2016 AUSTRALIAN MATHEMATICAL OLYMPIAD

DAY 1
Tuesday, 9 February 2016
Time allowed: 4 hours
No calculators are to be used.
Each question is worth seven points.

1. Find all positive integers n such that $2^{n}+7^{n}$ is a perfect square.
2. Let $A B C$ be a triangle. A circle intersects side $B C$ at points U and V, side $C A$ at points W and X, and side $A B$ at points Y and Z. The points U, V, W, X, Y, Z lie on the circle in that order. Suppose that $A Y=B Z$ and $B U=C V$.

Prove that $C W=A X$.
3. For a real number x, define $\lfloor x\rfloor$ to be the largest integer less than or equal to x, and define $\{x\}=x-\lfloor x\rfloor$.
(a) Prove that there are infinitely many positive real numbers x that satisfy the inequality

$$
\left\{x^{2}\right\}-\{x\}>\frac{2015}{2016}
$$

(b) Prove that there is no positive real number x less than 1000 that satisfies this inequality.
4. A binary sequence is a sequence in which each term is equal to 0 or 1 . We call a binary sequence superb if each term is adjacent to at least one term that is equal to 1 . For example, the sequence $0,1,1,0,0,1,1,1$ is a superb binary sequence with eight terms. Let B_{n} denote the number of superb binary sequences with n terms.

Determine the smallest integer $n \geq 2$ such that B_{n} is divisible by 20 .

2016 AUSTRALIAN MATHEMATICAL OLYMPIAD

DAY 2
Wednesday, 10 February 2016
Time allowed: 4 hours
No calculators are to be used.
Each question is worth seven points.
5. Find all triples (x, y, z) of real numbers that simultaneously satisfy the equations

$$
\begin{aligned}
& x y+1=2 z \\
& y z+1=2 x \\
& z x+1=2 y .
\end{aligned}
$$

6. Let a, b, c be positive integers such that $a^{3}+b^{3}=2^{c}$.

Prove that $a=b$.
7. Each point in the plane is assigned one of four colours.

Prove that there exist two points at distance 1 or $\sqrt{3}$ from each other that are assigned the same colour.
8. Three given lines in the plane pass through a point P.
(a) Prove that there exists a circle that contains P in its interior and intersects the three lines at six points A, B, C, D, E, F in that order around the circle such that $A B=C D=E F$.
(b) Suppose that a circle contains P in its interior and intersects the three lines at six points A, B, C, D, E, F in that order around the circle such that $A B=C D=E F$. Prove that

$$
\frac{1}{2} \text { area }(\text { hexagon } A B C D E F) \geq \operatorname{area}(\triangle A P B)+\operatorname{area}(\triangle C P D)+\operatorname{area}(\triangle E P F)
$$

(C) 2016 Australian Mathematics Trust

AUSTRALIAN MATHEMATICAL OLYMPIAD 2016 SOLUTIONS

1. Find all positive integers n such that $2^{n}+7^{n}$ is a perfect square.

Solution 1 (Mike Clapper)
Since $2^{1}+7^{1}=9=3^{2}, n=1$ is a solution. We will now show that it is the only solution.
For $n>1$, we have $2^{n} \equiv 0(\bmod 4)$. We also have $7^{n} \equiv(-1)^{n}(\bmod 4)$. Since all perfect squares are either congruent to 0 or 1 modulo $4,2^{n}+7^{n}$ cannot be a perfect square if n is odd and greater than 1 . So write $n=2 m$, where m is a positive integer.
We would like to show that $2^{n}+7^{n}$ cannot be a perfect square. Considering this expression modulo 5, we have $2^{n}+7^{n}=4^{m}+49^{m} \equiv 2 \times(-1)^{m}(\bmod 5)$. Therefore, $2^{n}+7^{n}$ is congruent to 2 or 3 modulo 5 . On the other hand, all perfect squares are congruent to 0 , 1 or 4 modulo 5 .

Therefore, $n=1$ is indeed the only solution to the problem.

Solution 2

As in Solution 1, we prove that $n=1$ is a solution and that any other can be written as $n=2 m$, where m is a positive integer.

We would like to show that $2^{n}+7^{n}$ cannot be a perfect square. Considering this expression modulo 3, we have $2^{n}+7^{n}=4^{m}+49^{m} \equiv 2 \times 1^{m} \equiv 2(\bmod 3)$. On the other hand, all perfect squares are congruent to 0 or 1 modulo 3 .
Therefore, $n=1$ is indeed the only solution to the problem.

Solution 3

As in Solution 1, we prove that $n=1$ is a solution and that any other can be written as $n=2 m$, where m is a positive integer.

We would like to show that $2^{n}+7^{n}$ cannot be a perfect square. This follows from the inequality

$$
\left(7^{m}\right)^{2}<2^{n}+7^{n}<\left(7^{m}+1\right)^{2}
$$

which means that $2^{n}+7^{n}$ lies between two consecutive perfect squares. The left inequality is obvious since 2^{n} is positive. The right inequality is also obvious, since it is equivalent to $4^{m}<2 \cdot 7^{m}+1$.

Therefore, $n=1$ is indeed the only solution to the problem.
2. Let $A B C$ be a triangle. A circle intersects side $B C$ at points U and V, side $C A$ at points W and X, and side $A B$ at points Y and Z. The points U, V, W, X, Y, Z lie on the circle in that order. Suppose that $A Y=B Z$ and $B U=C V$.
Prove that $C W=A X$.

Solution 1 (Angelo Di Pasquale)

Let O be the centre of the circumcircle of $U V W X Y Z$ and let K, L, M be the midpoints of $B C, C A, A B$, respectively.

Since $A Y=B Z$ and $B U=C V$, the points M and K are the midpoints of $A B$ and $B C$, respectively. Therefore, the perpendicular to $A B$ passing through M is the perpendicular bisector of both the segments $A B$ and $Y Z$. Similarly, the perpendicular to $B C$ passing through K is the perpendicular bisector of both the segments $B C$ and $U V$. Hence, these two perpendicular bisectors pass through O as well as the circumcentre of triangle $A B C$. It follows that O is the circumcentre of triangle $A B C$.

However, since O is the centre of the circumcircle of $U V W X Y Z$, we have that $O L$ is perpendicular to $W X$. Thus, $O L$ is perpendicular to $C A$. Since O is the circumcentre of triangle $A B C$, we must have that L is the midpoint of $C A$. The fact that L is the midpoint of both $W X$ and $C A$ implies that $C W=A X$.

Solution 2 (Angelo Di Pasquale)

Using the power of a point theorem from A, then B, then C, we find that

$$
A X \cdot A W=A Y \cdot A Z=B Z \cdot B Y=B U \cdot B V=C V \cdot C U=C W \cdot C X
$$

Therefore, we have

$$
A X \cdot(A X+X W)=C W \cdot(C W+W X) \quad \Rightarrow \quad(A X-C W) \cdot(A X+C W+W X)=0 .
$$

Therefore, it must be the case that $C W=A X$.

Solution 3 (Angelo Di Pasquale and Jamie Simpson)
Let M be the midpoint of $A B$ and let O be the centre of the circumcircle of $U V W X Y Z$.
Since $A Y=B Z, M$ is also the midpoint of $Y Z$. But triangle $O Y Z$ is isosceles with $O Y=O Z$. Therefore, triangle $O M Z$ is congruent to triangle $O M Y(\mathrm{SSS})$ and $\angle O M Z=$ $\angle O M Y=90^{\circ}$. It follows that triangle $O M B$ is congruent to triangle $O M A$ (SAS). Therefore, $O B=O A$ and, by a similar argument, we have $O B=O C$.
We deduce that $O A=O C$, which implies that $\angle O C W=\angle O C A=\angle O A C=\angle O A X$. Since $O W=O X$, we have $\angle O W X=\angle O X W$, which implies $\angle O W C=\angle O X A$. Thus, triangle $O W C$ is congruent to triangle $O X A$ (AAS). From this, we have $C W=A X$, as desired.
3. For a real number x, define $\lfloor x\rfloor$ to be the largest integer less than or equal to x, and define $\{x\}=x-\lfloor x\rfloor$.
(a) Prove that there are infinitely many positive real numbers x that satisfy the inequality

$$
\left\{x^{2}\right\}-\{x\}>\frac{2015}{2016}
$$

(b) Prove that there is no positive real number x less than 1000 that satisfies this inequality.

Solution 1

(a) We will show that $x=n+\frac{1}{n+1}$ satisfies the inequality for sufficiently large positive integers n.

$$
\begin{aligned}
\left\{x^{2}\right\}-\{x\} & =\left\{n^{2}+\frac{2 n}{n+1}+\frac{1}{(n+1)^{2}}\right\}-\left\{n+\frac{1}{n+1}\right\} \\
& =\left\{n^{2}+2-\frac{2}{n+1}+\frac{1}{(n+1)^{2}}\right\}-\frac{1}{n+1} \\
& =\left(1-\frac{2}{n+1}+\frac{1}{(n+1)^{2}}\right)-\frac{1}{n+1} \\
& =1-\frac{3}{n+1}+\frac{1}{(n+1)^{2}} \\
& >1-\frac{3}{n+1}
\end{aligned}
$$

Therefore, $x=n+\frac{1}{n+1}$ satisfies the inequality as long as n is a positive integer such that

$$
1-\frac{3}{n+1}>\frac{2015}{2016} \quad \Leftrightarrow \quad n>3 \times 2016-1
$$

(b) Let $x=a+b$, where $a=\lfloor x\rfloor$ and $b=\{x\}$, and consider the following inequalities.

$$
\left\{x^{2}\right\}-\{x\}>\frac{2015}{2016} \quad \Rightarrow \quad 1-b>\frac{2015}{2016} \quad \Rightarrow \quad b<\frac{1}{2016}
$$

Now use $b<\frac{1}{2016}$ to deduce the following inequalities.

$$
\begin{aligned}
\left\{x^{2}\right\}-\{x\}>\frac{2015}{2016} & \Rightarrow \quad\left\{(a+b)^{2}\right\}=\left\{2 a b+b^{2}\right\}>\frac{2015}{2016} \\
& \Rightarrow \quad 2 a b+b^{2}>\frac{2015}{2016} \\
& \Rightarrow \quad a>\frac{2015}{2016} \cdot \frac{1}{2 b}-\frac{b}{2}>\frac{2015}{2016} \cdot \frac{2016}{2}-\frac{1}{2} \cdot \frac{1}{2016}>1000
\end{aligned}
$$

Therefore, there is no positive real number x less than 1000 that satisfies the inequality.

Solution 2 (Chaitanya Rao)
Solution to part (a) only.

Let $x=a+10^{-4}$, where a is an integer. Then

$$
\begin{aligned}
\left\{x^{2}\right\}-\{x\} & =\left\{a^{2}+2 a 10^{-4}+10^{-8}\right\}-10^{-4} \\
& =\left\{2 a 10^{-4}+10^{-8}\right\}-10^{-4} .
\end{aligned}
$$

Now let $a=4999+5000 n$ for $n=0,1,2, \ldots$. We find that

$$
\begin{aligned}
\left\{x^{2}\right\}-\{x\} & =\left\{0.9998+n+10^{-8}\right\}-10^{-4} \\
& =0.9998+10^{-8}-10^{-4} \\
& =0.9997+10^{-8} .
\end{aligned}
$$

Since $10^{4}>6048$, we have $\frac{3}{10^{4}}<\frac{3}{6048}=\frac{1}{2016}$. Therefore,

$$
\left\{x^{2}\right\}-\{x\}=0.9997+10^{-8}>1-\frac{3}{10^{4}}>1-\frac{1}{2016}=\frac{2015}{2016} .
$$

Hence, the positive real numbers of the form $x=4999+5000 n+10^{-4}$ for $n=0,1,2, \ldots$ satisfy the inequality.

Solution 3 (Ivan Guo)

Solution to part (a) only.
For convenience, we set $\varepsilon=\frac{1}{2016}$. Using the notation $x=a+b$, where $a=\lfloor x\rfloor$ and $b=\{x\}$, we obtain

$$
\left\{x^{2}\right\}=\left\{a^{2}+2 a b+b^{2}\right\}=\left\{2 a b+b^{2}\right\} .
$$

We would like to find (a, b) such that $2 a b+b^{2}<1$ and $2 a b+b^{2}-b>1-\varepsilon$. By noting $0 \leq b^{2} \leq b$, it suffices to find (a, b) such that $2 a b+b<1$ and $2 a b-b>1-\varepsilon$. This can be achieved by fixing $2 a b=1-\frac{\varepsilon}{2}$ and choosing a to be a sufficiently large integer so that $b<\frac{\varepsilon}{2}$.

Solution 4 (Angelo Di Pasquale)

Solution to part (b) only.
Intuitively, we would like $\left\{x^{2}\right\}$ to be just below an integer and $\{x\}$ to be just above an integer. Hence, let $x=a+b$ and $x^{2}=m-c$ where a and m are integers and $0 \leq b, c<1$. For convenience, we also set $\varepsilon=\frac{1}{2016}$.
Since $\left\{x^{2}\right\}=1-c$, we require

$$
1-c-b>1-\varepsilon \quad \Leftrightarrow \quad b+c<\varepsilon .
$$

Note that

$$
\begin{aligned}
(a+b)^{2} & =m-c \\
\Rightarrow \quad a^{2}+2 a b+b^{2}+c & =m
\end{aligned}
$$

However, m is an integer such that $m>a^{2}$, which implies that $m \geq a^{2}+1$. Therefore,

$$
\begin{aligned}
& & a^{2}+2 a b+b^{2}+c & \geq a^{2}+1 \\
& \Rightarrow & 2 a b & \geq 1-b^{2}-c \geq 1-(b+c)>1-\varepsilon \\
\Rightarrow & & a & >\frac{1-\varepsilon}{2 b}>\frac{1-\varepsilon}{2 \varepsilon}=\frac{2015}{2} .
\end{aligned}
$$

It follows that $x=a+b>1000$.

Solution 5 (Hans Lausch)

For $n=1,2,3, \ldots$ and $t=0,1,2, \ldots$ and all real numbers x, let $f_{n, t}(x)=\left(x^{2}-\left(n^{2}+t\right)\right)-$ $(x-n)$. The functions $f_{n, t}$ for $n=1,2,3, \ldots$ and $t=0,1,2, \ldots, 2 n$ and $\sqrt{n^{2}+t} \leq x<$ $\sqrt{n^{2}+t+1}$ satisfy the equation $f_{n, t}(x)=\left\{x^{2}\right\}-\{x\}$.
As $f_{n, t}$ is an increasing function for $x \geq \frac{1}{2}$, we conclude that for a fixed $0 \leq t \leq 2 n$,

$$
\max \left\{f_{n, t}(x) \mid \sqrt{n^{2}+t} \leq x \leq \sqrt{n^{2}+t+1}\right\}=f_{n, t}\left(\sqrt{n^{2}+t+1}\right)=1-\left(\sqrt{n^{2}+t+1}-n\right)
$$

For a fixed positive integer n, this is maximal if and only if $t=0$. So for $n \leq x<n+1$,

$$
\max f_{n, t}(x)=f_{n, 0}\left(\sqrt{n^{2}+1}\right)=1-\left(\sqrt{n^{2}+1}-n\right)
$$

(a) As $\lim _{n \rightarrow \infty}\left[1-\left(\sqrt{n^{2}+1}-n\right)\right]=1$, there exists a positive integer N such that

$$
f_{N, 0}\left(\sqrt{N^{2}+1}\right)=1-\left(\sqrt{N^{2}+1}-N\right)>\frac{2015}{2016}
$$

Since $f_{N, 0}$ is continuous and increasing, it follows that there exists $\delta>0$ such that all x satisfying $\sqrt{N^{2}+1}-\delta<x<\sqrt{N^{2}+1}$ also satisfy the given inequality.
(b) Note that $\left\{x^{2}\right\}-\{x\}<f_{n, 0}\left(\sqrt{n^{2}+1}\right)=1-\left(\sqrt{n^{2}+1}-n\right)$, for $n \leq x<n+1$. Also, we have that $1-\left(\sqrt{n^{2}+1}-n\right)$ is an increasing function of n. Thus, for $x<1000$, we have $n \leq 999$ and

$$
\left\{x^{2}\right\}-\{x\}<1-\left(\sqrt{999^{2}+1}-999\right)=1-\frac{1}{\sqrt{999^{2}+1}+999}<1-\frac{1}{1999}<\frac{2015}{2016}
$$

4. A binary sequence is a sequence in which each term is equal to 0 or 1 . We call a binary sequence superb if each term is adjacent to at least one term that is equal to 1 . For example, the sequence $0,1,1,0,0,1,1,1$ is a superb binary sequence with eight terms. Let B_{n} denote the number of superb binary sequences with n terms.
Determine the smallest integer $n \geq 2$ such that B_{n} is divisible by 20 .

Solution 1

The Fibonacci sequence $F_{0}, F_{1}, F_{2}, \ldots$ is defined by $F_{0}=0, F_{1}=1$, and $F_{m}=F_{m-1}+F_{m-2}$ for $m \geq 2$. We will prove that

$$
\begin{aligned}
B_{2 m} & =F_{m+1}^{2}, & & \text { for } m \geq 1, \\
B_{2 m+1} & =F_{m} F_{m+3}, & & \text { for } m \geq 0 .
\end{aligned}
$$

First, observe that a binary sequence $b_{1}, b_{2}, \ldots, b_{n}$ with $n \geq 2$ is superb if and only if

- $b_{2}=b_{n-1}=1$; and
- there is no $1 \leq k \leq n-2$ such that $b_{k}=b_{k+2}=0$.

So a binary sequence $b_{1}, b_{2}, \ldots, b_{2 m}$ with an even number of terms is superb if and only if

- $b_{2}=b_{2 m-1}=1$;
- $b_{4}, b_{6}, \ldots, b_{2 m}$ is a binary sequence that does not contain two consecutive terms equal to 0 ; and
- $b_{1}, b_{3}, \ldots, b_{2 m-3}$ is a binary sequence that does not contain two consecutive terms equal to 0 .

It follows that the number of superb binary sequences $b_{1}, b_{2}, \ldots, b_{2 m}$ is equal to the number of ways to choose the two binary sequences $b_{4}, b_{6}, \ldots, b_{2 m}$ and $b_{1}, b_{3}, \ldots, b_{2 m-3}$, both with $m-1$ terms, without two consecutive terms equal to 0 . We will prove below that the number of binary sequences with k terms that do not contain two consecutive terms equal to 0 is F_{k+2}. Therefore, $B_{2 m}=F_{m+1}^{2}$.
Similarly, a binary sequence $b_{1}, b_{2}, \ldots, b_{2 m+1}$ with an odd number of terms is superb if and only if

- $b_{2}=b_{2 m}=1$;
- $b_{4}, b_{6}, \ldots, b_{2 m-2}$ is a binary sequence that does not contain two consecutive terms equal to 0 ; and
- $b_{1}, b_{3}, \ldots, b_{2 m+1}$ is a binary sequence that does not contain two consecutive terms equal to 0 .

It follows that the number of superb binary sequences $b_{1}, b_{2}, \ldots, b_{2 m+1}$ is equal to the number of ways to choose the two binary sequences $b_{4}, b_{6}, \ldots, b_{2 m-2}$ and $b_{1}, b_{3}, \ldots, b_{2 m+1}$, with $m-2$ terms and $m+1$ terms respectively, without two consecutive terms equal to 0 . We will prove below that the number of binary sequences with k terms that do not contain two consecutive terms equal to 0 is F_{k+2}. Therefore, $B_{2 m+1}=F_{m} F_{m+3}$.

Lemma. The number of binary sequences with k terms that do not contain two consecutive terms equal to 0 is F_{k+2}.

Proof. It is easy to check that the lemma is true for $k=0,1,2,3$. Now suppose that the lemma is true for $k=n-1$ and $k=n$, where $n \geq 1$. A binary sequence with $n+1$ terms without two consecutive terms equal to 0 must either end in the term 1 or the terms 1,0 . In the first case, the number of such binary sequences is F_{n+2} by the inductive hypothesis. In the second case, the number of such binary sequences is F_{n+1} by the inductive hypothesis. Therefore, the number of binary sequences with $n+1$ terms that do not contain two consecutive terms equal to 0 is $F_{n+2}+F_{n+1}=F_{n+3}$. So the lemma is true for $k=n+1$ and hence, for all non-negative integers k by induction.

For $B_{2 m}$ to be divisible by 20 , we require F_{m+1} to be divisible by 10 . Modulo 2 , the Fibonacci sequence repeats every three terms as follows.

$$
0,1,1,0,1,1 \ldots
$$

Modulo 5, the Fibonacci sequence repeats every twenty terms as follows.

$$
0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1, \ldots
$$

It follows that F_{m+1} is divisible by 10 if and only if $m+1$ is divisible by 15 . Therefore, taking $m=14$ yields $n=28$ as the smallest even integer greater than 2 such that B_{n} is divisible by 20 .
For $B_{2 m+1}$ to be divisible by 20, we require $F_{m} F_{m+3}$ to be divisible by 20 . Since F_{m} is even if and only if m is divisible by 3 , we know that $F_{m} F_{m+3}$ is divisible by 4 if and only if m is divisible by 3 . For $F_{m} F_{m+3}$ to be divisible by 5 , we require m to be divisible by 5 or $m+3$ to be divisible by 5 . It follows that $F_{m} F_{m+3}$ is divisible by 20 if and only if m is divisible by 15 or $m+3$ is divisible by 15 . Therefore, taking $m=12$ yields $n=25$ as the smallest odd integer greater than 2 such that B_{n} is divisible by 20 .

In conclusion, $n=25$ is the smallest positive integer greater than 2 such that B_{n} is divisible by 20 .

Solution 2 (Angelo Di Pasquale, Daniel Mathews and Ian Wanless)
Any superb binary sequence X of length $n \geq 6$ takes exactly one of the following forms.
(1) Its middle $n-2$ terms are all 1 s .
(2) It is of the form $b_{1}, b_{2}, \ldots b_{k}, 0, \underbrace{1,1, \ldots, 1}_{n-k-1}$ where $2 \leq k \leq n-3$.
(3) It is of the form $b_{1}, b_{2}, \ldots b_{k}, 0, \underbrace{1,1, \ldots, 1}_{n-k-1} 0$ where $2 \leq k \leq n-4$.

Note that in (2) and (3), $b_{1}, b_{2}, \ldots, b_{k}$ is a superb sequence if and only if X is.
Observe that (1) yields 4 superb sequences, (2) yields $B_{2}+B_{3}+\cdots+B_{n-3}$ superb sequences (one for each k), and (3) yields $B_{2}+B_{3}+\cdots+B_{n-4}$ superb sequences. Therefore,

$$
B_{n}=4+2\left(B_{2}+B_{3}+\cdots+B_{n-4}\right)+B_{n-3} .
$$

Replacing n with $n+1$ yields

$$
B_{n+1}=4+2\left(B_{2}+B_{3}+\cdots+B_{n-3}\right)+B_{n-2} .
$$

Subtracting these two equations yields

$$
B_{n+1}-B_{n}=B_{n-2}+B_{n-3} \quad \Rightarrow \quad B_{n+1}=B_{n}+B_{n-2}+B_{n-3} .
$$

By inspection, we find that $B_{2}=1, B_{3}=3, B_{4}=4$, and $B_{5}=5$.
If we use the recursion $B_{n+1}=B_{n}+B_{n-2}+B_{n-3}$ to compute the values of $B_{i}(\bmod 4)$, we find that, starting from B_{2}, the sequence cycles $1,3,0,1,1,0, \ldots$. Thus, $4 \mid B_{i}$ if and only if $i \equiv 1(\bmod 3)$.
We now use the recursion to compute the values of $B_{i}(\bmod 5)$ until we find the first $i \equiv 1$ $(\bmod 3)$ for which $5 \mid B_{i}$. Starting from B_{2}, the values of the sequence are

$$
1,3,4,0,4,1,0,4,4,0,4,2,1,0,1,4,0,1,1,0,1,3,4,0,
$$

at which point we stop because we have found that $n=25$.

Solution 3 (Ian Wanless)

We note that each run of 1 s in a superb binary sequence has to have length 2 or more. For $n \geq 4$ we partition the sequences counted by B_{n} into 3 cases.

- Case 1: The first run of 1 s has length at least 3.

In this case, removing one of the 1 s in the first run leaves a superb sequence of length $n-1$, and conversely, every such sequence of length $n-1$ can be extended to one of our sequences in a unique way. So there are B_{n-1} sequences in this case.

- Case 2: The first run has length 2 and the first term in the sequence is a 1 .

In this case, the sequence begins 110 and what follows is any one of the B_{n-3} superb sequences of length $n-3$.

- Case 3: The first run has length 2 and the first term in the sequence is a 0 .

In this case, the sequence begins 0110 and what follows is any one of the B_{n-4} superb sequences of length $n-4$.

We conclude that B_{n} satisfies the recurrence $B_{n}=B_{n-1}+B_{n-3}+B_{n-4}$ for $n \geq 4$, with initial conditions $B_{0}=1, B_{1}=0, B_{2}=1, B_{3}=3$. From this recurrence, we can calculate the sequence modulo 20 to find it begins

$$
1,0,1,3,4,5,9,16,5,19,4,5,9,12,1,15,16,9,5,16,1,15,16,13,9,0,
$$

from which we deduce that the answer is $n=25$.

Solution 4 (Kevin McAvaney)

All sequences mentioned in this proof are binary.

- Let $A(n)$ be the number of superb sequences with n terms.
- Let $B(n)$ be the number of sequences with n terms that do not contain the strings 000 or 010 .
- Let $C(n)$ be the number of sequences with n terms that do not contain the strings 000 or 010 and end in 0 .
- Let $D(n)$ be the number of sequences with n terms that do not contain the strings 000 or 010 and end in 1 .

The D-sequences end in 11 or 1101 or 11001 , so $D(n)=D(n-1)+D(n-3)+D(n-4)$ for $n \geq 5$. The C-sequences end in 110 or 1100 , so $C(n)=D(n-2)+D(n-3)$ for $n \geq 4$. For $n \geq 5, B(n)=D(n)+C(n)=D(n)+D(n-2)+D(n-3)=D(n+1)$. For $n \geq 7$, the A-sequences have the form $011 \cdots 110$ or $011 \cdots 11$ or $11 \cdots 110$ or $11 \cdots 11$, where the string indicated by dots is a B-sequence. Hence,

$$
\begin{aligned}
A(n) & =B(n-6)+2 B(n-5)+B(n-4) \\
& =D(n-5)+2 D(n-4)+D(n-3) \\
& =D(n)-D(n-1)+D(n-1)-D(n-2) \\
& =D(n)-D(n-2)
\end{aligned}
$$

By inspection, we have $D(1)=1, D(2)=2, D(3)=4, D(4)=6$, and $A(1)=2, A(2)=1$, $A(3)=3, A(4)=4, A(5)=5, A(6)=9$. Working modulo 20 , we seek the smallest value of $n \geq 7$ for which $D(n)-D(n-2)=0$. From the following table, we see that it is $n=25$.

n	$D(n)$
1	1
2	2
3	4
4	6
5	9
6	15
7	5
8	0
9	4

n	$D(n)$
10	4
11	9
12	13
13	1
14	14
15	16
16	10
17	5
18	15

n	$D(n)$
19	1
20	16
21	16
22	12
23	9
24	1
25	9

5. Find all triples (x, y, z) of real numbers that simultaneously satisfy the equations

$$
\begin{aligned}
& x y+1=2 z \\
& y z+1=2 x \\
& z x+1=2 y .
\end{aligned}
$$

Solution 1

First, we note that the equations are symmetric in x, y, z, so that permuting a solution to the equations will always yield a solution. Now subtract the first equation from the second to obtain

$$
y z-x y=2 x-2 z \quad \Rightarrow \quad(y+2)(z-x)=0 \quad \Rightarrow \quad y=-2 \text { or } z=x .
$$

Note that we can similarly deduce that $z=-2$ or $x=y$ as well as $x=-2$ or $y=z$. Let us consider the two cases $y=-2$ and $z=x$ separately.

- Case 1: $y=-2$

The original equations reduce to $-2 x+1=2 z,-2 z+1=2 x$, and $z x+1=-4$. The first of these allows us to write $z=-x+\frac{1}{2}$ and we may substitute this into the third equation to yield

$$
\left(-x+\frac{1}{2}\right) x+1=-4 \quad \Rightarrow \quad 2 x^{2}-x-10=0 \quad \Rightarrow \quad x=\frac{5}{2} \text { or } x=-2 .
$$

Using the fact that $y=-2$ and $z=-x+\frac{1}{2}$, we obtain the solutions $(x, y, z)=$ $\left(\frac{5}{2},-2,-2\right)$ and $\left(-2,-2, \frac{5}{2}\right)$. By the symmetry observed earlier, we also obtain the solution $(x, y, z)=\left(-2, \frac{5}{2},-2\right)$. It is easy to check that these solutions all satisfy the original equations.

- Case 2: $z=x$

We earlier deduced that $z=-2$ or $x=y$. By the symmetry of the original equations, the case $z=-2$ has already been considered. So it remains to consider when $x=y=$ z. In this case, all three equations reduce to the single equation $x^{2}+1=2 x$, which has the unique solution $x=1$. Therefore, we obtain the solution $(x, y, z)=(1,1,1)$ and it is easy to check that this satisfies the original equations.

Therefore, the only solutions to the equations are given by $(x, y, z)=\left(\frac{5}{2},-2,-2\right),\left(-2, \frac{5}{2},-2\right)$, $\left(-2,-2, \frac{5}{2}\right)$ and $(1,1,1)$.

Solution 2 (Angelo Di Pasquale and Daniel Mathews)
Multiply the first equation by z and rearrange to get

$$
2 z^{2}-z=x y z
$$

Similarly, $2 x^{2}-x=x y z$ and $2 y^{2}-y=x y z$. But the quadratic $2 w^{2}-w=x y z$ has at most two real solutions. So two of x, y, z are equal and we may assume without loss of generality that $z=y$. The equations become

$$
\begin{align*}
x y+1 & =2 y \tag{1}\\
y^{2}+1 & =2 x . \tag{2}
\end{align*}
$$

From equation (2), we obtain $x=\frac{y^{2}+1}{2}$. Substiting this into equation (1) yields

$$
y^{3}-3 y+2=0 \quad \Leftrightarrow \quad(y-1)^{2}(y+2)=0
$$

If $y=1$, we find that $x=1$ and $z=1$. If $y=-2$, we find that $x=\frac{5}{2}$ and $z=-2$.

Solution 3 (Angelo Di Pasquale)

Put $z=\frac{x y+1}{2}$ into the second and third equations, and tidy up to get

$$
\begin{align*}
& x y^{2}+y+2=4 x \tag{1}\\
& x^{2} y+x+2=4 y \tag{2}
\end{align*}
$$

Solving for x in equation (1) yields $x=-\frac{y+2}{y^{2}-4}$.
If $y=-2$, then solving equation (2) for x yields $x=-2$ or $x=\frac{5}{2}$. Using the fact that $z=\frac{x y+1}{2}$, we arrive at $(x, y, z)=\left(-2,-2, \frac{5}{2}\right)$ or $\left(\frac{5}{2},-2,-2\right)$.
If $y \neq-2$, then $x=-\frac{1}{y-2}$. Substituting this into equation (2) yields

$$
4 y^{3}-18 y^{2}+24 y-10=0 \quad \Leftrightarrow \quad(y-1)^{2}(2 y-5)=0
$$

Then $y=1$ leads to $(x, y, z)=(1,1,1)$, and $y=\frac{5}{2}$ leads to $(x, y, z)=\left(-2, \frac{5}{2},-2\right)$.

Solution 4 (Angelo Di Pasquale)

This is a trick for squeezing out a set of three independent equations in terms of the symmetric functions $a=x+y+z, b=x y+x z+y z$ and $c=x y z$. Add t to each of the equations, and then multiply the three equations together to get

$$
(x y+t+1)(y z+t+1)(z x+t+1)=(2 x+t)(2 y+t)(2 z+t)
$$

Expanding this out, substituting in a, b, c for the relevant symmetric expressions in x, y, z, and then writing it as a polynomial in t yields

$$
t^{2}(b+3-2 a)+t(a c+3-2 b)+c^{2}+a c+b+1-8 c=0
$$

Since this is true for all values of t, the above expression must be the zero polynomial. Hence,

$$
\begin{align*}
b+3-2 a & =0 \tag{1}\\
a c+3-2 b & =0 \tag{2}\\
c^{2}+a c-8 c+b+1 & =0 . \tag{3}
\end{align*}
$$

Substituting $b=2 a-3$ from equation (1) into equations (2) and (3) yields

$$
\begin{align*}
a(c-4) & =-9 \tag{4}\\
c^{2}-8 c-2+a(c+2) & =0 \tag{5}
\end{align*}
$$

Multiplying equation (5) by $c-4$ and using equation (4) yields the following cubic after tidying up.

$$
c^{3}-12 c^{2}+21 c-10=0 \quad \Leftrightarrow \quad(c-1)^{2}(c-10)=0
$$

The case $c=1$ implies $a=3$ and $b=3$. So by Vieta's formulas, x, y, z are the three zeros of the cubic $w^{3}-3 w^{2}+3 w+1=(w-1)^{3}$. Therefore, $(x, y, z)=(1,1,1)$.
The case $c=10$ implies $a=-\frac{3}{2}$ and $b=-6$. So by Vieta's formulas, x, y, z are the three zeros of the cubic $w^{3}+\frac{3}{2} w^{2}-6 w-10=(w+2)^{2}\left(w-\frac{5}{2}\right)$. Therefore, $(x, y, z)=\left(-2,-2, \frac{5}{2}\right)$ and its permutations.

Solution 5 (Alan Offer)

Put $(x, y, z)=(a+1, b+1, c+1)$. Then the given equations become

$$
\begin{align*}
a b+a+b & =2 c \tag{1a}\\
b c+b+c & =2 a \tag{1b}\\
c a+c+a & =2 b . \tag{1c}
\end{align*}
$$

Let $A=a+b+c, B=a b+b c+c a$ and $C=a b c$. Then adding the equations (1a), (1b), (1c) together gives $B+2 A=2 A$, so $B=0$. Consequently, $f(u)=(u-a)(u-b)(u-c)=$ $u^{3}-A u^{2}-C$. Also, $a^{2}+b^{2}+c^{2}=A^{2}-2 B=A^{2}$.
Adding a to both sides of equation (1b) and multiplying the result by a gives (together with similar results obtained from equations (1a) and (1c))

$$
\begin{align*}
& C+A a=3 a^{2} \tag{2a}\\
& C+A b=3 b^{2} \tag{2~b}\\
& C+A c=3 c^{2} . \tag{2c}
\end{align*}
$$

Adding these together gives $3 C+A^{2}=3\left(a^{2}+b^{2}+c^{2}\right)=3 A^{2}$, so $3 C=2 A^{2}$.
Since $f(a)=0$, we have $a^{3}=A a^{2}+C$. Hence, multiplying equation (2a) by a produces $C a+A a^{2}=3 a^{3}=3 A a^{2}+3 C$. Simplified, this becomes (together with similar results obtained from equations (2b) and (2c))

$$
\begin{aligned}
C a & =2 A a^{2}+3 C \\
C b & =2 A b^{2}+3 C \\
C c & =2 A c^{2}+3 C
\end{aligned}
$$

Adding these together and recalling that $a^{2}+b^{2}+c^{2}=A^{2}$, we find that $C A=2 A^{3}+9 C$. Multiplying by 3 and using the fact that $3 C=2 A^{2}$, this becomes $2 A^{3}=6 A^{3}+18 A^{2}$, and so $A^{2}(2 A+9)=0$. It follows that either $A=0$ or $A=-\frac{9}{2}$.
If $A=0$, then $f(u)=u^{3}$, so $a=b=c=0$.
If $A=-\frac{9}{2}$, then $2 f(u)=2 u^{3}+9 u^{2}-27=(u+3)^{2}(2 u-3)$, so two of a, b, c are equal to -3 while the third is equal to $\frac{3}{2}$.
For the original system of equations, this yields the solutions

$$
(x, y, z) \in\left\{(1,1,1),\left(\frac{5}{2},-2,-2\right),\left(-2, \frac{5}{2},-2\right),\left(-2,-2, \frac{5}{2}\right)\right\}
$$

and substitution verifies that these are indeed solutions.

Solution 6 (Chaitanya Rao)

We consider the three cases $x>y, x<y$ and $x=y$.

- Case 1: If $x>y$, the second and third equations lead to $y z+1>z x+1$ or $z(y-x)>0$. Since $y-x<0$ this implies $z<0$. From the first equation this in turn implies that $x y+1<0$, so x and y are of opposite sign. We conclude that $x>0>y$ and $z<0$.
By symmetry of the equations, we can use a similar argument to show that if any variable is greater than another, then the third variable must be negative. This means that either of the assumptions $y>z$ or $y<z$ lead to the contradictory statement that $x<0$, so we have that $x>0>y=z$. The given equations then become $x y+1=2 y$ and $y^{2}+1=2 x$. Multiplying the second of these by y and using the first equation gives $y^{3}+y=2 x y=4 y-2$ or $(y-1)^{2}(y+2)=0$. The only negative root is $y=-2$ and so $x=\frac{y^{2}+1}{2}=\frac{5}{2}$. Therefore, we have the solution $(x, y, z)=\left(\frac{5}{2},-2,-2\right)$.
- Case 2: If $x<y$, interchange x and y in Case 1 to obtain the solution $(x, y, z)=$ $\left(-2, \frac{5}{2},-2\right)$.
- Case 3: If $x=y$, we proceed similarly to the last part of Case 1 , obtaining the equations $x z+1=2 x$ and $x^{2}+1=2 z$, from which $(x-1)^{2}(x+2)=0$ and so $x=y=1$ or $x=y=-2$. Hence, $z=\frac{x^{2}+1}{2}$ is equal to 1 or $\frac{5}{2}$. This gives the solutions $(x, y, z)=(1,1,1)$ or $\left(-2,-2, \frac{5}{2}\right)$.

We end up with four solutions: $(x, y, z)=\left(\frac{5}{2},-2,-2\right),\left(-2, \frac{5}{2},-2\right),\left(-2,-2, \frac{5}{2}\right)$ and $(1,1,1)$. It is easily checked that each of these satisfies the original system of equations.
6. Let a, b, c be positive integers such that $a^{3}+b^{3}=2^{c}$.

Prove that $a=b$.

Solution 1

Note that a and b must have the same parity. If a and b are even and $a^{3}+b^{3}$ is a power of two, then $\left(\frac{a}{2}\right)^{3}+\left(\frac{b}{2}\right)^{3}$ is also a power of two. But since $\frac{a}{2}$ and $\frac{b}{2}$ are positive integers, $\left(\frac{a}{2}\right)^{3}+\left(\frac{b}{2}\right)^{3}$ is of the form 2^{d}, where d is a positive integer. So if there are distinct positive integers whose cubes sum to a power of two, then one can repeatedly divide them by two to obtain distinct positive odd integers whose cubes sum to a power of two.
So suppose now that a and b are odd. Rewrite the equation as $(a+b)\left(a^{2}-a b+b^{2}\right)=2^{c}$, which implies that there are non-negative integers m and n such that

$$
\begin{aligned}
a+b & =2^{m} \\
a^{2}-a b+b^{2} & =2^{n} .
\end{aligned}
$$

Since $a^{2}-a b+b^{2}$ is odd, we must have $n=0$ and it follows that $a+b=2^{c}=a^{3}+b^{3}$. However, $a+b \leq a^{3}+b^{3}$ with equality if and only if $a=b=1$. Therefore, the only solution to $a^{3}+b^{3}=2^{c}$ with a and b odd is $(a, b, c)=(1,1,1)$. It follows that the only solutions to $a^{3}+b^{3}=2^{c}$ must have $a=b$.

Solution 2 (Angelo Di Pasquale)

Let n be the greatest non-negative integer such that $2^{n} \mid a$ and $2^{n} \mid b$. Write $a=2^{n} A$ and $b=2^{n} B$ for positive integers A and B. Then we have $2^{3 n}\left(A^{3}+B^{3}\right)=2^{c}$, where at least one of A and B is odd. Since $2^{3 n} \mid 2^{c}$, we have $c=3 n+d$ for some non-negative integer d, so $A^{3}+B^{3}=2^{d}$. Since $A, B \geq 1$, we have $d \geq 1$, so $A+B$ is even. Since at least one of A and B is odd, we conclude that both are odd.
So we have $2^{d}=(A+B)\left(A^{2}-A B+B^{2}\right)$. Since $2^{d}, A+B>0$, then we also have $A^{2}-A B+B^{2}>0$. But $A^{2}-A B+B^{2}$ is odd and a factor of 2^{d}, so $A^{2}-A B+B^{2}=1$. If $A>B$, then $A^{2}-A B+B^{2}=A(A-B)+B^{2} \geq A+B^{2} \geq 2$, so this case does not occur. Similarly, $A<B$ does not occur.
If $A=B$, it follows that $A=B=1$, and so $a=b$.
7. Each point in the plane is assigned one of four colours.

Prove that there exist two points at distance 1 or $\sqrt{3}$ from each other that are assigned the same colour.

Solution 1

Suppose that the four colours are blue, red, yellow, and green. We argue by contradiction and suppose that there do not exist two points at distance 1 or $\sqrt{3}$ from each other that have the same colour.

Pick a point P_{1} in the plane and suppose that it is coloured blue, without loss of generality. Construct a regular hexagon $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6}$ with side length 1 and centre Q. Note that the points P_{1}, P_{2}, P_{6}, Q must be coloured differently. So suppose without loss of generality that Q is coloured red, P_{2} is coloured yellow, and P_{6} is coloured green.

Now note that P_{1}, P_{6}, P_{5}, Q must be coloured differently, which forces P_{5} to be yellow. Similarly, P_{6}, P_{5}, P_{4}, Q must be coloured differently, which forces P_{4} to be blue. It follows that any point at distance 2 from P_{1} must be coloured blue. In other words, there is a circle of radius 2 that is coloured blue. However, there exists a chord on this circle of length 1, which forces two points at distance 1 that are the same colour. This contradicts our original assumption, so it follows that there exist two points at distance 1 or $\sqrt{3}$ from each other that are the same colour.

Solution 2 (Angelo Di Pasquale)
Suppose that the four colours are blue, red, yellow, and green. We argue by contradiction and suppose that there do not exist two points at distance 1 or $\sqrt{3}$ from each other that have the same colour.
Consider an isosceles triangle $A B C$ with $B C=1$ and $A B=A C=2$. Since B and C must be different colours, one of them is coloured differently to A. Without loss of generality, A is blue and B is red. Orient the plane so that $A B$ is a horizontal segment.

Let O be the midpoint of $A B$. Then as $A O=B O=1, O$ is not blue or red. Without loss of generality, O is green. Let X be the point above line $A B$ so that $\triangle A O X$ is equilateral. It is easy to compute that $X B=\sqrt{3}$ and $X A=X O=1$. Hence, X is not red, blue or green, and must be yellow. Finally, let Y be the point above line $A B$ so that $\triangle B O Y$ is equilateral. Then it is easy to compute that $Y X=Y O=Y B=1$ and $Y A=\sqrt{3}$. Hence Y cannot be any of the four colours, giving the desired contradiction.
8. Three given lines in the plane pass through a point P.
(a) Prove that there exists a circle that contains P in its interior and intersects the three lines at six points A, B, C, D, E, F in that order around the circle such that $A B=C D=E F$.
(b) Suppose that a circle contains P in its interior and intersects the three lines at six points A, B, C, D, E, F in that order around the circle such that $A B=C D=E F$. Prove that

$$
\left.\frac{1}{2} \text { area(hexagon } A B C D E F\right) \geq \operatorname{area}(\triangle A P B)+\operatorname{area}(\triangle C P D)+\operatorname{area}(\triangle E P F)
$$

Solution 1 (Angelo Di Pasquale)

(a) Let $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}$ be the rays in order emanating from P along the lines. Note that the union of r_{1} and r_{4} is one of the three given lines. The same holds for r_{2} and r_{5}, as well as for r_{3} and r_{6}.
Let point B be chosen arbitrarily on r_{2}. Then locate C on r_{3} so that $B C \| r_{1}$. Next, let the tangent at B to circle $B P C$ intersect r_{1} at A. (If C_{1} is any point on the ray $C B$ beyond B, then the tangent at B lies in between the rays $B C_{1}$ and $B P$, and hence it really does intersect r_{1}, rather than r_{4}.) Similarly, let the tangent at C to circle $B P C$ intersect r_{4} at D. Let $\alpha=\angle A P B, \beta=\angle B P C$ and $\gamma=\angle C P D$. Then by the alternate segment theorem and the fact that $B C \| A D$ we have $\angle D C P=\angle C B P=\alpha$ and $\angle P B A=\angle P C B=\gamma$. Since $\alpha+\beta+\gamma=180^{\circ}$ we may use the angle sum in triangles $C P D$ and $A P B$ to deduce that $\angle P D C=\angle B A P=\beta$. Hence, $A B C D$ is an isosceles trapezium with $A B=C D$ and $A B C D$ is cyclic.

Let the lines $B P$ and $C P$ intersect circle $A B C D$ for a second time at points E and F, respectively. Note that P lies inside circle $A B C D$ because it lies on segment $A D$. Thus E is on r_{5} and F is on r_{6}. We have $\angle E D A=\angle E B A=\gamma$. Hence, $\angle E D C=\gamma+\beta=180^{\circ}-\alpha=180^{\circ}-\angle D C P$ and so $D E \| C P$. It follows that $D E \| C F$, which implies that $C D E F$ is an isosceles trapezium with $C D=E F$. Hence, circle $A B C D E F$ has the required properties.
(b) As in part (a), let $\alpha=\angle A P B=\angle D P E, \beta=\angle B P C=\angle E P F$ and $\gamma=\angle C P D=$ $\angle F P A$.

Since $A B=C D$, it follows that $A B C D$ is an isosceles trapezium with $A D \| B C$. Hence $\angle C B P=\alpha$ and $\angle P C B=\gamma$. Since $B C E F$ is cyclic we have $\angle P F E=$ $\angle C B P=\alpha$ and $\angle F E P=\angle P C B=\gamma$. Similarly $C F \| D E$ and $A F \| B E$ which lead to $\angle P B A=\angle E D P=\gamma, \angle B A P=\angle P E D=\beta, \angle D C P=\angle P A F=\alpha$ and $\angle P D C=\angle A F P=\beta$.
Thus triangles $P A B, B P C, C D P, P E D, F P E$ and $A F P$ are similar.
Let $x=B C, y=C P$ and $z=B P$. Then since $z: y: x=B P: P C: C B=C D:$ $D P: P C$, we have $D P=\frac{y^{2}}{x}$ and $E F=C D=\frac{y z}{x}$. Since $z: x=B P: C B=P A$: $B P$, we have $P A=\frac{z^{2}}{x}$. Since the ratio of areas of similar figures is the square of the ratio of corresponding lengths we have

$$
\begin{aligned}
& |P A B|:|B P C|:|C D P|:|P E D|:|F P E|:|A F P| \\
= & P B^{2}: B C^{2}: C P^{2}: P D^{2}: F E^{2}: A P^{2} \\
= & z^{2}: x^{2}: y^{2}: \frac{y^{4}}{x^{2}}: \frac{y^{2} z^{2}}{x^{2}}: \frac{z^{4}}{x^{2}} \\
= & z^{2} x^{2}: x^{4}: x^{2} y^{2}: y^{4}: y^{2} z^{2}: z^{4} .
\end{aligned}
$$

The inequality to be proved is equivalent to $|B P C|+|P E D|+|A F P| \geq|P A B|+$ $|C D P|+|F P E|$. Thus, it suffices to show that $x^{4}+y^{4}+z^{4} \geq x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}$. However, this is equivalent to $\left(x^{2}-y^{2}\right)^{2}+\left(y^{2}-z^{2}\right)^{2}+\left(z^{2}-x^{2}\right)^{2} \geq 0$. (Alternatively we may use the rearrangement inequality or the Cauchy-Schwarz inequality.)

Solution 2 (Angelo Di Pasquale)

(a) Let $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}$ be as in Solution 1. Let $B \in r_{2}$ and $C \in r_{3}$ be fixed points such that $B C \| r_{1}$. Let E be a variable point on r_{5}. Consider the family of circles passing through points B, C and E. Let A, D and F be the intersection points of circle $B C E$ with rays r_{1}, r_{4} and r_{6}, respectively. Then $B C \| A D$. Thus $A B C D$ is an isosceles trapezium with $A B=C D$.

Consider the ratio $r=\frac{E F}{A B}$ as E varies on ray r_{5}. As E approaches $P, A B$ approaches $\min \{B P, C P\}$ while $E F$ approaches 0 . Hence, r approaches 0 .
As E diverges away from $P, \angle B E C$ approaches 0 . Hence $\angle E C F=\angle B P C-\angle B E C$ approaches $\angle B P C$ and $\angle A D B$ approaches 0 . Thus, eventually $\angle E C F>\angle A D B$ and so $r>1$.

Since r varies continuously with E, we may apply the intermediate value theorem to deduce that there is a position for E such that $r=1$. The circle $B C E$ now has the required property.
(b) As in Solution 1, we deduce that triangles $A F P, P A B, B P C$ are similar. Hence,

$$
\begin{aligned}
& \frac{|A F P|}{|P A B|} \cdot \frac{|B P C|}{|P A B|}=\frac{A P^{2}}{P B^{2}} \cdot \frac{P B^{2}}{P A^{2}}=1 \\
\Rightarrow \quad & |A P B|=\sqrt{|F P A| \cdot|B P C| \leq \frac{1}{2}|F P A|+\frac{1}{2}|B P C|,}
\end{aligned}
$$

where we have used the AM-GM inequality in the last line. Adding this to the two analogously derived inequalities $|C P D| \leq \frac{1}{2}|B P C|+\frac{1}{2}|D P E|$ and $|E P F| \leq$ $\frac{1}{2}|D P E|+\frac{1}{2}|F P A|$ yields the result.

Solution 3 (Ivan Guo)

Solution to part (b) only.
Similar to Solution 2, it suffices to prove that

$$
|A P F|+|B P C| \geq 2|A P B|,
$$

since we can add the analogous inequalities together to get the required result.
Let $A F$ and $B C$ intersect at X. From part (a) of Solution 1, we know that the triangles $A P F, B P C$ and $X C F$ are all similar. Furthermore, triangles $X A B$ and $A P B$ are congruent. So it suffices to prove that

$$
|A P F|+|B P C| \geq \frac{1}{2}|X C F| .
$$

Since all three triangles are similar, their areas are proportional to the squares of their bases. So we would like to show that

$$
F P^{2}+P C^{2} \geq \frac{1}{2}(F P+P C)^{2} .
$$

This is true since the inequality rearranges to $\frac{1}{2}(F P-P C)^{2} \geq 0$.

Solution 4 (Daniel Mathews)

(a) As in Solution 1, label the rays $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}$. Let the angle between rays r_{1} and r_{2} (respectively, r_{2} and r_{3}, r_{3} and r_{4}) be a (respectively, b, c), so that $a+b+c=180^{\circ}$. Construct points A, B, C, D, E, F on $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}$ respectively so that

$$
\begin{array}{ll}
P A=1 & P D=\frac{\sin ^{2} a}{\sin ^{2} c} \\
P B=\frac{\sin b}{\sin c} & P E=\frac{\sin ^{2} a}{\sin b \sin c} \\
P C=\frac{\sin a \sin b}{\sin ^{2} c} & P F=\frac{\sin a}{\sin b} .
\end{array}
$$

Consider triangle $P A B$. We have $\angle A P B=a$, so $\angle P B A+\angle P A B=b+c$. Moreover, the sine rule yields $\frac{\sin \angle P A B}{\sin \angle P B A}=\frac{P B}{P A}=\frac{\sin b}{\sin c}$. It follows that $\angle P A B=b$ and $\angle P B A=c$. Moreover, we have $\frac{A B}{P A}=\frac{\sin A P B}{\sin P B A}=\frac{\sin a}{\sin c}$, so $A B=\frac{\sin a}{\sin c}$.
Similarly, we can compute all the angles in triangles $P B C, P C D, P D E, P E F, P F A$. We find they are all similar, each with angles a, b, c. We find that $\angle A D C=\angle A F C=$ $180^{\circ}-\angle A B C$ and $\angle B E D=\angle B A D=180^{\circ}-\angle B C D$, so that $A B C D E F$ is cyclic. We also calculate $A B=C D=E F=\frac{\sin a}{\sin c}$. Thus, the circle through $A B C D E F$ satisfies the given conditions.

Moreover, any circle satisfying these conditions has this form once we specify $P A$ to have unit length. For if A, B, C, D, E, F are as required, then we can deduce that $A B$ is parallel to $r_{3} r_{6}, C D$ is parallel to $r_{2} r_{5}$, and $E F$ is parallel to $r_{1} r_{4}$. We can then show that all angles must be as found above, and then, by the sine rule, if we set $P A=1$, then all lengths $P A, P B, P C, P D, P E, P F$ are as in the construction.
(b) Using the lengths and angles constructed above, we can compute the areas of the six triangles $P A B, P B C, P C D, P D E, P E F, P F A$ in terms of $\sin a, \sin b$ and $\sin c$. For instance, $2|P A B|=P A . P B \sin a=\frac{\sin b \cdot \sin a}{\sin c}$. Writing $p=\sin a, q=\sin b, r=\sin c$, we then have

$$
\begin{array}{ll}
2|P A B|=\frac{p q}{r} & 2|P D E|=\frac{p^{5}}{q^{3}} \\
2|P B C|=\frac{p q^{3}}{r^{3}} & 2|P E F|=\frac{p^{3}}{q r} \\
2|P C D|=\frac{p^{3} q}{r^{3}} & 2|P F A|=\frac{p r}{q} .
\end{array}
$$

The required inequality can also be written as

$$
|P A B|+|P C D|+|P E F| \leq|P B C|+|P D E|+|P F A|
$$

which, after substituting the areas as above, clearing denominators and cancelling common factors, is equivalent to

$$
q^{2} r^{2}+p^{2} q^{2}+p^{2} r^{2} \leq q^{4}+p^{4}+r^{4}
$$

This inequality follows from the rearrangement inequality or the Cauchy-Schwarz inequality.

