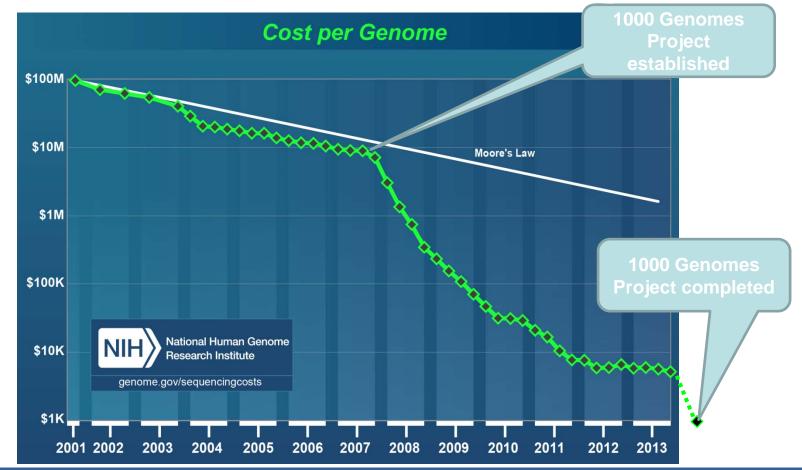
The 1000 Genomes Project


Chris Tyler-Smith The Wellcome Trust Sanger Institute Hinxton, CB10 1SA

Topics

- Why was the 1000 Genomes Project established?
- What has the project achieved?
- What is its importance and legacy?

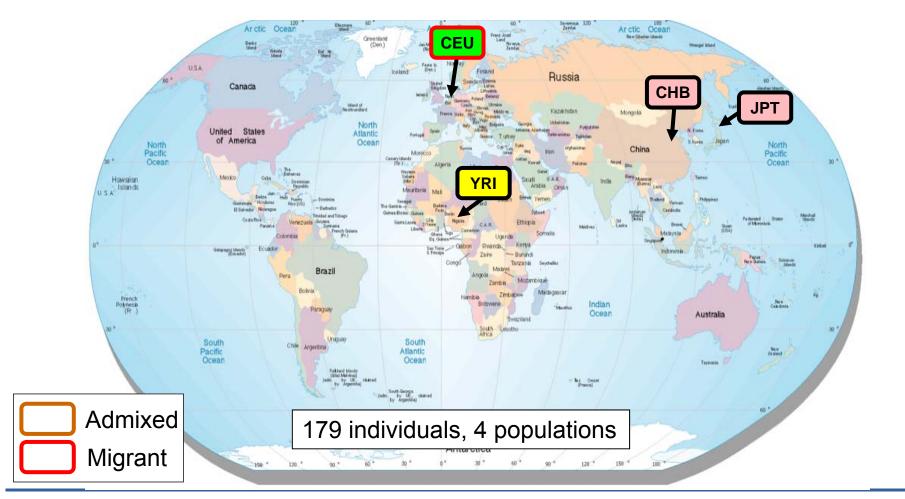
Human genome sequencing costs 2001-2014

The view in 2007

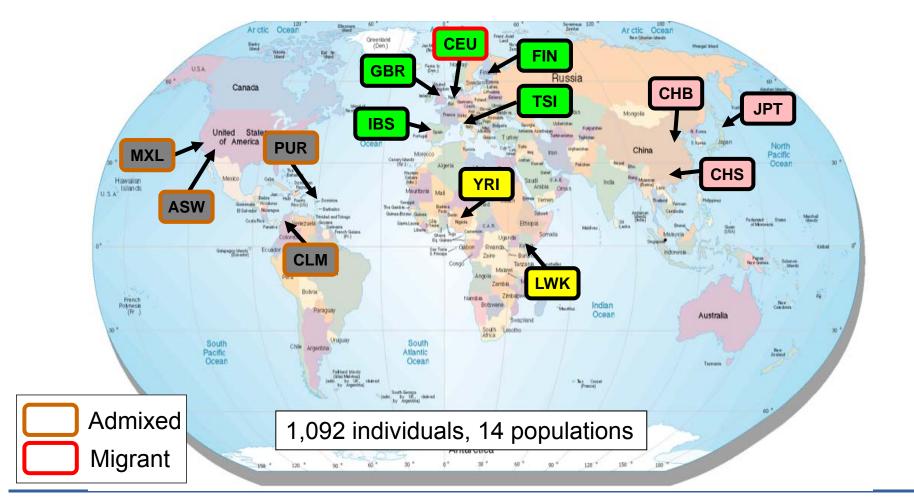
- Major developments in sequencing technology on the horizon
- Becoming possible to sequence multiple
 whole human genomes
- No single group thought they could do this alone at scale
- Need to establish an international collaborative project

Aims of the 1000 Genomes Project

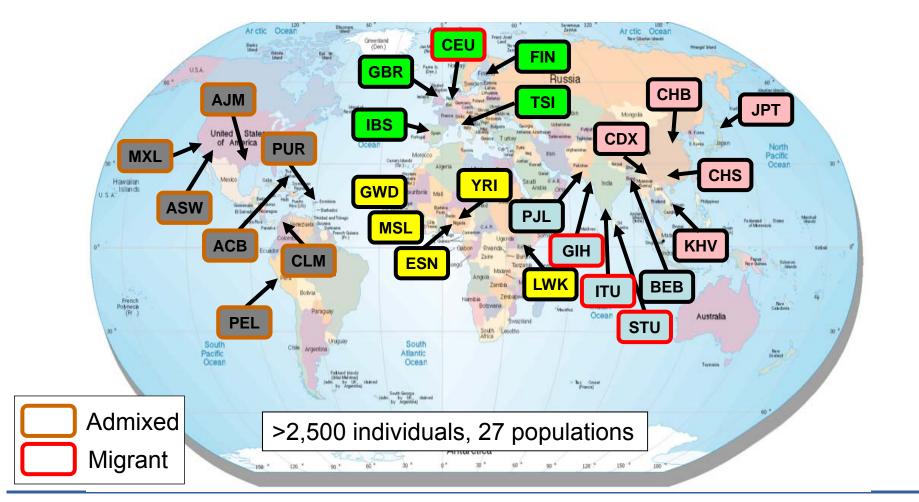
- Primary goal: to develop a public resource of genetic variation to support the next generation of medical association studies
- Find all accessible variants ≥1% across the genome and 0.1-0.5% in gene regions
- Estimate allele frequencies, identify haplotype backgrounds, etc.


Sample choice

- Consent for full free web release of sequence data needed
- When the project began, only HapMap samples met these criteria
- Consent process developed, additional samples recruited
- All individuals are anonymous adults, able to consent, with no phenotype information



Pilot project samples (2010)



Phase 1 samples (2012)

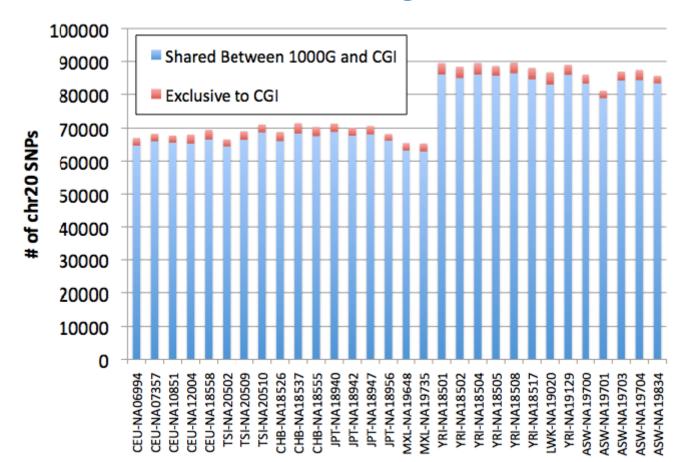
Full project samples (2014)

Project design considerations

- In early 2008, still several million \$ to sequence a human genome at high coverage (30x)
- But shared genetic variants can be effectively discovered by sequencing at low coverage (2x) and combining information from multiple individuals

Stages of the 1000 Genomes Project

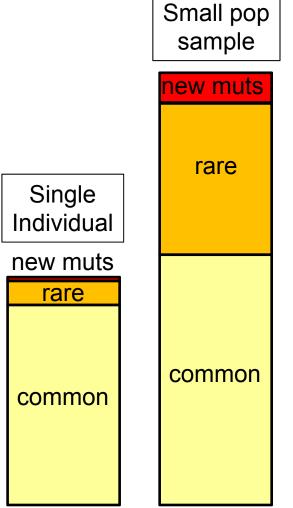
- Pilot, published 2010:
 - 179 genomes at 2x-3x, 2 trios +
 ~1000 genes at high coverage
- Phase I of main project, published 2012:
 - 1,092 genomes at 3x-4x + highcoverage whole exomes
- Phase 3
 - >2,500 genomes at 4x-6x + exomes, available spring 2013
 - Analysis during 2013-14


Many variants discovered

Variant type	Pilot	Phase 1
Total SNPs	15.2 M	37.9 M
Known SNPs	6.8 M	8.2 M
Novel SNPs	8.4 M	29.7 M
Short indels	1.5 M	3.8 M
Large deletions	14 K	14 K

New generation of SNP chips

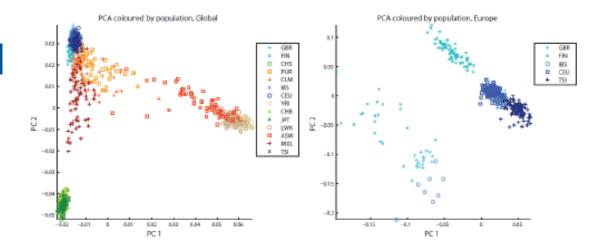
Discovered most of the variants present in a genome



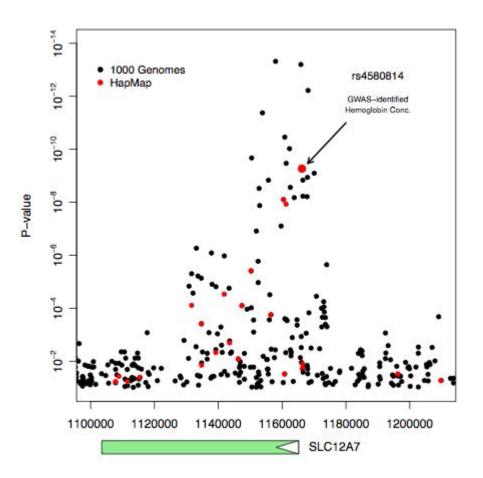
SME Bioinformatics, Hinxton

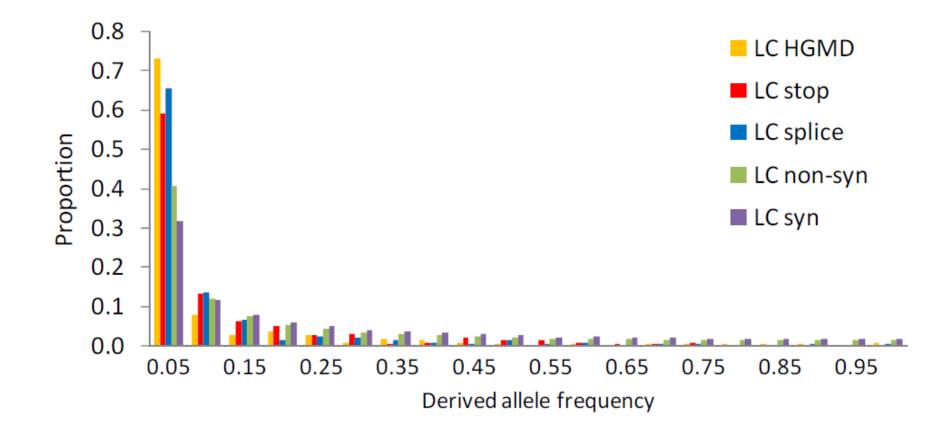
6th March 2014

Features of human genetic variation

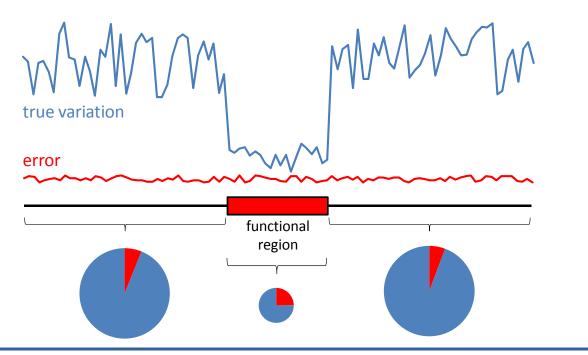

- 3-4 million variants per individual
- Most have no functional consequences
- Some are common in the population, some rare

Insights from common variants (1)


 Geographical origin is predicted by genotype


Insights from common variants (2)

- GWASs are usually carried out using SNP chips
- The best hit on the chip is often not the causal variant
- Better candidates for the causal variant can be obtained by imputation using sequence data


Strong functional variants are mostly rare in the population

Insights into functional variants (1)

 Enriched in errors of many kinds, extra QC and validation required

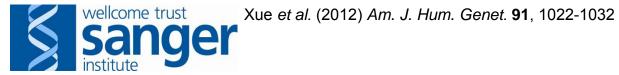
MacArthur and Tyler-Smith (2010) Hum. Mol. Genet. **19(R2)**, R131-136

Insights into functional variants (2)

Each individual carries ~100 genes in an inactive form, ~20 with both copies inactive 2,951 raw > 1,269 filtered

Category	Filtered number/individual (CEU)	
	All	Homozygous
nonsense SNP	26.2	5.2
splice SNP	11.2	1.9
frameshift indel	38.2	9.2
large LoF deletion	28.3	6.2
total	103.9	22.3

MacArthur et al. (2012) Science 335, 823-828


SME Bioinformatics, Hinxton

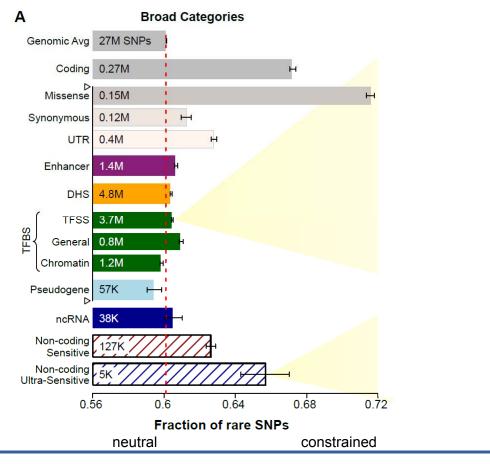
6th March 2014

Insights into functional variants (3)

 Each individual carries ~2 (0-7) known disease-causing variants, and these are expected to impact health in ~10% of carriers

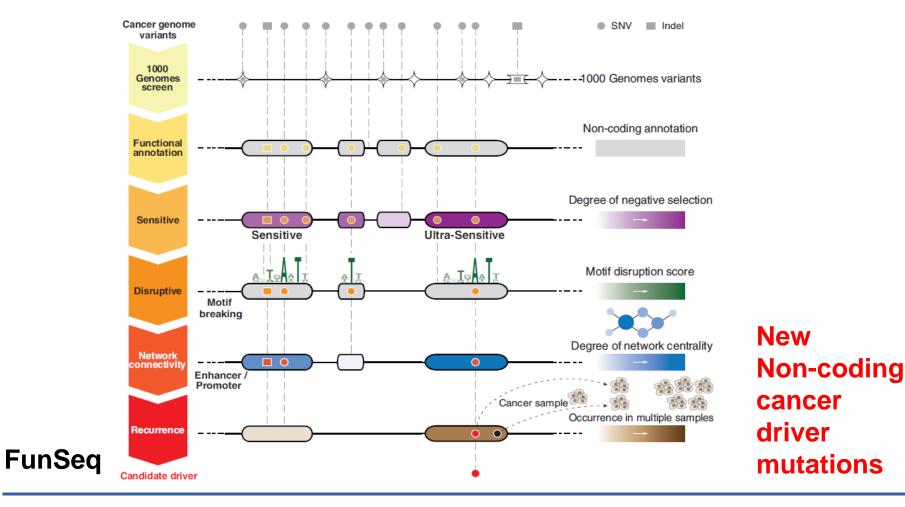
6th March 2014

SME Bioinformatics, Hinxton


Insights into functional variants (4)

 Population genetics can help to discover new non-coding functional variants

Khurana et al. (2013) Science 342, 84


Insights into functional variants (4)

Khurana et al. (2013) Science 342, 84

Insights into functional variants (4)

Khurana et al. (2013) Science 342, 84

Final thoughts

- One of the very few large-scale sources of open access genomic data
- Samples (cell lines) available
- No phenotypes
- A standard and lasting resource for the human genomics field
- A legacy model for additional populations

Acknowledgements

Corresponding author Richard M. Durbin¹

Steering committee David L Altshuler^{2,3,4} (Co-Chair), Richard M. Durbin¹ (Co-Chair), Gonçalo R. Abecasis², David R. Bentley⁴, Aravinda Chałwardt⁷, Andrew G. Clark⁶, Francis S. Colimo⁸, Francisco M. De La Vega¹⁰, Peter Donnelly¹¹, Michael Eptolm¹², Paul Figek¹³, Stacey B., Gabriel⁹, Richard A, Gibbs¹⁴, Bartha M, Knoppers¹⁵, Ernc S., ₁₀ Lander², Hans Lehrach¹⁶, Elaine R. Mardis¹⁷, Gil A. McVean^{11,18}, Debbie A. Nickerson¹⁹,

Leena Peltonent, Alan J. Schafer²⁰, Stephen T. Sherry²¹, Jun Wang^{22,23}, Richard K. Wilson¹²

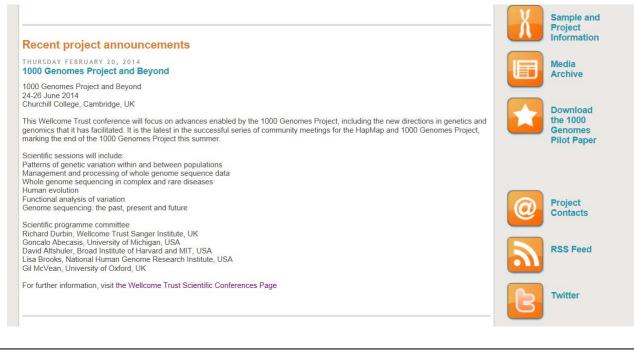
Preduction group: Baylor College of Medicine Richard A Obbe¹⁴ (Principal Investigato), David David¹⁴, Miles Metder¹⁴, David Wheeler¹⁴, Boltzmerha, Jun Wagg¹², Ornicolal Jovattor J, Jigorian (LP, Mi Jann², Guoring LP²⁴, Ruigen L²⁴⁰, Yulong Zhang²⁴, Gang Taon²⁴, Devid Mang²⁴, Will Wang¹⁴, Hanning H²⁴⁰, Yulong Zhang¹⁴, David Mang¹⁴, Will Wang¹⁴, Hanning H²⁴⁰, Yulong Zhang¹⁴, Chang Zhang¹⁴, Bead Athouke¹⁴, Launan Antongo, Taby Boom,¹ Kinstan Objeks¹⁴, Tan J, Fransell Starey B, Gabrier (Co-Charin, Duot S, Linder, Filons Sheft, Carnel L. Saugner; Human David S, Bertel¹⁴, Fincipal Investigator, Nial Gomine¹, Carnel L. Saugner; J Human David S, Bertel¹⁴, Fincipal Investigator, Nial Gomine¹⁴, Anney David Hans Lehnach¹⁶, Finopal Investigator, Jonata A, Boronian Timmerama¹⁴, Andensy Dav¹⁴, Anney N. Davyod¹⁴, Peter Marquard¹⁴, Finotan Metrali, Wilfield Nietbell¹⁴, Andersy Dav¹⁴, Anney N. Davyod¹⁴, Peter Marquard¹⁴, Finotan Metrali, Wilfield Nietbell¹⁴, Panlo Rossins¹⁴, David Scholaber J, Alaski V, Soldator ¹⁴, Bandon Timmerama¹⁴, Manta Athout¹⁴, David Antone¹⁴, Saal Athyr¹⁴, Wilfield Scholab, ¹⁴, David Athout¹⁴, David Antone¹⁴, Saal Athyr¹⁴, Wilfield Scholab, ¹⁴, David Athout¹⁴, David Antone¹⁴, Saal Athyr¹⁴, Wilfield Bachrobar, ¹⁴, Bellog Rossins¹⁴, ¹⁴, David Antone¹⁴, Saal Athyr¹⁴, ¹⁴, Marke Bachrobar, ¹⁴, Bellog Rossins¹⁴, ¹⁴, David Antone¹⁴, Saal Athyr¹⁴, ¹⁴, Marke Bachrobar, ¹⁴, Bellog Rossins¹⁴, ¹⁴, David J, Can Guoring¹⁴, ¹⁴, Knowton²⁷, Matthew Labrecque²⁷, Louise McDade²⁷, Craig Mealmaker²⁷, Melisa Minderman²⁷, Anne Nawrock²⁷, Faheem Niaz²⁷, Kristen Pareja²⁷, Ravi Ramenan² David Riches²⁷, Wanm in Song²⁷, Cynthia Turcotte²⁷, Shally Wang²⁷; Washington University in St Louis Elaine R. Mardis¹⁷ (Co-Gwe) (Co-Principal Investigator), Richard K. Wilson¹⁷ University in St Louis Elaine R. Mardia¹¹ (Costano Garmagai managana), nama to wanan (co-Principal Investigator), David Ocoling¹² Juurida Utitoho¹², Robert Hutoh¹², Robert Hutoh¹², Goorge Weinstock², 'Welkome Trust Sanger Institute Richard M. Durbin¹ (Principal Investigator), John Burton¹, David M. Carter¹, Carl Churcher¹, Alison Coffey¹, Anthony Carl, 'Aano Palatel^{2,4}', Michael Quali¹, Tom Skell¹, James Staller¹, Handd P.

Analysis group: Agilent Technologies Anniek De Witte²⁹, Shane Giles²⁹; Baylor Colege of Makicene Richard A Gibba⁴⁴ ("Annopal Investigator), David Wheeler⁴⁴, Mattew Basinolog⁴⁴, "Damy Chall⁴⁵, "Anio Sabo⁴⁵, "Chi M⁴¹, Jin⁴, Yia⁴⁵, "Bi BGI-Stemathen Jun Wong⁴⁷, ("Analys Line", "Analystan Baylor, "Anaosang Coo⁴⁷, Ruisang ¹¹, "Marguit Line", "Maching Line", Shana Mari M⁴¹, "Anaosang Coo⁴⁷, Ruisang ¹¹, "Marguit Line", "Maching Line", Shana Maria ¹¹, "Anaosang Marguit Line, "Anaosang Marguit Line", "Anaosang Coo⁴⁷, Ruisang ¹¹, "Marguit Line", "Maching Line", "Shana Marguit Line, "Maching Line", "Shana Marguit Line", "Marguit Line, "Marguit Line", Hancheng Zheng²², Xiaole Zheng²², Yan Zho ²², Guoqing L²², Jian Wang²², Huanming

Lander², Hans Lahraga¹⁴, Elaine R, Mardia¹³, Gil A Ismetgarch, Yung LG, Praket Lago, Yung J, Balyene W, Wang J, Shang Wilam F, Mottal P, Paul Scheff, Chol Soler M, Mitte J, Shang J, Shang J, Shang Shang J, Shang J

Alexander E. Uthan¹⁻¹⁰⁶, "Dengdong canage" Structural variation group: BOI-Sheethen Yingnu L^{2/2}, Ruibang Luc^{2/2}, Boston Callege Cabor J, Mach¹⁰ (Principal Intersignation), Edite P. Garrison¹⁰, "Dans Kyral¹⁰, too W.²⁰, Brgham and Waney S Hospital Calorison Letter ²⁰, Co-Cabri (Principal Innesignato), Paper J, Mini¹⁰, Xingham J, ²⁰, Tae And Institute of MT and Harvard Steven JA. McCaroll²¹ (Principal Intersity), Start Start, Start J, ²⁰, Co-Cabri (Principal Innesignato), Paper J, Mini¹⁰, Xingham J, ²⁰, Tae Mark J, ²⁰, Kingham J, ²⁰, Kerra Cheetham, Michael Eberle, Scott Kahn, Lisa Murray, Leiden Medical Center Kai Ye⁴, Life Technologies Francisco M. De La Vega Loverinto Video 5/24 Jactheor Dechtem²⁴ Vecenics 4, Sci¹⁰ J

bish", Barthar M., Knopperis", Eric SL. Natovani "Die Dabbot Antexisten sind: Status and Die Dabbot Antexisten sind: Status a

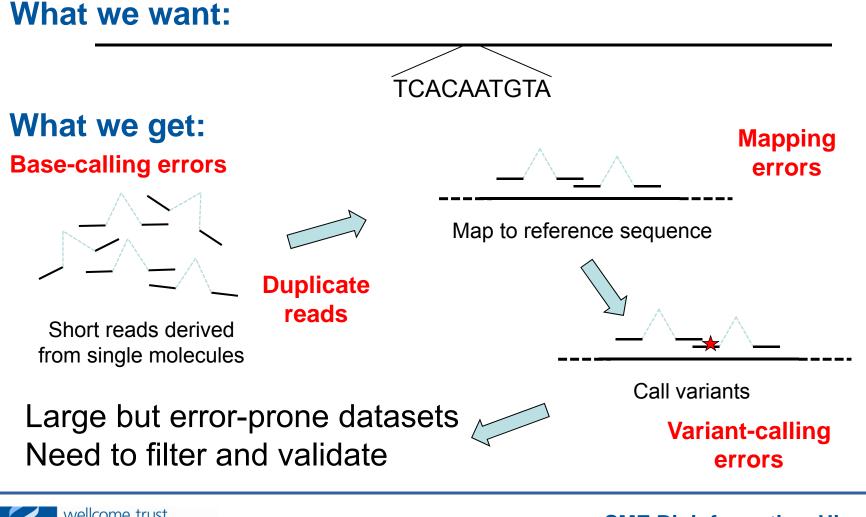


Addata Tomasi¹⁴ Reda Applied Sense Bran Desay¹⁶ (Project Last)¹, Ampli Charles M. Co-X-20 (Data Mark Charles Charles Charles M. Co-X-20 (Data Mark Charles Charles

A Deep Catalog of Human Genetic Variation

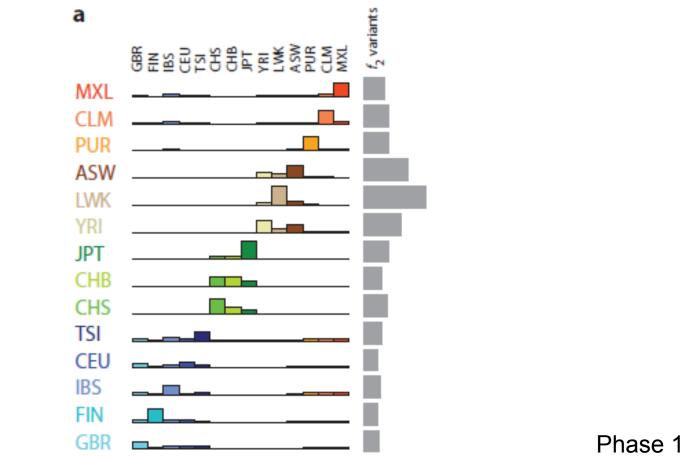
1000 Genome

http://www.1000genomes.org/



SME Bioinformatics, Hinxton

6th March 2014


Sequencing technology

Rare variants tend to be population-specific

Gil McVean, Adam Auton

SME Bioinformatics, Hinxton

6th March 2014