
258 | The ITEA Journal of Test and Evaluation

Introduction
The complexity of software-

based systems has been grow-
ing at a near exponential rate
for the last 40 years.1 This
exponential growth can have
dramatic impacts on the docu-
mentation maintenance costs
of these systems, especially
with regard to test artifacts.2

Ever-increasing test execution
times, increases in test procedure size and scope, and
rushed timelines because of this expanded system com-
plexity can shift necessary time away from performing
test documentation duties like test planning, require-
ments tracing, and general upkeep. Additionally, inad-
equate time provided for test documentation
maintenance can lead to confusing test procedures,
duplication of tests, and a general lack of knowledge
regarding the purpose of certain test cases.3 This lack of
understanding of the test suite can impact the overall
development of the product by potentially causing
delays in the process and could also result in the release

of an insufficiently tested
 product.4

A potential solution for this
problem is to standardize the
approach to test documenta-
tion. This can be performed in
a variety of methods; however,
this article describes a model-
based methodology using con-
cepts from Model-Based
Systems Engineering (MBSE).

The incorporation of MBSE concepts and techniques
into the test process provides the potential for a greater
understanding of the system, a method of mapping
functionality and components of the system, and a
strategy for targeted regression testing to increase its
efficiency.5 A model created for test purposes has the
potential to be utilized effectively in ways such as:
● Identifying efficient test points based on stressing

operational conditions6
● Defining the context for test cases in terms of

items such as dependencies, interfaces, external
interactions, applicable policies and standards7

The ITEA Journal of Test and Evaluation 2020; 41: 258-266
Copyright © 2020 by the International Test and Evaluation Association

Test Planning, Documentation, and Impact Analysis
with SysML

 Joshua Walker

Georgia Tech Research Institute, Atlanta, GA

 John M. Borky, Ph.D.
Colorado State University, Fort Collins, CO

With the growing complexity of software-based systems, the complexity of the test procedures used
to verify those systems also increases. Without a method of organization for these test artifacts,
the collection of test documentation for a system can become a maintenance challenge. This can
result in confusing test procedures, duplication of tests, and a general lack of knowledge regarding
the purpose of certain test cases. This lack of understanding of the test suite can impact the overall
development of the product by potentially causing delays in the process and can also result in the
release of an insufficiently tested product. This article provides a distinct method of using the
Systems Modeling Language (SysML) to enhance the documentation of test procedures for a
project, including the driving objectives for its creation, an overview of the process, potential results
from using it, and a discussion of lessons learned from its implementation.

~ THE ITEA JOURNAL PEER REVIEWED ARTICLE ~

Joshua Walker John M. Borky, Ph.D.

41(4) • December 2020 | 259

 Test Planning, Documentation, and Impact Analysis with SysML

● Analyzing and understanding ambiguous test
results

● Providing traceability between system compo-
nents

● Managing and communicating the scope of
regression testing

This article provides a distinct method of using the

Systems Modeling Language (SysML) to enhance the
documentation of test procedures for a project, includ-
ing the driving objectives for its creation, an overview
of the process, potential results from using it, and a dis-
cussion of lessons learned from its implementation.

Project Overview

The targeted project is an airborne Electronic War-
fare Management System (EWMS), which interfaces
with onboard and offboard aircraft systems to receive
and process the threat environment, providing the
pilot/crew with a response solution for the protection
of the aircraft. It is fielded on multiple aircraft platforms
and has been operational for more than 20 years. The
methodology described in this article was designed for
use with this specific project. However, the developed
concepts are applicable to multiple types of projects,
especially those with a high level of complexity and
scope. This project serves well as a representation of a
large, complex aerospace project, as it interfaces with
multiple external systems and over a variety of trans-
mission protocols. The project is developed with an
Agile process, but a different process does not preclude
the use of this methodology.

The system is tested using a keyword-based test
automation framework centered around the open source
Python module Robot Framework. This allows test cases
to consist of natural language phrases that are executable,
automating what would otherwise be manual test
actions and expected results. While this method does not
necessitate the use of an automated testing solution, the
examples provided do include their existence.

Methodology

An overview of the developed test documentation
methodology and process is described below. No Magic
Cameo Systems ModelerTM is the SysML tool of choice
for the examples provided in this article, but the method-
ology can be accomplished with any modeling tool.

Objectives

The main goal of incorporating MBSE concepts into
the test process was to promote the organization and
structure of test artifacts in a standard, formalized way.

Many aspects of the system’s test process were in a less
than ideal state before the creation of this process, due
to some of the factors mentioned previously. Utilizing
a model-based approach provided a paradigm that was
intended to promote the following objectives:
● Improve the structure and clarity of test case

 documentation
● Improve rapid comprehension of test procedure

contents
● Establish a formal method of requirements

 traceability
● Provide a method of assessing impact of upstream

changes
● Increase understanding of inter-dependencies

between test cases
● Facilitate easier review of test planning

 documentation
● Provide a method to quickly identify test cases for

targeted regression testing

The new process that was developed is not a solu-

tion for model-based testing. There are many aspects of
the targeted system that would make true model-based
testing a hard reality to achieve. Instead, this process
adopts concepts of MBSE and applies them to a method
of test documentation, specifically for the system’s test
plans and procedures. It is intended to be a lightweight
model-based solution to formalize the documentation
of those test artifacts to make future analysis easier and
to satisfy the goals stated above.

Model Overview

In this approach, the test documentation for a sys-
tem is a standalone model. All requirements, inputs,
messages, data, and any other components necessary to
the testing of the system are referenced as model ele-
ments. However, to be resilient to changes to any com-
ponent related to the test cases in the model, the detail
on modeled elements external to the test engineer’s
control is minimized. This is usually accomplished by
referencing only the name of the element, but any sta-
ble details could be included in the model. If a larger
system model already existed or was created later, the
test model could easily be linked to the larger model
by sharing objects that exist in both.

Model Organization

The model is organized into packages, as can be
seen in the high-level view of the Containment Tree in
Figure 1.

 The Containment Tree is the main point of interac-
tion with the model. While diagrams in a SysML model

260 | The ITEA Journal of Test and Evaluation

provide a visual overview of the content of a model, the
truth of element characteristics and relationships are
accessed there. Each set of elements is contained within
its own package. Most packages are used to contain
groups of elements that will be used within test cases.
The Test Cases package is the primary location where
the artifacts of this process reside.

Activity Diagram

The Activity Diagram is used to create a Test Plan.
An example Test Plan can be seen in Figure 2.

The intent of this diagram is to describe the flow of
the test case. When reading the Actions and Expected

Walker & Borky

Figure 1: Containment Tree

Figure 2: Test Case Activity Diagram

41(4) • December 2020 | 261

Test Planning, Documentation, and Impact Analysis with SysML

Results swimlanes, this diagram should look similar to
a list of pseudo-steps that would normally be created
when planning a test case.

Components

The four swimlanes on these diagrams are defined
as Part Properties of the Test Case block that will be
used in the Block Definition Diagram (BDD). The pur-
pose of these swimlanes is to group the elements of the
test case according to their function. Actions tie to
Action Keywords, while Expected Results tie to Verify
keywords. The Test Automation Framework (TAF) Key-
word swimlane is used for identifying the test automa-
tion framework keywords that perform the actions,
while the Inputs swimlane is used to hold inputs to
those keywords (the exact usages of the variables that
are contained within keywords).

Items in the Actions swimlane are Action elements.
Actions are used to describe the different steps that need
to be performed by the test engineer or test automation
software in order to perform the test. These actions
would typically appear in the left column (Actions) on
a typical test case.

Items in the Expected Results swimlane are Action
elements. Actions in this swimlane are used to describe
the different verification steps that must be performed.
These actions would typically appear in the right col-
umn (Expected Results) on a typical test case.

Items in the TAF Keywords swimlane are Object
Node elements. These items are added to the diagram
as a generic element. Then the TAF Keyword block rep-
resenting the indicated TAF Keyword is dragged onto the
Object Node. This creates an instance of that TAF Key-
word used to perform the action to which it is linked.

Items in the Inputs swimlane are either Activity
Parameter Node elements or Flow Properties of a Test
Case block. Activity Parameter Nodes are used to create
static inputs to TAF Keywords (e.g., fields, values, file
paths). The goal is to create an Activity Parameter Node
that lists the actual input planned to be used as a variable
to a TAF Keyword. Flow Properties are used when there
is data that is created within the test case, as opposed to
external inputs to the test case. The case in the example
above is the capture of data initiated by a TAF Keyword
that is later analyzed further within the test case.

Notes, like the one on the right of the diagram, are
being used to provide additional information as well as
to indicate where requirements are being satisfied. This
helps during review, so the rest of the team can quickly
see how and where the test engineer intended to satisfy
the requirements. Notes should be used freely to
 provide additional information wherever necessary.

Relationships
There are two different types of relationships used

in this diagram. Control Flow relationships are used to
show how the Action elements flow (i.e., how Actions
are accomplished and generate Expected Results).
Object Flow relationships are used to show how the
Object Node elements move to provide input to the
Action elements.

Block Definition Diagram
The Block Definition Diagram (BDD) is used to

document the important items connected to a specific
test case. An example BDD of a test case can be seen in
Figure 3.

Components
Each component is represented as an individual ele-

ment within the model. Custom Stereotypes are
applied along with a custom color scheme to easily
determine the difference between elements. The test
case is represented by the gold-brown block near the
middle top of the diagram. Other documented compo-
nents in the example above include:
● Requirements (Pink)

o Specific “shall statements” that are satisfied by
the test case

● System Configurations (Green)
o Specific list of software packages loaded on the

system used by the test automation framework
to validate and load the correct set of software
before beginning execution of the test case

● Keywords (Yellow)
o Action/Verify statements provided by the test

automation framework to perform automated
testing

● Recorded Data Captures (Purple)
o Data recorded during the execution of a test

case to be processed by the test automation
framework to determine pass/fail when neces-
sary in specific instances

● System Messages (Blue)
o External/Internal message traffic used to verify

system behaviors
● Input Files (Orange)

o Software inputs for external systems that drive
or configure those systems

● Protocol Files (Light Blue)
o Files used by the system monitor to decode

message traffic into human-readable form
● External Hardware/Software (Grey)

o External hardware or software systems used to
stimulate or monitor the system

262 | The ITEA Journal of Test and Evaluation

This is not necessarily a comprehensive list, but it is
what was deemed helpful to associate with this test
case. Generally, any items that are important to trace to
a test case, potentially for later impact analysis, should
be modeled and associated with the test case. The ele-
ments that need to be traced for a specific project are
determined by the test environment of that particular
system. Blocks should be created and organized accord-
ing to a scheme that makes it easy to find and reuse ele-
ments, such as the package structure presented earlier.

Relationships

There are three different relationship types used in
the BDD. The dashed line from the Test Case block to
Requirements is a Dependency relationship with the
Verify stereotype. It means that the test case verifies the
requirements linked to it. The dashed line to multiple
different types of elements is a Dependency relation-
ship with the Usage stereotype. In most, if not all, cases,

the Usage stereotype is not displayed on the connector,
as a custom stereotype has been applied. The solid line
with an open diamond is a Directed Aggregation. This
line means that, structurally, the test case is made up of
those keywords, but the keywords exist independently,
outside of that specific test case.

Process Overview

The following provides a description of how a test
engineer creates and interacts with the test model. This
process assumes that an Agile methodology (e.g.,
Scrum) is being used and a keyword-based test automa-
tion framework has been implemented.

Test Preplanning

The first step before a test engineer is able to begin
working with the model is the generation of require-
ments for a specific task. These requirements are
worked first by the team to provide the foundation for

Walker & Borky

Figure 3: Block Definition Diagram

41(4) • December 2020 | 263

Test Planning, Documentation, and Impact Analysis with SysML

the associated subtasks that must be performed for its
completion. Once the requirements are drafted and
unique numbers are assigned, even if they are not in
their final form, the test engineer adds the requirements
to the model. Figure 4 shows a snapshot of a require-
ments table for the system.

The requirement text was not entered above for two
reasons. The first is that the text of the requirement
might continually change slightly during a Sprint due
to constant refinement. However, the requirement usu-
ally has the same basic idea, which is enough to com-
plete a Test Plan. The second reason is that the source
for requirements for the system is not actually within
the model, but rather in a separate document configu-
ration managed in a different system. In this case, it is
not necessary to enter the requirement text, as that
would cause the problem of potentially having two dif-
ferent systems not synchronized with each other. It is
better in this case to only use the ID of the requirements
as a manual reference between the two systems. If the
model is the source of requirements, then the actual
requirement text would appear in the table.

Test Planning

Test Planning is a fundamental step in the creation
of proper testing that both satisfies requirements and
fully exercises the system under test. Too often, Test
Planning gets skipped or rushed so that test procedures
can be pushed through to completion before the test
scenarios themselves are fully understood. This can lead
to situations such as mediocre test procedures or even

important test cases being completely overlooked. Even
when it is performed, Test Planning is not always com-
pleted in a standard, manageable way. The artifacts of
planning, unless the Test Plan is a customer deliverable,
are typically informal and only provide short-term util-
ity that dissolves after the accompanying test proce-
dures have been created.

Migrating Test Planning to a SysML model resolves
the issue of standardization and, with more formal
expectations on the test engineers, provides an artifact
that can be referenced in the future as a summary of the
developed test cases.

Under this process, Test Planning is documented in
the model using Activity Diagrams. After requirements
are added to the model under the Requirements pack-
age, the test engineer creates the Test Case blocks or
identifies existing Test Case blocks that will satisfy the
requirements for the Task. Under each new block, an
Activity Diagram is created that represents the Test Plan
for that specific case. The test engineer creates high-level
actions that represent the different steps that will be
taken and the expected results that will be verified dur-
ing the test case.

During Test Planning, the test engineer is expected
to identify test dependencies, especially those that have
not yet been developed. This includes, but is not lim-
ited to, test automation functionality, support tool
functionality, and system instrumentation needs. Since
the process is being performed in two-week Sprints, it
is expected that the teams responsible for developing
these additional items are highly responsive to needs

Figure 4: Requirements Table

264 | The ITEA Journal of Test and Evaluation

and will provide necessary functionality before the end
of the Sprint.

In a test automation keyword-driven test case, the
content of the test case is a sequence of keywords with
specific input parameters. High-level Actions defined
during Test Planning should be able to be tied to the
keywords that drive them. After Actions and Expected
Results are defined, the test engineer identifies the key-
words that will be used during the test. If the keywords
do not exist, the test engineer proposes drafted versions
and creates a ticket for the automation team to imple-
ment. The test engineer also identifies the parameters
that will be input to the keyword and adds them to the
Activity Diagram.

The final step is to make sure that requirements sat-
isfied by specific Expected Results are tagged appropri-
ately within the Activity Diagram. This is to facilitate
easier review of the plan. These tags will be carried over
to the written test procedures as in-line requirement
citations.

After the test plan is drafted, the test engineer pro-
vides the plan to the rest of the team for a review. The
intent of the review is to make sure that everyone agrees
on the strategy for the test case, that it has been planned
correctly, and that the requirements will be fully satis-
fied by the planned test scenarios. The test plan is
revised as necessary with feedback from the reviews.
After the test plan is approved, the test engineer transi-
tions to the Test Development phase.

Test Development and Documentation

In the Test Development phase, test engineers trans-
late the approved test plans into test cases with associ-
ated test procedures. Test Documentation is not
necessarily its own phase, but it is an important part of
the process. Ideally, documentation is performed
throughout the entire process as each test case is form-
ing. In practice, it becomes a step that is performed
towards the end of a Sprint as each developed test case
is solidifying. This allows the test case to be more fluid
as it is being developed, without having to continually
keep the model synchronized with the changing
 procedure.

Documentation of each test case is performed
through the creation of a BDD, as described previously.
The purpose of this diagram is to document all items
related to a single test case, which could be performed
either before or after the test case has been written. Each
item is stored as a separate entity, categorized into the
proper place in the model, and used as necessary to
complete the BDD. Any items not available in the
model already are created during this process.

Test Execution and Reporting
During Test Execution for a specific Sprint, the test

procedures developed during the Sprint are run against
an available build to verify that the requirements have
been satisfied. As functionality is developed and pub-
lished in beta form to the team, the test engineers
attempt to run their developed test cases and tweak as
needed. Any changes to the test procedure that impact
the model are addressed by updating the model when
necessary. The results of the Test Execution phase are
configuration managed and later summarized for the
specific tickets within the Sprint when Test Reporting is
accomplished.

Using the Model

While the existence of a test model can help test
engineers more easily understand the details of test arti-
facts, its main purpose is to be used for later analysis.
This may take a variety of forms, but the overall use is
to identify how an upstream change affects the testing
of the system. For example, the modification of a mes-
sage (e.g., adding data bits for additional information,
changing the format to align with a new system) is a
common occurrence for systems that integrate with
multiple external components. When an aspect of the
system is changed, it is important to fully regress testing
for impacted components. Without the test model, or
a similar level of documentation of test cases in some
other manner, identifying how a changed message
impacts the system is difficult. Significant time could
be wasted trying to find each test case that uses a spe-
cific message if not documented properly.

Making use of aspects of the modeling tool allows
test engineers to easily identify impacted components.
Some of those useful features are described below. The
examples are illustrated using No Magic Cameo Sys-
tems ModelerTM; however, these types of features are
common across most modeling tools.

Model Navigation

The most basic type of analysis is to open a diagram,
select an element, and use the context menu to navigate
to other usages of the element within the entire model.
In Cameo Systems ModelerTM, this is performed by right
clicking and selecting “Go To” and “Usage in Diagrams”
in the context menu structure. This action provides a
list of all diagrams that contain a specific element. In
this way, a test engineer can quickly identify which test
cases use a specific message when referring back to the
previous example. In the same way, a test engineer can
use the tool to trace an element from a diagram to its

Walker & Borky

41(4) • December 2020 | 265

Test Planning, Documentation, and Impact Analysis with SysML

actual location in the Containment Tree. This would
allow the test engineer to view all of the various rela-
tionships from that element to other elements.

Relation Map

A Relation Map shows the connections between ele-
ments based on a given starting point. Filters and
queries can be applied to only display elements with
specific characteristics in order to pare down the data
being displayed.

Lookup Tables

Most modeling tools allow the user to create tables
to display data in traditional rows and columns to facil-
itate easier viewing of the data. A specific example of
this type of table is used to enter requirements into the
model, seen previously in Figure 4.

Dependency Matrices

Dependency Matrices allow a user to display the
relationships between two different element sets in
table form. Most tools provide a wide variety of filters
to help customize this specific type of display. A specific
type of Dependency Matrix is the Requirements Trace-
ability Matrix. If the Requirements Table is created
appropriately, this table is created automatically by
most tools. The purpose of this table is to show how
requirements are satisfied within the model.

Data Export

In some cases, it may be helpful to extract the data
out of the model and translate it to a different form for
easier analysis (e.g., Microsoft Excel). Most modeling
tools have mechanisms for this, either through dedi-
cated export capabilities, or through the creation of
plug-ins that interface with an available Application
Programming Interface (API).

Results

The model created by this process has been used
successfully to facilitate countless reviews of test cases
and to provide an easy method of test impact analysis
for multiple functionality modifications. While these
successes do not necessarily result in tangible quantita-
tive results, a number of qualitative improvements can
be extrapolated from its use. These are discussed further
below.

Test Documentation Quality

The maintenance of documentation on an engineer-
ing project is a common problem.8 Standardizing the
documentation and test planning approach facilitates

easier creation and review of test artifacts. Test engineers
know what is expected of them and how to perform
their tasks, leading to a higher quality output.

Training Time Reduction

Because test cases are all documented in the same
manner with this process, training new test engineers
becomes faster. Once the methodology is learned, these
new engineers can use the model to see how the actions
of a test case flow to exercise specific functionality and
exactly which functionality components are linked to
the execution of that test case.

Release Cycle Time Reduction

It is not always possible to perform a full regression
test for a release, potentially due to items such as short-
ened timelines, customer deadlines, or lack of funding.9
Without a method of understanding how key system
components relate to each other, determining which
functionality should be exercised in that limited time
period is not always an easy process. Because this
process provides a systematic way of determining how
individual components are linked to test cases, not just
through requirements tracing, it provides a method for
limiting the regression time available to the most
important test cases.

Selected Lessons Learned

Several lessons were learned throughout the creation
of this methodology. A selection of key topics is
described below.

Reduce Unnecessary Details

Too much detail can profoundly impact prolonged
maintainability of documentation. Including small
details that are unnecessary to the task at hand can lead
to endless rework. For artifacts such as test plans, which
are intended to be malleable throughout the creation
of the test procedures, it is necessary to find a balance
between understandability and thoroughness.

Automate the Process

Generally, automation helps improve the efficiency
and speed of processes.10 This model-based methodol-
ogy is no different. Most modeling tools have rich APIs
or other automation interfaces that can help perform
simple, potentially monotonous tasks faster. Automat-
ing key aspects, such as generating a test case skeleton
based on a test plan or programmatically building a
BDD from a created test procedure, can help reduce
time spent on documentation while still maintaining
the objectives of this process.

266 | The ITEA Journal of Test and Evaluation

Enforce a Standard
Creating and documenting a standard approach to

any process has the potential to improve efficiency by
providing organization as well as a pattern to follow for
future additions. If this methodology is adopted on a
project, the details of its expected use should be docu-
mented and advertised to the entire team. This docu-
mentation of the process includes items such as how to
define elements, a plan for Stereotyping, relationships
that will be used, and rules for global numbering of
items between systems or projects. Having a well-
defined process can help clear confusion and disorgan-
ization that will harm productivity and maintenance.

Conclusion

A standard method of performing test planning
activities, documentation of test cases, and impact
analysis is an important aspect of building a highly
understandable and sustainable test suite. It is necessary
to continue providing a high-quality and adequately
tested product, especially for highly complex systems
with long lifespans. The process described in this article
is one method of organizing the potential chaos and
would work well for a project that is already incorporat-
ing MBSE concepts into their development process. ❏

JOSHUA WALKER is a Senior Research Engineer at the
Georgia Tech Research Institute (GTRI) in Atlanta, Georgia
and a Ph.D. candidate in the Systems Engineering doctorate
program at Colorado State University. His research interests
center around the application of Systems Engineering con-
cepts to the Test Engineering domain, concentrating on the
introduction of new technologies and test process improve-
ment. Joshua holds a B.S. in Computer Engineering from
the Georgia Institute of Technology, an M.S. in Systems
Engineering from Southern Polytechnic State University, and
an M.B.A. from Kennesaw State University.

JOHN M. BORKY, Ph.D. (M ’67, SM ’91, LSM ’15)
received the B.E.E. degree in electrical engineering from the
Catholic University of America in 1967, The S.M. and E.E.
degrees in electrical engineering from M.I.T. in 1969, and

the Ph.D. degree from the University of Michigan in electri-
cal engineering in 1977.
 During a 25 year career in the United States Air Force, he
served as a research engineer, program manager, flight test
engineer, graduate educator, and laboratory commander.
Subsequently, he was a senior engineer, technical fellow, pro-
gram manager, and consultant with five aerospace compa-
nies, one of which he co-founded. He has worked in multiple
areas of solid state devices, integrated modular avionics,
energy management, high power microwave systems, com-
mand and control systems, and others. He was a member of
the Air Force Scientific Advisory Board for seven years, three
as Vice Chairman.
 Dr. Borky’s awards include the Air Force Legion of Merit
with oak leaf cluster, the AIAA Digital Avionics Award, and
the Air Force Decoration for Exceptional Civilian Service.
He is an Associate Fellow of AIAA.

Endnotes

1 M. R. Lyu. 2007. “Software Reliability Engineering: A
Roadmap.” 2007. Future of Software Engineering: 153-170.

2 Daniel Dvorak. 2009.” NASA Study on Flight Software Com-
plexity.” AIAA Infotech@Aerospace Conference 1882: 1-20.

3 Abhinaya Kasoju, Kai Petersen, and Mika V. Mäntylä. 2013.
“Analyzing an Automotive Testing Process with Evidence-based
Software Engineering.” Information and Software Technology 55(7):
1237-1259.

4 Gregory Tassey. 2002. The Economic Impacts of Inadequate
Infrastructure for Software Testing. National Institute of Standards
and Technology.

5 Shin Yoo, and Mark Harman. 2012. “Regression Testing Min-
imization, Selection and Prioritization: A Survey.” Software Testing,
Verification and Reliability 22 (2): 67-120.

6 Robert France, and Bernhard Rumpe. 2007. “Model-driven
Development of Complex Software: A Research Roadmap.” 2007
Future of Software Engineering: 37-54.

7 Mark Utting, Alexander Pretschner, and Bruno Legeard.
2012. “A Taxonomy of Model-based Testing Approaches.” Software
Testing, Verification and Reliability 22 (5): 297-312.

8 Timothy C. Lethbridge, Janice Singer, and Andrew Forward.
2003. “How Software Engineers Use Documentation: The State of
the Practice.” IEEE Software 20 (6): 35-39.

9 Rick David Craig, and Stefan P. Jaskiel. 2002. Systematic Soft-
ware Testing. Boston: Artech House.

10 Bosch, Jan. 2014. Continuous Software Engineering. New York:
Springer.

Walker & Borky

