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Testing Issues for Real-time, Embedded and Safety Critical Systems 
 
Before we take an in-depth look at the process of testing, it is worth perhaps pausing 
for a moment to reflect upon the implications of failing to adequately test our 
software systems. As Electrical and Computer Engineers we, perhaps more than 
computer science students, will probably find that much of our software is developed 
for Real-time, Embedded and Safety Critical applications. 
 
These in particular represent the most difficult of all software systems to adequately 
test for reasons that are outlined below. Their failure in the field can and often does 
have far reaching and devastating effects on human life. 
 

• Real time systems are difficult to test because they respond to asynchronous 
events and data. In fact the combination of inputs and their relationship to 
each coupled with the need to provide a response within a specified period of 
time makes it almost impossible or prohibitively expensive to 
comprehensively test such systems. Here are two examples of such systems 
that failed due to inadequate testing. 

 
“.... In 1999 an airbus A320 aeroplane overshot the runway coming in to land in monsoon 
conditions. When the plane touched down, there was so much water on the runway that the 
tyres immediately aqua-planned and failed to spin in the normal fashion. This led the 
computer to believe that the plane was still in the air and refused the pilots request to engage 
reverse thrust!!!” 
 
“…Therac-25:  Between 1985 and 1987 at least six people in the US and Canada suffered 
massive radiation overdoses because of software-related failures in the Therac-25 radiation 
therapy machine. Three of them are generally accepted to have died as a direct consequence 
of the massive overdoses of radiation discharged by this machine. Evidence submitted to the 
investigation suggested that affected patients had received between 13000 and 25000 rads of 
radiation concentrated at the point of treatment. To put this in context 1000 rads of radiation 
exposed to the whole body is generally considered sufficient to kill everybody exposed to it. 
Many other patients suffered horrific and debilitating burns and loss of mobility. 

An important root cause was a lack of quality assurance, which led to an over-complex, 
inadequately tested, under-documented system being developed. The design of the system 
was also severely criticised for removing too many of the physical safety interlocks of its 
predecessor (Therac-20) and replacing them with software based versions 

A full report of the investigation and findings on this infamous software system failure can be 
found at http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html)” 

 
• Real-time systems do not lend themselves to the familiar techniques of 

debugging that we might find useful in other sorts of systems, in particular, 
you cannot single step or breakpoint the execution of a flight control system 
for an Boeing 777 when it’s 30,000 feet up doing 500 mph !! In fact when a 
real-time system does fail, it can be almost impossible to recreate the exact 
sequence of events that lead to the failure and thus diagnose the root cause of 
the problem. In fact there may be nothing left of the system to diagnose!!! 
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• Many real-time systems are state dependent, meaning that their response to 
events is based not only upon the event itself, but upon the time dependent 
history of what has happened before. In other words the same event does not 
always lead to the same response adding an extra element of complexity to 
the testing of a system. Here is a good example that caused major loss of life 
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• Safety Critical systems also have to be fault tolerant meaning that they 
should not just crash or stop working in the event of a hardware failure but 
should attempt to function in as safe a manner as possible by perhaps offering 
a reduced performance or functionality. A good example of this is the limp 
home facility built into the sophisticated engine management systems in cars 
which is designed to keep the car going in the event of a critical sensor 
failure. 
 
Safety in critical systems is often introduced through the use of replicated and 
redundant hardware and software systems. For added safety these are often 
designed by independent test teams working from the same specifications. 
And thus we probably have a minimum of 3 sets of hardware and software to 
test and validate. 
 
This in itself presents difficulties because some hardware systems are quite 
dangerous to operate without them being adequately tested, e.g. nuclear 
reactors or fly-by-wire aeroplanes and thus their operation is often tested 
using simulation techniques. Unfortunately these do not offer the same level 
of assurance as a real test since simulated faults can be quite different to the 
real thing. 

 
 
 
 
Verification and Validation Testing  
 
When we attempt to test software, we are attempting to carry out two important 
activities know as verification and validation of software. 
 
Verification of software refers to a set of activities that ensure that the software 
correctly implements a specific function, in other words 
 

"…Are we building the product right?"  
 
Validation refers to a different set of activities that ensures that the software that has 
been built to customer requirements. That is 
 

“…Are we building the right product?" 
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Software Testing 
 
In the classical ‘Software Life Cycle’ or ‘Waterfall Model’ of Software development, 
testing is viewed as the last stage of product development prior to the release of the 
product to the customer and subsequent maintenance.  
 

 
 
During the earlier stages, the emphasis has very much been upon the creative 
processes of analysis, modelling, design and code where the developer “could show 
what they could do” and it follows that the developer will (if all has gone well) have 
immense satisfaction and take great pride in what they have developed. 
 
However, during testing, the emphasis shifts from that of a creative process to one of 
destruction. In fact testing is a process deliberately intended to demolish the 
software that has been so carefully crafted and honed by the developer and thus 
represents something of dilemma for the developer.  
 
It has been shown time and time again that developers who set out to test their own 
software invariable tackle the problem by attempting to prove the software is correct 
rather than attempting to ruthlessly uncover the bugs that will certainly exist. For this 
reason, software testing is often performed by an independent test group (ITG).  
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Testing Objectives  
 
So what are the objectives of Testing? The following points give us some indication 
of what testing involves. 
 

1. Testing is a process of executing a program or part program using carefully 
chosen test data or test cases with the deliberate intent of finding an error. 

2. A successful test case is one that uncovers an as yet undiscovered error rather 
then one which validates the current designs correctness. 

3. A carefully selected test case is one that has a high probability of finding an 
as yet undiscovered error. 

  
In summary,  
 

“…The objective of testing is to design sets of test data that systematically 
uncover different types of errors and do so with a minimum amount of time 
and effort”. 

 
In other words, testing sets out to uncover errors, not to prove that the software is 
correct. During this process it is also important to bear in mind the following rather 
depressing warning put forward by Dijkstra, 
 

“…Testing cannot show the absence of defects, it can only highlight those 
defects that are present and that have not been uncovered by testing”. 

 
In other words, it doesn’t matter how much testing you carry out, you still cannot 
show that software is defect free. It simply means that the tests you have chosen have 
not exercised the system sufficiently well to reveal the defects that will certainly be 
there. Furthermore, testing should not be viewed as a safety net for picking up 
defects or poor quality in analysis or design. In other words  
 

"…Testing cannot improve the quality of your design. If it's not there 
when you start, it won't be there when you're finished. The Therac-25 
system proves this"  
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How do you know when you have finished testing? 
 
There is no definitive answer to this question, but one response to the above question 
is:  
 

“…You're never done testing. The burden simply shifts from you (the 
developer) to your customer.” 

 
It’s estimated that 30-50% of bugs in a system are uncovered by the customer rather 
than the developer. Another somewhat cynical, but nonetheless accurate response is:  
 

“…You're done testing when you run out of time or you run out of 
money.” 

 
However a more realistic estimate can be obtained by analysing the shape of the 
defect rate graph as shown below. Here the rate at which defects are uncovered 
(inflow) during testing is plotted alongside the rate at which such bugs are fixed 
(outflow). From this graph we can estimate the likelihood of the software being 
acceptably (which is open to interpretation) free from serious defects. In this case 
because of the sharp decline in the detection of new bugs we could estimate that a 
likely release date might be week 8. 
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System Testing Process Model 
 
System testing is generally based upon the process model shown below although the 
actual tests performed may vary considerably dependent upon the type of system 
under test, e.g. on-line, real-time, concurrent, embedded micro-controller etc. 
 
 

 
 
Two types of input feed into the test process:  
 
(1) A Software configuration that includes  
 

• The Requirements Specification indicating what the system is supposed to do.  
• The Design Specification showing the software architecture of the system. 
• The Source code to be tested.  
 
In effect, everything that has been developed, modelled or written. 
 

(2) A Test configuration that includes a set of “test cases” and “test case data” that 
can be used to exercise the software plus a set of expected or predicted 
results/behaviour.  

 
Tests are then conducted and the results are evaluated. That is, the actual results 
obtained from performing the tests are compared with the anticipated results or 
behaviour.  
 
If there is disagreement, then either the results of the test or the anticipated results 
are incorrect. In the case of the former debugging can commence in an attempt to 
correct the cause of the fault in the software.  
 
Reliability estimates for the system can also be predicted such as mean time between 
failures (MTBF) based on statistical analysis of the failure rate during testing. 
 
So how do we test our system? What techniques can we use and how do these 
techniques assist us to produce test case data?

Paul
System Testing Process Model

Paul
process

Paul
model

Paul
type

Paul
system

Paul
on-line,

Paul
real-time,

Paul
concurrent,

Paul
embedded

Paul
Software configuration

Paul
Requirements

Paul
Specification

Paul
do.

Paul
supposed

Paul
to

Paul
Design

Paul
Specification

Paul
architecture

Paul
Source

Paul
code

Paul
tested.

Paul
everything

Paul
Test

Paul
configuration

Paul
test cases”

Paul
test case data”

Paul
exercise

Paul
expected

Paul
predicted

Paul
results/

Paul
behaviour.

Paul
evaluated.

Paul
conducted

Paul
actual

Paul
results

Paul
compared

Paul
anticipated

Paul
results

Paul
debugging

Paul
disagreement,

Paul
results

Paul
anticipated

Paul
incorrect.

Paul
Reliability

Paul
estimates

Paul
MTBF)

Paul
failure

Paul
rate

Paul
testing.

Paul
during

Paul
statistical

Paul
analysis

Paul
techniques



Software Engineering - Page 8 

Testing Techniques - Black and White Box Testing 
 
As you are probably aware, any engineered product can be tested in one of two ways:  
 
(1) If you know what function a particular, module or sub-system is supposed to 

perform, that is you know what task it is supposed to carry out, it should be 
possible to generate and submit sample test data to the module and compare the 
results it produces with predicted answers.  
 
For example if you were faced with the task of testing a module written to 
calculate the area of a circle then you could feed in a radius value of 2.0 and 
check that the module produces the predicted answer 12.56637  
 
This technique is known as ‘Black box’ testing because you are in the dark as to 
how the module actually carries out its requested task, that is, the implementation 
of the module is hidden from the tester and is not considered.  
 
Black box testing thus alludes to tests that are performed at the modules 
interfaces, i.e. it considers what data goes in, and what results come back or what 
operations are performed. 

 
(2) However, if you can see, or have access to the internal workings i.e. the source 

code of the module, perhaps because you have designed or written that module, 
then you are able to test the correct functioning of all the statements, data 
structures, ‘if-else’ tests and ‘do-while’ loops contained within it. This technique 
is known as “White Box” testing because you can see the code under test and can 
generate tests specially to exercise it. 
 
  

Combining these two fundamental test techniques it should be possible to verify the 
correctness of a software system from the smallest component such as a function, to 
a fully fledged system.
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Testing Techniques 
 
Both Black and white box tests are employed at various stages of program 
development and testing. The illustration below highlights a range of test techniques 
do in fact exist to verify/validate each stage of the software development process. 
 
 

 
 

• Beginning at the vortex of the spiral we have Unit Testing which concentrates 
on each unit or module of code, typically the functions and subroutines in 
your programs and attempts to verify their correctness. Unit testing is 
performed on individual functions or modules of code and is typically 
performed immediately after the module/function has been written, i.e. before 
it is integrated into the rest of the system. Quite often it is the developer that 
performs these tests  
 
Unit testing is conducted using both Black and white box testing techniques. 
That is, we exercise the internal workings of a module/unit to check that we 
get the correct answer and that the logic and data structures are not corrupted 
during its execution. 
 

• Once individual Modules have been tested, testing progresses by moving 
outward along the spiral to Integration testing, where the focus is primarily 
upon making sure that modules communicate and interact correctly with other 
modules in the system to build higher-level functionality. Techniques here 
include 
 

 Bottom-up integration. 
 Top-down integration. 

 
Integration testing is predominantly a Black Box test technique exercising the 
interfaces of the modules and sub-systems. Such test highlight any 
inconsistencies between the co-operating modules.  
 
For example, take a Pentium IV processor. Hardware Unit testing will show it 
works, so does the motherboard, but integration testing will show up if the 
processor and motherboard are compatible. 
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• Taking another turn of the spiral, we encounter validation testing, where the 
requirements of the system are validated against the software that has been 
constructed. That is, we answer the question 
 

 “…Have we built the product that the customer wants?”  
 
• Finally, we arrive at system testing, where the software and other system 

elements are tested as a whole. This is sometimes known as acceptance 
testing. Techniques here include amongst others, Alpha and Beta testing. 
 
Here we can perform test that are only possible once the software is installed 
at the user premises and they are using it e.g. Graphical user-interfaces, forms, 
dialog boxes etc, do they ask the right questions, can the user escape from 
them or correct their entries, stress/load testing (can it cope with 1000 
transactions per hour etc), does it interact with the customers database and 
other computers etc. 

 
• Once software has been released we enter the maintenance phase where new 

or modified functionality may be added to the system over time. Here 
regression testing is used to ensure that the software does not regress to a 
worse state than that which existed before the modifications were carried out. 
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Unit Testing – A Practical Guide 
 
Unit testing focuses effort on the smallest unit of software design, the module or 
function. Using the detailed design description as a guide, important control paths 
are tested to uncover errors within the boundary of the module itself.  Testing of 
various units/modules can be conducted in parallel. 
 
Unit Test Considerations 
 
A list of possible Unit tests that could be performed on a module is given below. 
  

1. Test the modules interface to verify that data flows correctly into and out of a 
module, i.e. call the module, pass it data and check the result produced. 

2. Examine the local data structures, such as arrays to establish that they are not 
violated (e.g. array bounds exceeded) during the execution of a module. 

3. Exercise all independent paths through the control structure to ensure that all 
statements in a module have been executed at least once (Basis Path Testing). 

4. Exercise the systems response to data that is at the extremes of its range of 
validity (Boundary Value Analysis). 

5. Test all error-handling paths, that is, check that the system deals correctly 
with any erroneous data or conditions that arise during execution. 

 
It may well be the case that you will have to generate independent/separate 
categories of test cases to perform each of the five unit tests described above. The 
diagram below illustrates this. 
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Unit Testing – Stub and Driver Functions 
 
Because a unit or module is not a stand-alone program, a driver and/or stub module 
must be developed for each module under test. Again this is illustrated below.  
 
 

 
 
 
In most applications a driver is nothing more than a primitive program or function 
that accepts test case data from the tester and passes such data to the module under 
test. In addition, it then has to transport the relevant results produced by the tested 
module back for inspection by the tester. 
 
Stub functions replace modules that are subordinate, i.e. those modules that are 
called by the module under test. A stub function must use the subordinate module's 
interface and may have to carry out minimal data manipulation, print verification of 
entry and return dummy results to assist in the testing of the main module. 
 
Note that both drivers and stubs represent an overhead, i.e. both represent software 
that must be written to carry out testing but which will not be delivered with the final 
software product. If drivers and stubs are kept simple, actual overhead can be kept 
relatively low.  
 
Unfortunately, many modules cannot be adequately unit-tested with simple overhead 
software perhaps because the interface or number of sub-ordinate modules is 
complex or large.  
 
In such cases, complete unit testing may have to be postponed until the integration 
test step, where drivers or stubs are replaced by the real modules. 
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Unit Testing Techniques - White Box Testing 
 
At first glance it would seem that very thorough white box testing would lead to 100 
percent correct modules. After all, we only need to define all possible paths of 
execution within the module/program, develop test cases to exercise them, and 
evaluate the results, to completely exercise the program logic and demonstrate its 
correctness.  
 
Unfortunately, exhaustive testing presents certain logistical problems. For even small 
programs, the number of possible logical paths can be very large. For example, 
consider the very simple flow chart shown below. 
 

 
 
 
Such a flow chart could be implemented with perhaps just 50 lines or less of ‘C’ 
code with a single ‘do-while’ loop and just 4 ‘if-else’ tests. However, a quick 
calculation reveals that there are 95,367,431,640,625 or 5 (the number of individual 
routes through the program), raised to the power 20 (the number of iterations of the 
‘do-while’ loop) possible paths that could be executed! 
 
To put this number in perspective, if we assumed that an automated test processor 
program existed that could analyse a program and develop a new test case, execute 
it, and evaluate the results within 1 millisecond, working 24 hours a day, 365 days a 
year, the processor would work for over 3000 years to test the relatively simple 
program represented above. Exhaustive testing then is just not an option for large 
software systems. 
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White box testing thus concentrates on generating a limited number of carefully 
selected test cases to exercise important execution paths and decisions within the 
program. This is often all that will be required to give the developer a high degree of 
confidence that the module is working correctly, especially when these tests cases 
are combined with black box and other testing techniques. 
 
Practical White Box Testing 
 
Practical white box testing techniques involve the creation of test data that will 
 

1. Guarantee that all statements within a module have been exercised at least 
once. 

2. Guarantee that all ‘if-else’ tests and ‘do-while’ loops have their true/false 
results evaluated at least once. 

3. Execute all loops at and within their boundaries i.e. their start and end values 
and within their operational bounds. 

    

Paul
limited number of carefully
selected test cases

Paul
important execution paths

Paul
decisions

Paul
black box

Paul
other testing

Paul
all statements

Paul
exercised at least

Paul
once.

Paul
all ‘if-else’

Paul
‘do-while’

Paul
true/false

Paul
at least once.

Paul
all loops

Paul
boundaries

Paul
start

Paul
end



Software Engineering - Page 15 

More Practical White Box Testing - Basis Path Testing 
 
Basis path testing is a white box testing technique that enables the tester to derive a 
logical complexity measure for a module and use this measure as a guide for 
generating a set of fundamental test cases (known as the basis set).  
 
Such test cases are guaranteed to execute every statement in the program at least 
once during testing. The techniques can be used to assess for testing, a module 
design that exists either as a flowchart, pseudo code or program source code. 
 
As an example of Basis Path Testing, consider the following flow chart. Here, each 
decision box (shown as a diamond) represents a simple logical test such as an ‘if’ 
test, or a ‘do…while’ loop within the program. Rectangles represent sequence. Each 
box is given a (node) number, not forgetting to number the end of the module (11 in 
this case). Where two sequences meet, an implicit node can be introduced and 
numbered (see nodes 9 and 10).  

 
 
 
If you were to follow this flow 
chart, you would, using intuition 
and common sense, realise that 
there are 4 individual routes of 
execution through this module. 
These routes involve traversing 
the following nodes. 
 
Path 1:  1-11  
Path 2:  1-2-3-4-5-10-1-11  
Path 3:  1-2-3-6-8-9-10-1-11  
Path 4:  1-2-3-6-7-9-10-1-11 
 
 
 
 
 
 

In fact, it can be shown that the number of independent paths of execution in a 
module flowchart is equal to the (number of decision diamonds + 1) in other words 
it is equal to the number of (if…else tests + do…while loops + 1) in the modules 
code. This metric was first proposed by Thomas McCabe in 1976 and is also known 
as the cyclomatic complexity number. 
 
This numeric value is both simple to derive and yet very important since it tells us in 
this instance that we need to generate a minimum of 4 test cases to exercise the 
module in accordance to the rules of basis path testing. (It also gives an indication of 
where you should be spending most of your testing time – on the more complex modules) 
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Any program or Pseudocode listing can also be analysed in the same way as a flow 
chart to give a measure of its cyclomatic complexity and hence an indication of the 
number of unique execution paths within the module. For example, consider the ‘C’ 
code segment shown below. Note that in the code, statements have been numbered  
 
while (a != 0) {       1  (decision 1) 

a = a –1         2  (sequence) 
if ( b < (a + c)) {     3  (decision 2)  

c = c + 1        4  (primary sequence) 
print b        5  (sequence) 
print c        6  (sequence) 

}           7  (sequence) 
else {          8  (alternative sequence) 
 if( d > x ) {       9  (nested Primary decision 3) 
  print x       10  (sequence) 

  }          11  (sequence) 
 else {         12  (nested Alternative decision) 
  print x*x      13  (sequence) 

   print  x*x*x     14  (sequence) 
  }          15  (sequence) 

statement       16  (sequence) 
}            17  (sequence) 

}            18  (sequence) 
19 (end of module) 
  

By counting the number of individual decisions made within the program (3) we 
arrive at a complexity measure of 4 for the module, that is, there are four individual 
routes of execution within the program, these are.  
 
Path Route Description 
1: 1-19 (straight in and out again) 
2: 1-2-3-4-5-6-7-18-1-19 (1st if test true) 
3: 1-2-3-8-9-10-11-16-17-18-1-19 (1st if test false, 2nd if test true) 
4: 1-2-3-8-9-12-13-14-15-16-17-18-1-19 (1st if test false, 2nd if test false) 
 
To exercise the above paths through the module, we can simply set up the pre-
requisite test case data as shown below. 
 
Path  Route Pre-requisites or Conditions 
1: 1-19 ensure that ‘a’ is set to 0 
2: 1-2-3-4-5-6-7-18-1-

19 
ensure that ‘a’ is set to value 1 (i.e. a non zero value) 
and that b < (a + c)  

3: 1-2-3-8-9-10-11-16-
17-18-1-19 

ensure that ‘a’ is set to value 1 (i.e. a non zero value) 
and b >= (a + c) and d > x 

4: 1-2-3-8-9-12-13-14-
15-16-17-18-1-19  

ensure that ‘a’ is set to value 1 (i.e. a non zero value) 
and b >= (a + c) and d <= x 
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Other Unit Test Techniques - Testing Module Interfaces 
 
When testing the modules interface, consider the following check list for guidance. 
In the following discussion, a modules parameter refers to how the module declares 
the data that it expects to be given when it is called. For example, in ‘C’ a module 
which calculates the volume of a circular based cone might be written as shown 
below, where the two parameters ‘radius’ and ‘height’ are declared as floats. 
  

 float volume( float radius, float height) 
 { 
  . . . 
 } 

 
The arguments to a function refer to the actual data that is passed into the function 
when the function is called. For example, the following statement calls the function 
‘volume()’ above with the arguments 2.0 and 5.0. 
 

 x = volume( 2.0, 5.0 ) ; 
 
The following tests could be conducted on this modules interface 
 

 Do the numbers of parameters declared in the function itself equal the number of 
arguments passed into it when it is called from a higher-level module? Any half 
decent compiler would be able to flag this violation as an error at compile time. 

 
 Do the types of the arguments match the corresponding types of the parameters 

or can they be automatically converted by the compiler without loss of accuracy 
of precision. For example, ‘2.0’ above represents a ‘double’ in ‘C’, while the 
function ‘volume()’ expects a ‘float’. This is Ok as a ‘C’ compiler will convert a 
double to a float but could the resulting loss of value and/or precision affect the 
result? A good compiler would generate a warning for this 
 

 Do parameter and argument units match? For example, is the function expecting 
say, a velocity value measured in feet/sec or metres/sec and does the calling 
function know which? In other words check for a miss-match. In 1999, the Mars 
Orbitor, a joint NASA/European Space Agency project was said to have crashed 
onto the surface of mars (instead of orbiting it) because NASA used imperial 
units of measurement while ESA used metric. Remember, a function just gets 
given a number, it doesn’t know if it represent Inches, or Millimeters, but you 
will notice when it crashes !! 

 
 Do the order of arguments passed to a function match the order of parameters 

declared in that function? For example, when calculating the volume of the 
cylinder has the function been written to expect the height to be the first 
argument followed by the radius, or vice-versa. Does the calling program know? 
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Other Unit Test Techniques - Testing Modules External Interfaces 
 
When a module performs external I/O, additional interface tests must be conducted.  

 
 Where file access is performed, check that the file attributes are correct? For 

example are the disk/path/file names compatible and correct for the particular 
operating system and are permissions specified to access the file in the required 
manner correct? For example read/write/append.  Check program detects errors.

 
 Are the files opened and closed in the correct sequence and are all opened files 

closed at the end?  
 

 Does the format specification match the I/O statement? For example, is the 
program using the correct printf(), scanf() format string to write/read the data 
to/from a file in the ‘C’ language? 
 

 If the program reads ‘records’ from the file, are they read in the correct sized 
chunks? In other words, make sure your program is not reading ¾ of a record, as 
this will mean that the next record read will be a mixture of two records and 
therefore rubbish. 
 

 Does the program correctly detect and deal with errors that might occur when reading 
or writing to a file?  
 

 Is the program written to correctly detect the End-of-File (EOF) condition, i.e. 
can it detect when there is no more data to be read? 
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Other Unit Test Techniques - Testing Local and Global Data Structures 
 
The local and global data structures for a module are a common source of errors. 
Test cases should be designed to uncover errors in the following categories: 
 

 Check that all variables are initialised before they are used. In ‘C’ an un-
initialised local variable assumes a random value. Most good compilers will be 
able to flag this as an error. 
 

 Check the spelling of variable names to make sure that they access the correct 
variable. In BASIC, if you miss-spell a variable name, then a new or different 
one might be created or used.  
 
This particular category of error is particularly difficult to track down. In ‘C’ for 
example failing to declare a local variable ‘result’ might mean that a global 
variable of the same name is used instead. 

 
 Make sure that the variables you introduce to hold the results of calculations are 

correct for the type of data that will be assigned to then. For example introducing 
an ‘int’ to hold the result of a floating point calculation is asking for trouble. 
 

 Check for the possibility of Underflow, overflow, rounding and addressing errors
 

i. Underflow errors occur when the result of a calculation is too small to be 
represented by a particular data type and it may be truncated to 0. e.g. 
assigning an Integer the value 0.25 or a float the value 1.0e-128 

ii. Overflow errors occur when the value is too large. For example assigning 
a 16 bit integer the value 2321231231 or a float the value 1.23e+300 

iii. Rounding errors occur as a result of a certain data type inability to exactly 
represent a given value, for example, assigning a float the value 1.12497 
may actually result in it being assigned the value 1.125 etc.  

iv. Addressing errors occur when a program violates its own memory (array 
bounds exceeded or inappropriate use of pointers in C/C++) 

 
Among the more common errors in computation are  
 

 Misunderstood or incorrect arithmetic precedence, e.g. assuming one operator 
will be evaluated before another when in fact the opposite is true (use ‘()’ to 
force the order in an unambiguous manner). 
 

 Mixed-mode arithmetic. That is mixing for example, int’s, floats and chars in the 
same mathematical expression. This can lead to incorrect truncation, overflow, 
underflow and rounding errors. 
 

 Incorrect symbolic representation of an expression. For example using the wrong 
operator such as using ‘=’ in ‘C’ to mean equal to instead of ‘= =’  
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Other Unit Test Techniques - Testing Error Detection Paths 
 
There is a tendency to incorporate error handling into software and then never test it. 
Among the potential things to check for when testing these error paths are
 

 Is the error description intelligible and does it provide sufficient information to 
assist in the location of the cause of the error? A simple statement like “Error 
Core dumped !!!” typical of the sort produced by early Unix implementations is 
not very helpful. 
 

 Do the error messages refer to the true error or something different? 
 

 Does an error condition cause the operating system to intervene prior to 
detection? For example, does your array access get validated by your software, or 
is it left to the Memory Management Unit to detect and lead to the shutdown of 
your program? 
 

 Does your error detection code deal with the error correctly? For example, if a 
user is asked to enter a number in the range 0-5, what does it do in response to 
the number 6, Crash and Burn? 
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Other Unit Test Techniques - Loop Testing 
 
Loop testing is another white box testing technique that focuses exclusively on the 
validity and testing of loop constructs. Four different classes of loops can be defined 
for the purpose of testing:  
 

• Simple loops,  
• Concatenated loops,  
• Nested loops 
• Unstructured loops 

 
Each of these types of loops can be tested in the following manner. 
 
Unit Testing - Simple Loops. 
 
The following set of tests should be applied to simple loops, where ‘n’ is the 
maximum number of iterations of the loop 
 

 
1. Skip the loop entirely. 
2. Execute ‘m’ passes through the loop where m < n.  
3. Execute ‘n - 1’, ‘n’ and attempt to get the program 

to perform ‘n + 1’ iterations of the loop (i.e. can the 
loop check its termination status correctly) 

 
Unit Testing - Nested Loops  

 
If we extend the test approach for simple loops to nested loops, the number of 
possible tests grows geometrically as the level of nesting increases. This would result 
in an impractical number of tests. It has been suggested the following approach will 
help to reduce the number of tests: 
 

 
1. Start at the innermost loop and set all outermost loops 

to their minimum values.  
2. Conduct simple loop tests for the innermost loop while 

holding the outer loops at their minimum iteration 
parameter (e.g., loop counter) values.  

3. Work outwards, conducting tests for each outer loop, 
but keeping all other outer loops at their minimum 
values and other nested inner loops at their "typical" 
values.  

4. Continue until all the loops have been tested. 
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Unit Testing - Concatenated Loops  
 

 
These loops can be tested using the approach defined for simple 
loops above, if each of the loops is independent of the others.  
 
However, if two loops are concatenated and the loop counter for 
loop 1 is used as the initial value for loop 2, then the loops are not 
independent.  
 
When the loops are not independent, the approach applied to 
nested loops is recommended. 
 
 
 
 
 
 

 
 
Unit Testing - Unstructured Loops  
 
 

Whenever possible, this class of loops should be redesigned 
to reflect the use of the structured programming constructs. 
That is, remove the goto’s and replace with appropriate if-
else tests and do…while loops. 
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Exercise.  
 
The following rules are used by the faculty of Applied Science at UBC to determine 
a students degree classification based upon the aggregate/mean of their set of final 
year marks. 
 
An aggregate of >= 70% is awarded a 1st class degree. 
An aggregate of >=60 and <70 is awarded a 2:1 degree. 
An aggregate of >=50 and <60 is awarded a 2:2 degree. 
An aggregate of >=40 and <50 is awarded a 3rd class degree. 
An aggregate of >=35 and <40 is awarded a pass degree. 
An aggregate of < 35 indicates the student has failed. 
 
A simple C++ code fragment to perform the task of awarding the classification is 
given below 
 
void CalculateClassification(double Aggregate) 
{ 
 if(Aggregate >= 70)  
  cout << “1st\n” ; 
 else if(Aggregate >=60)  
  cout << “2:1\n” ; 
 else if(Aggregate >=50)  
  cout << “2:2\n” ; 
 else if(Aggregate >=40)  
  cout << “3rd\n” ; 
 else if(Aggregate >=35)  
  cout << “Pass\n” ; 
 else 
  cout << “Fail\n” ; 
} 
 

• Using Basis Path testing techniques analyse this module and determine the 
number of independent test cases that will be required to exercise each 
statement within the module. 

• For each path, determine what test data that will be required to force 
execution of the module along that path 

• For each test set, how will you know whether the module has worked 
correctly or not? That is, what results would you expect to see after each test 
to verify whether or not the module is functioning correctly? 

• Now think about this. Suppose that the above program contained a bug and 
the 1st statement was incorrectly written as if(Aggregate > 70). Would your 
tests be able to pick up this bug? What would happen if a student had an 
aggregate mark of exactly 70%? What conclusion can you draw from this? 
What additional tests could you incorporate into your testing to detect this 
class of problem? 
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Integration Testing 
 
Having performed unit tests of the software modules, we now have to test them 
together. It’s a legitimate question to ask why there should be a problem. After all, if 
the modules work correctly, surely they should all work when we put them together?  
 
Unfortunately, this is rarely the case. The problem is of course, in the “putting them 
together” or interfacing of the modules. This is a bit like the engine division and the 
gearbox division of Ford Motor Company, testing their engines and gearboxes in 
isolation and then expecting, as if by a miracle, that they will work together when 
they have never even seen each other. Some examples of what can go wrong when 
software is integrated are given below.  
 

1. Data can be lost or corrupted across an interface i.e. when data is passed from 
a calling module to a called module, it may get corrupted due to rounding, 
truncation etc errors or simply that one module changes it before passing it to 
another. In addition, the units for the data may be inconsistent feet vs. metres 
etc. and the order of data passage may also be incorrect, e.g. data relating to 
the height and radius of a circular cone may be passed in the wrong order. 

 
2. One module can have an inadvertent, adverse affect on another, e.g. they 

could both share global variables for different purposes. Such problems will 
go undetected during unit testing and only shows up when both modules 
execute in the same program 

 
3. Sub-functions, when combined, may not produce the desired major function.  

 
The list goes on and on.  
 
Integration Testing Techniques and Approaches 
 
The objective of integration testing is to take unit-tested modules and build them into 
a complete program structure that can be tested as one. There is often a tendency 
towards "big bang" integration, where all modules are combined in advance and then 
tested as a whole.  
 
The only attraction of this approach is that it eliminates the need to write stub and 
driver functions to assist with testing. However, the result is usually chaos, since 
when an error occurs, correction is difficult because the isolation of the cause is 
complicated by the vast expanse of the entire program.  
 
Incremental integration involves constructing and testing the program in small 
segments where errors are easier to isolate and correct; interfaces are more likely to 
be tested completely, and a systematic test approach may be applied. In the sections 
that follow, a number of different incremental integration strategies are discussed. 
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Top-Down Incremental Integration 
 
With Top-down incremental integration, modules are integrated by moving 
downward through the control hierarchy, beginning with the main control module 
(main program). Modules subordinate to the main control module are incorporated 
into the structure in either a depth-first or breadth-first manner as shown below 
 

 
 

• The Depth-first approach integrates all modules on a major control path into 
the structure. For example, selecting the left-hand path, modules M1, M2, M5 
would be integrated first.  
 
Next, M8 or if necessary for the proper functioning of M2, module M6 would 
be integrated. Then the central modules M3 and M7 and right-hand module 
M4 control paths are built.  

 
• The Breadth-first approach integrates all modules directly subordinate at each 

level, moving across the structure horizontally. From the illustration, modules 
M2, M3 and M4 would be integrated first. The next control level, M5, M6, 
M7 etc. then M8 would be built.  

 
The integration process itself is performed as a series of four steps: 

 
 The main control module is used as a test driver and stubs are substituted for 

all modules directly subordinate to the main control module.  
 

 Depending on the integration approach selected (i.e., depth or breadth first), 
subordinate stubs are replaced one at a time with actual modules.  
 

 Tests are conducted as each module is integrated. 
 

 On the completion of each set of tests, another stub is replaced with the real 
module. 

 
The process continues from step 2 until the entire program structure is built.  
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Bottom up Incremental Integration 
 
Bottom-up incremental integration testing begins construction and testing with the 
lowest level modules in the control structure. Because modules are integrated from 
the bottom up, processing required for modules subordinate to a given level is always 
available and the need for stub functions is eliminated. A bottom-up integration 
strategy may be implemented with the following steps: 
 

 Low-level modules are combined into clusters that perform a specific software 
sub-function. 

 A driver module is written to co-ordinate test case input and output.  
 The cluster is tested. 
 Drivers are removed and clusters are combined moving upward in the 

program structure. 
 
Integration follows the pattern illustrated below 
 

  
 
 
Modules are combined to form clusters each of which is tested using a driver Dn 
(shown as a dashed block). Modules in clusters 1 and 2 are subordinate to Ma 
therefore drivers D1 and D2 are removed and the clusters are interfaced directly to 
Ma. Similarly, driver D3 for cluster 3 is removed prior to integration with module 
Mb. Both Ma and Mb will ultimately be integrated with module Mc,  
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Integration Test Techniques - Black Box Testing 
 
Black box testing methods focus on the functional requirements of the software, that 
is, they check that the software does what it is supposed to do? 
 
Black box testing is not an alternative to white box techniques. Rather, it is a 
complementary approach that is likely to uncover a completely different class of 
errors than those likely to be detected with white box testing methods.  
 
Black box testing attempts to uncover errors in the following categories:  
 

• Incorrectly operating functions, that is, ones that do not match to their 
requirements i.e. they do not do what they should. 

• Interface errors, that is, any mismatching or incompatibility of data passed 
between one function and another. 

• Initialisation and Termination errors, that is, functions that do not start up and 
terminate with the correct data/results. 

 
Practical Black Box Testing Techniques – Equivalence Partitioning 
 
Equivalence Partitioning is a very powerful black box test technique. It is based 
upon the idea that it should only be necessary to subject a module to a carefully 
chosen combination or sub-set of valid input test data in order to have a high degree 
of confidence that the module will work correctly with a much broader range of valid 
inputs. In other words it suggests that we don’t have to write an infinite number of 
test cases to test the systems response. 
 
The concept is best explained by an example. Suppose we were faced with the task 
of testing an elevator responsible for 80 floors. Inside the elevator are 80 buttons. 
Equivalence Partitioning suggest that we would not have to verify the systems 
correct response to each and every press of these 80 separate floor buttons, since it is 
probably the case that if the elevator responds correctly to say floor button 15 or 66, 
then there is a high degree of probability that it will also respond correctly to all 
other floor buttons.  
 
This degree of confidence stems from the fact as programmers we tend to create 
generic algorithms as solutions to specific tasks. In other words a programmer will 
tend, more often than not, to come up with one fragment of code for dispatching an 
elevator to any of the 80 floors rather then generating 80 separate, independent code 
fragments to deal with each floor button.  
 
This assumption (if proven correct) would allow us to significantly reduce the 
number of tests we have to perform to check the response of the system to various 
input data. In other words, if the code works correctly for a single item or sub-set of 
its valid input data then it will probably work correctly all of them. Thus testing the 
elevators response to floor buttons such as 15 or 66 is going to be equivalent to 
testing the elevators response to all floors buttons. 
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Equivalence Partitioning - Classifying Input Data 
 
Before we can make use of equivalence partitioning, it is important to classify the 
nature of data processed by a module so that we can generate suitable equivalence 
test cases. Once we understand what the data is, we can treat sub-sets of the data as 
being equivalent to all others. 
 
Each and every item of data we input to a function, whether it comes from the 
keyboard, file, or in the form of arguments passed to it during a call, can be classified 
on the basis of whether the input is  
 

• A specific length value. For example, a 16 digit bank account number, a 10 
digit telephone number or say a 20 character City Name. 

• A particular value from a finite or bounded range. For example the values 1-80 
that represent a floor number of an elevator. 

• A finite set of related values, e.g. the set of colours {Red, Green, Blue}, 
{True/False}, {Yes/No}, {Present/Absent}. 

• Optional data that may not be present, e.g., a Title, a Middle Name, a Zip code 
 
Give this classification, how do we design suitable equivalence test to exercise our 
system with a high degree of certainty? 
 
Guidelines for Generating Equivalence Test Cases 
 

1. If the item of test data is such that it presents a specific length value, then 
generate test data with one valid and two invalid length values. For example, a 
function designed to accept a 10 digit telephone number, might be tested with 
a 9, 10 and 11 digit numbers to see how it responds. 

 
2. If the item of test data is such that it’s value always lies within a specified 

bounded range, then test the system response to one valid and two invalid 
items of data. For example, the code used to dispatch an elevator to a floor 
could be tested with the floor numbers -1 (illegal), 5 (legal) and 81 (illegal). 

 
3. If the item of test data is such that it is a member of a set, then provided the set 

is small, test all valid members and one invalid one.  
 
For example assuming the existence of a set of colours comprising {Red, 
Green, Blue}, one might generate a test which introduced the program code to 
the items Red, Green, Blue (all legal) and Yellow (illegal).  However if the set 
is large, just choose one valid and one invalid member from the set. 

 
4. If the item of test data is optional then test the software response to the 

inclusion or omission of the data. 
 

Paul
nature of data processed

Paul
generate suitable equivalence

Paul
test

Paul
cases.

Paul
sub-sets of the data

Paul
input to a function,

Paul
keyboard,

Paul
file,

Paul
passed

Paul
arguments

Paul
input

Paul
specific length value.

Paul
16 digit bank

Paul
10
digit telephone number

Paul
20 character City Name.

Paul
1-80

Paul
particular

Paul
value

Paul
finite

Paul
bounded range.

Paul
classified

Paul
finite set

Paul
Red, Green, Blue},

Paul
True/False},

Paul
Yes/No},

Paul
Present/Absent}.

Paul
Optional.

Paul
data

Paul
that

Paul
may

Paul
not

Paul
be

Paul
present,

Paul
suitable equivalence test

Paul
Equivalence Test Cases

Paul
specific length value,

Paul
one valid

Paul
two invalid length

Paul
values.

Paul
10 digit telephone number,

Paul
9, 10

Paul
11 digit

Paul
numbers

Paul
bounded range,

Paul
system

Paul
response

Paul
one

Paul
valid

Paul
two

Paul
invalid

Paul
-1

Paul
5

Paul
81

Paul
member of a set,

Paul
small,

Paul
all

Paul
invalid

Paul
Red,

Paul
Green,

Paul
Blue},

Paul
Red,

Paul
Green,

Paul
Blue

Paul
Yellow

Paul
one

Paul
valid

Paul
one

Paul
invalid

Paul
optional

Paul
inclusion

Paul
omission



Software Engineering - Page 29 

Practical Black Box Testing Techniques - Boundary Value Analysis  
 
Experiments have shown, that a greater number of functional errors tend to occur at 
the boundaries or limits of a functions input data. I am sure that we have all observed 
this phenomenon in practice, when we write programs that iterates around a loop one 
too many or one too few times, or we write a ‘>’ conditional test in our code when 
we meant ‘>=’, or perhaps stray just beyond the limits of an array boundary. 
 
For this reason, boundary value analysis (BVA) has been developed as a testing 
technique to exercise the function’s responses to data at the extremes of its validity. 
 
Guidelines for Generating BVA Test Cases 
 
1. If an input specifies a range of permissible values bounded by the values ‘a’ and 

‘b’, test cases should be designed with values just above and just below ‘a’ and 
‘b’, respectively. For instance if the range of acceptable floor numbers in an 
elevator dispatcher is 0-11 then floor numbers of (–1, 0 and 1), and (10, 11 and 
12) should be used. 
 

2. If an input specifies a discrete set of values, e.g. 2, 5, 7 and 9, then test cases 
should be developed that exercise the minimum and maximum numbers. Values 
just above and below minimum and maximum are also tested. E.g. (1, 2 and 3) 
and (8, 9 and 10) should be used. 
 

3. Guidelines 1 and 2 should also be applied to exercise the extreme limits of the 
output or responses of a system. For example, assume that a process control 
system is monitoring temperature and is designed to sound an alarm if the 
temperature falls outside a particular range. Tests should be conducted to ensure 
that the system sounds the alarm when these conditions occur. 

 
4. If internal program data structures have prescribed boundaries (e.g., an array has 

a defined limit of 100 entries), be certain to design a test case to exercise the data 
structure at its boundaries and make sure the software copes with illegal values. 

 
Most software engineers intuitively perform BVA to some degree. By applying the 
guidelines noted above, BVA would be more complete, thereby having a higher 
likelihood for error detection. 
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Exercise: Imagine an automated banking application where the user can "dial" the 
bank using his or her personal computer, provide a six-digit password, and then, 
using a series of keyword commands, trigger various banking functions such as 
check balance, print statement, order check book etc.  The software supplied for the 
banking application accepts data in the following form: 
 

• A Telephone number comprising of 
- Area code – Either absent or a three-digit number.  
- Prefix – A three-digit number not beginning with 0 or 1.  
- Suffix – A four-digit number.  

• A Password - A six-digit alphanumeric value.  
• A Command - "Balance," "Statement," "Order Check Book" etc. 

 
To test the response of the system, the following tests will be generated. 
 
Telephone Number Test - Area Code 

• The Area Code is optional, that is, it is either present or it is not, thus the 
system would be tested for both. 

• Likewise if the area code is present, it must be three digits. This is an 
example of an item specific length data, so a test would be made with an area 
code of length 2, 3 and 4 digits to check how the system responds. 

 
Telephone Number Test - Prefix:  

• This item of data specifies that the prefix must be 3 digits in length and, 
because it cannot commence with a 0 or a 1, any value in the range 200-999 
will suffice. Therefore test the software response to a prefix with the 
following example values 20 (illegal length), 199 (just outside boundary of 
acceptable input), 500 (legal length/value equivalence test), 1000 (illegal 
length and value just outside boundary). 

• For completeness the digits 0xx and 1xx represent a small set of illegal inputs 
so the systems response to prefixes beginning with 0 and 1 could be tested 
(the latter will be have been tested by the test conducted above)  
 

Telephone Number Test - Suffix:  
• This is required to have a length of 4 digits, so test the software response to 3, 

4 and 5 digit suffixes 
 

Password:  
• This is required to have a length of 6 characters so passwords of length 5, 6 

and 7 would be tested. 
 
Commands:  

• These form a small subset, so test all three valid commands and one invalid 
one. 
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Black Box Testing Techniques - Assertions 
 
Assertions represent a useful tool in the armour of the tester and developer alike. An 
assertion is any expression that must evaluate to true, and are frequently employed 
by developers to validate the data passed to and returned by modules.   
 
For example, a simple assertion for a 12 storey elevator control system is that there 
can never be a request to travel to a floor less than 1 or greater than 12. A violation 
of this rule or assertion would almost certainly have catastrophic results for the 
elevator, never mind anybody who happened to be travelling in it at the time!  
 
When the programmer writes the control software to move the elevator between 
floors, he or she would build such an assertion into the ‘transport’ program module 
that is responsible for moving the elevator to a new floor.  
 
If the elevator ‘transport module’ were asked to move the elevator to an illegal floor, 
such as 26, the assertion would be invalid and the module could flag this as an error 
and terminate the program. For example, consider the transport module shown 
below, which includes an assertion statement to check the incoming floor request and 
also to check that the elevator is still within range after it has finished! 
 
 void transport( int Request) 
 { 
  ASSERT(Request >=1 && Request <=12) 
 
  /* Move to requested floor */ 
 

 ASSERT( current_floor >= 1 && current_floor <= 12) 
 } 
 
Now, if the ‘system controller’ module were asked to transport the elevator to an 
illegal destination, as demonstrated below 
 

void system_controller() 
{ 
 … 
 transport( 23) ;  /* illegal floor number */ 

… 
} 

 
The 1st assertion in ‘transport()’ will fail and the program will be aborted with an 
appropriate indication of the assertion that has failed. Likewise, if the ‘transport’ 
module contained a bug that meant that it attempted to travel to an illegal floor 
number, this violation would be detected by the second assertion.  
 
An important and useful feature of assertions is that they can be turned on and off 
with a simple compiler switch/flag and thus easily enabled for testing. 
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State Machine Testing 
 
Testing state machines represents an interesting challenge for the software engineer. 
Take the state chart for the CD player shown below as an example. Here, various 
events can trigger the CD player from one state to another, some events are 
externally applied, for example, the user pressing the play button, while others, such 
as the ‘timer expired’ as generated internally.  
 
The problem is that many of these events are triggered asynchronously and can occur 
at any point in time. Suggested techniques for testing a state machine include 
 
1. Exercising the system to ensure that all paths or changes of state occur correctly. 
2. That the appropriate actions that should take place, either when migrating to a 

new state, or occur while in that state, do in fact take place. 
3. That all events are recognised by those states designed to act upon them, and 

ignored by those states that should not act upon them. 
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