
© NVIDIA Corporation 2011

Textures & Surfaces
CUDA Webinar

Gernot Ziegler,

Developer Technology (Compute)

© NVIDIA Corporation 2011

Outline

 Intro to Texturing and Texture Unit

 CUDA Array Storage

 Textures in CUDA C (Setup, Binding Modes, Coordinates)

 Texture Data Processing

 Texture Interpolation

 Surfaces

 Layered Textures (CUDA 4.0 Features)

 Usage Advice

 Misc: 16 bit-floating point textures, OpenGL/DirectX Exchange

 Summary, Further Reading and Questions

© NVIDIA Corporation 2011

Texturing

 Original purpose:

 Provide surface coloring for 3D meshes (a "wrapping")

 3D mesh has "texture coordinates", hardware looks up 2D color array

© NVIDIA Corporation 2011

Texture Unit

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared

Memory

C-Cache

I-Cache

MT Issue

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared

Memory

C-Cache

I-Cache

MT Issue

SMC

Geometry Controller

Texture Unit

Tex L1

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared

Memory

C-Cache

I-Cache

MT Issue

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared

Memory

C-Cache

I-Cache

MT Issue

SMC

Geometry Controller

Texture Unit

Tex L1

Interconnection Network

Work Distribution

L2 ROP L2 ROP

GPU

DRAM DRAM

 Texture Read:

Global memory read via

texture hardware path

 Data reads are cached

 Texture Cache (separate from L1)

 Specialized for 2D/3D spatial locality

© NVIDIA Corporation 2011

Texture Unit

 Data conversion (integer to float, 16 bit float to 32 bit float)

 Data Interpolation (aka Filtering)

 Linear / bilinear / trilinear data interpolation in hardware

 Boundary modes (for “out-of-bounds” addresses)

 Addressable in 1D, 2D, or 3D.

 Coordinate normalization mode (access becomes resolution-independent)

 Clamp to edge / Clamp to Border color / Repeat / Mirror

 Works best with CUDA Array as Data Storage

© NVIDIA Corporation 2011

CUDA Array

 Opaque object for 1D/2D/3D data storage in global memory

 Purpose

 Optimal caching for 2D/3D spatial locality

(for 2D/3D threadblocks accessing in "cloud" pattern)

 Standard exchange format for OpenGL/DirectX texture exchange

 Data resides in Global Memory

 Host access through special cudaMemcpy operations

 Device access through texture reads or surface read/write (explained later)

© NVIDIA Corporation 2011

Setup of Textures

 Host Code
 Create Channel Description

- Used for allocation of CUDA arrays and texture binding

- Defines number of channels, type and bitness of data stored

- E.g. 1 x float32, 4 x uchar

 Declare a texture reference (must currently be at file-scope)

 Allocate texture data storage (global memory as linear/pitch linear, or CUDA array)

 Bind texture to its data storage (device pointer / CUDA array)

 Device Code
 Fetch data using texture reference

- Textures bound to linear memory: tex1Dfetch(tex, int coord)

- Textures bound to pitch linear memory: tex2D(tex, float2 coord)

- Textures bound to CUDA arrays: tex1D() tex2D() tex3D()

- Layered textures bound to CUDA arrays: tex1DLayered() tex2DLayered()

© NVIDIA Corporation 2011

Texture binding modes

 Texture references are bound to device pointer or CUDA Array
 Sets the data source for all reads from this texture reference

 Bind to linear memory (device pointer)
 Texture is bound directly to global memory address

 Large 1D extents (2^27 elements), but integer indexing only

 Simple, but: No data interpolation, no clamp/repeat addressing modes

 Bind to pitch linear (device pointer)
 Texture is bound directly to global memory address of pitchlinear data

 2D indexing (but cache locality still sees pitchlinear mem)

 Provides data interpolation and clamp/repeat addressing modes

 SDK: "simplePitchLinearTexture"

 Bind to CUDA array (handle)
 Texture is bound to CUDA array (1D, 2D, or 3D)

 Float addressing (within array bounds, or normalized bounds)

 Provides data interpolation and clamp/repeat addressing modes

 Addressing modes (clamping, repeat)

 SDK: "simpleTexture", "simpleTexture3D", "simpleTextureDrv"

© NVIDIA Corporation 2011

Linear memory example
(1D texture, simple caching access)

 Host Code

// global reference (visible for host and device code)

texture<float, cudaTextureType1D, cudaReadModeElementType> linmemTexture;

…

// host code: bind texture reference to linear memory

(use implicitly created channel description)

cudaBindTexture(NULL, linmemTexture, d_linmemory_ptr,

 cudaCreateChannelDesc<float>(), linmemory_size);

// start kernel that uses texture reference!

 Device Code
float A = tex1Dfetch(linmemTexture, position);

© NVIDIA Corporation 2011

CUDA Array example (2D texture interpolation)
Host Code
// global declaration of 2D float texture (visible for host and device code)

texture<float, cudaTextureType2D, cudaReadModeElementType> tex;

…

// Create explicit channel description (could use an implicit as well)

cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);

// Allocate CUDA array in device memory

cudaArray* cuArray;

cudaMallocArray(&cuArray, &channelDesc, width, height);

// Copy some data located at address h_data in host memory into CUDA array

cudaMemcpyToArray(cuArray, 0, 0, h_data, size, cudaMemcpyHostToDevice);

// Set the texture parameters (more sophisticated than a simple linear memory texture)

// boundary handling in x and y-direction!

tex.addressMode[0] = cudaAddressModeWrap; tex.addressMode[1] = cudaAddressModeWrap;

tex.filterMode = cudaFilterModeLinear; // linear interpolation

tex.normalized = true; // normalized coordinate bounds [0.0 .. 1.0]

// Bind the array to the texture reference

cudaBindTextureToArray(tex, cuArray, channelDesc);

Device Code

float value = tex2D(tex, xpos, ypos);

© NVIDIA Corporation 2011

Texture Coordinates

 Texture fetch in device code takes floating point texture coordinates

 Lookup mode and coordinates determine data element fetch from global memory:

"Nearest neighbour" mode uses less data than "linear interpolation" mode

 Coordinate bounds can reflect input data dimensions, or be normalized (0.0 .. 1.0)

 Boundary handling in different ways:

 Out-of-bounds coordinate is

wrapped (modulo arithmetic)

Clamp

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

Wrap
 Out-of-bounds coordinate is

clamped to closest boundary

© NVIDIA Corporation 2011

Texture Data Processing

 Texture unit can convert integer input to floating point output

 E.g. 8bit input: uchar4(255, 128, 0, 0) becomes float4(1.0, 0.5, 0.0, 0.0)

 Coordinate to Data mapping for "Nearest neighbour" mode:

 Example: Input data T, four values:

 All input data elements

cover equal output ranges

 Details in

Programming Guide,

Appendix E

T[0]

T[1]

T[2]

T[3]

© NVIDIA Corporation 2011

Texture Interpolation

 Texture unit can interpolate between adjacent data elements

 Fractional part of texture coordinate becomes interpolation weight

(Note: Interpolation weight is 8 bit quantized!)

 Only in float conversion mode, bind to CUDA array or pitchlinear memory

 Warning:

Input's data values

can NOT be read at

integer offsets!

 But: Additional GFlops!

 Details in

Programming Guide,

Appendix E

0.5

T[0]

0.125

1.5

T[1]

0.375

2.5

T[2]

0.625

3.5

T[3]

0.885

© NVIDIA Corporation 2011

Surfaces

 Device code can read and write CUDA arrays via Surfaces

(Programming Guide, Appendix B.9 and SDK "simpleSurfaceWrite")

 Requires Compute Capability 2.0 or higher

 Currently available for 1D and 2D CUDA arrays

 Use flag cudaArraySurfaceLoadStore during CUDA array creation

 Can also bind surface and texture to same CUDA array handle (write-to-texture)

 Surface operations have

 no interpolation or data conversion

 but some boundary handling

 Texture cache is not notified of CUDA array modifications!

 Start new kernel to pick up modifications

 Note: Surface writes take x coordinate in byte size!

© NVIDIA Corporation 2011

Layered Textures

 Requires Compute Capability 2.0 or higher and CUDA 4.0

 3D coordinate, but z dimension is only integer (only xy-interpolation)

 Ideal for processing multiple textures with same size/format

 Reduced CPU overhead: single binding for entire texture array

 Large sizes supported on Fermi GPUs with CC >= 2.0 (up to 16k x 16k x 2k)

 e.g. Medical Imaging, Terrain Rendering (flight simulators), etc.

 Faster Performance

 Faster than 3D Textures: better texture cache performance, since
Linear/Bilinear interpolation only within a layer, not across layers

 Fast interop with OpenGL / Direct3D for each layer

 No need to create/manage a texture atlas

 Can be bound to specially created CUDA Arrays

 Use cudaMalloc3DArray() with cudaArrayLayered flag

 Details: Programming Guide 4.0, 3.2.10.1.5 Layered Textures

© NVIDIA Corporation 2011

Usage Advice

 Texture bound to linear memory (device pointer)

 No interpolation!

 Integer addressing, large extents (2^27 elements)

 Use if texture cache shall assist L1 cache

 Texture bound to CUDA arrays (handle)

 Use if texture content changes rarely

(Can still modify content via surface writes or cudaMemcpy)

 Texture bound to pitch linear memory (device pointer)

 Has float/integer addressing, filtering, and clamp/repeat addressing modes

 Use if conversion to CUDA arrays too tedious (performance / code)

 Performance caveat: 2D Threadblocks/Warps should only access rows!

© NVIDIA Corporation 2011

16-bit floating point textures

 GPU supports 16bit floating point format (aka half)

 Used e.g. for High Definition Color Range in OpenEXR format

 Specified in IEEE standard 754-2008 as binary2

 Not native for CPU, but C++ datatype routines are easy to find online

 Compact representation of floating point data arrays

 CUDA arrays can hold 16bit float, use cudaCreateChannelDescHalf*()

 Device code (e.g. for GPU manipulation of pitchlinear memory):
__float2half(float) and __half2float(unsigned short)

 Texture unit hides 16 bit float handling

 Texture lookups convert 16bit half to 32 bit float, can also interpolate!

 Lookup result is always 32 bit float

© NVIDIA Corporation 2011

Texture exchange with OpenGL/DirectX

 Interoperability API can bind OpenGL / DirectX context to CUDA C context

 Textures/Surfaces from graphics APIs are exported as CUDA Arrays

 Currently available for 2D textures only

 Direction flags tell which way data exchange goes from graphics API towards

CUDA C (read-only, write-discard, read/write)

 Host code can then modify textures with cudaArray memcpy

 Device code can modify textures with surface read/write:

E.g. while registering an OpenGL texture, use cudaGraphicsGLRegisterImage()

with flag cudaGraphicsRegisterFlagsSurfaceLoadStore

 See Programming Guide 4.0, 3.2.11 Graphics Interoperability

 See Reference Manual 4.0, 14.1 Graphics Interoperability

 SDK: "postProcessGL", "simpleD3D11Texture" and similar

© NVIDIA Corporation 2011

Profiler hints

 Visual Profiler has profiling signals for texture requests and texture cache

 Compute Capability < 2.0: texture_cache_hit, texture_cache_miss

Compute Capability >= 2.0: tex_cache_requests, tex_cache_misses

 Derived signals:

Texture cache memory throughput (GB/s), Texture cache hit rate (%)

 Use these to determine texture cache assistance

 Visual Profiler can also derive L2 cache requests caused by texture unit

 L2 cache texture memory read throughput (GB/s)

 Compare to global memory throughput to determine how

L2 cache assists all texture units' caches

 See Visual Profiler user guide, "Derived Statistic"

© NVIDIA Corporation 2011

Summary

 Texturing provides additional performance

 Extra cache capacity

 Linear interpolation of adjacent data in hardware

 Array boundary handling

 Integer-to-float conversion, data unpacking

 Algorithmic design considerations

 Texture binding modes (linear memory, pitchlinear memory, CUDA Array)

 Texture coordinate offsets for correct linear interpolation

 8bit weight quantization during linear interpolation

 Can't flush texture cache during kernel execution

 3D: xy-interpolation (layered textures) vs. Trilinear xyz-interpolation (3D textures)

© NVIDIA Corporation 2011

Questions? …

Further reading

 Textures, Surfaces and CUDA Array creation:

Programming Guide, 3.2.10 Texture and Surface Memory

 Texture lookups in device code:

Programming Guide, Appendix B.8

 Specification of texture interpolation modes and clamping:

Programming Guide, Appendix E

 Surface read/write operations in device code:

Programming Guide, Appendix B.9

 Texture and surface exchange with OpenGL / DirectX:

Programming Guide, 3.2.11 Graphics Interoperability

 Texture usage in applications:

Best Practices Guide, 3.2.4 Texture Memory

