument. If running against a device, that
device must be running iOS 4.0+ and it must have hardware capable of multitasking (this won't work on
iPhone 3G or the second generation iPod touch).

6.3.1 Writing GUI Test Scripts

To get started with UI Automation testing, one will need to launch Instruments and select the Automation
instrument. One can start with a blank document and based on the application need can write test scripts
in simple JavaScript.

 HSC PROPRIETARY

Below is a very simple GUI test script targeted for an iPad application. This script will generate random
touch events for the application.

6.3.2 Interacting with user interface elements

One can simulate user interaction with the application interface in a number of ways. If we have buttons
or other touch-responding elements, we can simulate a variety of touches and gestures. First, we need to
find the correct element. To do that, one can use manual logging and traversal of the UI elements as
described in the code fragment above, or one can do a more generic reference based on element type
and name.

For example, the following will tap the button named “Equation library”, which is accessible via the root
view in the application:

What's happening here is that we're accessing an array containing only the buttons within this view, then
finding the one with the name Equation library. Once we have that item, we use the tap() function to
simulate a user tapping on the button.

// #### Getting Element ####

rootView.buttons()["Equation library"].tap();

// #### Random Event Generator for iPad####

var width = 1024;

var height = 768;

varmTarget = UIATarget.localTarget();

// tap randomly on screen

vartapTest = function()

{

varyPos = Math.floor(Math.random()*width +1);

varxPos = Math.floor(Math.random()*height +1);

varimageRect = mTarget.frontMostApp().mainWindow().rect();

if(xPos> (imageRect.origin.x + imageRect.size.width))

xPos = imageRect.size.width/2;

if(yPos> (imageRect.origin.y + imageRect.size.height))

yPos = imageRect.size.height/2;

try{

mTarget.tap({x:xPos,y:yPos});

mTarget.delay(1.0); // waiting for 1 second

 }

catch(error){

UIALogger.logError(error);

mTarget.logElementTree();

UIALogger.logFail("Tapping failed @ x: " + xPos + ", y: "+yPos);

 }

mTarget.logElementTree(); //logs elements of the current Tree {mTarget}

}

tapTest();

 HSC PROPRIETARY

6.3.3 Supported Events/Gestures

Instruments supports the following events/gestures:.

 tap()

 tapAndHold(Number duration)

 doubleTap()

 twoFingerTap()

 touchWithOptions(Object options)

 dragInsideWithOptions(Object options)

 flickInsideWithOptions(Object options)

 scrollToVisible()

6.4 Pros and Cons

6.4.1 Pros

 JavaScript and UI Automation JavaScript API are fairly easy to learn.

 One can combine the various templates of Instruments with Automation.For example, start the
test script and add Leaks / Allocations / Core Data / Time Profiler / System Trace / etc. to test
other aspects of the application (memory usage, threads created, heap allocations, battery
usage, and many more) while automating them. No other testing tool provides such facilities
integrated together so conveniently.

 More closely linked to device and works with device and simulator.

 Supports all gestures (pinch, zoom, swipe, flick, long press, scroll, etc.)

 Apple community support (apart from forums like stackoverflow).

 Able to run native commands like ImageMagic shell command or other scripts to compare images
along with advanced image comparison algorithms.

6.4.2 Cons

 Requires linking with application to produce a special build

 Tester needs to write custom test script to get consolidated report of all test cases .

 HSC PROPRIETARY

7.0 TEST STUDIO (FOR IOS)

7.1 Introduction

Test Studio by Telerik (http://www.telerik.com/automated-testing-tools) allows developers to record and
execute automated tests in mobile applications and websites. Test Studio for iOS is an automated and
ad-hoc testing solution for iPhone, iPod Touch, and iPad. It does not require a jail broken device, and it
does not use image based element detection. Instead, Test Studio generates queries capable of finding
elements based on properties unique to them. In doing so, this allows tests to still be reliable if developers
change the location of an element on the screen, or if they change properties unrelated to the initial
generated query

7.2 Setup and Installation

Test Studio provides an iOS application to manage application testing. This iOS application is free and
can be downloaded from the Apple App store (https://itunes.apple.com/us/app/test-
studio/id523796105?mt=8). In order to test a native application, the user needs to download a testing
extension from www.telerik.com/ios-testing (it requires a free registration with Telerik)

Test Studio Application UI

7.3 How Test Studio for iOS works

To make a native app Test Studio-compatible, we do need to compile it with a test studio static library
(libTestStudioExtension.a) which allows the Test Studio App to interact with the target application on the
device. In the testing mode, one can create a series of validation sequences. These sequences consist of
interaction events, which one can record directly from the app, and verification tests, which we can
specify in the built-in action editor. These tests ensure that user interactions match our specified test
criteria.

One can also download a file bundle that contains an Xcode workspace, the Test Studio Extension, the
Test Studio app for the iOS Simulator, and a Demo Application

10
.

10

 https://www.telerik.com/login.aspx?ReturnUrl=%2fcommunity%2flicense-
agreement.aspx%3fpId%3d969

http://www.telerik.com/automated-testing-tools
https://itunes.apple.com/us/app/test-studio/id523796105?mt=8
https://itunes.apple.com/us/app/test-studio/id523796105?mt=8
http://www.telerik.com/ios-testing

 HSC PROPRIETARY

7.4 Pros and Cons

7.4.1 Pros

 Does not require scripting knowledge for test development. It allows test cases to be recorded
with required actions specified for each object. Tester can create test cases with just clicks and
points. It can test native as well as HTML5 applications.

 Provides a consolidated report for all the executed test cases.

 Detects elements by their properties not location/image

7.4.2 Cons

 Still in beta phase (as of Jan 2013), not very stable.

 Adding other plug-ins (Test Studio’s load and performance) is not possible as of now.

 Commercial tool

 HSC PROPRIETARY

8.0 FROGLOGIC SQUISH

8.1 Introduction

Froglogic provides wide range of cross-platform GUI test automation tools, which specifically support the
automation of tests based on QT. Froglogic has three main products:

I. Squish GUI Testing
II. Squish Central

III. Squish COCO

8.2 How Squish Works

Squish runs a small server (squishserver) that handles the communication between the Application Under
Test (AUT) and the test script. The “squishserver” starts the AUT and injects the Squish hook into it. The
hook is a small library that makes the AUT's lives running objects accessible and that can communicate
with the squish server. With the hook in place, the squish server can query AUT objects regarding their
state and can execute commands—all on behalf of the squish runner. The following diagram illustrates
how the individual Squish tools work together.

Squish supports QT based mobile application development. It also has support for native iOS application
testing.

8.3 iOS native Apps testing

Testing iOS native Apps on an actual iPhone or iPad device is less convenient as compared to simulator
testing. To do this one must add a Squish-specific wrapper library to Xcode, make a small modification to
the application's main function as written below:

 HSC PROPRIETARY

Once the main function is setup correctly for Squish, then the developer needs to add a static library
“libsquishioswrapper.a” into the Xcode project. This library is shipped with the Squish package and
can be found in the package's lib directory.

8.4 Pros and Cons

8.4.1 Pros

 Provides script less test creation interface to tester similar to TestStudio.

 It supports separation of test data from test cases, which allows reusability of test cases.

 It supports composite logging in XML format and has a log viewer module,

 Supports five scripting languages – JavaScript, Perl, Python, Tcl & Ruby.

 Source code shipped with the tool so that one can enhance the tool for any extra support.

8.4.2 Cons

 Commercial license

 iOS module doesn’t support memory leak info, performance or load testing.

#import<UIKit/UIKit.h>

#import "AppDelegate.h"

#if defined(SQUISH_TESTING) && !TARGET_IPHONE_SIMULATOR

externboolsquish_allowAttaching(unsigned short port);

#endif

int main(intargc, char *argv[]) {

NSAutoreleasePool * pool = [[NSAutoreleasePoolalloc] init];

#if defined(SQUISH_TESTING) && !TARGET_IPHONE_SIMULATOR

squish_allowAttaching(11233);

#endif

intretVal = UIApplicationMain(argc, argv,

nil,NSStringFromClass([AppDelegate class]));

 [pool release];

returnretVal;

}

 HSC PROPRIETARY

9.0 FRANK

9.1 Introduction

Frank is an open source UI testing tool for native iOS apps. Frank uses Cucumber
11

and
JSON through which once can write structured test/acceptance tests and have them
execute against the iOS application. Frank also includes a powerful “app inspector”
(called Symbiote) that one can use to get detailed information on the running application.

9.2 Sample Testscript

 Create a file named navigation.feature inside Frank/features/ and write the test case in the file:

 Create a step definition file called ‘navigation_steps.rb’ inside Frank/features/step_definitions/
write step definitions as follows:

 Execute cucumber: cucumber features/navigation.feature

9.3 Pros and Cons

9.3.1 Pros

 Comes with Symbiote, a free application inspector, which you can use to get detailed
information on your running app.

 Record video of test runs to show the application in action.

 Works for both device and simulator

 Clean CSS-like selector syntax, increases readability.
9.3.2 Cons

 Very limited support for gestures.

 HTML app support is missing.

 As compared to other testing tools, it requires modifications in configuration files to run on
real device.

11

http://cukes.info/

Then /^I should be on the Home screen$/ do

pending # express the regex above with the code you wish you had

end

When /^I navigate to "(.*?)"$/ do |arg1|

pending # express the regexp above with the code you wish you had

end

Then /^I should be on the Events screen$/ do

pending # express the regexp above with the code you wish you had

end

Feature: Navigating between screens

Scenario: Moving from the 'Home' screen to the 'Events' screen

Given I launch the app.

Then I should be on the Home screen

When I navigate to "Events"

Then I should be on the Events screen

http://testingwithfrank.com/coming_soon.html
http://cukes.info/

 HSC PROPRIETARY

10.0 FEATURE COMPARISION: SUMMARY

Based on the description above, this chapter provides a summary of how the different tools compare

Complete None

Tool Name Mobile

Platfor

m

Level of

Automation

Native App

Support

Web Apps

Support

Scripting

Skills

required

Test

Recording

Ease of

use

Whitebox

Testing

Blackbox

Testing

License

Instrument

Commercial.
Part of X-Code
tools

Sikuli

GPL 3

Monkeyru

nner

GPL3

UI

Exerciser

Monkey

GPL3

Squish

Commercial

Test Studio

Commercial

Frank

GPL3

 HSC PROPRIETARY

11.0 REFERENCES

 http://sikuli.org/

 http://groups.csail.mit.edu/uid/projects/sikuli/sikuli-uist2009.pdf

 http://developer.android.com/tools/index.html

 http://developer.android.com/tools/help/monkeyrunner_concepts.html

 http://developer.apple.com

 http://code.google.com/p/robotframework/

 http://docs.blackberry.com/en/developers/deliverables/11958/Event_injection_808536_11.jsp

 http://www.telerik.com/automated-testing-tools/support/documentation/mobile-
testing/deployment/uikit-testing.aspx

 http://www.telerik.com/automated-testing-tools

 http://doc.froglogic.com/squish/4.2/testing..iphone..apps.on.an.iphone.html

 http://www.sunsetlakesoftware.com/sites/default/files/Fall2010CourseNotes/ui%20automation.ht
ml

 http://forums.pragprog.com/forums/248/topics/10999

http://sikuli.org/
http://groups.csail.mit.edu/uid/projects/sikuli/sikuli-uist2009.pdf
http://developer.android.com/tools/index.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.apple.com/
http://code.google.com/p/robotframework/
http://docs.blackberry.com/en/developers/deliverables/11958/Event_injection_808536_11.jsp
http://www.telerik.com/automated-testing-tools/support/documentation/mobile-testing/deployment/uikit-testing.aspx
http://www.telerik.com/automated-testing-tools/support/documentation/mobile-testing/deployment/uikit-testing.aspx
http://www.telerik.com/automated-testing-tools
http://doc.froglogic.com/squish/4.2/testing..iphone..apps.on.an.iphone.html
http://www.sunsetlakesoftware.com/sites/default/files/Fall2010CourseNotes/ui%20automation.html
http://www.sunsetlakesoftware.com/sites/default/files/Fall2010CourseNotes/ui%20automation.html
http://forums.pragprog.com/forums/248/topics/10999

 HSC PROPRIETARY

PROPRIETARY NOTICE

All rights reserved. This publication and its contents are proprietary to Hughes Systique Corporation. No part
of this publication may be reproduced in any form or by any means without the written permission of Hughes

Systique Corporation, 15245 Shady Grove Road, Suite 330, Rockville, MD 20850.

Copyright © 2013 Hughes Systique Corporation

 HSC PROPRIETARY

APPENDIX A ABOUT HUGHES SYSTIQUE CORPORATION

HUGHES Systique Corporation (HSC), part of the HUGHES group of companies, is a leading Consulting
and Software company focused on Communications and Automotive Telematics. HSC is headquartered
in Rockville, Maryland USA with its development centre in Gurgaon, India.

SERVICES OFFERED:

Technology Consulting& Architecture: Leverage extensive knowledge and experience of our domain
experts to define product requirements, validate technology plans, and provide network level consulting
services and deployment of several successful products from conceptualization to market delivery.

Development & Maintenance Services: We can help you design, develop and maintain software for
diverse areas in the communication industry. We have a well-defined software development process,
comprising of complete SDLC from requirement analysis to the deployment and post production support.

Testing :We have extensive experience in testing methodologies and processes and offer Performance
testing (with bench marking metrics), Protocol testing, Conformance testing, Stress testing, White-box
and black-box testing, Regression testing and Interoperability testing to our clients

System Integration : As system integrators of choice HSC works with global names to architect,
integrate, deploy and manage their suite of OSS, BSS, VAS and IN in wireless (VoIP & IMS), wireline and
hybrid networks.: NMS, Service Management & Provisioning .

DOMAIN EXPERTISE:

Terminals

 Terminal Platforms :iPhone, Android, Symbian, Windows CE/Mobile, BREW, Palm OS

 Middleware Experience & Applications :J2ME , IMS Client & OMA PoC,
Access

 Wired Access : PON & DSL, IP-DSLAM,

 Wireless Access :WLAN/WiMAX / LTE, UMTS, 2.5G, 2G ,Satellite Communication
Core Network

 IMS/3GPP ,IPTV , SBC, Interworking , Switching solutions, VoIP
Applications

 Technologies :C, Java/J2ME, C++, Flash/lite, SIP, Presence, Location, AJAX/Mash
 Middleware: GlassFish, BEA, JBOSS, WebSphere, Tomcat, Apache etc.

Management & Back Office:

 Billing &OSS , Knowledge of COTS products , Mediation, CRM

 Network Management :NM Protocols, Java technologies,, Knowledge of COTS NM products,
FCAPS, Security & Authentication

Platforms

 Embedded: Design, Development and Porting - RTOS, Device Drivers, Communications /
Switching devices, Infrastructure components. Usage and Understanding of Debugging tools.

 FPGA &DSP : Design, System Prototyping. Re-engineering, System Verification, Testing
Automotive Telematics

 In Car unit (ECU) software design with CAN B & CAN C

 Telematics Network Design (CDMA, GSM, GPRS/UMTS)

BENEFITS:

 Reduced Time to market :Complement your existing skills, Experience in development-to-
deployment in complex communication systems, with key resources available at all times

 HSC PROPRIETARY

 Stretch your R&D dollars :Best Shore” strategy to outsourcing, World class processes, Insulate
from resource fluctuations

CONTACT INFORMATION:

phone: +1.301.527.1629

fax: +1.301.527.1690

email: whitepaper@hsc.com

web: www.hsc.com

mailto:whitepaper@hsc.com

