The ACI 562 Repair Code Code Requirements for Evaluation, Repair and Rehabilitation of Concrete Buildings

by

Keith Kesner¹ – Chair ACI 562 Lawrence Kahn² – Former Chair ACI 562

^{1.} Associate – WDP & Associates, P.C. – Norwalk, CT

^{2.} Professor - Georgia Tech – Atlanta, GA USA

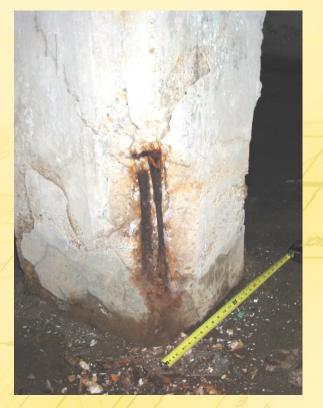
Why a Repair Code?

- Long-term industry need
 - Variations in practice
 - Variations in repair performance
 - Establish required minimum practice
 - Help for building officials
- Large segment of construction industry
 - 20 Billion dollars
 - 8 Billion dollars in corrosion damage

Why a Repair Code?

- Repair performance
 - COE 50% of repairs are not performing satisfactorily
 - Design errors
 - Construction errors
 - Material selection errors
 - Con Rep Net
 - 5 years 80% of repairs are satisfactory
 - 10 years 30% of repairs are satisfactory
 - 25 years 10% of repairs are satisfactory

Why not a Repair Code?


- Complicated process
 - Took 7 years to develop
- Lack of consensus on practice
 - Lots of arguments
- Establish minimum practice requirements
 - What are minimum requirements?
- Concern about limiting creative solutions
- Fear of something new

- ACI 318 Survey
 - One-half use for repair of existing structures
 - Use for non-building structures
- Conclusions from ACI 318 Survey
 - ACI 318 functioning beyond its intent
 - Code guidance for repairs is needed

- Vision 2020
- Create a repair/rehabilitation code to:
 - Establish evaluation, design, materials and construction practices
 - Raise level of repair/protection performance
 - Establish clear responsibilities
 - Provide Building Officials with means to issue permits

- Challenges of existing structures
 - Hidden damage
 - Unknown structural conditions

- Lack of specific code requirements:
 - Variations in repair practice
 - Different levels of safety and reliability
 - No direction for building officials

Building Codes

- Developed by consensus process
 - Written by code writing organization
 - Code committee
 - Membership balance
 - Producers / Users / General Interest
- Written for design professionals
 - Architects and engineers

1772 B.C.

Building Codes

- Adopted in law
 - Into a general building code
- ANSI Standardization Process
 - Approval of code writing committee
 - Approval of code writing organization
 - Publication for public comments
 - Verification process is followed

Codes vs. Guidelines

Codes

- Adopted by regulatory agencies
- Mandatory language (shall not should)
- Establish required practice
- ACI 318, ASCE 7, IBC, IEBC codes
- Guidelines
 - Non-mandatory language (should not shall)
 - Establish recommended practice
 - ACI 364, ICRI documents guidelines

Code vs. Commentary

Code

- Mandatory language (shall not should)
- Requirements to be followed
- Only codes and standards as references
- Commentary
 - Guidance on how to satisfy code
 - Non-mandatory language
 - The why and the how
 - Any references can be used

How was ACI 562 Developed?

- Committee formed in Spring 2006
- ACI code committee "Evaluation, Repair and Rehabilitation of Concrete Buildings"
- Starting points
 - Existing U.S. building codes
 - Existing international repair codes
 - Philosophy of code

Review of Existing Codes

- U.S. Codes
 - ACI 318, Chapter 20
 - IBC, Chapter 34
 - 5% rule trigger for upgrade to current code
 - Repair requirements vary with edition
 - International Existing Building Code
 - First published in 2003
 - ACI 562 developed for adoption into IEBC

ACI 562 - Philosophy

- Emphasize performance based rather than prescriptive requirements
- Encourage creativity and flexibility
- Enhance life safety (equivalent safety)
- Extend service life
- Provide sustainable and economic alternative
- Establish responsibilities

ACI 562 - Organization

- Part I General
 - General Requirements Chapter 1
 - Terms / Definitions Chapter 2
 - Standards Chapter 3
- Part II Evaluation Requirements
 - Design Basis Chapter 4
 - Loads Chapter 5
 - Analysis of Existing Structures Chapter 6
- Part III Implementation
 - Structural Repair Design Chapter 7
 - Durability Chapter 8
 - Construction Chapter 9
 - Quality Assurance Chapter 10

Responsibilities

- Licensed Design Professional
 - Evaluation
 - Repair & durability design

Constructor – through plans and specifications

- Construction sequencing, means & methods
- Follow evaluation and design specifications
- Report uncovered defects
- Owner through general building code
 - Known conditions and maintenance

ACI 562 – Key Points

- Determine design basis for repairs
- Preliminary evaluation
 - Substantial structural damage
- Analysis, design and durability
- Quality assurance
- Maintenance and monitoring

Design Basis Code

- General building code under which the project is completed
- Possible design basis codes:
 - IBC
 - IEBC
 - Local building code general building code
 - ACI 318
 - Combination of ACI 318 and 562

When do structures need to satisfy current codes?

IBC – Chapter 34

- If alterations or additions increase force in a structural element by more than 5%
- Repairs to elements that are found to unsound or structurally deficient

IEBC

- When substantial structural damage has occurred

When required by a local code or building official

Applicability

- Existing concrete buildings
- Superstructure, foundations (slabs), precast elements – structural load path
- Structural vs. nonstructural "Unsafe"
- Composite members concrete
- Nonbuilding structures when required

Controversy – Maintenance

- To assure durable repairs
- "Maintenance recommendations shall be documented..."
- "A maintenance protocol should be provided..."

Preliminary Evaluation

- Preliminary evaluation
 - Determine extent of structural damage present
 - Evaluation based upon in-place conditions
 - Can use assumed material properties
- Substantial structural damage?
 - Determines if compliance with current code is required

Substantial Structural Damage

Defined in IEBC

- Reduction of greater than 33% to the vertical elements of the lateral force resisting system
- Reduction of greater than 20% of the vertical capacity in an area that supports more then 30% of the structures area
- Requirements vary with IEBC edition
- Trigger for upgrade of structure to current code requirements

Evaluation & Analysis

- Preliminary evaluation
- When there is reason to question
- Structural assessment/structural analysis
- As-measured section properties and dimensions
- Material properties
 - Available documents + historical tables
 - Tests

Evaluation

- Determine existing conditions
- Safety shoring
- Based on in-situ geometric and material properties
- Number of samples (ACI 214)
- Load tests (ACI 437 versus ACI 318)

Load and Resistance Factors


- Resistance, capacity reduction factors, Φ
 - Measured properties
 - Failure mode
 - Historic material properties
 - Default values

Loads and Load Combinations

- Essentially ASCE/SEI 7 (ACI 318)
- Construction, unoccupied ASCE/SEI 37
- External reinforcing systems
 - $-U_{ex} = 1.2D + 0.5L + A_k + 0.2S$
 - Fire + elevated temperature with FRP
 - External unprotected reinforcement

• factors

- Encourage confirmation of material properties
- Φ factor from ACI-318
 - No confirmation of material properties
- ACI 318 Chapter 20 if material properties are confirmed
 - $-\Phi_{\text{tension}}=1$
 - $-\Phi_{\text{compression}}=0.9$
 - $-\Phi_{shear}=0.8$

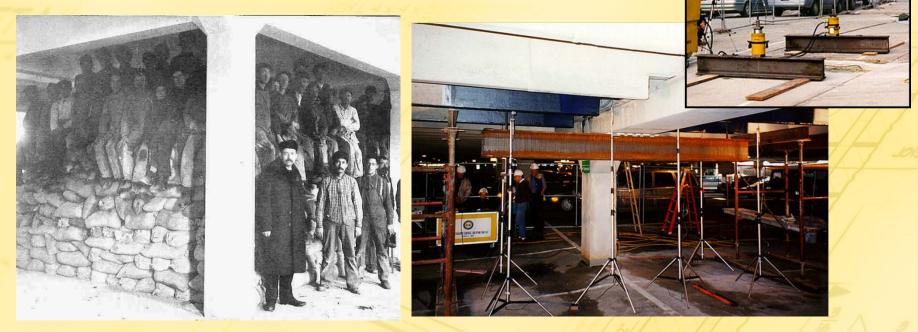
Analysis, Design and Durability

- Performance based 3D, nonlinear or...
 - Make a patch or add a wall
- Actual load and force distribution
- Reinforcement and repair materials
 - e.g. FRP's and polymer concretes
- Compatibility
- Fire resistance
- Service life

Analysis

- Member properties
- Material degradation
- Deformed condition
- Redistribution of forces
- Shrinkage & creep
- Soil-structure interaction
- Load path

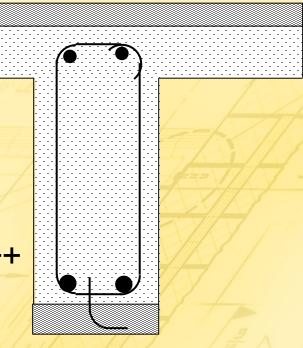
Seismic Resistance


- ASCE/SEI 31 Seismic Evaluation
- ASCE/SEI 41 Seismic Rehabilitation
- Implications for building officials, West coast vs.

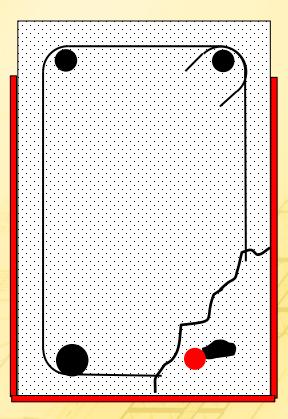
Evaluation & Analysis - Testing

- Destructive & nondestructive
- Cores (ASTM C42 & C823)
- NDT when valid correlation is established.
- Steel Reinforcement: historical values, samples (ASTM A370)

Load Testing


- ACI 437-13
 - New code for load testing
- Why not ACI 318-11 Chapter 20?

Design of Structural Repairs


- Strength & Serviceability
- Effect of repair on structural system
- Composite behavior
 - Tensile strength
 - Adhesives
 - Pull-off test

Bond: 1.5 x required ++

Reinforcing

- FRP (ACI 440.6) and steel
- Fire (external reinforcement)
 - $U_{ex} = 1.2D + 0.5L + A_k + 0.2S$
- Existing prestressing
- Supplemental posttensioning
 - Secondary effects
 - Define repair sequence: removal, placement, stressing

Durability

- Durable materials
 - interaction with existing structure (compatibility)
 - in environment
 - anticipated maintenance
- Corrosion protection & cover
- Corrosion & deterioration of reinforcement
 - Corrosive environment
 - Existing reinforcement
 - Galvanic action
- Cracks

Construction

- Stability and shoring
 - Designed by an LDP
 - Consider: sequence, in-situ conditions, changes in conditions

Construction

- Temporary conditions

 ASCE/SEI 37 when feasible
 Stalled projects?
- Environmental
 - Instructions to contractor
 - Report new conditions
 - Control of debris

Quality Assurance

- Require testing and inspection
 - Commentary list of items to inspect
- Repair inspectors should be qualified by demonstrating competence
- LDP may inspect their projects
- Testing as required by LDP
- Existing conditions shall not be concealed
 - Construction observation

ACI 562 - Going Forward

- Published by ACI in March 2012
- New code cycle
 - Starts at upcoming ACI convention
 - Work towards adoption into IEBC
- Education on using ACI 562
 - ICRI 150 Notes
 - Seminars
 - Presentations

ACI 562 - Going Forward

- Improve the state of practice
- Incorporate work of other committees / groups
 - Repository of knowledge
 - ACI Guidelines
 - ICRI Documents

Impact

- Cost savings for repair of repair in \$ billions
- Code requires accountability of both engineers and contractors
- Repair industry is a serious endeavor
 - Education and skills required
- Engineering requirements lead to clear specifications and increased quality
- Safer structures

Acknowledgements

- ACI TAC for approval of code
- Efforts of ACI and ICRI members in creating code
 - 15 Engineers
 - 3 Academics
 - 3 Contractors
 - 1 Material supplier
 - 1 Owner
 - 1 Building code official

Thank You

Questions?