Test Bank—Chapter One (Data Representation)

Multiple Choice Questions

1. Which of the following Boolean operations produces the output 1 for the fewest number of input patterns?				
A. AND	B. OR	C. XOR		
ANSWER: A				
2. Which of the following	best describes the	NOR operation?		
A. An XOR followed by a NOT C. A NOT followed by a NOT		B. An OR followed by a NOT C. An AND followed by a NOT		
ANSWER: B				
3. Which of the following	bit patterns canno	ot be expressed in	hexadecimal notation?	
A. 11111111	B. 1001	C. 110011	D. 10000000001	
ANSWER: C				
4. Which of the following	is the binary repre	esentation of 4 5/8	?	
A. 100.11	B. 10.011	C. 110.101	D. 100.101	
ANSWER: D				
5. Which of the following bit patterns represents the value 5 in two's complement notation?				
A. 00011010	B. 11111011	C. 00000101	D. 11111011	
ANSWER: C				
6. Which of the following bit patterns represents the value -5 in two's complement notation?				
A. 00011010	B. 11111011	C. 00000101	D. 11111011	
ANSWER: D				
7. What is the result of the	e following addition	on problem (using	two's compliment notation)?	
00001111 + 10101010				
A. 011000101	B. 10111001	C. 01010101	D. 10110101	
ANSWER: B				
8. What is the result of the following subtraction problem (using two's compliment notation)?				
00001111				

A. 011000101	B. 10111001	C. 01010101	D. 10110101
ANSWER: A			
9. In which of the follow occur?	ving addition prob	lems (using two's	complement notation) does an overflow err
A. 0011 + 1010	B. 0100 + 0100	C. 1100 + 1100	
ANSWER: B			
10. Which of the follow	ing representation	s in two's comple	ment notation represents the largest value?
A. 00000010	B. 11111111	C. 00000001	D. 11111110
ANSWER: A			
11. Which of the follow	ing representation	s in two's comple	ment notation represents the smallest value?
A. 00000010	B. 11111111	C. 00000001	D. 11111100
ANSWER: D			
12. Which of the follow in two's complement no		epresented in hexa	decimal notation) represents a negative nun
A. 7F	B. 55	C. A6	D. 08
ANSWER: C			
13. Which of the follow in two's complement no		presented in hexa	decimal notation) represents a positive num
A. 7F	B. F7	C. A8	D. 8A
ANSWER: A			
	ant bit is the sign b	it, the next three b	when interpreted using floating-point format bits represent the exponent field in excess
A1 1/2	B. 1 1/2	C3/8	D. 3/8
ANSWER: B			
	e sign bit, the next		ely using a floating-point format in which the exponent field in excess notation, and
A. 2 1/2	B. 3/16	C. 7	D. 61/4
ANSWER: D			

16. Which of the following bit-patterns represents the smallest value using the floating-point format in which the most significant bit is the sign bit, the next three bits represent the exponent field in excess notation, and the last four bits represent the mantissa?			
A. 01001000 B. 01011000 C. 00101000 D. 01111000			
ANSWER: C			
17. Which of the following data storage systems provides the most efficient random access to individual data items?			
A. Main memory B. Magnetic disk C. CDs/DVDs D. Flash drives			
ANSWER: A			
18. Which of the following storage systems is best suited for storing and retrieving long strings of data the are processed in their sequential order?	at		
A. Main memory B. Magnetic disk C. CDs/DVDs			
ANSWER: C			
19. Which of the following mass storage system does not require physical motion?			
A. Magnetic tape B. Magnetic disk C. DVDs D. Flash drives			
ANSWER: D			
20. Assuming that each of the following bit patterns originally had even parity, which one contains an error?			
A. 100110100 B. 110000011 C. 000011000 D. 100001001			
ANSWER: D			
21. How many errors per pattern could be corrected when using an error-correcting code in which any two code patterns differ by a Hamming distance of 8?			
A. 3 B. 4 C. 5 D. 6			
ANSWER: A			
22. Which of the following is a possible LZW compression of the message "xyz xyz xyz xyz"?			
A. 1234 B. 1234545 C. 232 D. 12			
ANSWER: B			
23. How many different symbols can be encoded using Unicode?			
A. 256 B. 4,096 C. 65,536 D. 1,046,476			
ANSWER: C			
24. Which of the following systems is least efficient when encoding numeric values?			

ANSWER: C				
25. Which of the follow	ving is a means of	encoding music?		
A. ASCII	B. MIDI	C. JPEG	D. GIF	
ANSWER: B				
	256, thereby enal	oling each pixel in	tation of an image by limiting an image to be represented by ts the pixel's color?	
A. ASCII	B. MPEG	C. JPEG	D. GIF	
ANSWER: D				
Fill-in-the-blank/S	hort-answer (Questions		
1. A computer's main n Each memory cell is ide			ry cells, each of which contain e cell's	ıs bits.
ANSWER: eight, addre	ess			
2. Represent the bit patr	tern 10110100100	11111 in hexadeci	mal notation.	
ANSWER: B49F				
3. A7DF is the hexadec	imal representation	n for what bit patt	ern?	
	-			
ANSWER: 1010 0111	1101 1111			
4. How many different	bit patterns can bε	formed if each m	ust consist of exactly 6 bits?	
	_			
ANSWER: 64				
5. How many bits are n	eeded to represent	1024 different bit	patterns?	
	-			
ANSWER: 10				
6. Translate each of the	following binary	representations in	to its equivalent base ten repr	esentation.
A. 1100				

B. Excess notationD. Floating-point notation

A. Two's complement notation C. ASCII

B. 10.011	
C. 0.01	
D. 10001	
ANSWER: A. 12 B. 2	3/8 C. 1/4 D. 17
7. Rewrite each of the fo	ollowing values (represented in base ten notation) in binary notation.
A. 7	
B. 23	
C. 2 1/4	
D. 5/8	
ANSWER: A. 111 B.	10111 C. 10.01 D. 0.101
8. If the patterns 101.11 their sum?	and 1.011 represent values in binary notation, what is the binary representation of
ANSWER: 111.001	
9. Using a two's comple represent the value 3.	ment notation system in which each value is represented by a pattern of six bits,
ANSWER: 000011	
10. Using a two's comprepresent the value -3.	lement notation system in which each value is represented by a pattern of six bits,
ANSWER: 111101	
11. What is the largest peach value is represented	positive integer that can be represented in a two's complement system in which d by eight bits?
ANSWER: 127 (represe	ented by 01111111)
12. What is the smalles each value is represented	t negative integer that can be represented in a two's complement system in which d by eight bits?
ANSWER: -128 (repres	sented by 10000000)

13. In a two's complement s	system, what value is rep	resented by the pattern 11111111111111001?
ANSWER: -7		
14. When using two's comp	element notation, what bi	t pattern represents the negation of 01101010?
ANSWER: 10010110		
15. What value is represented	ed by each of the following	ng patterns in excess notation?
A. 10000	В. 0110	C. 1011
ANSWER: A. 0, B2, C. 3		
	in excess notation, and t	e most significant bit is the sign bit, the next three bits he last four bits represent the mantissa, write the bit zed form.)
ANSWER: 01011110		
	ost significant bit is the s	in a floating-point system in which each value is ign bit, the next three bits represent the exponent field e mantissa?
ANSWER: 7 1/2 (represente	ed as 01111111)	
system in which each value	is encoded by a byte who	t be solved accurately when using a floating-point ose most significant bit is the sign bit, the next three and the last four bits represent the mantissa?
A. 2 1/2 + 1 3/8	B. 3 1/2 + 4 1/2	C. 7 + 3/4
ANSWER: A, B, and C		
19. The following is an erro least three.	r-correcting code in which	ch any two patterns differ by a Hamming distance of at
Symbol	Representation	
A	000000	
B C	001111 010011	
D	011100	
E	100110	
F	101001	
G	110101	
Н	111010	

Decode each of the fo	ollowing patter	rns				
010011		101010		011000	10	1101
ANSWER: C, H, D, I	₹					
20. How many errors which each code patter						
ANSWER: 3						
21. The following is a patterns in which an e			encoded so	that each patter	n had odd parit	y. Circle the
101110101	111110000	100010010	00000000	0 111111111	010001000	100111101
ANSWER: First, four	rth, sixth, and s					
22. Data compression	, avoids	s repeating long	g strings of t	the same data it	em. Another, ca	alled
encoding each block is patterns to encode fre						
ANSWER: Run-length	th encoding, re	elative encoding	g, and freque	ency-dependent	encoding.	

Vocabulary (Matching) Questions

Term

The following is a list of terms from the chapter along with descriptive phrases that can be used to produce questions (depending on the topics covered in your course) in which the students are ask to match phrases and terms. An example would be a question of the form, "In the blank next to each phrase, write the term from the following list that is best described by the phrase."

Descriptive Phrase

bit	Binary digit
Boolean operation	AND, OR, XOR, NOT
address	A numeric value used to identify a memory cell
hexadecimal notation	An efficient way of representing bit patterns
track	A circle on the surface of disk platter on which data is written/read
sector	A segment of a track in a mass storage system
cylinder	A set of tracks at a given position of the read/write heads
seek time	The time required to move the read/write heads from one track to another
latency time	The average amount of time required for the desired data to rotate around to the read/write head
transfer rate	The rate at which data can be written to or read from a device
zoned-bit recording	A means of increasing the storage capacity of a magnetic disk system
buffer	A storage area used to hold data on a temporary basis, often as a step
	in transferring the data from one device to another
ISO	An international organization for establishing standards
ANSI	A major standardization organization within the United States

ASCII A system developed by the American Standards Institute for encoding

text.

flip-flop A digital circuit capable of holding a single digit

two's complement notation A means of encoding whole numbers

floating-point notation A means of encoding numeric values that may involve fractions truncation An error that may occur when using floating-point notation

pixel A small part of an image

GIF A means of compressing an image file by restricting the number of

colors available

JPEG A means of compressing images by blurring the boundaries between

different colors while maintaining all brightness information

Unicode A means of encoding text in which each symbol is represented by 16

Bits

SD card An application of flash technology

Flash memory A mass storage device that traps electrons in tiny chambers of silicon

dioxide

LZW An example of adaptive dictionary encoding

MIDI A means of encoding music in terms of notes and instruments rather

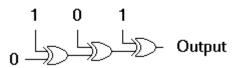
than actual audio

Key field A part of a logical record in a file used to identify the record.

VLSI A means of constructing complex circuitry in a very small space.

General Format Questions

1. Describe how a computer can produce an incorrect answer when performing numerical computations even though it has not malfunctioned.

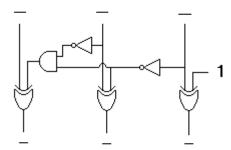

ANSWER: Most students will probably refer to overflow and truncation errors.

2. Describe how the concept of Hamming distance is used to produce an error-correcting code.

ANSWER: By designing a code in which each pattern has a Hamming distance of n from any other pattern, patterns with fewer than n/2 errors can be corrected by replacing them with the code pattern that is closest.

3. a. What is the output of the circuit below?

Input Pattern



b. In general, how does the three-bit input pattern across the top of the diagram relate to the circuit's output?

ANSWER: a. 0 b. The output is 0 if the input parity is odd; the output is 1 if the input parity is even.

4. If the input and output bit patterns in the circuit below are interpreted as binary representations of numeric values, what operation does the circuit perform?

Input Pattern

Output Pattern

ANSWER: The circuit subtracts one (except for the case of the input being 000).

5. Explain why such terms as kilo, mega, and giga have acquired double meanings.

ANSWER: The prefixes kilo, mega, and giga are used traditionally to refer to units measured in powers of thousand. However, in reference to memory capacities these prefixes are useed to reference units that are powers of two. For example, one kilobyte is 2^{10} , which is 1024 bytes.

6. Convert the following addition problem into two's complement notation (using four bits per value), perform the addition, convert the answer back into base ten notation, and explain the results.

6 + 3

ANSWER: In two's complement notation the problem is to add 0110 and 0011. The sum is 1001 which translates to -7. This answer is incorrect due to overflow.

- 7. Under what condition is each of the following data compression techniques most effective?
 - a. Run-length encoding
 - b. Relative encoding

ANSWER: a. Compresses most when data consists of long strings of the same entry.

- b. Compresses most when each block of data differs little from the previous block.
- 8. What is frequency-dependent encoding?

ANSWER: Frequency-dependent encoding is an encoding system that uses short bit patterns to represent data items that occur most often and longer patterns to represent less frequently occurring items. The result is that entire blocks of data can be represented in less space than would be required if each data item were represented by the same size bit pattern.

9. Construct the entire two's complement scale in which each value is represented by three bits.

ANSWER: 3 011

2 010

1 001

0 000

-1 111

-2 110

-3 101

-4 100

10. To what does the term "normalized form" refer in the context of floating-point notation?

ANSWER: Normalized form refers to a standard for positioning the bit pattern within the mantissa field. Many values can be represented in floating-point notation by different bit patterns, only one of which is in normalized form. Hence, restricting representations to normalized form assures that each value is represented by a unique pattern.

11. Explain why the final version of the dictionary need not be transmitted with a message encoded using LZW compression.

ANSWER: The dictionary can be constructed during decompression in the same way it was constructed during compression.

12. Among the Boolean operations AND, OR, EXCLUSIVE OR, and NOT, which is least like the others? Explain your answer.

ANSWER: There is not really a right or wrong answer. The student's explanation is the most important part. Most students will probably answer NOT because it has only one input whereas the others have two.

13. If a term paper consisted 42 pages, each containing 40 lines of 100 symbols each (counting each space as a symbol), was to be encoded using Unicode, how many bytes of storage space would be required?

ANSWER: 336,000 bytes (168,000 symbols times 2 bytes per symbol)

14. Explain why adding only a few characters to a text file may increase the file's size by several hundred bytes and at other times may not increase the file's size at all.

ANSWER: File space is allocated in terms of physical records, each of which is several hundred bytes in size. Thus, the size of a file grows by physical record units rather than by byte size units.

15. In a two's complement system, what value can be added to any other value without causing an overflow? How many values in the system have this property? Explain your answer.

ANSWER: Adding the value 0 to any other value will not produce an overflow. However, if m is the largest positive integer that can be represented in the system, then any value in the range 1 to m will produce an overflow when added to m, and any value in the range -1 to -(m+1) will produce an overflow when added to -(m+1).

16. Why is the rightmost bit in a string of bits considered to be the least significant bit?

ANSWER: It is the least significant digit in a number. A change to this bit will have the least effect on the value of the number. A change to any other bit will have a greater effect on the value of the number.