
Text editing with Nano made easy 

 

Linix Forum Magazine http://www.linuxformat.com 
Nano supports syntax highlighting. Nano supports text justification. And yet, Nano is so much easier than 
Emacs or Vim. Discover the hidden power of this versatile command line text editor - you may never want 
to go back to the GUI again! Oh, and it's well worth knowing a great CLI text editor too - if you end up at 
the shell prompt with X not working, you'll need a backup plan. Here are the tricks, tips and shortcuts you 
need to know... 

Nano is a great command-line text editor for a number of reasons: 

• It's small, lightweight and is included in most distributions; 
• It's easy to use and gives plenty of on-screen feedback; 
• It includes many power-user features to compete with Vi(m) and Emacs. 

Nano runs in text mode at the command line; this may prompt you to think: "Why would I want to learn a 
text mode editor? Kate, Gedit and FooEdit 2000 do everything I need to on my desktop." Well, firstly, all 
regular Linux users and administrators should be well-versed in a command line editor. If something goes 
wrong with the X Window System, for example, you'll end up at a CLI prompt and your skills will be 
essential for editing config files. 

Secondly, if you set up a Linux machine as a server, it almost certainly won't include X or any kind of 
graphical tools, so you'll be using a text mode editor frequently. Learning some core skills beyond simply 
opening and saving files can make you work much more productively, so that's what we'll be looking at 
here. 

As for a quick history, Elm was a Unix email client dating back to the late 80s. Then came Pine, which 
some users said was an acronym for 'Pine Is Not Elm'. Pico was Pine's text editor, but wasn't totally free 
software by the GNU definition. So Tip, (Tip Isn't Pico), was created and later renamed to Nano, (Nano's 
ANOther editor). Fun, eh? 

Finding your way around 
Before we delve into Nano’s features, let’s spend a moment to get fully acquainted with the interface for 
the editor. Entering nano on its own at the command line brings up Nano in its default state. If you’ve tried 
Emacs before but have been put off by the lack of feedback on the screen, you’ll be pleasantly surprised by 
Nano – and the less said about Vi the better. You can start entering text straight away, using the cursor keys 
to move around. 



Along the top is a bar containing the Nano version number and the name of the file being edited. Below, we 
haven’t opened a file yet, so it says ‘New Buffer’. To open a file, you simply type its name: nano 
filename.txt. Along the bottom is a mightily helpful quick reference to the most common keybindings, in 
this format: 

^O WriteOut  

This info is deliberately very short to cram as much as possible on to the screen, so see the ‘Quick 
keybinding reference’ box for the full details. Here, the ^ symbol refers to the Ctrl key on the bottom-left of 
your keyboard, so ^O means Ctrl+O (it can be lowercase or uppercase). WriteOut saves the file to disk, so 
if you press Ctrl+O you’ll see the following prompt at the bottom: 

File Name to Write:  

If you’ve opened an existing text file, the filename will be filled in here automatically, ready for you to hit 
Enter. Otherwise, you can type in a new filename. However, here’s where we start to see how powerful 
Nano really is. Hit Ctrl+T and the screen will change into an excellent two-column file browser. Use the 
cursor keys to navigate through directories to find the filename you want to save to. 

As you’d expect, this file browser is available for other tasks. Hit Ctrl+X to exit the browser, then Ctrl+C to 
cancel the save operation. Now press Ctrl+R to read a file and insert it into the current editing session. 
When the filename prompt appears, hit Ctrl+T and find the file you want to include. 

So that’s opening, saving and inserting files covered. You’ll always find the most important keybindings at 
the bottom of the screen, so you can’t get lost. Let’s look at cut and paste. Nano works differently from 
many editors in this regard, but you’ll find it extremely efficient after using it for a while. 

Type in five lines of random text, and then move the cursor to the second line. Hit Ctrl+K and the line will 
disappear. It doesn’t matter where you position the cursor on the line; the whole thing will be ‘kut’ away. 
Now, the contents of the line are stored on the clipboard, so you can move somewhere else and press 
Ctrl+U to ‘uncut’ it (paste it into the document). 

You can do this for multiple lines too. Position the cursor on the top line of the chunk you want to cut, and 
then press Ctrl+K on as many lines as you want to cut. This will overwrite the clipboard’s previous 
contents with the chunk you cut out. When you’re done, move the cursor to the place at which you want to 
paste the text, and hit Ctrl+U – all the lines removed in the cutting session will be dropped back into the 
document. Press Ctrl+U multiple times for multiple pastes. 

The line number isn’t displayed by default, but if you press Ctrl+C, you’ll see a status message showing the 
line, column and character the cursor is currently on, plus a percentage indication of how far you are 
through the file. 

Nano cheat sheet: keyboard shortcuts 
• Ctrl+X Exit the editor. If you've edited text without saving, you'll be prompted as to whether you 

really want to exit. 
• Ctrl+O Write (output) the current contents of the text buffer to a file. A filename prompt will appear; 

press Ctrl+T to open the file navigator shown above. 
• Ctrl+R Read a text file into the current editing session. At the filename prompt, hit Ctrl+T for the file 

navigator. 
• Ctrl+K Cut a line into the clipboard. You can press this repeatedly to copy multiple lines, which are 

then stored as one chunk. 



• Ctrl+J Justify (fill out) a paragraph of text. By default, this reflows text to match the width of the 
editing window. 

• Ctrl+U Uncut text, or rather, paste it from the clipboard. Note that after a Justify operation, this turns 
into unjustify. 

• Ctrl+T Check spelling. 
• Ctrl+W Find a word or phrase. At the prompt, use the cursor keys to go through previous search 

terms, or hit Ctrl+R to move into replace mode. Alternatively you can hit Ctrl+T to go to a specific 
line. 

• Ctrl+C Show current line number and file information. 
• Ctrl+G Get help; this provides information on navigating through files and common keyboard 

commands. 

 

Nano comes with this file navigator that you explore with the arrow keys. 

Power users rejoice 
Nano carries forward one of Pico's most celebrated features - text justification. This is where a block of text 
is arranged to fit a certain page width by changing the wrap and reorganising the words. Few text editors 
include such functionality, especially at the lighter end of the range, but because Pico was used for email 
and newsgroup messages, where you'd want to reflow multiple levels of quoted text to fit on an 80-
character-wide screen, this feature was given much attention. 

In a new Nano session, enter the following: 

the cat sat on a very large fluffy mat  



Now, imagine that you want to rearrange this text so that it's all on a single line. In many text editors, you'd 
have to do this manually, going to the end of each line and hitting Delete. 

Not so with Nano. Just position the cursor anywhere in those three lines and hit Ctrl+J, and you'll see this: 

the cat sat on a very large fluffy mat  

A status message appears towards the bottom of the screen, saying 'Can now UnJustify'. Hit Ctrl+U to 
revert. 

 

Pain! Look at this horribly broken up text. If only there was a straightforward way to make it reflow 
nicely... 

By default, Nano justifies text to the width of the editor window. If you're running it inside an X terminal, 
create some text and use cut/paste to fill half of the window with it. Hit Ctrl+J to justify the text, then resize 
the window and hit Ctrl+J again. You'll see that the text is reflowed to fit the window size. Nano justifies 
based on paragraphs - chunks of text with blank lines separating them. 

So far so good, but the real power comes with the -r option. Quit Nano and restart it with nano -r30. This 
tells Nano that we want the justify operation always to wrap to 30 characters (columns of text), regardless 
of the size of window.  

There are some great uses for this feature. For instance, on the Linux Format website we send out a 
monthly newsletter to signed-up readers with news, features and so on (www.linuxformat.com/newsletters). 
Because we're geeks of the highest order, our terminal windows are always insanely huge. However, when 
sending out the newsletter we want it to be limited to a certain width, so that it will display on virtually any 



machine. Different mail clients handle plain text differently, so to make things as simple and reliable as 
possible, we use nano -r68 newsletter.txt, type away and hit Ctrl+J when we want to format it for sending. 

Another example: imagine you've found a great command on the internet with a large number of 
parameters, such as a mencode command for converting a video file. Due to the web page presentation, 
when you copy and paste the command, it ends up over 20 lines. Instead of going through and removing all 
newline characters, simply start Nano with nano -r1000. Paste the text in (Shift+Insert works in many X 
terminals), hit Ctrl+J and it'll be folded into one neat line that you can paste into a terminal. Alt+J justifies 
all paragraphs in the file at once.  

On to some other features. Nano can automatically create backups of files after you've saved them. Pass the 
-B option (nano -B config_file.txt), and when you hit Ctrl+O to save a file, it will make a backup of the 
older version with a tilde character at the end (config_file.txt~). This is well worth doing if you want to edit 
a critical system file - if something goes wrong, you can retrieve the older version in a snap. 

Search and replace is fully supported: hit Ctrl+W (Where is…?) and you'll be given a prompt. Enter a word 
to find it or hit Ctrl+R to do a replacement. If you hit Alt+R at this prompt, you'll see that it turns to 
[Regexp], which enables you to search using regular expressions. Using the up and down cursor keys, you 
can navigate through previous search terms - even ones from earlier sessions. These are stored in your 
home directory in .nano_history. 

Nano's interface is customisable: as you get more familiar with the editor, you won't need the quick 
reference for keybindings at the bottom. Using the -x command, you can tell Nano never to show it. With 
the -c option you'll always see the status bar (showing the line number you're on), while with -S (capital S), 
you can force Nano to scroll through text one line at a time, rather than per page. You can mix all of these: 

nano -xcSr68 filename.txt  

Here we want no help, a permanently visible status bar, smooth scrolling and text justification at 68 
characters. Just like mum used to make! 

Editing the config file 
Nano's main configuration file is /etc/nanorc. However, it's not the only one: /etc/nanorc can include other 
configuration files, such as the syntax highlighting definitions in /usr/share/nano. In nanorc, you can set 
default options so that you don't explicitly need to provide them at the command line. Each is stated in this 
format: 

# set backup  

This is equivalent to the -B option at the command line. Here, the line is commented out with a hash mark, 
so Nano will perform the default action, which is to not save backups.  

If you remove the hash mark, it will turn backups on by default, or if you explicitly want to tell Nano that it 
shouldn't make them, change the line to read like this: 

unset backup  

All the options are accompanied by a snippet of description text, so you shouldn't find that anything there is 
unfathomable. 



 

Tweak some of the deeper workings of Nano in the configuration file. 

Developer delights 
There's even syntax highlighting for various programming languages in Nano, although this is disabled by 
default for performance reasons. On very old machines, parsing large source code files to give every part its 
correct colour is rather CPU-intensive, but on any machine built in the last 10 years, you shouldn't notice 
the performance impact. 

To enable syntax highlighting, open the Nano configuration file (see the box below) and scroll down to the 
bottom section. You'll see a bunch of lines like this: 

## C/C++ # include "/usr/share/nano/c.nanorc"  

The hash marks are comments, so by removing the hash mark from the second line, you tell Nano to read 
c.nanorc at startup - the file that describes syntax highlighting for C and C++ source files. If you look 
further down the list, you'll see that you can include syntax highlighting definitions for Python, Perl, Ruby, 
Java, HTML, Tex and other formats. 



 

If you're a programmer, take the time to set up syntax highlighting in Nano. 

Let's create a highlighting file for a language not supported by default in Nano. Go into /usr/share/nano and 
copy sh.nanorc to the language you want to support, for example, php.nanorc. The reason we're using 
sh.nanorc is that it's the easiest to modify: if you look at c.nanorc, for instance, it's an entertainingly 
complex mixture of regular expressions that may just explode your brain. 

In php.nanorc, the first non-comment line you'll see is: 

syntax "sh" "\.sh$"  

This tells Nano to use the formatting here in any files ending with .sh, so change both instances of sh to php 
here. Look down a couple of lines and you'll see: 

color green "\<(case|do|done|elif|...  

When the keywords case, do, done, elif and so on appear in the source code file, they're coloured green. 
You can delete keywords and add new ones, but make sure the structure of the line stays intact and that 
keywords are separated by | pipe characters. The line underneath probably looks like gibberish if you're not 
used to regular expressions: 

color green "(\{|\}|\(|\)|\;)...  

Let us explain: this defines the colour used for certain non-alphanumeric characters, such as brackets and 
semicolons. As with the keywords, these are separated by pipe characters, but because they're special 



characters that could be part of instructions to the syntax highlighting parsing engine, we have to 'escape' 
them using a backslash. 

If we just had {|}|(|) to identify the brackets in the PHP code, it wouldn't work: Nano's parser would get 
confused, thinking they're instructions. By using a backslash before each one, we tell Nano that they're to 
be treated as individual characters. So you can place other non-alphanumeric characters in there, but put a 
backslash before each one. 

Most of the other lines in your php.nanorc follow the same format. Towards the bottom you'll see this line: 

color cyan "(^|[[:space:]])#.*$"  

This tells the parser that all chunks of text starting with a hash symbol should be coloured cyan until the 
end of the line - in other words, shell script comments. In PHP, we can also use double slashes for 
comments, so make a copy of the above line and change the hash to \/\/: 

color cyan "(^|[[:space:]])\/\/.*$"  

With this addition, when you open PHP files, you'll see that double-slash comments are now coloured 
correctly. 

There are other useful features for programmers too. When editing text, hit Alt+I to enable auto-indent 
mode, where the cursor will remain in the same column each time you hit Enter. This is particularly useful 
in languages where white space is syntactically important, such as Python. 

When saving a file, you might want to convert it to a different format for another platform. Linux and 
Windows use different invisible line-ending characters, which can cause headaches. Try opening a Unix-
created text file in Windows XP's Notepad, for instance - the newlines are all messed up. 

So, when you've got the filename prompt, you can hit Alt+D to switch between Unix and Windows/DOS 
style text files. (Alt+M switches you to Mac formatted ones, but that's only really applicable to Mac OS 9 
and earlier.) With the power of Nano, you can take someone's broken-up notes, flow it into line-break-free 
text, and then give it back to them in a format that their silly non-Linux OS can understand. Huzzah! 

	  


