
The 40th Annual

ACM International Collegiate
Programming Contest

ASIA Regional - Daejeon

Problem Set

Please check that you have 12 problems and 20 sheets (excluding additional materials).

A. Coin Swap (2 pages)

B. Equilibrium State (3 pages)

C. Grid (1 page)

D. Kernel (2 pages)

E. Log Jumping (1 page)

F. Odd Cycle (2 pages)

G. Path (2 pages)

H. Polynomial (1 page)

I. Stock (1 page)

J. 3-Primes Problem (1 page)

K. Tree Edit (2 pages)

L. Wheel of Numbers (2 pages)

ICPC 2015 Asia Regional – Daejeon Problem A: Coin Swap

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem A
Coin Swap

Time Limit: 0.5 Seconds

A graph = (,) has a set of vertices and a set of edges, and it is connected, that is, there is a path
between every pair of vertices in . Each vertex in has a color which is either black or white. A coin is
placed on each vertex in and each coin also has a black or white color. A pair of adjacent vertices can swap
their current coins, which is called a swap operation.

A swap operation is carried out in such a way that one edge in is selected and the end vertices of the edge
exchange their coins. Through these swap operations, black coins and white ones should be placed on black
vertices and white ones, respectively, which is the goal of the problem. It is assumed that the number of black
(and white) coins lying on the vertices is equal to the number of the black (and white, resp.,) vertices. That is,
we can always achieve the goal of the problem.

Given a graph , colors of the vertices of , and colors of coins initially placed on the vertices, your program
is to find the minimum number of the swap operations achieving the goal.

For example, in Figure 1, the colors of vertices 1 and 2 are black and the others are white. The coins placed on
the vertices are drawn as rectangles with their colors. Then after three swap operations as shown in Figure 1,
the colors of coins and vertices agree at each vertex.

Figure 1. An example of swap operations.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is
given in the first line of the input. Each test case starts with a line containing two integers and (1 ≤ ≤500, − 1 ≤ ≤ ()

), where and represent the number of vertices and edges, respectively, of a

connected graph . The vertices are numbered from 1 to . In each of the following lines, there are two
integers and (1 ≤ < ≤), which means there is an edge (,) connecting the vertices and in .
In the next line, there are integers (= 0 or 1, = 1,… ,), separated by a single space, where is the
color of the vertex . In the next line, there are integers (= 0 or 1, = 1,… ,), separated by a single
space, where is the color of a coin initially placed on the vertex . If = 0 or = 0, it means black, and if = 1 or = 1, it means white.

ICPC 2015 Asia Regional – Daejeon Problem A: Coin Swap

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain
an integer representing the minimum number of the swap operations such that every vertex shall get a coin of
the same color.

The following shows sample input and output for three test cases.

Sample Input Output for the Sample Input
3
4 4
1 2
1 3
2 4
3 4
0 1 1 0
0 1 0 1
6 7
1 2
1 5
1 4
2 3
2 5
4 5
5 6
1 1 0 0 0 0
0 0 0 0 1 1
6 5
1 2
2 3
3 4
4 5
5 6
1 0 1 1 0 0
0 0 1 1 0 1

1
3
5

ICPC 2015 Asia Regional – Daejeon Problem B: Equilibrium State

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem B
Equilibrium State

Time Limit: 1 Second

When the sum of forces exerted on an object, say , is 0 as shown in Figure 1, the
object will not move. It is said that the object is in an equilibrium state.

Suppose a situation as shown in Figure 2. There are two fixed points and on

the -axis. Object is connected by two springs and . Spring connects
and and spring connects and . Let’s denote and to be the elastic
coefficients of springs and , respectively, which denote how stiff the springs are.
Let’s also denote () and () to be the -coordinates of and , respectively. Then the force exerted
on by is × (() − ()) by Hooke’s rule, where () is the -coordinate of . Similarly, the force
exerted on by is × (() − ()).
For example, in a situation as shown in Figure 2, if () = 0, () = 7, = 3, = 4, and is in an
equilibrium state, then we can determine the location of , i.e., () = 4.

Consider a similar situation where several objects are connected by
multiple springs in a two-dimensional plane as shown in Figure 3.
Assume there are fixed points , … , and objects , … , .
Also, assume there are springs , … , with elastic
coefficients , …, , respectively. Each of the springs is used to
connect either a fixed point and an object or two objects. If every
object is connected to at least two springs, then all the objects will
finally get into an equilibrium state. Once all the objects get into an
equilibrium state, we can determine the location of every object in
the plane.

You are asked to make a program to determine the locations of
objects in an equilibrium state using given information: the locations
of fixed points, the elastic coefficients of springs, and the
interconnection information between objects and fixed points.

You can assume:
1. All objects are connected to at least two springs and any pair of objects and fixed points are

connected through one or more springs.
2. There is at most one spring between either a pair of (object, object) or a pair of (object, fixed point).
3. There are at least three non-collinear fixed points.
4. When all objects are in an equilibrium state, no two springs will cross each other and no two objects

will locate at the same position.
5. No two fixed points have the same coordinates.

Figure 2. An example to illustrate an equilibrium state

Figure 3. Another example to illustrate
an equilibrium state in the plane

Figure 1. Forces
exerted on object P

ICPC 2015 Asia Regional – Daejeon Problem B: Equilibrium State

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is
given in the first line of the input. Each test case starts with a line containing three integers, (3 ≤ ≤ 100),

(3 ≤ ≤ 3,000), and (1 ≤ ≤ 1,000), where is the number of fixed points, is the number of
springs, is the number of objects. In the following lines, each line contains the integer coordinate (,)(−10,000 ≤ , ≤ 10,000) of fixed point (1 ≤ ≤). In the following lines, each line contains
three integers , , and (1 ≤ ≤), where (1 ≤ ≤ 100) is the elastic coefficient of spring ,
and and are the indices of either a fixed point or objects which are connected to spring . If is
negative then it means that fixed point (1 ≤ − ≤) is connected to spring . On the other hand, if
is positive then it means that object (1 ≤ ≤) is connected to spring . Similarity holds for .

Output
Your program is to write to standard output. For each test case, print first “Test case number : ”
followed by the test case number as shown in the following sample. Then print number (1 ≤ ≤) starting
from 1 to followed by the coordinate (,) of object in each of the following lines. You print the
coordinates of object with two digits after decimal point after rounding off from the third digit. Three
numbers (, ,) in each line should be separated by a blank. If each value of the coordinate is within an
error range, 0.01, it will be considered correct.

The following shows sample input and output for three test cases.

Sample Input Output for the Sample Input
3
4 5 2
-2 7
-6 2
2 -5
6 -1
4 -1 1
3 1 -2
1 1 2
2 2 -4
5 2 -3
5 9 4
-81 67
-4 67
59 0
-40 -68
0 -65
2 -1 1
5 -2 2
3 1 2
1 1 3
7 3 2
4 2 -3
8 4 3
4 -4 4
5 4 -5
4 26 12
-50 50
-50 -50
50 -50
50 50
11 -1 10

Test case number : 1
1 -2.95 3.89
2 2.38 -2.89
Test case number : 2
1 -25.05 30.11
2 5.56 18.79
3 -5.02 -9.75
4 -11.77 -39.71
Test case number : 3
1 -0.60 5.21
2 -1.74 -1.85
3 7.33 -2.39
4 -11.65 -2.98
5 18.28 3.35
6 -3.43 -7.02
7 12.44 6.52
8 7.37 -7.65
9 20.92 -13.70
10 -19.60 16.71
11 27.77 20.55
12 -22.86 -21.43

ICPC 2015 Asia Regional – Daejeon Problem B: Equilibrium State

14 -4 11
12 -2 12
12 -3 9
13 10 1
14 1 7
11 7 11
11 4 2
13 2 3
10 3 5
11 12 6
15 6 8
12 8 9
11 10 4
13 1 2
11 7 3
15 11 5
10 4 12
14 2 6
12 3 8
14 5 9
10 1 3
12 7 5
11 4 6
11 3 6
11 3 9

ICPC 2015 Asia Regional – Daejeon Problem C: Grid

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem C
Grid

Time Limit: 1 Second

You are given a grid of nonnegative integers. There is an operation that performs the following two steps on the
grid:

Step 1. It chooses two numbers adjacent vertically or horizontally in the grid.
Step 2. It decreases each number chosen in Step 1 by 1 if it is positive.

For example, Figure 1 shows the result of four successive executions of the operation on a 2-by-2 grid of four
numbers.

Figure 1. Four successive executions of the operation on a 2-by-2 grid of four numbers

In the above example, the operation was executed four times to make all the numbers in the initial grid to 0.
You can easily check there is no way to do so using less number of executions of the operation.

You are to write a program that calculates the minimum number of executions of the operation to make all the
numbers in the grid to 0.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is
given in the first line of the input. Each test case starts with a line containing two integers, and (2 ≤ , ≤50), where is the row size and is the column size of a grid. In the following lines, the elements of the
grid are given row by row, that is, the -th line contains integers which correspond to the elements of the -th
row of the grid in order, for 1 ≤ ≤ . Each integer in the grid is between 0 and 1,000, inclusively.

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain an
integer representing the minimum number of executions of the operations required in the problem.

The following shows sample input and output for two test cases.

Sample Input Output for the Sample Input
2
2 2
1 3
1 2
2 4
2 3 2 3
1 2 1 1

4
8

ICPC 2015 Asia Regional – Daejeon Problem D: Kernel

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem D
Kernel

Time Limit: 0.1 Seconds

A farmer Will has a plan to purchase a robot management system for his farm. The system operates multiple
autonomous robots in the farm to collect the useful information. To control the robots, the system has a server,
called beacon, at a fixed position in the farm. At the end of day, the robots should be returned to the beacon,
and checked their status for the next day. For this, the beacon keeps sending a special signal to the robots. The
robots immediately know from the signal where the beacon is, and try to reach the beacon by moving
continuously toward the beacon.

More precisely, the farm is modeled as a simple rectilinear polygon such that horizontal and vertical edges
appear alternatingly along its boundary, its vertices are all distinct, and two edges have no intersections except
at their end vertices. A robot as well as a beacon is represented as a point in , that is, on the boundary of or
in the interior of . A robot now moves in greedily to minimize its Euclidean distance to the beacon as
follows: moves along the ray from to until it reaches or hits the boundary of . If it hits the boundary,
then it may either still reduce its Euclidean distance to by sliding on the boundary, or it cannot reduce the
distance even to any direction. A point in is attracted by in (equivalently, attracts) if it eventually
reaches to in by strictly decreasing its Euclidean distance to .

Let us look at the Figure 1 below. In the left figure, a point can move along the path marked with thick solid
segments, and finally reach to the beacon . In the right figure, it can reach to , but it cannot move anymore
because there is no direction from to reduce its Euclidean distance to .

A kernel of is the set of points in that can attract all points in . If a beacon is placed at any position of the
kernel of , then all points in can be attracted by the beacon, so only one beacon is sufficient to call all the
robots. But the kernel of some polygon may not exist.

Given a simple rectilinear polygon of vertices, write a program to decide whether its kernel exists or not.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is
given in the first line of the input. Each test case starts with a line containing an integer, (4 ≤ ≤ 10,000),
where is the number of vertices in a simple rectilinear polygon . The following lines give the coordinates
of the vertices in counterclockwise direction. Each vertex is represented by two numbers separated by a single
space, which are the -coordinate and the -coordinate of the vertex, respectively. Each coordinate is given as
an integer between −1,000,000,000 and 1,000,000,000, inclusively. Note that all the vertices are distinct.

Figure 1. The cases where a beacon can or cannot attract a point .

ICPC 2015 Asia Regional – Daejeon Problem D: Kernel

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain
YES if the polygon given in the test case has a kernel, NO otherwise.

The following shows sample input and output for two test cases.

Sample Input Output for the Sample Input
2
8
0 0
3 0
3 2
2 2
2 1
1 1
1 2
0 2
12
0 0
5 0
5 3
3 3
3 2
4 2
4 1
1 1
1 2
2 2
2 3
0 3

YES
NO

ICPC 2015 Asia Regional – Daejeon Problem E: Log Jumping

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem E
Log Jumping

Time Limit: 0.1 Seconds

We want to arrange logs in a circle for a playing ground shown in Figure 1. Kids are jumping one log to the
next log circularly. We are concerned to arrange the logs to help kids by minimizing the height difference
between two adjacent logs.

Figure 1. logs are arranged in a circle.

The difficulty of log jumping depends on the maximum difference of heights among all pairs of two adjacent
logs. Assume that we are given 5 logs with the heights {2, 4, 5, 7, 9}. Note that the last log with height 5 is
immediate adjacent to the first log with height 2 in the arrangement [2, 9, 7, 4, 5]. The maximum height
difference of the arrangement [2, 9, 7, 4, 5] is |2 – 9| = 7. We can make a better arrangement as [2, 5, 9, 7, 4]
where the maximum height difference is |5 – 9| = 4. This arrangement [2, 5, 9, 7, 4] is optimal since there is no
arrangement with the maximum height difference less than 4.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is
given in the first line of the input. Each test case starts with a line containing an integer, (5 ≤ ≤ 10,000),
where is the number of logs. In the next line, the heights of logs, are given as a sequence of integers.
(1 ≤ ≤ 100,000)

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain
an integer representing the maximum height difference of an optimal log arrangement. The following shows
sample input and output for three test cases.

Sample Input Output for the Sample Input
3
7
13 10 12 11 10 11 12
5
2 4 5 7 9
8
6 6 6 6 6 6 6 6

1
4
0

ICPC 2015 Asia Regional – Daejeon Problem F: Odd Cycle

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem F
Odd Cycle

Time Limit: 1.5 Seconds

Recently, a smart student SeoJin realized that not a few hard problems for general undirected graphs are
polynomially solvable for graphs that have no cycles of odd length. Wondering whether or not the same
follows for directed graphs, she made up her mind to start a study on the subject under the supervision of
HyeongSeok, a distinguished scholar in this field. Her first research finding is effective recognition of the
directed graphs without odd cycles, i.e., an algorithm for determining if a given directed graph has a cycle of
odd length. Still, she is promoting utmost efficiency in recognizing her class of graphs. In order to help her,
you are going to write an ultra-efficient program that determines the existence of an odd cycle in a directed
graph and report an arbitrary odd cycle, if any.

Let be a simple directed graph having no self-loops or multiple edges. For any two vertices and of , a
(directed) path from to in is a sequence (, , … ,) of distinct vertices of such that = , =

, and is adjacent to in for all ∈ {1,… , − 1}. If ≥ 2 and is adjacent to , the sequence is
called a (directed) cycle. An odd cycle refers to a cycle of odd length, where the length of a cycle is simply the
number of edges of the cycle. Refer to Figure 1 for illustrative examples.

(a) There is no cycle. (b) There is no odd cycle. (c) There is an odd cycle (2,1,3).

Figure 1. Simple directed graphs.

Input
Your program is to read from standard input. The input consists of test cases, where the positive integer is
given in the first line of the input, followed by the description of each test case. The first line of a test case
contains two positive integers and , respectively, indicating the numbers of vertices and directed edges in
a simple directed graph, in which we assume ≤ 100,000 and ≤ 1,000,000. The vertices are indexed 1 to

. In the following lines, each line contains two integers and , which represent a directed edge from
vertex to vertex . The two integers given in a single line are always separated by a space.

Output
Your program is to write to standard output. For each test case, the first line must contain an integer indicating
whether the given directed graph has an odd cycle. If yes, the integer must be 1; otherwise -1. When and only
when the first line is 1, it must be followed by the description of an arbitrary odd cycle of the input graph. A
cycle is described by a single line containing an integer , representing its length, followed by lines
containing, one by one, the vertices encountered when we traverse the cycle starting from an arbitrary vertex.
Note that the vertices of the cycle must be distinct.

ICPC 2015 Asia Regional – Daejeon Problem F: Odd Cycle

The following shows sample input and output for four test cases.

Sample Input Output for the Sample Input
4
3 3
2 3
2 1
1 3
3 4
2 3
3 2
1 2
1 3
3 4
2 1
2 3
1 3
3 2
8 9
1 2
2 3
3 4
4 1
5 6
6 7
7 8
8 5
5 8

-1
-1
1
3
2
1
3
-1

ICPC 2015 Asia Regional – Daejeon Problem G: Path

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem G
Path

Time Limit: 0.5 Seconds

A histogram is a simple rectilinear polygon whose boundary consists of two chains such that the upper chain
is monotone with respect to the horizontal axis and the lower chain is a horizontal line segment, called the
base segment (See Figure 1).

Figure 1. A histogram and its base segment (,)

Let be a histogram specified by a list (, , … ,) of vertices in the counterclockwise order along the
boundary such that its base segment is (,). An edge is a line segment connecting two vertices and

, where = 0, 1,… , − 1 and = .

A path inside is a simple path which does not intersect the exterior of . The length of the path is defined as
the sum of Euclidean length of the line segments of the path. The distance between two points and of is
the length of the shortest path inside between and . Your task is to find the distance between and each
point of a given set of points on the boundary of . A point of the set is denoted by (,) which
represents a point on the edge such that is the distance between and .

In the histogram of Figure 1, the shortest path between and = (10, 2) is a polygonal chain connecting , , and in that order, and its length is 8.595242. The shortest path between and = (1, 1) is a
segment directly connecting and with length 15.033296.

Given a histogram with vertices and a set of points on the boundary of , write a program to find the
distances between and all points of .

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is
given in the first line of the input. Each test case starts with a line containing an integer, (4 ≤ ≤ 100,000),
where is the number of vertices of a histogram = (, , … ,). In the following lines, each of the
vertices of is given line by line from to . Each vertex is represented by two numbers, which are the

-coordinate and the -coordinate of the vertex, respectively. Each coordinate is given as an integer between 0 and 1,000,000, inclusively. Notice that (,) is the base segment. The next line contains an integer
(1 ≤ ≤ 100,000) which is the size of a set given as your task. In the following lines. Each point

ICPC 2015 Asia Regional – Daejeon Problem G: Path

(,) of is given line by line, and is represented by two integers and , where 0 ≤ ≤ − 1 and 0 ≤< the length of edge . All points in the set are distinct.

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain
exactly one real value which is the sum of the distances between and all points of . Your output must
contain the first digit after the decimal point, rounded off from the second digit. If each result is within an
error range, 0.1, it will be considered correct. The Euclidean distance between two points = (,) and = (,) is (−) + (−) .

The following shows sample input and output for two test cases.

Sample Input Output for the Sample Input
2
16
0 0
15 0
15 4
13 4
13 6
10 6
10 2
7 2
7 5
6 5
6 7
3 7
3 3
2 3
2 1
0 1
2
10 2
1 1
8
100000 100000
400000 100000
400000 200000
300000 200000
300000 300000
200000 300000
200000 200000
100000 200000
8
1 0
2 0
3 0
4 0
5 0
6 0
7 0
1 50000

23.6
1909658.1

ICPC 2015 Asia Regional – Daejeon Problem H: Polynomial

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem H
Polynomial

Time Limit: 0.05 Seconds

A polynomial () of degree with integral coefficients is given as () = + + + ⋯+ ,
where the coefficients , … , are all integers. Here, we are interested in the sum () of (0), (1), …, and () for any nonnegative integer . That is, () is defined by:() = () = (0) + (1) + ⋯+ ().
The sum () is a polynomial, too, but is of degree + 1 and rational coefficients. It can thus be represented
by: () = + + +. . . + ,
where and are integers that are relatively prime for each = 0,1,… , + 1, or equivalently, that have no
common divisor greater than 1.

Given a polynomial () of degree with integral coefficients , … , , your program is to compute () for
the given polynomial () and to output the following value,
where the are determined as above for such a representation of () = + + +. . . + .

You may exploit the following known identity for polynomials: for any positive integer and any real ,(+ 1) − = 1 + 1 + 2 + ⋯+ − 1 ,
where = !!()! for any integer with 0 ≤ ≤ .

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is
given in the first line of the input. Each test case consists of only a single line containing a nonnegative integer

(0 ≤ ≤ 25) and + 1 following integers , … , with −10 ≤ ,… , ≤ 10 and ≠ 0 . This fully
describes the input polynomial () = + + + ⋯+ of degree with coefficients , … , .

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain
an integer representing the value .

The following shows sample input and output for three test cases.

Sample Input Output for the Sample Input
3
3 1 1 1 1
5 0 -1 0 1 0 -1
5 -3 10 9 2 -7 5

17
6
206

ICPC 2015 Asia Regional – Daejeon Problem I: Stock

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem I
Stock

Time Limit: 1 Second

Mr. Lim enjoys investing in stocks. His investment rules are as follows: Given the stock prices of a company
for a series of days, each day his action is one of the followings:

(1) Buy one unit of stock.
(2) Sell any number of stock units you have already bought.
(3) Do nothing.

He wants to know the difference between the profit he obtained and the maximum possible profit by planning
the above actions optimally. So, he is trying to calculate the maximum profit that can be obtained by an
optimal plan for given the stock prices for a series of days. For example, let the stock prices of three days be
10, 7, and 6. Then the maximum profit is 0 because the price decreases each day. If the stock prices of three
days are 3, 5, and 9, the maximum profit is 10 obtained by buying one unit of stock at each of the first two
days and selling two stock units at the third day.

You are to write a program calculating the maximum profit that can be obtained by an optimal plan.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is
given in the first line of the input. Each test case starts with a line containing an integer, (2 ≤ ≤1,000,000), where is the number of days in a period. In the following line, integers representing stock
prices of the period are given. Each stock price is given as an integer between 1 and 10,000, inclusively.

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain
the maximum profit. You may assume that the result fits in a signed 64-bit integer.

The following shows sample input and output for three test cases.

Sample Input Output for the Sample Input
3
3
10 7 6
3
3 5 9
5
1 1 3 1 2

0
10
5

ICPC 2015 Asia Regional – Daejeon Problem J: 3-Primes Problem

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem J
3-Primes Problem
Time Limit: 0.05 Seconds

In number theory, the 3-primes problem states that:

Every odd number greater than 5 can be expressed as a sum of exactly three primes. (A prime may be
used more than once in the same sum.)

Some examples of the problem are: 7 = 2 + 2 + 311 = 2 + 2 + 725 = 7 + 7 + 11
In 1939, Russian mathematician I. M. Vinogradov showed that any sufficiently large odd integer can be
expressible as a sum of three primes. Later it is shown that sufficiently large in Vinogradov’s proof meant
numbers greater than 3 ≈ 10 . The best known improved bound for the figure is approximately ≈ 2 × 10 . This number is too large to admit checking all smaller numbers by computer.

Given a positive odd integer greater than 5, write a program to test whether or not the integer can be
represented as a sum of exactly three primes, where the primes may not be distinct.

Input
Your program is to read from standard input. The input consists of T test cases. The number of test cases T is
given in the first line of the input. Each test case consists of a line containing a positive integer (7 ≤ <1,000).
Output
Your program is to write to standard output. Print exactly one line for each test case. Print three primes, in
nondecreasing order, if the input number can be represented as a sum of exactly three primes, otherwise
print 0(zero). If there are more than one case for three primes, print any case of them.

The following shows sample input and output for three test cases.

Sample Input Output for the Sample Input
3
7
11
25

2 2 3
2 2 7
5 7 13

ICPC 2015 Asia Regional – Daejeon Problem K: Tree Edit

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem K
Tree Edit

Time Limit: 0.5 Seconds

XML(eXtensible Mark-up Language) is a markup language that defines a set of rules for encoding documents.
XML has come into common use for the interchange of data over the Internet. XML documents represent
hierarchically structured data and are generally modeled as ordered labeled trees. Each node in such a tree
represents an XML element and is labeled with a corresponding tag name. Each edge in this tree represents a
relation between the child element and parent element in the corresponding XML document. Finding
structural similarities among XML documents is one of central issues in information retrieval. Here, we
consider the structural similarity of two XML documents represented as ordered labeled trees.

Let be a rooted tree with one or more nodes. We call a labeled tree if each node is assigned a label. The
labels of a labeled tree are not necessarily distinct. We call an ordered tree if a left-to-right order among
siblings in is given. Given two ordered labeled trees and , the similarity of and is often measured
by Tree Edit Distance, (,). (,) is defined as the minimum number of edit operations that
transform to . Three edit operations that can be applied to a given tree are as follows:

(1) (): Insert a leaf node whose label is . After this operation, node becomes an -th child of
its parent for some , 1 ≤ ≤ + 1, if its parent had children before this operation.

(2) (): Delete an arbitrary leaf node. This operation cannot be applied to a tree with a single node.
(3) (,): Replace the label of an arbitrary node by the label .

Note that only one node is inserted, deleted, or relabeled by one edit operation. For example, let’s consider
two trees in Figure 1. If we apply the following three operations successively, then transforms
to : (), (,), and (), where the delete operation is applied to a leaf node in .
By applying two or less operations, you cannot transform to . So, (,) is 3.

(a) (b)

Figure 1. Two ordered labeled trees

You are to write a program calculating the tree edit distance of given two ordered labeled trees.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is
given in the first line of the input. Each test case consists of two lines. The first line contains a string

ICPC 2015 Asia Regional – Daejeon Problem K: Tree Edit

representing and the second line contains a string representing . The representation of a tree is as follows:
a tree consisting of a single root node with a label is represented as (); a tree consisting of a root labeled
with subtrees , , … , , is represented as (()()⋯()), where (), (),… , () are representations
of , , … , , respectively. Each label of nodes is given as one uppercase character in the English alphabet.
In the representation of a tree, there are no spaces and the number of nodes is between 1 and 1,000, inclusively.

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain
the minimum number of edit operations to transform into .

The following shows sample input and output for three test cases.

Sample Input Output for the Sample Input
3
(A(B(C)(D))(C(D)))
(A(B(D))(E(D)(F)))
(X(Y(Z(W))))
(W)
(P(P)(P)(P)(P)(P))
(Q(Q)(Q)(Q)(Q))

3
4
6

ICPC 2015 Asia Regional – Daejeon Problem L: Wheel of Numbers

The 40th Annual

ACM International Collegiate
Programming Contest

Asia Regional - Daejeon

Problem L
Wheel of Numbers

Time Limit: 0.01 Seconds

A new gambling machine called “the wheel of numbers” is introduced. It is made up with a large wheel,
which is equally divided into segments. Each segment contains a digit between 0 and 9, inclusively. Initially
you are given two -digit numbers and (≤). Note that these numbers may begin with 0. Then, you
shoot a ball aiming at the fast-rotating wheel. Your ball will hit one of its segments. Then, you take
consecutive segments clockwise from there and obtain an -digit number . You win if ≤ ≤ and lose
otherwise.

For example, assume that the wheel is divided into = segments, and let [3, 7, 8, 3, 1, 9, 2, 7] be the
numbers by picking one segment and reading numbers clockwise. If = 200 and = 311, you win if your
ball hits the segment with 2 as your number = 273 and surely = 200 ≤ 273 ≤ 311 = .

Once you are given the wheel, and , you would like to know your winning probability. It can be calculated
easily if you know how many times the numbers satisfying the above mentioned condition appear on the
wheel. Write a program that counts the number of their occurrences.

Input
Your program is to read from standard input. The input consists of test cases. The number of test cases is
given in the first line of the input. Each test case starts with a line containing two integers, (1 ≤ ≤ 100)
and (1 ≤ ≤ and ≤), where is the number of segments in the wheel and is the length of and

. The next line contains digits representing where each digit is between 0 and 9, inclusively, and
separated by a space. The next line contains digits representing as mentioned above. The following line
contains digits, separated by a space, obtained by reading numbers clockwise starting at some segment of
the wheel. Again each digit is between 0 and 9, inclusively.

7
3

2

8

1

9
7

3

ICPC 2015 Asia Regional – Daejeon Problem L: Wheel of Numbers

Output
Your program is to write to standard output. Print exactly one line for each test case. The line should contain
an integer representing the number of occurrences of -digit number contained in the wheel such that ≤≤ . Note that if the same number appears more than twice, count them separately. For example, if 123 is
the only number between and and it appears twice on the wheel, the answer is 2, not 1.

The following shows sample input and output for three test cases.

Sample Input Output for the Sample Input
3
8 3
2 0 0
3 1 1
3 7 8 3 1 9 2 7
5 2
8 8
9 9
1 3 2 5 4
6 3
0 0 0
9 9 9
1 2 3 4 5 6

1
0
6

	Microsoft Word - 표지.doc
	Microsoft Word - A_CoinSwap_FINAL.docx
	Microsoft Word - B_EquilibriumState_FINAL.docx
	Microsoft Word - C_Grid_final.docx
	Microsoft Word - D_Kernel_final.docx
	Microsoft Word - E_Jumping_final.docx
	Microsoft Word - F_Odd_final.docx
	Microsoft Word - G_Path_final.docx
	Microsoft Word - H_Polynomial_final.docx
	Microsoft Word - I_Stock_final.docx
	Microsoft Word - J_3PrimesProblem_final.docx
	Microsoft Word - K_TreeEdit_final.docx
	Microsoft Word - L_Wheels_final.docx

