Testing for Granger Causality with Mixed Frequency Data

Eric Ghysels¹, Jonathan B. Hill¹, & Kaiji Motegi²

 1 University of North Carolina at Chapel Hill 2 Waseda University

September 15, 2014

Introduction

- Time series are often sampled at different frequencies, e.g. daily, monthly, quarterly, etc.
- Classic multivariate time series analysis is designed for single-frequency data.
 - ⇒ Temporal aggregation of high frequency variables into the common lowest frequency.
 - ⇒ Inaccurate statistical inference.
- How can we exploit all data available whatever their sampling frequencies are?

Introduction

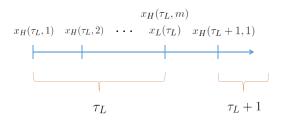
- Mixed Data Sampling (MIDAS) econometrics.
 - Ghysels, Santa-Clara, and Valkanov (2004, WP).
 - Ghysels, Santa-Clara, and Valkanov (2006, JoE).
 - Andreou, Ghysels, and Kourtellos (2010, JoE).
- Ghysels' (2012, WP) mixed frequency vector autoregression (MF-VAR).
 - VAR model for mixed frequency data.

Introduction

- Based on Ghysels' MF-VAR, we develop Granger causality tests for mixed frequency data (henceforth "MF causality test").
- MF causality test achieves higher local asymptotic power than existing single-frequency tests do.
- In empirical application, MF causality test yields more intuitive results than existing single-frequency tests do.

Methodology

- x_L is a low frequency variable.
- x_H is a high frequency variable.
- In each low frequency time period τ_L , we sequentially observe $x_H(\tau_L, 1)$, $x_H(\tau_L, 2)$, ..., $x_H(\tau_L, m)$, $x_L(\tau_L)$.



ullet Classic approach works on aggregated x_H but the present paper does not.

Methodology

• Instead of working on aggregated x_H , we stack all observations in each low frequency period τ_L :

$$\underbrace{\boldsymbol{X}(\tau_L)}_{\text{mixed frequency vector}} = \begin{bmatrix} x_H(\tau_L, 1) \\ \vdots \\ x_H(\tau_L, m) \\ x_L(\tau_L) \end{bmatrix}.$$

• Ghysels' (2012) MF-VAR model assumes that $\boldsymbol{X}(\tau_L)$ itself follows VAR(q):

$$\boldsymbol{X}(\tau_L) = \sum_{k=1}^q \boldsymbol{A}_k \boldsymbol{X}(\tau_L - k) + \boldsymbol{\epsilon}(\tau_L).$$

Methodology

$$\underbrace{\begin{bmatrix} x_H(\tau_L, 1) \\ \vdots \\ x_H(\tau_L, m) \\ x_L(\tau_L) \end{bmatrix}}_{=\mathbf{X}(\tau_L)} = \sum_{k=1}^q \underbrace{\begin{bmatrix} \mathbf{A}_{HH,k} & \mathbf{a}_{HL,k} \\ \mathbf{a}_{LH,k} & a_{LL,k} \end{bmatrix}}_{=\mathbf{A}_k} \underbrace{\begin{bmatrix} x_H(\tau_L - k, 1) \\ \vdots \\ x_H(\tau_L - k, m) \\ x_L(\tau_L - k) \end{bmatrix}}_{=\mathbf{X}(\tau_L - k)} + \boldsymbol{\epsilon}(\tau_L).$$

- x_H does not Granger cause x_L given mixed frequency information set $\Leftrightarrow a_{LH,1} = \cdots = a_{LH,q} = 0_{1 \times m}$.
- x_L does not Granger cause x_H given mixed frequency information set $\Leftrightarrow a_{HL,1} = \cdots = a_{HL,q} = 0_{m \times 1}$.
- These zero restrictions can be tested via usual asymptotics, e.g. Wald tests with χ^2_{mq} .

- We show that the MF causality test achieves higher local asymptotic power than the classic low frequency causality test does.
- Suppose that the true data generating process (DGP) is a bivariate high frequency VAR (HF-VAR) of order 1:

$$\begin{bmatrix} x_H(\tau_L,j) \\ x_L(\tau_L,j) \end{bmatrix} = \begin{bmatrix} \phi_{HH} & \nu/\sqrt{T_L} \\ 0 & \phi_{LL} \end{bmatrix} \begin{bmatrix} x_H(\tau_L,j-1) \\ x_L(\tau_L,j-1) \end{bmatrix} + \begin{bmatrix} \eta_H(\tau_L,j) \\ \eta_L(\tau_L,j) \end{bmatrix}.$$

$$\begin{bmatrix} x_H(\tau_L,j) \\ x_L(\tau_L,j) \end{bmatrix} = \begin{bmatrix} \phi_{HH} & \nu/\sqrt{T_L} \\ 0 & \phi_{LL} \end{bmatrix} \begin{bmatrix} x_H(\tau_L,j-1) \\ x_L(\tau_L,j-1) \end{bmatrix} + \begin{bmatrix} \eta_H(\tau_L,j) \\ \eta_L(\tau_L,j) \end{bmatrix}.$$

- ullet x_H does not cause x_L given high frequency information set.
- x_L does cause x_H but with vanishing impact $\nu/\sqrt{T_L} \to 0$.
- $\nu \in \mathbb{R}$ is called the Pitman drift, representing the strength of causality from x_L to x_H .

- Assume stock sampling $x_L(\tau_L) = x_L(\tau_L, m)$.
- The mixed frequency vector $X(\tau_L)$ follows MF-VAR(1):

$$\underbrace{\begin{bmatrix} x_H(\tau_L,1) \\ \vdots \\ x_H(\tau_L,m) \\ x_L(\tau_L) \end{bmatrix}}_{=\mathbf{X}(\tau_L)} = \begin{bmatrix} 0 & \dots & 0 & \phi_{HH}^1 & (\nu/\sqrt{T_L}) \sum_{j=1}^1 \phi_{HH}^{1-j} \phi_{LL}^{j-1} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & \phi_{HH}^m & (\nu/\sqrt{T_L}) \sum_{j=1}^m \phi_{HH}^{m-j} \phi_{LL}^{j-1} \\ 0 & \dots & 0 & 0 & \phi_{LL}^m \end{bmatrix}}_{=\mathbf{X}(\tau_L-1)} \underbrace{\begin{bmatrix} x_H(\tau_L-1,1) \\ \vdots \\ x_H(\tau_L-1,m) \\ x_L(\tau_L-1) \end{bmatrix}}_{=\mathbf{X}(\tau_L-1)} + \epsilon(\tau_L).$$

- When we implement the mixed frequency causality test, the resulting Wald statistic follows $\chi^2_m(\kappa_{MF})$.
- ullet Noncentrality parameter κ_{MF} can be characterized analytically.

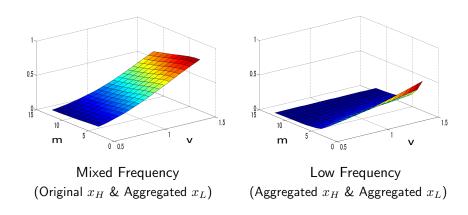
Assume stock sampling:

$$x_L(\tau_L) = x_L(\tau_L, m)$$
 and $x_H(\tau_L) = x_H(\tau_L, m)$.

• The low frequency vector $\underline{\boldsymbol{X}}(\tau_L) = [x_H(\tau_L), x_L(\tau_L)]'$ follows VAR(1):

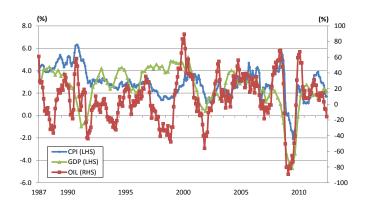
$$\underbrace{\begin{bmatrix} x_H(\tau_L) \\ x_L(\tau_L) \end{bmatrix}}_{=\underline{\boldsymbol{X}}(\tau_L)} = \begin{bmatrix} \phi_{HH}^m & (\nu/\sqrt{T_L}) \sum_{j=1}^m \phi_{HH}^{m-j} \phi_{LL}^{j-1} \\ 0 & \phi_{LL}^m \end{bmatrix}}_{=\underline{\boldsymbol{X}}(\tau_L-1)} \underbrace{\begin{bmatrix} x_H(\tau_L-1) \\ x_L(\tau_L-1) \end{bmatrix}}_{=\underline{\boldsymbol{X}}(\tau_L-1)} + \underline{\boldsymbol{\epsilon}}(\tau_L).$$

• Local asymptotic power can be computed analogously.



Note: We assume $(\phi_{HH},\phi_{LL})=(0.25,0.75)$, i.e. low persistence in x_H and high persistence in x_L . See the full paper for other parametrizations.

Empirical Application (U.S. Macroeconomy)



- Monthly consumer price index (CPI).
- Monthly oil prices (OIL).
- Quarterly gross domestic product (GDP).

Bootstrapped p-values of MF-VAR(1) and LF-VAR(4)

Mixed Frequency (Monthly CPI, Monthly OIL & Quarterly GDP)							
Horizon	1	2	3	4	5		
CPI→OIL	0.391	0.128	0.559	0.636	0.165		
$CPI \rightarrow GDP$	0.195	0.098°	0.049 °	0.100	0.180		
$OIL \rightarrow GDP$	0.680	0.548	0.236	0.300	0.196		
OIL-→CPI	0.002 °	0.182	0.439	0.029 °	0.605		
GDP-→CPI	0.015 °	0.570	0.583	0.125	0.500		
GDP-→OIL	0.724	0.833	0.895	0.855	0.946		

Low Frequency (Quarterly CPI, Quarterly OIL & Quarterly GDP)								
Horizon	1	2	3	4	5			
CPI→OIL	0.035 °	0.095°	0.095°	0.116	0.492			
CPI→GDP	0.380	0.215	0.272	0.238	0.683			
$OIL \rightarrow GDP$	0.145	0.044 °	0.088°	0.027 °	0.066°			
OIL-→CPI	0.206	0.320	0.986	0.710	0.521			
GDP-→CPI	0.680	0.497	0.323	0.596	0.645			
GDP→OIL	0.095°	0.164	0.516	0.376	0.541			

Conclusions

- The mixed frequency Granger causality test is a Wald test based on Ghysels' (2012) mixed frequency vector autoregression.
- The MF causality test has higher local asymptotic power than the LF causality test does.
- In empirical application the MF test and the LF test produce very different results, and the MF test yields more intuitive causal implications.

References

- Andreou, E., E. Ghysels, and A. Kourtellos (2010). Regression Models with Mixed Sampling Frequencies. *Journal of Econometrics*, 158, 246-261.
- Ghysels, E. (2012). Macroeconomics and the Reality of Mixed Frequency Data. Working Paper at the University of North Carolina at Chapel Hill.
- Ghysels, E., P. Santa-Clara, and R. Valkanov (2004). The MIDAS Touch: Mixed Data Sampling Regression Models. Working Paper at the University of North Carolina at Chapel Hill.
- Ghysels, E., P. Santa-Clara, and R. Valkanov (2006). Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies. *Journal of Econometrics*, 131, 59-95.