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Introduction

Time series are often sampled at different frequencies,
e.g. daily, monthly, quarterly, etc.

Classic multivariate time series analysis is designed for
single-frequency data.

⇒ Temporal aggregation of high frequency variables into the
common lowest frequency.

⇒ Inaccurate statistical inference.

How can we exploit all data available whatever their
sampling frequencies are?
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Introduction

Mixed Data Sampling (MIDAS) econometrics.

Ghysels, Santa-Clara, and Valkanov (2004, WP).

Ghysels, Santa-Clara, and Valkanov (2006, JoE).

Andreou, Ghysels, and Kourtellos (2010, JoE).

Ghysels’ (2012, WP) mixed frequency vector autoregression (MF-VAR).

– VAR model for mixed frequency data.
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Introduction

Based on Ghysels’ MF-VAR, we develop Granger causality tests for
mixed frequency data (henceforth ”MF causality test”).

MF causality test achieves higher local asymptotic power than
existing single-frequency tests do.

In empirical application, MF causality test yields more intuitive
results than existing single-frequency tests do.
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Methodology

xL is a low frequency variable.

xH is a high frequency variable.

In each low frequency time period τL, we sequentially observe
xH(τL, 1), xH(τL, 2), . . . , xH(τL,m), xL(τL).

. . .

Classic approach works on aggregated xH but the present paper
does not.
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Methodology

Instead of working on aggregated xH , we stack all observations
in each low frequency period τL:

X(τL)︸ ︷︷ ︸
mixed frequency vector

=


xH(τL, 1)

...
xH(τL,m)

xL(τL)

 .

Ghysels’ (2012) MF-VAR model assumes that X(τL) itself
follows VAR(q):

X(τL) =

q∑
k=1

AkX(τL − k) + ε(τL).
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Methodology


xH(τL, 1)

...
xH(τL,m)

xL(τL)


︸ ︷︷ ︸

=X(τL)

=

q∑
k=1

[
AHH,k aHL,k

aLH,k aLL,k

]
︸ ︷︷ ︸

=Ak


xH(τL − k, 1)

...
xH(τL − k,m)

xL(τL − k)


︸ ︷︷ ︸

=X(τL−k)

+ε(τL).

xH does not Granger cause xL given mixed frequency information set
⇔ aLH,1 = · · · = aLH,q = 01×m.

xL does not Granger cause xH given mixed frequency information set
⇔ aHL,1 = · · · = aHL,q = 0m×1.

These zero restrictions can be tested via usual asymptotics,
e.g. Wald tests with χ2

mq.
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Local Asymptotic Power Analysis

We show that the MF causality test achieves higher local
asymptotic power than the classic low frequency causality test
does.

Suppose that the true data generating process (DGP) is a
bivariate high frequency VAR (HF-VAR) of order 1:[

xH(τL, j)
xL(τL, j)

]
=

[
φHH ν/

√
TL

0 φLL

] [
xH(τL, j − 1)
xL(τL, j − 1)

]
+

[
ηH(τL, j)
ηL(τL, j)

]
.
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Local Asymptotic Power Analysis

[
xH(τL, j)
xL(τL, j)

]
=

[
φHH ν/

√
TL

0 φLL

] [
xH(τL, j − 1)
xL(τL, j − 1)

]
+

[
ηH(τL, j)
ηL(τL, j)

]
.

xH does not cause xL given high frequency information set.

xL does cause xH but with vanishing impact ν/
√

TL → 0.

ν ∈ R is called the Pitman drift, representing the strength of
causality from xL to xH .

Ghysels, Hill & Motegi (UNC & Waseda) Testing for GC with MF Data September 15, 2014 9 / 16



Local Asymptotic Power Analysis

Assume stock sampling xL(τL) = xL(τL,m).

The mixed frequency vector X(τL) follows MF-VAR(1):


xH(τL, 1)

...
xH(τL, m)

xL(τL)


︸ ︷︷ ︸

=X(τL)

=


0 . . . 0 φ1

HH (ν/
√

TL)
∑1

j=1 φ1−j
HHφj−1

LL

...
. . .

...
...

...

0 . . . 0 φm
HH (ν/

√
TL)

∑m
j=1 φm−j

HH φj−1
LL

0 . . . 0 0 φm
LL




xH(τL − 1, 1)
...

xH(τL − 1, m)
xL(τL − 1)


︸ ︷︷ ︸

=X(τL−1)

+ε(τL).

When we implement the mixed frequency causality test, the
resulting Wald statistic follows χ2

m(κMF ).

Noncentrality parameter κMF can be characterized analytically.
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Local Asymptotic Power Analysis

Assume stock sampling:

xL(τL) = xL(τL,m) and xH(τL) = xH(τL,m).

The low frequency vector X(τL) = [xH(τL), xL(τL)]′ follows
VAR(1):[

xH(τL)
xL(τL)

]
︸ ︷︷ ︸

=X(τL)

=
[
φm

HH (ν/
√

TL)
∑m

j=1 φm−j
HH φj−1

LL

0 φm
LL

] [
xH(τL − 1)
xL(τL − 1)

]
︸ ︷︷ ︸

=X(τL−1)

+ε(τL).

Local asymptotic power can be computed analogously.

Ghysels, Hill & Motegi (UNC & Waseda) Testing for GC with MF Data September 15, 2014 11 / 16



Local Asymptotic Power Analysis

m v m v

Mixed Frequency Low Frequency

(Original xH & Aggregated xL) (Aggregated xH & Aggregated xL)

Note: We assume (φHH , φLL) = (0.25, 0.75), i.e. low persistence in xH and high

persistence in xL. See the full paper for other parametrizations.
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Empirical Application (U.S. Macroeconomy)
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Bootstrapped p-values of MF-VAR(1) and LF-VAR(4)

Mixed Frequency (Monthly CPI, Monthly OIL & Quarterly GDP)
Horizon 1 2 3 4 5

CPI9OIL 0.391 0.128 0.559 0.636 0.165

CPI9GDP 0.195 0.098◦ 0.049 ◦ 0.100 0.180
OIL9GDP 0.680 0.548 0.236 0.300 0.196

OIL9CPI 0.002 ◦ 0.182 0.439 0.029 ◦ 0.605

GDP9CPI 0.015 ◦ 0.570 0.583 0.125 0.500
GDP9OIL 0.724 0.833 0.895 0.855 0.946

Low Frequency (Quarterly CPI, Quarterly OIL & Quarterly GDP)
Horizon 1 2 3 4 5

CPI9OIL 0.035 ◦ 0.095◦ 0.095◦ 0.116 0.492
CPI9GDP 0.380 0.215 0.272 0.238 0.683

OIL9GDP 0.145 0.044 ◦ 0.088◦ 0.027 ◦ 0.066◦

OIL9CPI 0.206 0.320 0.986 0.710 0.521
GDP9CPI 0.680 0.497 0.323 0.596 0.645
GDP9OIL 0.095◦ 0.164 0.516 0.376 0.541
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Conclusions

The mixed frequency Granger causality test is a Wald test
based on Ghysels’ (2012) mixed frequency vector autoregression.

The MF causality test has higher local asymptotic power than
the LF causality test does.

In empirical application the MF test and the LF test produce very
different results, and the MF test yields more intuitive causal
implications.
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