General Chemistry II Jasperse
 Buffers/Titrations/Solubility. Extra Practice Problems

General Types/Groups of problems:

Buffers General	p1		Titration Graphs and Recognition	p10
What Kind of Solution/pH at End?	p2		Titration Calculations	p11
Preparation and Recognition of Buffers	p4	pH Estimations/Calculations after acid/base are added (including at Equivalence Point)	p12	
Buffer Calculations	p5		Solubility Problems	p14
Disrupted Buffers: After Acid or Base are Added	p7	Impact on Solubility When Common Ions are Present	p 16	
Titration-Related Problems	p9	Impact of pH on Solubility	p17	

Key Equations Given for Test:

For weak acids alone in water: $\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \mathrm{x}[\mathrm{WA}]}$	For weak bases alone in water: $\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{b}} \mathrm{x}[\mathrm{WB}]}$
$\mathrm{pZ}=-\operatorname{logZ}$ General definition for p of anything	$\mathrm{pH}+\mathrm{pOH}=14$
$\left[\mathrm{H}^{+}\right]\left[\mathrm{HO}^{-}\right]=1.00 \times 10^{-14}$	$\mathrm{~K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=1.00 \times 10^{-14}$ for conjugate acid/base pair
For Buffer: $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log [$ base $] /[$ acid $]$ Henderson-Hasselbach Equation	$\Delta \mathrm{S}^{\circ}=\mathrm{S}^{\circ}$ (products $)-\mathrm{S}^{\circ}$ (reactants)
$\Delta \mathrm{G}^{\circ}=\mathrm{G}^{\circ}$ (products) $-\mathrm{G}^{\circ}$ (reactants)	$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ} \quad(\mathrm{T}$ in Kelvin)

BUFFERS

1. A solution that contains a weak acid and its conjugate base in roughly equal concentrations is \qquad
a. neither acidic or basic.
d. a heterogeneous mixture.
b. a half-acid solution.
e. neutral.
c. a buffer.
2. Explain how a buffer solution manages to stabilize the pH against the addition of acid, base, or additional solvent (dilution).

Abstract

Answer: A buffer consists of a weak acid and its conjugate base in roughly equal amounts. If acid is added to the solution, it is consumed by the conjugate base. If base is added to the solution, it is consumed by the weak acid. If the amounts are such that the ratio of conjugate base/weak acid concentrations doesn't change much, then the pH doesn't change much. Dilution does not affect the pH because this concentration ratio doesn't change upon dilution.

3. Research with biochemical systems commonly requires buffers because \qquad
a. that's just the way it is.
b. proteins have a critical pH dependence in their structure and function.
c. proteins decompose into constituent amino acids outside a certain pH range.
d. proteins are buffers.
e. salts are involved.
4. What reaction occurs as a hydrochloric acid solution is added to a solution containing equal concentrations of acetic acid and sodium acetate?
a. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$
b. $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}$
c. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{Cl}^{+}$
d. $2 \mathrm{CH}_{3} \mathrm{COO}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{COO}+\mathrm{H}_{2}$
e. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CO}^{+}+\mathrm{H}_{2} \mathrm{O}$

What kind of Solution/pH Do you Get at the End? How does Solution Change?

5. When the following chemicals are mixed, each in 1 liter of water, which would give an acidic pH at the end?
a) 1 mole of KOH and 1 mole of NaF
b) 1 mole of NH_{4}^{+}and 1 mole of NaOH
c) 1 mole of HCl and 1 mole of NH_{3}
d) 1 mole of KOH and 0.5 mole of HCl
6. When the following chemicals are mixed, each in 1 liter of water, which would give a basic pH at the end?
a) 1 mole of KOH and 1 mole of HF
b) 1.0 mole of KOH and 1.0 mole of HCl
c) 1 mole of HCl and 1 mole of NH_{3}
d) 0.5 mole of KOH and 1.0 mole of HCl
7. When the following chemicals are mixed, each in 1 liter of water, which would give a basic pH at the end?
a) 1 mole of KOH and 1 mole of HF
b) 1.0 mole of KOH and 1.0 mole of HCl
c) 1 mole of HCl and 1 mole of NH_{3}
d) 0.5 mole of KOH and 1.0 mole of HCl
8. Consider a solution initially containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). If 0.20 mol of HCl are added to this solution, which of the following statements is FALSE?
a) You will still have a buffer solution at the end, since you'll still have both weak base and conjugate weak acid
b) The pH will have shifted to a lower pH
c) You'll have more moles of HF at the end than what you began with
d) You will no longer have a buffer solution, since all of the weak base will have reacted with the HCl .
e) none of the above
9. Consider a solution initially containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). If 0.40 mol of HCl are added to this solution, which of the following statements is FALSE?
a) You will still have a buffer solution at the end, since you'll still have significant amounts of both weak base and conjugate weak acid
b) The pH will have shifted to a lower pH
c) You'll essentially have a weak acid solution situation, with 0.7 mol HF at the end.
d) You will no longer have a buffer solution, since all of the weak base will have reacted with the HCl. The buffer capacity was exhausted.
e) none of the above
10. Consider a solution initially containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). If 0.40 mol of NaOH are added to this solution, and the final volume is 1 L , which of the following statements is FALSE?
a) You'll essentially have a strong base solution at the end, with 0.7 mol NaF but with 0.1 mol NaOH at the end. The moles of strong base will essentially dictate the pH .
b) The pH will have shifted to a higher, more basic pH
c) The final pH will be 13 .
d) The final pH will be dominated by the NaF , so I'd need the K_{b} or pK_{b} in order to solve for the pH .
e) none of the above
11. Consider a solution that contains 0.50 moles of KF and 0.50 moles of HF in 1.0 L of water. If 0.10 mol of NaOH is added to this buffer solution, the pH of the solution will get slightly \qquad . The pH does not change more drastically because the NaOH reacts with the \qquad present in the buffer solution.
a) higher, KF
b) higher, HF
c) lower, KF
d) lower, HF
12. Consider a solution that contains 0.50 moles of NaNO_{2} and 0.50 moles of HNO_{2} in 1.0 L of water. If 0.10 mol of HCl is added to this buffer solution, the pH of the solution will get slightly \qquad . The pH does not change more drastically because the NaOH reacts with the \qquad present in the buffer solution.
a) higher, NaNO_{2}
b) higher, HNO_{2}
c) lower, NaNO_{2}
d) lower, HNO_{2}
13. Identify all the correct statements about an acid-base buffer solution.
I. It can be prepared by combining a strong acid with a salt of its conjugate base.
II. It can be prepared by combining a weak acid with a salt of its conjugate base.
III. It can be prepared by combining a weak base with its conjugate acid.
IV. The pH of a buffer solution does not change when the solution is diluted.
V. A buffer solution resists changes in its pH when an acid or base is added to it.
a. I, II, and IV
d. I, II, IV, and V
b. II, III, and V
e. II, III, and IV
c. II, III, IV, and V

Preparation and Recognition of Buffer Systems

14. Which of the following is not a buffer system? A solution containing roughly equal concentrations of \qquad
a. fluoride ion and hydrofluoric acid.
b. bromide ion and hydrobromic acid.
c. phosphate ion and hydrogen phosphate ion.
d. carbonate ion and hydrogen carbonate ion.
e. phosphoric acid and dihydrogen phosphate ion.
15. Which of the following can be mixed together in water to produce a buffer solution?
a. HClO_{4} and NaClO_{4}
b. HNO_{3} and NaNO_{3}
c. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and NaHSO_{4}
d. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
e. HCl and NaCl
16. Which one of the following would make the best buffer? $\left(\mathrm{Ac}=\right.$ acetate, $\left.\mathrm{CH}_{3} \mathrm{CO}_{2}\right)$
a. a solution of hydrochloric acid and sodium chloride, HCl and NaCl
b. a solution of acetic acid and ammonia, NaAc and NH_{3}
c. a solution of acetic acid and ammonium chloride, HAc and $\mathrm{NH}_{4} \mathrm{Cl}$
d. a solution of sodium acetate and ammonium chloride, NaAc and $\mathrm{NH}_{4} \mathrm{Cl}$
e. a solution of ammonia and ammonium chloride, NH_{3} and $\mathrm{NH}_{4} \mathrm{Cl}$
17. Which combination of solutions is the best choice for making a buffer solution?
a. equal volumes of $1 M$ ammonia $\left(\mathrm{NH}_{3}\right)$ and $0.001 M$ ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$
b. equal volumes of 0.5 M hydrochloric acid (HCl) and 0.5 M sodium hydroxide (NaOH)
c. equal volumes of 0.5 M hydrochloric acid (HCl) and 0.5 M sodium chloride (NaCl)
d. equal volumes of $2 M$ ammonia $\left(\mathrm{NH}_{3}\right)$ and $1 M$ hydrochloric acid (HCl)
e. equal volumes of $2 M$ ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ and $1 M$ hydrochloric acid (HCl)
18. Which of the following would be the best choice for preparing a buffer with a $\mathrm{pH}=8.0$?
a. a solution of formic acid and sodium formate, $K_{\mathrm{a}}=1.8 \times 10^{-4}$
b. a solution of acetic acid and sodium acetate, $K_{\mathrm{a}}=1.8 \times 10^{-5}$
c. a solution of hypochlorous acid and sodium hypochlorite, $K_{\mathrm{a}}=3.5 \times 10^{-8}$
d. a solution of boric acid and sodium borate, $K_{\mathrm{a}}=5.8 \times 10^{-10}$
e. All of these solutions would be equally good choices for making this buffer.
19. When placed in 1 L of water, which of the following combinations would give a buffer solution? (Remember, in some cases they might react with each other...)
1) 0.5 mol HClO and 0.5 mol NaClO
2) 0.5 mol HBr and 0.5 mol NaF
3) 0.5 mol HBr and 1.0 mol NaF
4) 0.5 mol HBr and 1.0 mol NaOH
a) 1 only
b) 1 and 2 only
c) 1 and 3 only
d) 3 and 4 only
e) all would give buffer solutions

Buffer Calculations

20. Calculate the pH of a solution that is 0.30 M in ammonia $\left(\mathrm{NH}_{3}\right)$ and 0.20 M in ammonium chloride $\left(\mathrm{NH}_{4} \mathrm{Cl}, K_{\mathrm{a}}=5.62 \times 10^{-10}\right)$.
21. Calculate the pH of a solution containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). (HF, $K_{\mathrm{a}}=$ $\left.7.2 \times 10^{-4}\right)$?
a) 0.20 mol
b) 0.30 mol
c) 0.40 mol
d) 0.50 mol
e) none of the above
22. Calculate the pH of a solution that's 0.65 M in NaF and 0.75 M in HF . $\left(\mathrm{HF}, K_{\mathrm{a}}=7.2 \times 10^{-4}\right)$?
23. Calculate the pH of a solution that's 0.65 M in NaNO_{2} and 0.40 M in $\mathrm{HNO}_{2} .\left(\mathrm{NaNO}_{2}, K_{\mathrm{a}}=4.0 \times 10^{-4}\right)$?
24. To simulate the pH of blood, which is 7.4 , an undergraduate researcher in a biology lab produced a buffer solution by dissolving sodium dihydrogen phosphate $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}, K_{\mathrm{a}}=6.2 \times 10^{-8}\right)$ and sodium hydrogen phosphate $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)$ together in an aqueous solution. What mole ratio of $\mathrm{Na}_{2} \mathrm{HPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}$ did she need to use?
a. 1.2
b. 1.6
c. 0.90
d. 1.0
e. 0.96
25. What is the pH of a buffer solution where $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$?
a. $\mathrm{pH}=1$
b. $\mathrm{pH}=K_{\mathrm{a}}$
c. $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$
d. $\mathrm{pH}=\mathrm{pOH}$
e. $\mathrm{pH}=7.0$
26. A buffer system is set up with $[\mathrm{HA}]=2\left[\mathrm{~A}^{-}\right]$. If $\mathrm{p} K_{\mathrm{a}}=5.5$, what is the pH of the buffer?
a. $\quad 5.2$
b. 5.8
c. 7.5
d. 3.5
e. 7.0
27. The $\mathrm{p} K_{\mathrm{a}}$ of a weak acid was determined by measuring the pH of a solution containing the weak acid at 0.30 M and its conjugate base at 0.30 M . The measured pH was 8.0 . What is the $\mathrm{p} K_{\mathrm{a}}$ of the weak acid?
a. 8.0
b. 7.8
c. 7.6
d. 7.0
e. 7.4
28. The $\mathrm{p} K_{\mathrm{a}}$ of a weak acid was determined by measuring the pH of a solution containing the weak acid at 0.40 M and its conjugate base at 0.60 M . The measured pH was 7.8 . What is the $\mathrm{p} K_{\mathrm{a}}$ of the weak acid?
a. 8.0
b. 7.8
c. 7.6
d. 7.0
e. 7.4
29. The $\mathrm{p} K_{\mathrm{a}}$ of a weak acid was determined by measuring the pH of a solution containing the weak acid at 0.40 M and its conjugate base at 0.20 M . The measured pH was 9.8 . What is the $\mathrm{p} K_{\mathrm{a}}$ of the weak acid?
a. $\quad 10.1$
d. $\quad 10.4$
b. 9.8
e. None of the above
c. 9.5
30. How many moles of sodium acetate must be added to 500 mL of 0.25 M acetic acid solution to produce a buffer with a pH of 4.94? The $\mathrm{p} K_{\mathrm{a}}$ of acetic acid is 4.74 .
a. $\quad 0.011$ moles
b. 0.021 moles
c. $\quad 0.125$ moles
d. 0.198 moles
e. 0.206 moles
31. Phenylephrine (PE, see the structure below) is a nasal decongestant and is the active ingredient in Sudafed, which contains phenylephrine hydrochloride (PEHCl). This conjugate acid of phenylephrine $\left(\mathrm{PEH}^{+}\right)$has a $\mathrm{p} K_{\mathrm{a}}=5.5$. At a physiological pH of 7.4 . what is the ratio of concentrations, $[\mathrm{PE}] /\left[\mathrm{PEH}^{+}\right]$?

a. 6.7
b. 0.01
c. 0.14
d. 79
e. 21

Disrupted Buffers. What Happens after Acid or Base is added.

32. Consider a solution initially containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). How many moles of hydrogen fluoride are present after addition of 0.20 mol of HCl to this solution?
a) 0.20 mol
b) 0.30 mol
c) 0.40 mol
d) 0.50 mol
e) none of the above
33. Consider a solution initially containing 0.50 mol ammonia $\left(\mathrm{NH}_{3}\right)$ and 0.30 mol of ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$. How many moles of ammonia and how many moles of ammonium ion are present after addition of 0.20 mol of HCl to this solution?
a) $0.30 \mathrm{~mol} \mathrm{NH}_{3}, 0.50 \mathrm{~mol} \mathrm{NH}_{4}{ }^{+}$
a) $0.50 \mathrm{~mol} \mathrm{NH}_{3}, 0.50 \mathrm{~mol} \mathrm{NH}_{4}^{+}$
a) $0.30 \mathrm{~mol} \mathrm{NH}_{3}, 0.20 \mathrm{~mol} \mathrm{NH}_{4}^{+}$
a) $0.70 \mathrm{~mol} \mathrm{NH}_{3}, 0.10 \mathrm{~mol} \mathrm{NH}_{4}{ }^{+}$
e) none of the above
34. Consider a solution initially containing 0.400 mol fluoride anion and 0.300 mol of hydrogen fluoride (HF). How many moles of hydrogen fluoride are present after addition of 70.0 mL of 0.600 M HCl to this solution?
a) 0.400 mol fluoride, 0.300 mol HF
b) 0.442 mol fluoride, 0.258 mol HF
c) 0.358 mol fluoride, 0.342 mol HF
d) 0.213 mol fluoride, 0.567 mol HF
e) none of the above
35. Consider a solution initially containing 0.500 mol ammonia $\left(\mathrm{NH}_{3}\right)$ and 0.300 mol of ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$. How many moles of ammonia and how many moles of ammonium ion are present after addition of 40 mL of 0.800 M NaOH to this solution?
a) $0.532 \mathrm{~mol} \mathrm{NH}_{3}, 0.268 \mathrm{~mol} \mathrm{NH}_{4}^{+}$
a) $0.532 \mathrm{~mol} \mathrm{NH}_{3}, 0.332 \mathrm{~mol} \mathrm{NH}_{+}^{+}$
a) $0.468 \mathrm{~mol} \mathrm{NH}_{3}, 0.268 \mathrm{~mol} \mathrm{NH}_{4}{ }^{+}$
a) $0.700 \mathrm{~mol} \mathrm{NH}_{3}, 0.100 \mathrm{~mol} \mathrm{NH}_{4}^{+}$
e) none of the above
36. Consider a solution initially containing 0.40 mol fluoride anion and 0.30 mol of hydrogen fluoride (HF). What is the $\mathbf{p H}$ after addition of 0.20 mol of HCl to this solution? $\left(\mathrm{HF}, K_{\mathrm{a}}=7.2 \times 10^{-4}\right)$?
37. Consider a solution initially containing 0.400 mol fluoride anion and 0.300 mol of hydrogen fluoride (HF). What is the $\mathbf{p H}$ after addition of 70.0 mL of 0.600 M HCl to this solution? $\left(\mathrm{HF}, K_{\mathrm{a}}=7.2 \times 10^{-4}\right)$?
38. Consider a solution initially containing 0.50 mol ammonia $\left(\mathrm{NH}_{3}\right)$ and 0.30 mol of ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$. What is the pH after addition of 0.20 mol of HCl to this solution? $\left(\mathrm{NH}_{4}^{+}, K_{\mathrm{a}}=5.6 \times 10^{-10}\right)$?
39. Consider a solution initially containing 0.500 mol ammonia $\left(\mathrm{NH}_{3}\right)$ and 0.300 mol of ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$. What is the $\mathbf{p H}$ after addition of 40 mL of 0.800 M NaOH to this solution? $\left(\mathrm{NH}_{4}^{+}, K_{\mathrm{a}}=5.6 \times 10^{-10}\right)$?
40. Calculate the pH of a solution originally containing 0.20 mol of cyanic acid HCNO following addition of 80 mL of 1.00 M NaOH . $\left(\mathrm{K}_{\mathrm{a}}\right.$ of $\left.\mathrm{HCNO}=3.5 \times 10^{-4}\right)$. The initial volume of the cyanic acid solution was 920 mL , so the final combined volume at the end is 1.0 L .
a) 3.28
b) 3.39
c) 3.46
d) 3.64
e) none of the above
41. Consider a solution initially containing 0.300 mol of hydrogen fluoride (HF). How many grams of NaF ($\mathbf{4 2 . 0} \mathbf{~ g} / \mathrm{mol}$) would be needed to set the $\mathrm{pH}=3.00$? ($\mathrm{HF}, K_{\mathrm{a}}=7.2 \times 10^{-4}$)?

Titration Related Problems

42. In a titration of monoprotic acids and bases, there is a large change in pH \qquad
a. at the point where $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$ of the acid.
b. when the volume of acid is exactly equal to the volume of base.
c. when the concentration of acid is exactly equal to the concentration of base.
d. when the number of moles of acid is exactly equal to the number of moles of base.
e. at the point where $\mathrm{pH}=\mathrm{p} K_{\mathrm{b}}$ of the base.
43. At what point in the following titration curve for a weak acid being titrated with a strong base is the pH equal to the $\mathrm{p} K_{\mathrm{a}}$ of the acid? The x-axis scale goes from 0.0 mL to 20.0 mL . The sharp rise is at 10.0 mL .

a. $\quad 0.0 \mathrm{~mL}$
b. $\quad 5.0 \mathrm{~mL}$
c. $\quad 9.0 \mathrm{~mL}$
d. $\quad 10.0 \mathrm{~mL}$
e. $\quad 18.0 \mathrm{~mL}$
44. When an acetic acid solution is titrated with sodium hydroxide, the slope of the titration curve (pH vs volume of NaOH added) increases when sodium hydroxide is first added. This change shows that \qquad .
a. nothing is happening during this part of the titration.
b. the reaction is very slow during this part of the titration.
c. a more concentrated solution of NaOH needs to be present to initiate the reaction.
d. acetic acid is being converted to sodium acetate.
e. the pH is not affected until all the acetic acid is consumed.
45. Halfway to the equivalence point in a titration curve of a weak acid with a strong base, \qquad
a. nothing is happening yet.
d. $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$ of the indicator.
b. the $\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}$ of the weak acid.
e. the pH has not yet changed.
c. $\mathrm{pH}=3.5$ exactly.
46. An initial pH of 9.5 and an equivalence point at pH 4.5 correspond to a titration curve for a
a) strong acid to which strong base is added
b) strong base to which strong acid is added
c) weak acid to which strong base is added
d) weak base to which strong acid is added

Titration Graphs and Recognition

47. The following titration curve is most likely to be associated with \qquad
a. the titration of a strong acid with a strong base titrant.
b. the titration of a weak acid with a strong base titrant.
c. the titration of a strong base with a strong acid titrant.
d. the titration of a weak base with a strong acid titrant.

Volume of titrant
48. The following titration curve is most likely to be associated with
a. the titration of a strong acid with a strong base titrant.
b. the titration of a weak acid with a strong base titrant.
c. the titration of a strong base with a strong acid titrant.
d. the titration of a weak base with a strong acid titrant.

Volume of titrant
49. What is indicated by the shape of the titration curve?
a. A diprotic acid was titrated with a strong base.
b. A triprotic acid was titrated with a strong base.
c. A diprotic base was titrated with a strong acid.
d. A triprotic base was titrated with a strong acid.
e. A strong acid was titrated with a strong base.

Volume of titrant
50. A 0.500 g sample of an unknown substance was titrated with a 0.1 M HCl solution. Another 0.500 g sample of it was titrated with a 0.1 M NaOH solution. The resulting titration curves are illustrated here. Given the following possibilities, what is the sample?

Volume HCl
a. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
b. NaHCO_{3}
c. $\mathrm{H}_{2} \mathrm{CO}_{3}$

d. CO_{2}
e. There is no way to tell.

Titration Calculations and Related Calculations.

51. A solution of hydrochloric acid $(\mathrm{HCl}, 25.00 \mathrm{~mL})$ was titrated to the equivalence point with 34.55 mL of 0.1020 M sodium hydroxide. What was the concentration of the hydrochloric acid?
a. 0.07048 M
b. 0.1410 M
c. $\quad 0.2819 \mathrm{M}$
d. 0.0353 M
e. 0.0533 M
52. A solution of hydrochloric acid $(\mathrm{HCl}, 40.00 \mathrm{~mL})$ was titrated to the equivalence point with 22.0 mL of 0.320 M sodium hydroxide. What was the concentration of the hydrochloric acid?
a. $\quad 0.07048 \mathrm{M}$
d. 0.0353 M
b. $\quad 0.178 \mathrm{M}$
e. None of the above
c. $\quad 0.282 \mathrm{M}$
53. A solution of sodium hydroxide $(\mathrm{NaOH}, 30.00 \mathrm{~mL})$ was titrated to the equivalence point with 26.0 mL of 0.80 MHCl . What was the concentration of the sodium hydroxide solution?
a. $\quad 1.44 \mathrm{M}$
d. $\quad 0.693 \mathrm{M}$
b. 0.178 M
e. None of the above
c. $\quad 0.282 \mathrm{M}$
54. A solution of sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, 25.00 \mathrm{~mL}\right)$ was titrated to the second equivalence point (both protons were removed) with 34.55 mL of 0.1020 M sodium hydroxide. What was the concentration of the sulfuric acid?
a. $\quad 0.07048 \mathrm{M}$
b. 0.1410 M
c. 0.2819 M
d. 0.0353 M
e. 0.0533 M
55. What volume of 0.80 M HCl will be required to titrate a 20.0 mL solution of 0.60 M NaOH to the equivalence point?
a. $\quad 15 \mathrm{~mL}$
d. $\quad 30 \mathrm{~mL}$
b. $\quad 20 \mathrm{~mL}$
e. None of the above
c. 25 mL
56. What volume of 0.80 MHCl will be required to titrate 36.2 grams of $\mathrm{NaBrO}(\mathrm{fw}=118.9 \mathrm{~g} / \mathrm{mol})$ to the equivalence point?
a. $\quad 150 \mathrm{~mL}$
d. $\quad 308 \mathrm{~mL}$
b. $\quad 381 \mathrm{~mL}$
e. None of the above
c. 258 mL
57. One brand of extra-strength antacid tablets contains 750 mg of calcium carbonate ($100 \mathrm{~g} / \mathrm{mol}$) in each tablet. Stomach acid is essentially a hydrochloric acid solution. Is so much calcium carbonate really needed to neutralize stomach acid? Calculate the volume of stomach acid with a pH of 1.0 that one of these tablets could neutralize, and compare that value with the normal volume of stomach fluid, which usually is about 100 mL . One tablet can neutralize \qquad mL of stomach acid at a pH of 1.0. (Remember, one carbonate can absorb not just one but two protons.)
a. 75
b. 150
c. 250
d. 15
e. 7.5

pH Estimations or Calculations after acid or base are added (including at Equivalence Point)

58. Which of the following combinations would give a pH of 7.00 at the "equivalence point" (when equal moles of each have been added)?
a) $\mathrm{HCl}+\mathrm{KF}$
b) $\mathrm{HCN}+\mathrm{NaOH}$
c) $\mathrm{HF}+\mathrm{HCl}$
d) $\mathrm{HCl}+\mathrm{KOH}$
59. Which of the following combinations would give a pH above 7.00 at the "equivalence point" (when equal moles of each have been added)?
a) $\mathrm{HCl}+\mathrm{KF}$
b) $\mathrm{HCN}+\mathrm{NaOH}$
c) $\mathrm{HF}+\mathrm{HCl}$
d) $\mathrm{HCl}+\mathrm{KOH}$
60. Which of the following combinations would give a pH below 7.00 at the "equivalence point" (when equal moles of each have been added)?
a) $\mathrm{HCl}+\mathrm{KF}$
b) $\mathrm{HCN}+\mathrm{NaOH}$
c) $\mathrm{NH}_{3}+\mathrm{NaOH}$
d) $\mathrm{HCl}+\mathrm{KOH}$
61. Glycolic acid, which is a monoprotic acid and a constituent in sugar cane, has a $\mathrm{p} K_{\mathrm{a}}$ of 3.9 . A 25.0 mL solution of glycolic acid is titrated to the equivalence point with 35.8 mL of $0.020 M$ sodium hydroxide solution. What is the $\mathbf{p H}$ of the resulting solution at the equivalence point?
a. $\quad 5.10$
b. 7.98
c. $\quad 8.72$
d. 4.92
e. 9.08
62. Quinine is a weak base, with $\mathrm{p} K_{\mathrm{b}}=5.10$. What is the pH if a 25.0 mL solution originally containing 0.125 moles of quinine is titrated with HCl to the equivalence point, and if the combined total volume at the end is 56.0 mL ?
a. $\quad 5.10$
d. 4.28
b. 7.98
e. None of the above
c. 8.72
63. A 25.0 mL solution of quinine was titrated with 1.00 M hydrochloric acid, HCl . It was found that the solution originally contained 0.125 moles of quinine. What was the pH of the solution after 50.00 mL of the HCl solution were added? Quinine is monobasic with $\mathrm{p} K_{\mathrm{b}}=5.10$.
a. $\quad 5.10$
b. 8.90
c. 8.72
d. 4.92
e. 9.08
64. If you start with 80.0 mL of $0.40 \mathrm{M} \mathrm{HNO}_{3}$, calculate the $\left[\mathrm{H}^{+}\right]$concentration following addition of 40.0 mL of 0.60 M KOH .
a) 0.0667 M
b) $1.00 \times 10^{-7} \mathrm{M}$
c) 0.100 M
d) $1.50 \times 10^{-13} \mathrm{M}$
e) none of the above
65. If you start with 80.0 mL of $0.40 \mathrm{M} \mathrm{HNO}_{3}$, calculate the pH following addition of 40.0 mL of 0.80 M KOH .
a) 3.4
b) 7.0
c) 8.2
d) 11.6
e) none of the above
66. If you start with 80.0 mL of $0.40 \mathrm{M} \mathrm{HNO}_{3}$, calculate the pH following addition of 50.0 mL of 0.80 M KOH .
a) 3.4
b) 7.0
c) 12.8
d) 13.1
e) none of the above

Solubility Problems

67. Write the reaction equation and the equilibrium constant expression that describes lead chloride $\left(\mathrm{PbCl}_{2}\right)$ dissolving in water.

$$
\text { Answer: } \mathrm{PbCl}_{2}(s) \rightarrow \mathrm{Pb}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) \quad K_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}
$$

68. The solubility product for an insoluble salt with the formula MX_{2} is written as \qquad , where x is the molar solubility.
a. $\quad K_{\text {sp }}=x^{2}$
b. $K_{\text {sp }}=4 x^{3}$
c. $K_{\mathrm{sp}}=4 x^{2}$
d. $K_{\mathrm{sp}}=2 x^{3}$
e. $K_{\text {sp }}=2 x^{2}$
69. When lead chloride $\left(\mathrm{PbCl}_{2}\right)$ is placed in otherwise pure water, enough dissolves such that the concentration of lead ions becomes 0.036 M . What is the $K_{\text {sp }}$ for lead chloride $\left(\mathrm{PbCl}_{2}\right)$?
a. $\quad K_{\mathrm{sp}}=1.9 \times 10^{-6}$
d. $K_{\mathrm{sp}}=1.9 \times 10^{-4}$
b. $\quad K_{\mathrm{sp}}=2.3 \times 10^{-5}$
e. None of the above
c. $K_{\mathrm{sp}}=4.3 \times 10^{-6}$
70. Consider the following table of $\mathrm{K}_{\text {sp }}$ values.

Compound	K_{sp}
PbCO_{3}	7.4×10^{-14}
ZnCO_{3}	1.4×10^{-11}
CePO	4.3×10^{-16}
PbS	8.0×10^{-28}

Which one of the compounds shown in the table is the least soluble?
a) PbCO_{3}
b) ZnCO_{3}
c) CePO_{4}
d) PbS
71. The solubility of AgBr is $5.4 \times 10^{-13} \mathrm{~mol} / \mathrm{L}$. What is the $\mathrm{K}_{\text {sp }}$ of AgBr ?
a) 5.4×10^{-13}
b) 7.3×10^{-7}
c) 9.5×10^{-5}
d) 3.0×10^{-10}
e) none of the above
72. The solubility of CaF_{2} is $3.9 \times 10^{-11} \mathrm{~mol} / \mathrm{L}$. What is the K_{sp} of CaF_{2} ?
a) 3.9×10^{-11}
b) 6.2×10^{-6}
c) 3.4×10^{-4}
d) 2.1×10^{-4}
e) none of the above
73. What is the solubility of barium sulfate in otherwise pure water? The $K_{\text {sp }}$ value for barium sulfate is 1.1×10^{-10}.
a. $\quad 7.4 \times 10^{-6} \mathrm{M}$
b. $\quad 5.5 \times 10^{-11} \mathrm{M}$
c. $\quad 1.0 \times 10^{-5} \mathrm{M}$
d. $\quad 2.2 \times 10^{-9} \mathrm{M}$
e. $\quad 1.1 \times 10^{-10} \mathrm{M}$
74. Stalactites-the long, icicle-like formations that hang from the ceilings of caves-are formed from calcium carbonate. The $\mathrm{K}_{\text {sp }}$ of calcium carbonate is 4.5×10^{-9}. What is the concentration of calcium ions in a saturated calcium carbonate solution?
a. $\quad 0.00104 \mathrm{M}$
b. $\quad 4.5 \times 10^{-9} \mathrm{M}$
c. $\quad 6.7 \times 10^{-5} \mathrm{M}$
d. $2.25 \times 10^{-9} \mathrm{M}$
e. $\quad 4.5 \times 10^{-5} \mathrm{M}$
75. Lead pipes were used at one time for delivering drinking water. What is the maximum possible concentration of lead in this water if it comes from lead(II) hydroxide ($K_{\text {sp }}=2.8 \times 10^{-16}$) dissolving from the surface of the pipes? Note the EPA limit on lead in drinking water is $7.2 \times 10^{-8} M$.
a. $\quad 4.1 \times 10^{-6} \mathrm{M}$
b. $\quad 1.6 \times 10^{-8} \mathrm{M}$
c. $\quad 6.5 \times 10^{-6} \mathrm{M}$
d. $\quad 5.1 \times 10^{-6} \mathrm{M}$
e. $\quad 8.3 \times 10^{-9} \mathrm{M}$
76. The solubility of PbBr_{2} is 0.427 g per 100 mL of solution at $25^{\circ} \mathrm{C}$. Determine the value of the solubility product constant for this strong electrolyte.
a. $\quad 5.4 \times 10^{-4}$
b. 2.7×10^{-4}
c. $\quad 3.1 \times 10^{-6}$
d. 1.6×10^{-6}
e. 6.3×10^{-6}
77. Purveyors of salts from the Dead Sea advertise that it is healthy to bathe in a saturated solution of magnesium chloride $\left(\mathrm{MgCl}_{2}, 95.21 \mathrm{~g} / \mathrm{mol}, K_{\text {sp }}=740\right)$. How much magnesium chloride would you have to purchase to make up 10.0 L of bath water saturated with magnesium chloride?
a. $\quad 9.0 \mathrm{~kg}$
b. $\quad 12 \mathrm{~kg}$
c. $\quad 57 \mathrm{~kg}$
d. 5.4 kg
e. $\quad 7.2 \mathrm{~kg}$
78. Stalactites-the long, icicle-like formations that hang from the ceilings of caves-are formed from calcium carbonate. Droplets saturated with calcium carbonate hang and evaporates, leaving solid calcium carbonate behind. The $K_{\text {sp }}$ of calcium carbonate is 4.5×10^{-9}. What is the volume of water droplets saturated with calcium carbonate that would be required to form a small stalactite that had a mass of 1.0 kg ?
a. $\quad 1.4 \times 10^{6} \mathrm{~L}$
b. $\quad 1.5 \times 10^{5} \mathrm{~L}$
c. $\quad 4.5 \times 10^{9} \mathrm{~L}$
d. $\quad 4.5 \times 10^{4} \mathrm{~L}$
e. $\quad 1.5 \times 10^{4} \mathrm{~L}$

Impact on Solubility When Common Ions are Present

79. What is the solubility of barium sulfate in a solution also containing 0.050 M sodium sulfate (which is fully soluble)? The $K_{\text {sp }}$ value for barium sulfate is 1.1×10^{-10}.
a. $\quad 7.4 \times 10^{-6} \mathrm{M}$
b. $5.5 \times 10^{-11} \mathrm{M}$
c. $\quad 1.0 \times 10^{-5} \mathrm{M}$
d. $2.2 \times 10^{-9} \mathrm{M}$
e. $\quad 1.1 \times 10^{-10} \mathrm{M}$
80. What is the solubility (in moles/L) of CuCl in a solution that also contains $0.020 \mathrm{M} \mathrm{CuNO}_{3}$ (the latter is fully soluble). $\left(\mathrm{K}_{\text {sp }} \mathrm{CuCl}=1.0 \times 10^{-6}\right)$
a) 1.0×10^{-6}
b) 1.0×10^{-3}
c) 5.0×10^{-5}
d) 2.7×10^{-7}
e) none of the above
81. When sodium chloride is added to a saturated solution of lead(II) chloride, some of the lead(II) chloride precipitates. This results from what is called \qquad
a. the common ion effect.
d. a solubility anomaly.
b. selective precipitation.
e. deionization.
c. supersaturation.
82. Consider a saturated solution of AgCl in water. Compared to the original concentrations of the $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$, how would the concentrations be different after some NaCl was added to the solution?
a. The resulting $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$would both end up higher than they were originally.
b. The resulting $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$would both end up lower than they were originally.
c. The resulting $\left[\mathrm{Ag}^{+}\right]$would be larger, but the resulting $\left[\mathrm{Cl}^{1}\right]$ would be smaller.
d. The resulting $\left[\mathrm{Ag}^{+}\right]$would be smaller, but the $\left[\mathrm{Cl}^{-}\right]$would be larger.
e. $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$would remain the same because the solution is saturated.
83. Which of the following, when added to a saturated solution of LaF_{3}, will increase the solubility LaF_{3} ? $\left(\mathrm{K}_{\mathrm{sp}}=4 \times 10^{-17}\right)$
a) Addition of soluble KNO_{3}
b) Addition of soluble $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$
c) Addition of soluble KF
d) Addition of HNO_{3}
84. When a solid partially dissolves to produce two ions, the solubility can be reduced if either of the two ions is supplied by a different source. This reduced concentration of one of the ions, and reduced solubilty of the parent ionic solid, is the result of what's called the \qquad
a. ionic suppression effect.
d. excession effect.
b. counter ion effect.
e. supersaturation effect.
c. common ion effect.

Impact of pH on Solubility

85. Which of the following statements is FALSE?
a. Any solid that produces a basic anion will become more soluble at low pH
b. Low pH increases solubility for solids that produce basic anions, because the acid reduces the concentration of the basic anion. LeChatelier then forces more solid to dissolve, resulting in elevated concentration of the cation.
c. For solids that produce basic anions, the concentration of anion is lower than the concentration of the cation at low pH
d. For metal hydroxides, solubility decreases at high pH where hydroxide concentration is high
e. For solids with nonbasic anions like chlorides or bromides, solubility is still higher at low pH .
86. Manganese carbonate $\left(\mathrm{MnCO}_{3}\right)$ has low solubility in neutral water $(8 \mathrm{mg} / \mathrm{L})$, but dissolves completely in water whose pH is low. Which of the following explanations are true?
87. At low $\mathrm{pH}, \mathrm{H}^{+}$continuously and irreversibly removes carbonate ion
88. At low $\mathrm{pH}, \mathrm{OH}^{-}$continuously removes Mn^{2+} ion
89. All solids always become completely soluble in acidic solution
a) 1 only
b) 2 only
c) 3 only
d) 1 and 3 only
e) 2 and 3 only
90. As the pH decreases, the solubility of \qquad would increase.
a. lead(II) chloride
d. mercury(I) bromide
b. silver(I) iodide
e. silver(I) chloride
c. calcium carbonate
91. Which of the following compounds would not have a pH dependent solubility?
a. $\mathrm{Mg}(\mathrm{OH})_{2}$
b. PbS
c. AgI
d. $\mathrm{Na}_{2} \mathrm{O}$
e. PbS
92. Which of the following compounds would not have a pH dependent solubility?
a. $\mathrm{Fe}(\mathrm{OH})_{2}$
b. $\mathrm{Mn}\left(\mathrm{N}_{3}\right)_{2}$
c. AgF
d. PbBr_{2}
e. AgCN
93. Which of the following compounds would not have a pH dependent solubility?
a. FeCO_{3}
b. $\mathrm{Zn}(\mathrm{OH})_{2}$
c. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
d. FePO_{4}
e. $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$

General Chemistry II Jasperse ANSWERS

Buffer/Titration/Solubility. Extra Practice Problems

1. C	42. D
2. Answer: A buffer consists of a weak acid	43. B
and its conjugate base in roughly equal	44. D
amounts. If acid is added to the solution, it	45. B
is consumed by the conjugate base. If base	46. D
is added to the solution, it is consumed by	47. B
the weak acid. If the amounts are such that the ratio of conjugate base/weak acid	48. D
concentrations doesn't change much, then	49. C
the pH doesn't change much. Dilution	50. B
does not affect the pH because this	51. B
concentration ratio doesn't change upon	52. B
dilution.	53. D
3. B	54. A
4. B	55. A
5. C	56. B
6. A	57. B
7. A	58. D
8. D	59. B
9. A	60. A
10. D	61. B
11. B	62. D
12. C	63. E
13. C	64. A
14. B	65. B
15. D	66. C
16. E	67. $\mathrm{PbCl}_{2}(s) \rightarrow \mathrm{Pb}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q)$
17. D	$K_{\text {sp }}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
18. C	68. B
19. C	69. D
20. 9.43	70. D
21. D	71. B
22. 3.08	72. D
23. 3.61	73. C
24. B	74. C
25. C	75. A
26. A	76. E
27. A	77. D
28. C	78. B
29. A	79. D
30. D	80. C
31. D	81. A
32. D	82. D
33. A	83. D
34. C	84. C
35. A	85. E
36. 2.74	86. A
37. 3.16	87. C
38. 9.03	88. C
39. 9.55	89. D
40. A	90. E
41. 9.07 g	

