# TEXAS HIPLEX INTERIM PROGRESS REPORT 

Prepared by:

TEXAS DEPARTMENT OF WATER RESOURCES POST OFFICE BOX 13087
CAPITOL STATION
AUSTIN, TEXAS 78711

Interim Progress Report for October 1, 1980-March 31, 1981

Prepared for:
OFFICE OF ATMOSPHERIC RESOURCES RESEARCH WATER AND POWER RESOURCES SERVICE BUILDING 67, DENVER FEDERAL CENTER
DENVER, COLORADO 80225

TECHNICAL REPORT STANDARD TITLE PAGE

|  | 3. RECIPIENT'S CATALJG No. |
| :---: | :---: |
| 4. title and subtitle | 5. REPORT OA |
| Texas HIPLEX Interim Progress Report October 1, 1980 - March 31, 1981 | April 10, 1981 |
|  | 6. PERFORMING ORGANIZATION CODE |
|  | 580/330 |
| 7. AUTHOR(S) | 8. PERFORMING ORGANIZATION REPORTNO. |
| Staff, Weather and Climate Section Planning and Development Division | LP-161 |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS <br> Texas Department of Water Resources P.O. Box 13087; Capitol Station Austin, Texas 78711 | 10. WORK UNIT NO. |
|  | 5540 |
|  | 11. CONTRACT OR GRANT NO. |
|  | 14-06-D-7587 |
|  | 13. TYPE OFREPRORT AND PERIOD |
| 12. SPONSORING AGENCY NAME ANO ADDRESS <br> Office of Atmospheric Resources Research <br> Water and Power Resources Service <br> Building 67; Denver Federal Center; Box 25007 <br> Denver, Colorado 80225 |  |
|  | Interim |
|  |  |
|  | 14. SPONSORING AGENCY CODE |

15. SUPPLEMENTARY NOTES

## 16. ABSTRACT

This interim progress report presents descriptions and evaluations of 197880 Texas HIPLEX data, including progress on the reduction analysis, and interpretation of mesoscale ambient air, radar, precipitation gage, and satellite radiance data.

The ability to model isolated cumulonimbus kinematics by use of storm and wind motions in conjunction storm updraft mass flux is introduced.
Analysis of rawinsonde, surface station, radar, satellite, and cloud microphysical data continued on schedule with few-if any-difficulties, as did the development of a mesoscale numerical model for the Texas HIPLEX area.
17. KEY WORDS AND DOCUMENT ANALYSIS a. DESCRIPTORS.- Weather modification research/mesoscale data analysis/ satellite cloud imagery/weather radar data analysis/rawinsonde observations/ precipitation data analysis/cloud seeding/cloud physics data
b. IDentifiers.- High Plains Cooperative Program (HIPLEX): Big Spring, Texas
c. COSATIFIEIdiGroup COWRR:
18. DISTRIBUTION STATEMENT
Available from the Notional Technical Information Service. Operations
Division. Springfield. Virginia 22161 .

| 19.SECURITYCLASS <br> ITHIS REPORTI <br> UNCLASSIFIED | 21. NO. OF PAGES |
| :---: | :---: |
| UNE | 88 |
| SECURITY CLASS <br> ITHIS PAGEI <br> UNCLASSIFIED | 22. PRICE |

# Texas HIPLEX Interim Progress Report October 1, 1980 - March 31, 1981 

Prepared by the Staff of the Weather and Climate Section Planning and Development Division

Texas Department of Water Resources
P. O. Box 13087; Capitol Station

Austin, Texas 78711

> LP-161

Glen E. Roney
W. O. Bankston

Lonnie A. "Bo" Pilgrim


Harvey Davis
Executive Director
April 10, 1981

TEXAS WATER COMMISSION
Felix McDonald, Chairman Dorsey B. Hardeman Joe R. Carroll

Dr. Bernard A. Silverman
Chief, Office of Atmospheric Resources Research
Water and Power Resources Service
Building 67; Denver Federal Center
Box 25007
Denver, Colorado 80225
Dear Dr. Silverman:
Re: Texas HIPLEX Interim Progress Report, October 1930-March 1981
In compliance with Amendatory Agreement No. 1 Contract No. 14-06-D-7587 between the Water and Power Resources Service (the Service) and the Department, we hereby submit twenty (20) copies of the Interim Progress Report for the Texas High Plains Cooperative Program (HIPLEX). The report discloses and explains all Texas HIPLEX work performed and results achieved during the interim period October 1, 1980 through March 31, 1981.

The report consists of a compilation of individual reports prepared by the Department and each of the Texas HIPLEX participant organizations: Texas A\&M University, Texas Tech University, and the Colorado River Municipal Water District. The individual reports consist of three sections: work performed during the reporting period; work planned during the next interim period (April through September, 1981); and, a listing of personnel involved with the Texas HIPLEX Program during the reporting period. A Table of Contents and an Executive Summary are included for order, ease of reference and orientation.

Please direct any questions concerning this report, or the need for further information, to the Department's Weather and Climate Section of the Planning and Development Division.

Sincerely,


Herbert W. Grubb
Director, Planning and Development Division

## Table of Contents

Page
Executive Summary ..... i
I. Work Performed During the Period October 1, 1980 - March 31 1981: 1
A. Texas Department of Water Resources ..... 2

1. Meetings and Management of the Texas HIPLEX Program ..... 3
2. Contract Administration ..... 5
3. Reports ..... 5
B. Texas A\&M University ..... 8
4. Mesoscale Data Processing ..... 9
5. Cloud Microphysics ..... 9
6. Environmental Response to Convective Activity ..... 10
7. Meso- and Synoptic-scale Analysis ..... 11
8. Comparison of TAMU and NWS Soundings for Midland ..... 11
9. Development of a Mesoscale Numerical Model ..... 12
10. Skywater Radar Data Analysis ..... 12
C. Texas Tech University ..... 14
11. Microphysical Aircraft Data Processing ..... 18
12. Case Studies ..... 18
13. Survey of 1979 Radar Data ..... 31
14. Z-R Relationship ..... 31
15. Rainfall Analyses ..... 31
D. Colorado River Municipal Water District ..... 79
16. Raingage Surveillance and Maintenance ..... 80
17. Precipitation Data Management ..... 80
18. Preparation for the 1981 Field Program ..... 80
II. Work Planned for the Period April 1, 1981 - September 30, 1981: ..... 82
A. Texas Department of Water Resources ..... 83
B. Texas A\&M University ..... 83
C. Texas Tech University ..... 84
D. Colorado River Municipal Water District ..... 85
III. Personnel ..... 86

## EXECUTIVE SUMMARY

In 1974 the Office of Atmospheric Resources Management of the U. S. Bureau of Reclamation (now the Office of Atmospheric Resources Research of the Water and Power Resources Service--WPRS) entered into an Agreement with the Texas Water Development Board (one of three predecessor agencies to the Texas Department of Water Resources--TDWR) to conduct a long-term, comprehensive atmospheric research and weather modification development program known as the High Plains Cooperative Program--HIPLEX. The overall goal of HIPLEX was to establish a verified, working technology and operational management framework for producing additional rainfall from Summertime convective clouds in the High Plains. Pursuant to this goal three sites were selected on which to center the experimental activities: Miles City, Montana; Colby, Kansas; and Big Spring, Texas. The 1974 Agreement between the WPRS and the TDWR was designed to initiate and maintain the Texas HIPLEX Program through 1980.

The objective of the Texas HIPLEX Program has been and continues to be to understand more completely the cloud and precipitation processes occurring in the Texas High Plains. To this end, each of the following organizations participated in the Texas HIPLEX Program during this reporting period:

Water and Power Resources Service, U. S. Department of the Interior
Texas Department of Water Resources
Texas A\&M University (Department of Meteorology)
Texas Tech University (Atmospheric Sciences Group)
Colorado River Municipal Water District.
This report presents a summary of the work which has been performed by the TDWR--also called the Department herein--and each of its subcontractors during the period October 1, 1980 through March 31, 1981. It also provides a brief description of work planned for the forthcoming six-month period of April 1
through September 30, 1981. A roster of personnel directly involved in the Texas HIPLEX Program during this reporting period is also included.

The report summarizes the Department's role as manager and administrator of the Program. The Department negotiated and/or administered a total of five Texas HIPLEX-related contracts during the reporting period. Department staff edited and published four major publications and numerous administrative and technical reports during the reporting period. In conjunction with personnel representing each of the organizations listed above, Department staff prepared both the Proposal for the Texas HIPLEX Program, 1981-1985, and its Addendum. Finally, considerable work was performed on the report, "HIPLEX In Texas: A Summary Report on Six Years of Experimentation." The report was in final draft form as the reporting period came to a close.

Texas A\&M University (TAMU) performed several diversified tasks during the reporting period, among them the processing of mesoscale surface weather station, rawinsonde, and radar data. In addition, studies were continued in cloud microphysics, mesoscale cloud modelling, and the determiniation of environmental responses to convective activity. The latter area of study provided significant findings concerning the wind structure of isolated cumulonimbus clouds in the Texas High Plains.

Texas Tech University (TTU) continued work on the evaluation of precipitation gage, radar, and satellite radiance data in an effort to develop a methodology for consolidating the data from each source into a single technology. Specifically, intercomparisons were made between cloud data received from the GOES satellite and that recorded by the Skywater radar. The analysis showed a good relationship between data from the two sources, although the satellite detected convective cloud tops to be slightly higher than did the radar. This is due to the radar detecting larger cloud particles than the satellite, and
larger particles generally lie lower in the cloud.
The Colorado River Municipal Water District (CRMWD) performed work in three areas: precipitation-gage surveillance and maintenance, precipitation data reduction and management, and equipping the CRMWD's Aztec and pressurized Navajo aircraft with sophisticated cloud physics data-collection probes.

Significant contributions to the development of a viable and proven weather modification technology have been realized as a result of Texas HIPLEX research. Therefore, in spite of the termination of Federal funding for the next phase of the Program, this Department intends to maintain as high a level of analysis of the 1979-1980 field data as is feasible using State funds. The importance of this research on West Texas Summertime convective clouds and their environment cannot be overstated in order to acquire an understanding of the processes inducing rain in this water-deficient area of the Great Plains.

## SECTION I:

WORK PERFORMED,
October 1, 1980 - March 31, 1981

## TEXAS DEPARTMENT OF WATER RESOURCES

1. Meetings and Management of the Texas HIPLEX Program
2. Contract Administration
3. Reports

In mid-January, principle investigators and Department personnel convened in Austin to address questions directed to the Department by Dr. Bernard A. Silverman of the WPRS in a December letter referencing the Department's 19811985 Texas HIPLEX Proposal. At that meeting Dr. Silverman's response to the Proposal was reviewed, and significant steps were taken to consolidate views on possible seeding hypotheses, seeding methodologies, statistical units and response variables. The meeting was followed up later in the month by the Department receiving from the Texas HIPLEX participants at TAMU and TTU lists of their salient findings based on studies conducted during the initial five years of the Texas HIPLEX Program.

At the close of January, representatives from the Department, each of the Texas HIPLEX participant organizations, and the WPRS met in Austin to discuss the future of the Texas HIPLEX Program. A consolidated working proposal for cloud seeding experimentation in the Texas High Plains, which included tentative seeding hypotheses, experimental unit, sampling unit, statistical unit, and response variables, was presented by Bob Riggio of the Department staff. Representatives of the WPRS concluded that, while significant progress toward achieving a full-scale experimental rain-increase technology for the Texas HIPLEX area was evident, much more quantification and documentation is still needed before the next five-year contract may be implemented. Specific issues requiring additional investigation regard the amount of additional field data needed to stratify mesoscale convective regimes.

Throughout the reporting period work continued on the Department report to be entitled "HIPLEX In Texas: A Summary Report on Five Years of Experimentation." The report is to be a consolidation of the significant findings and conclusions attained as a result of the 1976-1980 Texas HIPLEX Program. By the end of the
reporting period the first draft neared completion. Copies of the draft are to be distributed to each Texas HIPLEX participant, and to WPRS personnel, for review and comment prior to publication as a Department Limited Publication (LP).

Also among the managerial aspects of the Department's responsibility to administer the Texas HIPLEX Program was the preparation of the Texas HIPLEX Proposal for 1981-1985. The Proposal was submitted to the WPRS after review by Texas HIPLEX personnel in November 1980. It was Dr. Silverman's letter of response to that Proposal which mandated the Texas HIPLEX meetings (above) and necessitated clarification of the Proposal. That clarification was realized with the Department forwarding the "Addendum to the Texas HIPLEX Proposal 19811985" to the WPRS in February 1981. The Addendum specifically outlines each aspect of the proposed 1981-1985 Texas HIPLEX Program and addresses the questions raised by WPRS personnel regarding ambiguities in the Proposal. The Addendum included proposed budgets for each aspect of the proposed 1981 Texas HIPLEX Field Program.

All endeavors to negotiate a new five-year Master Agreement between the Department and the WPRS were terminated in early March when the U. S. Department of the Interior, WPRS, notified the Department that in light of the Reagan Administration's proposed budget cuts the overall HIPLEX program would be "mothballed." The Department is continuing in its managerial capacity to review and publish Texas HIPLEX technical and administrative reports and to administrate Texas HIPLEX-related contracts. These efforts are being carried out by using remaining previously appropriated funds. Attempts will be made to proceed with Texas HIPLEX data analysis using limited State funds.

## Contract Administration

During the six-month reporting period, the Department: administered three contracts previously in force, negotiated a no-cost extension to one of these pre-existing contracts, and negotiated two new contracts in obligation to its Master Agreement with the Water and Power Resources (Table A).

Reports
During the reporting period, the Department published a total of four Limited Publications (LP's) pertaining to the Texas HIPLEX Program (Table 2). Additionally, Texas HIPLEX Monthly Progress Reports were prepared and distributed for work performed during October, November, and December of 1980 and Januàry, February, and March of 1981. The 1980 Texas HIPLEX Annual Report was prepared and forwarded to the WPRS and each Texas HIPLEX participant in early January. Five copies of a report entitled "Analysis of Digitized M-33 Radar Data for Texas HIPLEX, 1976-1978" were forwarded to the WPRS during the month of October 1980. The report, prepared by Meteorology Research, Inc., presents results of an analysis of radar echoes. Finally, a technical report entitled "Evolution of Two Summertime Convective Clouds in West Texas," prepared by Dr. Alexis B. Long of Texas A\&M University (TAMU), was received by the Department. It will be included in TAMU's Final Report to be submitted to the Department in May 1981.


Table A: Contracts Administered by the TDWR in support of the Texas HIPLEX Program during the reporting period.

## Table B: Texas HIPLEX Reports Published by the Department During the Reporting Period

| Title | : Author | : Report \# : | Pub. Date |
| :--- | :---: | :---: | :---: |
| "Analysis of Digitized M-33 Radar <br> Data from Texas HIPLEX, 1976- <br> 1978" | NAWC | 135 | November 1980 |
| "Texas HIPLEX Interim Progress <br> Report, April - September 1980" | TDWR | 136 | October 1980 |
| "Texas HIPLEX 1980 Field Opera- <br> tions Summary" | TDWR | 138 | November 1980 |
| "A Study of Clouds Using Satel1ite <br> Radiance Data in Comparison with <br> Raingage Network and Radar <br> Observations" | TTU | 140 | January 1980 |

TEXAS A\&M UNIVERSITY

## 1. Mesoscale Data Processing

2. Cloud Microphysics
3. Environmental Response to Convective Activity
4. Meso- and Synoptic-Scale Analysis
5. Comparison of TAMU and NWS Soundings for Midland
6. Development of Mesoscale Numerical Model
7. Skywater Radar Data Analysís

## Texas A\&M University

1. Mesoscale Data Processing

Processing of the 1980 mesoscale sounding and surface data was completed during this reporting period. The sounding data were processed by using pre-viously-applied TAMU and WPRS methods. A data report was prepared with data placed on magnetic tape for computer analysis. Surface data were extracted from the strip charts, keypunched, and included in the data report as well as on the magnetic tape. Radar data obtained from the National Weather Service (NWS) at Midland were coded as in previous years and charts were prepared showing the general area and intensity of echoes over the Texas HIPLEX region. These data also are included in the technical report but were not included on the magnetic tape.
2. Cloud Microphysics

Work on this task proceeded along two topics during the report period. An aircraft operations summary report was prepared jointly by Drs. A. B. Long of TAMU and Jerry Jurica of TTU. This report includes details for each day on which aircraft flights were made and summaries of the conditions during each day. A second effort consisted of a study of two convective clouds in West Texas and culminated in a report entitled "Evolution of Two Summertime Convective Clouds in West Texas." This study will be included as a section in the final project report which is due at the end of May 1981.

## 3. Environmental Response to Convective Activity

The kinematics of the environment around an isolated West Texas thunderstorm were represented by theoretical potential flow models. These models were then verified by comparing streamlines and velocities with values collected around isolated thunderstorms in four independent research studies. Results are very encouraging and showed that the storm-scale kinematics of an isolated and growing thunderstorm may be adequately modelled by combining four basic flow components: storm motion, environmental wind velocity, flow around a solid body, and mass flux into the updraft or away from the echo near the tropopause.

The mass flux term can be estimated using aircraft data collected in the near vicinity of the storm. However, for cases lacking detailed aircraft data, a method of evaluating the mass flux of isolated storms is needed. Thus, mass flux as determined from HIPLEX rawinsonde data has been related to thunderstorm radar-echo characteristics so that remote radar observations might be used to determine mass flux in a real-time sense. These relationships have proven to be interesting and, in some cases, unexpected. Results of the mass flux-echo characteristic relationships will be used in conjunction with information learned from the flow models to determine the extent and magnitude of thunderstorm-environment interactions.

A technical report presenting results from this part of the research is in draft form and will be submitted for publication in May 1981. This research will be Mr. Myron Gerhard's Master of Science thesis.

## 4. Meso- and Synoptic-Scale Analyses

Primary emphasis remained on the analysis and interpretation of four mesoscale days previously selected for study: 4-5 June, 3-4 July, 5-6 July and 17-18 July. Computer-analyzed fields of several meteorological variables were contoured and reduced in size for publication. Contoured synoptic-scale data include temperature, mixing ratio, wind velocity, divergence, moisture divergence, vorticity and vorticity advection. These variables were contoured for the $850-, 700-, 500-$ and $300-\mathrm{mb}$ levels. The synoptic and mesoscale contoured fields were prepared in a form suitable for publication.

Skywater radar data were processed, and contoured maps were produced to indicate graphically the areas of convective activity at predetermined levels in the atmosphere. Liquid water content maps were produced using the same radar data to reveal the amount of liquid water present in the layers surface to $3.5 \mathrm{~km}, 3.5$ to 6.5 km , and above 6.5 km . These charts are being interpreted in conjunction with the mesoscale and synoptic-scale charts.

Computer and hand-plotted soundings were prepared in an attempt to explain certain mesoscale features and characteristics. Also, synoptic-scale and mesoscale stability maps were prepared to show the difference in spatial resolution between the two scales and to depict more accurately areas suitable for convective development.
5. Comparison of TAMU and NWS Soundings for Midland

For the first time, during 1980, a HIPLEX rawinsonde station was co-located with the National Weather Service (NWS) station at Midland. On several occasions the same radiosonde was tracked by both the TAMU and NWS systems. The data were processed independently for each pressure contact, and discrepancies in temperature, dewpoint temperature, and wind velocity were analyzed. The analysis was performed for selected layers from surface to 100 mb .

The results show remarkably good agreement between the two sets of profiles, which attests to the high quality of data derived from both systems not only in 1980 but in previous years as well. Root-mean-square (RMS) discrepancies in temperature were generally less than 1C; those for dewpoint were somewhat higher ( $2-4 \mathrm{C}$ ), while RMS values for wind speed generally less than 3 mps . Discrepancies of these magnitudes were expected on the basis of instrument error alone as quoted in published literature. The results of this analysis will be included in the final report due at the end of May 1981.
6. Development of Mesoscale Numerical Model

Considerable progress was made on the development of a mesoscale numerical model for use in the Texas HIPLEX area. A literature search was made, all existing models were examined carefully, and an approach was formulated for the development of a model for the Texas HIPLEX area. The model was formulated in a mathematical sense and programmed for the Amdahl computer at TAMU, and initial runs were made for the purpose of checking out the computer program. Significant aspects of this research were related to the initialization of the model and to the formulation of boundary conditions. The model as constituted is capable of forecasting mesoscale conditions of temperature, geopotential height and wind. Moisture has not been included in the model, although a proper moisture budget equation has been developed and will be included soon. The model is now ready for full-scale testing. It will be documented in the final report to be submitted in May 1981.
7. Skywater Radar Data Analysis

Various radar analyses were performed during this reporting period in support of the mesoscale and cloud microphysical studies. Constant altitude reflectivity maps (CAZM's) were prepared for 4, 8, and $12-\mathrm{km}$ altitude. A computer program was developed to extract data along the flight track of the
cloud physics airplane; and a program was prepared for computing the integrated liquid water content below 3.5 km , between 3.5 and 6.5 km , and above 6.5 km . The results of the radar analyses will appear in the mesoscale and cloud microphysical reports.

TEXAS TECH UNIVERSITY

1. Microphysical Aircraft Data Processing
2. Case Studies
3. Survey of 1979 Radar Data
4. Z-R Relationship
5. Rainfall Analyses
LIST OF FIGURES
6. Sample plots of CRMWD p-Navajo 1980 aircraft measurements. ..... 25
Page No.
7. Surface temperature ( ${ }^{\circ} \mathrm{C}$ ) contours superposed on $850-\mathrm{mb}$ winds contour is for minimum detectable signal and hatched areas have reflectivity $\geq 30 \mathrm{dBZ}$.
8. Temperature $\left({ }^{\circ} \mathrm{C}\right)$ as a function of time and pressure at Big ..... 28 Spring, Texas on 17 July 1979.
9. RHI display derived from M-33 radar for the azimuth angle $259^{\circ}$ ..... 30
at 2018 GMT 8 July 1977. The threshold is 20 dBZ and is contoured in 10 dBZ increments. The upper solid line is the cloud top height derived from satellite infrared data and the dashed lines correspond to a temperature uncertainty of $\pm C$. Al so shown are rainfall analysis results with actual raingage measurements marked by $\boldsymbol{\Delta}$.
10. Maximum echo top height for each day during the 1979 field season ..... 31 when digitized radar data were collected. Asterisks indicate days on which rawinsonde data were collected.
6a. An example of convective cells taken on 6 July 1979 at 19:40:04 ..... 66 GMT (tilt angle $1.0^{\circ}$ )
6b. Satellite imagery on 6 July 1979 showing the convective cells ..... 67 depicted by radar in Figure 6a; the solid circle corresponds to the total radar coverage in Figure 6a.
6c. Rainfall observed during 1915-1930 GMT on 6 July 1979 produced by ..... 68 the convective cells depicted by radar in Figure 6a.
7a. An example of small convective clusters taken on 25 June 1979 ..... 69
at 19:15:40 GMT (tilt angle $1.0^{\circ}$ )
7b. Satellite imagery on 25 June 1979 showing the small convective ..... 70 clusters depicted by radar in Figure 7a; the solid circle corresponds to the total radar coverage in Figure 7a.
7c. Rainfall observed during 1900-1915 GMT on 25 June 1979 produced ..... 71
by the small convective clusters depicted by radar in Figure 7a; the dashed circle is at a 25 n . mi. distance from the radar and corresponds to the dashed circle in Figure 7a.
8a. An example of large convective clusters taken on 18 July 1979 at ..... 72 23:23:54 GMT (tilt angle $1.0^{\circ}$ )
8b. Satellite imagery on 18 July 1979 showing the large convective ..... 73
clusters depicted by radar in Figure 3 a ; the solid circle corresponds to the total radar coverage in Figure 8a.

8c. Rainfall observed during 2315-2330 GMT on 18 July 1979 produced by the large convective clusters depicted by radar in Figure 8a; the dashed circle is at a 25 n . mi. distance from the radar and corresponds to the dashed circle in Figure 8a.

9a. An example of nested convective clusters taken on 10 July 1979 at 01:04:31 GMT (tilt angle 1.0 $0^{\circ}$ )

9b. Satellite imagery on 10 July 1979 showing the nested convective clusters depicted by radar in Figure 9a; the solid circle corresponds to the total radar coverage in Figure 9a.

9c. Rainfall observed during 0100-0115 GMT on 10 July 1979, produced 77 by the nested convective clusters depicted by radar in Figure 9a, the dashed circle is at a 25 n . mi. distance from the radar and corresponds to the dashed circle in Figure 9a.

## LIST OF TABLES

1. Summary of important cloud physics missions of the CRMWD p-Navajo ..... 19
2. Summary of important cloud physics missions of the NCAR Queen Air ..... 21
3. CRMWD p-Navajo 1980 aircraft data tapes available from WPRS ..... 22
4. Daily Network Rainfall Volumes, 1979 ..... 33
5. Daily Network Rainfall Volumes, 1980 ..... 34
6. 1979 Precipitation ..... 35
7. 1980 Precipitation ..... 57

## Texas Tech University

All activity during this period focused upon analysis of data gathered during 1979 and 1980. Efforts were devoted to analyzing microphysical aircraft data, performing case studies by integrating radar, rawinsonde, rainfall and satellite measurement; and examining raingage data. Each of these tasks is discussed below.

## 1. Microphysical aircraft data processing

Following the 1980 field program, a summary of aircraft flights was prepared (Long and Jurica, 1981). A list of those flights judged to be of particular importance to HIPLEX is given in Tables 1 and 2. All of the data tapes from the CRMWD p-Navajo flights have been processed through the WPRS computer and are available upon request. A summary of the contents of these data tapes is given in Table 3.

As part of the preparation for detailed analyses of the data for selected case studies, graphical techniques were developed for displaying the aircraft data. A sample is given in Figure 1.
2. Case studies
a. 17 July 1979

The mesoscale convective system that developed over the Texas HIPLEX area on 17 July 1979 has been studied using digitized radar and satellite data and rawinsonde and surface observations. The system occurred in connection with a shallow cold front, observed to be slowly moving southward. Surface temperature analyses show that the largest horizontal thermal gradient (about $0.2^{\circ}$ $\mathrm{C} / \mathrm{km}$ ) occurred near the time of peak convective activity. Figure 2 shows a subjective analysis of surface temperature, based on data from five rawinsonde stations, superposed on the radar-echo pattern at this time ( 2100 GMT). The $850-\mathrm{mb}$ wind vectors are also plotted. The echoes tend to be aligned at right

Table 1. Summary of important cloud physics missions of the CRMWD p-Navajo.

| Date | Time periods of Interest (GMT) | Comments |
| :---: | :---: | :---: |
| 2 June | 2249-2307 | Four altocumulus castellanus cloud elements were sampled one or more times each. |
| 21 June (1) | $\begin{aligned} & 2133-2142 \\ & 2153-2222 \end{aligned}$ | HIPLEX mission 1. Two cumulus congestus clouds were sampled three and twelve times each. Seven AgI flares were dropped into second cloud. Entire life of second cloud was apparently observed. |
| 21 June (2) | 2349-0001 | One towering cumulus was sampled four times. Cloud progressed from non-precipitating stage to precipitating stage. |
| 22 June (1) | $\begin{aligned} & 2145-2158 \\ & 2211-2216 \\ & 2225-2237 \end{aligned}$ | HIPLEX mission 2. Three cumulus congestus clouds were sampled five, two, and four times each. Second cloud was the HIPLEX cloud. Third cloud may have been observed over most of its life cycle. |
| 1 July | 2242-2252 | HIPLEX mission 3. Cumulus congestus was sampled four times. Most observations were of the precipitating stage. |
| 8 July | 2210-2221 | Nine small cumulus clouds were sampled one time each. |
| 21 July (1) | $\begin{aligned} & 1803-1812 \\ & 1818-1825 \end{aligned}$ | HIPLEX mission 4. Two convective clouds were sampled four and three times each. First cloud was the HIPLFX cloud. First cloud dissipated during sampling, and second cloud was in the precipitating stage. |
| 21 July (2) | $\begin{aligned} & 2136-2144 \\ & 2145-2151 \end{aligned}$ | Two turrets associated with a thunderstorm were sampled four and three times each. Life cycle of first cloud was apparently observed. Second cloud was dry and dissipating. |

Table 1. Continued.

| Date | Time periods of Interest (GMT) | Comments |
| :---: | :---: | :---: |
| 22 July (1) | 1510-1518 | Convective cloud near thunderstorm was sampled four times. Cloud intensified during sampling period. |
| 22 July (2) | 2102-2125 | HIPLEX mission 5. One towering cumulus was sampled nine times. All stages in precipitation process were apparently observed |
| 22 July (3) | $\begin{aligned} & 2255-2302 \\ & 2306-2326 \\ & 2348-2358 \\ & 2327-2342 \end{aligned}$ | Three convective clouds were sampled three, six (possibly ten), and six times each. A large fraction of the cloud life cycle was observed for the last two clouds. |
| 25 July | $\begin{aligned} & 2203-2209 \\ & 2226-2252 \end{aligned}$ | Two convective clouds were sampled three and ten times each. Second cloud was observed over much of its life cycle. |
| 26 July (2) | 2104-2124 | One altocumulus turret was sampled four times. Ice and downdrafts were mainly observed. |
| 27 July | 1829-1856 | Altocumulus line was sampled three times transversely. Clouds appeared to be in precipitating stage. |

Table 2. Summary of important cloud physics missions of the NCAR Queen Air.

| Date | Time periods of Interest (GMT) | Comments |
| :---: | :---: | :---: |
| 26 May | $\begin{aligned} & 2000-2006 \\ & 2015-2035 \\ & 2105-2112 \end{aligned}$ | Three cumulus congestus were sampled four, seven, and three times each. By the end of the cloud sampling the first two cumulus had grown up into altostratus aloft and the third cloud had dissipated. |
| 28 May | 2230-2304 | Twenty cumulus were sampled one time each just above cloud base. |
| 29 May | 2002-2106 | Thirty-two cumulus were sampled one time each just above cloud base. |
| 2 June | 2246-2313 | Nine altocumulus castellanus cloud elements were sampled one or more times each. |
| 3 June (1) | 1732-1930 | Stratus, then stratocumulus, and then cumulus were sampled along a path from Big Spring to Corpus Christi, Texas in a study of micro-physical differences in clouds along the coast and inland. |
| 3 June (2) | 2109-0007 | Cumulus were sampled along the coast from Corpus Christi to Houston, cumulus cloud streets oriented north-south were sampled transversely from Houston to west of Austin, and stratocumulus streets were sampled from Austin to the San Angelo area. Decreased visibility was observed downwind of Houston. |
| 13 June (2) | $\begin{aligned} & 2115-2120 \\ & 2124-2143 \end{aligned}$ | Two cumulus congestus clouds near Davis Mtns. in southwest Texas were sampled three and six times each. Considerable cloud water was found. Air entering the clouds probably originated in the interior of Mexico. |

Table 3
CRMWD p-Navaja 1980 aircraft data tapes available from WPRS. Tapes with file names beginning with " $C$ " contain coded data in engineering units and tapes with file names beginning with " $R$ " contain raw data. Time in GMT.

| VSN Tape/File | File Name |  | Date | Time |
| :---: | :---: | :---: | :---: | :---: |
| 4510/1 | CF22046 |  | July 1980 | 2302-2313 |
| 2 | C8017.31 |  | June 1980 | 2002-2100 |
| 3 | C801732 |  | Jume 1980 | 2113-2201 |
| 4 | C801733 | 21 | June 1980 | 2204-2239 |
| 5 | C801734 |  | June 1980 | 2315-2400 |
| 6 | C801741 | 22 | June 1980 | 2100-2226 |
| 7 | C802045 | 22 | July 1980 | 2229-2312 |
| 8 | C802045 |  | July 1980 | 2229-2312 |
| 9 | C802046 |  | July 1980 | 2335-2400 |
| 10 | C802071 | 25 | July 1980 | 2100-2236 |
| 11 | C802072 | 25 | July 1980 | 2200-2314 |
| VSN Tape/File | File Name |  | Date | Time |
| 4959/1 | C801831 |  | July 1980 | 2101-2316 |
| 2 | CE01832 |  | July 1980 | 2320-2356 |
| 3 | C802031 |  | July 1980 | 1720-1835 |
| 4 | C802032 |  | July 1980 | 1839-1913 |
| 5 | C802033 |  | July 1980 | 2038-2158 |
| 6 | C802042 |  | July 1980 | 1453-1545 |
| 7 | C802042 |  | July 1980 | 1453-1545 |
| 8 | C802043 |  | July 1980 | 1942-2054 |
| 9 | C802044 |  | July 1980 | 2058-2140 |
| 10 | C802091 | 27 | July 1980 | 1748-1837 |
| 11 | C802092 | 27 | July 1980 | 1842-1913 |


| VSN Tape/File | File Name | Date |  | Time |
| :---: | :---: | :---: | :---: | :---: |
| 6322/1 | C801481 | 27 May | 1980 | 0156-0300 |
| 2 | C801533 | 1 June | 1980 | 2301-0008 |
| 3 | C801571 | 5 June | 1980 | 1207-1309 |
| 4 | C801541 | 2 June | 1980 | 2151-2322 |
| 5 | C801621 | 10 June | 1980 | 1912-2012 |
| 6 | C801651 | 13 June | 1980 | 1219-1318 |
| 7 | C801661 | 14 June | 1980 | 2102-2226 |
| 8 | C801662 | 14 June | 1980 | 2230-2331 |
| 9 | C801711 | 19 June | 1980 | 1958-2114 |

Tab1e 3 (cont.)

| VSN Tape/File | File Name | Date | Time |
| :---: | :---: | :---: | :---: |
| 6340/1 | C801712 | 19 June 1980 | 2117-2145 |
| 2 | C801713 | 19 June 1980 | 2257-0012 |
| 3 | C801714 | 19 June 1980 | 0015-0031 |
| 4 | C801721 | 20 June 1980 | 2049-2206 |
| 5 | C801743 | 22 June 1980 | 2337-0049 |
| 6 | C801901 | 8 July 1980 | 2153-2242 |
| 7 | C801981 | 16 July 1980 | 2151-2256 |
| 8 | C802011 | 19 July 1980 | 1159-1303 |
| 9 | C802081 | 26 July 1980 | 1828-1921 |
| 10 | C802082 | 26 July 1980 | 2015-2125 |
| 11 | C802101 | 28 July 1980 | 1204-1255 |
| VSN Tape/File | File Name | Date | Time |
| 4506/1 | R801731 | 21 June 1980 | 2002-2100 |
| 2 | R801732 | 21 June 1980 | 2113-2201 |
| 3 | R801733 | 21 June 1980 | 2204-2239 |
| 4 | R801734 | 21 June 1980 | 2315-2400 |
| 5 | R801741 | 22 June 1980 | 2100-2226 |
| VSN Tape/File | File Name | Date | Time |
| 4509/1 | R802045 | 22 July 1980 | 2229-2312 |
| 2 | R802045 | 22 July 1980 | 2229-2312 |
| 3 | R802046 | 22 July 1980 | 2335-2400 |
| 4 | R802071 | 25 July 1980 | 2100-2236 |
| 5 | R802072 | 25 July 1980 | 2200-2314 |
| 6 | RF22046 | 22 July 1980 | 2302-2313 |
| VSN Tape/File | File Name | Date | Time |
| 4884/1 | R801831 | 1 July 1980 | 2101-2316 |
| 2 | R601832 | 1 July 1980 | 2320-2356 |
| 3 | R802031 | 21 July 1980 | 1720-1835 |
| 4 | R802032 | 21 July 1980 | 1839-1913 |
| 5 | R802033 | 21 July 1980 | 2038-2158 |
| 6 | R802042 | 22 July 1980 | 1453-1545 |

Table 3 (cont.)

| VSN Tape/File | File Name | Date | Time |
| :---: | :---: | :---: | :---: |
| 4943/1 | R802042 | 22 July 1980 | 1453-1545 |
|  | R802043 | 22 July 1980 | 1942-2054 |
| 3 | R802044 | 22 July 1980 | 2058-2140 |
| 4 | R802091 | 27 July 1980 | 1748-1837 |
| 5 | R802092 | 27 July 1980 | 1842-1913 |
| VSN Tape/File | File Name | Date | Time |
| 6323/1 | R801481 | 27 May 1980 | 0156-0300 |
| 2 | R801533 | 1 June 1980 | 2301-0008 |
| 3 | R801571 | 5 June 1980 | 1207-1309 |
| VSN Tape/File | File Name | Date | Time |
| 6324/1 | R801541 | 2 June 1980 | 2151-2322 |
| 2 | R801621 | 10 June 1980 | 1912-2012 |
| 3 | R801651 | 13 June 1980 | 1219-1318 |
| 4 | R801661 | 14 June 1980 | 2102-2226 |
| 5 | R801662 | 14 June 1980 | 2230-2331 |
| 6 | R801711 | 19 June 1980 | 1958-2114 |
| VSN Tape/File | File Name | Date | Time |
| 6341/1 | R801712 | 19 June 1980 | 2117-2145 |
| 2 | R801713 | 19 June 1980 | 2257-0012 |
| 3 | R801714 | 19 June 1980 | 0015-0031 |
| 4 | R801721 | 20 June 1980 | 2049-2206 |
| 5 | R801743 | 22 June 1980 | 2337-0049 |
| 6 | R801901 | 8 July 1980 | 2153-2242 |
| VSN Tape/File | File Name | Date | Time |
| 6342/1 | R801981 | 16 July 1980 | 2151-2256 |
| 2 | R802011 | 19 July 1980 | 1159-1303 |
| 3 | R802081 | 26 July 1980 | 1828-1921 |
| 4 | R802082 | 26 July 1980 | 2015-2125 |
| 5 | R802101 | 28 July 1980 | 1204-1255 |


Figure 1. Sample plots of CRMWD p-Navajo 1980 aircraft measurements.


Figure 2. Surface temperature $\left({ }^{\circ} \mathrm{C}\right)$ contours superposed on $850-\mathrm{mb}$ winds and radar echo pattern at 2100 GMT on 17 July 1979. Outer contour is for minimum detectable signal and hatched areas have reflectivity $\geq 30 \mathrm{dBZ}$.
angles to the horizontal temperature gradient. A cold pool is situated near the center of the echo pattern, surrounded by intense echoes. Thiscoldpool suggests the presence of a meso-high and an associated mesoscale downdraft. The $850-\mathrm{mb}$ winds indicate difluence in the vicinity of the cold pool and confluence further to the west.

Figure 3 is height-time cross-section of the temperature field over Big Spring, Texas, located near the center of the Texas HIPLEX area, on 17 July. It clearly displays a baroclinic zone passing through the station between about 1900 GMT and 2200 GMT. This is consistent with the surface temperature contours plotted in Figure 2 for 2100 GMT. This type of baroclinic zone was observed at all stations during the day. While it reached as high as 600 mb at this station, it extended no higher than 700 mb at the others. When completed, this case study should contribute to the understanding of the structure and evolution of deep, precipitating convection in the presence of weak synoptic-scale forcing.

This case study, which will form Michael Lepage's Master of Science thesis, is the subject of a paper which will be presented at the Twentieth Conference on Radar Meteorology, sponsored by the American Meteorological Society, in the fall of 1981. The text of the paper will appear in the Conference Proceedings.

The paper authored by Lepage and Colleen A. Leary and entitled "Comparison of Radar with Rawinsonde and Satellite Data for a Mesoscale Convective System," was accepted on the basis of the following abstract:
> "A mesoscale convective system that developed over the Texas South Plains on 17 July 1979 was observed by radar, rawinsonde, satellite, and surface instrumentation. The mesoscale convective system occurred in connection with a shallow cold front, slowly moving southward. Surface temperature analyses show that the largest horizontal thermal gradient (about $0.2^{\circ} \mathrm{C} / \mathrm{km}$ )


Figure 3. Temperature $\left({ }^{\circ} \mathrm{C}\right)$ as a function of time and pressure at Big Spring, Texas on 17 July 1979.

> occurred near the time of peak convective activity. At the same time a large pool of cold air was observed implying the presence of a mesohigh. Intense radar echoes tended to be situated along the boundary of this cold pool. The movement of intense echoes was predominantly southward and comparable to the movement of the front. The direction and speed of movement were consistent with the $500-m b$ winds prior to the time of peak convective activity, and with the $700-$ mb winds afterward. "

Work on the 17 July 1979 case study will continue through the end of summer 1981.
b. Four Case Studies for 1977.

A set of four case studies were performed on 1977 satellite, radar and raingage data sets. The purpose was to compare satellite-derived results with radar and raingage data, thereby increasing our knowledge of the predominant precipitation processes. The work has been completed (Jurica and Chao, 1981) and has demonstrated the reliability of satellite data when compared with radar and raingage measurements. An example of the comparisons among the several data sets is given in Figure 4. The cloud top heights from the infrared radiances varied from 11 to 12.5 km over two intense storm cells, but decreased rapidly beyond the third storm cell located about 80 km from the radar. The agreement between the satellite cloud-top heights and radar reflectivity values was good along this cross section. A strong reflectivity maximum of more than 60 dBZ was located 35 km from radar site. It is probable that heavy rain occurred under this intense echo which was situated within the raingage network, but there was no raingage located exactly along this direction. This example illustrates the restrictions associated with interpreting rainfall measurements even from a raingage network with rather dense spacing. It also points to the desirability of higher-resolution data sources such as radar or satellite


Figure 4. RHI display derived from M-33 radar for the azimuth angle $259^{\circ}$ at 2018 GMT $\delta$ July 1977. The threshold is 20 dBZ and is contoured in 10 dBZ increments. The upper solid line is the cloud top height derived from satellite infrared data and the dashed lines correspond to a temperature uncertainty of $\pm 3 \mathrm{C}$. Also shown are rainfall analysis results with actual raingage measurements marked by $\boldsymbol{\Delta}$.
measurements.
3. Survey of 1979 radar data.

A survey of all 1979 radar data showed that maximum echo-top heights exceeded 9 km on every one of the 32 days for which digitized radar data were recorded. On 26 ( $81 \%$ ) days, maximum echo-top heights reached 14 km or higher. Figure 5 shows a direct relationship between peak reflectivity value observed on each day and the maximum echo-top height observed on that day. It suggests that great care must be taken in attributing increases in echo top height to cloud seeding because deep convection occurs naturally on most days when radar echoes are observed.

The survey of 1979 data will continue until the end of summer 1981, with particular attention paid to days on which rawinsonde data were also collected. 4. Z-R relationship.

A computer program has been developed to print out digitized radar data in a form suitable for comparison with raingage data. Such comparisons will form part of the 17 July 1979 case study, as well as an important part of the rainfall analysis of data obtained throughout the summer of 1979.

Obtaining a Z-R relationship is a prerequisite to performing diagnostic model calculations of the vertical fluxes of mass and energy in mesoscale convective systems observed during HIPLEX, because the calculations are based on radar-derived rainfall amounts.
5. Rainfall analyses.

All 1980 quarter-hourly recording raingage data were received from CRMWD and transferred to magnetic tape. A copy of this tape was sent to WPRS in January, 1981. Upon examining these data, it was realized that one raingage, TA3, had been covered during the entire 1980 recording period. This gage should be considered inoperable but was not coded as such. All analyses of these data


Figure 5. Maximum echo top height for each day during the 1979 field season when digitized radar data were collected. Asterisks indicate days on which rawinsonde data were collected.
should account for this.
To understand better the spatial characteristics and variability of rainfall in the Texas HIPLEX region, isohyetal analyses of 15 -minute raingage data have been completed for the period May through July in 1979 and 1980. This was facilitated through the development of a computer program to print areal maps of the data on a high-speed line printer.

In addition, rainfall volumes were computed for 15 -minute and daily totals for these same months. Daily volumes for 1979 and 1980 are listed in Tables 4 and 5, respectively. Volumes for 15 -minute rain periods on these days are shown in Tables 6 and 7. Information similar to this for 1977 and 1978 was previously reported by Haragan et al. (1980). Volumes were calculated by an areal weighting scheme using a network of triangles based on gage locations. Note the wide range of values in Tables 4 and 5, varying from 419,405.4 acreft . to 87.8 acre-ft. ( 518 million $\mathrm{m}^{3}$ to 0.1 million $\mathrm{m}^{3}$ ). This indicates the high variability of precipitation events in the southern High Plains.

The multitude of potential meteorological situations coupled with a wide range of rainfall volumes establishes the need for a systematic stratification in further analyses. The distinction between intensities of these events is most clearly demonstrated by radar. After examining radar films, four categories were established according to stage of growth and scale of organization. These are: convective cells, small convective clusters, large convective clusters and nested convective clusters. Examples of these are shown in Figures 6a, 7a, 8 a and 9a. The boundary between small and large convective clusters has been rather arbitrarily set at a size near 100 km ( 50 n . mi.). Nested convective clusters manifest an organization of large convective clusters on a scale too large for radar to detect in its entirety. Note that small convective clusters may be present in "nested" situations but are not required.

Table 4
Daily Network Rainfall Volumes, 1979

| Date* |  | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| May | 10 | 17890.8 | 22.07 |
|  | 20 | 68486.4 | 84.48 |
|  | 21 | 107010.7 | 132.00 |
|  | 27 | 55759.6 | 68.78 |
|  | 28 | 1212.0 | 1.50 |
|  | 29 | 1587.9 | 1.96 |
|  | 31 | 25612.0 | 31.59 |
| June | 1 | 103764.4 | 128.00 |
|  | 2 | 35041.7 | 43.22 |
|  | 4 | 142075.5 | 175.25 |
|  | 5 | 1283.6 | 1.58 |
|  | 8 | 34506.4 | 42.56 |
|  | 9 | 95277.1 | 117.53 |
|  | 20 | 1367.1 | 1.69 |
|  | 23 | 1939.8 | 2.39 |
|  | 24 | 1261.5 | 1.56 |
|  | 25 | 12634.6 | 15.59 |
|  | 26 | 21614.2 | 26.66 |
|  | 29 | 1312.6 | 1.62 |
| July | 3 | 1003.2 | 1.24 |
|  | 4 | 284.9 | 0.35 |
|  | 5 | 8307.1 | 10.25 |
|  | 6 | 1834.0 | 2.26 |
|  | 7 | 337.5 | 0.42 |
|  | 8 | 749.9 | 0.92 |
|  | 9 | 16939.4 | 20.90 |
|  | 15 | 2477.3 | 3.06 |
|  | 17 | 98362.2 | 121.33 |
|  | 18 | 81942.3 | 101.08 |
|  | 19 | 367582.9 | 453.42 |
|  | 20 | 18413.2 | 22.71 |
|  | 30 | 714.3 | 0.88 |
|  | 31 | 32079.3 | 39.57 |

Total rain volume May 10 - July $31=1360666.0$ acre-ft.

$$
=1678.36 \times 10^{6} \mathrm{~m}^{3}
$$

*Note: Dates are referenced to CDT.

## Table 5 <br> Daily Network Rainfall Volume, 1980

| Date* |  | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| May | 15 | 419405.4 | 517.35 |
|  | 18 | 690.5 | 0.85 |
|  | 20 | 55798.5 | 68.83 |
|  | 21 | 7663.0 | 9.45 |
|  | 23 | 87.8 | 0.11 |
|  | 27 | 8645.5 | 10.66 |
|  | 28 | 129.3 | 0.16 |
| June | 1 | 4621.1 | 5.70 |
|  | 7 | 8469.3 | 10.45 |
|  | 8 | 95911.7 | 118.31 |
|  | 11 | 144097.1 | 177.75 |
|  | 17 | 776.5 | 0.96 |
|  | 18 | 1206.8 | 1.49 |
|  | 19 | 25140.3 | 31.01 |
|  | 20 | 7944.7 | 9.80 |
|  | 21 | 105017.1 | 129.54 |
|  | 22 | 415.3 | 0.51 |
| July | 1 | 184.5 | 0.23 |
|  | 20 | 269.7 | 0.33 |
|  | 21 | 3892.6 | 4.80 |
|  | 22 | 8781.4 | 10.83 |
|  | 26 | 2095.5 | 2.58 |
|  | 27 | 517.4 | 0.64 |

Total rainfall volume May 15 - July $27=901761.0$ acre-ft.

$$
=1112.31 \times 10^{6} \mathrm{~m}^{3}
$$

*Note: Dates are referenced to CDT.

Table 6
1979 Precipitation

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
|  | 10 |  | 0000-0015 | 534.0 | 0.66 |
|  |  | 0015-0030 | 397.1 | 0.50 |
|  |  | 0030-0045 | 426.8 | 0.53 |
|  |  | 0045-0100 | 548.9 | 0.68 |
|  |  | 0100-0115 | 1420.7 | 1.75 |
|  |  | 0115-0130 | 2139.7 | 2.64 |
|  |  | 0130-0145 | 3357.8 | 4.14 |
|  |  | 0145-0200 | 2658.9 | 3.28 |
|  |  | 0200-0215 | 2992.2 | 3.69 |
|  |  | 0215-0230 | 1528.7 | 1.89 |
|  |  | 0230-0245 | 1099.2 | 1.36 |
|  |  | 0245-0300 | 710.1 | 0.88 |
|  |  | 0300-0315 | 69.4 | 0.09 |
|  |  | 0345-0400 | 7.5 | 0.01 |
| May | 20 | 1630-1645 | 19.6 | 0.02 |
|  |  | 1645-1700 | 116.2 | 0.14 |
|  |  | 1700-1715 | 495.4 | 0.61 |
|  |  | 1715-1730 | 969.9 | 1.20 |
|  |  | 1730-1745 | 282.2 | 0.35 |
|  |  | 1745-1800 | 129.2 | 0.16 |
|  |  | 1800-1815 | 620.7 | 0.77 |
|  |  | 1815-1830 | 1108.2 | 1.37 |
|  |  | 1830-1845 | 2409.2 | 2.97 |
|  |  | 1845-1900 | 3673.7 | 4.53 |
|  |  | 1900-1915 | 7251.6 | 8.94 |
|  |  | 1915-1930 | 7880.9 | 9.72 |
|  |  | 1930-1945 | 7301.1 | 9.01 |
|  |  | 1945-2000 | 7004.4 | 8.64 |
|  |  | 2000-2015 | 4046.0 | 4.99 |
|  |  | 2015-2030 | 2153.7 | 2.66 |
|  |  | 2030-2045 | 1803.0 | 2.22 |
|  |  | 2045-2100 | 979.8 | 1.21 |
|  |  | 2100-2115 | 1388.4 | 1.71 |
|  |  | 2115-2130 | 1449.6 | 1.79 |
|  |  | 2130-2145 | 1256.3 | 1.55 |
|  |  | 2145-2200 | 2770.2 | 3.42 |
|  |  | 2200-2215 | 3246.0 | 4.00 |
|  |  | 2215-2230 | 3573.9 | 4.41 |
|  |  | 2230-2245 | 2760.6 | 3.41 |
|  |  | 2245-2300 | 2174.9 | 2.68 |
|  |  | 2300-2315 | 960.0 | 1.18 |
|  |  | 2315-2330 | 431.1 | 0.53 |
|  |  | 2330-2345 | 200.5 | 0.25 |
|  |  | 2345-0000 | 30.4 | 0.04 |

## Table 6 (cont.)

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| May | 21 |  | 0000-0015 | 22.6 | 0.03 |
|  |  | 0015-0030 | 15.5 | 0.02 |
|  |  | 0130-0145 | 37.2 | 0.05 |
|  |  | 0145-0200 | 283.7 | 0.35 |
|  |  | 0200-0215 | 998.7 | 1.23 |
|  |  | 0215-0230 | 2383.1 | 2.94 |
|  |  | 0230-0245 | 4700.1 | 5.80 |
|  |  | 0245-0300 | 5322.9 | 6.57 |
|  |  | 0300-0315 | 6505.2 | 8.02 |
|  |  | 0315-0330 | 4120.1 | 5.08 |
|  |  | 0330-0345 | 4913.1 | 6.06 |
|  |  | 0345-0400 | 3762.9 | 4.64 |
|  |  | 0400-0415 | 4687.5 | 5.78 |
|  |  | 0415-0430 | 4059.8 | 5.01 |
|  |  | 0430-0445 | 2955.1 | 3.65 |
|  |  | 0445-0500 | 2909.9 | 3.59 |
|  |  | 0500-0515 | 3406.3 | 4.20 |
|  |  | 0515-0530 | 3658.5 | 4.51 |
|  |  | 0530-0545 | 1994.2 | 2.46 |
|  |  | 0545-0600 | 709.5 | 0.86 |
|  |  | 0600-0615 | 257.2 | 0.31 |
|  |  | 0615-0630 | 122.4 | 0.15 |
|  |  | 0630-0645 | 119.1 | 0.15 |
|  |  | 0645-0700 | 51.1 | 0.06 |
|  |  | 1145-1200 | 51.0 | 0.06 |
|  |  | 1200-1215 | 348.5 | 0.43 |
|  |  | 1215-1230 | 4029.1 | 4.97 |
|  |  | 1230-1245 | 3682.1 | 4.54 |
|  |  | 1245-1300 | 6473.0 | 7.98 |
|  |  | 1300-1315 | 9028.6 | 11.14 |
|  |  | 1315-1330 | 3119.9 | 3.85 |
|  |  | 1330-1345 | 5009.8 | 6.18 |
|  |  | 1345-1400 | 4551.5 | 5.61 |
|  |  | 1400-1415 | 5049.9 | 6.23 |
|  |  | 1415-1430 | 4583.9 | 5.65 |
|  |  | 1430-1445 | 2013.1 | 2.48 |
|  |  | 1445-1500 | 860.7 | 1.06 |
|  |  | 1500-1515 | 163.5 | 0.20 |
|  |  | 1515-1530 | 51.1 | 0.06 |
| May | 27 | 0100-0115 | 1346.1 | 1.66 |
|  |  | 0115-0130 | 548.9 | 0.68 |
|  |  | 0130-0145 | 1800.3 | 2.22 |
|  |  | 0145-0200 | 1513.2 | 1.87 |
|  |  | 0200-0215 | 1374.2 | 1.70 |
|  |  | 0215-0230 | 1796.0 | 2.22 |
|  |  | 0230-0245 | 1200.9 | 1.48 |

Table 6 (cont.)
Rainfall Volume

| Date | Time Period (CDT) | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| :---: | :---: | :---: | :---: |
| May 27 | 0245-0300 | 284.8 | 0.35 |
|  | 0300-0315 | 105.4 | 0.13 |
|  | 0330-0345 | 15.6 | 0.02 |
|  | 0345-0400 | 7.1 | 0.01 |
|  | 0400-0415 | 15.6 | 0.02 |
|  | 0430-0445 | 6.4 | 0.01 |
|  | 0500-0515 | 6.4 | 0.01 |
|  | 0945-1000 | 70.6 | 0.09 |
|  | 1000-1015 | 189.4 | 0.23 |
|  | 1015-1030 | 72.6 | 0.09 |
|  | 1030-1045 | 76.5 | 0.09 |
|  | 1045-1100 | 36.1 | 0.04 |
|  | 1100-1115 | 160.1 | 0.20 |
|  | 1115-1130 | 85.2 | 0.11 |
|  | 1645-1700 | 17.9 | 0.02 |
|  | 1700-1715 | 1090.1 | 1.34 |
|  | 1715-1730 | 1334.6 | 1.65 |
|  | 1730-1745 | 2139.3 | 2.64 |
|  | 1745-1800 | 2086.4 | 2.57 |
|  | 1800-1815 | 2267.3 | 2.80 |
|  | 1815-1830 | 2828.1 | 3.49 |
|  | 1830-1845 | 2734.3 | 3.37 |
|  | 1845-1900 | 2528.9 | 3.12 |
|  | 1900-1915 | 2615.7 | 3.23 |
|  | 1915-1930 | 2680.0 | 3.31 |
|  | 1930-1945 | 2679.1 | 3.30 |
|  | 1945-2000 | 5446.5 | 6.72 |
|  | 2000-2015 | 3685.9 | 4.55 |
|  | 2015-2030 | 2741.2 | 3.38 |
|  | 2030-2045 | 2846.7 | 3.51 |
|  | 2045-2100 | 2914.3 | 3.59 |
|  | 2100-2115 | 1552.8 | 1.92 |
|  | 2115-2130 | 721.7 | 0.89 |
|  | 2145-2200 | 19.8 | 0.02 |
|  | 2200-2215 | 29.3 | 0.04 |
|  | 2215-2230 | 23.3 | 0.03 |
|  | 2230-2245 | 26.0 | 0.03 |
|  | 2245-2300 | 26.1 | 0.03 |
|  | 2315-2330 | 13.5 | 0.02 |
| May 28 | 0215-0230 | 26.3 | 0.03 |
|  | 0230-0245 | 157.8 | 0.19 |
|  | 1230-1245 | 77.5 | 0.10 |
|  | 1245-1300 | 159.6 | 0.20 |
|  | 1315-1330 | 192.8 | 0.24 |
|  | 1330-1345 | 211.7 | 0.26 |

Table 6 (cont.)

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| May | 28 |  | 1345-1400 | 205.9 | 0.25 |
|  |  | 1400-1415 | 18.3 | 0.02 |
|  |  | 1415-1430 | 11.1 | 0.01 |
|  |  | 1615-1630 | 50.8 | 0.06 |
|  |  | 1630-1645 | 85.1 | 0.10 |
|  |  | 2300-2315 | 15.1 | 0.02 |
| May | 29 | 0015-0030 | 29.4 | 0.04 |
|  |  | 0100-0115 | 16.8 | 0.02 |
|  |  | 0115-0130 | 190.1 | 0.23 |
|  |  | 0130-0145 | 374.5 | 0.46 |
|  |  | 0145-0200 | 147.5 | 0.18 |
|  |  | 0200-0215 | 149.0 | 0.18 |
|  |  | 0215-0230 | 64.8 | 0.08 |
|  |  | 0230-0245 | 131.8 | 0.16 |
|  |  | 0245-0300 | 111.6 | 0.14 |
|  |  | 0300-0315 | 94.8 | 0.12 |
|  |  | 0315-0330 | 93.7 | 0.12 |
|  |  | 0330-0345 | 32.2 | 0.04 |
|  |  | 0400-0415 | 9.8 | 0.01 |
|  |  | 1615-1630 | 19.1 | 0.02 |
|  |  | 1630-1645 | - 12.7 | 0.02 |
|  |  | 1645-1700 | 8.4 | 0.01 |
|  |  | 1700-1715 | 40.8 | 0.05 |
|  |  | 1715-1730 | 22.4 | 0.03 |
|  |  | 1730-1745 | 19.2 | 0.02 |
|  |  | 1745-1800 | 19.2 | 0.02 |
| May | 31 | 1300-1315 | 27.5 | 0.03 |
|  |  | 1315-1330 | 55.0 | 0.07 |
|  |  | 1330-1345 | 27.5 | 0.03 |
|  |  | 1345-1400 | 110.0 | 0.14 |
|  |  | 1415-1430 | 41.6 | 0.05 |
|  |  | 1430-1445 | 319.2 | 0.39 |
|  |  | 1445-1500 | 267.4 | 0.33 |
|  |  | 1500-1515 | 247.5 | 0.31 |
|  |  | 1515-1530 | 220.0 | 0.27 |
|  |  | 1530-1545 | 101.3 | 0.12 |
|  |  | 1545-1600 | 58.3 | 0.07 |
|  |  | 1600-1615 | 27.5 | 0.03 |
|  |  | 1615-1630 | 82.5 | 0.10 |
|  |  | 1630-1645 | 69.1 | 0.09 |
|  |  | 1645-1700 | 75.1 | 0.09 |
|  |  | 1700-1715 | 9.8 | 0.01 |
|  |  | 1845-1900 | 18.2 | 0.02 |
|  |  | 1900-1915 | 36.6 | 0.05 |

Table 6 (cont.)

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| May | 31 |  | 1915-1930 | 34.2 | 0.04 |
|  |  | 1945-2000 | 104.5 | 0.13 |
|  |  | 2000-2015 | 352.6 | 0.43 |
|  |  | 2015-2030 | 469.7 | 0.60 |
|  |  | 2030-2045 | 839.3 | 1.04 |
|  |  | 2045-2100 | 1139.9 | 1.41 |
|  |  | 2100-2115 | 1975.1 | 2.43 |
|  |  | 2115-2130 | 2343.8 | 2.89 |
|  |  | 2130-2145 | 1981.2 | 2.44 |
|  |  | 2145-2200 | 2110.2 | 2.60 |
|  |  | 2200-2215 | 1997.9 | 2.46 |
|  |  | 2215-2230 | 966.5 | 1.19 |
|  |  | 2230-2245 | 1046.3 | 1.29 |
|  |  | 2245-2300 | 1643.6 | 2.03 |
|  |  | 2300-2315 | 2080.4 | 2.56 |
|  |  | 2315-2330 | 2240.3 | 2.76 |
|  |  | 2330-2345 | 1422.8 | 1.75 |
|  |  | 2345-0000 | 1048.9 | 1.29 |
| June | 1 | 0000-0015 | 692.0 | 0.85 |
|  |  | 0015-0030 | 1249.9 | 1.54 |
|  |  | 0030-0045 | 2826.1 | 3.49 |
|  |  | 0045-0100 | 2247.7 | 2.77 |
|  |  | 0100-0115 | 3024.6 | 3.73 |
|  |  | 0115-0130 | 5516.4 | 6.80 |
|  |  | 0130-0145 | 2809.0 | 3.46 |
|  |  | 0145-0200 | 1928.4 | 2.38 |
|  |  | 0200-0215 | 669.5 | 0.83 |
|  |  | 0215-0230 | 523.2 | 0.65 |
|  |  | 0230-0245 | 246.5 | 0.30 |
|  |  | 0245-0300 | 393.1 | 0.48 |
|  |  | 0300-0315 | 282.3 | 0.35 |
|  |  | 0315-0330 | 318.9 | 0.39 |
|  |  | 0330-0345 | 99.1 | 0.12 |
|  |  | 0345-0400 | 114.9 | 0.14 |
|  |  | 0400-0415 | 58.9 | 0.07 |
|  |  | 0415-0430 | 4.2 | 0.01 |
|  |  | 0430-0445 | 11.5 | 0.01 |
|  |  | 0445-0500 | 31.5 | 0.04 |
|  |  | 0500-0515 | 3.7 | 0.01 |
|  |  | 0515-0530 | 24.2 | 0.03 |
|  |  | 0530-0545 | 11.5 | 0.01 |
|  |  | 0600-0615 | 45.6 | 0.06 |
|  |  | 0615-0630 | 68.4 | 0.08 |
|  |  | 0630-0645 | 33.0 | 0.04 |
|  |  | 0715-0730 | 5.9 | 0.01 |
|  |  | 0730-0745 | 11.9 | 0.01 |

Table 6 (cont.)


Table 6 (cont.)


Table 6 (cont.)

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| June | 2 |  | 1345-1400 | 1315.0 | 1.62: |
|  |  | 1400-1415 | 923.6 | 1.14 |
|  |  | 1415-1430 | 941.3 | 1.16 |
|  |  | 1430-1445 | 505.8 | 0.62 |
|  |  | 1445-1500 | 383.4 | 0.47 |
|  |  | 1500-1515 | 314.9 | 0.39 |
|  |  | 1515-1530 | 162.9 | 0.20 |
|  |  | 1530-1545 | 93.6 | 0.12 |
|  |  | 1545-1600 | 44.0 | 0.05 |
|  |  | 1600-1615 | 24.7 | 0.03 |
|  |  | 1715-1730 | 70.9 | 0.09 |
| June | 4 | 1115-1130 | 92.9 | 0.11 |
|  |  | 1130-1145 | 31.0 | 0.04 |
|  |  | 1145-1200 | 31.0 | 0.04 |
|  |  | 1230-1245 | 1100.2 | 1.36 |
|  |  | 1315-1330 | 92.9 | 0.11 |
|  |  | 1330-1345 | 88.3 | 0.11 |
|  |  | 1345-1400 | 202.2 | 0.25 |
|  |  | 1400-1415 | 272.9 | 0.58 |
|  |  | 1415-1430 | 1373.4 | 1.69 |
|  |  | 1430-1445 | 496.6 | 0.61 |
|  |  | 1445-1500 | 191.7 | 0.24 |
|  |  | 1500-1515 | 233.5 | 0.29 |
|  |  | 1515-1530 | 181.4 | 0.22 |
|  |  | 1530-1545 | 334.1 | 0.41 |
|  |  | 1545-1600 | 707.9 | 0.67 |
|  |  | 1600-1615 | 827.3 | 1.02 |
|  |  | 1615-1630 | 955.3 | 1.18 |
|  |  | 1630-1645 | 1466.5 | 1.81 |
|  |  | 1645-1700 | 2786.4 | 3.44 |
|  |  | 1700-1715 | 2407.9 | 2.97 |
|  |  | 1715-1730 | 5384.8 | 6.64 |
|  |  | 1730-1745 | 5352.1 | 6.60 |
|  |  | 1745-1800 | 7188.8 | 8.87 |
|  |  | 1800-1815 | 9141.9 | 11.28 |
|  |  | 1815-1830 | 7755.6 | 9.57 |
|  |  | 1830-1845 | 6521.8 | 8.04 |
|  |  | 1845-1900 | 3585.7 | 4.42 |
|  |  | 1900-1915 | 2825.7 | 3.49 |
|  |  | 1915-1930 | 5309.9 | 6.55 |
|  |  | 1930-1945 | 6640.5 | 8.19 |
|  |  | 1945-2000 | 5479.8 | 6.76 |
|  |  | 2000-2015 | 6510.3 | 8.03 |
|  |  | 2015-2030 | 4508.6 | 5.56 |
|  |  | 2030-2045 | 7599.8 | 9.37 |
|  |  | 2045-2100 | 8592.6 | 10.60 |

Table 6 (cont.)

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| June | 4 | 2100-2115 | 3952.7 | 4.86 |
|  |  | 2115-2130 | 3725.9 | 4.60 |
|  |  | 2130-2145 | 5823.0 | 7.18 |
|  |  | 2145-2200 | 4632.5 | 5.71 |
|  |  | 2200-2215 | 3628.2 | 4.48 |
|  |  | 2215-2230 | 2965.1 | 3.66 |
|  |  | 2230-2245 | 2879.3 | 3.55 |
|  |  | 2245-2300 | 2967.2 | 3.66 |
|  |  | 2300-2315 | 1988.3 | 2.45 |
|  |  | 2315-2330 | 1624.5 | 2.00 |
|  |  | 2330-2345 | 930.0 | 1.15 |
|  |  | 2345-0000 | 488.5 | 0.60 |
| June | 5 | 0000-0015 | 180.5 | 0.22 |
|  |  | 0015-0030 | 226.5 | 0.28 |
|  |  | 0030-0045 | 234.4 | 0.29 |
|  |  | 0045-0100 | 196.3 | 0.24 |
|  |  | 0100-0115 | 97.9 | 0.12 |
|  |  | 0115-0130 | 60.3 | 0.07 |
|  |  | 0130-0145 | 51.5 | 0.06 |
|  |  | 0215-0230 | 19.4 | 0.02 |
|  |  | 0530-0545 | 27.5 | 0.03 |
|  |  | 0545-0600 | 60.2 | 0.07 |
|  |  | 0800-0815 | 19.4 | 0.02 |
|  |  | 0830-0845 | 29.1 | 0.04 |
|  |  | 1545-1600 | 80.5 | 0.10 |
| June | 8 | 1030-1045 | 24483.6 | 30.20 |
|  |  | 1530-1545 | 64.4 | 0.08 |
|  |  | 1600-1615 | 183.1 | 0.23 |
|  |  | 1615-1630 | 579.4 | 0.71 |
|  |  | 1630-1645 | 170.4 | 0.21 |
|  |  | 1645-1700 | 301.4 | 0.37 |
|  |  | 1700-1715 | 202.1 | 0.25 |
|  |  | 1730-1745 | 162.1 | 0.20 |
|  |  | 1745-1800 | 102.2 | 0.13 |
|  |  | 1800-1815 | 273.3 | 0.34 |
|  |  | 1815-1830 | 586.2 | 0.72 |
|  |  | 1830-1845 | 2091.7 | 2.58 |
|  |  | 1845-1900 | 2071.5 | 2.56 |
|  |  | 1900-1915 | 2293.3 | 2.83 |
|  |  | 1915-1930 | 273.7 | 0.34 |
|  |  | 1930-1945 | 43.0 | 0.05 |
|  |  | 1945-2000 | 66.7 | 0.08 |
|  |  | 2000-2015 | 7.1 | 0.01 |
|  |  | 2015-2030 | 132.7 | 0.16 |
|  |  | 2030-2045 | 10.5 | 0.01 |
|  |  | 2045-2100 | 15.4 | 0.02 |

Table 6 (cont.)

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| June | 8 | 2100-2115 | 15.4 | 0.02 |
|  |  | 2200-2215 | 27.3 | 0.03 |
|  |  | 2215-2230 | 29.4 | 0.04 |
|  |  | 2245-2300 | 142.3 | 0.18 |
|  |  | 2300-2315 | 145.6 | 0.18 |
|  |  | 2315-2330 | 7.7 | 0.01 |
|  |  | 2330-2345. | 8.4 | 0.01 |
|  |  | 2345-0000 | 16.7 | 0.02 |
| June | 9 | 0145-0200 | 22.6 | 0.03 |
|  |  | 0200-0215 | 73.1 | 0.09 |
|  |  | 0215-0230 | 20.4 | 0.03 |
|  |  | 0230-0245 | 120.6 | 0.15 |
|  |  | 0245-0300 | 144.9 | 0.18 |
|  |  | 0300-0315 | 197.7 | 0.24 |
|  |  | 0315-0330 | 113.0 | 0.14 |
|  |  | 0330-0345 | 22.6 | 0.03 |
|  |  | 0345-0400 | 367.1 | 0.45 |
|  |  | 0400-0415 | 659.2 | 0.81 |
|  |  | 0415-0430 | 336.1 | 0.41 |
|  |  | 0430-0445 | 1500.4 | 1.85 |
|  |  | 0445-0500 | 2832.2 | 3.49 |
|  |  | 0500-0515 | 4601.3 | 5.68 |
|  |  | 0515-0530 | 6629.6 | 8.18 |
|  |  | 0530-0545 | 7707.9 | 9.51 |
|  |  | 0545-0600 | 8543.9 | 10.54 |
|  |  | 0600-0615 | 11398.8 | 14.06 |
|  |  | 0615-0630 | 9894.8 | 12.21 |
|  |  | 0630-0645 | 8847.1 | 10.91 |
|  |  | 0645-0700 | 8907.7 | 10.99 |
|  |  | 0700-0715 | 7190.1 | 8.87 |
|  |  | 0715-0730 | 4375.9 | 5.40 |
|  |  | 0730-0745 | 3605.9 | 4.45 . |
|  |  | 0745-0800 | 2244.2 | 2.77 |
|  |  | 0800-0815 | 2037.3 | 2.51 |
|  |  | 0815-0830 | 1063.8 | 1.31 |
|  |  | 0830-0845 | 695.9 | 0.86 |
|  |  | 0845-0900 | 379.9 | 0.47 |
|  |  | 0900-0915 | 277.0 | 0.34 |
|  |  | 0915-0930 | 59.3 | 0.07 |
|  |  | 0930-0945 | 19.1 | 0.02 |
|  |  | 1030-1045 | 142.6 | 0.18 |
|  |  | 1200-1215 | 26.3 | 0.03 |
|  |  | 1215-1230 | 26.3 | 0.03 |
|  |  | 1230-1245 | 26.3 | 0.03 |
|  |  | 1445-1500 | 27.9 | 0.03 |
|  |  | 1515-1530 | 27.9 | 0.03 |
|  |  | 1530-1545 | 27.9 | 0.03 |

Table 6 (cont.)

| Date | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| June 9 | 1615-1630 | 27.9 | 0.03 |
|  | 1645-1700 | 27.9 | 0.03 |
|  | 1745-1800 | 27.9 | 0.03 |
| June 20 | 1830-1845 | 16.0 | 0.02 |
|  | 1845-1900 | 258.9 | 0.32 |
|  | 1900-1915 | 258.9 | 0.32 |
|  | 1915-1930 | 378.8 | 0.47 |
|  | 1930-1945 | 156.8 | 0.19 |
|  | 1945-2000 | 178.7 | 0.22 |
|  | 2000-2015 | 33.8 | 0.04 |
|  | 2030-2045 | 21.9 | 0.03 |
|  | 2045-2100 | 22.0 | 0.03 |
|  | 2100-2115 | 16.5 | 0.02 |
|  | 2115-2130 | 5.8 | 0.01 |
|  | 2145-2200 | 19.6 | 0.02 |
| June 23 | 1915-1930 | 15.1 | 0.02 |
|  | 1945-2000 | 7.5 | 0.01 |
|  | 2000-2015 | 15.1 | 0.02 |
|  | 2115-2130 | 22.6 | 0.03 |
|  | 2200-2215 | 15.1 | 0.02 |
|  | 2215-2230 | 37.7 | 0.05 |
|  | 2230-2245 | 80.9 | 0.10 |
|  | 2245-2300 | 170.4 | 0.21 |
|  | 2300-2315 | 267.6 | 0.33 |
|  | 2315-2330 | 332.2 | 0.41 |
|  | 2330-2345 | 320.0 | 0.40 |
|  | 2345-0000 | 655.8 | 0.81 |
| June 24 | 0000-0015 | 638.7 | 0.79 |
|  | 0015-0030 | 358.1 | 0.44 |
|  | 0030-0045 | 39.8 | 0.05 |
|  | 0045-0100 | 19.8 | 0.02 |
|  | 0300-0315 | 34.5 | 0.04 |
|  | 0400-0415 | 34.5 | 0.04 |
|  | 0500-0515 | 34.5 | 0.04 |
|  | 2045-2100 | 50.8 | 0.06 |
|  | 2100-2115 | 50.8 | 0.06 |
| June 25 | 0600-0615 | 12.0 | 0.01 |
|  | 0615-0630 | 136.5 | 0.17 |
|  | 0630-0645 | 176.8 | 0.22 |
|  | 0645-0700 | 279.4 | 0.34 |
|  | 1330-1345 | 180.7 | 0.22 |
|  | 1345-1400 | 340.8 | 0.42 |
|  | 1400-1415 | 1045.9 | 1.29 |
|  | 1415-1430 | 218.1 | 0.27 |

Table 6 (cont.)
Rainfall Volume

| Date | Time Period (CDT) | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| :---: | :---: | :---: | :---: |
| June 25 | 1430-1445 | 223.6 | 0.28 |
|  | 1445-1500 | 494.0 | 0.61 |
|  | 1500-1515 | 496.6 | 0.61 |
|  | 1515-1530 | 651.8 | 0.80 |
|  | 1530-1545 | 1103.0 | 1.36 |
|  | 1545-1600 | 717.0 | 0.88 |
|  | 1600-1615 | 648.8 | 0.80 |
|  | 1615-1630 | 237.1 | 0.29 |
|  | 1630-1645 | 559.4 | 0.69 |
|  | 1645-1700 | 418.9 | 0.52 |
|  | 1700-1715 | 760.0 | 0.94 |
|  | 1715-1730 | 592.5 | 0.73 |
|  | 1730-1745 | 1058.8 | 1.31 |
|  | 1745-1800 | 466.2 | 0.58 |
|  | 1800-1815 | 16.6 | 0.02 |
|  | 1815-1830 | 558.2 | 0.69 |
|  | 1830-1845 | 616.7 | 0.76 |
|  | 1845-1900 | 268.2 | 0.33 |
|  | 1900-1915 | 237.0 | 0.29 |
|  | 1915-1930 | 58.6 | 0.07 |
|  | 2030-2045 | 12.7 | 0.02 |
|  | 2230-2245 | 7.1 | 0.01 |
|  | 2245-2300 | 7.1 | 0.01 |
|  | 2300-2315 | 7.1 | 0.01 |
|  | 2315-2330 | 7.1 | 0.01 |
|  | 2330-2345 | 7.1 | 0.01 |
|  | 2345-0000 | 13.5 | 0.02 |
|  | 0000-0015 | 20.6 | 0.03 |
|  | 0015-0030 | 13.5 | 0.02 |
| June 26 | 0315-0330 | 10.9 | 0.01 |
|  | 0330-0345 | 10.9 | 0.01 |
|  | 0345-0400 | 10.9 | 0.01 |
|  | 0400-0415 | 22.9 | 0.03 |
|  | 0415-0430 | 43.9 | 0.05 |
|  | 0500-0515 | 33.8 | 0.04 |
|  | 0530-0545 | 29.6 | 0.04 |
|  | 0545-0600 | 71.5 | 0.09 |
|  | 0600-0615 | 264.6 | 0.33 |
|  | 0615-0630 | 276.0 | 0.34 |
|  | 0630-0645 | 274.8 | 0.34 |
|  | 0645-0700 | 111.3 | 0.14 |
|  | 0700-0715 | 164.3 | 0.20 |
|  | 0715-0730 | 92.9 | 0.11 |
|  | 0730-0745 | 95.6 | 0.12 |
|  | 0745-0800 | 110.7 | 0.14 |
|  | 0800-0815 | 156.4 | 0.19 |
|  | 0815-0830 | 174.6 | 0.22 |

Table 6 (cont.)

| Date |  | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  | Time Period (CDT) | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| June 26 | 0830-0845 | 511.5 | 0.63 |
|  | 0845-0900 | 1355.7 | 1.67 |
|  | 0900-0915 | 709.8 | 0.88 |
|  | 0915-0930 | 2165.6 | 2.67 |
|  | 0930-0945 | 5299.6 | 6.54 |
|  | 0945-1000 | 3410.7 | 2.97 |
|  | 1000-1015 | 1652.7 | 2.04 |
|  | 1015-1030 | 2738.6 | 3.38 |
|  | 1030-1045 | 1063.6 | 1.31 |
|  | 1045-1100 | 801.4 | 0.99 |
|  | 1130-1145 | 17.8 | 0.02 |
|  | 1145-1200 | 8.9 | 0.01 |
|  | 1215-1230 | 319.9 | 0.40 |
|  | 1230-1245 | 159.5 | 0.20 |
|  | 1245-1300 | 68.1 | 0.08 |
|  | 1300-1315 | 12.7 | 0.02 |
|  | 1315-1330 | 63.5 | 0.08 |
|  | 1330-1345 | 12.7 | 0.02 |
|  | 1545-1600 | 3.3 | 0.01 |
|  | 1645-1700 | 3.3 | 0.01 |
|  | 1800-1815 | 5.4 | 0.01 |
|  | 1815-1830 | 76.9 | 0.09 |
|  | 1830-1845 | 144.2 | 0.18 |
|  | 1845-1900 | 19.2 | 0.02 |
| June 29 | 1745-1800 | 56.9 | 0.07 |
|  | 1800-1815 | 42.7 | 0.05 |
|  | 1815-1830 | 7.1 | 0.01 |
|  | 1845-1900 | 28.8 | 0.04 |
|  | 1900-1915 | 190.1 | 0.23 |
|  | 1915-1930 | 433.5 | 0.53 |
|  | 1930-1945 | 464.8 | 0.57 |
|  | 1945-2000 | 69.3 | 0.09 |
|  | 2000-2015 | 19.3 | 0.02 |
| July 3 |  | 111.6 | 0.14 |
|  | 2100-2115 | 827.0 | 1.02 |
|  | 2115-2130 | 7.5 | 0.01 |
|  | 2130-2145 | 57.1 | 6.07 |
| July 4 | 1945-2000 | 15.4 | 0.02 |
|  | 2000-2015 | 114.1 | 0.14 |
|  | 2015-2030 | 120.1 | 0.15 |
|  | 2115-2130 | 6.1 | 0.01 |
|  | 2130-2145 | 29.4 | 0.04 |

Table 6 (cont.)

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| July | 5 | 1030-1045 | 12.1 | 0.01 |
|  |  | 1045-1100 | 5.3 | 0.01 |
|  |  | 1100-1115 | 5.3 | 0.01 |
|  |  | 1245-1300 | 45.2 | 0.06 |
|  |  | 1300-1315 | 30.1 | 0.04 |
|  |  | 1345-1400 | 32.8 | 0.04 |
|  |  | 1400-1415 | 87.9 | 0.11 |
|  |  | 1415-1430 | 44.0 | 0.05 |
|  |  | 1430-1445 | 704.1 | 0.87 |
|  |  | 1445-1500 | 1576.6 | 1.94 |
|  |  | 1500-1515 | 2357.0 | 2.91 |
|  |  | 1515-1530 | 1564.8 | 1.93 |
|  |  | 1530-1545 | 560.4 | 0.69 |
|  |  | 1545-1600 | 386.1 | 0.48 |
|  |  | 1600-1615 | 24.7 | 0.03 |
|  |  | 1700-1715 | 14.5 | 0.02 |
|  |  | 1900-1915 | 14.2 | 0.02 |
|  |  | 1915-1930 | 168.4 | 0.21 |
|  |  | 1930-1945 | 124.5 | 0.15 |
|  |  | 1945-2000 | 106.8 | 0.13 |
|  |  | 2000-2015 | 56.0 | 0.07 |
|  |  | 2015-2030 | 95.7 | 0.12 |
|  |  | 2030-2045 | 255.4 | 0.32 |
|  |  | 2045-2100 | 35.1 | 0.04 |
| July | 6 | 1245-1300 | 9.3 | 0.01 |
|  |  | 1300-1315 | 113.5 | 0.14 |
|  |  | 1330-1345 | 174.9 | 0.22 |
|  |  | 1345-1400 | 42.9 | 0.05 |
|  |  | 1400-1415 | 58.8 | 0.07 |
|  |  | 1430-1445 | 753.0 | 0.93 |
|  |  | 1445-1500 | 484.8 | 0.60 |
|  |  | 1500-1515 | 146.6 | 0.18 |
|  |  | 1515-1530 | 23.3 | 0.03 |
|  |  | 1530-1545 | 11.6 | 0.01 |
|  |  | 1545-1600 | 11.6 | 0.01 |
|  |  | 1600-1615 | 3.7 | 0.01 |
| July | 7 | 0645-0700 | 14.7 | 0.02 |
|  |  | 1645-1700 | 23.7 | 0.03 |
|  |  | 1715-1730 | 23.3 | 0.03 |
|  |  | 1730-1745 | 102.3 | 0.13 |
|  |  | 1745-1800 | 144.2 | 0.18 |
|  |  | 1800-1815 | 29.4 | 0.04 |

Table 6 (cont.)

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| July | 8 | 1515-1530 | 27.8 | 0.03 |
|  |  | 1530-1545 | 27.8 | 0.03 |
|  |  | 1545-1600 | 74.1 | 0.09 |
|  |  | 1600-1615 | 15.4 | 0.02 |
|  |  | 1645-1700 | 46.3 | 0.06 |
|  |  | 1730-1745 | 153.8 | 0.19 |
|  |  | 1745-1800 | 48.1 | 0.06 |
|  |  | 1800-1815 | 88.1 | 0.11 |
|  |  | 2045-2100 | 3.3 | 0.01 |
|  |  | 2100-2115 | 200.9 | 0.25 |
|  |  | 2115-2130 | 39.7 | 0.05 |
|  |  | 2130-2145 | 14.9 | 0.02 |
|  |  | 2200-2215 | 3.3 | 0.01 |
|  |  | 2215-2230 | 3.3 | 0.01 |
|  |  | 2245-2300 | 3.3 | 0.01 |
| July | 9 | 1615-1630 | 7.5 | 0.01 |
|  |  | 1630-1645 | 15.1 | 0.02 |
|  |  | 1645-1700 | 30.1 | 0.04 |
|  |  | 1715-1730 | 22.6 | 0.03 |
|  |  | 1730-1745 | 70.0 | 0.09 |
|  |  | 1900-1915 | 99.6 | 0.12 |
|  |  | 1915-1930 | 1153.5 | 1.42 |
|  |  | 1930-1945 | 1838.0 | 2.27 |
|  |  | 1945-2000 | 1612.1 | 1.99 |
|  |  | 2000-2015 | 1612.0 | 1.99 |
|  |  | 2015-2030 | 3416.3 | 4.21 |
|  |  | 2030-2045 | 3529.0 | 4.35 |
|  |  | 2045-2100 | 1145.1 | 1.41 |
|  |  | 2100-2115 | 348.0 | 0.43 |
|  |  | 2115-2130 | 28.5 | 0.04 |
|  |  | 2130-2145 | 227.1 | 0.28 |
|  |  | 2145-2200 | 496.2 | 0.61 |
|  |  | 2200-2215 | 414.2 | 0.51 |
|  |  | 2215-2230 | 234.1 | 0.29 |
|  |  | 2230-2245 | 262.1 | 0.32 |
|  |  | 2245-2300 | 231.6 | 0.29 |
|  |  | 2300-2315 | 125.1 | 0.15 |
|  |  | 2315-2330 | 17.8 | 0.02 |
|  |  | 2330-2345 | 4.2 | 0.01 |
| July 15 |  | 1815-1830 | 239.3 | 0.30 |
|  |  | 1830-1845 | 76.1 | 0.09 |
|  |  | 1845-1900 | 1505.9 | 1.86 |
|  |  | 1900-1915 | 451.8 | 0.56 |
|  |  | 1915-1930 | 150.6 | 0.19 |
|  |  | 1945-2000 | 53.6 | 0.07 |

Table 6 (cont.)

| Date | Time Period (CDT) | $\text { Acre-Fee }{ }^{\frac{R_{z}}{t}}$ | $10^{6} \mathrm{~m}^{3}$ |
| :---: | :---: | :---: | :---: |
| July 17 | 1145-1200 | 29.1 | 0.04 |
|  | 1200-1215 | 100.3 | 0.12 |
|  | 1215-1230 | 47.4 | 0.06 |
|  | 1230-1245 | 355.4 | 0.44 |
|  | 1245-1300 | 184.8 | 0.23 |
|  | 1300-1315 | 292.0 | 0.36 |
|  | 1315-1330 | 527.3 | 0.65 |
|  | 1330-1345 | 55.2 | 0.07 |
|  | 1345-1400 | 42.7 | 0.05 |
|  | 1400-1425 | 1729.1 | 2.13 |
|  | 1415-1430 | 1397.6 | 1.72 |
|  | 1430-1445 | 819.6 | 1.01 |
|  | 1445-1500 | 758.2 | 0.94 |
|  | 1500-1515 | 2069.1 | 2.55 |
|  | 1515-1530 | 3670.4 | 4.53 |
|  | 1530-1545 | 3215.0 | 3.97 |
|  | 1545-1600 | 4800.1 | 5.92 |
|  | 1600-1615 | 4774.1 | 5.89 |
|  | 1615-1630 | 7242.9 | 8.93 |
|  | 1630-1645 | 7594.6 | 9.37 |
|  | 1645-1700 | 7057.2 | 8.71 |
|  | 1700-1715 | 7536.7 | 9.30 |
|  | 1715-1730 | 7783.8 | 9.60 |
|  | 1730-1745 | 5393.7 | 6.65 |
|  | 1745-1800 | 4177.4 | 5.15 |
|  | 1800-1815 | 3764.6 | 4.64 |
|  | 1815-1830 | 4202.3 | 5.18 |
|  | 1830-1845 | 3437.7 | 4.24 |
|  | 1845-1900 | 3274.0 | 4.04 |
|  | 1900-1915 | 2969.2 | 3.66 |
|  | 1915-1930 | 3098.0 | 3.82 |
|  | 1930-1945 | 2151.3 | 2.65 |
|  | 1945-2000 | 1478.8 | 1.82 |
|  | 2000-2015 | 1009.9 | 1.25 |
|  | 2015-2030 | 583.2 | 0.72 |
|  | 2030-2045 | 327.0 | 0.40 |
|  | 2045-2100 | 209.9 | 0.26 |
|  | 2100-2115 | 31.4 | 0.04 |
|  | 2115-2130 | 10.9 | 0.01 |
|  | 2130-2145 | 40.7 | 0.06 |
|  | 2200-2215 | 35.9 | 0.04 |
|  | 2345-0000 | 76.6 | 0.09 |
| July 18 | 0115-0130 | 21.3 | 0.03 |
|  | 0145-0200 | 249.8 | 0.31 |
|  | 0200-0215 | 957.7 | 1.18 |
|  | 0215-0230 | 1561.4 | 1.93 |

Table 6 (cont.)

| Date | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| July 18 | 0230-0245 | 1207.5 | 1.49 |
|  | 0245-0300 | 166.6 | 0.21 |
|  | 0300-0315 | 104.1 | 0.13 |
|  | 0315-0330 | 83.3 | 0.10 |
|  | 0330-0345 | 83.3 | 0.10 |
|  | 0345-0400 | 106.6 | 0.13 |
|  | 0400-0415 | 159.1 | 0.20 |
|  | 0415-0430 | 261.1 | 0.32 |
|  | 0430-0445 | 297.6 | 0.37 |
|  | 0445-0500 | 437.3 | 0.54 |
|  | 0500-0515 | 383.9 | 0.47 |
|  | 0515-0530 | 610.3 | 0.75 |
|  | 0530-0545 | 993.4 | 1.23 |
|  | 0545-0600 | 1220.2 | 1.51 |
|  | 0600-0615 | 821.3 | 1.01 |
|  | 0615-0630 | 1545.1 | 1.91 |
|  | 0630-0645 | 1559.7 | 1.92 |
|  | 0645-0700 | 2525.5 | 3.12 |
|  | 0700-0715 | 1016.1 | 1.25 |
|  | 0715-0730 | 1572.6 | 1.94 |
|  | 0730-0744 | 1732.2 | 2.14 |
|  | 0745-0800 | 1598.9 | 1.97 |
|  | 0800-0815 | 1302.1 | 1.61 |
|  | 0815-0830 | 1764.7 | 2.18 |
|  | 0830-0845 | 1199.4 | 1.48 |
|  | 0845-0900 | 1056.6 | 1.30 |
|  | 0900-0915 | 1075.8 | 1.33 |
|  | 0915-0930 | 1026.7 | 1.27 |
|  | 0930-0945 | 589.7 | 0.73 |
|  | 0945-1000 | 372.6 | 0.46 |
|  | 1000-1015 | 222.7 | 0.27 |
|  | 1015-1030 | 130.7 | 0.16 |
|  | 1030-1045 | 157.1 | 0.19 |
|  | 1045-1100 | 449.4 | 0.55 |
|  | 1100-1115 | 393.6 | 0.49 |
|  | 1115-1130 | 497.5 | 0.61 |
|  | 1130-1145 | 883.7 | 1.09 |
|  | 1145-1200 | 2078.6 | 2.56 |
|  | 1200-1215 | 1982.3 | 2.45 |
|  | 1215-1230 | 1745.6 | 2.15 |
|  | 1230-1245 | 3510.4 | 4.33 |
|  | 1245-1300 | 1273.8 | 1.57 |
|  | 1300-1315 | 2326.6 | 2.87 |
|  | 1315-1330 | 1542.1 | 1.90 |
|  | 1330-1345 | 778.9 | 0.96 |
|  | 1345-1400 | 509.3 | 0.63 |

Table 6 (cont.)

| Date | Time Period (CDT) | $\text { Acre-Feet } \frac{\mathrm{R}}{t}$ | $10^{6} \mathrm{~m}^{3}$ |
| :---: | :---: | :---: | :---: |
| July 18 | 1400-1415 | 275.4 | 0.34 |
|  | 1415-1430 | 808.5 | 1.00 |
|  | 1430-1445 | 538.8 | 0.66 |
|  | 1445-1500 | 213.9 | 0.26 |
|  | 1500-1515 | 2656.4 | 3.28 |
|  | 1515-1530 | 1712.3 | 2.11 |
|  | 1530-1545 | 1912.6 | 2.36 |
|  | 1545-1600 | 768.7 | 0.95 |
|  | 1600-1615 | 2844.0 | 3.51 |
|  | 1615-1630 | 2359.0 | 2.91 |
|  | 1630-1645 | 2642.2 | 3.26 |
|  | 1645-1700 | 1059.7 | 1.31 |
|  | 1700-1715 | 1803.7 | 2.22 |
|  | 1715-1730 | 661.4 | 0.82 |
|  | 1730-1745 | 2031.4 | 2.51 |
|  | 1745-1800 | 2313.9 | 2.85 |
|  | 1800-1815 | 1056.0 | 1.30 |
|  | 1815-1830 | 1044.2 | 1.29 |
|  | 1830-1845 | 976.4 | 1.20 |
|  | 1845-1900 | 697.1 | 0.86 |
|  | 1900-1915 | 501.8 | 0.62 |
|  | 1915-1930 | 1403.9 | 1.73 |
|  | 1930-1945 | 423.0 | 0.52 |
|  | 1945-2000 | 524.0 | 0.65 |
|  | 2000-2015 | 1080.8 | 1.33 |
|  | 2015-2030 | 797.0 | 0.98 |
|  | 2030-2045 | 101.7 | 0.13 |
|  | 2045-2100 | 42.7 | 0.05 |
|  | 2100-2115 | 42.5 | 0.05 |
|  | 2115-2130 | 64.1 | 0.08 |
|  | 2130-2145 | 157.6 | 0.19 |
|  | 2145-2200 | 42.8 | 0.05 |
|  | 2215-2230 | 4.5 | 0.01 |
|  | 2245-2300 | 15.5 | 0.02 |
|  | 2345-0000 | 220.7 | 0.27 |
| July 19 | 0000-0015 | 78.9 | 0.10 |
|  | 0015-0030 | 440.7 | 0.54 |
|  | 0030-0045 | 1527.3 | 1.88 |
|  | 0045-0100 | 2106.4 | 2.60 |
|  | 0100-0115 | 3021.8 | 3.73 |
|  | 0115-0130 | 4253.4 | 5.25 |
|  | 0130-0145 | 3969.3 | 4.90 |
|  | 0145-0200 | 2382.3 | 2.94 |
|  | 0200-0215 | 4832.2 | 5.96 |
|  | 0215-0230 | 4854.1 | 5.99 |
|  | 0230-0245 | 5921.4 | 7.30 |

Table 6 (cont.)

| Date | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| July 19 | 0245-0300 | 5867.9 | 7.24 |
|  | 0300-0315 | 4141.6 | 5.11 |
|  | 0315-0330 | 4015.6 | 4.95 |
|  | 0330-0345 | 5849.7 | 7.22 |
|  | 0345-0400 | 6558.7 | 8.09 |
|  | 0400-0415 | 8409.8 | 10.37 |
|  | 0415-0430 | 8338.3 | 10.29 |
|  | 0430-0445 | 9292.1 | 11.46 |
|  | 0445-0500 | 6915.6 | 8.53 |
|  | 0500-0515 | 7349.1 | 9.07 |
|  | 0515-0530 | 8741.1 | 10.78 |
|  | 0530-0545 | 7535.2 | 9.29 |
|  | 0545-0600 | 6639.3 | 8.19 |
|  | 0600-0615 | 7152.8 | 3.83 |
|  | 0615-0630 | 6720.4 | 8.29 |
|  | 0630-0645 | 7087.1 | 8.74 |
|  | 0645-0700 | 7216.2 | 8.90 |
|  | 0700-0715 | 7894.4 | 9.74 |
|  | 0715-0730 | 7077.0 | 8.73 |
|  | 0730-0745 | 6322.7 | 7.80 |
|  | 0745-0800 | 5883.4 | 7.26 |
|  | 0800-0815 | 7421.8 | 9.16 |
|  | 0815-0830 | 6497.9 | 8.02 |
|  | 0830-0845 | 7082.4 | 8.74 |
|  | 0845-0900 | 6553.5 | 8.08 |
|  | 0900-0915 | 5986.3 | 7.38 |
|  | 0915-0930 | 6419.2 | 7.92 |
|  | 0930-0945 | 6991.9 | 8.62 |
|  | 0945-1000 | 6816.7 | 8.41 |
|  | 1000-1015 | 6658.3 | 8.21 |
|  | 1015-1030 | 5944.7 | 7.33 |
|  | 1030-1045 | 6750.8 | 8.33 |
|  | 1045-1100 | 8077.2 | 9.96 |
|  | 1100-1115 | 7529.0 | 9.29 |
|  | 1115-1130 | 7603.3 | 9.38 |
|  | 1130-1145 | 7539.0 | 9.30 |
|  | 1145-1200 | 9265.0 | 11.43 |
|  | 1200-1215 | 8753.5 | 10.80 |
|  | 1215-1230 | 9192.5 | 11.34 |
|  | 1230-1245 | 8796.7 | 10.85 |
|  | 1245-1300 | 8268.6 | 10.20 |
|  | 1300-1315 | 7247.6 | 8.94 |
|  | 1315-1330 | 5840.0 | 7.20 |
|  | 1330-1345 | 5475.3 | 6.75 |
|  | 1345-1400 | 4183.2 | 5.16 |
|  | 1400-1415 | 3988.0 | 4.92 |
|  | 1415-1430 | 3156.9 | 3.89 |

## Table 6 (cont.)

| Date | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| July 19 | 1430-1445 | 3262.3 | 4.02 |
|  | 1445-1500 | 2020.8 | 2.49 |
|  | 1500-1515 | 1275.4 | 1.57 |
|  | 1515-1530 | 1280.1 | 1.58 |
|  | 1530-1545 | 1044.3 | 1.29 |
|  | 1545-1600 | 763.2 | 0.94 |
|  | 1600-1615 | 410.2 | 0.51 |
|  | 1615-1630 | 315.5 | 0.39 |
|  | 1630-1645 | 211.6 | 0.26 |
|  | 1645-1700 | 227.7 | 0.28 |
|  | 1700-1715 | 115.2 | 0.14 |
|  | 1715-1730 | 68.0 | 0.08 |
|  | 1745-1800 | 96.4 | 0.12 |
|  | 1800-1815 | 7.1 | 0.01 |
|  | 1845-1900 | 14.5 | 0.02 |
|  | 1900-1915 | 11.7 | 0.01 |
|  | 2215-2230 | 8.7 | 0.01 |
|  | 2345-0000 | 16.8 | 0.02 |
| July 20 | 0330-0345 | 12.1 | 0.01 |
|  | 0345-0400 | 21.0 | 0.03 |
|  | 0400-0415 | 67.3 | 0.08 |
|  | 0415-0430 | 23.1 | 0.03 |
|  | 0430-0445 | 173.3 | 0.21 |
|  | 0445-0500 | 83.5 | 0.10 |
|  | 0500-0515 | 177.0 | 0.22 |
|  | 0515-0530 | 212.0 | 0.26 |
|  | 0530-0545 | 424.6 | 0.52 |
|  | 0545-0600 | 599.9 | 0.74 |
|  | 0600-0615 | 826.2 | 1.02 |
|  | 0615-0630 | 1020.0 | 1.26 |
|  | 0630-0645 | 729.5 | 0.90 |
|  | 0645-0700 | 766.2 | 0.95 |
|  | 0700-0715 | 690.4 | 0.85 |
|  | 0715-0730 | 757.4 | 0.93 |
|  | 0730-0745 | 802.5 | 0.99 |
|  | 0745-0800 | 441.6 | 0.54 |
|  | 0800-0815 | 362.4 | 0.45 |
|  | 0815-0830 | 345.8 | 0.43 |
|  | 0830-0845 | 358.9 | 0.44 |
|  | 0845-0900 | 302.9 | 0.37 |
|  | 0900-0915 | 156.3 | 0.19 |
|  | 0915-0930 | 361.7 | 0.45 |
|  | 0930-0945 | 161.9 | 0.20 |
|  | 0945-1000 | 113.6 | 0.14 |
|  | 1000-1015. | 130.8 | 0.16 |
|  | 1015-1030 | 144.0 | 0.18 |
|  | 1030-1045 | 37.3 | 0.05 |

## Table 6 (cont.)

| Date | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| July 20 | 1045-1100 | 25.1 | 0.03 |
|  | 1100-1115 | 120.8 | 0.15 |
|  | 1115-1130 | 867.8 | 1.07 |
|  | 1130-1145 | 948.9 | 1.17 |
| : | 1145-1200 | 613.9 | 0.76 |
|  | 1200-1215 | 311.1 | 0.38 |
|  | 1215-1230 | 358.4 | 0.44 |
|  | 1230-1245 | 261.3 | 0.32 |
|  | 1245-1300 | 141.2 | 0.17 |
|  | 1300-1315 | 123.7 | 0.15 |
|  | 1315-1330 | 34.0 | 0.04 |
|  | 1330-1345 | 6.5 | 0.01 |
|  | 1400-1415 | 56.8 | 0.07 |
|  | 1415-1430 | 18.1 | 0.02 |
|  | 1430-1445 | 46.4 | 0.06 |
|  | 1445-1500 | 45.4 | 0.06 |
|  | 1500-1515 | 95.4 | 0.12 |
|  | 1515-1530 | 11.5 | 0.01 |
|  | 1530-1545 | 11.5 | 0.01 |
|  | 1615-1630 | 195.4 | 0.24 |
|  | 1630-1645 | 179.8 | 0.22 |
|  | 1645-1700 | 306.6 | 0.38 |
|  | 1700-1715 | 98.8 | 0.12 |
|  | 1715-1730 | 1148.4 | 1.41 |
|  | 1730-1745 | 1048.9 | 1.29 |
|  | 1745-1800 | 68.4 | 0.08 |
|  | 1830-1845 | 3.7 | 0.01 |
|  | 1845-1900 | 7.5 | 0.01 |
|  | 1900-1915 | 457.8 | 0.56 |
|  | 1915-1930 | 372.9 | 0.46 |
|  | 1930-1945 | 62.1 | 0.08 |
|  | 1945-2000 | 20.7 | 0.03 |
|  | 2045-2100 | 20.7 | 0.03 |
|  | 2245-2300 | 20.7 | 0.03 |
| July 30 | 0145-0200 | 15.4 | 0.02 |
|  | 0200-0215 | 7.7 | 0.01 |
|  | 0215-0230 | 7.7 | 0.01 |
|  | 0230-0245 | 7.7 | 0.01 |
|  | 1100-1115 | 8.3 | 0.01 |
|  | 1700-1715 | 7.5 | 0.01 |
|  | 1800-1815 | 137.5 | 0.17 |
|  | 1815-1830 | 412.6 | 0.51 |
|  | 1830-1845 | 110.0 | 0.14 |

Table 6 (cont.)

| Date | Time Period (CDT) | $\text { Acre-Fee } \frac{\mathrm{R}}{\mathrm{t}}$ | $10^{6} \mathrm{~m}^{3}$ |
| :---: | :---: | :---: | :---: |
| July 31 | 0015-0030 | 106.7 | 0.13 |
|  | 0030-0045 | 68.1 | 0.08 |
|  | 0045-0100 | 540.6 | 0.67 |
|  | 0100-0115 | 1092.1 | 1.35 |
|  | 0115-0130 | 1117.5 | 1.38 |
|  | 0130-0145 | 891.9 | 1.10 |
|  | 0145-0200 | 734.7 | 0.91 |
|  | 0200-0215 | 803.3 | 0.99 |
|  | 0215-0230 | 588.0 | 0.73 |
|  | 0230-0245 | 235.3 | 0.29 |
|  | 0245-0300 | 105.4 | 0.13 |
|  | 0300-0315 | 10.2 | 0.01 |
|  | 0345-0400 | 53.1 | 0.07 |
|  | 0400-0415 | 159.6 | 0.20 |
|  | 0415-0430 | 53.4 | 0.07 |
|  | 0430-0445 | 177.0 | 0.22 |
|  | 0445-0500 | 85.5 | 0.11 |
|  | 0500-0515 | 85.4 | 0.11 |
|  | 0515-0530 | 168.9 | 0.21 |
|  | 0530-0545 | 449.8 | 0.55 |
|  | 0545-0600 | 532.2 | 0.66 |
|  | 0600-0615 | 267.6 | 0.33 |
|  | 0615-0630 | 415.2 | 0.51 |
|  | 0630-0645 | 217.3 | 0.27 |
|  | 0645-0700 | 338.6 | 0.42 |
|  | 0700-0715 | 446.4 | 0.55 |
|  | 0715-0730 | 112.0 | 0.14 |
|  | 0730-0745 | 185.5 | 0.23 |
|  | 0745-0800 | 553.9 | 0.68 |
|  | 0800-0815 | 677.0 | 0.84 |
|  | 0815-0830 | 550.1 | 0.68 |
|  | 0830-0845 | 516.9 | 0.64 |
|  | 0845-0900 | 708.2 | 0.87 |
|  | 0900-0915 | 292.8 | 0.36 |
|  | 0915-0930 | 413.7 | 0.51 |
|  | 0930-0945 | 618.4 | 0.76 |
|  | 0945-1000 | 845.1 | 1.04 |
|  | 1000-1015 | 869.2 | 1.07 |
|  | 1015-1030 | 1926.5 | 2.38 |
|  | 1030-1045 | 3241.6 | 4.00 |
|  | 1045-1100 | 4195.5 | 5.18 |
|  | 1100-1115 | 2431.6 | 3.00 |
|  | 1115-1130 | 1362.2 | 1.68 |
|  | 1130-1145 | 993.4 | 1.23 |
|  | 1145-1200 | 839.9 | 1.04 |
|  | 1200-1215 | 546.4 | 0.67 |
|  | 1215-1230 | 274.0 | 0.33 |
|  | 1230-1245 | 131.4 | 0.16 |
|  | 1245-1300 | 50.3 | 0.06 |

Table 7
1980 Precipitation

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Acre-feet | $10^{6} \mathrm{~m}^{3}$ |
| May 15 |  |  | 0000-0015 | 9.8 | 0.01 |
|  |  | 0015-0030 | 7.5 | 0.01 |
|  |  | 0145-0200 | 20.8 | 0.03 |
|  |  | 0200-0215 | 25.1 | 0.03 |
|  |  | 0215-0230 | 648.7 | 0.80 |
|  |  | 0230-0245 | 2145.6 | 2.65 |
|  |  | 0245-0300 | 2849.5 | 3.51 |
|  |  | 0300-0315 | 5814.1 | 7.17 |
|  |  | 0315-0330 | 6580.0 | 8.12 |
|  |  | 0330-0345 | 6025.4 | 7.43 |
|  |  | 0345-0400 | 8783.7 | 10.83 |
|  |  | 0400-0415 | 13433.8 | 16.57 |
|  |  | 0415-0430 | 14622.5 | 18.04 |
|  |  | 0430-0445 | 20018.1 | 24.69 |
|  |  | 0445-0500 | 24760.0 | 30.54 |
|  |  | 0500-0515 | 23665.9 | 29.19 |
|  |  | 0515-0530 | 20528.1 | 25.32 |
|  |  | 0530-0545 | 16939.5 | 20.90 |
|  |  | 0545-0600 | 15450.0 | 19.06 |
|  |  | 0600-0615 | 11683.1 | 14.41 |
|  |  | 0615-0630 | 13318.4 | 16.43 |
|  |  | 0630-0645 | 12172.3 | 15.01 |
|  |  | 0645-0700 | 11338.0 | 13.99 |
|  |  | 0700-0715 | 11729.7 | 14.47 |
|  |  | 0715-0730 | 10246.1 | 12.64 |
|  |  | 0730-0745 | 10978.6 | 13.54 |
|  |  | 0745-0800 | 15191.4 | 18.74 |
|  |  | 0800-0815 | 13046.1 | 16.09 |
|  |  | 0815-0830 | 14600.0 | 18.01 |
|  |  | 0830-0845 | 15177.9 | 18.72 |
|  |  | 0845-0900 | 15451.6 | 19.06 |
|  |  | 0900-0915 | 10315.9 | 12.72 |
|  |  | 0915-0930 | 10399.9 | 12.83 |
|  |  | 0930-0945 | 10345.4 | 12.76 |
|  |  | 0945-1000 | 9065.5 | 11.18 |
|  |  | 1000-1015 | 7628.5 | 9.41 |
|  |  | 1015-1030 | 7448.1 | 9.19 |
|  |  | 1030-1045 | 7046.8 | 8.69 |
|  |  | 1045-1100 | 7676.2 | 9.47 |
|  |  | 1100-1115 | 5599.5 | 6.91 |
|  |  | 1115-1130 | 3068.9 | 3.79 |
|  |  | 1130-1145 | 1319.9 | 1.63 |
|  |  | 1145-1200 | 425.3 | 0.52 |
|  |  | 1200-1215 | 84.3 | 0.10 |
|  |  | 1215-1230 | 28.6 | 0.04 |
|  |  | 1230-1245 | 14.5 | 0.02 |

Table 7 (cont.)

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| May | 15 |  | 1245-1300 | 14.5 | 0.02 |
|  |  | 1345-1400 | 17.7 | 0.02 |
|  |  | 1415-1430 | 28.5 | 0.04 |
|  |  | 1430-1445 | 46.2 | 0.06 |
|  |  | 1715-1730 | 3.7 | 0.01 |
|  |  | 1730-1745 | 15.3 | 0.02 |
|  |  | 1745-1800 | 148.8 | 0.18 |
|  |  | 1800-1815 | 143.9 | 0.18 |
|  |  | 1815-1830 | 388.5 | 0.48 |
|  |  | 1830-1845 | 473.6 | 0.58 |
|  |  | 1845-1900 | 215.7 | 0.27 |
|  |  | 1900-1915 | 182.3 | 0.22 |
| May | 18 | 1630-1645 | 178.8 | 0.22 |
|  |  | 1645-1700 | 224.2 | 0.28 |
|  |  | 1700-1715 | 57.4 | 0.07 |
|  |  | 1800-1815 | 18.5 | 0.02 |
|  |  | 1815-1830 | 31.1 | 0.04 |
|  |  | 1830-1845 | 84.9 | 0.10 |
|  |  | 1845-1900 | 73.6 | 0.09 |
|  |  | 2015-2030 | 21.9 | 0.03 |
| May | 20 | 1615-1630 | 1076.7 | 1.33 |
|  |  | 1645-1700 | 349.8 | 0.43 |
|  |  | 1700-1715 | 43.7 | 0.05 |
|  |  | 1715-1730 | 240.1 | 0.30 |
|  |  | 1730-1745 | 2817.2 | 3.48 |
|  |  | 1745-1800 | 1366.1 | 1.69 |
|  |  | 1800-1815 | 4942.9 | 6.10 |
|  |  | 1815-1830 | 3891.6 | 4.80 |
|  |  | 1830-1845 | 2290.3 | 2.83 |
|  |  | 1845-1900 | 5645.8 | 6.96 |
|  |  | 1900-1915 | 4147.6 | 5.11 |
|  |  | 1915-1930 | 5413.4 | 6.68 |
|  |  | 1930-1945 | 6854.4 | 8.46 |
|  |  | 1945-2000 | 5594.7 | 6.90 |
|  |  | 2000-2015 | 1500.6 | 1.85 |
|  |  | 2015-2030 | 1455.3 | 1.80 |
|  |  | 2030-2045 | 2681.9 | 3.31 |
|  |  | 2045-2100 | 1675.0 | 2.07 |
|  |  | 2100-2115 | 1141.9 | 1.41 |
|  |  | 2115-2130 | 980.6 | 1.21 |
|  |  | 2130-2145 | 734.4 | 0.91 |
|  |  | 2145-2200 | 703.8 | 0.87 |
|  |  | 2200-2215 | 194.5 | 0.24 |
|  |  | 2215-2230 | 20.8 | 0.03 |
|  |  | 2230-2245 | 7.5 | 0.01 |
|  |  | 2300-2315 | 13.1 | 0.02 |

Table 7 (cont.)

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| May | 20 |  | 2315-2330 | 15.2 | 0.02 |
| May | 21 | 0100-0115 | 7.5 | 0.01 |
|  |  | 0515-0530 | 39.2 | 0.05 |
|  |  | 0930-0945 | 7616.3 | 9.39 |
| May | 23 | 0215-0230 | 38.5 | 0.05 |
|  |  | 0230-0245 | 49.3 | 0.06 |
| May | 27 | 1800-1815 | 39.2 | 0.05 |
|  |  | 1815-1830 | 490.8 | 0.61 |
|  |  | 1830-1845 | 1524.8 | 0.19 |
|  |  | 1845-1900 | 778.4 | 0.10 |
|  |  | 1900-1915 | 911.7 | 1.12 |
|  |  | 1915-1930 | 1348.6 | 1.66 |
|  |  | 1930-1945 | 897.6 | 1.11 |
|  |  | 1945-2000 | 1029.1 | 1.27 |
|  |  | 2000-2015 | 875.2 | 1.08 |
|  |  | 2015-2030 | 506.9 | 0.63 |
|  |  | 2030-2045 | 162.3 | 0.20 |
|  |  | 2045-2100 | 63.1 | 0.08 |
|  |  | 2100-2115 | 17.8 | 0.02 |
| May | 28 | 0500-0515 | 5.3 | 0.01 |
|  |  | 0515-0530 | 5.3 | 0.01 |
|  |  | 0530-0545 | 23.2 | 0.03 |
|  |  | 0545-0600 | 6.3 | 0.01 |
|  |  | 0600-0615 | 48.1 | 0.06 |
|  |  | 0615-0630 | 34.7 | 0.04 |
|  |  | 0630-0645 | 6.3 | 0.01 |
| June | 1 | 0600-0615 | 17.1 | 0.02 |
|  |  | 0615-0630 | 115.2 | 0.14 |
|  |  | 0645-0700 | 25.4 | 0.03 |
|  |  | 1815-1830 | 466.4 | 0.58 |
|  |  | 1830-1845 | 706.4 | 0.87 |
|  |  | 1845-1900 | 874.7 | 1.08 |
|  |  | 1900-1915 | 79.4 | 0.10 |
|  |  | 2030-2045 | 32.6 | 0.04 |
|  |  | 2045-2100 | 52.2 | 0.06 |
|  |  | 2100-2115 | 495.0 | 0.61 |
|  |  | 2115-2130 | 1161.8 | 1.43 |
|  |  | 2130-2145 | 534.4 | 0.66 |
|  |  | 2145-2200 | 60.7 | 0.07 |
| June | 7 | 2000-2015 | 60.4 | 0.07 |
|  |  | 2015-2030 | 544.0 | 0.67 |
|  |  | 2100-2115 | 12.1 | 0.01 |

Table 7 (cont.)

| Date |  | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| June | 7 | 2115-2130 | 12.1 | 0.01 |
|  |  | 2130-2145 | 24.2 | 0.03 |
|  |  | 2145-2200 | 12.1 | 0.01 |
|  |  | 2200-2215 | 12.1 | 0.01 |
|  |  | 2300-2315 | 80.5 | 0.10 |
|  |  | 2315-2330 | 756.7 | 0.93 |
|  |  | 2330-2345 | 1438.8 | 1.77 |
|  |  | 2345-0000 | 5516.5 | 6.80 |
| June | 8 | 0000-0015 | 6811.5 | 8.40 |
|  |  | 0015-0030 | 9214.8 | 11.37 |
|  |  | 0030-0045 | 7900.6 | 9.75 |
|  |  | 0045-0100 | 8680.7 | 10.71 |
|  |  | 0100-0115 | 7034.9 | 8.68 |
|  |  | 0115-0130 | 6946.2 | 8.57 |
|  |  | 0130-0145 | 2556.2 | 3.15 |
|  |  | 0145-0200 | 695.5 | 0.86 |
|  |  | 0200-2015 | 272.8 | 0.34 |
|  |  | 0215-0230 | 159.8 | 0.20 |
|  |  | 0230-0245 | 255.3 | 0.31 |
|  |  | 0245-0300 | 558.0 | 0.69 |
|  |  | 0300-0315 | 289.6 | 0.36 |
|  |  | 0315-0330 | 62.8 | 0.08 |
|  |  | 0330-0345 | 86.1 | 0.10 |
|  |  | 0345-0400 | 165.7 | 0.20 |
|  |  | 0400-0415 | 122.4 | 0.15 |
|  |  | 0415-0430 | 126.2 | 0.16 |
|  |  | 0430-0445 | 134.5 | 0.17 |
|  |  | 0445-0500 | 142.8 | 0.18 |
|  |  | 0500-0515 | 122.4 | 0.15 |
|  |  | 0515-0530 | 102.0 | 0.13 |
|  |  | 0530-0545 | 20.4 | 0.03 |
|  |  | 0715-0730 | 46.1 | 0.06 |
|  |  | 0730-0745 | 29.1 | 0.04 |
|  |  | 0745-0800 | 197.8 | 0.24 |
|  |  | 0800-0815 | 116.7 | 0.14 |
|  |  | 0815-0830 | 59.4 | 0.07 |
|  |  | 0830-0845 | 19.0 | 0.02 |
|  |  | 0845-0900 | 57.0 | 0.07 |
|  |  | 0900-0915 | 40.6 | 0.05 |
|  |  | 1030-1045 | 24.2 | 0.03 |
|  |  | 1045-1100 | 12.1 | 0.01 |
|  |  | 1100-1115 | 24.2 | 0.03 |
|  |  | 1115-1130 | 24.2 | 0.03 |
|  |  | 1215-1230 | 12.1 | 0.01 |
|  |  | 1230-1245 | 12.1 | 0.01 |
|  |  | 1315-1330 | 12.1 | 0.01 |
|  |  | 1330-1345 | 47.2 | 0.06 |

Table 7 (cont.)

| Date | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| June 8 | 1345-1400 | 59.3 | 0.07 |
|  | 1400-1415 | 941.0 | 1.16 |
|  | 1415-1430 | 1739.2 | 2.15 |
|  | 1430-1445 | 2443.1 | 3.01 |
|  | 1445-1500 | 4297.2 | 5.30 |
|  | 1500-1515 | 4685.0 | 5.78 |
|  | 1515-1530 | 5087.7 | 6.28 |
|  | 1530-1545 | 3756.7 | 4.63 |
|  | 1545-1600 | 3712.0 | 4.58 |
|  | 1600-1615 | 3242.9 | 4.00 |
|  | 1615-1630 | 2578.7 | 3.18 |
|  | 1630-1645 | 2755.9 | 3.40 |
|  | 1645-1700 | 2116.4 | 2.61 |
|  | 1700-1715 | 1725.8 | 2.13 |
|  | 1715-1730 | 1342.6 | 1.66 |
|  | 1730-1745 | 1011.9 | 1.25 |
|  | 1745-1800 | 732.9 | 0.90 |
|  | 1800-1815 | 272.9 | 0.34 |
|  | 1815-1830 | 157.1 | 0.19 |
|  | 1830-1845 | 28.2 | 0.03 |
|  | 1845-1900 | 17.8 | 0.02 |
|  | 1900-1915 | 17.8 | 0.02 |
| June 11 | 0030-0045 | 7.5 | 0.01 |
|  | 0045-0100 | 7.5 | 0.01 |
|  | 0100-0115 | 15.1 | 0.02 |
|  | 0115-0130 | 414.2 | 0.51 |
|  | 0130-0145 | 2473.3 | 3.05 |
|  | 0145-0200 | 5345.2 | 6.59 |
|  | 0200-0215 | 7588.2 | 9.36 |
|  | 0215-0230 | 10744.0 | 13.25 |
|  | 0230-0245 | 11094.2 | 13.69 |
|  | 0245-0300 | 16387.7 | 20.21 |
|  | 0300-0315 | 15582.7 | 19.22 |
|  | 0315-0330 | 15648.2 | 19.30 |
|  | 0330-0345 | 12168.8 | 15.01 |
|  | 0345-0400 | 6942.6 | 8.56 |
|  | 0400-0415 | 8774.0 | 10.82 |
|  | 0415-0430 | 6142.8 | 7.58 |
|  | 0430-0445 | 6281.9 | 7.75 |
|  | 0445-0500 | 5565.8 | 6.87 |
|  | 0500-0515 | 4891.0 | 6.03 |
|  | 0515-0530 | 3506.6 | 4.33 |
|  | 0530-0545 | 2137.8 | 2.63 |
|  | 0545-0600 | 1211.9 | 1.49 |
|  | 0600-0615 | 682.8 | 0.84 |
|  | 0615-0630 | 288.7 | 0.36 |
|  | 0630-0645 | 118.6 | 0.15 |

Table 7 (cont.)

| Date | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| June 11 | 0645-0700 | 70.5 | 0.09 |
|  | 0700-0715 | 10.9 | 0.01 |
| June 17 | 2030-2045 | 5.3 | 0.01 |
|  | 2045-2100 | 152.8 | 0.19 |
|  | 2100-2115 | 31.7 | 0.04 |
|  | 2115-2130 | 10.5 | 0.01 |
|  | 2215-2230 | 104.1 | 0.13 |
|  | 2230-2245 | 213.7 | 0.26 |
|  | 2245-2300 | 229.5 | 0.28 |
|  | 2300-2315 | 9.8 | 0.01 |
|  | 2330-2345 | 19.0 | 0.02 |
| June 18 | 1730-1745 | 75.0 | 0.09 |
|  | 1800-1815 | 37.7 | 0.05 |
|  | 1815-1830 | 7.5 | 0.01 |
|  | 2215-2230 | 72.8 | 0.09 |
|  | 2230-2245 | 470.9 | 0.58 |
|  | 2245-2300 | 319.60 | 0.39 |
|  | 2300-2315 | 207.2 | 0.26 |
|  | 2315-2330 | 15.9 | 0.02 |
| June 19 | 1800-1815 | 825.11 | 1.02 |
|  | 1815-1830 | 1016.6 | 1.25 |
|  | 1830-1845 | 538.0 | 0.66 |
|  | 1845-1900 | 1761.9 | 2.17 |
|  | 1900-1915 | 2912.3 | 3.59 |
|  | 1915-1930 | 2476.8 | 3.06 |
|  | 1930-1945 | 2430.8 | 3.00 |
|  | 1945-2000 | 2020.3 | 2.49 |
|  | 2000-2015 | 2436.9 | 3.01 |
|  | 2015-2030 | 3036.8 | 3.75 |
|  | 2030-2045 | 3307.6 | 4.08 |
|  | 2045-2100 | 1045.8 | 1.29 |
|  | 2100-2115 | 183.6 | 0.22 |
|  | 2115-2130 | 79.5 | 0.10 |
|  | 2130-2145 | 31.0 | 0.04 |
|  | 2145-2200 | 25.5 | 0.03 |
|  | 2200-2215 | 464.2 | 0.57 |
|  | 2215-2230 | 491.3 | 0.61 |
|  | 2230-2245 | 41.9 | 0.05 |
|  | 2245-2300 | 14.5 | 0.02 |
| June 20 | 1900-1915 | 390.3 | 0.48 |
|  | 1915-1930 | 552.5 | 0.68 |
|  | 1930-1945 | 845.4 | 1.04 |
|  | 1945-2000 | 2094.8 | 2.58 |
|  | 2000-2015 | 1371.2 | 1.69 |

Table 7 (cont.)

| Date | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| June 20 | 2015-2030 | 247.2 | 0.30 |
|  | 2045-2100 | 104.0 | 0.13 |
|  | 2200-2215 | 101.2 | 0.12 |
|  | 2215-2230 | 281.8 | 0.34 |
|  | 2230-2245 | 831.5 | 1.03 |
|  | 2245-2300 | 415.5 | 0.51 |
|  | 2300-2315 | 608.7 | 0.75 |
|  | 2315-2330 | 52.0 | 0.06 |
|  | 2330-2345 | 29.5 | 0.04 |
|  | 2345-0000 | 15.4 | 0.02 |
| June 21 | 0015-0030 | 33.7 | 0.04 |
|  | 0030-0045 | 3.7 | 0.01 |
|  | 0045-0100 | 3.7 | 0.01 |
|  | 0115-0130 | 18.7 | 0.02 |
|  | 1745-1800 | 22.9 | 0.02 |
|  | 1815-1830 | 51.0 | 0.06 |
|  | 1830-1845 | 1981.0 | 2.44 |
|  | 1845-1900 | 1197.2 | 1.48 |
|  | 1900-1915 | 3996.1 | 4.93 |
|  | 1915-1930 | 6243.2 | 7.70 |
|  | 1930-1945 | 6082.0 | 7.50 |
|  | 1945-2000 | 6712.7 | 8.28 |
|  | 2000-2015 | 6141.9 | 7.58 |
|  | 2015-2030 | 5487.9 | 6.77 |
|  | 2030-2045 | 10019.4 | 12.36 |
|  | 2045-2100 | 7623.6 | 9.40 |
|  | 2100-2115 | 8011.5 | 9.88 |
|  | 2115-2130 | 9379.6 | 11.57 |
|  | 2130-2145 | 9444.5 | 11.65 |
|  | 2145-2200 | 6676.2 | 8.24 |
|  | 2200-2215 | 6085.8 | 7.51 |
|  | 2215-2230 | 3761.9 | 4.64 |
|  | 2230-2245 | 2886.9 | 3.56 |
|  | 2245-2300 | 1610.0 | 1.99 |
|  | 2300-2315 | 866.4 | 1.07 |
|  | 2315-2330 | 355.5 | 0.44 |
|  | 2330-2345 | 186.4 | 0.22 |
|  | 2345-0000 | 131.2 | 0.16 |
| June 22 | 0000-0015 | 109.3 | 0.13 |
|  | 0015-0030 | 109.3 | 0.13 |
|  | 0030-0045 | 109.3 | 0.13 |
|  | 0045-0100 | 65.6 | 0.08 |
|  | 0100-0115 | 21.9 | 0.03 |

Table 7 (cont.)

| Date | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| July 1 | 1800-1815 | 8.8 | 0.01 |
|  | 1815-1830 | 158.2 | 0.20 |
|  | 1830-1845 | 17.6 | 0.02 |
| July 20 | 1930-1945 | 9.8 | 0.01 |
|  | 1945-2000 | 150.3 | 0.19 |
|  | 2045-2100 | 21.2 | 0.03 |
|  | 2130-2145 | 88.3 | 0.11 |
| July 21 | 1000-1015 | 545.8 | 0.67 |
|  | 1015-1030 | 35.4 | 0.04 |
|  | 1115-1130 | 47.1 | 0.06 |
|  | 1130-1145 | 702.8 | 0.25 |
|  | 1145-1200 | 602.0 | 0.74 |
|  | 1200-1215 | 180.0 | 0.22 |
|  | 1215-1230 | 507.8 | 0.63 |
|  | 1500-1515 | 275.3 | 0.34 |
|  | 1515-1530 | 8.9 | 0.01 |
|  | 1545-1600 | 588.0 | 0.73 |
|  | 1600-1615 | 220.7 | 0.27 |
|  | 1615-1630 | 283.7 | 0.35 |
|  | 1630-1645 | 39.8 | 0.05 |
|  | 1645-1700 | 78.5 | 0.10 |
|  | 1700-1715 | 63.2 | 0.08 |
|  | 1715-1730 | 142.7 | 0.18 |
|  | 1730-1745 | 35.7 | 0.04 |
|  | 1830-1845 | 35.2 | 0.04 |
| July 22 | 0415-0430 | 7.5 | 0.01 |
|  | 0430-0445 | 15.0 | 0.02 |
|  | 0445-0500 | 75.6 | 0.09 |
|  | 0500-0515 | 170.9 | 0.21 |
|  | 0515-0530 | 219.9 | 0.27 |
|  | 0530-0545 | 646.5 | 0.80 |
|  | 0545-0600 | 550.2 | 0.68 |
|  | 0600-0615 | 774.5 | 0.96 |
|  | 0615-0630 | 932.2 | 1.15 |
|  | 0630-0645 | 893.3 | 1.10 |
|  | 0645-0700 | 834.5 | 1.03 |
|  | 0700-0715 | 762.1 | 0.94 |
|  | 0715-0730 | 571.4 | 0.70 |
|  | 0730-0745 | 474.8 | 0.59 |
|  | 0745-0800 | 333.1 | 0.41 |
|  | 0800-0815 | 364.6 | 0.45 |
|  | 0815-0830 | 435.9 | 0.54 |
|  | 0830-0845 | 387.5 | 0.48 |
|  | 0845-0900 | 69.3 | 0.09 |
|  | 0900-0915 | 41.0 | 0.05 |

Table 7 (cont.)

| Date | Time Period (CDT) | Rainfall Volume |  |
| :---: | :---: | :---: | :---: |
|  |  | Acre-Feet | $10^{6} \mathrm{~m}^{3}$ |
| July 22 | 1045-1100 | 19.9 | 0.02 |
|  | 1745-1800 | 78.5 | 0.10 |
|  | 1815-1830 | 30.8 | 0.04 |
|  | 1830-1845 | 46.2 | 0.06 |
|  | 1845-1900 | 15.4 | 0.02 |
|  | 1900-1915 | 30.8 | 0.04 |
| July 26 | 2100-2115 | 106.5 | 0.13 |
|  | 2115-2130 | 57.1 | 0.07 |
|  | 2130-2145 | 239.1 | 0.29 |
|  | 2145-2200 | 339.0 | 0.42 |
|  | 2200-2215 | 820.1 | 1.01 |
|  | 2215-2230 | 533.9 | 0.66 |
| July 27 | 0445-0500 | 33.6 | 0.04 |
|  | 0500-0515 | 151.9 | 0.19 |
|  | 0515-0530 | 119.5 | 0.15 |
|  | 0530-0545 | 115.7 | 0.14 |
|  | 0545-0600 | 15.2 | 0.02 |
|  | 0600-0615 | 15.1 | 0.02 |
|  | 0615-0630 | 30.1 | 0.04 |
|  | 0630-0645 | 22.6 | 0.03 |
|  | 1645-1700 | 13.7 | 0.02 |



Figure Ga. An example of convective cells taken on 6 July 1979 at 19:40:04 GMT (tilt angle $1.0^{\circ}$ )


2002 065L $79124-2$ 02433 $12981 \mathrm{KB4}$


Figure 6b. Satellite imagery on 6 July 1979 showing the convective cells depicted by radar in Figure 6a; the solid circle corresponds to the total radar coverage in Figure 6a.

## NO <br> RAINFALL <br> RECORDED

Figure 6c. Rainfall observed during 1915-1930 GMT on 6 July 1979 produced by the convective cells depicted by radar in Figure 6a.


Legend (dBZ)


Figure 7a. An example of small convective clusters taken on 25 June 1979 at 19:15:40 GMT (tilt angle $1.0^{\circ}$ )


Figure 7b. Satellite imagery on 25 June 1979 showing the small convective clusters depicted by radar in Figure 7a; the solid circle corresponds to the total radar coverage in Figure 7a.


Figure 7c. Rainfall observed during 1900-1915 GMT on 25 June 1979 produced by the small convective clusters depicted by radar in Figure 7a; the dashed circle is at a 25 n . mi. distance from the radar and corresponds to the dashed circle in Figure 7a.


Figure \&a. An example of large convective clusters taken on 18 July 1979 at 23:23:54 GMT (tilt angle $1.0^{\circ}$ )

## 2202 18.JL79 12A-2 0242412922 KB4




Figure 8b. Satellite imagery on 18 July 1979 showing the large convective clusters depicted by radar in Figure 8a; the solid circle corresponds to the total radar coverage in Figure 8a.


Figure 8c. Rainfall observed during 2315-2330 GMT on 18 July 1979 produced by the large convective clusters depicted by radar in Figure 8a; the dashed circle is at a 25 n . mi . distance from the radar and corresponds to the dashed circle in Figure 8a.


Figure ga. An example of nested convective clusters taken on 10 July 1979 at 01:04:31 GMT (tilt angle 1.0 ${ }^{\circ}$ )


## 0032 10.JL79 12E-2MB 0242212961 KB4



Figure 9b. Satellite imagery on 10 July 1979 showing the nested convective clusters depicted by radar in Figure 9a; the solid circle corresponds to the total radar coverage in Figure 9a.


Figure 9c. Rainfall observed during 0100-0115 GMT on 10 July 1979, produced by the nested convective clusters depicted by radar in Figure 9a, the dashed circle is at a 25 n . mi. distance from the radar and corresponds to the dashed circle in Figure 5a.

The patterns displayed by each category with respect to the other datacollection devices are also significant. Although the primary goal of this categorization is stratification of raingage data, the satellite perspective is interesting, especially in the case of nested convective clusters. In addition, correlation among the independent data sets within each category is necessary. This requirement appears to be fulfilled by examination of concurrent radar echo patierns (Figures 6a, 7a, 8a, 9a), satellite imagery (Figures $6 b, 7 b, 8 b, 9 b)$, and raingage maps (Figures 6c, 7c, 8c, 9c). How these patterns represent significant variations of meteorological parameters between categories is the subject of further research.

## COLORADO RIVER MUNICIPAL WATER DISTRICT

## 1. Raingage Surveillance and Maintenance

2. Preçipitation Datã Management
3. Preparation for 1981 Field Program

Raingage Surveillance and Maintenance
During the period October - March, a routine surveillance of the Belfort recording raingages was performed biweekly to prevent vandalism and to insure that the protective winter covering on each gage was intact. As part of the 1980 winterization program each gage clock, silicone oil, and the collection bucket were removed.

One recording raingage was reported stolen during January; all gage components were missing, including the support base. A Certificate of Loss form was completed and forwarded for appropriate action. The gage was subsequently replaced with another gage that was positioned in a new, more secure locality. During March, one gage was discovered to have been shot several times with a small caliber weapon. The outer casing was destroyed beyond repair. The remaining undamaged parts were salvaged and placed in the spare parts inventory to be utilized in keeping the entire recording raingage network operational. Precipitation Data Management

By the end of December 1980, all remaining 1980 field season rainfall data had been transcribed from the recording charts to the Fortran coding sheets and forwarded to Texas Tech University for keypunching. The heavy stratiform precipitation experienced during the month of September made chart interpretation and documentation a tedious and lengthy process.

Preparation for 1981 Field Program
Effective January 1, 1981, the CRMWD entered into a five-year lease agreement with the City of Big Spring for Hangar T-9 at the Industrial Park. The lease agreement obligates the CRMWD to rental payments for the first two years, and thereafter provides a renewal option for three successive years. The purpose of a lease agreement for a large aircraft hangar was to provide uncrowded
aircraft parking space for CRMWD and HIPLEX weather modification aircraft.
On March 2, 1981, two CRMWD technicians began dewinterizing the gages in preparation for the 1981 Texas HIPLEX Program. All component parts removed earlier during winterization were reinstalled, and a weighing and timing calibration test was performed for each gage. Tests on all 106 recording gages were completed by March 15, 1981. In addition to the 106 recording gages, the CRMWD also implemented its network of 81 non-recording fencepost gages.

On March 3, 1981, a team of Air Force personnel arrived at the Big Spring Industrial Park to dismantle the FPS-77 Radar. The team was comprised of technicians stationed at San Antonio, Texas. All radar components were removed and crated for return shipment to the Air Force inventory.

Prior to the removal of the FPS-77 Radar, the CRMWD installed, calibrated, and placed into operation a 3 -centimeter X-Band Radar as a replacement for the FPS-77. The $3-\mathrm{cm}$ Radar has subsequently been used during two operational seeding missions during the month of March.

Letters of Contract Agreement were issued by the CRMWD to the Colorado International Corporation (CIC) for instrumentation services and aircraft modifications to the P-Navajo and Aztec aircraft in support of Texas HIPLEX 1981. These contracts were initiated in accordance with the Texas Department of Water Resources Interim Contract for the period of January 1, 1981 through May 31, 1981, which authorizes third-party contracts in preparation for the Texas HIPLEX Program. The cloud physics package was crated and shipped via Merchants Fast Motor Lines to CIC early in February to allow sufficient lead time for component upgrading and calibration prior to installation in the P-Navajo. The aforementioned CIC Contracts were subsequently cancelled by the CRMWD, and all aircraft instrumentation services wereterminated early in March as a result of the cancellation of the Texas HIPLEX Program.

## SECTION II:

Work Planned,
April 1, 1981 - September 30, 1981

## Texas Department of Water Resources

The Department shall continue in its capacity as the administrator of the 1974 Master Agreement between the Department and the WPRS. Among the duties charged the Department by the Agreement are: administration of the Texas HIPLEX Program and management and monitoring of all Texas HIPLEX-related contracts.

The Department will continue to serve as principal reviewer and editor of all Texas HIPLEX-related technical and data reports as they are submitted to the Department by Texas HIPLEX participant organizations. In addition to publishing these reports, the Department shall submit to the WPRS monthly and interim Texas HIPLEX progress reports which consist of progress reports submitted to the Department by the various Texas HIPLEX subcontractors.

The Department shall also submit to the WPRS the Texas HIPLEX completion report, entitled "HIPLEX In Texas: A Summary Report on Six Years of Experimentation." The report is to consolidate the salient findings from each aspect of the Texas HIPLEX research effort, beginning with its inception and following through the 1980 field program.

## Texas A\&M University

The primary emphasis during April and May will be to document all analytical results and submit the reports to TDWR for publication. Two reports will be prepared--one on environmental response to convective activity, and the other a composite containing meso- and synoptic-scale analyses, cloud microphysics studies, comparison of TAMU and NWS soundings for Midland, and the mesoscale numerical model.

Beginning in June, research will continue on mesoscale analysis, variability in radar echoes, and on the development of the mesoscale numerical model.

Texas Tech University
The work planned for the next several months will emphasize the analysis of data already collected and can be summarized into three tasks: Task 1.

Conduct analyses of microphysical data to establish natural precipitation mechanisms and develop tentative seeding hypotheses. The focus of Texas HIPLEX has been placed upon the potential rainfall increases resulting from seeding clusters of convective cells. Both previously analyzed data and measurements which have yet to be studied in detail need to be investigated with this point in mind. Of particular interest are those aspects of the precipitation process which can be associated with possible dynamic seeding effects.

## Task 2.

Conduct case study analyses of the structure and evolution of precipitation events. The integration of radar, satellite, upper air, surface, and raingage data permits a qualitative description of the development of precipitation. Emphasis to date has been placed upon 17 July 1979, and this study is nearing completion. In addition, diagnostic tehcniques will be developed to yield quantitative estimates of mass and energy transports by cumulus and mesoscale vertical motions.

Task 3.
Establish in terms of rainfall characteristics the natural conditions associated with the occurrence of precipitation. Several categories of precipitation events have been established from radar echo patterns. These categories are small, large, and nested clusters. Raingage data will be utilized to generate the statistical properties of rainfall for all rainfall events. Further, it will be determined if statistically significant differences in these properties exist among the several cluster categories. Raingage and radar data will be used to establish a Z-R relationship for all precipitation events, and
digitized radar data will be used to determine if improvements can be made in spatial rainfall patterns derived from raingage data alone.

Colorado River Municipal Water District
The CRMWD will continue to operate and maintain the Texas HIPLEX precipitation gage network throughout the Summer of 1981 in order to continue a record of precipitation patterns in the southern High Plains of Texas. The CRMWD intends to conduct their own precipitation augmentation program independent of the overall Texas HIPLEX effort for the purpose of stimulating rainfall over the watersheds of their two reservoirs.

## SECTION III:

Personnel

## Texas Department of Water Resources

Herbert W. Grubb
John T. Carr, Jr:
Robert F. Riggio
George W. Bomar
William 0. Alexander
Thomas J. Larkin
William Hanshaw
Betty Flentge
*Resigned 12-31-80

Director, Planning \& Development Division Chief, Weather and Climate Section Acting Chief, Weather \& Climate Section Meteorologist Meteorologist Meteorologist Meteorologist Technician Secretary

Note: Effective January 15, 1981 the Department's Weather Modification and Technology Section was renamed the Weather and Climate Section to conform more closely with its duties and responsibilities.

Texas A\&M University
Name and Title
James R. Scoggins, Professor and Head
George L. Huebner, Professor
Alexis B. Long, Associate Research Scientist
Myron Gerhard, Research Assistant
Susan Callander, Student Worker Mark Schwirtz, Student Worker David Montplaisir, Student Worker Timothy Deegan, Student Worker Darrel Brissette, Student Worker Meta Sienkiewicz, Research Assistant Michael July, Graduate Assistant Research
John Trares, Graduate Assistant
Research
Phil Reba, Student Worker
Melinda Culver, Student Worker
Texas Tech University

Donald R. Haragan
Jerry Jurica
Colleen A. Leary
Michael Lepage
Eric Pani
Erik Rasmussen
Tamar Neta
James Taylor
Denise Bentley
Russell John

## Principal Activity

Principal Investigator Data Analysis

Data Analysis
Data Analysis
Data Processing
Data Processing
Data Processing
Data Processing
Data Processing
Data Analysis and Processing
Data Analysis
Data Analysis
Data Processing
Typing and Data Processing

Principal Investigator, Precipitation
Principal Investigator, Satellite
Principal Investigator, Radar
Research Assistant
Research Assistant
Research Assistant
Programmer
Programmer
Secretary
Student Assistant

Owen H. Ivie
John R. Girdzus*
Donald Couvillion
Jeff Benson
Ray Pat Jones
Wesley Cox
Bert Padilla
*Resigned effective December 22, 1980

General Manager
Administrative Assistant and Meteorologist
Administrative Assitant \& Pilot
Weather Modification Pilot
Meteorologist
Raingage Technician
Radar Technician

