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1 Acronyms 
 

ABM �Antenna Bus Master� A real-time computer located at the antenna that is 
responsible for the control and monitor of all hardware devices at the 
antenna.  There is an identical copy of this computer at every antenna, each 
running identical software. 

ACC �Array Control Computer� The computer located at the central control area 
and responsible for coordinating all instrument activities.  It is an ordinary 
Unix workstation. 

ACE �Adaptive Communication Environment� An open-source, object-oriented 
(OO), C++ framework that implements core design patterns for concurrent 
communication software across a range of OS platforms. 
(http://www.cs.wustl.edu/~schmidt/ACE.html) 

ACS �ALMA Common Software� ACS is the kernel software located between 
the application (on top) and other commercial and shared software over the 
operating systems.  It supplies certain services such as messaging, logging, 
error and alarm handling, configuration database, etc. 

ACU �Antenna Control Unit� The system provided by the antenna manufacturer 
through which the antenna is monitored and controlled.  The ACU primary 
access is through a CAN bus. 

ALMA �Atacama Large Millimeter Array� A connected interferometer telescope 
array expected to consist of 64 millimeter-wave antennas each 12-meters 
in diameter. (http://www.alma.nrao.edu) 

AMB ALMA Monitor and Control Bus (ALMA M&C Bus) 

AOS ALMA Observing System 

API �Application Programming Interface� 

ARTM �Array Real Time Machine� A real-time computer located at the central 
control area and responsible for the control and monitor of certain 
hardware (LO reference generation, fiber optic control, etc.) located only at 
the array center. Its function may be combined with ACC or CCC. 
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CCC �Correlator Control Computer� A real-time computer located at the central 
control area and responsible for the control and monitor of the correlator. 

CLIC CLIC Continuum and Line Interferometer Calibration 

CORBA �Common Object Request Broker Architecture� CORBA is an emerging 
open distributed object computing infrastructure being standardized by 
OMG.  CORBA automates many common network programming tasks 
such as object registration, location, and activation; request de-
multiplexing; framing and error-handling; parameter marshalling and de-
marshalling; and operation dispatching. 

COTS Commercial off the shelf 

CRG Central Reference Generator 

FITS �Flexible Image Transport Format� FITS is the data format most 
commonly used within the astronomy community. FITS is primarily 
designed to store scientific data sets consisting of multidimensional arrays 
(1-D spectra, 2-D images or 3-D data cubes) and 2-dimensional tables 
containing rows and columns of data. (http://fits.gsfc.nasa.gov/) 

GPIB General Purpose Interface Bus 

GPS Global Positioning System 

GBT Green Bank Telescope 

HLA High Level Analysis 

IDL �Interface Definition Language� IDL is part of the CORBA standard and 
permits interfaces to objects to be defined independent of an object�s 
implementation.  IDL is used as input to an IDL compiler that produces 
source code that can be compiled and linked with an object implementation 
and its clients. 

IRAM "Institut de RadioAstronomie Millimétrique" (French) IRAM and other 
agencies are building ALMA. (http://iram.fr/) 

LCU Local Control Unit (for ALMA, a VME crate) 

M&C or MC Monitor and Control 

NTP Network Time Protocol 

ODBC Open Database Connectivity (TBC) 

OTC Optical Telescope Controller 

PPC �PowerPC� A range of processors developed by an alliance of Apple, IBM 
and Motorola.  For ALMA it is the processor embedded on a SBC. 

PPS Pulse Per Second (often 1PPS) 

PTC Pointing Computer 

QoS Quality of Service 

RDBMS Relational Database Management System 

TAI �International Atomic Time� TAI is a laboratory timescale.  Though TAI 
shares the same second as UTC, UTC noticeably separates the two 
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timescales in epoch because of the build-up of leap seconds. At the time of 
this writing UTC lags about half a minute behind TAI. 

TBC To Be Confirmed 

TBD To Be Determined 

TICS Test Interferometer Control Software 

UML �Unified Modeling Language� The UML is a language for specifying, 
constructing, visualizing, and documenting the artifacts of a software-
intensive system. 

UTC �Universal Time Coordinated� UTC is the basis of civil timekeeping. Most 
time zones differ from UTC by an integer number of hours, though a few 
differ by n+0.5 hours. The UTC second is the same as the TAI second. In 
the long term, UTC keeps in step with the Sun. It does so even though the 
Earth's rotation is slightly variable by occasionally introducing a leap 
second. 

UVW Coordinates of an interferometer sample in the Fourier plane. 

VLA Very Large Array (http://www.aoc.nrao.edu/vla/) 

VLT �Very Large Telescope� (http://www.eso.org/projects/vlt/) 

VME Versa Module Europa.� VME is a computer backplane bus system that 
makes use of the Eurocard standard. It is defined by the IEEE 1014-1987 
standard.   

2 Introduction and Summary 
Brian Glendenning 
Last Updated: 2001-10-05 
This document describes the design concept of the control software for the ALMA test 
interferometer. The test interferometer consists of the initial two antennas from the European, 
Japanese, and US antenna vendors along with the associated first generation hardware and 
software. It will be located at the VLA site.  

While much of the test interferometer software may be reused for the prototype 
interferometer (i.e., at the VLA site but with the next-generation (prototype) correlator and 
electronics) and final ALMA array, that design will be the subject of follow-on documents. 

 
Table 2-1 Different ALMA Development Stages 

What Where Major Features 
Test interferometer VLA Prototype antennas, test correlator, evaluation 

receivers 

Prototype interferometer VLA Prototype antennas, prototype correlator, 
prototype receivers 

ALMA Array Chile Production antennas, production electronics, 
baseline and future correlator. 
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For the test interferometer, we must be in a position to carry out the tests required to evaluate 
the antenna and other hardware. Thus, our principle goal is to have sufficient software to 
enable the commissioning plan to be carried out. It must be emphasized that while 
astronomical observations will be required to evaluate the hardware, astronomy per se is not a 
goal of the test system. 

In general, we would describe this design as conventional in the sense that designs like it 
have been implemented for other telescope control systems (e.g., the GBT and VLT). There 
are no drivers that we know of that would require us to come up with a radically new design. 
We document our design using UML, an industry-standard object-oriented design language. 
We rely on CORBA to provide the required remote execution and coordination facilities. 

This design should of course be validated against our requirements, which are described by 
Brooks et. al. (2001). Fundamentally the role of the control software is to take high-level 
observing commands from scripts and GUIs, to turn these high-level commands into detailed 
control of the test interferometer, finally producing monitor archive data for engineering data 
analysis, and �science� data files (typically in FITS format) to be used for holographic and 
astronomical calibration of the instrument. In brief, the scope of the control software is �input 
script to FITS.� In particular, data processing is not an element of the control software. 

Almost all devices will be attached to a CAN bus operating in a master/slave (polled) fashion. 
The bus will operate at 1Mbps and is capable of at least 2000 polled operations per second 
(up to 8 bytes of data per transaction). Devices on the CAN bus will be responsible for 
implementing a simple in-house protocol to map CAN message IDs to internal device 
addresses (Brooks and D�Addario, 2001). A few devices will have other connections, in 
particular Ethernet and GPIB. CORBA will be capable of at least 1000 remote method 
invocations per second.1 

There are multiple real-time computers in the system. The CAN buses are attached to 
(mastered by) a PPC VME based computer running the VxWorks real-time operating system. 
There is one ALMA PPC system at each antenna, and two at the center. One central system is 
used to master the central CAN devices. The other system is embedded within the test 
correlator, which does not have any CAN bus.  

Centrally there is a general-purpose computer running Linux that is the overall master for the 
system, which is known as the Array Control Computer (ACC). There are also some ancillary 
systems in the center for, e.g., operators to sit at. 

The antenna-based systems are connected to the central systems via point-to-point Gigabit 
Ethernet network connections. COTS solutions for Gigabit Ethernet are available that support 
40km fiber runs and quality of service (QoS) guarantees. The central computers are 
interconnected with 100Mb switched Ethernet on a network segregated from the rest of the 
networks at the VLA.  

Logically, the software is partitioned so that control flows in a master-slave fashion from a 
central executive who controls high-level (�composite�) software devices that in turn control 
their constituent parts. The lowest level software devices are referred to as device controllers, 
and represent a proxy for the actual hardware � that is, they communicate with the hardware. 
Data � monitor and backend � is collected from the devices by a collecting process in the 

                                                      
1 Fewer CORBA messages than CAN messages are needed because high level commands will be 
turned into several control point accesses, and because monitor points are buffered in the ABM. 
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real-time computer attached to the hardware, and buffered up for distribution via a 
publish/subscribe mechanism to consumers of the data, which include the processes that 
format and archive the data. The software is distributed amongst computers so that only the 
device controllers and software directly concerned with low-level device activities are on the 
local real-time computer. Higher-level software entities are concentrated on the ACC. 

The entire suite of software required for normal observations is called the ALMA Observing 
System (AOS). This encompasses more than just the control software. For example, it 
includes the software required to calculate various calibrations needed for routine operation 
of the array, such as pointing calibrations. The �executive� is the software process that 
initiates and provides for high-level oversight between the major subsystems of AOS. For the 
test interferometer, these are principally the control software and telescope calibration 
software. 

The principal observing input interface to the system will be with commands in the Python 
scripting language. Typically, these commands will be prepared as scripts in advance, but 
they may also be entered interactively for debugging or other purposes. The command 
primitives will be expressed as an IDL API, which will be bound to Python (and other 
languages with an IDL binding). Another primary human input for the system will be source 
catalogs and ephemeris files, which will be defined in a TBD ASCII format. Some useful 
GUI displays shall be available during operations � for example showing the status of the 
cable wraps. It is TBD whether the GUIs will be display only, or will allow for some control 
functions. 

Engineering access to devices that are installed on the test interferometer will be implemented 
via access to the device controller interface or to the I/O routines directly from the 
engineering workstation. 

The ALMA Time System will establish synchronized switching cycles and mode changes, 
and it will provide time-stamping for the resulting measurements.  This must be done across 
the entire instrument including the central building and the geographically dispersed 
antennas.  Additionally, the Time System must be accurately related to external measures of 
time to correctly determine the position of astronomical objects of interest. 

The master clock will be implemented in the central real-time computer by counting 48ms 
timing events from the central reference generator that has been tied to external time systems 
with a GPS receiver. The fundamental time system of the interferometer maintained centrally 
is known as array time. It is tied to TAI at initialization time, and drifts only very slowly 
thereafter.  

Although TAI is the fundamental external time system used by the software, other time 
systems such as UTC and local sidereal will be accepted from user input routines.  

Most devices do not have precise timing requirements. For those that do, the control software 
must arrange to have monitor and control commands sent to the device in precisely defined 
windows in the pervasive 48ms timing period. This is accomplished by sending time-tagged 
commands from the center sufficiently in advance of when they are required to account for 
the non-determinism in the network and general-purpose ACC. The commands are then 
staged in the real-time computers until they are required at the hardware.  

Slave clocks (in the other real-time computers) are tied to the master clock by being given the 
array time of a particular timing event. They maintain time thereafter by counting 48ms 
timing events. 

There are several characteristic (�looping�) timescales of interest to the control software: 
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• 2ms: This is the shortest timescale at which any device will require interaction (the 
total power detectors). Timescales faster than this are always handled by hardware. 

• 48ms: This is the period of the pervasive timing event sent to all hardware with 
precise timing requirements.  

• 70ms: Fastest correlator dump time. 
• 1s: This is the fastest timescale for observational changes, e.g., source change or 

change in correlator setup. 
• >1s: Most devices will be monitored or controlled at rates slower than 1Hz, often 

much slower (300s). 

Some model values will be required for some devices � for example, the test correlator will 
need a delay model. These calculations will be encapsulated in �model servers� running 
centrally. The central control software will call these servers and send a parameterized result 
(e.g., polynomial as a function of time) to the device drivers that need them. The device 
drivers might in turn evaluate these parameterized models at a faster rate and send the results 
over the CAN bus to the underlying hardware. 

A particularly important device is the test correlator. It is fundamentally based on the design 
of one quadrant of the GBT spectrometer, modified to provide delays and cross-correlation 
capabilities. It was also modified to enable data dumps to be (optionally) synchronized to the 
pervasive ALMA 48ms pulse. The internal design is quite complicated and is described by 
Pisano (2001). As a device, it behaves like all other devices as a slave, accepting relatively 
high-level configuration and control commands, and emitting the auto and cross-correlation 
data. Unlike other devices, the control software interacts with this device over Ethernet. 

Monitor data is archived in an RDBMS with an ODBC interface for convenient access from 
commercial packages, and the science/calibration data is formatted in a single FITS format 
(except for the optical telescope data which uses a format defined by the TPOINT pointing 
analysis software). The FITS files are written directly to disk rather than into some more 
elaborate archive. Production of the science data requires the gathering together both monitor 
and backend data, calculation of some derived values (e.g., UVW), and flagging.  

As the science data becomes incrementally available, the telescope calibration subsystem is 
notified that more data is available to be read. The telescope calibration software is based on 
the IRAM CLIC package and is external to the control software, although they must be able 
to communicate with each other. CLIC will write calibrations that are needed by the control 
software into a file that is imported as needed by the control software 

The ALMA Common Software (ACS) group will provide much of the underlying 
functionality needed by the control system, such as the logging, error, and alarm subsystems. 

3 Physical Architecture 
B. Glendenning 
Last Updated: 2001-11-16 

As shown in Figure 1 the computers and networks break down into antenna-based systems 
and central systems. 

At each antenna there is an ABM � a VME Power PC based VxWorks computer. Its principal 
role is to provide real-time control of the devices at the antenna based upon infrequent time-
tagged commands from the center. All devices with computer interfaces are attached to a 
CAN bus. More details about the properties of these interfaces are described in section 10.4.   
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Data transmission from the total power detectors are carried on a separate CAN bus to 
preclude the possibility of overloading the general M&C bus with data transmission. Those 
devices, however, are controlled over the regular bus � hence they will have two CAN 
connections. The control bus is referred to as the AMB (ALMA Monitor and Control Bus) to 
distinguish it from CAN buses used for data transmission or other purposes (in particular, 
within the prototype and baseline correlator). 

A particularly important device is the Antenna Control Unit (ACU) that is provided by the 
antenna vendor. It is implemented as a real-time computer running the VxWorks operating 
system2. Like any other device it is principally controlled over the CAN bus, although it also 
has an Ethernet interface for software maintenance and the setting of static parameters that do 
not need to be changed in normal operations. The Vertex antenna also has a Pointing 
Computer (PTC), supplied by the vendor. The PTC is used for the pointing model, 
subreflector control, and other miscellaneous functions. An Ethernet switch is used to route 
traffic to all devices on the local network, and to convert between fiber and twisted pair. The 
switch can also implement QoS if desired (for example, it could be used to prioritize traffic 
between the ABM and ACC). 

The optical telescope is also commanded via the CAN (AMB) bus. It has an analog video 
output which transfers the signal from the telescope independently of the control system to an 
Optical Telescope Controller (OTC) which processes the video signal and derives centroid 
parameters for the target star. 

Each ABM is connected to the central systems via a point-to-point Gb Ethernet network 
which terminates at a central switch. Up to 40km fiber runs are possible using available 
COTS equipment. While the antennas are much closer than this for the test interferometer, a 
long spool of fiber may be inserted to simulate the long cable runs for the ALMA array. The 
switch is in turn connected to a 10/100 Mbps switched Ethernet on which all central ALMA 
computer systems required to operate the test interferometer are attached. This switched 
network is in turn connected to the rest of the VLA networks, and ultimately the general 
Internet, through a hub.  

At the center there are two real-time computers. The Array Real-Time Machine (ARTM) 
plays the role of the ABM, providing local real-time control of its attached CAN devices. In 
addition, for control of two COTS synthesizer devices it will master a GPIB to which they are 
attached. It will also be attached to a GPS receiver which, along with the Central Reference 
Generator (CRG), will allow it to be the fundamental source for array time. 

The Correlator Control Computer (CCC) is the other central real-time computer. It provides 
the interface for the test correlator, and provides detailed control of the correlator hardware. 
The software in the CCC is described in more detail in section 11.10. Both the ARTM and 
CCC are VME/PPC/VxWorks based systems. The CCC communicates with the correlator 
hardware via an RS-232 connection. 

The Array Control Computer (ACC) plays a central role in the test interferometer. It is 
responsible for controlling all hardware in the array (indirectly through the ABM, ARTM, 
and CCC computers) under the command of high-level observing scripts. It also executes 
ancillary software including model (e.g., delay) servers, and data formatting. It is a high-end 
x86 based workstation running the Linux operating system. If necessary for performance 
reasons, the ACC functions could readily be split into multiple computers. 

                                                      
2 The Vertex antenna has a CompactPCI  with an x86 processor. The EIE antenna has a VME/PPC 
based system. 
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There will be a few general purpose Linux and Windows systems on the switched network 
for operator access, engineering and astronomical data analysis, software development, and 
the like. 

For meteorological data the test interferometer will have its own weather station. Details of 
this connection are TBD, but the data will likely be transferred via Ethernet from a local 
controller PC which has a serial connection to the meteorological eqipment. 
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Figure 1 - Physical architecture for the test interferometer. Only the Vertex antenna has a 
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4 Test Interferometer Logical Architecture 
G. Harris 
Last Changed: 2001-05-05 
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The Test Interferometer [TI] is controlled by software similar to the final instrument, but in a 
simplified form. The following diagrams indicate the organization of the TI Control Software 
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[TICS]. They show the functional organization of the physical parts described previously in 
the section on physical architecture. 

The TICS software must: 

• manipulate each antenna separately in simultaneous single dish sessions. 

• operate both antennas together in a two antenna array with the correlator.  

• exercise each device and collect data to evaluate its behavior.  

• provide for interactive use and the execution of stored procedures.  

 SYSTEM EXECUTIVE: [see figure] Although described in more detail in the section on the 
executive, we should note here that this section stores the configuration of the instrument, 
retrieves it at startup and initializes the each Device. It then creates a session for the user, 
allocates antennas and possibly the correlator to it. It also starts any data collection 
procedures to provide a way for the tester to capture data from a Device and starts any other 
system services. The exec contains various parts such as session manager, resource manager, 
configuration database, stored procedures and other parts described later in this document. 

SESSION: [see figure] A session is an operating system process, created by the exec, which 
actually performs commands and operates the hardware: antenna, receivers, correlator, etc. 
Using a session, the user enters commands or retrieves stored commands on the system if in 
interactive mode. If in automatic mode, prepared observing scripts may be executed. The part 
executing commands is called the Session Control. 

Commands are propagated from a Session Control to the SubArrayControl and then to each 
antenna through a control tree, a software construct representing each Device on the antenna. 
Notice [as shown in the Single Dish diagram] that several Session Controls may access a 
SubArrayControl in the Test Interferometer. Subarrays are initialized when the first session 
attaches and cleaned up when the last session detaches. 

The method by which commands propagate is called CORBA, an industry standard. Use of 
distributed object oriented technology is quite extensive in this instrument. Every possible 
piece of the software is object based, from the configuration data, to the scripts and their 
functions, to each Device in the control tree and even to the hardware device control points 
on the antennas. This facilitates the creation, management and execution of the control 
software. When we use the word "Device" with a capital letter, we indicate the  software 
proxy for a physical hardware device. 

Some Devices are simple and others are treated as a group. The letter D inside the control tree 
triangle represents a Device, perhaps a composite hierarchy of parts such as LO, filters, etc. 
The hierarchy of Devices, represented by the triangle, expands commands as they propagate 
through the control tree. A simple command by the user results in many commands to the 
bottom level Devices. 

Some software Devices are in the central computers, in what may be called the logical time 
part of the system. Other Devices are in real-time computers such as the CCC, the ARTM, or 
even out on the antennas, distributed next to their associated physical devices in the ABM. 
These external computers are represented by dotted lines and operate in real time. The 
dotted line in the control tree of an antenna represents the transition from logical time to real 
time as communications move from the logical time section to the real time section. 
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Once commands reach the ABM, they are formatted appropriately and routed to appropriate 
M&C points. Monitor points read the value of a single hardware access point and Control 
points can set [write] the value of a single hardware access point.  

Sometimes a behavior is needed in real time which physical devices do not have. Rather than 
trying to perform this more complex behavior remotely from high in the control tree, a 
software construct called a Device Controller [DC] is used. For example, a nutator sequence 
may be given as a single command from the command tree resulting in many actions by a 
Device Controller in the ABM, all synchronized in time. 

This architecture decouples the control system from the data recording. The control system is 
not dependent on the data monitoring and recording system. Or vice versa. Equipment may 
be monitored even when not being used for observations. Just as the antennas are configured 
and initialized before giving them to a work session, so also is the data collecting system 
turned on and initialized by the system executive. Other subsystems and services are also 
decoupled as much as possible. 
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When operating in interferometric mode [see interferometer figure], a single control drives 
both antennas - constituting a sub-array. The SubArrayControl distributes the current 
command from Session Control to the antennas, correlator, etc.. Generally all antennas 

Figure 3 - TI Logical Architecture: Interferometer 
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receive the same command, but each can also be individually addressed. Any per antenna 
differences in processing a command are handled by each antenna's control tree.  

Another independent computer with support electronics is the ARTM. It coordinates with 
external clock sources, internal frequency generators and other equipment to provide a timing 
standard to the array.  It also is responsible for the control of central devices, excepting the 
correlator. 

The correlator is accessed on two levels. First it is configured on an array basis and 
commanded as shown in the drawing by the SubArrayControl at the subarray level As data 
coming from the antennas is sent to the correlator, it is processed and the correlator output 
goes into the science data. 

Since each antenna is given to an independent session in single dish mode and both are given 
to a single session in interferometric mode some allocation control is needed. Although some 
of the Resource Manager must be implemented to initialize the TI, allocation will be handled 
by a manual action at the system executive level. 

A description of the operation of the sessions and the exec which controls them is found in 
the following section, together with a simplified class diagram. 

4.1 Design  Notes 
1. Notification and other top-level services must be started first. 

2. Configuration database is centralized. For ACS 1.0 local databases are derived from 
the central database. 

3. Devices bootstrap themselves by reading their configuration data from a database 
interface, provided as start of the initialization process. 

5 ALMA Common Software 
G. Chiozzi 

Last Changed: 2001-05-04 

5.1 Overview 
The ALMA Common Software (ACS) is located in between the TICS Control Software and 
other basic commercial or open source software on top of the operating systems. It provides 
basic software services common to the various applications (like antenna control, correlator 
software, data pipelining). 

ACS is designed to offer a clear path for the implementation of applications, with the goal of 
obtaining implicit conformity to design standards.  

Initially the main users of ACS will be the developers of the TICS software. The generic tools 
and GUIs provided by ACS to access logs, Configuration Database, active objects and other 
components of the system will be also used by operators and maintenance staff to perform 
routine maintenance operations. 
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ACS 1.0 will be used on one side to provide support to TICS development, similar to that 
which is to be used later for ALMA. On the other side this experience will provide feedback 
from a realistic sized project to ACS development. 

5.2 Technologies 
At the very core of ACS is CORBA. The reasons for using CORBA are in short: Object 
Orientation, support for distributed systems, platform independence, it is a communication 
standard, and it provides a variety of services. 

The ALMA software will have to be as much as possible independent from the operating 
system and will actually run on multiple platforms (Linux and other flavors of UNIX and 
VxWorks). We have therefore decided to select the Adaptive Communication Environment 
(ACE) as the basic multi-platform library for software that must be portable. This package 
provides portable operating system interface services and implements a wide set of classes 
specifically designed for the implementation of distributed real-time systems. 

ACE is also the core of The ACE ORB (TAO), a high performance real-time CORBA 
implementation. 

The Object Model for ACS is based on the concept of Distributed Object, which identifies 
three entities: 

! Distributed Object - Instances of classes identified at design level in the ALMA system, 
with which other components of the system interact, are implemented as Distributed 
Objects. In particular, at control system level, Distributed Object is the base class used 
for the representation of any physical (a temperature sensor, a motor) or logical device in 
the control system. 

! Property - Each Distributed Object has a number of Properties that are monitored and 
controlled (status, position, velocity, electric current).  

! Characteristic - Static data associated with a Distributed Object or with a Property, 
including meta-data such as description, type and dimensions, and other data such as 
units, range or resolution.  

5.3 Services 
ACS 1.0 provides the following services, used in TICS by higher-level components of the 
Control System: 

Distributed Object: core implementation for Distributed Objects, Properties and 
Characteristics that are at the base of the logical model.  

Distributed Object Life Cycle: management of Distribute Object instantiation and 
destruction, object lookup (based on CORBA Naming Service), start-up and shutdown of 
services 

Configuration Database: Distributed Objects bootstrap themselves reading configuration 
information from the configuration database. 

Data Channel: implementation of a data pipe, based on CORBA Notification Service, to 
transfer efficiently continuous flows of data. It is used by many of the higher level services. 

Event System: implementation of data retrieval by event, monitors and periodic timers.  
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Logging System: API for logging of data, actions and events. Transport of logs from the 
producer to the central archive. Tools for browsing logs.  

Monitoring System: Monitoring and archiving of system and engineering values on a fixed 
periodic basis or on the occurrence of specific changes in the value. 

Error System: API for handling and logging run-time errors, tools for defining error 
conditions, tools for browsing and analyzing run-time errors.  

Time System: Time and synchronization services.  

Alarm System: API for requesting notification of alarms at the application level.  

Sampling: low-level engine and high-level tools for fast data sampling (virtual oscilloscope).  

 

Some of these components are only partially implemented in ACS 1.0 or are in the form of 
prototype. Some others are actually implemented as part of TICS development and integrated 
in ACS. 

 

For more details, refer to the ACS Architecture document and to the design documents for 
ACS 1.0. (TODO � insert actual reference). 

6 AOS / Executive 
G. Harris 
Last Changed: 2001-05-05 

 

The ALMA instrument has a executive supervisory program called the exec The exec 
initializes the instrument, creates processes for users called sessions, allocates resources, and 
launches services which collect and process data. It also supports operator activities. Some of 
its main parts are diagrammed in the figure. 

The action of the exec  is similar to initializing and running an operating system: 

• During startup, a resource manager locates and initializes the physical hardware 
devices, using information from a configuration control database as needed.  

• System processes such as services are started and necessary communications 
connections established (e.g., the CAN discovery and monitoring processes).  

• Software Devices are created by a resource manager through a download procedure 
as proxies for hardware devices. These access the physical devices.  

• These Devices are registered in a component naming system (the CORBA Naming 
service, through the ACS Manager), making them visible and available to processes 
in the system. 
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• Antennas are constructed from Devices and allocated to a resource pool, along with 
the correlator and other resources. 

• User processes, called sessions, are started to use the resources and perform work. 

Exec parts which perform these functions are shown in the diagram in dotted boxes as 
follows: 

• Run-Time Control - Activities which create and operate sessions for users: 

• Resource Manager - initializes and instantiates Device objects from hardware, 
constructs complex Devices from simple Devices, allocates resources for use, 
re-initializes and reallocates after use. This is described in more detail in 
[TODO - Device Creation Reference]. 

• Session Manager - creates and terminates sessions, performing associated 
housekeeping. 

• Services - Activities which other parts of the exec use in common: 

• Services Manager - starts and stops each independent service task comprising 
the exec.  

• Event Manager - Provides underlying event dispatch services, for example: 
data collection and distribution using the publish/subscribe mechanism. 

• Object Manager - starts and stops CORBA services, including name and ID 
services as well as providing IDL interfaces. 

• Configuration Control & Database - a service providing reference information 
for other services and processes. It retains initial and current Device 
configurations, persistent information on a per-session basis, and some system-
wide persistent information. 

• Service initialization may interact with the ACS Manager � TBD. 

• Initialization and Shutdown 

• Initializer - starts and stops the exec and its subsystems. 

• Loader - starts and stops basic communications which other services use, 
downloading when requested. (TODO � clarify meaning). 

Session activities use the following parts: 

• Session - An operating system provided process which is used for executing 
commands and performing other processing activities. 

• Session Control - The top-level procedures driving the session activities. In the 
TI, Python scripts run in an interpreter, executing manual input and stored 
files. It issues commands to the SubArray Control. 
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• SubArray Control - A communications process created by the Resource Manager. It 
communicates commands to the devices comprising the subarray. In the TI, the 
Resource Manager will retain ownership of the subarray rather than passing 
ownership to the session. The Resource Manager will track how many sessions are 
using a particular subarray - initializing for the first session attaching to the 
subarray and cleaning up after the last session detaching from the subarray. 

• Correlator - A computational device taking input from the antennas and 
processing it into science data to be stored as output. There is only one. 

• Antenna - The subarray may have one or more antennas. Each is composed of 
all devices: mount, receivers, cryo, etc. 

There may be one or more sessions operating simultaneously. Some sessions may be used by 
the operator for maintenance and configuration activity. Others will be used for test and 
observation activity. 

Testing will use either independent sessions with a single dish each and possibly the 
correlator - or one interferometric session with all resources. In the test instrument more than 
one session control talking to a SubArrayControl may be allowed.  

Using the class diagram and the architecture diagram from the preceding section, we can see 
how this will operate: 

1. The operator will start the AOS/Executive after operating system startup.  

2. The exec will first start the resource manager. The resource manager will be responsible 
for using the configuration database and other control components such as persistent 
objects to initialize the antennas as described in [TODO � insert Device Creation xref]. 

3. Each antenna will be completely initialized, including the control tree and ABM, and 
allocated as a unit to a sub array.  

4. During this process all devices in the antenna will be registered in the object naming 
system. 

5. Once these devices can be identified, the exec can also start the data collection process in 
each antenna's ABM computer. The ABM equipment monitor data collector concentrates 
information from about a thousand points per antenna. There is also a central collector 
which gathers the data from each antenna's collector in a fan-in dataflow. This is called a 
publish/subscribe mechanism. Once the data is collected into the central ACC, other 
processes may subscribe collected data from this central collector now also a publisher 
(e.g., Monitor point archiving and Data Production, each described later). An alternative 
ACS logging mechanism is available for applications that want to subscribe to monitor 
points that are not �blocked� as described here. 

6. With all antennas initialized and the data collector running, the executive can start 
sessions for the users and give them appropriate resources depending on the desired 
observing mode: independent single dish sessions or one interferometer session. 
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7. When the last session using a resource terminates, the exec will clean up the resources 
and possibly re-initialize them or place them in a known state for another session. 

Operator sessions will probably be necessary for various standard activities, configuration 
database maintenance, antenna parking or stowing, shutdown, etc. 

Most of these utilities will be Python scripts executable as shell commands or executed from 
a running Python session. 
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Figure 4 - Test Interferometer Control Software 
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7 Data Channel 
F. Stauffer 
Last Changed: 2001-10-31 

The data channel is a general mechanism to asynchronously pass information.  In particular, 
the following features are needed: 

• Publish-subscribe (�push�) 

• Asynchronous messages 

• Filter messages by attributes 

• Buffer messages 

The CORBA Notification service provides the features needed and is the model used. It 
provides a notification service that users can connect to as publishers or subscribers. A 
notification service can run on any of the computers and be distributed to remote users with 
CORBA. The service can handle 100 to 500 messages per second depending on the level of 
QoS used. 

 

The following figure is a publish-subscribe example.  The data channel is used to move 
events, which can have data, between publishers and subscribers.  This is a model of moving 
information from one or more publishers to many users with a concentrator to insulate the 
original publishers from the users of the data.  For example, the monitor data or logging from 
the real-time computers would be moved to concentrators on the ACC that would pass the 
data to the outside users.  Outside users can filter for the data they are interested in. 

The Data Channel (Notification Service) is a supported component of ACS. 
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Figure 5 - Data channel with publishers and subscribers built on CORBA notification service.  
The lower case p, s in the diagram shows the role of the connections.  This is just an example of 
how a data channel can be used.

8 Configuration Database 
G. Chiozzi 

Last Changed: 2001-05-05 

The Configuration Database is used to centralize and store information to configure the TICS 
Distributed and other objects. TICS has several different software domains � hardware 
control, observing software, data production, and miscellaneous services. Each domain has its 
particular needs for a configuration database. 

The database requirements are: 

� Hierarchical 

� Interface to the TICS 

� Interface to the users 

The ACS 1.0 Configuration Database is used for TICS. Later ACS releases will replace the 
database engine, probably with an XML based system. 

8.1 Definition of the Configuration Database 
The ACS 1.0 Configuration Database is defined using the dbl (database loader) syntax: 

! The structure of the hierarchical database is defined by instantiating points 

! Points are defined as collections of Attributes, where an attribute can be: 

! another point (that is a node in the hierarchical structure) 

! a primitive type (a leaf in the hierarchical structure), containing values of integer, 
floating point, strings and other primitive type 

! Points can be 

! Defined directly at instantiation time as collections of Attributes 

! Instances of Database Classes 

! Database Classes  

! Are hierarchically defined as collections of Attributes  

! Inheritance can be used to extend and modify Database Class definitions 

As a general approach, part of the implementation of each Distributed Object is the definition 
of a corresponding Database Class for the configuration database, that provides all default 
values for Properties and Characteristics. 
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The configuration database will contain as needed points instantiating the DO class and 
overwriting as necessary the default values. 

As a baseline implementation, dbl configuration files will be edited and maintained with a 
text editor. 

The possibility of defining a higher level XML format for the definition of the configuration 
database will be investigated. In this case a translator will be implemented to generate the dbl 
configuration files from the XML definitions. The intention would be that a central XML 
configuration file would be used to generate all dbl files. In this fashion the TICS 
configuration file management would reflect, and test, the final XML based configuration 
database. 

8.2 Run Time access to configuration data 
At run time there will be a Configuration Database process (called Environment) running 
on each host (Workstation and LCU) and containing the branch of the configuration hierarchy 
pertinent to that host. 

It is not possible to modify dynamically at run time the structure of the configuration 
database, but it is necessary to stop, regenerate and restart the Environment. It is possible to 
modify dynamically at run time all values stored in the Configuration Database. 

C++ applications can access (read/write) the configuration database using an access API. 

Other CORBA applications will use a CORBA based Database Service through and access 
IDL, that will provide the same access capabilities in a language independent way but with 
lower performance.    

The interface, provided by ACS 1.0, is conceptually of the type: 

! value db.get(name)  

! db.set(name, value). 

 

Value may be any of the allowed primitive types (integer, float, string and array of Bytes�.).  

The hierarchical nature of the database is defined simply by providing a hierarchy in the 
name string. Here db is a reference to a database object that has been previously opened. 

8.3 Warm Start 
A particular requirement for TICS is for �warm starts.� 

It must be possible to restart a subsystem merging: 

! Default configuration values 

! User specified values 

! The latest "current" value 

The ACS 1.0 Configuration Database provides the basic building blocks to implement these 
features: 

! The dbl configuration files provide the default configuration. At any time it is 
possible to stop-restart the configuration database with the pure set of default 
values (eventually after having edited the dbl configuration files). 
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! At any time it is possible to create a snapshot of the current complete 
Configuration Database running on a host (dbForseSnap command). This 
snapshot can be used at restart time instead of the dbl configuration files.   

! At any time it is possible to backup and restore branches of the configuration 
database (dbBackup and dbRestore commands). The commands can be used to 
load user-defined values at any time or to save preference values after having 
modified the values at run time. 

 

 

9 Human Interfaces 

9.1 Scripting 
G. Harris 
Last Changed: 2001-02-06 
The scripting language for the Test Interferometer is Python. Its most important 
characteristics for our use are that it: 

1. is completely object based,  

2. has cleanliness and rigor in its grammar, 

3. supports access to all ALMA components via direct calls or CORBA.  

We will also need to transform between GUIs, XML, and executable procedures to keep 
ALMA simple and stable. The ability to make mathematically rigorous transforms between 
various procedural forms requires a simple, preferably left corner, grammar. Python supplies 
that grammatical rigor3.  

Python provides other attributes desired for the test interferometer, including: 

1. CORBA support, using standard ORBs 

2. XML support, including SAX and DOM parsers.  

3. Database access to RDBMS and object based storage, via ODBC, JDBC and persistence 
mechanisms. 

4. Graphical support from either Tk or Java.  

5. Interactive source code debugger. 

6. Extensive libraries from the scientific community including astronomy. 

                                                      
3 A left corner grammar is just a left sided grammar for which a recursive descent parser is not 
necessary. 
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Python supplies standard object oriented operations of classes, inheritance, polymorphism, 
etc. Since it is totally object based, it provides complete run time dynamic object creation, 
assignment, typing and parameter checking. It also provides file and structure conventions for 
development including classes, namespaces and functions in packages and modules.  

Python is available in two forms:  

1. Python - a bytecode  C based compiled interpreter with C++ and Tk libraries  
[the most mature, heavily maintained and fastest], and 

2. Jython - a JVM bytecode based version which can access Java and its libraries. 

3. Python can also be converted to C and compiled; however it is not clear how well 
supported this application is. 

9.2 Source Catalogs 
R.W. Heald 

Last Changed: 2000-10-21 
 

A catalog is used to select a celestial object and provide the parameters needed to point the 
ALMA antennas to it.  The user is given a �source browser� GUI containing a display of the 
list of objects that meet a given criterion, by source name, or by coordinates.  The user is then 
able to make a selection from the list.  This capability is useful in both observing preparation 
and during on-line observing, although for the TI only the latter will be used. 

There will be several catalogs derived from different resources, and users will select a 
particular catalog before viewing the objects in that catalog.  All catalogs are one of two 
types, either for "stationary" objects, or for moving objects such as comets, asteroids, planets, 
and satellites. 

For stationary objects, each catalog entry is one line long.  Each catalog entry has a format as 
below (Headings are not part of the catalog; Sample data is shown).  

 
Name System X Coordinate Y Coordinate X PM Y PM

3C284 J2000 13h11m04.7s +27d28m08s 0.0 0.0

Frame Type Velocity f1 Flux f2 Flux f3 Flux

HEL RAD 71770 0.0 0.0 0.0

• The system can be B1950, J2000, APPARENT, ECLIPTIC, GALACTIC, or HORIZON. 

• Depending on the system the X and Y coordinates are either equatorial right ascension 
and declination, ecliptic longitude and latitude, galactic longitude and latitude, or horizon 
elevation and azimuth. 

• Proper motion for each coordinate in milli-arc-seconds per year. 
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• The source velocity reference frame can be either  

LSR (local standard of rest velocity reference frame), 

HEL (heliocentric velocity reference frame), 

GEO (geocentric velocity reference frame), or  

TOP (topocentric velocity reference frame). 

• The source velocity type can be either  

RAD (radial velocity type),  

OPT (optical velocity type), or  

REL (relativistic velocity type). 

• The source velocity in kilometers per second. 

• Flux densities in milli-Janskys for the three Test Interferometer frequency bands (35, 85, 
and 225 GHz). 

 

The VLA calibrator source list will be provided as a basic stationary object catalog. 

The catalog for a moving object requires an ephemeris for each object.  An ephemeris is a 
table of positions where each entry gives the object's position for a particular time.  The time 
interval between entries is constant.  The object's current position is found using 
interpolation, thus, the total time interval given by the ephemeris must include the time at 
which the object is to be tracked. 

An ephemeris begins with a header containing the object's name, and the object's velocity 
reference frame and type given in the ephemeris.  The choices for velocity frame and type are 
the same as those given for the stationary object catalog entries above.  An example header 
might look like: 

 
OBJNAME Hyakutake

VELFRAME LSR

VELTYPE RAD

Each ephemeris entry has a format similar to below (Headings are not part of the ephemeris; 
Sample data is shown).  This format allows direct input from the JPL Horizons system.  See 
http://ssd.jpl.nasa.gov/horizons.html. 

 
Date/Time Right

Ascension
Declination Distance Velocity

2451675.458333 04 11 54.0991 +21 36 17.384 2.488596948 5.99239

 

• TT (Terrestrial Time) is given in either a string (various formats) or Julian Date with 
fractional day (shown).  Notice TT used to be called Terrestrial Dynamical Time, or 
TDT.  TT uses ordinary SI seconds, and it is tied to TAI through the formula TT = TAI + 
32.184s. 
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• Position is given in geocentric J2000 astrometric right ascension (in hours, minutes, and 
seconds) and declination (in degrees, arc-minutes, and arc-seconds). 

• Geocentric distance is given in Astronomical Units (AU). 

• Geocentric velocity is given in kilometers per second. 

Software will be provided for generating the current ephemerides for most planets, the moon 
and sun. 

For both catalog types, the software handles manual input or from an ASCII file.  A large 
variety of input formats for coordinates and date/time are accommodated.  Coordinate 
formats include time and degrees.  Date/time format includes the familiar year, month, day, 
etc., and Julian and Modified Julian Date.  The main restriction occurs in the order of the 
fields. 

Objects in the catalog can have alternate names, known as an �alias�.  The catalog can add an 
object�s alias, and can find an object by any of its names.  This is implemented as an 
additional table indexed by the object's name with a pointer to the catalog and entry where the 
object's entry exists. 

The source catalogs interface to the rest of the system in a couple of ways.  First, an 
observing script is able to directly access the catalogs using a programmatic interface.  This 
interface has the following functions: 

• openCatalog(catalogName)  - This function returns a pointer to the catalog and the 
catalog type, or a NULL if the catalog is not found. 

• closeCatalog(catalogPointer)  - This function terminates access to the catalog. 

• getCatalogEntry(catalogPointer,objectName)  - This function returns the 
entry, or a NULL if the entry is not found. 

A second catalog interface allows the catalog GUI to command the antenna(s) to track an 
object selected from a catalog.  To accomplish this the GUI will directly command the 
antenna mount device. 

A software package that provides many of the desired features for the ALMA source catalogs 
is called SkyCat, and is available from the VLT software group.  Their latest version is a set 
of JavaBeans called JSky.  It needs further investigation as to its suitability.  See 
http://archive.eso.org/Jsky. 

9.3 GUIs 
F. Stauffer 
Last Changed: 2001-11-16 

GUIs are for TICS are JAVA or Python (using TkInter) based, and for ACS are JAVA or Tcl 
based.  

Antenna GUI 

• Source trajectory 

• Command position 

• Current position 

• Cable wrap 
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Logging GUIs provided by ACS 

• Errors, alarms, other logging 

• Debug 

• Filter on severity and type and time 

• Scrollable buffer  

• Selectable time range 

Scripting command interface 

• List scripts 

• Execute script 

• Create/edit script 

• Command line interface  

Monitor and control 

• Parameters, configurations, monitor, and control points displayed and edited using a 
hierarchical decomposition. 

• Multi-channel chart recorder. 

• Type in value. 

• Archived monitor point display. 

Engineering displays 

• Front Ends 

• Correlator 

• Round-trip phase correction. 

• Tracking/drive system. 

• Downconverter 

• Secondary 

• Nutator 

Other GUIs 

• On-line data display (quasi-raw backend values) 

• Doppler tracking 

• On-line catalog browser 

9.4 Engineering Interfaces 
M. Brooks 
Last Changed: 2001-05-05 
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In general, device designers will develop test and monitoring software for use while the 
hardware is still "on the bench". It is a goal of the TICS that such software should be 
available when the device is installed in the field for hardware diagnosis and debugging. 
Since most hardware sub-systems will have a CAN interface, it is always possible for an 
engineer to directly connect to the device interface after removing it from the antenna CAN 
bus. This allows the use of any test code, but requires a physical presence at the hardware 
itself. This approach allows an independent means of testing hardware without using the 
TICS software. 

If a device designer uses the LabView system to develop bench test software, the TICS may 
(depending on Engineering interest)  provide a method of accessing the device over the 
network from a location removed from the actual hardware. This would require a substitution 
of the CAN access LabView routines with software to access the same monitor and control 
points through the TICS. 

In addition, ACS will provide the ability to build simple GUI interfaces which can get and set 
monitor and control points through the TICS. ACS will also provide a standalone tool to 
get/set Monitor points � the Object Explorer. In general, no calibration or analysis capabilities 
would be provided for such an application.

10 Time

10.1 Synchronization 
F. Stauffer 
Last Changed: 2000-02-07 

ALMA's control system achieves real-time behavior in a large non real-time networked 
system by distributing a timing event and time tagging monitor and control as needed.  
ALMA's master clock counts timing events. 

Usually, the user executes commands on the ACC.  The commands are either synchronized to 
the timing events or not, with the majority of commands not synchronized.  Synchronized 
commands are tagged with the array time of the timing event to start on, which is at least the 
current time plus an estimate for the latency4. Latency is the time for the command to setup 
the hardware, plus network and OS indeterminacy.   

The CAN hardware timing specification is given in Brooks and D�Addario (2001).  Most 
devices do not have precise timing requirements.  For those that do, the control software must 
arrange for control commands to be sent to the device within the first 24 milliseconds after a 
timing event.  Monitor requests must be sent within a window beginning 24 milliseconds after 
a timing event, and ending 4 milliseconds before the next timing event.    

To allow the time critical commands and monitor requests to meet this constraint the time 
system provides semaphores that release tasks at the timing event and/or 24 milliseconds after 
a timing event.  The real-time computer on-board timers are used to provide this service. 

Test correlator timing is specified by Pisano (2001).  The only timing synchronized command 
is the start integration.  In addition there is a 'synchronized to timing event' mode which when 
set means dumps occur on the even timing event, otherwise the dumps are free running after 

                                                      
4 Although probably considerably longer than necessary, we will probably start by using 1s as this 
value has been used successfully at other telescopes. 
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the initial start timing event.  The time to start the integration requires the command to be 
sent from the CCC to the correlator hardware 72 to 96 ms before the start time (not including 
the network and OS indeterminacy).  The stop integration needs to be at least 72 ms before 
the end of integration (or alternatively it can run for a set number of integrations). 

The time synchronized devices are: 

• correlator 

• phase switching and fringe rotation 

• nutator 

• antenna motion 

• total power 

• holography 

Commands are passed from ACC to the real-time computers over the network using CORBA.  
In the ALMA Common Software Technical Requirements, Raffi and Glendenning (2000) 
specify a minimum of 1000 messages per second.  The messages are a limited resource, so a 
strategy to improve performance may need to be used.   

If performance is a factor, then the following can be implemented: 

• Download configurations (observing tables) to the real-time computers. 

• High level commands will replace common command sequences on the ACC, and the 
command sequences are moved to the real-time computers.  

Data produced is time tagged.  Data that requires quality checks needs to be buffered long 
enough to accommodate network and OS indeterminacy.  This is discussed in the �Data 
Production� section later. 

10.2 Master Clock 
F. Stauffer 
Last Changed: 2001-10-30 

10.2.1 Description 
The ALMA Master Clock is implemented on the central real-time computer, ARTM, because 
it is responsible for the Central Reference Generator (CRG) timing hardware, Figure 1.  The 
CRG generates a timing event to synchronize hardware and software, and it generates the 
reference frequencies used by the hardware.  An external precision oscillator is the reference 
frequency for the CRG.  Hardware events can be aligned to the oscillator clock and have an 
ambiguity of the timing event.  The Master Clock resolves the timing event ambiguity.  
D�Addario (2000) describes the timing system. 
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The CRG is used to align the ALMA clock to an external 1-PPS and to monitor the difference 
between external time and the ALMA clock.  An alarm is generated when the difference 
between the ALMA clock and the external clock is outside of a settable range.  External time 
is provided by a GPS receiver attached to the ARTM. The 1-PPS is aligned to TAI (actually 
GPS time, however GPS time is a constant offset from TAI), and hence the whole time 
system is aligned to TAI on reset, although it will drift very slowly thereafter. 

 

Figure 6 - Computer and electronics hardware needed for the master clock. Hardware for 
distribution, oscillator, etc. is not shown. 

10.2.2 Parameters 
• TAI when array time synchronized to 1PPS 

• TAI of last timing event 

• Last timing event count - internal count zeroed when CRG synchronized to 1PPS  

• Drift between array time and TAI: array time - TAI 

10.2.3 Commands 
• Synchronize - synchronize CRG to TAI with 1 PPS (executed very infrequently) 

10.2.4 States 
The ENABLE state, Figure 2, has the following machine with these states: 

• IDLE 

• SYNCHRONIZING - synchronizing CRG to TAI with 1 PPS 
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CAN GPS
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Timing Event
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• CLOCKRUNNING - track array time - TAI drift, count timing events 

 
Figure 7 - Master clock state machine (sub-states of ENABLE). 

10.2.5 Timing 
Figure 3 is a timing diagram that shows the relationship between the GPS 1-PPS and the 
CRG counter reset.  The reset counter CAN command is sent one or more timing events 
ahead of the desired 1-PPS. 
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Figure 3 - Timing diagram showing the relationship between the GPS 1-PPS and the CRG 
counter reset.  

10.2.6 Class Diagram 
Figure 4 is the Master Clock class diagram. 

 

Figure 4 - Master Clock class diagram. 

10.3 Time System and Representation 

Ron Heald 
Last Changed: 2001-04-10 
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The fundamental ALMA time system is International Atomic Time (TAI).  TAI is based on 
the SI second, and is continuously increasing, with no discontinuities, i.e. no leap seconds.  It 
was chosen primarily for these reasons. 

ALMA will use array time for all internal time.  Array time is, for most purposes, identical to 
TAI.  Array time is maintained by the central Master Clock, and is initially set to TAI using a 
Global Positioning System (GPS) receiver.  Thereafter, array time is driven from a local 
maser clock, and therefore it may slowly drift from TAI.  Because of the possible drift, array 
time cannot truly be called TAI.  See the section �Master Clock� for more information. 

Although TAI is the system used by the software, other time systems such as UTC and local 
sidereal time are displayed and accepted in user interfaces.  In particular, UTC, for the most 
part, is the only time seen by the user.  These other time systems are produced by converting 
array time, and as such, contain the same drift from their �real� value as array time. 

A central database of leap seconds is maintained.  The database contents allow TAI to be 
easily converted to UTC, and vice versa.  Notice it does not particularly matter if there is a 
discontinuity in UTC during a leap second because it only affects the displayed time.  The 
database contents are based on information from the International Earth Rotation Service 
(IERS); See http://hpiers.obspm.fr. 

An unsigned 64-bit integer (C-language "long long int") is used to encode a particular time.  
The integer gives the number of 100 nanoseconds that have passed since 15 October 1582 at 
00:00, which most people recognize as the start of the Gregorian calendar.  This encoding 
gives a range from the start time until March 11, 60038.  This is the same encoding used in 
the CORBA and X/Open DCE Time Services, and by the Posix.4 standard. 

A period of time is encoded using a signed 64-bit integer giving the number of 100 
nanoseconds, similar to the time representation.  This encoding gives a range for durations of 
zero to more that ± 29,227 years. 

It is recognized that these representations are quite detailed, and provide more accuracy than 
any current computer can act upon.  However, the ALMA calculated results are needed at 
100-nanosecond resolution (and better), and this is a reason the representation was chosen.  It 
is also thought that the excess capability may prevent having to change the representation in 
the future. 

Two classes, "Epoch" and "Duration" are provided for managing particular times and 
durations, respectively.  Objects created from these classes hold a particular time or duration, 
and have methods for operating on their value. 

Additional class methods are provided to set and extract the internal 64-bit integer 
representation.  The purpose of these methods is to allow the sending of time and duration 
data across the network while avoiding remote object invocation and its inherent inefficiency.  
The idea is to always have local Epoch and Duration objects and to only pass the time datum 
between machines. 

CORBA�s objects-by-value specification may be a better way of dealing with this problem.  
However, this specification was only released with CORBA 2.3 and it not yet widely 
supported.  It is being further investigated. 
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In the following, let �EpochS� be the 64-bit integer representation of an array time, and 
�DurationS� be the 64-bit representation of a duration.  The Epoch class has the following 
attributes: 

• Has attributes for integer array time piece parts (year, month, day, day of year, hour, 
minute, second, and microsecond) to set and retrieve the object�s value. 

• Has an attribute for an EpochS to set and retrieve the object�s value. 

• Has a method to accept UTC or TAI time in string form to set the object�s value. 

• Has a method to accept a format string and return the object�s value as an array time, 
UTC or TAO time in string form. 

• Has a method to compare this object�s value with another Epoch object�s value and 
return either �equal�, �less than�, or �greater than�. 

• Has a method to compute the difference between this object�s value with another 
Epoch object�s value and return a Duration object containing the result. 

• Has methods for adding a Duration object�s value to this object�s value, and 
for subtracting a Duration object�s value from this object�s value. 

The Duration class has the following attributes: 

• Has attributes for integer piece parts (day, hour, minute, second, and microsecond) to 
set and retrieve the object�s value. 

• Has an attribute for a DurationS to set and retrieve the object�s value. 

• Has a method to compare this object�s value with another Duration object�s value and 
return either �equal�, �less than�, or �greater than�. 

• Has methods for adding another Duration object�s value to this object�s value, and 
for subtracting another Duration object�s value from this object�s value. 

• Has methods for multiplying and dividing this object�s value by an integer. 

10.4 Time Distribution 
R.W. Heald 
Last Changed: 2001-04-12 

 

To achieve synchronization across the array it is necessary to distribute timing information.  
The information has two forms: as the 48-millisecond timing event distributed by the 
hardware and as a master clock distributed by the software. 

It is a principle of the design that timing information is obtained only from a single source, 
and that a computer shall never exchange timing information with others outside of the 



 38

source.  The Central Reference Generator (CRG) is the creator of timing events and their only 
source.  The central Array Real-Time Machine (ARTM) is the keeper of the master clock, 
and is the only source of array time. 

The master clock time is initialized to TAI using the output from a GPS receiver.  This 
initialization is done only rarely, and thereafter array time and TAI may slowly drift apart.  
Otherwise, array time is not distinguishable from TAI.  See the section "Master Clock" for 
more information. 

Timing Event Delay 

The maximum propagation delay of the timing event from the CRG to the furthest antenna 
(~25km) is about 170 microseconds.  This delay is ignored in the setting and maintenance of 
clocks. 

However, the propagation delay must be accounted for in the fringe rotation timing and the 
synchronizing of phase switching with the correlator.  For these purposes, a table of the actual 
delay to each antenna is maintained in the Array Control Computer (ACC), and made 
available to other systems that need it.  The table is based on measurements and is accurate to 
about 1 microsecond.  The table only needs updating when an antenna is moved or hardware 
is replaced (D�Addario, 2000). 

Master Clock Time Server 

Two servers are implemented on the ARTM.  First, the ARTM acts as a Network Time 
Protocol (NTP) server providing array time to the central workstations, like ACC.  These 
machines are not real-time and do not require precise time.  This time is used, for example, to 
time-stamp the machine�s local files. 

A second server protocol is implemented on the ARTM to provide the master clock to clients 
that need it.  These clients will be only real-time computer systems.  When requested the 
server provides the array time of the current timing event.  The server waits until just after a 
timing event before sending its response.  This allows the response to have nearly the full 48-
milliseconds to reach its destination.  To guarantee there is no ambiguity about to which 
timing event the response corresponds, the client measures the period between sending its 
request and when the response is received.  The measurement is done using a local on-board 
timer.  If this round-trip time is too long, the process is repeated until the round-trip time is 
within the proper range. 

LCU Clock Requirements 

The ALMA real-time computers require precise time (considerably better than a timing 
event), and therefore maintain a local clock that is "slaved" to the master clock.  These 
computers are sometimes called Local Control Units (LCU), and so the clock is known as the 
"LCU Clock". 

One such computer is the Antenna Bus Master (ABM).  There is an identical copy of the 
ABM located at each antenna.  Among its duties, the ABM performs the equatorial to horizon 
coordinate transformation and requires accurate time for this reason.  The ABM must also 
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accurately time-stamp the total power, holography, and OTF position data that it buffers and 
sends to the center. 

The Correlator Control Computer (CCC) is located at the correlator, and also requires precise 
time, as it must accurately time stamp the data it produces and sends to the archive. 

The ARTM also needs precise time.  Its needed to control several devices located at the array 
center that are part of the ARTM�s responsibilities. 

Certain commands and monitor requests are associated with timing events and their execution 
timing is critical (Brooks and D�Addario 2001).  These are known as �critical� commands 
and monitor requests.  To enable applications to meet the timing requirement certain 
synchronization methods are provided.  The methods provide for an application wanting to 
send a time-critical command to be awakened when the timing event occurs.  For applications 
wanting to send a time-critical monitor request, the methods awaken the application 24 
milliseconds after the timing event.  One way this can be accomplished is for the LCU clocks 
to directly provide such methods. 

Another way to accomplish this synchronization is to use the methods provided by the ACE 
Reactor. The Adaptive Communications Environment (ACE) is required by TAO CORBA, 
and will be part of the system in any case.  The Reactor uses the underlying clock, and 
provides for timeout events and handlers that can be used to achieve the necessary timeout 
events. 

The purpose of the LCU clock, then, is to provide the real-time systems with accurate and 
precise time, and with methods for synchronizing commands and monitor requests.  The 
required resolution of the LCU clock is about one millisecond.  This requirement primarily 
comes from the need to supply precise time tags for collected monitor data. 

LCU Clock Initialization and Maintenance 

The LCU clock sets its time by obtaining the array time corresponding to a particular timing 
event from the master clock.  This is done using the master clock server described previously.  
The master clock server is only used during clock initialization and when a reset is required.  
For testing, the clock can be set using a user-supplied time instead of using the master clock 
server. 

Once a clock has been initialized, it independently maintains the time thereafter by counting 
timing events.  All LCUs directly receive the timing event signal.  The signal is connected to 
each LCU such that a processor interrupt is generated whenever a timing event occurs.  One 
of the LCU clock�s primary responsibilities is to receive and process each timing event 
interrupt. 

A local watchdog timer is used to detect if any timing event is missed.  If this should occur, 
the clock enters a fault state.  From the fault state, the clock attempts to re-synchronize using 
the master clock server.  During this period the clock continues to function normally as there 
are activities, such as monitor point logging, that require time to be available, but do not need 
the synchronization provided by the timing events 



 40

VxWorks Clock 

The VxWorks system clock is set for 125 ticks per second.  This makes the timing event 
period evenly divisible by the system clock, i.e. there are nominally six VxWorks� clock ticks 
for every timing event. 

ALMA has chosen the MVME2700 PowerPC (PPC) Single Board Computer (SBC) for their 
real-time systems.  The VxWorks operating system runs on these systems.  To implement its 
system clock, VxWorks uses a decrementing counter that is part of the PPC604 processor 
chip.  An oscillator, that is also on-board the chip, supplies the input clock to the counter.  
The oscillator has an operating frequency of 16,666,666 Hz (60 nanosecond per tick). 

To generate the system clock interrupt, the decrementing counter is initialized for 133,333 
ticks (1/125 second).  When the counter reaches zero a system clock tick is generated.  This 
process is then repeated for each system clock tick.  For more information, see the VxWorks� 
source file ppcDecTimer.c. 

By reading the decrementing counter on the fly and adding the result to the count of system 
clock ticks, times with the resolution of the decrementing counter are obtained.  VxWorks 
uses the decrementing counter in this way to provide the �timestamp� capability, and one can 
obtain the same results by calling the system function �sysTimestampLock�. 

The timing events are used to synchronize the system clock with the master clock.  To 
accomplish this the timing event interrupt service routine cause the decrementing counter to 
be reset to its initial value.  Using this technique, the system clock is able to run with or 
without the timing event interrupt.  When timing events are not available the system clock is 
not synchronized to the master clock, but is otherwise fully functional.  For testing, the timing 
event signal, even though it may properly be creating interrupts, can be ignored by changing a 
software switch. 

Notice the system clock will run slightly behind the timing event by the interrupt latency 
time.  This time has been measured at around 5 microseconds, and is not thought to be 
significant. 

Clock Class 

This class provides functionality on both LCUs and general-purpose workstations.  It is 
provided in the form of a CORBA interface making it available for use by all programming 
languages.  Using this class, an application can obtain the current time and register for 
timeout events.  For efficiency, it will always be used locally. 

To implement the timeout events the class uses the ACE Reactor mechanism.  ACE will be 
present on both LCUs and workstations since its required by the TAO CORBA.  Through the 
CORBA interface a timeout event can be set for a single specified time, or it can be set to 
occur periodically with a given uniform spacing.  It can also be set to begin at a specified 
time and occur periodically thereafter at a given rate.  Event status can be checked at anytime, 
and events can be canceled at anytime before they occur. 

11 Devices 
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11.1 Control Style 
Control of the system is hierarchical, or master-slave. The top level control process controls 
high-level software Device abstractions, which in turn control lower level Devices until we 
get down to individual Device controllers, which are our lowest level interface in the system 
and correspond to real hardware. For example, a high-level Mount device would be 
commanded in RA and DEC. In turn, it would control the actual Antenna Control Unit 
(ACU) in azimuth and elevation. 

A consequence of this choice is that devices cannot �pull� required information themselves 
from its ultimate source. For example, part of the conversion of RA/DEC to AZ/EL requires 
some weather parameters (for refraction calculations). Following the master-slave control 
philosophy, the weather parameters are passed to the high-level mount Device rather than 
having it retrieve the values itself directly from the weather station or monitor point archive.

11.2 CAN Interface 
M. Brooks 
Last Changed: 2001-11-01 

The CAN bus has been selected as the primary interface to distributed hardware devices 
within the ALMA project. CAN is an ISO standard multi-drop communications medium used 
extensively in automotive and industrial applications. A higher layer master/slave protocol 
has been defined in Brooks and D�Addario (2001) which governs the behavior of  slave nodes 
at the devices. This bus is hereafter referred to as the ALMA Monitor and Control Bus 
(AMB). That memo also defines the timing specifications for communicating with devices 
which have synchronization associated with 48 ms Timing Events. A distributed reset pulse is 
also defined for the purpose of remotely resetting all nodes on a CAN bus. 

 

In the Test Interferometer there will be a number of different operational CAN buses: 

• At least one at each antenna for M&C (most likely two) 

• One at each antenna for total power samples 

• One in the central control building for M&C 

 

11.2.1 Bus Master Nodes 
It is required that on any single AMB there be only a single bus master node. Bus master 
nodes have been coded and tested for the following hardware and software combinations: 

• O/S: VxWorks. SBC: MVME2700, MVME1603, MVME2604. CAN Interface: 
Tews Datentechnik TP816 Dual and Single Port PMC CAN modules (available in 
the U.S. from SBS Greenspring) 

• O/S: Windows NT. Any PC platform with PCI. CAN Interface: National 
Instruments Dual Port PCI CAN board. LabView bus master routines. 
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It is the responsibility of the ALMA Computing Group to design, implement and test 
all code developed for these bus master platforms. 

Figure 8 illustrates the class diagram for the CAN access package available for the 
VxWorks platform. The classes shown represent the client interface to the AMB, 
which is essentially a polled resource. Clients create objects representing physical 
CAN nodes (ambSimpleCANNode or ambCANNode classes) and may call read or 
write methods to effect monitor and control transactions to the physical slave node. 
The ambCANManager class is a singleton pattern which manages all of the physical 
CAN ports of the ABM or ARTM. Each port has a dedicated server process which 
services priority queued requests and keeps local performance statistics (not shown in 
the diagram). The manager object provides a method for finding devices connected to 
the bus by the device serial number. 
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Figure 8: Class Diagram for VxWorks CAN access package 
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Figure 9: Sequence Diagram for Monitor Transaction within VxWorks CAN access package 

 

11.2.2 Bus Slave Nodes 
There are currently two designs for circuits allowing the connection of hardware devices to 
the ALMA Monitor and Control Bus (AMB) in response to the requirements defined in 
Brooks and D�Addario (2001). These two circuits are referred to as the AMB Standard 
Interface, Type 1 (AMBSI1) and the AMB Standard Interface, Type 2 (AMBSI2). All 
designers of hardware interfacing to the AMB should use one of these two; new slave node 
implementations may be considered where sufficient justification can be provided. All slave 
node implementations must comply with the bus specification detailed in which requires that 
no slave node initiate transactions on the bus unless polled by a bus master. 

 

The AMBSI1 and AMBSI2 have been developed to serve the needs of device designers 
requiring varying degrees of complexity in local hardware monitoring and control, and for 
accommodating different physical size constraints. The AMBSI1 requires space for a 
Eurocard 3U height board and associated connectors. It provides a powerful 16-bit micro-
controller with default firmware providing a small set of I/O capabilities. Device designers 
may also implement additional device-specific code to access the serial ports or to interface 
to devices on the external bus. The use of device-specific firmware is expected to be the main 
area of deployment for the AMBSI1. 

 

Thus, the purpose of the AMBSI1 is to incorporate the AMB protocol and device-specific 
functionality onto the one board. Conversely, the AMBSI2 is a very small daughter-card for 
use in devices which either have their own microprocessors or need a very minimum amount 
of I/O to the CAN bus. There is no provision for device designers to add device-specific 
firmware to the AMBSI2. 
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The following additional slave node CAN interfaces will be supported in addition to 
the AMBSI2 and AMBSI2: 

 
• O/S: Linux. Any PC platform with PCI. CAN interface: Janz CAN-PCI/K2O. mainly 

for use in slave node simulation in the lab. 

• CompactPCI CAN board: planned for use by Vertex ACU, based on the Philips 
SJA1000 CAN controller ship. 

• O/S: Windows NT. Any PC platform with PCI. CAN Interface: National Instruments 
Dual Port PCI CAN board. LabView bus slave routines. For use in simulating slave 
nodes in the lab.\ 

 

11.2.2.1 AMBSI1 
The purpose of the AMBSI1 is to provide a highly flexible interface board with on-board 
CAN and device-side I/O consisting of parallel, serial and bit-wise ports. The board would be 
delivered to hardware designers with a standard firmware package supporting basic CAN 
access to the I/O ports and external bus. The micro-controller on the AMBSI will have 
sufficient spare processing capacity to run additional user-specific code, such as closing fast 
sub-millisecond control loops. The board also provides for the Global Slave Reset pulse and 
48 ms Timing pulses to generate appropriate signals to the micro-controller. 

 

The ALMA Computing Group is responsible for developing any device-specific code in 
conjunction with the hardware developer and for integration testing the product to ensure that 
the user code does not interfere with the CAN slave code. All AMBSI boards should be 
similar in hardware, and identical in size and connector arrangement. Code may be loaded 
into on-board flash memory by means of the CAN bus or the local RS232 port. 

 

The CAN bus servicing code is written so as to be entirely interrupt-driven.  It runs only in 
response to interrupts from the CAN controller, and those interrupts are set to the highest 
possible priority (in the Infineon C167, this is interrupt level 15, group level 3).  When not 
servicing an interrupt, the processor executes an idle loop.  User-written code may include a 
function to execute from the main idle loop, or it may simply consist of the callbacks for 
CAN message reception interrupts. Self-test routines should also be included in user code. 

 

11.2.2.2 AMBSI2 
This device would perform the function of a CAN bus to Serial Peripheral Interface (SPI) 
converter. It is designed for use in systems which either have their own microprocessors or 
need a very minimum amount of I/O to the CAN bus. It is currently proposed that the 
resulting subsystem would require +5 Volts at less than 2 ma and occupy a small daughter 
PCB of approximately 2 in by 1 in. The PCB would be either mounted to the main PB Board 
by several multi-pin headers which also serve as the I/O connectors for the subsystem. 
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There would be about 16 bytes of RAM which could be accessed by either the CAN bus or 
the SPI port. An �Attention� output would indicate when RAM contents had been altered by 
the CAN bus. The unit will have its own oscillator and reset circuitry, completely 
independent of the host microprocessor. All of the software in the subsystem would be 
developed by and be the responsibility of the software group. 

 

In addition to providing the CAN interface, the unit would also provide the interface for both 
the Global Slave Reset and 48 ms Timing pulses which come in through the AMB DB-9 
connector or module wiring as RS-485 and be available as TTL signals to the application 
circuitry. 

11.2.2.3 CAN Device Initialization in TICS 
The AMB protocol defined by ALMA is capable of run-time discovery of devices. In 
response to a bus initialization request all nodes on the bus will respond to that request by 
returning their node and serial numbers. This facility is intended to allow the dynamic 
discovery of which devices are available in the system. 

All devices that might be attached to the system have an entry in the configuration database 
containing their configuration parameters. In addition the database has a section that returns 
the name of the Device given its serial number. This name is the same as the name of the 
device in the configuration database. 

Initialization is driven by a startup script that operates as follows: 

1. The CAN access package is used to issue a bus initialization request (at least this 
method is assumed to be bound to IDL). The returned node and serial numbers are 
captured. 

2. The serial number is used to lookup the device name in the database. 

3. The serial number and node number for the device with that name will be inserted in 
the configuration data for that Device by the startup script. In particular, the node 
number will be needed so that the CAN Properties can be constructed properly. Any 
other dependent configuration values can also be modified at this time. 

4. Available devices are also written into the Activator database record so that the 
Manager knows they are available to be started. 

The only missing facility presently from this procedure would be the ability to instantiate 
devices of a known type whose actual existence in the system has not been foreseen (that is, a 
database entry for that name has not yet been written and inserted into the running system). 
This is due to the fact that the �structure� of the current ACS configuration database may not 
be changed at runtime. This restriction does not appear to be serious. 

11.3 CAN Device Properties 
M. Pokorny 
Last Changed: 2001-05-08 
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Figure 10 - CAN Property Inheritance 

This section describes properties that access hardware monitor and control points. Read or 
write operations on such properties generate I/O activity on an external bus, such as the AMB 
CAN bus, or an RS232 serial port. The design is described for all external I/O methods, with 
additional detail for the case of AMB CAN properties. 

Device properties are subclasses of the standard ACS property classes. Read-only properties 
correspond to hardware monitor points, and read-write properties correspond to hardware 
control points. Values read or written via the properties are typed values, and the underlying 
implementations provide, transparently to clients, all necessary data conversions and I/O 
access methods.  

 

The implementation of device properties is separated from the interface. Device property 
implementation is provided by the abstract "devIO" class. A reference to an implementation 
object (from the device property object), allows the property to access the external bus using 
typed values whenever a monitor or control point is used by a client. This allows device 
properties to have a single interface to the implementation, regardless of I/O method or 
property type. In general, the implementation classes fulfill two requirements: data 
conversion (between data format on the bus, and typed values in the LCU), and I/O access. In 
many cases, the implementation class may be entirely an interface adapter, placed between 
the LCU and the external bus access classes. 
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Henceforth, this section specifically describes CAN properties, as a particular type of device 
property. CAN properties are those that access monitor and control points on the AMB CAN 
bus. CAN properties are configured by a device (of which they are a part) using the 
configuration database. In addition to the characteristics provided by the ACS properties, 
CAN properties have a "relative CAN address" characteristic. Note that the CAN node 
address (or, equivalently, the serial number) is not a characteristic of the property; rather, it 
appears as a characteristic of the CAN node that is a part of the device. Devices "owning" 
CAN properties must instantiate the CAN node object that provides the node address, and, in 
turn, the full CAN address of the property. Thus, devices of this type have a "node serial 
number" characteristic for each CAN node required by the device. The node serial numbers 
are converted to node addresses when the node objects are instantiated by the device (c.f. 
CAN access package). 

The devIOCAN class provides default data conversion routines for all property types. Objects 
of this class access the AMB CAN bus using the ambCANNode or ambSimpleCANNode 
classes provided by the CAN access package. The devIOCAN class may thus be viewed as an 
interface adapter class, as it simply uses an ambCANNode object to do the I/O, and converts 
the data format between the CAN bus and the LCU.  

When the devIOCAN class does not provide the correct data conversion, a subclass of 
devIOCAN may be used. Typically, such a subclass need only override a single method from 
devIOCAN since the subclass is normally highly specialized to a specific property. The 
canTemperature class (which allows access to the DS1820 temperature sensor on the 
AMBSI1 board) is an example of such a specialized subclass of devIOCAN.  
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Figure 11 - CAN Property interaction 

11.4  Other Device Interfaces 
M. Brooks 
Last Changed: 2001-05-05 

In addition to the AMB it is expected that there will be a small set of unique interfaces to be 
supported. This may occur due to the use of commercial off-the-shelf components or designs 
re-used from other astronomical instrumentation.  

The following interfaces are envisaged: 

• GPIB: Where a need for GPIB interfaced devices exists, a GPIB bus would be run to a 
COTS GPIB card in the nearest real-time computer (ABM or ARTM). A layer of 
software is required, similar to the CAN access package, in order to connect device 
objects to GPIB devices. If Properties are needed for these interfaces it is TBD whether a 
new Property will be derived (as for CAN) or whether Logical (memory-based) 
Properties will be used (with the memory location being written by an application). 

• Ethernet: Several devices, such as the ACUs, will have Ethernet interfaces for auxiliary 
reasons such as debugging access, or static parameter configuration. Where a need exists 
for access to a device for monitor and control via Ethernet, standard ACS services should 
be used. Since no ACU monitor and control will occur via Ethernet, the ACUs will not be 
required to use ACS services.
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11.5 Monitor and Control Points 
B. Glendenning 
Last Changed: 2000-10-23  

 

In software, a Monitor or Control point is represented by an object. They have the following 
features: 

• Each one has a unique name. The name is human readable, and follows the actual 
hierarchy that gives the �location� of the point. For example: 
antenna:.compressor.ambient_temperature. 

• Some details about a monitor point, e.g. its precision, are loaded from the 
configuration database described previously. 

• Monitor points are read-only and Control points are read-write. The �read� of a 
control point will retrieve its last commanded value. 

• While they typically correspond to an actual hardware value, some will be purely 
synthesized in software. 

• In type they are either a scalar value (Double, Integer, String, Enum), or a Sequence 
(1-D array) of scalar values. The type of a Monitor or Control point is fixed at 
compile time. 

• They are always embedded in one and only one software Device (see next section). 
• They are based upon ACS Property classes (possibly without change).

11.6 Software Device Conventions 
F. Stauffer 
Last Changed: 2001-10-31 

11.6.1 Description 
A Device is an idealized description of a logical or hardware device in the system. If the 
hardware device is an �ideal� device, then the device is just a container for the monitor and 
control points.  Otherwise, the Device creates the �ideal� device on top of the hardware.  
Devices are either low level, such as a software representation for a hardware module, or they 
are high level and composed of other devices such as the electronics comprising the signal 
chain - front end, downconverter, LOs, and digitizers. The low level devices, referred to as 
Device Controllers, will run on the real-time machines and possibly are synchronized to 
timing events.  The higher level Devices, referred to as Composite Devices, may run on either 
the ACC or the real-time machines.  

Sometimes devices do not map exactly onto the hardware. For example they may have an 
interface that accepts a time polynomial rather than requiring more rapid commanding. 
Similarly, they may canonicalize the data types they present to the rest of the system. Direct 
control of the hardware device through CAN is of course possible for debugging or other 
purposes.  

It is important to note that we intend that devices to not normally require real-time 
commanding. This has these consequences: 

• Device controllers perform time-synchronized actions. 

• Device controllers are on the real-time machines.   
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• Commands must be sent in advance to the devices along with the time at which they 
should be activated. 

• Device controllers and not the calling program handle fast control. This can be 
accomplished by sending the device controller high-level commands (e.g., 
polynomials or tables) that last for some time and letting the device controllers 
control the hardware at faster rates. This is described further in the Device Controller 
section. 

Device is an abstract base class from which particular device controllers and composite 
devices will be derived.  The device class is implemented on top of the ACS Distributed 
Object. In brief, it contains read-only (�monitor�) and read-write (�control�) Properties, and 
possibly logical Properties. Each Property in turn will be associated with a number of 
Characteristics that describe it (for example, the units).  A Device also has Characteristics 
such as name and description, and possibly other commands (in particular, multi-argument 
methods) that do not naturally fit into Properties. 

11.6.2 Commands 
The only standard commands shared by all devices are those related to changes in the 
standard states (see next section). 

11.6.3 States 
Device behavior is modeled with a statechart, Figure 13.  When a composite device performs 
a state transition, it will pass the state transition to the devices they contain.  Devices inside of 
a composite device can transition to other states without necessarily causing the composite 
state to make a state transition.  For example, this means a composite device can be 
ENABLED and have a DISABLED device.  

It will be useful for these states to be available as Properties for monitoring and other 
purposes.  Methods of accomplishing this are under discussion. 

DISABLED

FAULTED
Reset

Disable

Detect Fault

Enable

Disable

ENABLED

Fault

DIAGNOSE

Enable
Diagnostic
s

Disable
Diagnostics

INITIALIZE

SHUTDOWN



 51

 
Figure 13 – Standard states shared by all devices. 

As shown in the figure all devices must be in one of the top-level states: 

DISABLED The equipment is in power-off, low power, or some generally inaccessible 
state. DISABLED only accepts commands to transition to other states and 
monitor commands.  

DIAGNOSE State used to debug the hardware. 

ENABLED In this state the device accepts M/C or other commands. Commands that are 
long running (for example, a nutator program) are executed as parallel running 
state machines inside the ENABLED state. 

INITIALIZE Perform actions to ready the hardware, such as enable power, calibration, etc. 

SHUTDOWN Perform actions to disable the hardware. 

FAULTED A device usually enters this state �spontaneously� from ENABLED when a 
fault condition is detected, either by the device hardware or by software inside 
the Device. A fault condition is faulty hardware behavior that needs 
intervention to correct or a time tagged command that is late. This state accepts 
M/C or transition commands.  Some conditions may exist that cause alarms, 
but they are not severe enough to cause a fault.  FAULTED can only be exited 
by human intervention. 
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11.6.4 Software Interface 

11.6.4.1 Class Diagram 

Timed Device Controller

Distributed Object
(from Distributed Object)

type

ROProperty

getValue()
defaultValue()
units()
format()
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(from Distributed Object)
type

RWPropery

setValue()
increment()
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(from Distributed Object)

GPIB
RS232CAN

Memory
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MonitorPoint
iop : IO Port
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1

1..n

1

0..n0..n
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ControlPoint
iop : IO Port

0..n0..n

IO Port
branch : int
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read(buf[] : byte, nbytes : int) : bool
write(buf[] : byte, nbytes : int) : bool

11

 
Figure 14 - Fundamental Device and Property Classes 
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11.7 Device Controller 
F. Stauffer 
Last Changed: 2001-10-31 

11.7.1 Description 
The device controller is the lowest level software device, just above the hardware, and runs 
on the real-time machines. Optionally, device controllers can have timing-event synchronized 
actions, long running actions, or control loops to accurately set and track device properties.  
These device controllers have the control software implemented as state machines inside the 
ENABLED state. 

11.7.2 ENABLED Sub-States 

11.7.2.1 Control Loops and Long Running Commands 
An example is a device that tracks a settable value, for example the sub-reflector focus.   

11.7.2.1.1 States 

The device specific sub-states are usually IDLE and EXECUTING.  Control parameters can 
be updated while in the EXECUTING state. 

 

Figure 15 - Standard states shared by control loops and long running sequences. 

IDLE In this state the device accepts M/C or other commands. Commands that are 
in the IDLE state should not be long running commands. 

EXECUTING The device controller is executing some (potentially) lengthy command or 
tracking a set-point. The Stop command ends the state gracefully (e.g., at the 
end of the next controlled update).  The Abort command is intended to stop it 
immediately. 
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11.7.2.2 Precise Timing Control 
ALMA has some devices that require time-synchronized monitor and/or control. These 
devices must meet the ALMA hardware timing specification. 

For monitoring purposes, we assume that the monitor point get method will supply a time-
tag. The time-tags will correspond to the time the monitor point was sampled in the hardware. 
That is, it will be corrected back to the timing event that generated it, including any device-
dependent offset from the timing event. 

11.7.2.2.1 States 

For commanding purposes, the model is that when in an IDLE state the long-running 
command is set up (it might involve interaction with many Properties). The time at which the 
command should start is set (through another property) at which time the device controller 
transitions to the ARMED state. The device transitions to the EXECUTING state at the time 
requested. The EXECUTING state indicates that a long-running command is executing. It 
will often have device-specific sub-states. To change the long-running command, the device 
controller is first returned to the IDLE state. An example of a time-synchronized program is 
nutator positioning. 

Time-synchronized action sequences usually are modeled as a device-specific list of control 
point value and dwell time entries to be executed in some device, such as a nutator sequence. 
Time-synchronized hardware programs run in hardware if supported, or in the device 
controller itself if not. 

The list is started with respect to the timing events, and the dwell times are the time each 
entry is active. The time each entry starts is the start time plus the sum of dwell times since 
the start.  Dwell times are expressed in milliseconds.  This is based on the need for flagging 
total power data at 2 ms. Device programs will generally be chosen to fit evenly into some 
number of timing event periods.  

The list is executed in sequential order, and when the last entry is completed, the list wraps 
around repeating the program until stopped.  A list entry is executed by setting the control 
points and waiting for the dwell time to expire.  

To ensure the EXECUTING state executes correctly, control points will have an extra 
characteristic that indicates if the control point may be set while EXECUTING.  This allows 
for feedback control, but prevents control that will break EXECUTING.  For example, setting 
gain values will not break the state, but setting the controlled position asynchronously is not 
allowed. 

When EXECUTING, and an error occurs or the user wishes to disable the device, a transition 
from EXECUTING occurs.  The UML statechart model specifies that transitions on the 
enclosing state implies transitions from the lowest level nested sub-states first. The current 
sub-states are not remembered and not re-entered later because timing synchronization could 
be violated.  When the EXECUTING state is re-entered, sub-states need to start from IDLE. 

Time-tagged commands that have not been sent sufficiently in advance to meet the 
underlying timing specification will result in a transition to the FAULT state. 
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Figure 16 - Standard states shared by all timing event synchronized control sequences. 

 

IDLE In this state the device accepts M/C or other commands. Commands that are 
acted upon immediately result in the device controller remaining in the IDLE 
state. Commands that are long running (for example, a nutator program) are 
executed in the EXECUTING state. 

ARMED The caller has indicated that the device should start EXECUTING. This state 
waits until the time, at which the device should start EXECUTING. ARMED 
is used only when time synchronization is needed. If precise timing is not 
needed, it is TBD whether the ARMED state will be removed or transitioned 
through �instantly.� 

EXECUTING The device controller is executing some (potentially) lengthy command. This 
state will often have additional device-specific sub-states. For example, a 
nutator while running a nutator sequence might be in an OFF, ON, or 
MOVING sub-state. The Stop command ends the state gracefully (e.g., at the 
end of the next nutator cycle).  The Abort command is intended to stop it 
immediately. 

 

11.7.2.2.2 Timing 
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The device controller is responsible for providing a time tagged interface such that the user 
and the communication link do not have to be real-time.  The commands are sent with a time 
tag to specify the start timing event far enough in the future that the worst-case latency is 
allowed for.  The ENABLED sub-states with timing synchronization are ARMED, wait for 
the start timing event, and transition to EXECUTING.  The EXECUTING state executes the 
time-synchronized control. 

 

Figure 17 - Timing diagram example for a time synchronized hardware control. 

11.7.3 Software Interface 

11.7.3.1 Class Diagram 

 
Figure 18 - Device controller class diagram. 
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11.7.4 Implementation 
The described behavior presented in the previous discussion is from the user's point of view, 
and it represents the hardware.  Software control is modeled with the same state diagrams.  
The major difference is that the time synchronized EXECUTING sub-states are phase shifted 
some number of timing events ahead of the hardware.  For CAN devices, the phase shift is 
one timing event.  Software control is synchronized by timing events, and the control 
messages reach the hardware in the timing window before the hardware acts on it.  The 
timing diagram in the next figure shows the relationship between the software and hardware 
states for CAN devices. 

 

 
Figure 19 - Timing diagram example for time synchronized hardware compared to the software 
control.  For devices that are not time synchronized, the ARMED state is not used and the 
transition is from IDLE to EXECUTING. 

11.8 Device Creation and Management 
B.E. Glendenning 

Last Changed: 2001-05-01 

IDLE

ARMED

EXECUTING

Timing Events

...

...

...

Start Time, Hardware
Action Performed Here

SW IDLE

SW ARMED

SW EXECUTING ...

...

...

CAN message(s) sent
here

<- latency ->

...

...

...

...

...

...

...

...

...



 58

 
TICS follows the ACS philosophy for device creation. In particular, the Manager is used to 
obtain references to distributed objects, and the Activator is used to create them. Subordinate 
parts (M/C points, sub-devices) of a particular Device are constructed indirectly. In particular, 
their construction is triggered by asking the Manager for an object reference to the 
subordinate part, which ultimately causes the constructor for that subordinate part to be 
called. This indirection allows for the substitution of a subclass that conforms to the required 
interface (for example, for simulation), or to transparently change the computational host that 
runs the subordinate object without having to make any change to the �outer� Device. 

Part of the activation protocol will include the framework making available to the Device 
under construction an IDL interface to the ACS configuration database. The Device will then 
bootstrap itself by reading its required configuration parameters through the interface. 

11.8.1 Python Issues 
An ACS Activator will be provided to allow Python Devices to be implemented within the 
ACS distributed object framework.  

It is clearly desirable for these Python Devices to have Properties directly, however it may not 
be feasible to have a direct Python Property implementation available on the desired 
timescale. As an expedient, a factory will be provided that can create Logical Properties 
(which are implemented in C++) on behalf of the Python Device. A Logical Property merely 
reflects the value of a memory location. It may be set via the Property.set() method if the 
property is read/write, otherwise it may be set through the ACS database interface, which will 
have an IDL binding and is hence accessible from binding. In this fashion a Python Device 
may have Properties whose values are defined in Python. While this scheme requires an extra 
inter-procedure call, the overhead should be acceptable from the scripting language until a 
native Python implementation is available. 

An alternative implementation would be to introduce a Callback Property class that merely 
forwards its I/O request to a callback object. This callback would be defined in IDL and 
hence could be implemented in Python. The Python Device would merely insert its own 
callback into the Callback Property. These two possibilities require further investigation. 

In addition to the database interface, the ACS Logging interface and (at lower priority) an 
interface for the ACS Error generation will be provided. 

11.9 Mount 

R.W. Heald 

Last Changed: 2001-02-07 

11.9.1 Description 

The Antenna Mount System (AMS) controls the movement of the ALMA antenna for 
astronomical observations and testing.  All ALMA antennas use identical hardware and 
software. 

The AMS logically sits between the Array Control Computer (ACC) and the Antenna Control 
Unit (ACU).  The ACC commands the antenna position by sending tracking commands 
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consisting of a target and optional pattern to the AMS.  The AMS combines the target and 
pattern, converts them to horizon coordinates useable by the antenna, applies the appropriate 
corrections, and sends the results to the ACU.  This causes the antenna to move in the desired 
manner. 

Trajectory commands to the ACU have 4 parameters consisting of the elevation and azimuth 
positions, and the elevation and azimuth velocities.  A zero elevation points the antenna at the 
horizon, and a zero azimuth points it due north. 

For each antenna axis, the AMS has two positions (called "limits") that define the extremes of 
antenna movement for that axis.  An attempt to exceed a limit causes antenna axis movement 
to stop at the limit and a software alarm to be produced. 

The antenna normal range of azimuth motion is 270 degrees on either side of north.  This 
implies there are two possible azimuths to reach all southern sky regions.  Tracking 
commands to the AMS specify the region to be used, either the �+� or �−� azimuth region, or 
the closest (the default). 

The antenna normal range of elevation motion is 2 to 125 degrees. This means there are two 
possible elevations to reach the sky region above 55 degrees.  Tracking commands to the 
AMS specify the region to be used, either 2 to 90 degrees (the default), or 90 to 125 degrees 
(called �over-the-top�). 

When the AMS is given a target that is below the elevation limit the AMS moves the antenna 
to at the correct azimuth at the elevation limit.  There it tracks the target in azimuth only until 
the target rises above the elevation limit.  The AMS works in this manner for both normal 
�front side� elevations, and �over-the-top� elevations where the lowest elevation limit is 55 
degrees above the horizon.  Notice some (especially those with a optical astronomy 
background) consider this behavior to be strange, and it will be reviewed for the ALMA. 

Tracking at the sidereal rate is not possible within a 0.2 degrees radius of the zenith.  When 
tracking within this region the AMS moves the azimuth as fast as possible to resume tracking 
the source when it leaves this region.  There is no guarantee of good tracking while the 
antenna is within this region. 

The AMS can cause the antenna to follow a pattern superimposed on the target being 
tracked.  The speed along the pattern is constant and settable, and the movement is 
synchronized between antennas.  A pattern can be described in equatorial or horizon 
coordinate systems.  Available patterns include a simple offset and raster scan.  The lines of 
the raster scan can follow the right ascension, declination, azimuth, or elevation coordinate. 

Patterns are composed of a series of separate, short strokes.  For the raster scan pattern a 
stroke is a single line of the pattern.  Calibration procedures can be performed between the 
strokes.  Antenna motion can be specified to begin and end with any given stroke(s) within 
the pattern.  Movement along a stroke is continuous and atomic. 

The AMS can perform a drift scan.  In a drift scan the antenna is moved to a position 
preceding the track of the desired object and is then held stationary to allow the object to 
track through the antenna's boresight. 
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The AMS constantly reads the actual positions captured by the ACU and compares this with 
the commanded position to determine the error on the sky.  Comparing this error with a 
tolerance determines whether the antenna is �on source� or �off source�.  The AMS takes the 
most pessimistic view in this determination.  That is, the AMS must find two consecutive 
positions within tolerance before �on source� is declared, and when a position is found 
outside the tolerance both that position and the previous position are declared �off source�.  
The AMS reports the results to the ACC whenever there is a change.  The tolerance value is 
settable. 

The AMS has an On-The-Fly (OTF) mode.  When in OTF mode, the AMS appends a time 
stamp to the positions obtained from the ACU and sends them to the ACC. 

The OTF observing mode will support the relevant antenna coordinate system.  The approach 
is to put a rotation into the horizon coordinate frame, such that the equator of the system goes 
through the source (the transmitter on its tower).  This is still a conventional spherical system, 
but with a single rotation, the same as, but simpler than, the rotation from equatorial to 
Galactic coordinates, for example.   A simple matrix will take care of this rotation. 

The modified OTF raster scanning is a special case of more general non-rectangular scanning 

schemes.  For example, making the scanning length to be +/- 22 YR − where R is the 
defined radius of the parent "square map", i.e. R=X/2, X is the horizontal extent of the map, 
and Y is the distance of the current scan from the center of the map.  In this definition X is 
measured horizontally and Y is measured vertically, however, it could apply to any rotation 
of the scanning direction. 

11.9.2 Properties 

• Status (Off, Stopped, Moving, Error) 

• On/Off source position 

• On the sky error tolerance for On/Off source position 

• Azimuth and elevation wrap 

• OTF mode 

• Commanded equatorial position 

• Commanded horizon position 

• Actual horizon position 

• Remaining track time for source 

• Current UTC time 

• UT1-UTC 

• Sidereal time 



 61

• Polar motion coordinates 

• Antenna motion limits 

• Antenna site location 

• Observing frequency 

• Ambient temperature 

• Atmospheric pressure 

• Relative humidity 

• Temperature troposphere lapse rate 

• Pointing model coefficients 

11.9.3 Commands 

• Track a celestial object or move to a stationary position

track(system,coord1,coord2,pm1,pm2,velocity,parallax)

where system is either equatorial, ecliptic, galactic, or horizon 

track(name)

where name is a source from a catalog or a special position such as stow, etc, 

• Perform a pattern stroke 

stroke(type,system,arguments) 

• Add a horizon coordinate offset 

offSaa(az,el)

• Add a equatorial coordinate offset 

offSad(ra,dec) 

• Stop all antenna movement 

stopMotion() 

11.9.4 States 
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Sub-States of the Enabled State 

11.9.5 Timing 

Trajectory commands and position monitor requests are sent over the CAN bus to the ACU 
after each timing event.  Their delivery is time critical and must be in accordance with the 
timing specifications given by Brooks and D�Addario (2001). 
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11.10 Test Correlator 
J. Pisano 
Last Changed: 2001-09-17 

11.10.1 Description 
The ALMA test correlator device is a �configure and run� time-synchronized device, that is, 
it is configured for an observation and then commanded to start correlating. Raw lag results 
flow from the test correlator hardware to the correlator control computer (CCC) and then 
processed to spectral data sets and ultimately transmitted via the science data pipe to the Data 
Collector. For the TI, the Data Collector will be the ACC. Unlike other devices in the TI, the 
test correlator device communicates to the ACC via a switched Ethernet connection. 

The test correlator device is configured for observation by setting the following items: 

• The correlator dump time in units of 1.31072 ms correlator ticks. 

• An integration time which defines the number of correlator dumps to accumulate 
internally before transmitting the results to the Data Collector. 

• Bin switching parameters � number of bins and dwell time. 

• Data processing options defining how the lags are converted to spectral channels 
including geometric delay parameters for interferometric observations. 

• The correlator system mode which sets a group of properties which are outlined in the 
following table. 

 

CORRELATOR 
MODE ID 

BANDWIDTH POLARIZATION
PRODUCTS5 

LAGS DELAY 
RESOLUTION 

DELAY 
RANGE 

1(cross-products) 800 MHz 0R X 1R  
0L X 1L 
0R X 1L 
0L X 1R                   

512 Leads & 512 Lags 5 ns 10 µs 

2(cross-products) 800 MHz 0R X 1R 
0L X 1L                  

1024 Leads & 1024 Lags 5 ns 10 µs 

3 (self-products) 800 MHz 0R X 0R  
0L X 0L 
1R X 1R  
1L X 1L                   

1024 Lags N/A N/A 

4(cross-products) 100 MHz 0R X 1R 
0L X 1L 
0R X 1L  
0L X 1R                   

4096 Leads & 4096 Lags 20 ns 80 µs 

5(cross-products) 100 MHz 0R X 1R 
0L X 1L                

8192 Leads & 8192 Lags 20 ns 80 µs 

6 (self-products) 100 MHz 0R X 0R  
0L X 0L               

8192 Lags N/A N/A 

7 (self-products) 100 MHz 1R X 1R 
1L X 1L                

8192 Lags N/A N/A 

                                                      
5 This defines which antenna � polarization product is supported for a given mode where antennas are 
defined by 0 or 1 and polarizations are either R or L. 
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Once configured, the test correlator hardware is commanded to start an observation at a 
predetermined timing event. Correlator chip sub-integrations are set to be either synchronized 
or not to the array-wide 48ms timing events. At each dump, raw lags are extracted from the 
test correlator hardware, any data processing options set in the configuration stage are 
applied, fine delay corrections are made, and the data are added together in an integration 
accumulator. Once an integration has completed, the spectral results are tagged with a header 
identifying each polarization product and sent to the Data Collector. 

11.10.2 Properties 
Although each property read-only (RO), they are set via commands as function parameters: 

o Observation control properties  
• Correlator dump time � an integral number of 1.31072 correlator ticks. 
• Integration time � an integral number of correlator dumps. 
• Integration duration � an integral number of integrations. 
• Number of correlator bins � a integer of  value 1, 2 or 4 which allows 

integrations at the correlator chip level to switch among the specified bins at 
specific 48ms timing intervals 6. 

• Correlator bin switch time � an integer value which specifies the number of 
48ms timing intervals devoted equally to each bin. This value is ignored if 
the number of correlator bins is 1. 

• Correlator mode � an integer 1 � 7. 
• Delay model coefficients for interferometry modes. The form of the delay 

model is: dττττ(t) = D0 + D1t + D2t2 + D3t3 +D4t4 

o Data processing properties (which are performed in the following order) 
• Boolean flags specifying that the following should be done: 

• Van Vleck Correction 
• Hanning Windowing 
• FFT 

• Spectral Averaging specifying how many adjacent channels to average 
together 

• Select a subset of spectral channels 
• Decimation of spectral channels by specifying every N-th channel to keep 

11.10.3 Commands 
Controls: 

• Set observing properties via a single function. 

• Set data processing properties via a single function. 

• Set the geometric delay parameters via a single function. 

• Start observing on a specific timing event for a specified number of integrations 
having the correlator chip sub-integrations either synchronized or not to the timing 
events. 

• Stop observing at end of current integration. 

                                                      
6 This feature allows switching (frequency or beam) on 48ms timing events. 
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• Abort observing � note that this allows for a partial integration to be sent. 

• Reset � perform a cold or warm reset on either the test correlator hardware and/or the 
CCC. 

• Run a diagnostic test on the test correlator hardware. This must be performed when 
the test correlator is not running (correlating) 

Monitors: 

• Current test correlator device state 

• All of the following monitor points are read-only: 

 

Quantity Units Resolution 

+ 5 VDC  Volts 5 mV 

- 5 VDC  Volts 5 mV 

-2 VDC  Volts 5 mV 

+24 VDC Volts 15 mV 

+15 VDC Volts 10 mV 

-15 VDC Volts 10 mV 

Corr. Rack Temperature Degrees Celsius 0.1 degree 

 

• Any of the following test correlator characteristics all of which are read-only: 

 

Index Item Description 

1 Cross-correlation 
tick time 

Number of milliseconds of one correlator tick in cross-
correlation mode. This value is 1.30172. 

2 Auto-correlation tick 
time 

Number of milliseconds of one correlator tick in auto-
correlation mode. This value is 1.30172 

3 Maximum data rate The fastest rate at which data can spew out of the 
correlator in units of results/second. Raw lag results 
will be 32-bit integers while spectral points will be 32-bit 
floating-point numbers 

4 Bandwidth modes A list of the available bandwidth modes. These are 800 
MHz and 100 MHz. An asterisk next to the mode 
indicates that a Xilinx FPGA personality image needs 
to be downloaded for this mode, e.g., “100MHz*”. 

5 Mode Change Time This describes the time (in seconds) it takes to perform 
a correlator mode change. For 800MHz mode, the 
value is 100 ms and for narrow band mode (100MHz) 
the value is 40 seconds. 

6 Minimum Dump 
Time 

This is the shortest dump time (in milliseconds) for the 
correlator hardware. This value is 48 milliseconds for 
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synchronized dumps and ~70 milliseconds for non-
synchronized dumps 

7 Computer Type This is a simple string identifying the correlator 
computer type. It is “Motorola MV2700 MPC750”. 

8 Monitor point list A list of monitor points names. 

11.10.4 States 
The test correlator has no sub-states beyond the standard top-level states used for devices 
with precise timing requirements as described previously.  

11.10.5 Processing flow 
The following sequence diagram shows the processing flow of correlator configuration and 
data processing. 

The primary actors are the ACC and Data Collector while the test correlator is a secondary 
actor. The main internal objects are represented by the classes: 

• CC_Manager which is responsible for coordination of internal execution and interfacing 
to the ACC. 

• IntegrationManager which is responsible for configuration and control of the test 
correlator hardware. 

• CorrelatorManager which provides a hardware abstraction layer to the test correlator 
hardware. 

• DataProcessor which is responsible for extracting raw lags from the test correlator and 
processing them to spectral results by applying the selected data processing items, e.g., 
Hanning windowing, VanVleck correction, FFT, etc. For interferometry modes, fine 
delays are applied to the spectral results after the FFT is applied to a correlator dump. 
Finally, DataProcessor is responsible for assembling the �bricks� of spectral results and 
delivering them to the Data Collector. 
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Figure 20 – Correlator Control Sequence Diagram
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11.10.6 Timing 
Starting and stopping correlator dumps must occur on a timing event. The specific timing 
event is specified in the start (or stop) observing command. In order for this to occur, the 
commands must be sent from the ACC far enough in advance to deal with network latency 
and the latency of translating the start (or stop) observing command to a command 
understood by the test correlator hardware so that it begins dumps on the specified timing 
event. This latter latency value must is at least 72ms. 

Figure 21 – Starting and stopping correlator dumps on a specific TE 

For interferometry mode, the coarse delay which is derived from the delay model evaluation, 
is applied before the test correlator is commanded to start observing. 

11.10.7 Class Diagram 
The following figure provides a class diagram overview of the TestCorrelator device. It 
contains correlator configuration and data processing information as previously described. 
Also included are the various monitor points. 

IDLE

RUNNING

Timing Events

...

...

Time Tagged (t = m)
Command Sent Here

Start Time, Hardware
Action Performed Here at

Specified Time tag

...

Start Observing cmd. sent
to CHW here

Start Observing cmd from
ACC processed here

ti ti+1 ti+2 tm-2 tm-1 tm tm+1
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TimeDeviceController

+subState :

  

TestCorrelator

+configureObservation()
+configureDataProcessing()
+startStopObserving()
+reset()
+setDelayModelCoefficients()
+runDiagnostics()

+CorrelatorConfiguration :
+CorrelatorDataProcessor :
+m_5VDC_Positive :
+m_5VDC_Minus :
+m_2VDC_Minus :
+m_24_VDC :
+m_15VCD_Positive :
+m_15VDC_Minus :
+m_rackTemperature :

 
Figure 22 - Class diagram for the test correlator device 

Figure 23 shows the CorrelatorDataProcessor class which holds the specific data processing 
configuration items and populates a CorrelatorScienceDataResults object which encapsulates 
the header information plus spectral data for each correlator integration. 

 
Figure 23 Correlator Data Processor 

+processLags() : bool
-doVanVleck()
-doHanning()
-doFFT()
-doAveraging()
-doDecimation()

+m_doVanVleck : bool
+m_doHanning : bool
+m_doFFT : bool
+m_spectralAveraging : int
+m_startSpectralPoint : int
+m_stopSpectralPoint : int
+m_decimation : int
+m_lags : vector<unsigned long int>

CorrelatorDataProcessor

+prepareResults() : vector<float>

+m_integrationStartTime : TimeStamp
+m_integrationDuration : long
+m_binNumber : unsigned char
+m_resultsType : unsigned char
+m_polarizationProduct : unsigned char
+m_spectralAveraging : unsigned short
+m_startSpectralPoint : unsigned short
+m_stopSpectralPoint : unsigned short
+m_spectralDecimation : unsigned short
+m_lastDataSet : unsigned short
+m_spectralResults : vector<float>

CorrelatorScienceDataResults
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11.11 Nutator 
F. Stauffer 
Last Changed: 2001-10-31 

11.11.1 Description 
Details related to the internal (embedded) software view of this device are not covered. This 
device is currently under design so many details are still TBD. The fundamental specification 
of the nutator is that it can carry out an ON/OFF cycle at 10Hz with a 10ms switch time (i.e., 
80% duty cycle). 

The nutator hardware is assumed to have a programmable list of target position, move time, 
and dwell time triples � typically there will be one ON position and one OFF position, 
however there is no practical limit to the number of target positions that can be defined. The 
target positions can be arranged in a program sequence (e.g., ON→OFF) that can then 
repeated by the nutator until stopped or aborted.  The move time and the dwell time are used 
to flag data bad or good, and the nutator hardware verifies if the times are achievable. 

The nutator follows the general ALMA synchronization philosophy outlined in ALMA 
Memo #298. In brief, that time-critical control points are set in advance of a timing event 
(48ms period), which strobes the set value active. 

The nutator sequence is programmed in 1ms increments that are aligned with the system-wide 
timing events to some TBD accuracy. The nutator has an active program and a standby 
program.  The standby program can be loaded while the active program is running.  The 
standby program is loaded as the active program when ready to run.  In normal operation we 
assume that the programmed sequence is achievable and monitor the nutator state relatively 
infrequently � probably once per timing event. However a nutator position monitor will be 
available which can be called at up to the CAN bus bandwidth (~2000 times per second) for 
debugging or other special purposes. 

This description assumes a one-axis nutator programmed with a fixed series of positions. For 
the ALMA array a more elaborate nutator model may be required (for example, the hardware 
will be capable of spiral patterns). 

11.11.2 Properties 
Parameters are assumed to be set infrequently - generally just before the nutator program is to 
be armed. 

• Program Cycle - read/write; this is a list of (position, settle time, dwell time). For 
example a sequence with a central ON and two OFF positions could be represented 
as: 
         (0.0�, 5, 20),  (-5.0�, 5, 20),  (0.0�, 5, 20),  (+5.0�, 5, 20) 
Here we assume, probably unrealistically, that it takes 5ms to move to each new 
position. The total cycle time for this sequence is 100ms.  The position units are arc-
minutes. 

• Current position - read only 
• Current state - read only 
• Status 
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11.11.3 Commands 
• Start program on the second timing event (must be sent 24-48ms in advance of TE) 

after the command is issued; runs until stopped. 

• Stop on a selected program step 

• Abort program immediately 

• Validate a proposed program cycle to see if it is achievable (e.g., check against slew 
and acceleration limits) 

• Stow, lock motors 

• Reset status - clear the status bits 

• Load standby program - loads the standby program into the active program 

• Self-test 

11.11.4 States 
The nutator has the standard top-level states used for devices with precise timing 
requirements as described in section 11.6.3 above. The EXECUTING state, Figure 1, has the 
sub-states implemented in hardware shown in the following figure.  A hardware monitor 
point is read to determine the nutator state. 

The states are: 

• MOVE - move nutator to position 

• DWELL - wait at this position 

 
Figure 24 - Possible nutator hardware state diagram showing the sub-states of the Running state 

MOVE

DWELL

Start (timing event)

Stop
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11.11.5 Timing 
As noted in the introduction, a program cycle only becomes active at the next timing event. 
Once nutating (running) the transitions between states occur on 1ms boundaries.  The timing 
diagram, Figure 2, shows MOVE waits for the settle time from the time MOVE started.  This 
means the settle time incorporates any time involved in performing the move. 

We assume that none of the monitoring requests require timing more precise than that which 
is available from the CAN bus (~150 us), and hence they may be requested at any time. 
Figure 25 - Hypothetical nutator timing diagram with programmed 8 ms settle times and 44 ms 
dwell times, started on the Start TE. 

11.11.6 Class Diagram 
Figure 3 is the nutator class diagram. 

 

Figure 26 - Class diagram for the nutator. 

The programVector is a logical ACS property sequence that is a list of triples containing the 
position, settle time, and dwell time. 
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11.12 Total Power 
F. Stauffer 
Last Changed: 2001-10-31 

11.12.1 Description 
Details related to the internal (embedded) software view of this device are not covered, and it 
does not cover the data production. This device is currently under design so many details are 
still TBD. The fundamental specification of the total power is that it produces data at 500 Hz 
for 6 total power detectors for each downconverter.  Each antenna has one downconverter 
(single sideband) for the test interferometer and two downconverters (one for each sideband) 
for the final array. 

When the total power device is enabled, the total power device collects and publishes into a 
data channel time-tagged data blocks aligned with timing events. 

11.12.2 Parameters 
Total power detectors - read only: 

• Continuum Polarization 1 

• Continuum Polarization 2 

• Narrow Band1 

• Narrow Band2 

• Narrow Band3 

• Narrow Band4 

11.12.3 Commands 
None available 

11.12.4 States 
The Total Power has the usual device controller top-level states as described in section 11.6.3 
above. The ENABLED state has the following sub-states: 

• COLLECTING - read total power data every timing event period and publish data. 
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Figure 27 - States for total power (inside the top-level ENABLED state) 

  

 

11.12.5 Timing 
The total power device does not have any time synchronized control behavior.  Data for each 
timing event period are read in the 20 ms monitor point time window.  The data produced in 
one timing event is 24 data values taken every 2 ms apart for each of six detectors or 144 - 
16-bit values.  

11.12.6 Class Diagram 

 

Figure 28 - Class diagram for total power device controller. 
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11.13 Holography Receiver 
M. Pokorny 
Last Changed: 2000-10-13 

11.13.1 Description 
This section contains an overview of the control software view of the Holography Receiver 
device controller. It does not include the internal, embedded view of the device, nor does it 
include the analysis software view of the device. 

The hardware design is currently underway, and many details of the design are TBD. It is 
expected that the holography receiver hardware will consist of two receivers, two mixers, 
oscillators, A/D converters, a digital signal processor, and supporting electronics (for 
example, power supply). The data group produced by the hardware consists of six values. 
These six values are produced from three analog signals (assuming that the quadrature signal 
is not produced digitally) that are converted by the A/D converters at a rate of 15 000 samples 
per second. The digital data is then processed and integrated to produce the six values in the 
data group. The integrations shall have a duration of 12ms, and shall begin 0, 12, 24 or 36 ms 
after a timing event. Four data groups are produced by the hardware every 48 ms. A 
continuous stream of data groups synchronized to the timing event is produced by the 
hardware. 

11.13.2 Properties 
Properties are labeled as read-only ("ro") or read-write ("rw"). 

•Reference frequency (rw) 

•Signal attenuation (reflected signal or reference) (rw) 

•Oscillator selection (ro) 

•Gunn oscillator operation (on/off) (rw) 

•Gunn diode PLL open/close (rw) 

•Reset DSP (rw) 

• IF signal level (reflected signal or reference) (ro) 

•BB signal level (reflected signal or reference) (ro) 

•LO level (ro) 

•LO mixer current (ro) 

•Heater current (ro) 

•Tuning voltage (ro) 

•Temperature (many) (ro): monitor a TBD number of temperature monitor points in the 
holography receiver enclosure. 

•Data group (ro): a time-tagged list of twenty-four values that consists of the four holography 
data groups (of six values each) from the previous timing event interval. 



 76

11.13.3 ENABLED Sub-States 
The holography device has the usual timed device controller top-level states as described in 
section 10.4. Although integrations begin on timing events, the device does not use time-
synchronized control because all synchronization is handled in the hardware or firmware, and 

the device control points themselves do not require precise timing. 
 

•EXECUTING 

The EXECUTING sub-state indicates that the data group monitor points are operational 
and contain recent holography data. Transitions to the EXECUTING sub-state may be be 
initiated by a command (for example, "power on Gunn oscillator"), or be "spontaneous" 
(for example, completion of "reset DSP" command). In the EXECUTING sub-state, the 
hardware will be producing holography data continually, and the software device 
controller will read the appropriate firmware monitor points in the timing window before 
every timing event (as described in ALMA computing memo #7) to retrieve the data. The 
data will be time-stamped by the device controller as it is read from the hardware device. 

• IDLE 

The IDLE sub-state indicates that the data group monitor points are not operational, and 
do not contain recent holography data. Various commands may initiate transitions from 
EXECUTING to IDLE (for example, "reset DSP" or "power off Gunn oscillator"). 

 

11.13.4 Timing 
All control follows the standard ALMA hardware control timing specification. A holography 
data monitor request will be associated with the 48 ms interval ending on the timing event 
preceding the request. 

11.13.5 Class Diagram

IDLE

EXECUTING

 / Gunn oscillator off / Gunn oscillator on

Figure 28- Sub-states of ENABLED; showing an example of a set 
of actions that may initiate state transitions. 
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12 Monitoring 

12.1 Monitor point collecting 
F. Stauffer 
Last Changed: 2001-10-31 

 A monitor point collector will poll monitor data on the real-time systems and 
centrally concentrate the data on the ACC where it is distributed to applications including 
monitor point archiving and data production. The monitor collector is started on the real-time 
machines before the devices are instantiated.  The monitor collector is a supplier to a 
notification event channel.  The monitor collector polls the monitor points, and records the 
time tagged monitor data in an XML format chosen to be convenient for the monitor point 
archiving task (in particular, �rows� of data at a particular time are sent). 

Timed Device Controller
subState

Holography Receiver
refFrequency
sigAttenuation
refAttenuation
oscIndex
gunnState
pllState
dspState
sigIFLevel
refIFLevel
sigBBLevel
refBBLevel
loLevel
heaterCurrent
tuningVoltage
temp
holoData

setRefFrequency()
setSigAttenuation()
setRefAttenuation()
setGunnState()
setPLLState()
resetDSP()

Class Diagram 
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By default all properties are monitored at the rates defined by their characteristics. The 
monitor point collector has optional configuration that can over-ride or suppress these values. 

The Properties are found at run time by querying the Manager for all local Devices, and then 
looking at the Properties in each Device. 

Allowed characteristic monitoring rates are: 

• 0.5 second 

• 1 second 

• 5 seconds 

• 10 seconds 

• 60 seconds 

• 300 seconds 

To synchronize monitor data across the array, polling is synchronized to the monitor rate.  
For example, a 1-second rate is polled on the 1-second mark, a 5-second rate on the 5-second 
mark, etc.  The characteristic rates are not necessarily divisible by timing events (however, 
the system would be more consistent if the intervals were multiples of the 48ms timing period 
and this change should be considered).  The monitoring uses the local time information 
described earlier in this document. 

This implementation will be provided as part of TICS to be considered for integration with 
ACS at a later time. The present ACS �Logging and Archiving� implementation will not be 
used for this purpose (but it will still be used for log messages, for example). 

 

 

12.2 Monitor Point Archiving 
B. Glendenning 
Last Changed: 2001-11-16 

As described previously, blocks of monitor point values are collected by real-time computers 
attached to the hardware monitor points, and are then sent via a publish mechanism to a 
concentrator process at the center, which in turn publishes the blocks of monitor points to 
(potentially many) interested subscribers. 

One subscriber is the monitor point archive task that subscribes to all producers of monitor 
point blocks. The archive task then pulls the blocks apart and places them into a RDBMS 
with an ODBC interface. Engineering data analysis is expected to largely take place through 
tools with an ODBC interface, although we may also have to write a few simple export tools 
(e.g., to comma separated value (CSV) text files). 

No automatic action will be taken to purge the database � so the default is that monitor points 
will be accumulated forever. If it turns out that in fact it is desirable to purge the database 
from time to time, the database administration tools will be used to do this. (We expect the 
total monitor rate to be ~10kB/s = ~900MB/day = ~300GB/year). (TBC - These values are 
considerable overestimates as they do not filter out the things faster than 0.5s that might 
dominate the total rate). 
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There are three sets of RDBMS tables: 
1. One set for both antennas. 

2. One set for the central electronics. 

3. One table for the meteorological data from the weather station. 

The �sets� of tables for the antenna and central electronics consist of one table for each of the 
allowed monitoring rates in the system.  

The first column of each table is the nominal sampling time, and is the primary key for the 
table. We require that the values in the row to have been sampled within ±10% (TBD) of the 
sampling interval around this time. For example, in the 0.5s table values must have been 
sampled within ±50ms (TBD) of the nominal sampling time.  

There is then one column per monitor point, with the column name being the same as the 
name of the monitor point (which are guaranteed by the system to be unique). If a monitor 
point is not available at a particular time for any reason, its value should be unset/null. 

300s Interval
Mon Pt n

...
0

1

Date/Time Mon Pt 1 ...
2001-10-15/21:07:39.5

.........

...<unset>2001-10-15/21:07:40.0

...11.5
60s Interval

Date/Time Mon Pt 1 ... Mon Pt n
2001-10-15/21:07:39.5

............
0...<unset>2001-10-15/21:07:40.0

1...11.5
10s Interval

Date/Time Mon Pt 1 ... Mon Pt n
2001-10-15/21:07:39.5

............
0...<unset>2001-10-15/21:07:40.0

1...11.5
5s Interval

Date/Time Mon Pt 1 ... Mon Pt n
2001-10-15/21:07:39.5

............
0...<unset>2001-10-15/21:07:40.0

1...11.5
1.0s Interval

Date/Time Mon Pt 1 ... Mon Pt n
2001-10-15/21:07:39.5

............
0...<unset>2001-10-15/21:07:40.0

1...11.5
0.5s Interval

Date/Time Mon Pt 1 ... Mon Pt n
2001-10-15/21:07:39.5

............
0...<unset>2001-10-15/21:07:40.0

1...11.5

 
Figure 29 - A group of monitor archive tables.  

 

Note that if the sampling rate of a monitor point changes, then it can appear in more than one 
table (its �old� rate and �current� rate). 

Besides the pure monitor points, some TBD �quick look� (e.g., continuum channel phase) 
science data values will be archived and available for engineering and other purposes. 

12.2.1 Issues 
Do RDBMS columns have to be scalars? If so, we will have to have a naming convention for 
monitor points that are sequence). Other issues might involve limits on numbers of rows and 
columns. 

There are concerns that this implementation may not scale well to large numbers of rows. If 
that turns out to be the case we will write utility programs that average the monitor data down 
considerably after some period of time, or alternatively we will consider alternate database 
schemas. 
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13 Model Servers 
B. Glendenning 
Last Changed: 2001-11-16 

The term �model server� is used to refer to a well-encapsulated complex physical or 
astronomical calculation. The model servers are called by the ACC and results are passed on 
to the device or process requiring them. For example, the ACC calls the delay server to 
calculate the required delays that it then passes on to the CCC. 

In general we would like model servers to have IDL interfaces so, e.g., they can be used from 
Java. As an expedient some of them may be implemented with only C/C++ API binding 
initially. 

Since these servers will be called on the non-real-time ACC, their methods should generally 
accept a time (usually in the future) for which the calculation is desired. 

13.1 Fundamental Astronomy Server 
This software is used for items related to pointing and moving the antennas. The software 
underlying the interface is �SLALIB,� created as part of the STARLINK project and 
distributed with ACS. The following capabilities are needed: 

• Calendar conversions (e.g., civil ↔ MJD) 
• Timescales (e.g., interconvert UTC, LAST, TAI) 

• Precession, nutation, aberration, refraction (the radio refraction model will be 
provided by ALMA), proper motion 

• Celestial coordinate conversions, e.g., FK4/FK5, galactic, AZ & EL 
• Terrestrial coordinate systems 
• Ephemeris calculations for solar system objects 

13.2 Delay Server 
The delay server is principally used to calculate delays and delay rates for the correlator. The 
underlying software is based on the CALC software from the Goddard Space Flight Center, 
VLBI group. 

 

Item Description Source 

Time Compute delay as a function of this time   

Station 
information (x2) 

Frame information (geocentric?), Each 
station x,y,z (m), Non-intersecting axis offset 
(m), station name, axis type (alt-az) 

Configuration file 

Source info RA, DEC (rad) and proper motions (arc-
sec/year), reference date, parallax, source 
name (not needed?) 

Source catalog or 
observing script. 

Earth orientation EOP epoch date, TAI-UTC, UT1-UTC, earth 
pole offsets 

USNO data in local 
table plus interpolation 
calculations. Must have 
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table update 
procedures. 

Weather Surface pressure (millibars?) Weather station monitor 
points. 

Table 13-1 – Principal inputs for the delay server 

 

Item Description 

Time The time (UTC?) for which the calculated results have been determined.

Delays and Rates Calculated for: the group delay, the dry atmosphere, and the wet 
atmosphere. Units are sec for delays, and sec/sec for rates. TBD: can the 
rates be used for the fringe generator? 

Pointing position 
and rates. 

Azimuth, Elevation (rad), and Azimuth, Elevation rates (rad/sec) for the 
second station of the baseline. This might not be used but should be 
useful for debugging. 

UVW UVW coordinates for baseline (m) in J2000.0 frame. 

Table 13-2- Principal outputs of the delay server 

14 Data Production 
B. Glendenning 
Last Changed: 2001-10-05 

14.1 Overview 
Data production refers to the process of producing data files that can be used by reduction 
packages to derive calibration values or to be used for astronomical data reduction. 

For the test interferometer, optical telescope observations will use a TBD format compatible 
with the TPOINT program written by P. Wallace that will be used for pointing reductions. All 
other observing modes will use a FITS based format unique to the ALMA test interferometer 
that has been chosen to be close to the data structures of the IRAM Gildas package that will 
perform the calibrations. This format is described by Lucas and Glendenning (2001 � TODO 
insert ref). Gildas in turn can export data to other formats (e.g., UVFITS) for those who wish 
to use other packages. 

14.2 Data Distribution 
In general, Data Production requires access to both �backend� data and monitor data. As 
described previously, both monitor and backend data are collected, time-tagged, and buffered 
at the real-time computer attached to the particular Device that then sends the data buffers to 
a central process that in-turn redistributes the data to processes that have need for the data. 

While observing, there will be either one or two (when observing �independently� with two 
single dishes) Data Production tasks that subscribe to the monitor data and appropriate 
backend data streams. 
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The data will be distributed Data using the Data Channel mechanisms described in a previous 
section. 

For the test interferometer, it is assumed that an observation is completed before starting 
another.  This means overlapping observations are not supported.   

 

14.3 Processing 
Data production is entirely data driven. That is, once configured, it proceeds solely by 
examining the data that is sent to it. It does not have to interrogate other software subsystems. 
A new file is started for each new observing session (loosely: a series of observations 
contiguous in time intended for a single purpose). 

 

Data processing follows the following sequence: 

• Data is first buffered in the Data Processing task for a sufficient length of time to 
overcome the latency in the system (that is, to assemble all data necessary to handle 
an integration). Monitor data is retained so that values are available from before and 
after a particular integration 

• Further processing is skipped - no data is written - if the antenna is still coming onto 
source or the frequency has never been locked for the current integration. 

• Flags are calculated. Flags are calculated conservatively (i.e., data is flagged bad if 
the bad occurrence might have happened any time during the observation). Data 
flagging parameters will include: 

♦ Antenna on source 

♦ Nutator in position 

♦ Frequency locked (CRG, 1st and 2nd LO�s, Frequency reference) 

♦ Roundtrip phase correction 

♦ Total power level 

• A few critical monitor points (in particular, the mount position) are interpolated to 
the time of the backend data. 

• Other derived values (e.g., UVW) are calculated.  

• Some �quick look� (e.g. phase) information is calculated for external processes that 
might be interested in it. 

• Single dish data that has several �phases� (e.g., ON/OFF) is (optionally) further 
integrated in the data production task. 

• When an integration is completed, data rows are formatted, written to disk, and 
flushed. Data is written on either a per-integration, or per block of integrations (for 
efficiency) basis (TBD). 

o Provision is made for two integration times. A short continuum time 
corresponding to the average of a specified channel range, and a much longer 
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spectral integration time. These will result in separate FITS header data units 
in the same file. 

o All monitor data is resampled as necessary to be coincident with the 
integrations at the longer integration period. 

• Tasks that have registered as being interested in the data are notified that more data is 
available. 

Data production continues until stopped (at the end of the current integration) or aborted 
(immediately).  

14.4 Observing Mode Data Production Details  

14.4.1 Optical Telescope Data 
A TPOINT format. Details TBD. 

14.4.2 Radio Data 
The data format for all radio observing modes is specified by Lucas and Glendenning (2001). 
Its important values include the following. 

 

What Source 

Primary data Test correlator (cross or auto correlations) or holography receiver 

Scan & observation 
number. 

Calculation (count). 1-relative 

Observing time Master clock and calculation (e.g., LST) 

Observing mode Observing script 

Project ID Observing script 

Az/El Antenna encoder monitor values 

Position on sky Calculation 

Site information (e.g., 
longitude and latitude) 

Configuration database 

UVW Calculation(source information, site information, time) 

Total power Total power detectors 

Weather information Weather station (via monitor points) 

Flags Determined from monitor points 

Aperture and beam 
efficiency 

Calculation 

Load temperatures Configuration database? 

Receiver and system 
temperatures 

Calculation 
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Focus location Monitor point 

Source parameters (e.g., 
position, flux, Doppler 
parameters) 

Observing script 

Array geometry Configuration database 

Frequency Observing script and monitor points 

Monitor data All monitor data sampled during the observation period will be 
included in the file. It will not be resampled to correspond to the 
observation times. 

Side band gain ration 
calibration 

Spectroscopic observation of line of known intensity in upper or 
lower sideband. 

Forward efficiency Skydip in total power. 

Aperture efficiency 
(Jy/K conversion) 

Measurement of antenna temperature on point source of known 
flux. 

Axes offsets Baseline measurement (fitting the residual elevation dependence 
of phase). 

 
 

 
 

15 Logging, Errors, Alarms 
F. Stauffer 
Last Changed: 2001-05-05 

15.1 Logging 
Logging is part of the ACS.  Logging collects information from the distributed systems and 
centrally concentrates the logging where it is distributed to applications such as archiving and 
user feedback.  Logging is built on the CORBA notification service. 

ACS logging is based on CORBA Telecom Logging Service which in turn is based on the 
CORBA Notification Service.  Each log is a record with a time stamp, info on the object 
sending the log, its location in the system, and a formatted log message.  Each computer has a 
logging manager that is a notification supplier writing sequences of structured messages to a 
notification event channel.  Logs are collected on a central host by a notification consumer.  
The logs are based on XML and are made available to applications. TICS will provide a log 
message archive application using IBM�s DB2 database. 

ACS will provide a logger class interface that applications use to log messages.  Log 
messages have a type and a severity, and log messages can be suppressed at the source.  ACS 
will provide a JAVA based log message browser with the features listed in section 8.3. 
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15.2 Errors 
The error system is part of ACS.  Software commands that fail generate errors.  When a user 
request fails, an error stack is created to record the error, and the error stack is passed back up 
the call chain until the error is handled or logged.  Each level of return or exception can either 
handle the error, or add information to the error stack, or log the stack and delete it. 

Error logs need to prevent flooding the error log.  An error state flag can be used.  When an 
error happens, the error state is set and logged, and when the error is removed, the error state 
is cleared and logged. 

15.3 Alarms 
The alarm system is part of ACS.  Alarms are produced by properties that are outside 
of normal operation. Properties can trigger alarms on values outside of range, change 
on value, etc.  Alarms go into a Notification Service channel where they can be 
subscribed to by applications. 
Alarms are recalculated when a Property changes.  When an alarm is triggered, the 
alarm is written to the alarm notification channel.  Alarms are distributed locally and 
are sent to the ACC where they are logged and distributed.  Applications requiring the 
alarms are attached as consumers to the alarm notification channel. 

16 Relation with other ALMA Software Activities 

16.1 Science Software Requirements 
G. Harris 
Last Changed: 2001-02-07 

 

Specifications and use cases from the SSR committee generally apply at an observatory 
management level and do not influence the test instrument. 

But use cases that cover the technical aspects of observing modes, calibrations, and other 
actions performed on the instrument do apply to the Test Interferometer. Some of the use 
cases for the final ALMA array have been edited appropriately for the test interferometer and 
are available in Brooks et. al. (2001). 

16.2 Analysis and Design 
G. Harris 
Last Changed: 2001-02-07 

Like documents from the SSR committee, the High Level Analysis [HLA] document applies 
to the final ALMA instrument, and not the test instrument. It covers the identification of 
major packages and functions of the final instrument for observing, planning, observatory 
management, science goals, etc. 

Some concepts from the HLA document may be used in the TI as they become available. One 
goal here is to minimize the path from test to final instrument. 
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16.3 Telescope Calibration 
B. Glendenning 
Last Changed: 2001-05-05 

Telescope calibration data reduction is being implemented in the IRAM Gildas package, 
except for telescope pointing which is also available with the TPOINT software written by 
P.T. Wallace (and will be used solely for optical pointing data). The data format for radio 
data is a FITS based format described by Lucas and Glendenning (2001). The data format for 
TPOINT will probably be �Observation record format #4�, in which the raw and observed az 
and el are recorded. 

The control software interaction with the radio calibration package  proceeds as follows: 

• When the current Observation completes the several FITS Header Data Units (HDU 
� TODO � insert acronym) will be written. The data includes both �backend� and 
monitor data. 

• In a text file nominated at startup TICS writes the name of the FITS file, the number 
of the last HDU, and the time at which the Observation completed. 

• The external calibration package polls the text file, and when it has changed looks at 
the FITS files for the new data and then performs its calculations. 

• If any calibration values are required to by TICS, the calibration package writes a 
Python script that inserts them into the TICS system. The name of the Python script 
contains the time of the Observation from which it has been derived. 

• If the calibration should be applied immediately, the control software is notified by 
changing a symbolic link (for each type of calibration) to point to the new link. (That 
is, TICS polls the symbolic links waiting for them to change). The new script is 
executed, replacing the current calibration values with the ones in the script. 

 

The following calibrations will be implemented. The �calibration parameters� column gives 
the calibration parameters that in turn will be used by the control software (e.g., it includes 
pointing coefficients but excludes panel offsets calculated during holography). 

 

Calibration  Calibration Parameters 

Optical pointing 
Determine the primary pointing model of 
the antenna through the observation of a 
large number (~100) of stars with an 
optical telescope. 

Pointing coefficients (~11) (per antenna) 

Single dish pointing 
Five point observations or equivalent on 
a bright point source. 

Pointing offsets (per antenna, per band) 

Interferometric pointing 
Interferometric five-point observations or 
equivalent on a bright point source. 

Pointing offsets and sag (per antenna, per 
band) 
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Temperature scale 
For the test interferometer, probably 
observe a switching load in the 
subreflector (TBD) 

TSys (per antenna, per band, per pol�n) 

Flux 
For absolute flux calibration. Typically 
observing a planet. 

Gain (per antenna per band) 

Delay 
Observe ~100 bright sources. 

Delay offset 

Bandpass 
Observe a bright continuum source. (Or: 
Photonically?) 

Gain (per antenna, per band, per baseband, 
per pol�n, per spectral point) 

Baseline 
Interferometrically observe a large 
number (~100) of bright sources.  

X,Y,Z offsets (per antenna, per band (?)) 

Phase 
Astronomical phase calibration on a 
point source near (~1°) the primary 
source. 

Phase (per antenna, per band, per baseband) 

Polarization 
Observe a bright source of known 
polarization over a wide range of 
parallactic angle. 

Gain (per antenna, per band) 

Holography 
Single dish: Raster scan a beacon with 
the holography receiver. Interferometric: 
Raster scan a SiO maser with one 
antenna with the other fixed. 

Nothing for the online system 
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