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Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

1. Find all positive integers n such that 2n + 7n is a perfect square.

2. Let ABC be a triangle. A circle intersects side BC at points U and V , side CA at points

W and X, and side AB at points Y and Z. The points U, V,W,X, Y, Z lie on the circle

in that order. Suppose that AY = BZ and BU = CV .

Prove that CW = AX.

3. For a real number x, define �x� to be the largest integer less than or equal to x, and

define {x} = x− �x�.

(a) Prove that there are infinitely many positive real numbers x that satisfy the

inequality

{x2} − {x} >
2015

2016
.

(b) Prove that there is no positive real number x less than 1000 that satisfies this

inequality.

4. A binary sequence is a sequence in which each term is equal to 0 or 1. We call a binary

sequence superb if each term is adjacent to at least one term that is equal to 1. For

example, the sequence 0, 1, 1, 0, 0, 1, 1, 1 is a superb binary sequence with eight terms.

Let Bn denote the number of superb binary sequences with n terms.

Determine the smallest integer n ≥ 2 such that Bn is divisible by 20.

c© 2016 Australian Mathematics Trust

THE 2016 AUSTRALIAN MATHEMATICAL
OLYMPIAD

DAY 1

Tuesday, 9 February 2016

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

1. Find all positive integers n such that 2n + 7n is a perfect square.

2. Let ABC be a triangle. A circle intersects side BC at points U and V , side CA at points

W and X, and side AB at points Y and Z. The points U, V,W,X, Y, Z lie on the circle

in that order. Suppose that AY = BZ and BU = CV .

Prove that CW = AX.

3. For a real number x, define �x� to be the largest integer less than or equal to x, and

define {x} = x− �x�.

(a) Prove that there are infinitely many positive real numbers x that satisfy the

inequality

{x2} − {x} >
2015

2016
.

(b) Prove that there is no positive real number x less than 1000 that satisfies this

inequality.

4. A binary sequence is a sequence in which each term is equal to 0 or 1. We call a binary

sequence superb if each term is adjacent to at least one term that is equal to 1. For

example, the sequence 0, 1, 1, 0, 0, 1, 1, 1 is a superb binary sequence with eight terms.

Let Bn denote the number of superb binary sequences with n terms.

Determine the smallest integer n ≥ 2 such that Bn is divisible by 20.

c© 2016 Australian Mathematics Trust

Official sponsor of the olympiad program.



2016 AUSTRALIAN MATHEMATICAL OLYMPIAD

AustrAl iAn MAtheMAt icAl  OlyMp iAd cOMMittee

A depArtMent Of the AustrAl iAn MAtheMAt ics  trust

AustrAl iAn MAtheMAt ics  trust
The Mathematics Olympiads are supported by the  
Australian Government Department of Education through  
the Mathematics and Science Participation Program.

THE 2016 AUSTRALIAN MATHEMATICAL
OLYMPIAD

DAY 2

Wednesday, 10 February 2016

Time allowed: 4 hours

No calculators are to be used.

Each question is worth seven points.

5. Find all triples (x, y, z) of real numbers that simultaneously satisfy the equations

xy + 1 = 2z

yz + 1 = 2x

zx+ 1 = 2y.

6. Let a, b, c be positive integers such that a3 + b3 = 2c.

Prove that a = b.

7. Each point in the plane is assigned one of four colours.

Prove that there exist two points at distance 1 or
√
3 from each other that are assigned

the same colour.

8. Three given lines in the plane pass through a point P .

(a) Prove that there exists a circle that contains P in its interior and intersects the

three lines at six points A,B,C,D,E, F in that order around the circle such that

AB = CD = EF .

(b) Suppose that a circle contains P in its interior and intersects the three lines at six

points A,B,C,D,E, F in that order around the circle such that AB = CD = EF .

Prove that

1

2
area(hexagon ABCDEF ) ≥ area(�APB) + area(�CPD) + area(�EPF ).
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1. Find all positive integers n such that 2n + 7n is a perfect square.

Solution 1 (Mike Clapper)

Since 21 + 71 = 9 = 32, n = 1 is a solution. We will now show that it is the only solution.

For n > 1, we have 2n ≡ 0 (mod 4). We also have 7n ≡ (−1)n (mod 4). Since all perfect

squares are either congruent to 0 or 1 modulo 4, 2n + 7n cannot be a perfect square if n

is odd and greater than 1. So write n = 2m, where m is a positive integer.

We would like to show that 2n+7n cannot be a perfect square. Considering this expression

modulo 5, we have 2n + 7n = 4m + 49m ≡ 2 × (−1)m (mod 5). Therefore, 2n + 7n is

congruent to 2 or 3 modulo 5. On the other hand, all perfect squares are congruent to 0,

1 or 4 modulo 5.

Therefore, n = 1 is indeed the only solution to the problem.

Solution 2

As in Solution 1, we prove that n = 1 is a solution and that any other can be written as

n = 2m, where m is a positive integer.

We would like to show that 2n+7n cannot be a perfect square. Considering this expression

modulo 3, we have 2n + 7n = 4m + 49m ≡ 2 × 1m ≡ 2 (mod 3). On the other hand, all

perfect squares are congruent to 0 or 1 modulo 3.

Therefore, n = 1 is indeed the only solution to the problem.

Solution 3

As in Solution 1, we prove that n = 1 is a solution and that any other can be written as

n = 2m, where m is a positive integer.

We would like to show that 2n + 7n cannot be a perfect square. This follows from the

inequality

(7m)2 < 2n + 7n < (7m + 1)2,

which means that 2n+7n lies between two consecutive perfect squares. The left inequality

is obvious since 2n is positive. The right inequality is also obvious, since it is equivalent

to 4m < 2 · 7m + 1.

Therefore, n = 1 is indeed the only solution to the problem.
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2. Let ABC be a triangle. A circle intersects side BC at points U and V , side CA at points

W and X, and side AB at points Y and Z. The points U, V,W,X, Y, Z lie on the circle in

that order. Suppose that AY = BZ and BU = CV .

Prove that CW = AX.

Solution 1 (Angelo Di Pasquale)

Let O be the centre of the circumcircle of UVWXY Z and let K, L, M be the midpoints

of BC, CA, AB, respectively.

A

B CU V

W

X
Y

Z

O

K

LM

Since AY = BZ and BU = CV , the points M and K are the midpoints of AB and BC,

respectively. Therefore, the perpendicular to AB passing through M is the perpendicular

bisector of both the segments AB and Y Z. Similarly, the perpendicular to BC passing

through K is the perpendicular bisector of both the segments BC and UV . Hence, these

two perpendicular bisectors pass through O as well as the circumcentre of triangle ABC.

It follows that O is the circumcentre of triangle ABC.

However, since O is the centre of the circumcircle of UVWXY Z, we have that OL is

perpendicular to WX. Thus, OL is perpendicular to CA. Since O is the circumcentre

of triangle ABC, we must have that L is the midpoint of CA. The fact that L is the

midpoint of both WX and CA implies that CW = AX.

Solution 2 (Angelo Di Pasquale)

Using the power of a point theorem from A, then B, then C, we find that

AX ·AW = AY ·AZ = BZ ·BY = BU ·BV = CV · CU = CW · CX.

Therefore, we have

AX · (AX +XW ) = CW · (CW +WX) ⇒ (AX − CW ) · (AX + CW +WX) = 0.

Therefore, it must be the case that CW = AX.

2

Solution 3 (Angelo Di Pasquale and Jamie Simpson)

Let M be the midpoint of AB and let O be the centre of the circumcircle of UVWXY Z.

Since AY = BZ, M is also the midpoint of Y Z. But triangle OY Z is isosceles with

OY = OZ. Therefore, triangle OMZ is congruent to triangle OMY (SSS) and ∠OMZ =

∠OMY = 90◦. It follows that triangle OMB is congruent to triangle OMA (SAS).

Therefore, OB = OA and, by a similar argument, we have OB = OC.

We deduce that OA = OC, which implies that ∠OCW = ∠OCA = ∠OAC = ∠OAX.

Since OW = OX, we have ∠OWX = ∠OXW , which implies ∠OWC = ∠OXA. Thus,

triangle OWC is congruent to triangle OXA (AAS). From this, we have CW = AX, as

desired.
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3. For a real number x, define �x� to be the largest integer less than or equal to x, and define

{x} = x− �x�.

(a) Prove that there are infinitely many positive real numbers x that satisfy the inequality

{x2} − {x} >
2015

2016
.

(b) Prove that there is no positive real number x less than 1000 that satisfies this in-

equality.

Solution 1

(a) We will show that x = n + 1
n+1 satisfies the inequality for sufficiently large positive

integers n.

{x2} − {x} =

{
n2 +

2n

n+ 1
+

1

(n+ 1)2

}
−

{
n+

1

n+ 1

}

=

{
n2 + 2− 2

n+ 1
+

1

(n+ 1)2

}
− 1

n+ 1

=

(
1− 2

n+ 1
+

1

(n+ 1)2

)
− 1

n+ 1

= 1− 3

n+ 1
+

1

(n+ 1)2

> 1− 3

n+ 1

Therefore, x = n+ 1
n+1 satisfies the inequality as long as n is a positive integer such

that

1− 3

n+ 1
>

2015

2016
⇔ n > 3× 2016− 1.

(b) Let x = a+ b, where a = �x� and b = {x}, and consider the following inequalities.

{x2} − {x} >
2015

2016
⇒ 1− b >

2015

2016
⇒ b <

1

2016

Now use b < 1
2016 to deduce the following inequalities.

{x2} − {x} >
2015

2016
⇒ {(a+ b)2} = {2ab+ b2} >

2015

2016

⇒ 2ab+ b2 >
2015

2016

⇒ a >
2015

2016
· 1

2b
− b

2
>

2015

2016
· 2016

2
− 1

2
· 1

2016
> 1000

Therefore, there is no positive real number x less than 1000 that satisfies the inequal-

ity.

Solution 2 (Chaitanya Rao)

Solution to part (a) only.

4
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4

Let x = a+ 10−4, where a is an integer. Then

{x2} − {x} = {a2 + 2a10−4 + 10−8} − 10−4

= {2a10−4 + 10−8} − 10−4.

Now let a = 4999 + 5000n for n = 0, 1, 2, . . .. We find that

{x2} − {x} = {0.9998 + n+ 10−8} − 10−4

= 0.9998 + 10−8 − 10−4

= 0.9997 + 10−8.

Since 104 > 6048, we have 3
104

< 3
6048 = 1

2016 . Therefore,

{x2} − {x} = 0.9997 + 10−8 > 1− 3

104
> 1− 1

2016
=

2015

2016
.

Hence, the positive real numbers of the form x = 4999 + 5000n + 10−4 for n = 0, 1, 2, . . .

satisfy the inequality.

Solution 3 (Ivan Guo)

Solution to part (a) only.

For convenience, we set ε = 1
2016 . Using the notation x = a+b, where a = �x� and b = {x},

we obtain

{x2} = {a2 + 2ab+ b2} = {2ab+ b2}.

We would like to find (a, b) such that 2ab + b2 < 1 and 2ab + b2 − b > 1 − ε. By noting

0 ≤ b2 ≤ b, it suffices to find (a, b) such that 2ab + b < 1 and 2ab − b > 1 − ε. This can

be achieved by fixing 2ab = 1− ε
2 and choosing a to be a sufficiently large integer so that

b < ε
2 .

Solution 4 (Angelo Di Pasquale)

Solution to part (b) only.

Intuitively, we would like {x2} to be just below an integer and {x} to be just above an

integer. Hence, let x = a+ b and x2 = m− c where a and m are integers and 0 ≤ b, c < 1.

For convenience, we also set ε = 1
2016 .

Since {x2} = 1− c, we require

1− c− b > 1− ε ⇔ b+ c < ε.

Note that

(a+ b)2 = m− c

⇒ a2 + 2ab+ b2 + c = m.

However, m is an integer such that m > a2, which implies that m ≥ a2 + 1. Therefore,

a2 + 2ab+ b2 + c ≥ a2 + 1

⇒ 2ab ≥ 1− b2 − c ≥ 1− (b+ c) > 1− ε

⇒ a >
1− ε

2b
>

1− ε

2ε
=

2015

2
.

5
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It follows that x = a+ b > 1000.

Solution 5 (Hans Lausch)

For n = 1, 2, 3, . . . and t = 0, 1, 2, . . . and all real numbers x, let fn,t(x) = (x2 − (n2 + t))−
(x − n). The functions fn,t for n = 1, 2, 3, . . . and t = 0, 1, 2, . . . , 2n and

√
n2 + t ≤ x <√

n2 + t+ 1 satisfy the equation fn,t(x) = {x2} − {x}.

As fn,t is an increasing function for x ≥ 1
2 , we conclude that for a fixed 0 ≤ t ≤ 2n,

max
{
fn,t(x)

∣∣∣
√

n2 + t ≤ x ≤
√
n2 + t+ 1

}
= fn,t(

√
n2 + t+ 1) = 1− (

√
n2 + t+ 1− n).

For a fixed positive integer n, this is maximal if and only if t = 0. So for n ≤ x < n+ 1,

max fn,t(x) = fn,0(
√
n2 + 1) = 1− (

√
n2 + 1− n).

(a) As lim
n→∞

[
1− (

√
n2 + 1− n)

]
= 1, there exists a positive integer N such that

fN,0(
√
N2 + 1) = 1− (

√
N2 + 1−N) >

2015

2016
.

Since fN,0 is continuous and increasing, it follows that there exists δ > 0 such that

all x satisfying
√
N2 + 1− δ < x <

√
N2 + 1 also satisfy the given inequality.

(b) Note that {x2} − {x} < fn,0(
√
n2 + 1) = 1− (

√
n2 + 1− n), for n ≤ x < n+ 1. Also,

we have that 1 − (
√
n2 + 1 − n) is an increasing function of n. Thus, for x < 1000,

we have n ≤ 999 and

{x2} − {x} < 1− (
√

9992 + 1− 999) = 1− 1√
9992 + 1 + 999

< 1− 1

1999
<

2015

2016
.

6
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4. A binary sequence is a sequence in which each term is equal to 0 or 1. We call a binary

sequence superb if each term is adjacent to at least one term that is equal to 1. For

example, the sequence 0, 1, 1, 0, 0, 1, 1, 1 is a superb binary sequence with eight terms. Let

Bn denote the number of superb binary sequences with n terms.

Determine the smallest integer n ≥ 2 such that Bn is divisible by 20.

Solution 1

The Fibonacci sequence F0, F1, F2, . . . is defined by F0 = 0, F1 = 1, and Fm = Fm−1+Fm−2

for m ≥ 2. We will prove that

B2m = F 2
m+1, for m ≥ 1,

B2m+1 = FmFm+3, for m ≥ 0.

First, observe that a binary sequence b1, b2, . . . , bn with n ≥ 2 is superb if and only if

• b2 = bn−1 = 1; and

• there is no 1 ≤ k ≤ n− 2 such that bk = bk+2 = 0.

So a binary sequence b1, b2, . . . , b2m with an even number of terms is superb if and only if

• b2 = b2m−1 = 1;

• b4, b6, . . . , b2m is a binary sequence that does not contain two consecutive terms equal

to 0; and

• b1, b3, . . . , b2m−3 is a binary sequence that does not contain two consecutive terms

equal to 0.

It follows that the number of superb binary sequences b1, b2, . . . , b2m is equal to the number

of ways to choose the two binary sequences b4, b6, . . . , b2m and b1, b3, . . . , b2m−3, both with

m − 1 terms, without two consecutive terms equal to 0. We will prove below that the

number of binary sequences with k terms that do not contain two consecutive terms equal

to 0 is Fk+2. Therefore, B2m = F 2
m+1.

Similarly, a binary sequence b1, b2, . . . , b2m+1 with an odd number of terms is superb if and

only if

• b2 = b2m = 1;

• b4, b6, . . . , b2m−2 is a binary sequence that does not contain two consecutive terms

equal to 0; and

• b1, b3, . . . , b2m+1 is a binary sequence that does not contain two consecutive terms

equal to 0.

It follows that the number of superb binary sequences b1, b2, . . . , b2m+1 is equal to the

number of ways to choose the two binary sequences b4, b6, . . . , b2m−2 and b1, b3, . . . , b2m+1,

with m − 2 terms and m + 1 terms respectively, without two consecutive terms equal to

0. We will prove below that the number of binary sequences with k terms that do not

contain two consecutive terms equal to 0 is Fk+2. Therefore, B2m+1 = FmFm+3.

Lemma. The number of binary sequences with k terms that do not contain two

consecutive terms equal to 0 is Fk+2.

7
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Proof. It is easy to check that the lemma is true for k = 0, 1, 2, 3. Now suppose

that the lemma is true for k = n−1 and k = n, where n ≥ 1. A binary sequence

with n+1 terms without two consecutive terms equal to 0 must either end in the

term 1 or the terms 1, 0. In the first case, the number of such binary sequences

is Fn+2 by the inductive hypothesis. In the second case, the number of such

binary sequences is Fn+1 by the inductive hypothesis. Therefore, the number of

binary sequences with n + 1 terms that do not contain two consecutive terms

equal to 0 is Fn+2+Fn+1 = Fn+3. So the lemma is true for k = n+1 and hence,

for all non-negative integers k by induction.

For B2m to be divisible by 20, we require Fm+1 to be divisible by 10. Modulo 2, the

Fibonacci sequence repeats every three terms as follows.

0, 1, 1, 0, 1, 1 . . .

Modulo 5, the Fibonacci sequence repeats every twenty terms as follows.

0, 1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 1, 0, 1, 1, . . .

It follows that Fm+1 is divisible by 10 if and only if m + 1 is divisible by 15. Therefore,

taking m = 14 yields n = 28 as the smallest even integer greater than 2 such that Bn is

divisible by 20.

For B2m+1 to be divisible by 20, we require FmFm+3 to be divisible by 20. Since Fm is

even if and only if m is divisible by 3, we know that FmFm+3 is divisible by 4 if and only

if m is divisible by 3. For FmFm+3 to be divisible by 5, we require m to be divisible by 5

or m+ 3 to be divisible by 5. It follows that FmFm+3 is divisible by 20 if and only if m is

divisible by 15 or m+ 3 is divisible by 15. Therefore, taking m = 12 yields n = 25 as the

smallest odd integer greater than 2 such that Bn is divisible by 20.

In conclusion, n = 25 is the smallest positive integer greater than 2 such that Bn is divisible

by 20.

Solution 2 (Angelo Di Pasquale, Daniel Mathews and Ian Wanless)

Any superb binary sequence X of length n ≥ 6 takes exactly one of the following forms.

(1) Its middle n− 2 terms are all 1s.

(2) It is of the form b1, b2, . . . bk, 0, 1, 1, . . . , 1︸ ︷︷ ︸
n−k−1

where 2 ≤ k ≤ n− 3.

(3) It is of the form b1, b2, . . . bk, 0, 1, 1, . . . , 1︸ ︷︷ ︸
n−k−1

0 where 2 ≤ k ≤ n− 4.

Note that in (2) and (3), b1, b2, . . . , bk is a superb sequence if and only if X is.

Observe that (1) yields 4 superb sequences, (2) yields B2+B3+· · ·+Bn−3 superb sequences

(one for each k), and (3) yields B2 +B3 + · · ·+Bn−4 superb sequences. Therefore,

Bn = 4 + 2(B2 +B3 + · · ·+Bn−4) +Bn−3.

Replacing n with n+ 1 yields

Bn+1 = 4 + 2(B2 +B3 + · · ·+Bn−3) +Bn−2.
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Subtracting these two equations yields

Bn+1 −Bn = Bn−2 +Bn−3 ⇒ Bn+1 = Bn +Bn−2 +Bn−3.

By inspection, we find that B2 = 1, B3 = 3, B4 = 4, and B5 = 5.

If we use the recursion Bn+1 = Bn + Bn−2 + Bn−3 to compute the values of Bi (mod 4),

we find that, starting from B2, the sequence cycles 1, 3, 0, 1, 1, 0, . . .. Thus, 4 | Bi if and

only if i ≡ 1 (mod 3).

We now use the recursion to compute the values of Bi (mod 5) until we find the first i ≡ 1

(mod 3) for which 5 | Bi. Starting from B2, the values of the sequence are

1, 3, 4, 0, 4, 1, 0, 4, 4, 0, 4, 2, 1, 0, 1, 4, 0, 1, 1, 0, 1, 3, 4, 0,

at which point we stop because we have found that n = 25.

Solution 3 (Ian Wanless)

We note that each run of 1s in a superb binary sequence has to have length 2 or more.

For n ≥ 4 we partition the sequences counted by Bn into 3 cases.

• Case 1: The first run of 1s has length at least 3.

In this case, removing one of the 1s in the first run leaves a superb sequence of length

n− 1, and conversely, every such sequence of length n− 1 can be extended to one of

our sequences in a unique way. So there are Bn−1 sequences in this case.

• Case 2: The first run has length 2 and the first term in the sequence is a 1.

In this case, the sequence begins 110 and what follows is any one of the Bn−3 superb

sequences of length n− 3.

• Case 3: The first run has length 2 and the first term in the sequence is a 0.

In this case, the sequence begins 0110 and what follows is any one of the Bn−4 superb

sequences of length n− 4.

We conclude that Bn satisfies the recurrence Bn = Bn−1 + Bn−3 + Bn−4 for n ≥ 4, with

initial conditions B0 = 1, B1 = 0, B2 = 1, B3 = 3. From this recurrence, we can calculate

the sequence modulo 20 to find it begins

1, 0, 1, 3, 4, 5, 9, 16, 5, 19, 4, 5, 9, 12, 1, 15, 16, 9, 5, 16, 1, 15, 16, 13, 9, 0,

from which we deduce that the answer is n = 25.

Solution 4 (Kevin McAvaney)

All sequences mentioned in this proof are binary.

• Let A(n) be the number of superb sequences with n terms.

• Let B(n) be the number of sequences with n terms that do not contain the strings

000 or 010.

• Let C(n) be the number of sequences with n terms that do not contain the strings

000 or 010 and end in 0.
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• Let D(n) be the number of sequences with n terms that do not contain the strings

000 or 010 and end in 1.

The D-sequences end in 11 or 1101 or 11001, so D(n) = D(n− 1) +D(n− 3) +D(n− 4)

for n ≥ 5. The C-sequences end in 110 or 1100, so C(n) = D(n− 2)+D(n− 3) for n ≥ 4.

For n ≥ 5, B(n) = D(n) + C(n) = D(n) +D(n − 2) +D(n − 3) = D(n + 1). For n ≥ 7,

the A-sequences have the form 011 · · · 110 or 011 · · · 11 or 11 · · · 110 or 11 · · · 11, where the

string indicated by dots is a B-sequence. Hence,

A(n) = B(n− 6) + 2B(n− 5) +B(n− 4)

= D(n− 5) + 2D(n− 4) +D(n− 3)

= D(n)−D(n− 1) +D(n− 1)−D(n− 2)

= D(n)−D(n− 2).

By inspection, we have D(1) = 1, D(2) = 2, D(3) = 4, D(4) = 6, and A(1) = 2, A(2) = 1,

A(3) = 3, A(4) = 4, A(5) = 5, A(6) = 9. Working modulo 20, we seek the smallest value

of n ≥ 7 for which D(n)−D(n−2) = 0. From the following table, we see that it is n = 25.

n D(n)

1 1

2 2

3 4

4 6

5 9

6 15

7 5

8 0

9 4

n D(n)

10 4

11 9

12 13

13 1

14 14

15 16

16 10

17 5

18 15

n D(n)

19 1

20 16

21 16

22 12

23 9

24 1

25 9
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5. Find all triples (x, y, z) of real numbers that simultaneously satisfy the equations

xy + 1 = 2z

yz + 1 = 2x

zx+ 1 = 2y.

Solution 1

First, we note that the equations are symmetric in x, y, z, so that permuting a solution to

the equations will always yield a solution. Now subtract the first equation from the second

to obtain

yz − xy = 2x− 2z ⇒ (y + 2)(z − x) = 0 ⇒ y = −2 or z = x.

Note that we can similarly deduce that z = −2 or x = y as well as x = −2 or y = z. Let

us consider the two cases y = −2 and z = x separately.

• Case 1: y = −2

The original equations reduce to −2x+1 = 2z, −2z+1 = 2x, and zx+1 = −4. The

first of these allows us to write z = −x+ 1
2 and we may substitute this into the third

equation to yield

(
− x+ 1

2

)
x+ 1 = −4 ⇒ 2x2 − x− 10 = 0 ⇒ x =

5

2
or x = −2.

Using the fact that y = −2 and z = −x + 1
2 , we obtain the solutions (x, y, z) =

(52 ,−2,−2) and (−2,−2, 52). By the symmetry observed earlier, we also obtain the

solution (x, y, z) = (−2, 52 ,−2). It is easy to check that these solutions all satisfy the

original equations.

• Case 2: z = x

We earlier deduced that z = −2 or x = y. By the symmetry of the original equations,

the case z = −2 has already been considered. So it remains to consider when x = y =

z. In this case, all three equations reduce to the single equation x2 + 1 = 2x, which

has the unique solution x = 1. Therefore, we obtain the solution (x, y, z) = (1, 1, 1)

and it is easy to check that this satisfies the original equations.

Therefore, the only solutions to the equations are given by (x, y, z) = (52 ,−2,−2), (−2, 52 ,−2),

(−2,−2, 52) and (1, 1, 1).

Solution 2 (Angelo Di Pasquale and Daniel Mathews)

Multiply the first equation by z and rearrange to get

2z2 − z = xyz.

Similarly, 2x2 − x = xyz and 2y2 − y = xyz. But the quadratic 2w2 − w = xyz has at

most two real solutions. So two of x, y, z are equal and we may assume without loss of

generality that z = y. The equations become

xy + 1 = 2y (1)

y2 + 1 = 2x. (2)
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From equation (2), we obtain x = y2+1
2 . Substiting this into equation (1) yields

y3 − 3y + 2 = 0 ⇔ (y − 1)2(y + 2) = 0.

If y = 1, we find that x = 1 and z = 1. If y = −2, we find that x = 5
2 and z = −2.

Solution 3 (Angelo Di Pasquale)

Put z = xy+1
2 into the second and third equations, and tidy up to get

xy2 + y + 2 = 4x (1)

x2y + x+ 2 = 4y. (2)

Solving for x in equation (1) yields x = − y+2
y2−4

.

If y = −2, then solving equation (2) for x yields x = −2 or x = 5
2 . Using the fact that

z = xy+1
2 , we arrive at (x, y, z) =

(
−2,−2, 52

)
or

(
5
2 ,−2,−2

)
.

If y �= −2, then x = − 1
y−2 . Substituting this into equation (2) yields

4y3 − 18y2 + 24y − 10 = 0 ⇔ (y − 1)2(2y − 5) = 0.

Then y = 1 leads to (x, y, z) = (1, 1, 1), and y = 5
2 leads to (x, y, z) =

(
−2, 52 ,−2

)
.

Solution 4 (Angelo Di Pasquale)

This is a trick for squeezing out a set of three independent equations in terms of the

symmetric functions a = x + y + z, b = xy + xz + yz and c = xyz. Add t to each of the

equations, and then multiply the three equations together to get

(xy + t+ 1)(yz + t+ 1)(zx+ t+ 1) = (2x+ t)(2y + t)(2z + t).

Expanding this out, substituting in a, b, c for the relevant symmetric expressions in x, y,

z, and then writing it as a polynomial in t yields

t2(b+ 3− 2a) + t(ac+ 3− 2b) + c2 + ac+ b+ 1− 8c = 0.

Since this is true for all values of t, the above expression must be the zero polynomial.

Hence,

b+ 3− 2a = 0 (1)

ac+ 3− 2b = 0 (2)

c2 + ac− 8c+ b+ 1 = 0. (3)

Substituting b = 2a− 3 from equation (1) into equations (2) and (3) yields

a(c− 4) = −9 (4)

c2 − 8c− 2 + a(c+ 2) = 0. (5)

Multiplying equation (5) by c − 4 and using equation (4) yields the following cubic after

tidying up.

c3 − 12c2 + 21c− 10 = 0 ⇔ (c− 1)2(c− 10) = 0

12
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The case c = 1 implies a = 3 and b = 3. So by Vieta’s formulas, x, y, z are the three zeros

of the cubic w3 − 3w2 + 3w + 1 = (w − 1)3. Therefore, (x, y, z) = (1, 1, 1).

The case c = 10 implies a = −3
2 and b = −6. So by Vieta’s formulas, x, y, z are the three

zeros of the cubic w3+ 3
2w

2−6w−10 = (w+2)2
(
w − 5

2

)
. Therefore, (x, y, z) =

(
−2,−2, 52

)
and its permutations.

Solution 5 (Alan Offer)

Put (x, y, z) = (a+ 1, b+ 1, c+ 1). Then the given equations become

ab+ a+ b = 2c (1a)

bc+ b+ c = 2a (1b)

ca+ c+ a = 2b. (1c)

Let A = a+ b+ c, B = ab+ bc+ ca and C = abc. Then adding the equations (1a), (1b),

(1c) together gives B + 2A = 2A, so B = 0. Consequently, f(u) = (u− a)(u− b)(u− c) =

u3 −Au2 − C. Also, a2 + b2 + c2 = A2 − 2B = A2.

Adding a to both sides of equation (1b) and multiplying the result by a gives (together

with similar results obtained from equations (1a) and (1c))

C +Aa = 3a2 (2a)

C +Ab = 3b2 (2b)

C +Ac = 3c2. (2c)

Adding these together gives 3C +A2 = 3(a2 + b2 + c2) = 3A2, so 3C = 2A2.

Since f(a) = 0, we have a3 = Aa2 + C. Hence, multiplying equation (2a) by a produces

Ca + Aa2 = 3a3 = 3Aa2 + 3C. Simplified, this becomes (together with similar results

obtained from equations (2b) and (2c))

Ca = 2Aa2 + 3C

Cb = 2Ab2 + 3C

Cc = 2Ac2 + 3C.

Adding these together and recalling that a2 + b2 + c2 = A2, we find that CA = 2A3 + 9C.

Multiplying by 3 and using the fact that 3C = 2A2, this becomes 2A3 = 6A3 + 18A2, and

so A2(2A+ 9) = 0. It follows that either A = 0 or A = −9
2 .

If A = 0, then f(u) = u3, so a = b = c = 0.

If A = −9
2 , then 2f(u) = 2u3 + 9u2 − 27 = (u+ 3)2(2u− 3), so two of a, b, c are equal to

−3 while the third is equal to 3
2 .

For the original system of equations, this yields the solutions

(x, y, z) ∈
{
(1, 1, 1), (52 ,−2,−2), (−2, 52 ,−2), (−2,−2, 52)

}
,

and substitution verifies that these are indeed solutions.

Solution 6 (Chaitanya Rao)

We consider the three cases x > y, x < y and x = y.
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• Case 1: If x > y, the second and third equations lead to yz+1 > zx+1 or z(y−x) > 0.

Since y − x < 0 this implies z < 0. From the first equation this in turn implies that

xy + 1 < 0, so x and y are of opposite sign. We conclude that x > 0 > y and z < 0.

By symmetry of the equations, we can use a similar argument to show that if any

variable is greater than another, then the third variable must be negative. This means

that either of the assumptions y > z or y < z lead to the contradictory statement that

x < 0, so we have that x > 0 > y = z. The given equations then become xy+1 = 2y

and y2 + 1 = 2x. Multiplying the second of these by y and using the first equation

gives y3 + y = 2xy = 4y− 2 or (y− 1)2(y+ 2) = 0. The only negative root is y = −2

and so x = y2+1
2 = 5

2 . Therefore, we have the solution (x, y, z) = (52 ,−2,−2).

• Case 2: If x < y, interchange x and y in Case 1 to obtain the solution (x, y, z) =

(−2, 52 ,−2).

• Case 3: If x = y, we proceed similarly to the last part of Case 1, obtaining the

equations xz + 1 = 2x and x2 + 1 = 2z, from which (x − 1)2(x + 2) = 0 and so

x = y = 1 or x = y = −2. Hence, z = x2+1
2 is equal to 1 or 5

2 . This gives the

solutions (x, y, z) = (1, 1, 1) or (−2,−2, 52).

We end up with four solutions: (x, y, z) = (52 ,−2,−2), (−2, 52 ,−2), (−2,−2, 52) and (1, 1, 1).

It is easily checked that each of these satisfies the original system of equations.
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It is easily checked that each of these satisfies the original system of equations.
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6. Let a, b, c be positive integers such that a3 + b3 = 2c.

Prove that a = b.

Solution 1

Note that a and b must have the same parity. If a and b are even and a3 + b3 is a power

of two, then (a2 )
3 + ( b2)

3 is also a power of two. But since a
2 and b

2 are positive integers,

(a2 )
3 + ( b2)

3 is of the form 2d, where d is a positive integer. So if there are distinct positive

integers whose cubes sum to a power of two, then one can repeatedly divide them by two

to obtain distinct positive odd integers whose cubes sum to a power of two.

So suppose now that a and b are odd. Rewrite the equation as (a+ b)(a2 − ab+ b2) = 2c,

which implies that there are non-negative integers m and n such that

a+ b = 2m

a2 − ab+ b2 = 2n.

Since a2 − ab + b2 is odd, we must have n = 0 and it follows that a + b = 2c = a3 + b3.

However, a+b ≤ a3+b3 with equality if and only if a = b = 1. Therefore, the only solution

to a3 + b3 = 2c with a and b odd is (a, b, c) = (1, 1, 1). It follows that the only solutions to

a3 + b3 = 2c must have a = b.

Solution 2 (Angelo Di Pasquale)

Let n be the greatest non-negative integer such that 2n | a and 2n | b. Writea = 2nA and

b = 2nB for positive integers A and B. Then we have 23n(A3 + B3) = 2c, where at least

one of A and B is odd. Since 23n | 2c, we have c = 3n + d for some non-negative integer

d, so A3 + B3 = 2d. Since A,B ≥ 1, we have d ≥ 1, so A + B is even. Since at least one

of A and B is odd, we conclude that both are odd.

So we have 2d = (A + B)(A2 − AB + B2). Since 2d, A + B > 0, then we also have

A2 −AB +B2 > 0. But A2 −AB +B2 is odd and a factor of 2d, so A2 −AB +B2 = 1.

If A > B, then A2−AB+B2 = A(A−B)+B2 ≥ A+B2 ≥ 2, so this case does not occur.

Similarly, A < B does not occur.

If A = B, it follows that A = B = 1, and so a = b.

15
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7. Each point in the plane is assigned one of four colours.

Prove that there exist two points at distance 1 or
√
3 from each other that are assigned

the same colour.

Solution 1

Suppose that the four colours are blue, red, yellow, and green. We argue by contradiction

and suppose that there do not exist two points at distance 1 or
√
3 from each other that

have the same colour.

Pick a point P1 in the plane and suppose that it is coloured blue, without loss of generality.

Construct a regular hexagon P1P2P3P4P5P6 with side length 1 and centre Q. Note that

the points P1, P2, P6, Q must be coloured differently. So suppose without loss of generality

that Q is coloured red, P2 is coloured yellow, and P6 is coloured green.

P1

P2 P3

P4

P5P6

Q

Now note that P1, P6, P5, Q must be coloured differently, which forces P5 to be yellow.

Similarly, P6, P5, P4, Q must be coloured differently, which forces P4 to be blue. It follows

that any point at distance 2 from P1 must be coloured blue. In other words, there is a

circle of radius 2 that is coloured blue. However, there exists a chord on this circle of

length 1, which forces two points at distance 1 that are the same colour. This contradicts

our original assumption, so it follows that there exist two points at distance 1 or
√
3 from

each other that are the same colour.

Solution 2 (Angelo Di Pasquale)

Suppose that the four colours are blue, red, yellow, and green. We argue by contradiction

and suppose that there do not exist two points at distance 1 or
√
3 from each other that

have the same colour.

Consider an isosceles triangle ABC with BC = 1 and AB = AC = 2. Since B and C must

be different colours, one of them is coloured differently to A. Without loss of generality,

A is blue and B is red. Orient the plane so that AB is a horizontal segment.

A BO

X Y

16



17

7. Each point in the plane is assigned one of four colours.

Prove that there exist two points at distance 1 or
√
3 from each other that are assigned

the same colour.

Solution 1

Suppose that the four colours are blue, red, yellow, and green. We argue by contradiction

and suppose that there do not exist two points at distance 1 or
√
3 from each other that

have the same colour.

Pick a point P1 in the plane and suppose that it is coloured blue, without loss of generality.

Construct a regular hexagon P1P2P3P4P5P6 with side length 1 and centre Q. Note that

the points P1, P2, P6, Q must be coloured differently. So suppose without loss of generality

that Q is coloured red, P2 is coloured yellow, and P6 is coloured green.

P1

P2 P3

P4

P5P6

Q

Now note that P1, P6, P5, Q must be coloured differently, which forces P5 to be yellow.

Similarly, P6, P5, P4, Q must be coloured differently, which forces P4 to be blue. It follows

that any point at distance 2 from P1 must be coloured blue. In other words, there is a

circle of radius 2 that is coloured blue. However, there exists a chord on this circle of

length 1, which forces two points at distance 1 that are the same colour. This contradicts

our original assumption, so it follows that there exist two points at distance 1 or
√
3 from

each other that are the same colour.

Solution 2 (Angelo Di Pasquale)

Suppose that the four colours are blue, red, yellow, and green. We argue by contradiction

and suppose that there do not exist two points at distance 1 or
√
3 from each other that

have the same colour.

Consider an isosceles triangle ABC with BC = 1 and AB = AC = 2. Since B and C must

be different colours, one of them is coloured differently to A. Without loss of generality,

A is blue and B is red. Orient the plane so that AB is a horizontal segment.

A BO

X Y

16

Let O be the midpoint of AB. Then as AO = BO = 1, O is not blue or red. Without loss

of generality, O is green. Let X be the point above line AB so that �AOX is equilateral.

It is easy to compute that XB =
√
3 and XA = XO = 1. Hence, X is not red, blue or

green, and must be yellow. Finally, let Y be the point above line AB so that �BOY is

equilateral. Then it is easy to compute that Y X = Y O = Y B = 1 and Y A =
√
3. Hence

Y cannot be any of the four colours, giving the desired contradiction.

17
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8. Three given lines in the plane pass through a point P .

(a) Prove that there exists a circle that contains P in its interior and intersects the

three lines at six points A,B,C,D,E, F in that order around the circle such that

AB = CD = EF .

(b) Suppose that a circle contains P in its interior and intersects the three lines at six

points A,B,C,D,E, F in that order around the circle such that AB = CD = EF .

Prove that

1

2
area(hexagon ABCDEF ) ≥ area(�APB) + area(�CPD) + area(�EPF ).

Solution 1 (Angelo Di Pasquale)

(a) Let r1, r2, r3, r4, r5, r6 be the rays in order emanating from P along the lines. Note

that the union of r1 and r4 is one of the three given lines. The same holds for r2 and

r5, as well as for r3 and r6.

Let point B be chosen arbitrarily on r2. Then locate C on r3 so that BC ‖ r1. Next,

let the tangent at B to circle BPC intersect r1 at A. (If C1 is any point on the ray

CB beyond B, then the tangent at B lies in between the rays BC1 and BP , and hence

it really does intersect r1, rather than r4.) Similarly, let the tangent at C to circle

BPC intersect r4 at D. Let α = ∠APB, β = ∠BPC and γ = ∠CPD. Then by the

alternate segment theorem and the fact that BC ‖ AD we have ∠DCP = ∠CBP = α

and ∠PBA = ∠PCB = γ. Since α + β + γ = 180◦ we may use the angle sum in

triangles CPD and APB to deduce that ∠PDC = ∠BAP = β. Hence, ABCD is an

isosceles trapezium with AB = CD and ABCD is cyclic.

P

B

A

C

D αβγ r1

r2
r3

r4

r5

r6

αγ
α γ

P

B

A

C

D

E

F

αβγ

αγ

α β γ

γ

Let the lines BP and CP intersect circle ABCD for a second time at points E and

F , respectively. Note that P lies inside circle ABCD because it lies on segment

AD. Thus E is on r5 and F is on r6. We have ∠EDA = ∠EBA = γ. Hence,

∠EDC = γ + β = 180◦ − α = 180◦ − ∠DCP and so DE ‖ CP . It follows that

DE ‖ CF , which implies that CDEF is an isosceles trapezium with CD = EF .

Hence, circle ABCDEF has the required properties.

(b) As in part (a), let α = ∠APB = ∠DPE, β = ∠BPC = ∠EPF and γ = ∠CPD =

∠FPA.

18
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αβγ
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γ

Let the lines BP and CP intersect circle ABCD for a second time at points E and

F , respectively. Note that P lies inside circle ABCD because it lies on segment

AD. Thus E is on r5 and F is on r6. We have ∠EDA = ∠EBA = γ. Hence,

∠EDC = γ + β = 180◦ − α = 180◦ − ∠DCP and so DE ‖ CP . It follows that

DE ‖ CF , which implies that CDEF is an isosceles trapezium with CD = EF .

Hence, circle ABCDEF has the required properties.

(b) As in part (a), let α = ∠APB = ∠DPE, β = ∠BPC = ∠EPF and γ = ∠CPD =

∠FPA.
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Since AB = CD, it follows that ABCD is an isosceles trapezium with AD ‖ BC.

Hence ∠CBP = α and ∠PCB = γ. Since BCEF is cyclic we have ∠PFE =

∠CBP = α and ∠FEP = ∠PCB = γ. Similarly CF ‖ DE and AF ‖ BE which

lead to ∠PBA = ∠EDP = γ, ∠BAP = ∠PED = β, ∠DCP = ∠PAF = α and

∠PDC = ∠AFP = β.

Thus triangles PAB, BPC, CDP , PED, FPE and AFP are similar.

Let x = BC, y = CP and z = BP . Then since z : y : x = BP : PC : CB = CD :

DP : PC, we have DP = y2

x and EF = CD = yz
x . Since z : x = BP : CB = PA :

BP , we have PA = z2

x . Since the ratio of areas of similar figures is the square of the

ratio of corresponding lengths we have

|PAB| : |BPC| : |CDP | : |PED| : |FPE| : |AFP |
= PB2 : BC2 : CP 2 : PD2 : FE2 : AP 2

= z2 : x2 : y2 :
y4

x2
:
y2z2

x2
:
z4

x2

= z2x2 : x4 : x2y2 : y4 : y2z2 : z4.

The inequality to be proved is equivalent to |BPC| + |PED| + |AFP | ≥ |PAB| +
|CDP | + |FPE|. Thus, it suffices to show that x4 + y4 + z4 ≥ x2y2 + y2z2 + z2x2.

However, this is equivalent to (x2 − y2)2 + (y2 − z2)2 + (z2 − x2)2 ≥ 0. (Alternatively

we may use the rearrangement inequality or the Cauchy–Schwarz inequality.)

Solution 2 (Angelo Di Pasquale)

(a) Let r1, r2, r3, r4, r5, r6 be as in Solution 1. Let B ∈ r2 and C ∈ r3 be fixed points

such that BC ‖ r1. Let E be a variable point on r5. Consider the family of circles

passing through points B, C and E. Let A, D and F be the intersection points of

circle BCE with rays r1, r4 and r6, respectively. Then BC ‖ AD. Thus ABCD is

an isosceles trapezium with AB = CD.

P

BC

E

A

F

D

Consider the ratio r = EF
AB as E varies on ray r5. As E approaches P , AB approaches

min{BP,CP} while EF approaches 0. Hence, r approaches 0.

As E diverges away from P , ∠BEC approaches 0. Hence ∠ECF = ∠BPC−∠BEC

approaches ∠BPC and ∠ADB approaches 0. Thus, eventually ∠ECF > ∠ADB

and so r > 1.
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Since r varies continuously with E, we may apply the intermediate value theorem to

deduce that there is a position for E such that r = 1. The circle BCE now has the

required property.

(b) As in Solution 1, we deduce that triangles AFP , PAB, BPC are similar. Hence,

|AFP |
|PAB|

· |BPC|
|PAB|

=
AP 2

PB2
· PB2

PA2
= 1

⇒ |APB| =
√
|FPA| · |BPC| ≤ 1

2
|FPA|+ 1

2
|BPC|,

where we have used the AM–GM inequality in the last line. Adding this to the

two analogously derived inequalities |CPD| ≤ 1
2 |BPC| + 1

2 |DPE| and |EPF | ≤
1
2 |DPE|+ 1

2 |FPA| yields the result.

Solution 3 (Ivan Guo)

Solution to part (b) only.

Similar to Solution 2, it suffices to prove that

|APF |+ |BPC| ≥ 2|APB|,

since we can add the analogous inequalities together to get the required result.

Let AF and BC intersect at X. From part (a) of Solution 1, we know that the trian-

gles APF , BPC and XCF are all similar. Furthermore, triangles XAB and APB are

congruent. So it suffices to prove that

|APF |+ |BPC| ≥ 1

2
|XCF |.

Since all three triangles are similar, their areas are proportional to the squares of their

bases. So we would like to show that

FP 2 + PC2 ≥ 1

2
(FP + PC)2.

This is true since the inequality rearranges to 1
2(FP − PC)2 ≥ 0.

Solution 4 (Daniel Mathews)

(a) As in Solution 1, label the rays r1, r2, r3, r4, r5, r6. Let the angle between rays r1 and

r2 (respectively, r2 and r3, r3 and r4) be a (respectively, b, c), so that a+b+c = 180◦.

Construct points A,B,C,D,E, F on r1, r2, r3, r4, r5, r6 respectively so that

PA = 1 PD =
sin2 a

sin2 c

PB =
sin b

sin c
PE =

sin2 a

sin b sin c

PC =
sin a sin b

sin2 c
PF =

sin a

sin b
.
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Since r varies continuously with E, we may apply the intermediate value theorem to

deduce that there is a position for E such that r = 1. The circle BCE now has the

required property.

(b) As in Solution 1, we deduce that triangles AFP , PAB, BPC are similar. Hence,

|AFP |
|PAB|

· |BPC|
|PAB|

=
AP 2

PB2
· PB2

PA2
= 1

⇒ |APB| =
√

|FPA| · |BPC| ≤ 1

2
|FPA|+ 1

2
|BPC|,

where we have used the AM–GM inequality in the last line. Adding this to the

two analogously derived inequalities |CPD| ≤ 1
2 |BPC| + 1

2 |DPE| and |EPF | ≤
1
2 |DPE|+ 1

2 |FPA| yields the result.

Solution 3 (Ivan Guo)

Solution to part (b) only.

Similar to Solution 2, it suffices to prove that

|APF |+ |BPC| ≥ 2|APB|,

since we can add the analogous inequalities together to get the required result.

Let AF and BC intersect at X. From part (a) of Solution 1, we know that the trian-

gles APF , BPC and XCF are all similar. Furthermore, triangles XAB and APB are

congruent. So it suffices to prove that

|APF |+ |BPC| ≥ 1

2
|XCF |.

Since all three triangles are similar, their areas are proportional to the squares of their

bases. So we would like to show that

FP 2 + PC2 ≥ 1

2
(FP + PC)2.

This is true since the inequality rearranges to 1
2(FP − PC)2 ≥ 0.

Solution 4 (Daniel Mathews)

(a) As in Solution 1, label the rays r1, r2, r3, r4, r5, r6. Let the angle between rays r1 and

r2 (respectively, r2 and r3, r3 and r4) be a (respectively, b, c), so that a+b+c = 180◦.

Construct points A,B,C,D,E, F on r1, r2, r3, r4, r5, r6 respectively so that

PA = 1 PD =
sin2 a

sin2 c

PB =
sin b

sin c
PE =

sin2 a

sin b sin c

PC =
sin a sin b

sin2 c
PF =

sin a

sin b
.

20

Consider triangle PAB. We have ∠APB = a, so ∠PBA+∠PAB = b+ c. Moreover,

the sine rule yields sin∠PAB
sin∠PBA = PB

PA = sin b
sin c . It follows that ∠PAB = b and ∠PBA = c.

Moreover, we have AB
PA = sinAPB

sinPBA = sin a
sin c , so AB = sin a

sin c .

Similarly, we can compute all the angles in triangles PBC, PCD, PDE, PEF , PFA.

We find they are all similar, each with angles a, b, c. We find that ∠ADC = ∠AFC =

180◦ − ∠ABC and ∠BED = ∠BAD = 180◦ − ∠BCD, so that ABCDEF is cyclic.

We also calculate AB = CD = EF = sin a
sin c . Thus, the circle through ABCDEF

satisfies the given conditions.

Moreover, any circle satisfying these conditions has this form once we specify PA to

have unit length. For if A,B,C,D,E, F are as required, then we can deduce that

AB is parallel to r3r6, CD is parallel to r2r5, and EF is parallel to r1r4. We can

then show that all angles must be as found above, and then, by the sine rule, if we

set PA = 1, then all lengths PA,PB, PC, PD,PE, PF are as in the construction.

(b) Using the lengths and angles constructed above, we can compute the areas of the six

triangles PAB,PBC,PCD,PDE,PEF, PFA in terms of sin a, sin b and sin c. For

instance, 2|PAB| = PA.PB sin a = sin b. sin a
sin c . Writing p = sin a, q = sin b, r = sin c,

we then have

2|PAB| = pq

r
2|PDE| = p5

qr3

2|PBC| = pq3

r3
2|PEF | = p3

qr

2|PCD| = p3q

r3
2|PFA| = pr

q
.

The required inequality can also be written as

|PAB|+ |PCD|+ |PEF | ≤ |PBC|+ |PDE|+ |PFA|,

which, after substituting the areas as above, clearing denominators and cancelling

common factors, is equivalent to

q2r2 + p2q2 + p2r2 ≤ q4 + p4 + r4.

This inequality follows from the rearrangement inequality or the Cauchy–Schwarz

inequality.

21


	2016 AMO.pdf
	2016 AMO Sols.pdf

