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The 1925 paper “On quantum mechanics” by M. Born and P. Jordan, and the sequel “On quantum
mechanics I’ by M. Born, W. Heisenberg, and P. Jordan, developed Heisenberg’s pioneering theory
into the first complete formulation of quantum mechanics. The Born and Jordan paper is the subject
of the present article. This paper introduced matrices to physicists. We discuss the original postulates
of quantum mechanics, present the two-part discovery of the law of commutation, and clarify the
origin of Heisenberg’s equation. We show how the 1925 proof of energy conservation and Bohr’s
frequency condition served as the gold standard with which to measure the validity of the new
quantum mechanics. © 2009 American Association of Physics Teachers.
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I. INTRODUCTION

The name “quantum mechanics” was coined by Max
Born.! For Born and others, quantum mechanics denoted a
canonical theory of atomic and electronic motion of the same
level of generality and consistency as classical mechanics.
The transition from classical mechanics to a true quantum
mechanics remained an elusive goal prior to 1925.

Heisenberg made the breakthrough in his historic 1925
paper, “Quantum-theoretical reinterpretation of kinematic
and mechanical relations.” Heisenberg’s bold idea was to
retain the classical equations of Newton but to replace the
classical position coordinate with a “quantum-theoretical
quantity.” The new position quantity contains information
about the measurable line spectrum of an atom rather than
the unobservable orbit of the electron. Born realized that
Heisenberg’s kinematical rule for multiplying position quan-
tities was equivalent to the mathematical rule for multiplying
matrices. The next step was to formalize Heisenberg’s theory
using the language of matrices.

The first comprehensive exposition on quantum mechanics
in matrix form was written by Born and Jordan,4 and the
sequel was written by Born, Heisenberg, and Jordan.’ Dirac
independently discovered the general equations of quantum
mechanics without using matrix theory.6 These papers devel-
oped a Hamiltonian mechanics of the atom in a completely
new quantum (noncommutative) format. These papers ush-
ered in a new era in theoretical physics where Hermitian
matrices, commutators, and eigenvalue problems became the
mathematical trademark of the atomic world. We discuss the
first paper “On quantum mechanics.™

This formulation of quantum mechanics, now referred to
as matrix mechanics,7 marked one of the most intense peri-
ods of discovery in physics. The ideas and formalism behind
the original matrix mechanics are absent in most textbooks.
Recent articles discuss the correspondence between classical
harmonics and quantum jumps,8 the calculational details of
Heisenberg’s pa?er,9 and the role of Born in the creation of
quantum theory. % References 11-19 represent a sampling of
the many sources on the development of quantum mechan-
ics.

Given Born and Jordan’s pivotal role in the discovery of
quantum mechanics, it is natural to wonder why there are no
equations named after them,” and why they did not share the
Nobel Prize with others.”' In 1933 Heisenberg wrote Born
saying “The fact that I am to receive the Nobel Prize alone,
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for work done in Goéttingen in collaboration—you, Jordan,
and I, this fact depresses me and I hardly know what to write
to you. I am, of course, glad that our common efforts are
now appreciated, and I enjoy the recollection of the beautiful
time of collaboration. I also believe that all good physicists
know how great was your and Jordan’s contribution to the
structure of quantum mechanics—and this remains un-
changed by a wrong decision from outside. Yet I myself can
do nothing but thank you again for all the fine collaboration
and feel a little ashamed.”>

Engraved on Max Born’s tombstone is a one-line epitaph:
pq—qp=h/2mi. Born composed this elegant equation in
early July 1925 and «called it “die verschirfte
Quantenbedingung”4—the sharpened quantum condition.
This equation is now known as the law of commutation and
is the hallmark of quantum algebra.

In the contemporary approach to teaching quantum me-
chanics, matrix mechanics is usually introduced after a thor-
ough discussion of wave mechanics. The Heisenberg picture
is viewed as a unitary transformation of the Schrodinger
picture.24 How was matrix mechanics formulated in 1925
when the Schrodinger Zpicture was nowhere in sight? The
Born and Jordan paper” represents matrix mechanics in its
purest form.

II. BACKGROUND TO “ON QUANTUM
MECHANICS”

Heisenberg’s program, as indicated by the title of his
paper,2 consisted of constructing quantum-theoretical rela-
tions by reinterpreting the classical relations. To appreciate
what Born and Jordan did with Heisenberg’s reinterpreta-
tions, we discuss in the Appendix four key relations from
Heisenberg’s paper.2 Heisenberg wrote the classical and
quantum versions of each relation in parallel—as formula
couplets. Heisenberg has been likened to an “expert decoder
who reads a cryptogram.”25 The correspondence principle&26
acted as a “code book” for translating a classical relation into
its quantum counterpart. Unlike his predecessors who used
the correspondence principle to produce specific relations,
Heisenberg produced an entirely new theory—complete with
a new representation of position and a new rule of multipli-
cation, together with an equation of motion and a quantum
condition whose solution determined the atomic observables
(energies, frequencies, and transition amplitudes).
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Matrices are not explicitly mentioned in Heisenberg’s pa-
per. He did not arrange his quantum-theoretical quantities
into a table or array. In looking back on his discovery,
Heisenberg wrote, “At that time I must confess I did not
know what a matrix was and did not know the rules of ma-
trix multiplication.”18 In the last sentence of his paper he
wrote “whether this method after all represents far too rough
an approach to the physical program of constructing a theo-
retical quantum mechanics, an obviously very involved prob-
lem at the moment, can be decided only by a more intensive
mathematical investigation of the method which has been
very superficially employed here.””’

Born took up Heisenberg’s challenge to pursue “a more
intensive mathematical investigation.” At the time Heisen-
berg wrote his paper, he was Born’s assistant at the Univer-
sity of Gottingen. Born recalls the moment of inspiration
when he realized that position and momentum were
matrices:*®

After having sent Heisenberg’s paper to the
Zeitschrift fiir Physik for publication, I began to
ponder about his symbolic multiplication, and was
soon so involved in it...For I felt there was some-
thing fundamental behind it...And one morning,
about 10 July 1925, I suddenly saw the light:
Heisenberg’s symbolic multiplication was nothing
but the matrix calculus, well known to me since
my student days from the lectures of Rosanes in
Breslau.

I found this by just simplifying the notation a little:
instead of g(n,n+ 7), where n is the quantum num-
ber of one state and 7 the integer indicating the
transition, I wrote g(n,m), and rewriting Heisen-
berg’s form of Bohr’s quantum condition, I recog-
nized at once its formal significance. It meant that
the two matrix products pq and qp are not identi-
cal. I was familiar with the fact that matrix multi-
plication is not commutative; therefore I was not
too much puzzled by this result. Closer inspection
showed that Heisenberg’s formula gave only the
value of the diagonal elements (m=n) of the ma-
trix pq—qp; it said they were all equal and had the
value h/2mi where h is Planck’s constant and i
=v-1. But what were the other elements (m # n)?

Here my own constructive work began. Repeating
Heisenberg’s calculation in matrix notation, I soon
convinced myself that the only reasonable value of
the nondiagonal elements should be zero, and I
wrote the strange equation

h
pq-qp=-—1, (1)
2171

where 1 is the unit matrix. But this was only a
guess, and all my attempts to prove it failed.

On 19 July 1925, Born invited his former assistant Wolf-
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gang Pauli to collaborate on the matrix program. Pauli de-
clined the invitation.”’ The next day, Born asked his student
Pascual Jordan to assist him. Jordan accepted the invitation
and in a few days proved Born’s conjecture that all nondi-
agonal elements of pq—qp must vanish. The rest of the new
quantum mechanics rapidly solidified. The Born and Jordan
paper was received by the Zeitschrift fiir Physik on 27 Sep-
tember 1925, two months after Heisenberg’s paper was re-
ceived by the same journal. All the essentials of matrix me-
chanics as we know the subject today fill the pages of this
paper.

In the abstract Born and Jordan wrote “The recently pub-
lished theoretical approach of Heisenberg is here developed
into a systematic theory of quantum mechanics (in the first
place for systems having one degree of freedom) with the aid
of mathematical matrix methods.”*” In the introduction they
go on to write “The physical reasoning which led Heisenberg
to this development has been so clearly described by him
that any supplementary remarks appear superfluous. But, as
he himself indicates, in its formal, mathematical aspects his
approach is but in its initial stages. His hypotheses have been
applied only to simple examples without being fully carried
through to a generalized theory. Having been in an advanta-
geous position to familiarize ourselves with his ideas
throughout their formative stages, we now strive (since his
investigations have been concluded) to clarify the math-
ematically formal content of his approach and present some
of our results here. These indicate that it is in fact possible,
starting with the basic premises given by Heisenberg, to
build up a closed mathematical theory of quantum mechanics
which displays strikingly close analogies with classical me-
chanics, but at the same time preserves the characteristic
features of quantum phenomena.”31

The reader is introduced to the notion of a matrix in the
third paragraph of the introduction: “The mathematical basis
of Heisenberg’s treatment is the law of multiplication of
quantum-theoretical quantities, which he derived from an in-
genious consideration of correspondence arguments. The de-
velopment of his formalism, which we give here, is based
upon the fact that this rule of multiplication is none other
than the well-known mathematical rule of matrix multiplica-
tion. The infinite square array which appears at the start of
the next section, termed a matrix, is a representation of a
physical quantity which is given in classical theory as a func-
tion of time. The mathematical method of treatment inherent
in the new quantum mechanics is thereby characterized by
the employment of matrix analysis in place of the usual
number analysis.”

The Born-Jordan paper4 is divided into four chapters.
Chapter 1 on “Matrix calculation” introduces the mathemat-
ics (algebra and calculus) of matrices to physicists. Chapter 2
on “Dynamics” establishes the fundamental postulates of
quantum mechanics, such as the law of commutation, and
derives the important theorems, such as the conservation of
energy. Chapter 3 on “Investigation of the anharmonic oscil-
lator” contains the first rigorous (correspondence free) calcu-
lation of the energy spectrum of a quantum-mechanical har-
monic  oscillator. Chapter 4 on “Remarks on
electrodynamics” contains a procedure—the first of its
kind—to quantize the electromagnetic field. We focus on the
material in Chap. 2 because it contains the essential physics
of matrix mechanics.
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III. THE ORIGINAL POSTULATES OF QUANTUM
MECHANICS

Current presentations of quantum mechanics frequently
are based on a set of postulates. 32 The Born-Jordan postu-
lates of quantum mechanics were crafted before wave me-
chanics was formulated and thus are quite different than the
Schrodinger-based postulates in current textbooks. The origi-
nal postulates come as close as possible to the classical-
mechanical laws while maintaining complete quantum-
mechanical integrity.

Section III, “The basic laws,” in Chap. 2 of the Born—
Jordan paper is five pages long and contains approximately
thirty equations. We have imposed a contemporary postula-
tory approach on this section by identifying five fundamental
passages from the text. We call these five fundamental ideas
“the postulates.” We have preserved the original phrasing,
notation, and logic of Born and Jordan. The labeling and the
naming of the postulates is ours.

Postulate 1. Position and Momentum. Born and Jordan
1ntr0duce the position and momentum matrices by writing
that™

The dynamical system is to be described by the
spatial coordinate q and the momentum p, these
being represented by the matrices

2miv(nm)t )

(q=g(nm)e

s

(p = p(nm)e™). )

Here the v(nm) denote the quantum-theoretical fre-
quencies associated with the transitions between
states described by the quantum numbers n and m.
The matrices (2) are to be Hermitian, e.g., on trans-
position of the matrices, each element is to go over
into its complex conjugate value, a condition
which should apply for all real 7. We thus have

q(nm)q(mn) = |q(nm)|* 3)

and

v(nm) = — v(mn). (4)

If g is a Cartesian coordinate, then the expression
(3) is a measure of the probabilities of the transi-
tions n=m.

The preceding passage placed Hermitian matrices into the
physics limelight. Prior to the Born—Jordan paper, matrices
were rarely seen in physics.’* Hermitian matrices were even
stranger. Physicists were reluctant to accept such an abstract
mathematical entity as a description of physical reality.

For Born and Jordan, q and p do not specify the position
and momentum of an electron in an atom. Heisenberg
stressed that quantum theory should focus only on the ob-
servable properties, namely the frequency and intensity of
the atomic radiation and not the position and period of the
electron. The quantities q and p represent position and mo-
mentum in the sense that q and p satisfy matrix equations of
motion that are identical in form to those satisfied by the
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position and momentum of classical mechanics. In the Bohr
atom the electron undergoes periodic motion in a well de-
fined orbit around the nucleus with a certain classical fre-
quency. In the Heisenberg—Born—Jordan atom there is no
longer an orbit, but there is some sort of periodic “quantum
motion” of the electron characterized by the set of frequen-
cies v(nm) and amplitudes g(nm). Physicists believed that
something inside the atom must vibrate with the right fre-
quencies even though they could not visualize what the
quantum oscillations looked like. The mechanical properties
(q,p) of the quantum motion contain complete information
on the spectral properties (frequency, intensity) of the emit-
ted radiation.

The diagonal elements of a matrix correspond to the
states, and the off-diagonal elements correspond to the tran-
sitions. An important property of all dynamical matrices is
that the diagonal elements are independent of time. The Her-
mitian rule in Eq. (4) implies the relation v(nn)=0. Thus the
time factor of the nth diagonal term in any matrix is
2= 1 - As we shall see, the time-independent entries in
a diagonal matrix are related to the constant values of a con-
served quantity.

In their purely mathematical introduction to matrices
(Chap. 1), Born and Jordan use the following symbols to
denote a matrix

a(00) a(01) a(02)

a(10) a(11) a(12)

a = (a(nm)) = a(20) a(21) a(22) ' ®)

The bracketed symbol (a(nm)), which displays inner ele-
ments a(nm) contained within outer brackets ( ), is the short-
hand notation for the array in Eq. (5). By writing the matrix
elements as a(nm), rather than a,,,, Born and Jordan made
direct contact with Heisenberg’s quantum- theoretlcal quanti-
ties a(n,n—a) (see the Appendix). They wrote® “Matrix
multiplication is defined by the rule ‘rows times columns,’
familiar from the ordinary theory of determinants:

0

a =bc means a(nm) = D, b(nk)c(km) . ” (6)
k=0

This multiplication rule was first given (for finite square ma-
trices) by Arthur Cayley % Little did Cayley know in 1855
that his mathematical “row times column” expression
b(nk)c(km) would describe the physical process of an elec-
tron making the transition n—k—m in an atom.

Born and Jordan wrote in Postulate 1 that the quantity
lg(nm)|? provides “a measure of the probabilities of the tran-
sitions n<—m " They justify this profound claim in the last
chapter Born and Jordan’s one-line claim about transition
probabilities is the only statistical statement in their postu-
lates. Physics would have to wait several months before
Schrodinger’s wave function W(x) and Born’s probability
function |W(x)|* entered the scene. Born discovered the con-
nection between |W(x)|> and position probability, and was
also the first physicist (with Jordan) to formalize the connec-
tion between |g(nm)|*> and the transition probability via a
“quantum electrodynamic” argument.38 As a pioneer statisti-
cal interpreter of quantum mechanics, it is interesting to
speculate that Born might have discovered how to form a

William A. Fedak and Jeffrey J. Prentis 130



linear superposition of the periodic matrix elements
g(nm)e>™" in order to obtain another statistical object,
namely the expectation value (q). Early on, Born, Heisen-
berg, and Jordan did superimpose matrix elements,”’ but did
not supply the statistical interpretation.

Postulate 2. Frequency Combination Prmczple After de-
ﬁnlng q and p, Born and Jordan wrote 3% “Further, we shall
require that

v(jk) + v(kl) + v(lj)=0.” (7)

The frequency sum rule in Eq. (7) is the fundamental con-
straint on the quantum-theoretical frequencies. This rule is
based on the Ritz combination principle, which explains the
relations of the spectral lines of atomic spectroscopy. 40 Equa-
tion (7) is the quantum analogue of the “Fourier combination
principle”, v(k—j)+v(l-k)+v(j—1)=0, where v(a)=av(l)
is the frequency of the ath harmonic component of a Fourier
series. The frequency spectrum of classical periodic motion
obeys this Fourier sum rule. The equal Fourier spacing of
classical lines is replaced by the irregular Ritzian spacing of
quantal lines. In the correspondence limit of large quantum
numbers and small quantum jumps the atomic spectrum of
Ritz reduces to the harmonic spectrum of Fourier.>*® Be-
cause the Ritz rule was considered an exact law of atomic
spectroscopy, and because Fourier series played a vital role
in Heisenberg’s analysis, it made sense for Born and Jordan
to posit the frequency rule in Eq. (7) as a basic law.

One might be tempted to regard Eq. (7) as equivalent to
the Bohr frequency condition, E(n)—E(m)=hv(nm), where
E(n) is the energy of the stationary state n. For Born and
Jordan, Eq. (7) says nothing about energy. They note that
Egs. (4) and (7) imply that there exists spectral terms W,
such that

hv(nm)=W,-W,,. (8)

At this postulatory stage, the term W, of the spectrum is
unrelated to the energy E(n) of the state. Heisenberg empha-
sized this distinction between “term” and energX in a letter
to Pauli summarizing the Born—Jordan theory.” Born and
Jordan adopt Eq. (7) as a postulate—one based solely on the
observable spectral quantities »(nm) without reference to any
mechanical quantities E(n). The Bohr frequency condition is
not something they assume a priori, it is something that must
be rigorously proved.

The Ritz rule insures that the nm element of any dynami-
cal matrix (any function of p and q) oscillates with the same
frequency v(nm) as the nm element of p and q. For example,
if the 3—2 elements of p and q oscillate at 500 MHz, then
the 3 —2 elements of p%, q, pq, q°, p>+q>, etc. each oscil-
late at 500 MHz. In all calculations involving the canonical
matrices p and q, no new frequencies are generated. A con-
sistent quantum theory must preserve the frequency spectrum
of a particular atom because the spectrum is the spectro-
scopic signature of the atom. The calculations must not
change the identity of the atom. Based on the rules for ma-
nipulating matrices and combining frequencies, Born and
Jordan wrote that “it follows that a function g(pq) invariably
takes on the form

g= (g(nm)eZﬂ'iV(nm)l) (9)

and the matrix (g(nm)) therein results from identically the
same process applied to the matrices (g(nm)), (p(nm)) as
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was employed to find g from q, p.”42 Because e27")" s the
universal time factor common to all dynamical matrices, they
note that it can be dropped from Eq. (2) in favor of the
shorter notation q=(g(nm)) and p=(p(nm)).

Why does the Ritz rule insure that the time factors of
g(pq) are identical to the time factors of p and q? Consider
the potential energy function q>. The nm element of q?,
which we denote by qz(nm), is obtained from the elements of
q via the multiplication rule

q2(nm) — 2 q(nk)62Triv(nk)tq(km)eZvriv(km)r_ (10)
k

Given the Ritz relation v(nm)=v(nk)+ v(km), which follows
from Eqgs. (4) and (7), Eq. (10) reduces to

o) = [2 q(nk)q(km)]em“m”. (11)
k

It follows that the nm time factor of q? is the same as the nm
time factor of q.

We see that the theoretical rule for multiplying mechanical
amplitudes, a(nm)=2;b(nk)c(km), is intimately related to
the experimental rule for adding spectral frequencies,
v(nm)=v(nk)+v(km). The Ritz rule occupied a prominent
place in Heisenberg’s discovery of the multiplication rule
(see the Appendix). Whenever a contemporary physicist cal-
culates the total amplitude of the quantum jump n—k—m,
the steps involved can be traced back to the frequency com-
bination principle of Ritz.

Postulate 3. The Equation of Motion. Born and Jordan
introduce the law of quantum dynamics by ertlng

In the case of a Hamilton function having the form
1
H=—p’+U(q), (12)
2m
we shall assume, as did Heisenberg, that the equa-

tions of motion have just the same form as in the
classical theory, so that we can write:

q=—=—p, (13a)
ap
. JH JU
p=-—=- (13b)
aq aq

This Hamiltonian formulation of quantum dynamics general-
ized Heisenberg’s Newtonian approach.44 The assumption by
Heisenberg and Born and Jordan that quantum dynamics
looks the same as classical dynamics was a bold and deep
assumption. For them, the problem with classical mechanics
was not the dynamics (the form of the equations of motion),
but rather the kinematics (the meaning of position and mo-
mentum).

Postulate 4. Energy Spectrum. Born and Jordan reveal the
connection between the allowed energies of a conservative
system and the numbers in the Hamiltonian matrix:

“The diagonal elements H(nn) of H are inter-
preted, according to Heisenberg, as the energies of
the various states of the system.”45

William A. Fedak and Jeffrey J. Prentis 131



This statement introduced a radical new idea into main-
stream physics: calculating an energy spectrum reduces to
finding the components of a diagonal matrix.*® Although
Born and Jordan did not mention the word eigenvalue in Ref.
4, Born, Heisenberg, and Jordan would soon formalize the
idea of calculating an energy spectrum by solving an eigen-
value problem.5 The ad hoc rules for calculating a quantized
energy in the old quantum theory were replaced by a system-
atic mathematical program.

Born and Jordan considered exclusively conservative sys-
tems for which H does not depend explicitly on time. The
connection between conserved quantities and diagonal matri-
ces will be discussed later. For now, recall that the diagonal
elements of any matrix are independent of time. For the spe-
cial case where all the non-diagonal elements of a dynamical
matrix g(pq) vanish, the quantity g is a constant of the mo-
tion. A postulate must be introduced to specify the physical
meaning of the constant elements in g.

In the old quantum theory it was difficult to explain why
the energy was quantized. The discontinuity in energy had to
be postulated or artificially imposed. Matrices are naturally
quantized. The quantization of energy is built into the dis-
crete row-column structure of the matrix array. In the old
theory Bohr’s concept of a stationary state of energy E, was
a central concept. Physicists grappled with the questions:
Where does E, fit into the theory? How is E, calculated?
Bohr’s concept of the energy of the stationary state finally
found a rigorous place in the new matrix scheme."’

Postulate 5. The Quantum Condition. Born and Jordan
state that the elements of p and q for any quantum mechani-
cal system must satisfy the “quantum condition’:

S (plak)ghn) — g(k)plin)) = 5 (14)
k Tl

Given the significance of Eq. (14) in the development of
quantum mechanics, we quote Born and Jordan’s “deriva-
tion” of this equation:

The equation

1/v
J= fﬁpd%f pqdt (15)
0

of “classical” quantum theory can, on introducing
the Fourier expansions of p and ¢,

©

p= 2 pem™m,
; (16)
q= 2 ¢,
be transformed into
=200 S, e (gp). (17)
e OJ

The following expressions should correspond:
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)

wa Ta%(qrp_r) (18)

with

[

1
- 2 (gin+ mn)p(n,n+ 1)

h .

—q(n,n—7)p(n - 7.n)), (19)

where in the right-hand expression those g(nm),
p(nm) which take on a negative index are to be set
equal to zero. In this way we obtain the quantiza-
tion condition corresponding to Eq. (17) as

S (plak)gln) —g(ak)plin) = 5= (20)
P i

This is a system of infinitely many equations,
namely one for each value of n*®

Why did Born and Jordan take the derivative of the action
integral in Eq. (15) to arrive at Eq. (17)? Heisenberg per-
formed a similar maneuver (see the Appendix). One reason is
to eliminate any explicit dependence on the integer variable
n from the basic laws. Another reason is to generate a differ-
ential expression that can readily be translated via the corre-
spondence principle into a difference expression containing
only transition quantities. In effect, a state relation is con-
verted into a change-in-state relation. In the old quantum
theory the Bohr—Sommerfeld quantum condition, $pdg=nh,
determined how all state quantities depend on n. Such an ad
hoc quantization algorithm has no proper place in a rigorous
quantum theory, where n should not appear explicitly in any
of the fundamental laws. The way in which g(nm), p(nm),
v(nm) depend on (nm) should not be artificially imposed, but
should be naturally determined by fundamental relations in-
volving only the canonical variables q and p, without any
explicit dependence on the state labels n and m. Equation
(20) is one such fundamental relation.

In 1924 Born introduced the technique of replacing differ-
entials by differences to make the “formal passage from clas-
sical mechanics to a ‘quantum mechanics’.”* This corre-
spondence rule played an important role in allowing Born
and others to develop the equations of quantum mechanics.”
To motivate Born’s rule note that the fundamental orbital
frequency of a classical periodic system is equal to dE/dJ (E
is energy and J=§pdq is an action),”’ whereas the spectral
frequency of an atomic system is equal to AE/h. Hence, the
passage from a classical to a quantum frequency is made b;'
replacing the derivative dE/dJ by the difference AE/h. :
Born conjectured that this correspondence is valid for any
quantity ®. He wrote “We are therefore as good as forced to
adopt the rule that we have to replace a classically calculated
quantity, whenever it is of the form 7d®/dJ by the linear
average or difference quotient [®(n+7)—P(n)]/ h.>® The
correspondence between Egs. (18) and (19) follows from
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Born’s rule by letting ® be ®(n)=g(n,n—7pn-r,n),
where g(n,n—17) corresponds to ¢, and p(n—7,n) corre-
sponds to p_, or pf.

Born and Jordan remarked that Eq. (20) implies that p and
q can never be finite matrices.” For the special case p
=mq they also noted that the general condition in Eq. (20)
reduces to Heisenberg’s form of the quantum condition (see
the Appendix). Heisenberg did not realize that his quantiza-
tion rule was a relation between pq and qp.55

Planck’s constant / enters into the theory via the quantum
condition in Eq. (20). The quantum condition expresses the
following deep law of nature: All the diagonal components of
Pq-—qp must equal the universal constant h/2i.

What about the nondiagonal components of pq—qp? Born
claimed that they were all equal to zero. Jordan proved
Born’s claim. It is important to emphasize that Postulate 5
says nothing about the nondiagonal elements. Born and Jor-
dan were careful to distinguish the postulated statements
(laws of nature) from the derivable results (consequences of
the postulates). Born’s development of the diagonal part of
pq—qp and Jordan’s derivation of the nondiagonal part con-
stitute the two-part discovery of the law of commutation.

IV. THE LAW OF COMMUTATION

Born and Jordan write the following equation in Sec. IV of
“On quantum mechanics™:

h
pq-qp=-—1. (21)
2171

They call Eq. (21) the “sharpened quantum condition” be-
cause it sharpened the condition in Eq. (20), which only fixes
the diagonal elements, to one which fixes all the elements. In
a letter to Pauli, Heisenberg referred to Eq. (21) as a “fun-
damental law of this mechanics” and as “Born’s very clever
idea.”® Indeed, the commutation law in Eq. (21) is one of
the most fundamental relations in quantum mechanics. This
equation introduces Planck’s constant and the imaginary
number 7 into the theory in the most basic way possible. It is
the golden rule of quantum algebra and makes quantum cal-
culations unique. The way in which all dynamical properties
of a system depend on /4 can be traced back to the simple
way in which pq—qp depend on . In short, the commuta-
tion law in Eq. (21) stores information on the discontinuity,
the non-commutativity, the uncertainty, and the complexity
of the quantum world.

In their paper Born and Jordan proved that the off-
diagonal elements of pq—qp are equal to zero by first estab-
lishing a “diagonality theorem,” which they state as follows:
“If v(nm)#0 when n#m, a condition which we wish to
assume, then the formula g=0 denotes that g is a diagonal
matrix with g(nm)=34,,g(nn).”>" This theorem establishes
the connection between the structural (diagonality) and the
temporal (constancy) properties of a dynamical matrix. It
provided physicists with a whole new way to look at conser-
vation principles: In quantum mechanics, conserved quanti-
ties are represented by diagonal matrices.

Born and Jordan proved the diagonality theorem as fol-
lows. Because all dynamical matrices g(pq) have the form in
Eq. (9), the time derivative of g is
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g = 2i(v(nm) g(nm)e>™ (22)

If g=0, then Eq. (22) implies the relation v(nm)g(nm)=0 for
all (nm). This relation is always true for the diagonal ele-
ments because v(nn) is always equal to zero. For the off-
diagonal elements, the relation »(nm)g(nm)=0 implies that
g(nm) must equal zero, because it is assumed that v(nm)
# 0 for n# m. Thus, g is a diagonal matrix.

Hence, to show that pq—qp is a diagonal matrix, Born
and Jordan showed that the time derivative of pq—qp is
equal to zero. They introduced the matrix d=pq—qp and
expressed the time derivative of d as

d=pq +pd - qp - qp. (23)

They used the canonical equations of motion in Eq. (13) to
write Eq. (23) as

JH JH H H (24)
=q - —q P~ ——P.
Jq  9q g Ip
They next demonstrated that the combmatlon of der1vat1ves
in Eq. (24) leads to a vanishing result™ and say that *

follows that d=0 and d is a diagonal matrix. The diagonal
elements of d are, however, specified by the quantum condi-
tion (20). Summarizing, we obtain the equation

h
pq-qp=-_1, (25)
210

on introducing the unit matrix 1. We call Eq. (25) the ‘sharp-
ened quantum condition’ and base all further conclusions on
% Fundamental results that propagate from Eq. (25) in-
clude the equation of motion, g=(27i/h)(Hg-gH) (see Sec.
V), the Heisenberg uncertainty principle, ApAg=h/4r, and

the Schrodinger operator, p=(h/2mi)d/dq.

It is important to emphasize the two distinct origins of
pq-qp=(1/2mi)1. The diagonal part, (Pq-qp)diagonal
=h/2mi is a law—an exact decoding of the approximate law
$pdq=nh. The nondiagonal part, (Pq—Qqp)uondiagona =0 is a
theorem—a logical consequence of the equations of motion.
From a practical point of view Eq. (25) represents vital in-
formation on the line spectrum of an atom by defining a
system of algebraic equations that place strong constraints on
the magnitudes of g(nm), p(nm), and v(nm).

V. THE EQUATION OF MOTION

Born and Jordan proved that the equation of motion de-
scribing the time evolution of any dynamical quantity g(pq)
is

S
g="," (Hg—gH). (26)

Equatlon (26) is now often referred to as the Heisenberg
equatlon "In Ref. 2 the only equation of motion is Newton’s
second law, which Heisenberg wrote as x+f(x)=0 (see the
Appendix).

The “commutator” of mechanical quantities is a recurring
theme in the Born—Jordan theory. The quantity pq—qp lies at
the core of their theory. Equation (26) reveals how the quan-
tity Hg—gH is synonymous with the time evolution of g.
Thanks to Born and Jordan, as well as Dirac who established
the connection between commutators and classical Poisson
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brackets,” the commutator is now an integral part of modern
quantum theory. The change in focus from commuting vari-
ables to noncommuting variables represents a paradigm shift
in quantum theory.

The original derivation of Eq. (26) is different from
present-day derivations. In the usual textbook presentation
Eq. (26) is derived from a unitary transformatlon of the states
and operators in the Schrodinger plcture * In 1925, the
Schrodinger picture did not exist. To derive Eq. (26) from
their postulates Born and Jordan developed a new quantum-
theoretical technology that is now referred to as “‘commuta-
tor algebra.” They began the proof by stating the following
generalizations of Eq. (25):

p'q=qp"+ L (27)

277

h

n=l 28
- (28)

q'p=pq"

which can readily be derived by induction. They considered
Hamiltonians of the form

H=H,(p) + Hy(q), (29)
where H,(p) and H,(q) are represented by power series
Hl = 2 asps7
s
H,=, bgq’. (30)

After writing these expressions, they wrote® “Formulae (27)
and (28) indicate that

Hq- qH= =2 (31)
-4 2 dp’

Hp-pH=— ™8 (32)
PP = aq

Comparison with the equations of motion (13) yields

. 2w

q=-,~(Hq-qH), (33)

o2

p=—,~(Hp-pH). (34)

Denoting the matrix Hg—gH by |g| for brevity, one has

H H H
= b+a| |, (35)
ab a b
from which generally for g=g(pq) one may conclude that
- 2mi|H 27i
&= | g ——(Hg gH).” (36)

The derivation of Eq. (36) clearly displays Born and Jordan’s
expertise in commutator algebra. The essential step to go
from Eq. (27) to Eq. (31) is to note that Eq. (27) can be
rewritten as a commutator-derivative relation, p"q-—qp”
=(h/2wi)dp™/dp, which is equivalent to the nth term of the
series representation of Eq. (31). The generalized commuta-
tion rules in Egs. (27) and (28), and the relation between
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commutators and derivatives in Egs. (31) and (32) are now
standard operator equations of contemporary quantum
theory.

With the words, “Denoting the matrix Hg—gH by |
Born and Jordan formalized the notion of a commutator and
introduced physicists to this important quantum-theoretical
object. The appearance of Eq. (36) in Ref. 4 marks the first
printed statement of the general equation of motion for a
dynamical quantity in quantum mechanics.

VI. THE ENERGY THEOREMS

Heisenberg, Born, and Jordan considered the conservation
of energy and the Bohr frequency condition as universal laws
that should emerge as logical consequences of the fundamen-
tal postulates. Proving energy conservation and the fre-
quency condition was the ultimate measure of the power of
the postulates and the validity of the theory ? Born and Jor-
dan began Sec. IV of Ref. 4 by writing “The content of the
preceding paragraphs furnishes the basic rules of the new
quantum mechanics in their entirety. All the other laws of
quantum mechanics, whose general validity is to be verified,
must be derivable from these basic tenets. As instances of
such laws to be proved, the law of energy conservation and
the Bohr freguency condition primarily enter into
consideration.’

The energy theorems are stated as follows:®

H=0 (energy conservation), (37)

hv(nm) = H(nn) — H(mm)  (frequency condition). (38)

Equations (37) and (38) are remarkable statements on the
temporal behav1or of the system and the logical structure of
the theory.®® Equation (37) says that H, which depends on
the matrices p and q is always a constant of the motion even
though p=p(7) and q=q(7) depend on time. In short, the 7 in
H(p(7),q(z)) must completely disappear. Equation (37) re-
veals the time independence of H, and Eq. (38) specifies how
H itself determines the time dependence of all other dynami-
cal quantities.

Why should v(nm), H(nn), and H(mm) be related? These
quantities are completely different structural elements of dif-
ferent matrices. The parameter »(nm) is a transition quantity
that characterizes the off-diagonal, time-dependent part of q
and p. In contrast, H(nn) is a state quantity that characterizes
the diagonal, time-independent part of H(pq). It is a non-
trivial claim to say that these mechanical elements are re-
lated.

It is important to distinguish between the Bohr meaning of
E,—E,=hv and the Born—-Jordan meaning of H(nn)
—H(mm)=hv(nm). For Bohr, E, denotes the mechanical en-
ergy of the electron and v denotes the spectral frequency of
the radiation. In the old quantum theory there exists ad hoc,
semiclassical rules to calculate E,. There did not exist any
mechanical rules to calculate v, independent of E, and E,,.
The relation between E,—E,, and v was postulated. Born and
Jordan did not postulate any connection between H(nn),
H(mm), and v(nm). The basic mechanical laws (law of mo-
tion and law of commutation) allow them to calculate the
frequencies v(nm) which paramaterize q and the energies
H(nn) stored in H. The theorem in Eq. (38) states that the
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calculated values of the mechanical parameters H(nn),
H(mm), and v(nm) will always satisfy the relation H(nn)
—H(mm)=hv(nm).

The equation of motion (36) is the key to proving the
energy theorems. Born and Jordan wrote “In particular, if in
Eq. (36) we set g=H, we obtain

H=0. (39)

Now that we have verified the energy-conservation law and
recognized the matrix H to be diagonal [by the diagonality
theorem, H=0=H is diagonal], Egs. (33) and (34) can be
put into the form

hv(nm)q(nm) = (H(nn) — H(mm))q(nm), (40)

hv(nm)p(nm) = (H(nn) — H(mm))p(nm), (41)

from which the frequency condition follows.”®” Given the
importance of this result, it is worthwhile to elaborate on the
proof. Because the nmm component of any matrix g is
g(nm)e2™m the nm component of the matrix relation in
Eq. (33) is

2ariv(nm)g(nm)e>™m

=2 (gt
k

_ (nk)H(km))ezm[”("k)“’(k’”)]’. (42)
q

Given the diagonality of H, H(nk)=H(nn)s,, and H(km)
=H(mm)&,,, and the Ritz rule, v(nk)+v(km)=v(nm), Eq.
(42) reduces to

v(nm) = %(H(nn) - H(mm)). (43)

In this way Born and Jordan demonstrated how Bohr’s fre-
quency condition, hv(nm)=H(nn)—H(mm), is simply a sca-
lar component of the matrix equation, hq=2mi(Hq—qH). In
any presentation of quantum mechanics it is important to
explain how and where Bohr’s frequency condition logically
fits into the formal structure.%®

According to Postulate 4, the nth diagonal element H(nn)
of H is equal to the energy of the nth stationary state. Logi-
cally, this postulate is needed to interpret Eq. (38) as the
original frequency condition conjectured by Bohr. Born and
Jordan note that Egs. (8) and (38) imply that the mechanical
energy H(nn) is related to the spectral term W, as follows:
W,=H(nn)+ constant.”

This mechanical proof of the Bohr frequency condition
established an explicit connection between time evolution
and energy. In the matrix scheme all mechanical quantities
(p, q, and g(pq)) evolve in time via the set of factors
2™t where  v(nm)=(H(nn)—H(mm))/h. Thus, all
g-functions have the form”°

g= (g(nm)eZm’(H(nn)—H(mm))I/h) ) (44)

Equation (44) exhibits how the difference in energy between
state n and state m is the “driving force” behind the time
evolution (quantum oscillations) associated with the change
of state n—m.

In the introduction of their paper, Born and Jordan write
“With the aid of [the equations of motion and the quantum
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condition], one can prove the general validity of the law of
conservation of energy and the Bohr frequency relation in the
sense conjectured by Heisenberg: this proof could not be
carried through in its entirety b;/ him even for the simple
examples which he considered.” ! Because p and q do not
commute, the mechanism responsible for energy conserva-
tion in quantum mechanics is significantly different than the
classical mechanism. Born and Jordan emphasize this differ-
ence by writing “Whereas in classical mechanics energy con-

servation (H=0) is directly apparent from the canonical
equations, the same law of energy conservation in quantum

mechanics, H=0 lies, as one can see, more deeply hidden
beneath the surface. That its demonstrability from the as-
sumed postulates is far from being trivial will be appreciated
if, following more closely the classical method of proof, one

sets out to prove H to be constant simply by evaluating H™?

We carry out Born and Jordan’s suggestion “to prove H to

be constant simply by evaluating H” for the special Hamil-
tonian

H=p’+¢’. (45)

In order to focus on the energy calculus of the p and q
matrices, we have omitted the scalar coefficients in Eq. (45).

If we write Eq. (45) as H=pp+qqgq, calculate H, and use the
equations of motion q=2p, p=-3q>, we find"

H=q(pq-qp) + (qp - p@)a. (46)
Equation (46) reveals how the value of pq—qp uniquely
determines the value of H. The quantum condition, pq—qp

=(h/2mi)1, reduces Eq. (46) to H=0. In classical mechanics
the classical condition, pg—¢gp=0, is taken for granted in
proving energy conservation. In quantum mechanics the con-
dition that specifies the nonzero value of pq—qp plays a
nontrivial role in establishing energy conservation. This non-
triviality is what Born and Jordan meant when they wrote
that energy conservation in quantum mechanics “lies more
deeply hidden beneath the surface.”

Proving the law of energy conservation and the Bohr fre-
quency condition was the decisive test of the theory—the
final validation of the new quantum mechanics. All of the
pieces of the “quantum puzzle” now fit together. After prov-
ing the energy theorems, Born and Jordan wrote that “The
fact that energy-conservation and frequency laws could be
proved in so general a context would seem to us to furnish
strong grounds to hope that this theory embraces truly deep-
seated physical laws.”"*

VII. CONCLUSION

To put the discovery of quantum mechanics in matrix form
into perspective, we summarize the contributions of Heisen-
berg and Born—Jordan. Heisenberg’s breakthrough consists
of four quantum-theoretical reinterpretations (see the Appen-
dix):

1. Replace the position coordinate x(z) by the set of transi-
tion components a(n,n—a)e'"=r,
2. Replace x2(r) with the set =.a(n,n—a)e'®""~q(n

—a,n _B)eiw(n—a,n—ﬁ)t‘

3. Keep Newton’s second law, ¥+ f(x)=0, but replace x as
before.
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4. Replace the old quantum condition, nh= gﬁmxzdt, with h
=4mmZ fla(n+a,n)Pw(n+a,n)-la(n,n-a)>w(n,n

-a)}.

The quantum mechanics of Born and Jordan consists of
five postulates:

L Q=(gmm)e 0, p=(p(am)e2mHom),
2. v(jk)+v(kl)+v(1j)=0,

3. q=dH/ap, p=—dH/dq,

4. E,=H(nn), and

5. (PA=9qP) giagonar =1/ 27,

and four theorems

L. (pq - qp)nondiagonzﬂ: 0,
2. §=(12mi/h)(Hg—-gH),

3. H=0, and
4. hv(nm)=H(nn)—H(mm).

Quantum mechanics evolved at a rapid pace after the pa-
pers of Heisenberg and Born—Jordan Dirac’s paper was re-
ceived on 7 November 1925.° Born, Helsenberg, and Jor-
dan’s paper was received on 16 November 1925.° The first
“textbook™ on quantum mechanics appeared in 1926 In a
series of papers during the spring of 1926, Schrédinger set
forth the theory of wave mechanics.”® In a paper received
June 25, 1926 Born introduced the statistical interpretation of
the wave function.”” The Nobel Prize was awarded to
Heisenberg in 1932 (delayed until 1933) to Schrédinger and
Dirac in 1933, and to Born in 1954.

APPENDIX: HEISENBERG’S FOUR
BREAKTHROUGH IDEAS

We divide Heisenberg’s paper2 into four major reinterpre-
tations. For the most part we will preserve Heisenberg’s
original notation and arguments.

Reinterpretation 1: Position. Heisenberg considered one-
dimensional periodic systems. The classical motion of the
system (in a stationary state labeled n) is described by the
time-dependent position x(n, 0n.”® Heisenberg represents this
periodic function by the Fourier series

x(n,0) = D, a,(n)e' @™, (A1)

Unless otherwise noted, sums over integers go from — to c°.
The ath Fourier component related to the nth stationary state
has amplitude a,(n) and frequency aw(n). According to the
correspondence principle, the ath Fourier component of the
classical motion in the state n corresponds to the quantum
jump from state n to state n—a. 826 Motivated by this prin-
ciple, Helsenberg replaced the classical component
a,(n)e!®@ ™t by the transition component a(n,n
—a)e!mn=a1 7 We could say that the Fourier harmonic is
replaced by a “Heisenberg harmonic.” Unlike the sum over
the classical components in Eq. (Al), Heisenberg realized
that a similar sum over the transition components is mean-
ingless. Such a quantum Fourier series could not describe the
electron motion in one stationary state (n) because each term
in the sum describes a transition process associated with two
states (n and n—a).

Heisenberg’s next step was bold and ingenious. Instead of
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reinterpreting x(¢) as a sum over transition components, he
represented the position by the ser of transition components.
We symbolically denote Heisenberg’s reinterpretation as

(A2)

x — {a(n,n — a)e'n-9n,
Equation (A2) is the first breakthrough relation.

Reinterpretation 2: Multiplication. To calculate the energy
of a harmonic oscillator, Heisenberg needed to know the
quantity x*>. How do you square a set of transition compo-
nents? Heisenberg posed this fundamental question twice in
his paper.80 His answer gave birth to the algebraic structure
of quantum mechanics. We restate Heisenberg’s question as
“If x is represented by {a(n,n—a)e!""~9"} and x? is repre-
sented by {b(n,n—B)e A1 how is b(n,n— ) related to
aln,n—-a)?”

Heisenberg answered this question by reinterpreting the
square of a Fourier series with the help of the Ritz principle.
He evidently was convinced that quantum multiplication,
whatever it looked like, must reduce to Fourier-series multi-
plication in the classical limit. The square of Eq. (A1) gives

2(n,t) = 2 bg(n)ePo™, (A3)
B
where the Bth Fourier amplitude is
bp(n) = 2 o(M)ag o(n). (Ad)

In the new quantum theory Heisenberg replaceed Egs. (A3)
and (A4) with

x> — {b(n,n - p)e'rn-P1y, (A5)
where the n— n— 3 transition amplitude is
b(n,n—B) = > aln,n - a)aln - a,n - B). (A6)

In constructing Eq. (A6) Heisenberg uncovered the symbolic
algebra of atomic processes.

The logic behind the quantum rule of multiplication can be
summarized as follows. Ritz’s sum rule for atomic frequen-
cies, w(n,n-pB)=wn,n—a)+wn-a,n-B), implies the
product rule for Heisenberg’s kinematic elements, ¢'®-"-P)
=elolnn-aligioti-an-p)t \which is the backbone of the multipli-
cation rule in Eq. (A6). Equation (A6) allowed Heisenberg to
algebraically manipulate the transition components.

Reinterpretation 3: Motion. Equations (A2), (A5), and
(A6) represent the new “kinematics” of quantum theory—the
new meaning of the position x. Heisenberg next turned his
attention to the new “mechanics.” The goal of Heisenberg’s
mechanics is to determine the amplitudes, frequencies, and
energies from the given forces. Heisenberg noted that in the
old quantum theory a,(n) and w(n) are determined by solv-
ing the classical equation of motion

i+ f(x)=0

and quantizing the classical solution—making it depend on
n—via the quantum condition

jg mxdx =nh.

In Egs. (A7) and (A8) f(x) is the force (per mass) function
and m is the mass.

(A7)

(A8)
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Heisenberg assumed that Newton’s second law in Eq. (A7)
is valid in the new quantum theory provided that the classical
quantity x is replaced by the set of quantities in Eq. (A2), and
f(x) is calculated according to the new rules of amplitude
algebra. Keeping the same form of Newton’s law of dynam-
ics, but adopting the new kinematic meaning of x is the third
Heisenberg breakthrough.

Reinterpretation 4: Quantization. How did Heisenberg re-
interpret the old quantization condition in Eq. (A8)? Given
the Fourier series in Eq. (Al), the quantization condition,
nh=$mxdt, can be expressed in terms of the Fourier param-
eters a,(n) and w(n) as

nh=2mm>, la (n)|>Po(n). (A9)

For Heisenberg, setting $pdx equal to an integer multiple of
h was an arbitrary rule that did not fit naturally into the
dynamical scheme. Because his theory focuses exclusively
on transition quantities, Heisenberg needed to translate the
old quantum condition that fixes the properties of the states
to a new condition that fixes the properties of the transitions
between states. Heisenberg believed'* that what matters is
the difference between $pdx evaluated for neighboring
states: [$pdx],—[$pdx],_,. He therefore took the derivative
of Eq. (A9) with respect to n to eliminate the forced n de-
pendence and to produce a differential relation that can be
reinterpreted as a difference relation between transition
quantities. In short, Heisenberg converted

h= 2wm§ a%qaa(n)vaw(n)) (A10)
to
h= 4wm§‘6 {la(n + a,n)Pw(n + a,n)
- Ia(n,_n - a)fo(n,n-a)}. (Al1)

In a sense Heisenberg’s “amplitude condition” in Eq. (A11)
is the counterpart to Bohr’s frequency condition (Ritz’s fre-
quency combination rule). Heisenberg’s condition relates the
amplitudes of different lines within an atomic spectrum and
Bohr’s condition relates the frequencies. Equation (A11) is
the fourth Heisenberg breaxkthrough.81

Equations (A7) and (All) constitute Heisenberg’s new
mechanics. In principle, these two equations can be solved to
find a(n,n—a) and w(n,n—a). No one before Heisenberg
knew how to calculate the amplitude of a quantum jump.
Equations (A2), (A6), (A7), and (All) define Heisenberg’s
program for constructing the line spectrum of an atom from
the given force on the electron.
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(add) to give the frequency of another line in the spectrum. The Ritz
combination rule is v(nk)+wv(km)=wv(nm), which follows from Egs. (4)
and (7). As a universal, exact law of spectroscopy, the Ritz rule provided
a powerful tool to analyze spectra and to discover new lines. Given the
measured frequencies v; and v, of two known lines in a spectrum, the
Ritz rule told spectroscopists to look for new lines at the frequencies v,
+v, OF V| —V,.

“Tn the letter dated 18 September 1925 Heisenberg explained to Pauli that
the frequencies v; in the Born—Jordan theory obey the “combination
relation v+ vy=v; or vy=(W;—W,)/h but naturally it is not to be as-
sumed that W is the energy.” See Ref. 3, p. 45.

“Reference 3, p. 287, paper 13.

“Reference 3, p. 289, paper 13.

“Born and Jordan devote a large portion of Chap. 1 to developing a matrix
calculus to give meaning to matrix derivatives such as dq/dt and JH/ dp.
They introduce the process of “symbolic differentiation” for constructing
the derivative of a matrix with respect to another matrix. For a discussion
of Born and Jordan’s matrix calculus, see Ref. 13, pp. 68-71. To deal
with arbitrary Hamiltonian functions, Born and Jordan formulated a more
general dynamical law by converting the classical action principal,
JLdt=extremum, into a quantal action principal, D(pq—H(pq))
=extremum, where D denotes the trace (diagonal sum) of the Lagrangian
matrix, pq—H. See Ref. 3, pp. 289-290.

“IReference 3, p. 292. This statement by Born and Jordan appears in Sec.
IV of their paper following the section on the basic laws. We have in-
cluded it with the postulates because it is a deep assumption with far-
reaching consequences.

°In contemporary language the states labeled n=0,1,2,3,... in Heisen-
berg’s paper and the Born—Jordan paper are exact stationary states (eigen-
states of H). The Hamiltonian matrix is automatically a diagonal matrix
with respect to this basis.

47Although Heisenberg, Born, and Jordan made the “energy of the state”
and the “transition between states” rigorous concepts, it was Schrodinger
who formalized the concept of the “state” itself. It is interesting to note
that “On quantum mechanics II” by Born, Heisenberg, and Jordan was
published before Schrodinger and implicitly contains the first mathemati-
cal notion of a quantum state. In this paper (Ref. 3, pp. 348-353), each
Hermitian matrix a is associated with a “bilinear form” Enma(nm)xnx:l.
Furthermore, they identified the “energy spectrum” of a system with the
set of “eigenvalues™ W in the equation Wx,—2,H(kl)x,=0. In present-day
symbolic language the bilinear form and eigenvalue problem are (¥ |a|¥)
and H|W)=W|W), respectively, where the variables x, are the expansion
coefficients of the quantum state |¥). At the time, they did not realize the
physical significance of their eigenvector (x;,x,,...) as representing a
stationary state.

“8Reference 3, pp. 290-291, paper 13.

“This is the sentence from Born’s 1924 paper (See Ref. 1) where the name
“quantum mechanics” appears for the first time in the physics literature
[Ref. 3, p. 182].
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PSee the chapter “The transition to quantum mechanics” in Ref. 12, pp.
181-198 for applications of “Born’s correspondence rule.” The most im-
portant application was deriving Kramer’s dispersion formula. See Ref. 3,
papers 6-10 and Ref. 14.

SIReference 11, pp. 144-145.

The exact relation between the orbital frequency and the optical fre-
quency is derived as follows. Consider the transition from state n of
energy E(n) to state n—7 of energy E(n—7). In the limit n> 7, that is,
large “orbit” and small “jump,” the difference E(n)—E(n—7) is equal to
the derivative 7dE/dn. Given the old quantum condition J=nh, it follows
that dE/dn=hdE/dJ. Thus for n> 7 and J=nh, we have the relation
[E(n)—E(n—7)]/h=1dE/dJ, or equivalently, v(n,n—7)=7v(n). This rela-
tion proves an important correspondence theorem: In the limit n> 7, the
frequency v(n,n—7) associated with the quantum jump n—n—7 is equal
to the frequency 7v(n) associated with the 7th harmonic of the classical
motion in the state n. See Refs. 8 and 26.

P Reference 3, p. 191, paper 7.

54Suppose that the number of states is finite and equal to the integer N.
Then, according to Eq. (20), the diagonal sum (trace) of pq—qp would be
D(pq—qp)=Nh/2i. This nonzero value of the trace contradicts the
purely mathematical relation D(pq—qp)=0, which must be obeyed by all
finite matrices.

3 Heisenberg interview quoted in Ref. 12, p. 281, footnote 45.

Reference 17, p. 361.

S Reference 3, p. 288, paper 13. The name “Diagonality theorem” is ours.
The condition v¥(nm)# 0 when n# m implies that the system is nonde-
generate.

*In contemporary language a conserved quantity is an operator that com-
mutes with the Hamiltonian operator H. For such commuting operators
there exists a common set of eigenvectors. In the energy eigenbasis that
underlies the Born—Jordan formulation, the matrices representing H and
all conserved quantities are automatically diagonal.

*Born and Jordan’s proof that Eq. (24) vanishes is based on a purely
mathematical property of “symbolic differentiation” discussed in Sec. II
of their paper (See Ref. 4). For a separable Hamiltonian of the form H

=p?/2m+U(q), the proof is simpler. For this case Eq. (24) becomes d
=q(dU/dq)—-(dU/dq)q+p(p/m)—(p/m)p. Because p and q are sepa-
rated in this expression, we do not have to consider the inequality pq

# qp. The expression reduces to d=0.

Reference 3, p. 292, paper 13. In Ref. 4, Born and Jordan refer to pq

—qp=(h/2mi)1 as the “vershirfte Quantenbedingung,” which has been

translated as “sharpened quantum condition” (Ref. 13, p. 77), “stronger

quantum condition” (Ref. 3, p. 292), and “exact quantum condition” (Ref.

12, p. 220).

%13, 3. Sakurai, Modern Quantum Mechanics (Addison-Wesley, San Fran-
cisco, 1994), pp. 83-84; A. Messiah, Quantum Mechanics (J Wiley, New
York, 1958), Vol. I, p. 316.

2 Reference 3, p. 293, paper 13.

63 Proving the frequency condition—the second general principle of Bohr—
was especially important because this purely quantal condition was gen-
erally regarded as a safely established part of physics. Prior to Born and
Jordan’s mechanical proof of the frequency condition, there existed a
“thermal proof” given by Einstein in his historic paper, “On the quantum
theory of radiation,” Phys. Z. 18, 121 (1917), translated in Ref. 3, pp,
63—77. In this paper Einstein provides a completely new derivation of
Planck’s thermal radiation law by introducing the notion of transition
probabilities (A and B coefficients). Bohr’s frequency condition emerges
as the condition necessary to reduce the Boltzmann factor exp[(E,
—E,)/kT] in Einstein’s formula to the “Wien factor” exp(hv/kT) in
Planck’s formula.

®Reference 3, p. 291, paper 13.

%SReference 3, pp. 291-292, paper 13. Born and Jordan do not refer to the
consequences in Egs. (37) and (38) as theorems. The label “Energy theo-
rems” is ours.

®Instead of postulating the equations of motion and deriving the energy
theorems, we could invert the proof and postulate the energy theorems
and derive the equations of motion. This alternate logic is mentioned in
Ref. 3, p. 296 and formalized in Ref. 5 (Ref. 3, p. 329). Also see J. H. Van
Vleck, “Note on the postulates of the matrix quantum dynamics,” Proc.
Natl. Acad. Sci. U.S.A. 12, 385-388 (1926).

"Reference 3, pp. 293-294, paper 13. The proof of the energy theorems
was based on separable Hamiltonians defined in Eq. (29). To generalize
the proof Born and Jordan consider more general Hamiltonian functions

60
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H(pq) and discover the need to symmetrize the functions. For example,

for H*=p?q, it does not follow that H*=0. However, they note that H
=(p*q+qp?)/2 yields the same equations of motion as H* and also con-

Serves energy, H=0. The symmetrization rule reflects the noncommuta-
tivity of p and q.

%1n the Heisenberg, Born—Jordan approach the transition components of
the “matter variables” q and p are simply assumed to oscillate in time
with the radiation frequencies. In contemporary texts a rigorous proof of
Bohr’s frequency condition involves an analysis of the interaction be-
tween matter and radiation (radiative transitions) using time-dependent
perturbation theory. See Ref. 24, Chap. 19.

%Reference 3, p. 292, paper 13.

7OUsing the language of state vectors and bra-kets, the matrix element of an
operator g is g,,(1)=(¥,(t)|g|¥,,(1)), where the energy eigenstate is
|W,(t))=exp(=2miE,t/ h)|¥,(0)). This Schrodinger element is equivalent
to the Born—Jordan element in Eq. (44).

"Reference 3, p. 279, paper 13. Heisenberg was able to demonstrate en-
ergy conservation and Bohr’s frequency condition for two systems (an-
harmonic oscillator and rotator). The anharmonic oscillator analysis was
limited to second-order perturbation theory.

"Reference 3. Born and Jordan do not pursue this direct method of proof
noting that for the most general Hamiltonians the calculation “becomes
so exceedingly involved that it seems hardly feasible.” (Ref. 3, p. 296).
In a footnote on p. 296, they note that for the special case
H=p?/2m+U(q), the proof can be carried out immediately. The details
of this proof can be found in Ref. 73.

3], J. Prentis and W. A. Fedak, “Energy conservation in quantum mechan-
ics,” Am. J. Phys. 72, 580-590 (2004).

"Reference 3, p. 296, paper 13.

M. Born, Problems of Atomic Dynamics (MIT Press, Cambridge, 1970).

F. Schrodinger, Collected Papers on Wave Mechanics (Chelsea, New
York, 1978).

M. Born, “Zur Quantenmechanik der Stofvorginge,” Z. Phys. 37, 863—
867 (1926).

"8Heisenberg’s “classical” quantity x(n,7) is the classical solution x(f) of
Newton’s equation of motion subject to the old quantum condition
$mxdx=nh. For example, given the purely classical position function
x(t)=a cos wt of a harmonic oscillator, the condition $mx’dt=nh quan-
tizes the amplitude, making a depend on n as follows: a(n)=\nh/mme.
Thus, the motion of the harmonic oscillator in the stationary state n is
described by x(n,t)=\nh/ mmw cos wt.

“The introduction of transition components a(n,n=7e =D into the
formalism was a milestone in the development of quantum theory. The
one-line abstract of Heisenberg’s paper reads “The present paper seeks to
establish a basis for theoretical quantum mechanics founded exclusively
upon relationships between quantities which in principle are observable”
(Ref. 3, p. 261). For Heisenberg, the observable quantities were a(n,n
—-7) and w(n,n—7), that is, the amplitudes and the frequencies of the
spectral lines. Prior to 1925, little was known about transition amplitudes.
There was a sense that Einstein’s transition probabilities were related to
the squares of the transition amplitudes. Heisenberg made the transition
amplitudes (and frequencies) the central quantities of his theory. He dis-
covered how to manipulate them, relate them, and calculate their values.

80Reference 3, pp. 263264, paper 12.

81 Heisenberg notes (Ref. 3, p. 268, paper 12) that Eq. (A11) is equivalent to
the sum rule of Kuhn and Thomas (Ref. 3, paper 11). For a discussion of
Heisenberg’s development of the quantum condition, see Mehra and H.
Rechenberg, The Historical Development of Quantum Theory (Springer,
New York, 1982), Vol. 2, pp. 243-245, and Ref. 14.

p. 170.

SCIENTIFIC APTITUDE AND AUTISM

There’s even some evidence that scientific abilities are associated with traits characteristic of
autism, the psychological disorder whose symptoms include difficulties in social relationships and
communication, or its milder version, Asperger syndrome. One recent study, for instance, exam-
ined different groups according to the Autism-Spectrum Quotient test, which measures autistic
traits. Scientists scored higher than nonscientists on this test, and within the sciences, mathema-
ticians, physical scientists, and engineers scored higher than biomedical scientists.

Sidney Perkowitz, Hollywood Science: Movies, Science, and the End of the World (Columbia University Press, 2007),
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l. Introduction

THE paradox of Einstein, Podolsky and Rosen {1] was advanced as an argument that quantum mechanics
could not be a complete theory but should be supplemented by additional variables. These additional vari-
ables were to restore to the theory causality and locality {2]. In this note that idea will be formulated
mathematically and shown to be incompatible with the statistical predictions of quantum mechanics. It is
the requirement of locality, or more precisely that the result of a measurement on one system be unaffected
by operations on a distant system with which it has interacted in the past, that creates the essential dif-
ficulty. There have been attempts [3] to show that even without such a separability or locality require-
ment no ‘‘hidden variable’’ interpretation of quantum mechanics is possible. These attempts have been
examined elsewhere [4] and found wanting. Moreover, a hidden variable interpretation of elementary quan-
tum theory [5] has been explicitly constructed. That particular interpretation has indeed a grossly non-
local structure. This is characteristic, according to the result to be proved here, of any such theory which
reproduces exactly the quantum mechanical predictions.

Il. Formulation

With the example advocated by Bohm and Aharonov [6], the EPR argument is the following. Consider
a pair of spin one-half particles formed somehow in the singlet spin state and moving freely in opposite
directions. Measurements can be made, say by Stern-Gerlach magnets, on selected components of the
spins ¢, and &,. If measurement of the component &, @, where & is some unit vector, yields the value
+1 then, according to quantum mechanics, measurement of &,-3 must yield the value -1 and vice versa.
Now we make the hypothesis [2], and it seems one at least worth considering, that if the two measure-
ments are made at places remote from one another the orientation of one magnet does not influence the
result obtained with the other. Since we can predict in advance the result of measuring any chosen compo-
nent of &,, by previously measuring the same component of &,, it follows that the result of any such
measurement must actually be predetermined. Since the initial quantum mechanical wave function does not
determine the result of an individual measurement, this predetermination implies the possibility of a more
complete specification of the state.

Let this more complete specification be effected by means of parameters A. It is a matter of indiffer-
ence in the following whether A denotes a single variable or a set, or even a set of functions, and whether
the variables are discrete or continuous. However, we write as if A were a single continuous parameter.
The result A of measuring o, -3 is then determined by @ and A, and the result B of measuring 32' % in the
same instance is determined by b and A, and

*Work supported in part by the U.S. Atomic Energy Commission
TOn leave of absence from SLAC and CERN
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AG, N = £1, BB, A) = £1. (1)

The vital assumption [2] is that the result B for particle 2 does not depend on the setting a, of the magnet
for particle 1, nor 4 on B.

If p(.\) 1s the probabxhty distribution of A then the expectatxon value of the product of the two com-
ponents 01 a and 02 B is

P(3,b) - ﬁhp()t)A(Z, A) B (B,A) (2)

This should equal the quantum mechanical expectation value, which for the singlet state is

-3

<o, a2 0,b>=-3-8. (3)

But it will be shown that this is not possible.

Some might prefer a formulation in which the hidden variables fall into two sets, with A dependent on
one and B on the other; this possibility is contained in the above, since A stands for any number of vari-
ables and the dependences thereon of A and B are unrestricted. In a complete physical theory of the
type envisaged by Einstein, the hidden variables would have dynamical significance and laws of motion;
our A can then be thought of as initial values of these variables at some suitable instant.

HI. lllustration

The proof of the main result is quite simple. Before giving it, however, a number of illustrations may
serve to put it in perspective,

Firstly, there is no difficulty in giving a hidden variable account of spin measurements on a single
partxcle Suppose we have a spin half particle in a pure spin state with polarization denoted by a unit
vector p. Let the h1dden variable be (for example) a unit vector X with uniform probab1l1ty distribution
over the hemisphere X.p>0. Specify that the result of measurement of a component o ais

sign X-a', 4)
where 2’ is a unit vector depending on aand p in a way to be specified, and the sign function is ,+1 or
~1 according to the sign of its argument. Actually this leaves the result undetermined when A - a'

= 0,
but as the probability of this is zero we will not make special prescriptions for it. Averaging over X the
expectation value is

<og-a>=1-207/=, (5)

where 6’ is the angle between a' and p. Suppose then that a' is obtained from a by rotation towards p
until

1-—g—=c056 (6)

w
where @ is the angle between a and p. Then we have the desired result
> -
<g-a>-=cosf (7
So in this simple case there is no difficulty in the view that the result of every measurement is determined

by the value of an extra variable, and that the statistical features of quantum mechanics arise because the
. value of this variable is unknown in individual instances.
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Secondly, there is no difficulty in reproducing, in the form (2), the only features of (3) commonly used
in verbal discussions of this problem:

P(3 a) = -P(a -a) = -1 2 (8)

P(a B =0if a-b=0

For example, let A now be unit vector X, with uniform probability distribution over all directions, and take

A(—a), X) = Sigﬂ 2 . X % (9)
B(a, b) = —sign B- X
This gives
P (3, 3)=-1+—2—0, (10)
w

where @ is the angle between a and b, and (10) has the properties (8). For comparison, consider the re-
sult of a modified theory [6] in which the pure singlet state is replaced in the course of time by an iso-
tropic mixture of product states; this gives the correlation function

_%;.3 (11)

It is probably less easy, experimentally, to distinguish (10) from (3), than (11) from (3).

Unlike (3), the function (10) is not stationary at the minimum value - 1(at 6 = 0). It will be seen
that this is characteristic of functions of type (2).

Thirdly, and finally, there is no difficulty in reproducing the quantum mechanical correlation (3) if the
results A and B in (2) are allowed to depend on B and a respectively as well as on 2 and 3. For ex-
ample, replace a in (9) by a', obtained from a by rotation towards B until

1—26'=c039,

w
where 9’ is the angle between a' and B. However, for given values of the hidden variables, the results

of measurements with one magnet now depend on the setting of the distant magnet, which is just what we
would wish to avoid.

IV. Contradiction

The main result will now be proved. Because p is a normalized probability distribution,
fdhp()\) -1, 12)
and because of the properties (1), P in (2) cannot be less than —1. It can reach ~1 at 2-5b only if
A@, N = -B( N (13)
except at a set of points A of zero probability. Assuming this, (2) can be rewritten

PGB - - faro) AG, 0 AG, . (14)
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It follows that ¢ is another unit vector

P(3 B -P(3, 0 —ﬁ)\p()\) [A(3, A) AR, \) —A@E, A) A, V]

ﬁf\p()t) A(a, N AGB, N IAG, N ARG, N -1]

using (1), whence

|P(3, B) -P(3 9| Sﬁmp(/\) [1- A N AR, V]
The second term on the right is P (B, ¢), whence
1+P@E A2 |PE B -Pa I (15)

Unless P is constant, the right hand side is in general of order [E—El for small |'3—3| . Thus P (3, %)
cannot be stationary at the minimum value (-1 at b= 3) and cannot equal the quantum mechanical
value (3).

Nor can the quantum mechanical correlation (3) be arbitrarily closely approximated by the form (2).
The formal proof of this may be set out as follows. We would not worry about failure of the approximation
at isolated points, so let us consider instead of (2) and (3) the functions

I-’.(_a’, %) and ~a-b

where the bar denotes independent averaging of P(a, b') and —2' - B’ over vectors & and 3’ within spec-
ified small angles of a and 5. Suppose that for all a and b the difference is bounded by €

P38 +3-B] <e (16)

Then it will be shown that ¢ cannot be made arbitrarily small.
Suppose that for all a and b

la-b-a-B] <& (17)
Then from (16)
IP(3,B) +3-B| e+ (18)
From (2)
P(3 B) = ﬁAp(A)Z(E, A B(5, \) (19)
where
|AG, V| <1 and |BG, M| <1 (20)
From (18) and (19), with a = &,
dApW [AB, N BB, N + 11 Se+ (21)

From (19)
PG B) - PG 3 = ﬁ,\pm [AG, N B(B, M) - 4@, N BE, A
=/:mp(/\) AG N BG, N+ AG, N BE, V]
~fare® 3G N BE 0 (14 AG, 0 BB, A

et R
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Using (20) then

|P(3,5) -P(3 3] sﬁmm 1+ AGB, N BE, A

+ﬁ>\p<,\> [1+ A3, \) B(3, )]
Then using (19) and 21)
PGB -P3 A <1+PBD+e+d

Finally, using (18),
E-Z—Z-Bl—2(6+S)51-—3-3+2(e+5)

or

04
|
p—t

4(5+8)Zl§~3-3-3|+3* (22)

Take for example a-c = 0, a-b=5-¢= 1/\/2— Then
4 + 8) 2 2 - 1

Therefore, for small finite 8, ¢ cannot be arbitrarily small.
Thus, the quantum mechanical expectation value cannot be represented, either accurately or arbitrar-
ily closely, in the form (2).

Y. Generalization

The example considered above has the advantage that it requires little imagination to envisage the
measurements involved actually being made. In a more formal way, assuming [7] that any Hermitian oper-
ator with a complete set of eigenstates is an ‘‘observable’, the result is easily extended to other systems.
If the two systems have state spaces of dimensionality greater than 2 we can always consider two dimen-
sional subspaces and define, in their direct product, operators &, and &, formally analogous to those
used above and which are zero for states outside the product subspace. Then for at least one quantum
mechanical state, the ‘‘singlet’’ state in the combined subspaces, the statistical predictions of quantum
mechanics are incompatible with separable predetermination.

Vi. Conclusion

In a theory in which parameters are added to quantum mechanics to determine the results of individual
measurements, without changing the statistical predictions, there must be a mechanism whereby the set-
ting of one measuring device can influence the reading of another instrument, however remote. Moreover,
the signal involved must propagate instantaneously, so that such a theory could not be Lorentz invariant.

Of course, the situation is different if the quantum mechanical predictions are of limited validity.
Conceivably they might apply only to experiments in which the settings of the instruments are made suffi-
ciently in advance to allow them to reach some mutual rapport by exchange of signals with velocity less
than or equal to that of light. In that connection, experiments of the type proposed by Bohm and Aharonov
[6], in which the settings are changed during the flight of the particles, are crucial.

I am indebted to Drs. M. Bander and J. K. Perring for very useful discussions of this problem. The
first draft of the paper was written during a stay at Brandeis University; I am indebted to colleagues there
and at the University of Wisconsin for their interest and hospitality.
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Is the moon there when nobody looks?
Reality and the quantum theory

Einstein maintained that quantum metaphysics entails spooky actions at a distance;
experiments have now shown that what bothered Einstein is not a debatable point
but the observed behaviour of the real world.

N. David Mermin

[David Mermin is director of the Laboratory of Atomic and Solid State Physics at Cornell University. A
solid-state theorist, he has recently come up with some quasithoughts about quasicrystals. He is known to
PHYSICS TODAY readers as the person who made “boojum” an internationally accepted scientific term.
With N.W.Ashcroft, he is about to start updating the world' s funniest solid-state physics text.

He says heis bothered by Bell’s theorem, but may have rocks in his head anyway.]

Quantum mechanics is magic*

In May 1935, Albert Einstein, Boris Podolsky and Nathan Rosen published? an argument that quantum
mechanics fails to provide a complete description of physical reality. Today, 50 years later, the EPR paper
and the theoretical and experimental work it inspired remain remarkable for the vivid illustration they
provide of one of the most bizarre aspects of the world revealed to us by the quantum theory.

Einstein's talent for saying memorable things did him a disservice when he declared “God does not play
dice.” for it has been held ever since the basis for his opposition to quantum mechanics was the claim that a
fundamental understanding of the world can only be statistical.

But the EPR paper, his most powerful attack on the quantum theory, focuses on quite a different aspect: the
doctrine that physical properties have in general no objective reality independent of the act of observation.
As Pascual Jordan put it®:

“Observations not only disturb what has to be measured, they produceit....We compel [the electron]
to assume a definite position.... We our selves produce the results of measurements.”

Jordan’ s statement is something of a truism for contemporary physicists. Underlying it, we have all been
taught, is the disruption of what is being measured by the act of measurement, made unavoidable by the
existence of the quantum of action, which generally makes it impossible even in principle to construct probes
that can yield the information classical intuition expects to be there.

Einstein didn’t like this. He wanted things out there to have properties, whether or not they were measured*:

“We often discussed his notions on objective reality. | recall that during one walk Einstein suddenly
stopped, turned to me and asked whether | really believed that the moon exists only when | look at it.”

The EPR paper describes a situation ingeniously contrived to force the quantum theory into asserting that
properties in a space-time region B are the result of an act of measurement in another space-time region A,
so far from B that there is no possibility of the measurement in A exerting an influence on region B by any
known dynamical mechanism. Under these conditions, Einstein maintained that the propertiesin A must
have existed all along.



Spooky actions at a distance

Many of his simplest and most explicit statements of this position can be found in Einstein’s
correspondence with Max Born.> Throughout the book (which sometimes reads like a Nabokov novel),
Born, pained by Einstein’s distaste for the statistical character of the quantum theory, repeatedly fails, both in
his letters and in his later commentary on the correspondence, to understand what is really bothering
Einstein. Einstein tries over and over again, without success, to make himself clear. In March 1948, for
example, he writes:

“That which really existsin B should ...not depend on what kind of measurement iscarried out in part
of space A; it should also be independent of whether or not any measurement at all is carried out in
space A. If one adheresto this program, one can hardly consider the quantum-theoretical description
as a complete representation of the physically real. If onetriesto do so in spite of this, one hasto
assume that the physically real in B suffers a sudden change as a result of a measurement in A.

My instinct for physics bristles at this.”

Or, in March 1947:

“I cannot seriously believe in [the quantum theory] because it cannot be reconciled with the idea that
physics should represent a reality in time and space, free from spooky actions at a distance.”

The “spooky actions at a distance” (spukhafte Fernwirkungen) are the acquisition of a definite value of a
property by the system in region B by virtue of the measurement carried out in region A. The EPR paper
presents a wavefunction that describes two correlated particles, localized in regions A and B, far apart.

In this particular two-particle state one can learn (in the sense of being able to predict with certainty the
result of a subsequent measurement) either the position or the momentum of the particle in region B as a
result of measuring the corresponding property of the particle in region A. If “that which really exists’ in
region B does not depend on what kind of measurement is carried out in region A, then the particle in region
B must have had both a definite position and a definite momentum all along.

Because the quantum theory is intrinsically incapable of assigning values to both quantities at once, it must
provide an incomplete description of the physically real. Unless, of couse, one asserts that it is only by virtue
of the position (or momentum) measurement in A that the particle in B acquires its position (or momentum):
spooky actions at a distance.

At adramatic moment Pauli appears in the Born-Einstein Letters, writing Born from Princeton in 1954 with
his famous tact on display:

“Einstein gave me your manuscript to read; he was not at all annoyed with you, but only said you were
a person who will not listen. This agrees with the impression | have formed mysdlf insofar as| was
unable to recognize Einstein whenever you talked about him in either your letter or your manuscript.
It seemed to me asif you had erected some dummy Einstein for yourself, which you then knocked
down with great pomp. In particular, Einstein does not consider the concept of ‘determinism’ to be as
fundamental asit isfrequently held to be (as he told me emphatically many times)... In the same way,
he disputes that he uses as criterion for the admissibility of a theory the question: Isit rigorously
deterministic? “

Pauli goes on to state the real nature of Einstein’s “philosophical prejudice” to Born, emphasizing that

“Einstein’s point of departure is ‘redlistic’ rather than ‘deterministic’.” According to Pauli the proper
grounds for challenging Einstein’s view are simply that:

“One should no more rack one's brain about the problem of whether something one cannot know
anything about exists all the same, than about the ancient question of how many angels are able to sit
on the point of a needle. But it seemsto methat Einstein’s questions ar e ultimately always of this
kind.”

Faced with spooky actions at a distance, Einstein preferred to believe that things one cannot know anything
about (such as the momentum of a particle with a definite position) do exist all the same.



In April 1948 he wrote to Born:

“Those physicists who regard the descriptive methods of quantum mechanics as definitive in principle
would...drop therequirement for the independent existence of the physical reality present in different
parts of space; they would be justified in pointing out that the quantum theory nowhere makes explicit
use of thisrequirement. | admit this, but would point out: when | consider the the physical
phenomena known to me, and especially those which are being so successfully encompassed by
guantum mechanics, | still cannot find any fact anywhere which would make it appear likey that [the]
requirement will have to be abandoned. | am therefore inclined to believe that the description of
guantum mechanics...hasto be regarded as an incomplete and indirect description of reality...”

A fact is found

The theoretical answer to this challenge to provide “any fact anywhere” was given in 1964 by John S.Bell,
in afamous paper® in the short-lived journal Physics. Using a gedanken experiment invented’ by David
Bohm, in which “properties one cannot know anything about” (the simultaneous values of the spin of a
particle along severa distinct directions) are required to exist by EPR line of reasoning, Bell showed (“Bell’s
theorem”) that the nonexistence of these propertiesis a direct consequence of the quantitative numerical
predictions of the quantum theory. The conclusion is quite independent of whether or not one believes that
the quantum theory offers a complete description of physical reality.

If the data in such an experiment are in agreement with the numerical predictions of the quantum theory,
then Einstein’s philosophical position has to be wrong.

In the last few years, in a beautiful series of experiments, Alain Aspect and his collaborators at the
University of Paris's Institute of Theoretical and Applied Opticsin Orsay provided® the experimental answer
to Einstein’s challenge by performing a version of the EPR experiment under conditions in which Bell’ s type
of analysis applied.

They showed that the quantum-theoretic predictions were indeed obeyed. Thirty years after Einstein’s
challenge, afact -not a metaphysical doctrine- was provided to refute him.

Attitudes toward this particular 50-year sequence of intellectual history and scientific discovery vary
widely.® From the very start Bohr certainly took it seriously. Leon Rosenfeld describes'® the impact of the
EPR argument:

“This onslaught came down upon us as a bolt from the blue. Its effect on Bohr wasremarkable....A
new worry could not have come at a less propitious time. Yet, as soon as Bohr had heard my report of
Einstein’s argument, everything else was abandoned.”

Bell’s contribution has become celebrated in what might be called semi-popular culture. We read, for
example, in The Dancing Wu Li Masters that™:

“Some physicists are convinced that [Bell’s theorem] is the most important single work, perhaps, in
the history of physics.”

And indeed, Henry Stapp, a particle theorist at Berkeley, writes that'?:
“Bell’stheorem isthe most profound discovery of science.”

At the other end of the spectrum, Abraham Pais, in his recent biography of Einstein, writes** of the EPR
article that “bolt from the blue” the basis for “the most profound discovery of science” :

“The only part of thisarticle which will ultimately survive, | believe, is...a phrase ['No reasonable
definition of reality could be expected to permit this'] which so poignantly summarizes Einstein’s
views on quantum mechanicsin hislater years.”



I think it is fair to say that more physicists would side with Pais than with Stapp, but between the mgjority
position of near indifference and the minority position of wild extravagance is an attitude | would
characterize as balanced. This was expressed to me most succintly by a distinguished Princeton physicist on
the occasion of my asking how he thought Einstein would have reacted to Bell’ s theorem.

He said that Einstein would have gone home and thought about it hard for several weeks that he couldn’t
guess what he would then have said, except that it would have been extremely interesting. He was sure that
Einstein would have been very bothered by Bell’s theorem.

Then he added:

“Anybody who's not bothered by Bell’s theorem has to have rocksin his head.”

To this moderate point of view | would only add the observation that contemporary physicists come in two
varieties.
Type 1 physicists are bothered by EPR and Bell’ s theorem.
Type 2 (the mgjority) are not, but one has to distinguish two subvarieties.

Type 2a physicists explain why they are not bothered. Their explanations tend either to miss the point
entirely (like Born'sto Einstein) or to contain physical assertions that can be shown to be false.

Type 2b are not bothered and refuse to explain why. Their position is unassailable. (There is a variant of
type 2b who say that Bohr straightened out™* the whole business, but refuse to explain how.)

A gedanken demonstration

To enable you to test which category you belong to, | shall describe, in black-box terms, avery simple
version of Bell’s gedanken experiment, deferring to the very end any reference whatever either to the
underlying mechanism that makes the gadget work or to the quantum-theoretic analysis that accounts for the
data. Perhaps this backwards way of proceeding will make it easier for you to lay aside your quantum
theoretic prejudices and decide afresh whether what | describe is or is not strange.™

What | have in mind is a simple gedanken demonstration. The apparatus comes in three pieces. Two of
them (A and B) function as detectors.

They are far apart from each other (in the analogous Aspect experiments over 10 meters apart). Each
detector has a switch that can be set to one of three positions; each detector responds to an event by flashing
either ared light or agreen one. The third piece (C), midway between A and B, functions as a source.
(Seefigurel)

There are no connections between the pieces, no mechanical connections, no electromagnetic connections,
nor any other known kinds of relevant connections. (I promise that when you learn what is inside the black
boxes you will agree that there are no connections.)

The detectors are thus incapable of signaling to each other or to the source via any known mechanism, and
with the exception of the “particles” described below, the source has no way of signaling to the detectors.
The demonstration proceeds as follows:

The switch of each detector is independently and randomly set to one of its three positions, and a button is
pushed on the source; alittle after that, each detector flashes either red or green. The settings of the switches
and the colors that flash are recorded, and then the whole thing is repeated over and over again.

The data consist of a pair of numbers and a pair of colors for each run. A run, for example, in which A was
set to 3, B was set to 2, A flashed red, and B flashed green, would be recorded as “32RG”, as shown in
figure 2.

Because there are no built-in connections between the source C and the detectors A and B, the link between
the pressing of the button and the flashing of the light on a detector can only be provided by the passage of
something (which we shall call a*“particle’, though you can call it anything you like) between the source and
that detector. This can easily be tested; for example, by putting a brick between the source and a detector.

In subsequent runs, that detector will not flash. When the brick is removed, everything works as before.



Figurel- An EPR apparatus.

The experimenta setup consist of two detector, A and B, and a source of something (“particles’ or whatever) C. To
start arun, the experimenter pushes the button on C; something passes from C to both detectors. Shortly after the button
is pushed each detector flashes one of itslights. Putting abrick between the source and one of the detectors prevents
that detectors from flashing, and moving the detectors farther away from the source increases the delay between when
the button is pushed and when the lights flash. The switch settings on the detectors vary randomly from one run to
another. Note that there are no connections between the three parts of the apparatus, other than viawhatever it isthat
passesfrom C to A and B.

The photo bel ow shows arealization of such an experiment in the laboratory of Alain Aspect in Orsay, France. In the
center of thelab is avacuum chamber where individual calcium atoms are excited by the two lasersvisiblein the
picture. The re-emitted photons travel 6 meters through the pipesto be detected by a two-channel polarizer.




Figure2- Theresult of arun.

Shortly after the experimenter pushed the button on the source in figure 1, the detectors flash onelamp each. The
experimenter records the switch settings and the colors of the lamps and then repeats the experiment. Here, for example,
the record reads 32RG —the switches are in positions 3 and 2 and the lamps flashed R and G, respectively.

31RR 12GR 23GR 13RR 33RR 12RR 22RR 32RG 13GG
22GG 23GR 33RR 13GG 31RG 31RR 33RR 32RG 32RR
31RG 33GG 11RR 12GR 33GG 21GR 21RR 22RR 31RG
33GG 11GG 23RR 32GR 12GR 12RG 11GG 31RG 21GR
12RG 13GR 22GG 12RG 33RR 31GR 21RR 13GR 23GR

Figure 3 —Data produced by the appar atus.
Thisisafragment of an enormous set of data generated by many, many runs: each entry shows the switch settings and
the colors of the lights that flashed for arun. The switch settings are changed randomly from run to run.

31RR 12GR 23GR 13RR 33RR 12RR 22RR 32RG 13GG
22GG 23GR 33RR 13GG 31RG 31RR 33RR 32RG 32RR
31RG 33GG 11RR 12GR 33GG 21GR 21RR 22RR 31RG
33GG 11GG 23RR 32GR 12GR 12RG 11GG 31RG 21GR
12RG 13GR 22GG 12RG 33RR 31GR 21RR 13GR 23GR

Figure4— Switchesset the same.
The data of figure 3, but highlighted to pick out those runs in which both detectors had the same switch settings as they
flashed. Note that in such runs the lights always flash the same colors.

31RR 12GR 23GR 13RR 33RR 12RR 22RR 32RG 13GG
22GG 23GR 33RR 13GG 31RG 31RR 33RR 32RG 32RR
31RG 33GG 11RR 12GR 33GG 21GR 21RR 22RR 31RG
33GG 11GG 23RR 32GR 12GR 12RG 11GG 31RG 21GR
12RG  13GR 22GG 12RG 33RR 31GR 21RR 13GR 23GR

Figure5— Switchesset any way.
The data of figure 3, but highlighted to emphasize only the colors of the lights that flashed in each run, no matter how
the switches were set when the lights flashed. Note that the pattern of colorsis completely random.



Typical data from alarge number of runs are shown in figure 3. There are just two relevant features:

I) If one examines only those runsin which the switches have the same setting (figure 4), then one
finds that the lights always flash the same colors.

1) If one examinesall runs, without any regard to how the switches are set (figure 5), then one finds
that the pattern of flashing is completely random. In particular, half the time the lights flash the
same colors, and half the time different colors.

That is al there is to the gedanken demonstration.
Should you be bothered by these data unless you have rocks in your head ?

How could it work ?

Consider only those runs in which the switches had the same setting when the particles went through the
detectors. In all such runs the detectors flash the same colors. If they could communicate, it would be
child's play to make the detectors flash the same colors when their switches had the same setting, but they
are completely unconnected. Nor can they have been preprogrammed always to flash the same colors,
regardless of what is going on, because the detectors are observed to flash different colorsin at least some of
those runs in which their switches are differently set, and the switch settings are independent random events.

How, then, are we to account for the first feature of the data? No problem at all. Born, in fact, in a letter of
May 1948, offers® such an explanation to Einstein:

“It seemsto methat your axiom of the ‘independence of spatially separated objects A and B’ isnot as
convincing as you make out. It does not take into account the fact of coherence; objectsfar apart in
space which have a common origin need not be independent. | believe that this cannot be denied and
simply hasto be accepted. Dirac has based his whole book on this.”

In our case the detectors are triggered by particles that have a common origin at the source C. It isthen
easy to dream up any number of explanations for the first feature of the data.

Suppose, for example, that what each particle encounters as it enters its detector is a target (figure 6)
divided into eight regions, labeled RRR, RRG, RGR, RGG, GRR, GRG, GGR, and GGG. Suppose each
detector is wired so that if a particle lands in the GRG bin, the detector flips into a mode in which the light
flashes G if the switchissetto 1, Rif itisset to 2, and G if it isset to 3; RGG |leads to a mode with R for 1
and G for 2 and 3, and so on. We can then easily account for the fact that the lights always flash the same
colors when the switches have the same settings by assuming that in each run the source always fires its
particles into bins with the same labels.

Evidently thisis not the only way. One could imagine that particles come in eight varieties: cubes, spheres,
tetrahedra,... All settings produce R when a cube is detected, a sphere resultsin R for settings 1 and 2, G for
setting 3, and so forth. The first feature of the data is then accounted for if the two particles produced by the
source in each run are aways both of the same variety.

Common to all such explanations is the requirement that each particle should, in one way or another, carry
to its detector a set of instructions for how it is to flash for each of the three possible switch settings, and that
in any run of the experiment both particles should carry the same instruction sets:

) A setof instructions that covers each of the three possible settings is required because there is no
communication between the source and the detectors other than the particles themselves. In runsin
which the switches have the same setting, the particles cannot know whether that setting will be 11, 22,
or 33. For the detectors always to flash the same colors when the switches have the same setting, the
particles must carry instructions that specify colors for each of the three possibilities.

1Y  The absence of communication between source and detectors also requires that the particles carry such
instruction sets in every run of the experiment —even those in which the switches end up with different
settings- because the particles always have to be prepared: any run may turn out to be one in which the
switches end up with the same settings.

This generic explanation is pictured schematically in figure 7.



Figure 6 — Modd of a detector to producedata likethosein figure4.
Particles from the source fall with equal probability into any of the eight bins; for each bin the color flashed depends
on the switch asindicated on the back of the box.

Figure7 — Instruction sets.

To guarantee that the detectors of figure 6 flash the same color when the switches are set the same, the two particles
must in one way or another carry instruction sets specifyng how their detectors are to flash for each possible switch
setting. Theresults of any one run reveal nothing about the instructions beyond the actual data; so in this case, for
example, the first instruction (1R) is* something one cannot know anything about”, and I’ ve only guessed &t it,
assuming that “it exists all the same”.



Alas, this explanation —the only one, | maintain, that someone not steeped in quantum mechanics will ever
be able to come up with (though it is an entertaining game to challenge people to try)- is untenable.

It isinconsistent with the second feature of the data: There is no conceivable way to assign such
instruction setsto the particles from one run to the next that can account for the fact that in all runs
taken together, without regard to how the switches are set, the same color s flash half the time.

Pause to note that we are about to show that “something one cannot know anything about” —the third entry
in an instruction set- cannot exist. For even if instruction sets did exist, one could never learn more than two
of the three entries (revealed in those runs where the switches ended up with two different settings). Here is
the argument.

Consider a particular instruction set, for example, RRG. Should both particles be issued the instruction set
RRG, then the detectors will flash the same colors when the switches are set to 11, 22, 33, 12, or 21; they
will flash different colors for 13, 31, 23, or 32.

Because the switches at each detector are set randomly and independently, each of these nine casesis
equally likely, so the instruction set RRG will result in the same colors flashing 5/9 of the time.

Evidently the same conclusion holds for the sets RGR, GRR, GGR, GRG and RGG, because the argument
uses only the fact that one color appears twice and the other once. All six such instructions sets also result in
the same colors flashing 5/9 of the time.

But the only instruction sets left are RRR and GGG, and these each result in the same colors flashing all of
the time.

Therefore if instructions sets exist, the same colors will flash in at least 5/9 of all the runs, regardless of how
the instruction sets are distributed from one run of the demonstration to the next.

Thisis Bell's theorem (also known as Bell’ s inequality) for the gedanken demonstration.
But in the actual gedanken demonstration the same colors flash only %z the time.
The data described above violate this Bell’sinequality, and therefore there can be no instruction sets.

If you don’'t already know how the trick is done, may | urge you, before reading how the gedanken
demonstration works, to try to invent some other explanation for the first feature of the data that does not
introduce connections between the three parts of the apparatus or prove to be incompatible with the second
feature.

One way to do it

Here is one way to make such a device:

L et the source produce two particles of spin %2 in the singlet state, flying apart toward the two detectors.
(Granted, thisis not al that easy to do, but in the Orsay experiments described below, the same effect is
achieved with correlated photons).

Each detector contains a Stern-Gerlach magnet, oriented along one of three directions (&%, a?, or a®),
perpendicular to the line of flight of the particles, and separated by 120°, asindicated in figure 8.

The three settings of the switch determine which orientation is used. The light on one detector flashes red
or green, depending on whether the particle is deflected toward the north (spin up) or south (spin down) pole
of the magnet as it passes between them; the other detector uses the opposite color convention.

That'sit. Clearly there are no connections between the source and the detectors or between the two
detectors. We can nevertheless account for the data as follows:

When the switches have the same setting, the spins of both particles are measured along the same direction,
so the lights will always flash the same colors if the measurements along the same direction aways yield
opposite values. But this is an immediate consequence of the structure of the spin singlet state, which has the
form:

yfi=QU@)[F+-f- | +i] o

independent of the direction of the spin quantization axis, and therefore yields +- or - + with equal
probability, but never ++ or - - ,whenever the two spins are measured along any common direction.



To establish the second feature of the data, note that the product mym, of the results of the two spin
measurements (each of which can have the values +¥2 or -2 ) will have the value -2 when the lights flash
the same colors and +% when they flash different colors. We must therefore show that the product vanishes
when averaged over al the nine distinct pairs of orientations the two Stern-Gerlach magnets can have.

For a given pair of orientation, a” and a” , the mean value of this product is just the expectation value in the
state'y of the corresponding product of (commuting) hermitian observables a” xS? and & xS®@ .

Thus the second feature of the data requires:

0= &;&|[d"”xsH[d)xsyh @

But equation 2 is an immediate consequence of the linearity of quantum mechanics, which lets one take the
sums inside the matrix element, and the fact that the three unit vectors around an equilateral triangle sum to
zero:

a,d)=84d)=0 @

This completely accounts for the data. It also unmasks the gedanken demonstration as a simple
embellishment of Bohm's version of the EPR experiment. If we kept only runs in which the switches had the
same setting, we would have precisely the Bohm-EPR experiment. The assertion that instruction sets exist is
then blatant quantum-theoretic nonsense, for it amounts to the insistence that each particle has stamped on it
in advance the outcome of the measurements of three different spin components corresponding to
noncommuting observables S xa | i=1,2,3. According to EPR, this is merely a limitation of the quantum-
theoretic formalism, because instruction sets are the only way to account for the first feature of the data.

Bell’s analysis adds to the discussion those runs in which the switches have different settings, extracts the
second feature of the data as a further elementary prediction of quantum mechanics, and demonstrates that
any set of data exhibiting this feature is incompatible with the existence of the instruction sets apparently
required by the first feature, quite independently of the formalism used to explain the data, and quite
independently of any doctrines of quantum theology.

The experiments

The experiments of Aspect and his colleagues at Orsay confirm that the quantum-theoretic predictions for
this experiment are in fact realized, and that the conditions for observing the results of the experiment can in
fact be achieved. (A distinguished colleague once told me that the answer to the EPR paradox was that
correlations in the singlet state could never be maintained over macroscopic distances —that anything, even
the passage of a cosmic ray in the next room, would disrupt the correlations enough to destroy the effect).

In these experiments the two spin %2 particles are replaced by a pair of photons and the spin measurements
become polarization measurements.

The photon pairs are emitted by calcium atoms in a radiative cascade after suitable pumping by lasers.
Because the initial and final atomic states have J=0, quantum theory predicts (and experiment confirms) that
the photons will be found to have the same polarizations (lights flashing the same colors in the analogous
gedanken experiment) if they are measured along the same direction —feature number 1.

But if the polarizations are measured at 120° angles, then theory predicts (and experiment confirms) that
they will be the same only a quarter of the time [ ¥ = cos? (120°)].

Thisis precisely what is needed to produce the statistics of feature number 2 of the gedanken
demonstration: the randomly set switches end up with the same setting (same polarizations measured) 1/3 of
the time, so in al runs the same colors will flash /3x 1+ 2/3x (1/4) = ¥2the time.
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Figure8 — A realization of the detector to producethe data of figure 3.

The particles have a magnetic moment and can be separated into “spin up” and “spin down” particles by the Stern-
Gerlach magnet inside the detector. Setting the switch to positions 1,2, or 3 rotates the north pole of the magnet along
the coplanar unit vectorsa®, a2, or &, separated by 120°. The vector sum of the three unit vectorsis, of course, zero.
The switch positions on the two detectors correspond to the same orientations of the magnetic field. One detector
flashes red for spin up, green for spin down; the other uses the opposite color convention.

The people in Orsay were interested in a somewhat modified version of Bell’s argument in which the angles
of greatest interest were multiples of 22.5°, but they collected data for many different angles, and, except for
EPR specialists, the conceptual differences between the two cases are minor.*®

There are some remarkable features to these experiments. The two polarization analyzers were placed as far
as 13 meters apart without producing any noticeable change in the results, thereby closing the loophole that
the strange quantum correlations might somehow diminish as the distance between regions A and B grew to
macroscopic proportions. At such separations it is hard to imagine that a polarization measurement of photon
#1 could, in any ordinary sense of the term, “disturb” photon #2.

Indeed, at these large separations, a hypothetical disturbance originating when one photon passed through
its analyzer could only reach the other analyzer in time to affect the outcome of the second polarization
measurement if it traveled at a superluminal velocity.

In the third paper of the Orsay group’s series, bizarre conspiracy theories are dealt a blow by an ingenious
mechanism for rapidly switching the directions along which the polarizations of each photon are measured.

Each photon passes to its detector through a volume of water that supports an ultrasonic standing wave.
Depending on the instantaneous amplitude of the wave, the photon either passes directly into a polarizer with
one orientation or is Bragg reflected into another with a different orientation.

The standing waves that determine the choice of orientation at each detector are independently driven and
have frequencies so high that several cycles take place during the light travel time from one detector to the
other. (This corresponds to a refinement of the gedanken demonstration in which, to be absolutely safe, the
switches are not given their random settings until after the particles have departed from their common
source).
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What does it mean ?

What is one to make of all this? Are there “spooky actions at a distance” ?
A few years ago | received the text of aletter from the executive director of a California think-tank to the
Under-Secretary of Defense for Research and Engineering, alerting him to the EPR correlations:

“If in fact we can control the faster-than-light nonlocal effect, it would be possible...to make an
untappable and unjammable command-control-communication system at very high bit rates for usein
the submarine fleet. The important point isthat since thereisno ordinary electromagnetic signal
linking the encoder with the decoder in such a hypothetical system, thereis nothing for the enemy to
tap or jam. The enemy would have to have actual possession of the “black box” decoder to intercept
the message, whose reliability would not depend on separation from the encoder nor on ocean or
weather conditions....”

Heady stuff indeed! But just what is this nonlocal effect? Using the language of the gedanken
demonstration, let us talk about the “N-color” of a particle (N can be 1, 2, or 3) as the color (red or green) of
the light that flashes when the particle passes through a detector with its switch set to N.

Because instruction set cannot exist, we know that a particle cannot at the same time carry a definite 1-
color, 2-color and 3-color to its detector. On the other hand, for any particular N (say 3), we can determine
the 3-color of the particle heading for detector A before it gets there by arranging things so that the other
particle first reaches detector B, where its 3-color is measured.

If the particle at B was 3-colored red, the particle at A will turn out to be 3-colored red, and green at B
means green at A.

Three questions now arise:

) Didthe particleat A haveits 3-color prior to the measurement of the 3-color of the particleat B? The
answer cannot be yes, because, prior to the measurement of the 3-color at B, it is atogether possible
that the roll of the dice at B or the whim of the B-operator will result in the 2-color or the 1-color being
measured at B instead. Barring the most paranoid of conspiracy theories, “prior to the measurement of
the 3-color a B” is indistinguishable from “prior to the measurement of the 2- (or 1-) color at B”. If the
3-color aready existed, so also must the 2- and 1-colors have existed. But instruction sets (which
consist of a specification of the 1-, 2-, and 3-colors) do not exist.

1) Istheparticleat A 3-colored red after the measurement at B shows the color red? The answer is surely
yes, because under these circumstances it is invariably a particle that will cause the detector at A to flash
red.

I11) Was something (the value of its 3-color) transmitted to the particle at A as aresult of the measurement
at B?

Orthodox quantum metaphysicians would, | believe, say no, nothing has changed at A as the result of the
measurement at B; what has changed is our knowledge of the particle at A. (Somewhat more spookily, they
might object to the naive classical assumption of localizability or separability implicit in the phrases “at A”
and“at B”).

This seems very sensible and very reassuring: N-color does not characterize the particle at all, but only
what we know about the particle. But does that last sentence sound as good when “ particle” is changed to
“photon” and “N-color” to “polarization”? And doesit really help you to stop wondering why the lights
always flash the same colors when the switches have the same settings?

What is clear isthat if there is spooky action at a distance, then, like other spooks, it is absolutely useless
except for its effect, begnin or otherwise, on our state of mind.

For the statistical pattern of red and green flashes at detector A is entirely random, however the switch is set
at detector B. Whether the particles arriving at A al come with definite 3-colors (because the switch at B
was stuck at 3) or definite 2-colors (because the switch was stuck at 2) or no colors at all (because there was
abrick in front of the detector at B) —all this has absolutely no effect on the statistical distribution of colors
observed at A. The manifestation of this “action at a distance” is reveaed only through a comparison of the
data independently gathered at A and at B.
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Thisisamost curious state of affairs, and while it is wrong to suggest that EPR correlations will replace
sonar, it seems to me something is lost by ignoring them or shrugging them off.

The EPR experiment is as close to magic as any physical phenomenon | know of, and magic should be
enjoyed. Whether there is physics to be learned by pondering it is less clear. The most elegant answer | have
found” to this last question comes from one of the great philosophers of our time, whose view of the matter |
have taken the liberty of quoting in the form of the poetry it surely is:

We have always had a great deal of difficulty
under standing the world view
that quantum mechanics represents.

At least | do,

because I’'m an old enough man
that | havent’ got to the point
that this stuff is obvious to me.

Okay, | till get nervous withiit....

You know how it alwaysis,

every new idea,

it takes a generation or two

until it becomes obvious

that there’s no real problem.

I cannot define the real problem,
therefore | suspect there’ s no real problem,
but I’'m not sure

there’s no real problem.

Nobody in the 50 years since Einstein, Podolsky and Rosen has ever put it better than that.

[Some of the views expressed above were devel oped in the course of occasional technical studies of EPR correlations
supported by the National Science Foundation under grant No. DMR 83-14625.]
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