ASO
A
LA
2 ’ --q (3 -.n.n '} -
AN, 50
e L (A e
Vi ~..-\.-...\....-.\-...-- o
B AN

. . w- (4

) £
o ...Z...ss.. y
AN NG

ccecana
AR

e
PRI
e .
ere e teee XX
PIIIIIITLS

-ﬂ-#

SIGIGIIIIIII I IR R BRI A A IR IR A BN
BIDIIIIIIIPDIIIII IR A AN I RN IR A BRI IR h b r s

PIIIIIIIIIPIIPIII I PRI NN 0
FRIIIIIIIIPIIIIII I NI IR iy
L

s
g
L
S
A

LR
T \0!\\.\.\\\““\\\\-
P S LI
S dddd T

a

s & Surf

CUDA Webinar

-

Texture

R

RN
‘e ’

<A NVIDIA.

legler,

Developer Technology (Compute)

Gernot Z

2011

on

© NVIDIA Corporat

Outline <X

NVIDIA

* [ntro to Texturing and Texture Unit

= CUDA Array Storage

= Textures in CUDA C (Setup, Binding Modes, Coordinates)

= Texture Data Processing

= Texture Interpolation

= Surfaces

= Layered Textures (CUDA 4.0 Features)

= Usage Advice

= Misc: 16 bit-floating point textures, OpenGL/DirectX Exchange
= Summary, Further Reading and Questions

© NVIDIA Corporation 2011

<

>
NVIDIA

Texturing

= QOriginal purpose

)

texture coordinates", hardware looks up 2D color array

Provide surface coloring for 3D meshes (a "wrapping

3D mesh has

AZAVA TR\
A7 AR
AN
Y WAS RTRVA v Ay O\
A7 SN
a7 AVAVA v YAV O\
pariatavaravavas My
VAV VA e AW
pa E?».«.bﬂbib’ﬂhﬁb@baw, A

L

. 2 avavisTavay, AVAY.. '
SO0, ARSI
T A AW AV AN, WA A Yav s T A VA sy S VAVAVA VL A)
AN REESROOSZ2OWN
ﬂﬂv.wv. wan B S v v VA
bdbe 7 SSsmesatiava

e B

© NVIDIA Corporation 2011

Texture Unit

» Texture Read:
Global memory read via
texture hardware path

» Data reads are cached
= Texture Cache (separate from L1)
= Specialized for 2D/3D spatial locality

Texture Unit Texture Unit

Interconnection Network

I | | |
| ROP | L2 | | ROP i L2

© NVIDIA Corporation 2011

Work Distribution

GPU

Geometry Controller

M

wn
(@]

I-Cache
MT Issue

C-Cache

SP||S

S

(72| O))
V(O T| O

SP

n
C

F

£l
£l
7]
7]
e

Shared
Memor

Geometry Controller

<
@]

I-Cache I-Cache I-Cache
MT Issue

C-Cache
SP | SP

MT Issue

C-Cache

SP || SP

MT Issue

C-Cache

III 92}

SP| S SP| SP

SP
SP

SFU

T

SP
SP

WIn(lv]|] R
T |0
(2 | 2]
T || O

EE EIET 6

T

[

n
A
C
n
1
(=

SFU| |SFU

Shared
Memor

Shared
Memor

Shared
Memor

Texture Unit Texture Unit

Interconnection Network

I I |
| ROP_

-
)

>

NVIDIA

Texture Unit ‘ <X
|

| | | NVIDIA

Interconnection Network

I I | |
| RoP il L2 | RoP |l L2

Data conversion (integer to float, 16 bit float to 32 bit float)

Data Interpolation (aka Filtering)
= Linear / bilinear / trilinear data interpolation in_hardware

Boundary modes (for “out-of-bounds” addresses)
= Addressable in 1D, 2D, or 3D.
= Coordinate normalization mode (access becomes resolution-independent)
= Clamp to edge / Clamp to Border color / Repeat / Mirror

= Works best with CUDA Array as Data Storage

© NVIDIA Corporation 2011

CUDA Array <3

NVIDIA

= Opaque object for 1D/2D/3D data storage in global memory

= Purpose

= Optimal caching for 2D/3D spatial locality
(for 2D/3D threadblocks accessing in "cloud" pattern)

= Standard exchange format for OpenGL/DirectX texture exchange

= Dataresides in Global Memory
= Host access through special cudaMemcpy operations
= Device access through texture reads or surface read/write (explained later)

© NVIDIA Corporation 2011

Setup of Textures <3

NVIDIA

= Host Code

= Create Channel Description
- Used for allocation of CUDA arrays and texture binding
- Defines number of channels, type and bitness of data stored
- E.g. 1 xfloat32, 4 x uchar

= Declare a texture reference (must currently be at file-scope)
= Allocate texture data storage (global memory as linear/pitch linear, or CUDA array)
= Bind texture to its data storage (device pointer / CUDA array)

= Device Code
= Fetch data using texture reference
- Textures bound to linear memory: texlDfetch (tex, int coord)
- Textures bound to pitch linear memory: tex2D (tex, float2 coord)
- Textures bound to CUDA arrays: tex1D() tex2D() tex3D()
- Layered textures bound to CUDA arrays: texlDLayered () tex2DLayered ()

© NVIDIA Corporation 2011

Texture binding modes

© NVIDIA Corporation 2011

Texture references are bound to device pointer or CUDA Array

Sets the data source for all reads from this texture reference

Bind to linear memory (device pointer)

Texture is bound directly to global memory address
Large 1D extents (2727 elements), but integer indexing only
Simple, but: No data interpolation, no clamp/repeat addressing modes

Bind to pitch linear (device pointer)

Texture is bound directly to global memory address of pitchlinear data
2D indexing (but cache locality still sees pitchlinear mem)

Provides data interpolation and clamp/repeat addressing modes
SDK: "simplePitchLinearTexture"

Bind to CUDA array (handle)

Texture is bound to CUDA array (1D, 2D, or 3D)

Float addressing (within array bounds, or normalized bounds)
Provides data interpolation and clamp/repeat addressing modes
Addressing modes (clamping, repeat)

SDK: "simpleTexture", "simpleTexture3D", "simpleTextureDrv"

<3

NVIDIA

Linear memory example N>
(1D texture, simple caching access)

= Host Code

// global reference (visible for host and device code)
texture<float, cudaTextureTypelD, cudaReadModeElementType> linmemTexture;

// host code: bind texture reference to linear memory
(use implicitly created channel description)

cudaBindTexture (NULL, linmemTexture, d linmemory ptr,
cudaCreateChannelDesc<float> (), linmemory size);
// start kernel that uses texture reference!

= Device Code
float A = texlDfetch (linmemTexture, position);

© NVIDIA Corporation 2011

CUDA Array example (2D texture interpolation) <

NVIDIA

Host Code
// global declaration of 2D float texture (visible for host and device code)
texture<float, cudaTextureType2D, cudaReadModeElementType> tex;

// Create explicit channel description (could use an implicit as well)
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc (32, 0, 0, 0, cudaChannelFormatKindFloat):;

// Allocate CUDA array in device memory
cudaArray* cuArray;
cudaMallocArray (&cuArray, &channelDesc, width, height);

// Copy some data located at address h_data in host memory into CUDA array
cudaMemcpyToArray (cuArray, 0, 0, h data, size, cudaMemcpyHostToDevice);

// Set the texture parameters (more sophisticated than a simple linear memory texture)
// boundary handling in x and y-direction!

tex.addressMode[0] = cudaAddressModeWrap; tex.addressMode[l] = cudaAddressModeWrap;
tex.filterMode = cudaFilterModelLinear; // linear interpolation
tex.normalized = true; // normalized coordinate bounds [0.0 .. 1.0]

// Bind the array to the texture reference
cudaBindTextureToArray (tex, culArray, channelDesc);

Device Code

float value = tex2D (tex, xpos, ypos):;

© NVIDIA Corporation 2011

Texture Coordinates <X

NVIDIA

= Texture fetch in device code takes floating point texture coordinates

= Lookup mode and coordinates determine data element fetch from global memory:
"Nearest neighbour" mode uses less data than "linear interpolation"” mode

= Coordinate bounds can reflect input data dimensions, or be normalized (0.0 .. 1.0)
= Boundary handling in different ways:

Wrap Clamp
= Qut-of-bounds coordinate is = Qut-of-bounds coordinate is
wrapped (modulo arithmetic) clamped to closest boundary
. 0O 1 2 3 4 0O 1 2 3 4

(5.5, 1.5)

=

w N
w N - O

© NVIDIA Corporation 2011

Texture Data Processing <3

NVIDIA

= Texture unit can convert integer input to floating point output
= E.g. 8bit input: uchar4(255, 128, 0, 0) becomes float4(1.0, 0.5, 0.0, 0.0)

= Coordinate to Data mapping for "Nearest neighbour" mode:
= Example: Input data T, four values:

tex(x)
4 = All input data elements

—— cover equal output ranges
]

| | | = Details in

| — | Programming Guide,

| | | Appendix E

—_— 1 :

: | > X

T[] T[] T[2] T[3]

|

[

|

|

| [

|]
0 1 2 3 4 Non-Normalized
0.25 0.5 0.75 1 Normalized

© NVIDIA Corporation 2011

Texture Interpolation <3

NVIDIA

= Texture unit can interpolate between adjacent data elements

= Fractional part of texture coordinate becomes interpolation weight
(Note: Interpolation weight is 8 bit quantized!)

= Only in float conversion mode, bind to CUDA array or pitchlinear memory

tex(x)

4 = Warning:
Input's data values

can NOT be read at
Integer offsets!

= But: Additional GFlops!

= Detalls in
Programming Guide,
Appendix E

I » X

0 05 1 15 2 25 3 35 4 Non-Normalized
T[O] T[1] T[2] T[3]
0 0125 0.25 0375 0.5 0625 0.750835 1 Normalized
© NVIDIA Corporation 2011

Surfaces <X

NVIDIA

= Device code can read and write CUDA arrays via Surfaces
(Programming Guide, Appendix B.9 and SDK "simpleSurfaceWrite")

= Requires Compute Capability 2.0 or higher
= Currently available for 1D and 2D CUDA arrays
» Use flag cudaArraySurfaceLoadStore during CUDA array creation
= Can also bind surface and texture to same CUDA array handle (write-to-texture)
= Surface operations have
= no interpolation or data conversion
= but some boundary handling
= Texture cache is not notified of CUDA array modifications!
= Start new kernel to pick up modifications

= Note: Surface writes take x coordinate in byte size!

© NVIDIA Corporation 2011

Layered Textures <3

NVIDIA

= Requires Compute Capability 2.0 or higher and CUDA 4.0
= 3D coordinate, but z dimension is only integer (only xy-interpolation)

= |deal for processing multiple textures with same size/format
= Reduced CPU overhead: single binding for entire texture array
= Large sizes supported on Fermi GPUs with CC >= 2.0 (up to 16k x 16k x 2k)
= e.g. Medical Imaging, Terrain Rendering (flight simulators), etc.

= Faster Performance

= Faster than 3D Textures: better texture cache performance, since
Linear/Bilinear interpolation only within a layer, not across layers

= Fast interop with OpenGL / Direct3D for each layer
= No need to create/manage a texture atlas

= Can be bound to specially created CUDA Arrays
= Use cudaMalloc3DArray() with cudaArrayLayered flag

= Details: Programming Guide 4.0, 3.2.10.1.5 Layered Textures

© NVIDIA Corporation 2011

Usage Advice <3

NVIDIA

= Texture bound to linear memory (device pointer)
= No interpolation!
= Integer addressing, large extents (227 elements)
= Use Iif texture cache shall assist L1 cache

* Texture bound to CUDA arrays (handle)

= Use if texture content changes rarely
(Can still modify content via surface writes or cudaMemcpy)

= Texture bound to pitch linear memory (device pointer)
» Has float/integer addressing, filtering, and clamp/repeat addressing modes
= Use if conversion to CUDA arrays too tedious (performance / code)
2D Threadblocks/Warps should only access rows!

© NVIDIA Corporation 2011

16-bit floating point textures <3

NVIDIA

= GPU supports 16bit floating point format (aka Aa/f)
= Used e.g. for High Definition Color Range in OpenEXR format
= Specified in IEEE standard 754-2008 as binary2
= Not native for CPU, but C++ datatype routines are easy to find online
= Compact representation of floating point data arrays
= CUDA arrays can hold 16bit float, use cudaCreateChannelDescHalf*()

= Device code (e.g. for GPU manipulation of pitchlinear memory):
___float2half (float) and _half2float (unsigned short)

= Texture unit hides 16 bit float handling
= Texture lookups convert 16bit half to 32 bit float, can also interpolate!
= Lookup resultis always 32 bit float

© NVIDIA Corporation 2011

Texture exchange with OpenGL/DirectX <3

NVIDIA

* Interoperability APl can bind OpenGL / DirectX context to CUDA C context
» Textures/Surfaces from graphics APIs are exported as CUDA Arrays
= Currently available for 2D textures only

= Direction flags tell which way data exchange goes from graphics API towards
CUDA C (read-only, write-discard, read/write)

» Host code can then modify textures with cudaArray memcpy

= Device code can modify textures with surface read/write:
E.g. while registering an OpenGL texture, use cudaGraphicsGLRegisterimage()
with flag cudaGraphicsRegisterFlagsSurfacelL.oadStore

= See Programming Guide 4.0, 3.2.11 Graphics Interoperability
= See Reference Manual 4.0, 14.1 Graphics Interoperability

= SDK: "postProcessGL", "simpleD3D11Texture" and similar

© NVIDIA Corporation 2011

Profiler hints <3

NVIDIA

Visual Profiler has profiling signals for texture requests and texture cache

= Compute Capabillity < 2.0: texture _cache_hit, texture_cache_miss
Compute Capability >= 2.0: tex _cache_requests, tex _cache_misses

» Derived signals:
Texture cache memory throughput (GB/s), Texture cache hit rate (%)

= Use these to determine texture cache assistance

Visual Profiler can also derive L2 cache requests caused by texture unit
= L2 cache texture memory read throughput (GB/s)

= Compare to global memory throughput to determine how
L2 cache assists all texture units' caches

= See Visual Profiler user guide, "Derived Statistic"

© NVIDIA Corporation 2011

Summary <3

NVIDIA

= Texturing provides additional performance
= Extra cache capacity
» Linear interpolation of adjacent data in hardware

= Array boundary handling
» Integer-to-float conversion, data unpacking
= Algorithmic design considerations

= Texture binding modes (linear memory, pitchlinear memory, CUDA Array)

Texture coordinate offsets for correct linear interpolation

8bit weight quantization during linear interpolation

Can't flush texture cache during kernel execution

3D: xy-interpolation (layered textures) vs. Trilinear xyz-interpolation (3D textures)

© NVIDIA Corporation 2011

Questions? ...
Further reading

Textures, Surfaces and CUDA Array creation:
Programming Guide, 3.2.10 Texture and Surface Memory

Texture lookups in device code:
Programming Guide, Appendix B.8

Specification of texture interpolation modes and clamping:

Programming Guide, Appendix E

Surface read/write operations in device code:
Programming Guide, Appendix B.9

Texture and surface exchange with OpenGL / DirectX:
Programming Guide, 3.2.11 Graphics Interoperability

Texture usage in applications:
Best Practices Guide, 3.2.4 Texture Memory

© NVIDIA Corporation 2011

>

NVIDIA

