CSE 473 Guest Lecture (Ra Rao): Neural Networks

+ Outline:
< The 3-pound universe
< Those gray cells...
< Input-Output transformation in neurons
< Modeling neurons
< Neural Networks
< Learning Networks
< Applications

+ Corresponds to Chapter 19 in Russell and Norvig
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Those gray cells...Neurons

A Unipolar cell 8 Pseudc-unipolar cell ¢ Bipolsrcan
wy y Wt - iy y—Dendntos
STAN e gy
(- penante —— l
| seon

From Kandel, Schwartz, Jessel,
Principles of Neural
Science, 3 edn., 1991, pg.
21

moser neren i Purkiric: cal of sesckolam

R. Rao: Neural Networks 3

Basic Input-Output Transformation in a Neuron
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Communication between neurons. Synapses

+ Synapses. Connections between /”H ”] !H]
neurons / UUU UUL\— \ Microtubuies
< Electrical synapses (gap junctions) )

< Chemical synapses (use
neurotransmitters)

+ Synapses can be excitatory or
inhibitory

4+ Synapses are integral to memory
and learning ?;Z“c‘;’;‘fiﬁ.;\ .
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Distribution of synapses on area neuron...

Cell Neuron

Signaling at the Synapse
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McCulloch—Pitts artificial “neuron” (1943)

+ Attributes of artificial neuron:
< m binary inputs and 1 output (O or 1)
< Synaptic weights w
< Threshold ni(t+1)=®[%wijnj (t)—ﬂi}

O(x) =1ifx>0and 0if x <0
Wiy Weighted Sum  Threshold

W,
Inputs 2 5 ] Z Output
Wis
K
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Properties of Artificial Neural Networks

+ Highlevel abstraction of neural input-output

transformation:
Inputs > weighted sum of inputs = nonlinear function - output

+ Often used where data or functions are uncertain
@ Goal istolearn from aset of training data
@ And generalize from learned instances to new unseen data

+ Kaey attributes:
1. Massively parallel computation
2. Distributed representation and storage of data (in the synaptic
weights and activities of neurons)
3. Learning (networks adapt themselves to solve a problem)
4. Fault tolerance (insensitive to component failures)
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Topologies of Neural Networks

completely
connected feedforward recurrent
(directed, acyclic) (feedback connections)
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Networks Types

+ Feedforward versus recurrent networks
< Feedforward: No loops, input > hidden layers = output
< Recurrent: Use feedback (positive or negative)

+ Continuous versus spiking
< Continuous networks model mean spike rate (firing rate)

+ Supervised versus unsupervised learning
< Supervised networks use a “teacher”
» Desired output for each input is provided by user
< Unsupervised networks find hidden statistical patternsin input
data
» Clustering, principal component analysis, etc.

R. Rao: Neural Networks 10




Perceptrons

+ Fancy name for atype of layered feedforward networks

+ Uses McCulloch-Pitts type neuron: Output; = @{Zwi i }
j

+ Output of neuronis1if and only if weighted
sum of inputsis greater than O:
OKx)=1lifx>0and0if x <0 (a“step” function)

Single-layer O % O Multilayer
T
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Computational Power of Perceptrons

+ Consider asingle-layer perceptron
< Assume threshold units
< Assume binary inputs and outputs
<~ Weighted sum forms alinear hyperplane ZWij fj =0

J
+ Consider asingle output network with two inputs
< Only functions that are linearly separable can be computed
<~ Example: AND islinearly separablee aAND b=1iffa=1andb=1

£\

\

Linear hyperplane

(0,0) (1,0
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Linear inseparability

+ Single-layer perceptron with threshold unitsfailsif problem

isnot linearly separable
< Example: XOR
< aXOR b = 1iff (&=0,b=1) or (a=1,b=0)
< No singleline can separate the “yes” g,
outputs from the “no” outputs! I

o) -7 oW
+ Minsky and Papert’s book Jitagl S/
showing such negative results g /’
was very influential —essentialy /
killed neural networks research /' £
for over adecade! S /” PO,
(0,0) (1,0)
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Solution in 1980s: Multilayer perceptrons

+ Removes many limitations of single-layer networks
< Can solve XOR

+ Two examples of two-layer perceptrons that compute XOR

+ E.g. Right side network
< Outputislifandonlyif x+y—-2(x+y—-15>0)-05>0
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Multilayer Perceptron

’ Q . Output neurons

One or more

> layers of
hidden units

(hidden layers)

Input nodes
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The most common
activation functions:
Step function © or
Sigmoid function:

a) =
9(a) 1+ e 7

) g(@

a
(non-linear
“sguashing” function)
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Example: Perceptrons as Constraint Satisfaction Networks

out
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Example: Perceptrons as Constraint Satisfaction Networks
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Example: Perceptrons as Constraint Satisfaction Networks

out
y @®-0
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Example: Perceptrons as Constraint Satisfaction Networks

y @®-0
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Perceptrons as Constraint Satisfaction Networks

y @®-0
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L earning networks

+ We want networks that can adapt themselves
< Given input data, minimize errors between network’s
output and actual output by changing weights (supervised
learning)
< Can generalize from learned data to predict new outputs

Output

Can this network adapt its
weights to solve a problem?

How do wetrain it?
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Gradient-descent learning (ala Hill-climbing)

+ Useadifferentiable activation function
< Try acontinuous function f () instead of step function ©( )
» First guess: Usealinear unit
< Define an error function (cost function or “energy” function)

1 . 2 Cost function measures
E=3 22| Y - 2wt the network’s squared
e : errorsasa

oE differentiable function
Then Aw =—nm=n2[\ﬁu—zwij&j}§j of the weights
u i

+ Changes weights in the direction of smaller errors
< Minimizes the mean-squared error over input patterns
< Called Deltarule = Widrow-Hoff rule=LMSrule
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L earning via Backpropagation of Errors

+ Backpropagation is just gradient-descent learning for
multilayer feedforward networks

+ Useanonlinear, differentiable activation function
< Such asasigmoid:

_ 1 _ £
f = Trep(2nh) where h_zjlwuéj

+ Result: Can propagate credit/blame back to internal nodes

< Change in weights for output layer is similar to Deltarule
< Chainrule (calculus) gives Aw;; for internal “hidden” nodes
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Backpropagation

Multi-layer error-back-propagation (MLBPF)

a/=g,(EW;g (Zw,E.))
J

Back-propagation learning : A‘Wij(t+1) =-1N ﬁf\E/ |:|
i

2

Error measure : E :%E (d{“— a:l)
L
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Backpropagation (for Math lovers' eyes only!)

+ Let A; bethe activation (weighted sum of inputs) of neuroni
+ LetV;= g(Aj) be output of hidden unit j

+ Learning rule for hidden-output connection weights:
5 AW” = -naE/BW” =1N 2“ [dl —31] g,(AI) VJ
=N EH Si VJ

+ Learning rule for input-hidden connection weights:
< AWJk =-N BE/BWJk =-N (BE/E)VJ ) (aVJ/aWJk) {Chain rule}
=2, ([di -al g'(A) Wij) (g (A) &)
=N EH 81 E-’k
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Hopfield networks (example of recurrent nets)

+ Act as*autoassociative’” memories to store patterns
< McCulloch-Pitts neurons with outputs -1 or 1, and threshold ©

< All neurons connected to each other
» Symmetric weights (w; = w;) and w; =0

< Asynchronous updating of outputs
» Let 5 bethe state of uniti
» At each time step, pick arandom unit
» Setstolif X w2 L; otherwise, set s to-1
completely
connected
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Hopfield networks

+ Network converges to cost function’s local minimawhich
store different patterns

X1
X4

+ Store p N-dimensional pattern vectorsxq, ..., Xg using a
“Hebbian” learning rule;
O Wi =UNZ oy o XmjXmiforalj=i;0forj=i
SW=UNX ; XmpX m! (outer product of vectors; diagonal zero)
» T denotes vector transpose
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Pattern Completion in a Hopfield Network
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Network converges Loca minimum
from here (“attractor”) of cost
to here_ (or “energy”) function
stores pattern
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Recent Trends and Applications of Neural Networks

+ Recent Trends

< Probabilistic approach: NNs as Bayesian networks (allows principled
derivation of dynamics, learning rules, and even network structure)

= Not-so-artificial networks: Make network more biologically realistic

< NNsin Hardware: Ultra-fast implementation of large learning
networksin silicon

+ Applications
< Text to speech generation (NETtalk by Sejnowski & Rosenberg)
< Handwritten character recognition (zip codes on envelopes)
< Autonomous driving (ALVINN at CMU — uses backprop network)
< Control of other physical systems
» Demos! (by Keith Grochow, as part of CSE 599, 2001)
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Demos

+ Neura Network learns to balance a pole on a cart pole
< System:
> 4 state variables: X gy, Veat Opoler Viole cart
< linput: Force on cart
< Backprop Network:
@ Input: State variables
< Output: New force on cart

+ NN learnsto back atruck into aloading dock
< System (Nyugen and Widrow, 1989):
© State variables: X, Year O
< 1input: NEW Ogeeing
< Backprop Network:
@ Input: State variables :
< Output: Force on cart i 4
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