
© NVIDIA Corporation 2011

Textures & Surfaces
CUDA Webinar

Gernot Ziegler,

Developer Technology (Compute)

© NVIDIA Corporation 2011

Outline

 Intro to Texturing and Texture Unit

 CUDA Array Storage

 Textures in CUDA C (Setup, Binding Modes, Coordinates)

 Texture Data Processing

 Texture Interpolation

 Surfaces

 Layered Textures (CUDA 4.0 Features)

 Usage Advice

 Misc: 16 bit-floating point textures, OpenGL/DirectX Exchange

 Summary, Further Reading and Questions

© NVIDIA Corporation 2011

Texturing

 Original purpose:

 Provide surface coloring for 3D meshes (a "wrapping")

 3D mesh has "texture coordinates", hardware looks up 2D color array

© NVIDIA Corporation 2011

Texture Unit

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared

Memory

C-Cache

I-Cache

MT Issue

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared

Memory

C-Cache

I-Cache

MT Issue

SMC

Geometry Controller

Texture Unit

Tex L1

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared

Memory

C-Cache

I-Cache

MT Issue

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared

Memory

C-Cache

I-Cache

MT Issue

SMC

Geometry Controller

Texture Unit

Tex L1

Interconnection Network

Work Distribution

L2 ROP L2 ROP

GPU

DRAM DRAM

 Texture Read:

Global memory read via

texture hardware path

 Data reads are cached

 Texture Cache (separate from L1)

 Specialized for 2D/3D spatial locality

© NVIDIA Corporation 2011

Texture Unit

 Data conversion (integer to float, 16 bit float to 32 bit float)

 Data Interpolation (aka Filtering)

 Linear / bilinear / trilinear data interpolation in hardware

 Boundary modes (for “out-of-bounds” addresses)

 Addressable in 1D, 2D, or 3D.

 Coordinate normalization mode (access becomes resolution-independent)

 Clamp to edge / Clamp to Border color / Repeat / Mirror

 Works best with CUDA Array as Data Storage

© NVIDIA Corporation 2011

CUDA Array

 Opaque object for 1D/2D/3D data storage in global memory

 Purpose

 Optimal caching for 2D/3D spatial locality

(for 2D/3D threadblocks accessing in "cloud" pattern)

 Standard exchange format for OpenGL/DirectX texture exchange

 Data resides in Global Memory

 Host access through special cudaMemcpy operations

 Device access through texture reads or surface read/write (explained later)

© NVIDIA Corporation 2011

Setup of Textures

 Host Code
 Create Channel Description

- Used for allocation of CUDA arrays and texture binding

- Defines number of channels, type and bitness of data stored

- E.g. 1 x float32, 4 x uchar

 Declare a texture reference (must currently be at file-scope)

 Allocate texture data storage (global memory as linear/pitch linear, or CUDA array)

 Bind texture to its data storage (device pointer / CUDA array)

 Device Code
 Fetch data using texture reference

- Textures bound to linear memory: tex1Dfetch(tex, int coord)

- Textures bound to pitch linear memory: tex2D(tex, float2 coord)

- Textures bound to CUDA arrays: tex1D() tex2D() tex3D()

- Layered textures bound to CUDA arrays: tex1DLayered() tex2DLayered()

© NVIDIA Corporation 2011

Texture binding modes

 Texture references are bound to device pointer or CUDA Array
 Sets the data source for all reads from this texture reference

 Bind to linear memory (device pointer)
 Texture is bound directly to global memory address

 Large 1D extents (2^27 elements), but integer indexing only

 Simple, but: No data interpolation, no clamp/repeat addressing modes

 Bind to pitch linear (device pointer)
 Texture is bound directly to global memory address of pitchlinear data

 2D indexing (but cache locality still sees pitchlinear mem)

 Provides data interpolation and clamp/repeat addressing modes

 SDK: "simplePitchLinearTexture"

 Bind to CUDA array (handle)
 Texture is bound to CUDA array (1D, 2D, or 3D)

 Float addressing (within array bounds, or normalized bounds)

 Provides data interpolation and clamp/repeat addressing modes

 Addressing modes (clamping, repeat)

 SDK: "simpleTexture", "simpleTexture3D", "simpleTextureDrv"

© NVIDIA Corporation 2011

Linear memory example
(1D texture, simple caching access)

 Host Code

// global reference (visible for host and device code)

texture<float, cudaTextureType1D, cudaReadModeElementType> linmemTexture;

…

// host code: bind texture reference to linear memory

(use implicitly created channel description)

cudaBindTexture(NULL, linmemTexture, d_linmemory_ptr,

 cudaCreateChannelDesc<float>(), linmemory_size);

// start kernel that uses texture reference!

 Device Code
float A = tex1Dfetch(linmemTexture, position);

© NVIDIA Corporation 2011

CUDA Array example (2D texture interpolation)
Host Code
// global declaration of 2D float texture (visible for host and device code)

texture<float, cudaTextureType2D, cudaReadModeElementType> tex;

…

// Create explicit channel description (could use an implicit as well)

cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);

// Allocate CUDA array in device memory

cudaArray* cuArray;

cudaMallocArray(&cuArray, &channelDesc, width, height);

// Copy some data located at address h_data in host memory into CUDA array

cudaMemcpyToArray(cuArray, 0, 0, h_data, size, cudaMemcpyHostToDevice);

// Set the texture parameters (more sophisticated than a simple linear memory texture)

// boundary handling in x and y-direction!

tex.addressMode[0] = cudaAddressModeWrap; tex.addressMode[1] = cudaAddressModeWrap;

tex.filterMode = cudaFilterModeLinear; // linear interpolation

tex.normalized = true; // normalized coordinate bounds [0.0 .. 1.0]

// Bind the array to the texture reference

cudaBindTextureToArray(tex, cuArray, channelDesc);

Device Code

float value = tex2D(tex, xpos, ypos);

© NVIDIA Corporation 2011

Texture Coordinates

 Texture fetch in device code takes floating point texture coordinates

 Lookup mode and coordinates determine data element fetch from global memory:

"Nearest neighbour" mode uses less data than "linear interpolation" mode

 Coordinate bounds can reflect input data dimensions, or be normalized (0.0 .. 1.0)

 Boundary handling in different ways:

 Out-of-bounds coordinate is

wrapped (modulo arithmetic)

Clamp

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

Wrap
 Out-of-bounds coordinate is

clamped to closest boundary

© NVIDIA Corporation 2011

Texture Data Processing

 Texture unit can convert integer input to floating point output

 E.g. 8bit input: uchar4(255, 128, 0, 0) becomes float4(1.0, 0.5, 0.0, 0.0)

 Coordinate to Data mapping for "Nearest neighbour" mode:

 Example: Input data T, four values:

 All input data elements

cover equal output ranges

 Details in

Programming Guide,

Appendix E

T[0]

T[1]

T[2]

T[3]

© NVIDIA Corporation 2011

Texture Interpolation

 Texture unit can interpolate between adjacent data elements

 Fractional part of texture coordinate becomes interpolation weight

(Note: Interpolation weight is 8 bit quantized!)

 Only in float conversion mode, bind to CUDA array or pitchlinear memory

 Warning:

Input's data values

can NOT be read at

integer offsets!

 But: Additional GFlops!

 Details in

Programming Guide,

Appendix E

0.5

T[0]

0.125

1.5

T[1]

0.375

2.5

T[2]

0.625

3.5

T[3]

0.885

© NVIDIA Corporation 2011

Surfaces

 Device code can read and write CUDA arrays via Surfaces

(Programming Guide, Appendix B.9 and SDK "simpleSurfaceWrite")

 Requires Compute Capability 2.0 or higher

 Currently available for 1D and 2D CUDA arrays

 Use flag cudaArraySurfaceLoadStore during CUDA array creation

 Can also bind surface and texture to same CUDA array handle (write-to-texture)

 Surface operations have

 no interpolation or data conversion

 but some boundary handling

 Texture cache is not notified of CUDA array modifications!

 Start new kernel to pick up modifications

 Note: Surface writes take x coordinate in byte size!

© NVIDIA Corporation 2011

Layered Textures

 Requires Compute Capability 2.0 or higher and CUDA 4.0

 3D coordinate, but z dimension is only integer (only xy-interpolation)

 Ideal for processing multiple textures with same size/format

 Reduced CPU overhead: single binding for entire texture array

 Large sizes supported on Fermi GPUs with CC >= 2.0 (up to 16k x 16k x 2k)

 e.g. Medical Imaging, Terrain Rendering (flight simulators), etc.

 Faster Performance

 Faster than 3D Textures: better texture cache performance, since
Linear/Bilinear interpolation only within a layer, not across layers

 Fast interop with OpenGL / Direct3D for each layer

 No need to create/manage a texture atlas

 Can be bound to specially created CUDA Arrays

 Use cudaMalloc3DArray() with cudaArrayLayered flag

 Details: Programming Guide 4.0, 3.2.10.1.5 Layered Textures

© NVIDIA Corporation 2011

Usage Advice

 Texture bound to linear memory (device pointer)

 No interpolation!

 Integer addressing, large extents (2^27 elements)

 Use if texture cache shall assist L1 cache

 Texture bound to CUDA arrays (handle)

 Use if texture content changes rarely

(Can still modify content via surface writes or cudaMemcpy)

 Texture bound to pitch linear memory (device pointer)

 Has float/integer addressing, filtering, and clamp/repeat addressing modes

 Use if conversion to CUDA arrays too tedious (performance / code)

 Performance caveat: 2D Threadblocks/Warps should only access rows!

© NVIDIA Corporation 2011

16-bit floating point textures

 GPU supports 16bit floating point format (aka half)

 Used e.g. for High Definition Color Range in OpenEXR format

 Specified in IEEE standard 754-2008 as binary2

 Not native for CPU, but C++ datatype routines are easy to find online

 Compact representation of floating point data arrays

 CUDA arrays can hold 16bit float, use cudaCreateChannelDescHalf*()

 Device code (e.g. for GPU manipulation of pitchlinear memory):
__float2half(float) and __half2float(unsigned short)

 Texture unit hides 16 bit float handling

 Texture lookups convert 16bit half to 32 bit float, can also interpolate!

 Lookup result is always 32 bit float

© NVIDIA Corporation 2011

Texture exchange with OpenGL/DirectX

 Interoperability API can bind OpenGL / DirectX context to CUDA C context

 Textures/Surfaces from graphics APIs are exported as CUDA Arrays

 Currently available for 2D textures only

 Direction flags tell which way data exchange goes from graphics API towards

CUDA C (read-only, write-discard, read/write)

 Host code can then modify textures with cudaArray memcpy

 Device code can modify textures with surface read/write:

E.g. while registering an OpenGL texture, use cudaGraphicsGLRegisterImage()

with flag cudaGraphicsRegisterFlagsSurfaceLoadStore

 See Programming Guide 4.0, 3.2.11 Graphics Interoperability

 See Reference Manual 4.0, 14.1 Graphics Interoperability

 SDK: "postProcessGL", "simpleD3D11Texture" and similar

© NVIDIA Corporation 2011

Profiler hints

 Visual Profiler has profiling signals for texture requests and texture cache

 Compute Capability < 2.0: texture_cache_hit, texture_cache_miss

Compute Capability >= 2.0: tex_cache_requests, tex_cache_misses

 Derived signals:

Texture cache memory throughput (GB/s), Texture cache hit rate (%)

 Use these to determine texture cache assistance

 Visual Profiler can also derive L2 cache requests caused by texture unit

 L2 cache texture memory read throughput (GB/s)

 Compare to global memory throughput to determine how

L2 cache assists all texture units' caches

 See Visual Profiler user guide, "Derived Statistic"

© NVIDIA Corporation 2011

Summary

 Texturing provides additional performance

 Extra cache capacity

 Linear interpolation of adjacent data in hardware

 Array boundary handling

 Integer-to-float conversion, data unpacking

 Algorithmic design considerations

 Texture binding modes (linear memory, pitchlinear memory, CUDA Array)

 Texture coordinate offsets for correct linear interpolation

 8bit weight quantization during linear interpolation

 Can't flush texture cache during kernel execution

 3D: xy-interpolation (layered textures) vs. Trilinear xyz-interpolation (3D textures)

© NVIDIA Corporation 2011

Questions? …

Further reading

 Textures, Surfaces and CUDA Array creation:

Programming Guide, 3.2.10 Texture and Surface Memory

 Texture lookups in device code:

Programming Guide, Appendix B.8

 Specification of texture interpolation modes and clamping:

Programming Guide, Appendix E

 Surface read/write operations in device code:

Programming Guide, Appendix B.9

 Texture and surface exchange with OpenGL / DirectX:

Programming Guide, 3.2.11 Graphics Interoperability

 Texture usage in applications:

Best Practices Guide, 3.2.4 Texture Memory

