
The Adaptive Signal Processing

Toolbox

For use with Matlab

Author:

Dr. Eng. John Garas

garas@dspalgorithms.com

ASPT User Manual

Version 2.1

Copyright c© DSP ALGORITHMS 2000 - 2002

All rights are reserved. No part of this document may

be reproduced in any form, or by any means, without

permission of the copyright owner.

Preface

Since the early days of adaptive signal processing, computer simulations have been used to examine
the performance of adaptive systems, compare adaptive algorithms, and prove the feasibility of new
adaptive applications. The difficulty of analytical analysis of adaptive signal processing systems
explains the popularity of computer simulation in the research and development of adaptive filters.
The ”Adaptive Signal Processing Toolbox”, or ASPT for short, has been designed to enhance the
simulation process by isolating the user from the details of the adaptive algorithms implementation
while giving the user a complete control on the algorithms parameters and behavior. ASPT users
may use the adaptive filters as building blocks without the need to know how those blocks are
constructed, or may edit the algorithms to optimize certain characteristics important to a specific
application. This approach has proved to increase productivity, shorten time to market, and
enhance the understanding of the systems being developed, and therefore increasing the potential
of developing better adaptive systems.

The Adaptive Signal Processing Toolbox is a software package developed specifically for engineers
and researchers involved in developing adaptive signal processing systems. ASPT is also an indis-
pensable tool for class instructors to aid in teaching adaptive signal processing, and quickly and
easily demonstrating the applications of adaptive filters. ASPT contains a continuously expanding
collection of basic as well as advanced adaptive filters algorithms and many practical applications.
ASPT isolates the user from the details of the algorithms internal implementation and allows
using the adaptive algorithms as reliable, well tested, and well documented black box functions.
ASPT contains adaptive algorithms for transversal, lattice, recursive, and nonlinear filters, with
implementations in the time and frequency domains, as well as specialized algorithms for ap-
plications such as active noise and vibration control, and beam forming. ASPT also comes with
simulation examples for applications of adaptive filters including echo cancelers, single channel and
multichannel active noise and vibration control, beam forming, channel equalization, adaptive line
enhancers, system identification, interference canceling, and linear prediction.

Researchers who develop new adaptive algorithms to meet specific requirements need to test their
newly developed techniques against existing ones. They must be familiar with the existing state of
the art and be able to easily and quickly experiment with several features of the existing algorithms.
In many cases, the requirements of the new algorithm can be readily met by modifying an existing
algorithm or combining the processing of several existing ones. For those researchers, ASPT
provides the basic foundation on which they can build their developments. With the large set of
existing state of the art algorithms provided by ASPT, the researcher has a better understanding
of the known techniques. In a few minutes, he can measure the performance enhancement brought
about by his newly developed algorithm compared to known ones. He can easily experiment with
modifying the existing state of the art without the need to implement all those known techniques.
ASPT, therefore, makes it possible for those researchers to concentrate on their value added work
by removing redundant activities, and therefore, shortening development time.

Engineers who deploy adaptive filters to solve specific technical problems would probably benefit
the most from a library of adaptive algorithms such as ASPT. The first step in developing an
adaptive system is usually building a simulation of the system to explore the benefits of a specific
filter structure, define the filter parameters, examine the system performance, and predict the
problems that might come up in real-time implementation. For instance, an engineer designing
a new Acoustic Echo Canceler (AEC) for a video conferencing system must choose the adaptive
filter structure (FIR, IIR, Lattice, Volterra, etc) that is most suitable for typical conference rooms.

Preface

Next, the adaptive algorithm to be used in updating the AEC coefficients must be chosen. Usually,
the choice of the adaptive algorithm is constrained by system resources such as memory usage and
processor cycles (MIPS) as well as system performance requirements such as convergence time
and Echo Return Loss Enhancement (ERLE). To make a sound choice, the AEC designer would
probably need to set up a simulation system using measured speech fragments in a conference
room, implement several adaptive filters that he knows from experience that may meet the system
requirements, experiment with the parameters of each filters, and test against the required overall
system performance. This process can be very lengthy, especially if experiments with different filter
structures updated using different algorithms are required. Due to development time limitation,
the situation usually encountered in practice, is that the designer chooses an algorithm that is
already available, or one that is easy to implement, regardless of its suitability for the application
at hand, or whether it gives the best performance in this specific application. In such design
scenario, ASPT is a necessary tool that provides the system designer with a rich set of filter
structures, each updated using a wide variety of algorithms. ASPT allows the designer to easily
and quickly experiment with FIR, IIR, lattice, and nonlinear filter structures, update the filters
using different algorithms in time and frequency domains, and as easily compare between the
performance, limitations, and resource requirements of each filter. ASPT can save designers many
man-months (if not years when evaluated over a company wide activities over a several projects)
of low level programming activities allowing cheaper and faster product development cycle.

On the other hand, class and lab instructors and industry trainers might find ASPT an indispens-
able tool in teaching adaptive signal processing concepts using hands-on approach. Using ASPT,
instructors can easily make their point clear using real-life demonstrations without writing lengthy
software programs. Students can easily and quickly study the performance of complex algorithms,
compare between traditional algorithms, and experiment for themselves with filter parameters.
By bringing applications closer to the class, the teaching and learning experiences become more
interesting than just fiddling with equations. In the past few years, ASPT has proved its benefits
for both instructors and students. The base of ASPT itself has been developed at Eindhoven
University of Technology, during the time the author was pursuing his PhD program. For this
reason, the author is committed to education institutes, and hopes that one day ASPT will be
the preferred tool in teaching adaptive filters. To encourage using ASPT in adaptive filters ed-
ucation, several algorithms that are only of theoretical interest have been added to enhance the
understanding of adaptive techniques. High performance, efficient, and nonlinear filters can serve
as good material for advanced courses in adaptive signal processing.

ASPT is the fruit of many years of research and development in the area of adaptive algorithms and
their applications. We introduce this toolbox to our colleagues in the hope that it will enhance and
encourage the development of adaptive systems. We very much hope that engineers, researchers,
class instructors, and students will like it, use it, and help us to improve it in the years to come.

ii

List of Figures

2.1 Transversal adaptive filter structure. 10

2.2 Linear combiner filter structure. 11

2.3 Recursive filter structure. 12

2.4 Block diagram of the lattice predictor. 14

2.5 Block diagram of the joint process estimator. 15

2.6 Block diagram of the general adaptive filtering problem. 17

2.7 Block diagram of the general adaptive system identification (forward modeling)
problem. 19

2.8 Block diagram of the general adaptive system identification (forward modeling)
problem. 20

2.9 Block diagram of the general forward prediction problem. 21

2.10 Block diagram of the transversal forward prediction problem. 22

2.11 Block diagram of the transversal backward prediction problem. 23

2.12 Autoregressive process modeling. 23

2.13 Block diagram of the adaptive transversal forward prediction error filter. 24

2.14 Block diagram of the network echo canceler. 24

2.15 Block diagram of the acoustic echo canceler. 25

2.16 Block diagram of a communication channel employing both acoustic and network
echo cancelers. 26

2.17 Block diagram of the adaptive interference canceling setup. 26

2.18 Block diagram of the power-line adaptive interference canceler. 27

2.19 Input and output signals of an adaptive interference canceler. 28

4.1 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the ARLMSNEWT algorithm. . 38

4.2 Block diagram of the Block Frequency Domain Adaptive Filter. 40

4.3 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the BFDAF algorithm. 42

4.4 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the BLMS algorithm. 45

4.5 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the BNLMS algorithm. 48

4.6 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the DRLMS for several values of
the data reusing parameter k. 51

List of Figures

4.7 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the DRNLMS for several values
of the data reusing parameter k. 54

4.8 The cascade of the channel and the adaptive filter coefficients after convergence
(left), and the learning curve for the inverse modeling problem using the Leaky
NLMS algorithm (right). 57

4.9 Sensitivity pattern for a 2-element adaptive array using LCLMS. 61

4.10 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the LMS algorithm. 64

4.11 The adaptive filter coefficients after convergence, the learning curve, and the evo-
lution of the step size for the complex FIR system identification problem using the
MVSSLMS algorithm. 67

4.12 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the NLMS algorithm. 70

4.13 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the PBFDAF algorithm. 74

4.14 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the RCPBFDAF algorithm. . . . 78

4.15 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the RDRLMS for several values
of the data reusing parameter k. 82

4.16 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the RDRNLMS for several values
of the data reusing parameter k. 85

4.17 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the RLS algorithm. 88

4.18 Block diagram of the Transform Domain Fault Tolerant Adaptive Filter. 91

4.19 Learning curves for the TDLMS and TDFTAF when hardware failure is encountered. 92

4.20 Block diagram of the Transform Domain LMS algorithm. 95

4.21 The adaptive filter coefficients after convergence and the learning curve for the
complex FIR system identification problem using the TDLMS algorithm. 96

4.22 The adaptive filter coefficients after convergence, the learning curve, and the evo-
lution of the forgetting factor for the complex system identification problem using
the VFFRLS algorithm. 99

4.23 The adaptive filter coefficients after convergence, the learning curve, and the evo-
lution of the mean value of the step size for the complex FIR system identification
problem using the VSSLMS algorithm. 102

5.1 The adaptive linear combiner coefficients after convergence and the learning curve
for the complex system identification problem using the FTRLS algorithm. 128

5.2 Block diagram of the backward prediction error filter. 130

5.3 The frequency response of the PEF after convergence and the filter output for the
adaptive line enhancer using LBPEF. 131

5.4 Block diagram of the forward prediction error filter. 133

5.5 The frequency response of the PEF after convergence and the filter output for the
adaptive line enhancer using LFPEF. 134

iv

List of Figures

5.6 Block diagram of the adaptive Joint Process Estimator. 137

5.7 The adaptive linear combiner coefficients after convergence and the learning curve
for the complex system identification problem using the LMSLATTICE algorithm. 138

5.8 Block diagram of the RLS adaptive Joint Process Estimator. 141

5.9 The adaptive linear combiner coefficients after convergence and the learning curve
for the complex system identification problem using the RLSLATTICE algorithm. 142

5.10 Block diagram of the RLS adaptive Joint Process Estimator. 145

5.11 The adaptive linear combiner coefficients after convergence and the learning curve
for the complex system identification problem using the RLSLATTICE-2 algorithm. 146

5.12 Block diagram of the backward prediction error filter. 148

5.13 The frequency response of the PEF after convergence and the filter output for the
adaptive line enhancer using RLSLBPEF. 150

5.14 Block diagram of the forward prediction error filter. 152

5.15 The frequency response of the PEF after convergence and the filter output for the
adaptive line enhancer using RLSLFPEF. 154

5.16 Block diagram of the lattice predictor. 158

5.17 Block diagram of the lattice predictor. 159

5.18 Block diagram of the LMS-LATTICE Joint Process Estimator. 160

5.19 Block diagram of the RLS-LATTICE adaptive Joint Process Estimator. 162

5.20 Block diagram of the RLSLATTICE-2 adaptive Joint Process Estimator. 164

5.21 Block diagram of the backward prediction error filter. 166

5.22 Block diagram of the forward prediction error filter. 168

6.1 Block diagram of the cascaded second order IIR adaptive line enhancer. 174

6.2 The adaptive filters frequency responses after convergence and the filter output
for the cascaded adaptive line enhancer. 175

6.3 Block diagram of the equation error algorithm. 176

6.4 The adaptive filter impulse response after convergence and the learning curve for
the IIR system identification problem using the equation error algorithm. 177

6.5 Block diagram of the output error algorithm. 179

6.6 The adaptive filter response after convergence and the learning curve for the IIR
system identification problem using the output error algorithm. 180

6.7 Block diagram of the SHARF algorithm. 182

6.8 The adaptive filter impulse response after convergence and the learning curve for
the IIR system identification problem using the SHARF algorithm. 183

6.9 Block diagram of the second order IIR algorithm in an adaptive line enhancer
configuration. 186

6.10 The adaptive filter frequency response after convergence and the filter output for
the adaptive line enhancer problem using the second order IIR type-1 algorithm. . 187

6.11 Block diagram of the second order IIR algorithm in an adaptive line enhancer
configuration. 189

6.12 The adaptive filter frequency response after convergence and the filter output for
the adaptive line enhancer problem using the second order IIR type-2 filter. 190

v

List of Figures

7.1 Block diagram of the Adjoint-LMS algorithm. 199

7.2 Sensor signal before and after applying the adaptive controller in a single channel
ANVC system using the adjoint LMS algorithm. 200

7.3 Block diagram of the Frequency Domain Adjoint-LMS algorithm. 202

7.4 Sensor signal before and after applying the adaptive controller in a single channel
ANVC system using the frequency domain adjoint LMS algorithm. 203

7.5 Block diagram of the Frequency Domain Filtered-X LMS algorithm. 206

7.6 Sensor signal before and after applying the adaptive controller in a single channel
ANVC system using the frequency domain filtered-x LMS algorithm. 207

7.7 Block diagram of the Filtered-x LMS algorithm. 210

7.8 Sensor signal before and after applying the adaptive controller in a single channel
ANVC system using the filtered-x LMS algorithm. 211

7.9 Block diagram of the Multichannel Adjoint-LMS algorithm. 213

7.10 Signals recorded by the sensors before and after applying the adaptive controller
in a Multichannel ANVC system using the multichannel adjoint LMS algorithm. . 214

7.11 Block diagram of the Multi-Channel Frequency Domain Adjoint-LMS algorithm. 216

7.12 Signals recorded by the sensors before and after applying the adaptive controller
in a Multichannel ANVC system using the multichannel frequency domain adjoint
LMS algorithm. 217

7.13 Block diagram of the Multichannel Frequency Domain Filtered-X LMS algorithm. 220

7.14 Signals recorded by the sensors before and after applying the adaptive controller in
a Multichannel ANVC system using the multichannel frequency domain filtered-x
LMS algorithm. 221

7.15 Block diagram of the Multichannel Adjoint-LMS algorithm. 224

7.16 Signals recorded by the sensors before and after applying the adaptive controller
in a Multichannel ANVC system using the multichannel filtered-x LMS algorithm. 225

7.17 Block diagram of the Adjoint-LMS algorithm. 227

7.18 Block diagram of the Frequency Domain Adjoint-LMS algorithm. 229

7.19 Block diagram of the Frequency Domain Filtered-X LMS algorithm. 231

7.20 Block diagram of the Filtered-x LMS algorithm. 233

7.21 Block diagram of the Multichannel Adjoint-LMS algorithm. 235

7.22 Block diagram of the Multichannel Frequency Domain Adjoint-LMS algorithm. . 237

7.23 Block diagram of the MultChannel Frequency Domain Filtered-X LMS algorithm. 239

7.24 Block diagram of the MultChannel Filtered-X LMS algorithm. 241

8.1 The adaptive filter coefficients after convergence and the learning curve for the
FIR system identification problem using the SOVLMS algorithm. 246

8.2 The adaptive filter coefficients after convergence and the learning curve for the
FIR system identification problem using the SOVNLMS algorithm. 249

8.3 The adaptive filter coefficients after convergence and the learning curve for the
FIR system identification problem using the SOVRLS algorithm. 252

8.4 The adaptive filter coefficients after convergence and the learning curve for the
FIR system identification problem using the SOVTDLMS algorithm. 255

vi

List of Figures

8.5 The adaptive filter coefficients after convergence, the evolution of the step size, and
the learning curve for the FIR system identification problem using the SOVVSSLMS
algorithm. 259

9.1 The iteration progress window. 267

9.2 A multichannel system with two actuators and three sensors. 269

9.3 The adaptive line enhancer graph window. 272

9.4 The active noise and vibration control graph window. 273

9.5 The adaptive beam former graph window. 274

9.6 The echo canceler graph window. 275

9.7 The inverse modeling (equalizer) graph window. 276

9.8 The modeling (system identification) graph window. 277

9.9 The adaptive prediction graph window. 278

9.10 The frequency contents of the input and output of a second order Volterra filter. 279

9.11 The iteration progress window. 281

10.1 Block diagram of a Cascade of M second order adaptive line enhancer sections. . 285

10.2 Convergence and tracking behavior of the cascade second order type-2 IIR adaptive
line enhancer. 287

10.3 Block diagram of an adaptive line enhancer implemented using the second order
type-1 IIR adaptive filter. 288

10.4 Performance of the second order type-1 IIR adaptive line enhancer. 290

10.5 Block diagram of an adaptive line enhancer implemented using the second order
type-2 IIR adaptive filter. 291

10.6 Performance of the second order type-2 IIR adaptive line enhancer. 293

10.7 Block diagram of a single channel noise cancellation application using the Adjoint-
LMS algorithm. 294

10.8 Performance of the ADJLMS algorithm. 296

10.9 Block diagram of a single channel noise cancellation application using the Fre-
quency Domain ADJoint-LMS algorithm. 297

10.10 Performance of the FDADJLMS algorithm. 299

10.11 Block diagram of a single channel noise cancellation application using the Fre-
quency Domain Filtered-X LMS algorithm. 300

10.12 Performance of the FDFXLMS algorithm. 302

10.13 Block diagram of a single channel noise cancellation application using the Filtered-
x LMS algorithm. 303

10.14 Performance of the FXLMS algorithm. 305

10.15 Block diagram of a multichannel noise cancellation application using the Multi-
channel Adjoint-LMS algorithm. 306

10.16 Performance of the MCADJLMS algorithm. 308

10.17 Block diagram of a multichannel noise cancellation application using the Multi
Channel Frequency Domain Adjoint LMS algorithm. 309

10.18 Performance of the MCFDADJLMS algorithm. 311

vii

List of Figures

10.19 Block diagram of a multichannel noise cancellation application using the Multi
Channel Frequency Domain Filtered-X LMS algorithm. 312

10.20 Performance of the MCFDFXLMS algorithm. 314

10.21 Block diagram of a multichannel noise cancellation application using the Multi-
channel Filtered-X LMS algorithm. 315

10.22 Performance of the MCFXLMS algorithm. 317

10.23 Block diagram of an adaptive array using the Linearly Constrained LMS algorithm. 319

10.24 Sensitivity pattern of an adaptive array adapted at the base-band frequency using
the Linearly Constrained LMS algorithms. 320

10.25 Block diagram of an adaptive array functioning as a sidelobe canceler. 322

10.26 Performance of an adaptive sidelobe canceler implemented using the LMS algorithm.323

10.27 Block diagram of an acoustic echo canceler implemented using the block frequency
domain adaptive filter (BFDAF). 324

10.28 Performance of an Acoustic Echo Canceler implemented using the BFDAF algorithm.326

10.29 Block diagram of an acoustic echo canceler implemented using the Leaky NLMS
adaptive filter. 327

10.30 Performance of an Acoustic Echo Canceler implemented using the Leaky NLMS
adaptive filter. 329

10.31 Block diagram of an acoustic echo canceler implemented using the NLMS algorithm.330

10.32 Performance of an Acoustic Echo Canceler implemented using the NLMS algorithm.332

10.33 Block diagram of an acoustic echo canceler implemented using the Partitioned
Block Frequency Domain Adaptive Filter (PBFDAF). 333

10.34 Performance of an Acoustic Echo Canceler implemented using the PBFDAF algo-
rithm. 335

10.35 Block diagram of an acoustic echo canceler implemented using the (Reduced Com-
plexity) partitioned block frequency domain adaptive filter (RCPBFDAF). 336

10.36 Performance of an Acoustic Echo Canceler implemented using the RCPBFDAF
algorithm with two partitions out of eight are constrained each block and a block
length equals to half the partition length. 338

10.37 Block diagram of the inverse modeling application. 339

10.38 Performance of the NLMS adaptive algorithm in an inverse modeling application. 341

10.39 Block diagram of the inverse modeling application. 342

10.40 Performance of the RLS algorithm in a a channel equalization application. 344

10.41 Block diagram of a forward modeling application using the autoregressive LMS-
Newton algorithm. 345

10.42 Performance of the autoregressive LMS-Newton adaptive filter in a system identi-
fication application. 347

10.43 Block diagram of the forward modeling application using the Equation Error re-
cursive adaptive filter. 348

10.44 Performance of the equation error adaptive filter in a system identification appli-
cation. 350

10.45 Block diagram of the Lattice joint process estimator in a forward modeling appli-
cation. 351

10.46 Performance of the LMS Lattice adaptive filter in a system identification application.353

viii

List of Figures

10.47 Block diagram of an FIR forward modeling using the MVSSLMS adaptive algorithm.354

10.48 Performance of the Modified Variable Step Size LMS (MVSSLMS) adaptive filter
in a system identification application. 356

10.49 Block diagram of the forward modeling application using the Output Error recur-
sive adaptive filter. 357

10.50 Performance of the output error algorithm in a system identification application. 359

10.51 Block diagram of the RLS Lattice joint process estimator in a forward modeling
application. 360

10.52 Performance of the RLS-Lattice algorithm in a system identification application. . 362

10.53 Block diagram of the forward modeling application using the SHARF algorithm. . 363

10.54 Performance of the SHARF IIR adaptive filter in a system identification application.365

10.55 Block diagram of an FIR forward modeling using the TDLMS adaptive algorithm. 366

10.56 Performance of the Transform Domain LMS (TDLMS) adaptive filter in a system
identification application. 368

10.57 Block diagram of an FIR forward modeling using the VSSLMS adaptive algorithm. 369

10.58 Performance of the variable step size LMS (VSSLMS) adaptive filter in a system
identification application. 371

10.59 Block diagram of a prediction application using the lattice backward prediction
error filter. 372

10.60 Performance of the Lattice Backward Prediction Error Filter in a prediction ap-
plication. 374

10.61 Block diagram of a prediction application using the lattice forward prediction error
filter. 375

10.62 Performance of the Lattice Forward Prediction Error Filter in a prediction appli-
cation. 377

10.63 Block diagram of a prediction application using the RLS lattice backward predic-
tion error filter. 378

10.64 Performance of the RLS Lattice Backward Prediction Error Filter in a prediction
application. 380

10.65 Block diagram of a prediction application using the RLS lattice forward prediction
error filter. 381

10.66 Performance of the RLS Lattice Forward Prediction Error Filter in a prediction
application. 383

ix

List of Figures

x

List of Tables

1.1 ASPT directory structure. 5

3.1 Functions implementing transversal adaptive algorithms. 29

3.2 Functions for creating and initializing the transversal adaptive filters. 30

3.3 Functions implementing lattice adaptive algorithms. 30

3.4 Functions for creating and initializing lattice adaptive algorithms. 31

3.5 Functions implementing recursive adaptive algorithms. 31

3.6 Functions for creating and initializing recursive adaptive algorithms. 31

3.7 Functions implementing active noise and vibration control filters. 32

3.8 Functions for creating and initializing active noise and vibration control filters. . 32

3.9 Functions implementing nonlinear adaptive filters. 32

3.10 Functions for creating and initializing nonlinear adaptive filters. 32

3.11 Non-adaptive, visualization, and help functions. 33

3.12 Adaptive filters applications. 34

4.1 List of functions for creating, initializing, and updating transversal and linear
combiner adaptive filters. 36

5.1 Functions for creating, initializing, and updating lattice adaptive filters. 125

6.1 Functions for creating, initializing, and updating recursive adaptive filters. 171

7.1 Functions for creating, initializing, and updating active noise and vibration control
filters. 197

8.1 Functions for creating, initializing, and updating nonlinear adaptive filters. 243

9.1 Visualization and help functions. 265

10.1 Adaptive filters applications. 284

List of Tables

xii

Contents

Preface i

1 Overview 3

1.1 Hardware and Software requirements . 3

1.2 Installing ASPT . 3

1.3 Uninstalling ASPT . 4

1.4 Registering Your ASPT Software . 4

1.5 ASPT Directory Structure . 5

1.6 Getting Started with ASPT . 5

1.7 Obtaining Support . 6

1.8 ASPT Flavors and Related Products . 6

1.9 ASPT Naming conventions . 6

1.10 Notational Conventions . 7

1.11 Manual Organization . 7

2 Introduction to Adaptive Filters 9

2.1 Introduction . 9

2.2 Filter Structures supported by ASPT . 10

2.2.1 Transversal Filters . 10

2.2.2 Linear Combiner Filters . 11

2.2.3 Recursive Filters . 12

2.2.4 Lattice Filters . 13

2.2.5 Nonlinear Filters . 15

2.3 Basic Adaptive Filter Model . 17

2.4 Adaptive Filters Applications . 18

2.4.1 System Identification and Forward Modeling 18

2.4.2 Equalization and Inverse Modeling . 19

2.4.3 Adaptive Linear Prediction . 20

2.4.4 Adaptive Autoregressive Spectrum Analysis 22

2.4.5 Echo Cancellation . 23

2.4.5.1 Network Echo Cancelers . 23

2.4.5.2 Acoustic Echo Cancelers . 25

2.4.6 Adaptive Interference Canceling . 26

Contents

3 ASPT Quick Reference Guide 29

3.1 Summary of Transversal adaptive algorithms . 29

3.2 Summary of Lattice Adaptive Algorithms . 30

3.3 Summary of Recursive Adaptive Algorithms . 31

3.4 Summary of Active Noise and Vibration Control Algorithms 31

3.5 Summary of Nonlinear Adaptive Algorithms . 32

3.6 Summary of Non-adaptive, Visualization and Help Routines 33

3.7 Summary of adaptive applications . 33

4 Transversal and Linear Combiner Adaptive Algorithms 35

4.1 asptarlmsnewt . 37

4.2 asptbfdaf . 40

4.3 asptblms . 44

4.4 asptbnlms . 47

4.5 asptdrlms . 50

4.6 asptdrnlms . 53

4.7 asptleakynlms . 56

4.8 asptlclms . 60

4.9 asptlms . 63

4.10 asptmvsslms . 66

4.11 asptnlms . 69

4.12 asptpbfdaf . 73

4.13 asptrcpbfdaf . 77

4.14 asptrdrlms . 81

4.15 asptrdrnlms . 84

4.16 asptrls . 87

4.17 aspttdftaf . 90

4.18 aspttdlms . 94

4.19 asptvffrls . 98

4.20 asptvsslms . 101

4.21 init arlmsnewt . 104

4.22 init bfdaf . 106

4.23 init blms . 107

4.24 init bnlms . 108

4.25 init drlms . 109

4.26 init drnlms . 110

4.27 init leakynlms . 111

4.28 init lclms . 112

4.29 init lms . 113

4.30 init mvsslms . 114

xiv

Contents

4.31 init nlms . 115

4.32 init pbfdaf . 116

4.33 init rcpbfdaf . 117

4.34 init rdrlms . 118

4.35 init rdrnlms . 119

4.36 init rls . 120

4.37 init tdftaf . 121

4.38 init tdlms . 122

4.39 init vffrls . 123

4.40 init vsslms . 124

5 Lattice Adaptive Algorithms 125

5.1 asptftrls . 127

5.2 asptlbpef . 130

5.3 asptlfpef . 133

5.4 asptlmslattice . 136

5.5 asptrlslattice . 140

5.6 asptrlslattice2 . 144

5.7 asptrlslbpef . 148

5.8 asptrlslfpef . 152

5.9 init ftrls . 156

5.10 init lbpef . 158

5.11 init lfpef . 159

5.12 init lmslattice . 160

5.13 init rlslattice . 162

5.14 init rlslattice2 . 164

5.15 init rlslbpef . 166

5.16 init rlslfpef . 168

6 Recursive Adaptive Algorithms 171

6.1 asptcsoiir2 . 173

6.2 aspteqerr . 176

6.3 asptouterr . 179

6.4 asptsharf . 182

6.5 asptsoiir1 . 185

6.6 asptsoiir2 . 188

6.7 init csoiir2 . 191

6.8 init eqerr . 192

6.9 init outerr . 193

6.10 init sharf . 194

6.11 init soiir1 . 195

6.12 init soiir2 . 196

xv

Contents

7 Active Noise and Vibration Control Algorithms 197

7.1 asptadjlms . 199

7.2 asptfdadjlms . 202

7.3 asptfdfxlms . 206

7.4 asptfxlms . 210

7.5 asptmcadjlms . 213

7.6 asptmcfdadjlms . 216

7.7 asptmcfdfxlms . 220

7.8 asptmcfxlms . 224

7.9 init adjlms . 227

7.10 init fdadjlms . 229

7.11 init fdfxlms . 231

7.12 init fxlms . 233

7.13 init mcadjlms . 235

7.14 init mcfdadjlms . 237

7.15 init mcfdfxlms . 239

7.16 init mcfxlms . 241

8 Nonlinear Adaptive Algorithms 243

8.1 asptsovlms . 245

8.2 asptsovnlms . 248

8.3 asptsovrls . 251

8.4 asptsovtdlms . 254

8.5 asptsovvsslms . 257

8.6 init sovlms . 260

8.7 init sovnlms . 261

8.8 init sovrls . 262

8.9 init sovtdlms . 263

8.10 init sovvsslms . 264

9 Non-adaptive, Visualization and Help Functions 265

9.1 init ipwin . 267

9.2 mcmixr . 269

9.3 osfilter . 271

9.4 plot ale . 272

9.5 plot anvc . 273

9.6 plot beam . 274

9.7 plot echo . 275

9.8 plot invmodel . 276

9.9 plot model . 277

9.10 plot predict . 278

xvi

Contents

9.11 sovfilt . 279

9.12 update ipwin . 280

10 Applications and Examples 283

10.1 ale csoiir2 . 285

10.2 ale soiir1 . 288

10.3 ale soiir2 . 291

10.4 anvc adjlms . 294

10.5 anvc fdadjlms . 297

10.6 anvc fdfxlms . 300

10.7 anvc fxlms . 303

10.8 anvc mcadjlms . 306

10.9 anvc mcfdadjlms . 309

10.10 anvc mcfdfxlms . 312

10.11 anvc mcfxlms . 315

10.12 beambb lclms . 318

10.13 beamrf lms . 321

10.14 echo bfdaf . 324

10.15 echo leakynlms . 327

10.16 echo nlms . 330

10.17 echo pbfdaf . 333

10.18 echo rcpbfdaf . 336

10.19 equalizer nlms . 339

10.20 equalizer rls . 342

10.21 model arlmsnewt . 345

10.22 model eqerr . 348

10.23 model lmslattice . 351

10.24 model mvsslms . 354

10.25 model outerr . 357

10.26 model rlslattice . 360

10.27 model sharf . 363

10.28 model tdlms . 366

10.29 model vsslms . 369

10.30 predict lbpef . 372

10.31 predict lfpef . 375

10.32 predict rlslbpef . 378

10.33 predict rlslfpef . 381

1

Contents

2

Chapter 1

Overview

This manual describes the Matlab version of the Adaptive Signal Processing Toolbox, ASPT
for short. ASPT is a collection of adaptive algorithms, applications, and other helper functions
designed to aid in simulating, developing, and analyzing adaptive systems. This chapter gives you
general information such installation and configuration instructions, notational conventions, and
lists the contents and organization of the rest of this document.

1.1 Hardware and Software requirements

The current implementation of the Matlab version of the Adaptive Signal Processing Toolbox is
a cross platform version that runs within the Matlab environment. ASPT, therefore, will run on
all platforms supported by Matlab 5.0 or higher including Windows, Linux, Macintosh, and Unix
platforms. To use the Matlab version of ASPT you need to have Matlab 5.0 or higher installed.
No other toolboxes are required since all functionalities needed by the toolbox are internally
implemented.

1.2 Installing ASPT

To install the Adaptive Signal Processing Toolbox do the following.

1. Extract the package files you received on your disk drive where you would like to install
ASPT. In the following it is assumed that you are using Windows operating system and you
have extracted ASPT contents at D:\. If you are using an other operating system, Unix
or Linux for instance, replace D:\ with your home directory or where Matlab is installed.
Extracting will create a directory named D:\dspalgorithms\asptxxx, where xxx is the
ASPT version information.

2. Start Matlab and type the following at the command line prompt
>> cd D:\dspalgorithms\asptxxx

and press the Enter key,

3. Run the installation program located in the main ASPT directory by typing the following
at the Matlab command line prompt
>> asptinstall

and press the Enter key. This will add the asptdir and asptver functions to the main
ASPT directory and will add the ASPT directories to the Matlab path. You need to have
write permission to the ASPT directory and to the pathdef.m file to successfully install
ASPT and change the Matlab path. If you do not have write permission to those files,
ASPT path information can not be saved and will be lost when you quit the current Matlab
session. In this case you will need to run asptinstall each time you start Matlab. The
installation program will inform you with any problems it might find during installation.

Chapter 1. Overview

4. Quit Matlab and restart it again,

5. Run any of the test scripts located in the D:\dspalgorithms\asptxxx\test directory to
make sure that your installation is successful and that Matlab can find the ASPT files on
its path
>> testnlms

This should execute without errors. Receiving any error message when running any of the
test scripts means that the installation has not been successfully completed. In this case,
refer to the contact information given in Section 1.7 for support.

1.3 Uninstalling ASPT

To uninstall ASPT, type the following at the Matlab prompt
>> asptuninstall

and press the Enter key. This will remove the ASPT directories from Matlab path but will not
delete any files. To successfully change the Matlab path you need to have write permission to the
file pathdef.m. To remove ASPT completely from your computer you need to manually delete
the ASPT directory and all its contents. Refer to Section 1.5 for a list of ASPT contents.

1.4 Registering Your ASPT Software

ASPT license is currently available per machine. Therefore, a license key is required for each
computer you will use to run ASPT. To obtain your license key, follow the steps below.

1. After order the toolbox version of your choice, you will receive the software package. Unpack
and install the ASPT software on your computer as explained in Section 1.2 and make sure
that the toolbox is set up correctly and working properly before you proceed further. The
installation you have at this point will allow you to work with ASPT for a limited time.
To gain unlimited access to the toolbox you need to install a license file. The steps below
explain how to obtain and install your license file.

2. Determine the ASPT ID CODE for your ASPT software and computer combination by
typing the following at the Matlab command line prompt
>> asptidcode

and press the Enter key. This will print your ASPT ID CODE in the Matlab command
window. Copy this code as is and paste it in the correct place in the order form or email it
to aspt@dspalgorithms.com.

3. On receiving your ASPT ID CODE, A license file matching the version you purchased will
be sent to you.

4. Copy the license file you received to the main ASPT directory, replacing the current limited
license.

5. Make a reserve copy of this license file on a floppy and keep it in a save place. You can use
this license file if you need to reinstall ASPT on the same computer in the future.

Note that the ASPT ID CODE is a code that uniquely identifies the ASPT software, the computer
on which ASPT is running, and the Matlab software. This means that if you modify any of the
above after obtaining your license key, ASPT will stop functioning and you will need to request a
new license key that is suitable for your new installation.

4

1.5. ASPT Directory Structure

1.5 ASPT Directory Structure

The current distribution of the Matlab version of the Adaptive Signal processing toolbox in-
cludes implementation of adaptive algorithms, initialization routines, application scripts, short
test scripts, help files, and documentation. ASPT also comes with some data files, and audio files
that are used by the application scripts. Table 1.1 summarizes the directory structure of the ASPT
distribution and shows where are those components located. In this table, the ASPT installation
directory is assumed to be asptxxx.

Directory Contents

asptxxx Adaptive algorithms, initialization, plotting, and helper routines.
asptxxx\apps Applications scripts.
asptxxx\data Data and transfer functions used by the application scripts.
asptxxx\docs Documentation.
asptxxx\help Matlab help files.
asptxxx\test Short applications for testing purposes.
asptxxx\wavin Audio files used as input signals to the application scripts.
asptxxx\wavout Audio files generated by the application scripts.

Table 1.1: ASPT directory structure.

1.6 Getting Started with ASPT

ASPT has been designed to have a simple user interface and a single calling convention for all
algorithms, while giving the user maximum control on the parameters of each algorithm. This
homogeneous design makes ASPT very easy to use and makes new users immediately comfortable
with the toolbox. In fact, the homogeneous calling procedure means that if you know how to use
one algorithm you will have no hard time using any of the others.

Each adaptive algorithm supported by ASPT has an initialization function with its name starting
with the init_ prefix and a main function with name starting with the aspt prefix. For instance,
the Least Mean Squares (LMS) algorithm has its initialization function named init_lms() and
its main function named asptlms(). The initialization function is usually called only once to
create and initialize the variables required for its algorithm, while the main function is usually
called in a processing loop to performs the actual work of calculating the adaptive filter output
and updating the filter coefficients. You can find this calling procedure repeated over and over
again in all scripts located in the apps and test directories.

Probably the fastest way to learn how to use the Adaptive Signal Processing Toolbox is to examine
the scripts in the apps and test directories.. Those scripts give example applications covering all
adaptive algorithms included in the current release of ASPT. The scripts in the test directory are
self contained short applications that are also listed in this documentation. Each of those scripts
creates and initializes an adaptive filter, creates the input and desired signals, calls the adaptive
algorithm to update the filter coefficients in a loop, and finally generates a plot demonstrating the
functionality of the application. The scripts in the apps directory are more involved applications
with real life data and usually take more time to execute. The input and output data for those
applications are usually read from audio files located in the wavin directory and generate output
audio files which will be stored in the wavout directory. Those applications use the initialization
functions and adaptive algorithms in the same way the simple test applications do. Examining
a few of those scripts will immediately make you comfortable with the toolbox. You are also
encouraged to copy from those scripts and paste into your own applications.

Once you have examined a few applications, you are ready to build your own adaptive applications
using the ASPT routines. You can obtain more information on a specific algorithm by examining

5

Chapter 1. Overview

its reference page in this document or by typing
>> help function_name

at the Matlab command line prompt. To see a list of all functions and applications included in
your ASPT distribution, use the following command
>> help aspt

1.7 Obtaining Support

Should you need any support in installing, upgrading, uninstalling, or otherwise using the Adaptive
Signal Processing Toolbox, email to aspt@dspalgorithms.com. Also email to the same address
for bug report, suggestions, comments, and feedback. The ASPT team will be glad to answer any
question you might have. They also appreciate any suggestions that might lead to enhancing the
toolbox.

1.8 ASPT Flavors and Related Products

Most of the adaptive algorithms included in the Matlab version of the Adaptive Signal Processing
Toolbox are also available in other forms. ANSI C and C++ source code as well as object code
versions are available for any platform having an ANSI C/C++ compiler. ASPT is also available
for several Digital Signal Processors (DSPs). Off the shelf applications based on ASPT such as
network and acoustic echo cancelers, active noise and vibration control, and interference cancelers
are also directly available for licensing for many platforms. For more information on those and
other adaptive algorithms and applications email to support@dspalgorithms.com.

1.9 ASPT Naming conventions

To manage the large and continuously increasing number of routines included in ASPT, and to
protect naming conflicts with other packages, the Matlab implementation of ASPT uses several
naming conventions. Each routine name consists of two parts. The first part is a prefix indicating
the category to which the routine belongs. For example, all initialization routines start with the
init_ prefix. The second part of the routine name is a description of the algorithm or function
performed by the routine. For example, the init_lms() routine initializes the variables and
structures for the Least Mean Squares (LMS) adaptive filter. The following prefixes are currently
in use.

• init_ : used for initialization routines.

• aspt : used for adaptive filters routines.

• plot_ : used for plotting routines.

Several non-adaptive routines that do not contribute to the set of adaptive algorithms but perform
complementary functions required by the toolbox are also included in the ASPT distribution.
Examples of those functions are osfilter() and sovfilt() that implement an overlap-save
frequency domain fixed filter, and a second order Volterra fixed filter, respectively. To keep the
names of those routines descriptive, the naming conventions rules mentioned above do not apply
to those helper routines.

6

1.10. Notational Conventions

1.10 Notational Conventions

The following notational conventions are used throughout the rest of this document . Unless
otherwise explicitly indicated, lower-case letters are used to represent time domain signals, while
upper-case letters represent signals that have been processed by a transformation, such as the
fast Fourier transform. Boldface characters (e.g. X) represent matrices and underlined boldface
characters (e.g. w) represent vectors. In adaptive filters contexts, the filter input signal is called
x(n), its output signal y(n), the error signal e(n), the desired signal d(n), the vector of filter
coefficients w(n), and the adaptation constant (step size) is called µ. Code fragments, examples,
and ASPT routine names are printed in fixed font (e.g. asptlms()).

1.11 Manual Organization

The rest of this document is organized as follows.

Chapter 2 Provides an introduction to adaptive filters, reviews the filter structures supported
by ASPT, introduces the general adaptive filter model implemented by most ASPT
routines, and explains the applications of adaptive filters.

Chapter 3 Gives a summery of all the routines and applications included in the toolbox grouped
by filter structure.

Chapter 4 Includes the reference pages for routines used to create, initialize, and update transver-
sal and linear combiner adaptive filters.

Chapter 5 Includes the reference pages for routines used to create, initialize, and update lattice
adaptive filters.

Chapter 6 Includes the reference pages for routines used to create, initialize, and update recursive
adaptive filters.

Chapter 7 Includes the reference pages for routines used to create, initialize, and update active
noise and vibration control filters.

Chapter 8 Includes the reference pages for routines used to create, initialize, and update nonlin-
ear adaptive filters.

Chapter 9 Includes the reference pages for non-adaptive routines, visualization routines, and
other helper functions.

Chapter 10 Includes detailed description of the application scripts supplied with ASPT.

7

Chapter 1. Overview

8

Chapter 2

Introduction to Adaptive Filters

2.1 Introduction

In signal processing and control applications where the signals and transfer functions involved
are time invariant and known at design time, designing fixed filters and controllers to achieve the
desired design goals is sufficient. In many applications, however, signals, transfer functions, and the
environment in which the system operates are time-varying. In some applications, such as in active
noise and vibration control, it is the rule rather than the exception that the system to be controlled
is unknown at design time. In such situations a self designing or self adjusting filter/controller is
necessary to achieve the desired system function in a changing environment. This is usually done
by adjusting the coefficients of a digital filter/controller on-line in the operation field by optimizing
predefined quantities.

Self adjusting filters, better known as adaptive filters, might have any underlying filter structure.
The most widely used adaptive filter structure is the transversal structure due to the stability
and simplicity of analysis of those filters. The linear combiner structure is a generalized version
of the transversal structure, and is mainly used in array signal processing applications. Recursive
adaptive filters have also found wide application in adaptive line enhancers, autoregressive signal
modeling and channel equalization. A third structure which is widely used in adaptive linear
prediction applications is the lattice structure. All above mentioned adaptive filter structures
are well supported by the current release of the Adaptive Signal Processing Toolbox (ASPT). A
short theoretical introduction to transversal filters, linear combiner filters, recursive filters, and
lattice filters is given in Sections 2.2.1, 2.2.2, 2.2.3, and 2.2.4, respectively. Adaptive algorithms
for adjusting the coefficients of those filter structures are documented in Chapters 4 to 7.

This chapter also includes a brief review of the theory behind adaptive signal processing. Adap-
tive algorithms can roughly be divided into two main categories. The first based on statistical
optimization which leads to the the Least Mean Squares (LMS) algorithm and its derivatives. The
second is based on deterministic optimization which leads to the Recursive Least Squares (RLS)
algorithm and its derivatives. The basic optimization problems for statistic and deterministic
approaches and the model on which all ASPT functions are based is introduced in Section 2.3.

A brief review of some common adaptive filters applications is given in Section 2.4. This is by
far not a complete list of adaptive signal processing applications but gives the novice reader a
good basis on which she can start building her own applications. System identification and for-
ward modeling applications using adaptive filters are described in Section 2.4.1, equalization and
inverse modeling in Section 2.4.2, adaptive linear prediction in Section 2.4.3, adaptive autoregres-
sive spectrum analysis in Section 2.4.4, echo cancellation in Section 2.4.5, and finally adaptive
interference canceling in Section 2.4.6

Chapter 2. Introduction to Adaptive Filters

2.2 Filter Structures supported by ASPT

This section is a brief review of the digital filter structures supported by the Adaptive Signal
Processing Toolbox. Each section describes the equations involved in calculating the filter output
and gives specific information on how the filter structure can be used as an adaptive filter. Links
to ASPT functions implementing adaptive algorithms based on each structure to adjust the filter
coefficients are also given. The transversal filter structure is considered in Section 2.2.1, the linear
combiner filters structure is considered in Section 2.2.2, the recursive filter structure in Section
2.2.3, the lattice filter structure in Section 2.2.4, and finally the nonlinear transversal filters in
Section 2.2.5.

2.2.1 Transversal Filters

Z-1 …Z-1 Z-1

wN-1w2w1

Σ Σ Σ…

Adaptive Algorithm

x(n) x(n-1) x(n-2) x(n-N-1)

y(n)
Σ

e(n)

d(n)

+

-

+

+

+

++

+

w0

Figure 2.1: Transversal adaptive filter structure.

The most commonly used structure in implementing adaptive filters is the transversal structure
shown in Fig. 2.1. The transversal adaptive filter can be split into two main parts, the filter part
and the update part. The function of the former is to calculate the filter output y(n), while the
function of the latter is to adjust the set of N filter coefficients wi, i = 0, 1, · · · , N −1 (tap weights)
so that the output y(n) becomes as close as possible to a desired signal d(n).

The filter part processes a single input sample x(n) and produces a single output sample y(n) (as-
suming sample per sample implementation). The filter output is calculated as a linear combination
of the input sequence x(n− i), i = 0, 1, · · · , N − 1 composed of delayed samples of x(n),

y(n) =
N−1
∑

i=0

wi(n) · x(n− i). (2.1)

Expressing the set of N filter coefficients at time index n and the sequence of delayed input samples
in vector notations such that w(n) = [w0(n) w1(n) · · · wN−1(n)]

T and x(n) = [x(n) x(n −
1) · · · x(n−N + 1)]T , where (·)T is the vector transpose operator, eq (2.1) can be written as

y(n) = w(n)T · x(n) = x(n)T ·w(n). (2.2)

The transversal filter structure is, therefore, a linear temporal filter that processes the temporal
samples of its input signal x(n) to produce the temporally and consequently spectrally modified
(filtered) output y(n).

In fixed transversal filter applications, the set of filter coefficients are chosen at the system design
time to achieve the required spectral filtering and remain constant during the filter operation. In

10

2.2. Filter Structures supported by ASPT

adaptive filters applications, however, an adaptive algorithm is used to continuously adjust the
filter coefficients so that a certain performance criterion is optimized in some sense. Regardless
of the optimization method, it is usually desired to adjust the filter coefficients such that the
filter output y(n) resembles a desired signal d(n), or equivalently, the error signal e(n) must be
minimized. The details of the optimization process defines the adaptive algorithm and its behavior.

The adaptive signal processing toolbox contains several transversal adaptive algorithms such as the
Least Mean Squares (see Section 4.9), the Normalized Least Mean Squares (see Section 4.11), the
leaky Normalized Least Mean Squares (see Section 4.7), the Variable Step Size Least Mean Squares
(see Sections 4.10 and 4.20), and the Recursive Least Squares (see Section 4.16). When the number
of filter coefficients N , is large, it is much more efficient to perform filtering and coefficient update
in the frequency domain. This requires collecting a block of samples of the input signal before the
fast Fourier transform (FFT) can be calculated. For this reason, a frequency domain transversal
filter is usually a block processing filter that accepts a block of B input samples and produces a
block of B output samples. Several implementations of block frequency domain adaptive filters are
included in the adaptive signal processing toolbox, such as the Block Frequency Domain Adaptive
Filter (see Section 4.2), the Partitioned Block Frequency Domain Adaptive Filter (see Section
4.12), and the Reduced Complexity Partitioned Block Frequency Domain Adaptive Filter (see
Section 4.13).

2.2.2 Linear Combiner Filters

…

wN-1w2w1

Σ Σ Σ…

Adaptive Algorithm

x0(n) x1(n) x2(n) xN-1(n)

y(n)
Σ

e(n)

d(n)

+

-

+

+

+

++

+

w0

Figure 2.2: Linear combiner filter structure.

Linear combiner adaptive filters are very similar to transversal adaptive filters. The main difference
is that the linear combiner input sequence is not necessarily temporal delayed samples of one single
input, and it is therefore a generalized form of the transversal structure. The adaptive linear
combiner filter structure is shown in Fig. 2.2. The input vector in the case of the linear combiner
consists of temporal samples of several signals, that might be coming from an array of sensors
for instance, and is expressed as x(n) = [x0(n) x1(n) · · · xN−1(n)]

T . Similar to the adaptive
transversal filter, the adaptive linear combiner can be split into two main parts, the filter part
and the update part. The function of the former is to calculate the filter output y(n), while the
function of the latter is to adjust the set of N filter coefficients wi, i = 0, 1, · · · , N −1 (tap weights)
so that the output y(n) becomes as close as possible to a desired signal d(n).

The filter part processes the set of input signals at each time index n to produces a single output
sample y(n) (assuming sample per sample implementation). The filter output at time index n is
calculated as a linear combination of the input signals sampled at that time instance as,

11

Chapter 2. Introduction to Adaptive Filters

y(n) =

N−1
∑

i=0

wi(n) · xi(n). (2.3)

Expressing the set of N filter coefficients at time index n in vector notations such that w(n) =
[w0(n) w1(n) · · · wN−1(n)]

T , where (·)T is the vector transpose operator, eq (2.3) can be written
as

y(n) = w(n)T · x(n) = x(n)T ·w(n). (2.4)

When the input signals are samples of sensor signals with the sensors placed at different positions
in space, the linear combiner is a linear spatial filter that processes its input signals to produce
the spatially filtered output y(n). The filter coefficients are usually chosen such that the signals
arriving from certain directions are passed to the output while signals arriving from other directions
are rejected. Such filter is usually referred to as a beam former or an array processor.

Similar to their transversal counterparts, adaptive linear combiner filters employ an adaptive
algorithm to continuously adjust the filter coefficients so that a certain performance criterion is
optimized in some sense. Regardless of the optimization method, it is usually desired to adjust the
filter coefficients such that the filter output y(n) resembles a desired signal d(n) usually arriving
from the ”look direction”, or equivalently, the error signal e(n) must be minimized. The details
of the optimization process defines the adaptive algorithm and its behavior.

Although the adaptive signal processing toolbox contains adaptive algorithms that are widely
used with linear combiner structures, such as the Linearly Constrained Least Mean Squares (see
Section 4.8), any of the adaptive algorithms mentioned in Section 2.2.1 can be used to update
the linear combiner coefficients. The only necessary modification needed is to feed the adaptive
algorithm with an input vector derived from temporal samples of N different signals rather than
from delayed samples of a single signal.

2.2.3 Recursive Filters

Z-1

Z-1

a1

Σ
x(n)

x(n-1)

x(n-2)

x(n-N-1)

+
a0

Z-1

a2

aN-1

Σ

Σ

+

+

+

+

+

Σ

Σ

Σ

+

+

+

+

+ b1

b2

bN-1

y(n)

Z-1

Z-1

y(n-1)

y(n-2)

y(n-N-1)

Z-1

Figure 2.3: Recursive filter structure.

12

2.2. Filter Structures supported by ASPT

All filter structures mentioned so far are non-recursive structures that calculate the filter output
from a linear combination of their input but do not make use of any feedback mechanism. Such non-
recursive filters have impulse responses of limited duration and therefore known as Finite Impulse
Response (FIR) filters. A filter structure that calculates its output as a linear combination of its
current and previous input samples as well as previous samples of its output, such that shown
in Fig. 2.3, is referred to as a recursive filter. Recursive filters usually have very long impulse
response, therefore, they are referred to as Infinite Impulse Response (IIR) filters. The output
y(n) of an IIR filter is given by

y(n) =
N−1
∑

i=0

ai(n) · x(n− i) +
M
∑

j=1

bj(n) · y(n− j), (2.5)

where ai(n); i = 0, 1, · · · , N − 1 are the feed-forward coefficients and bj(n); j = 1, 2, · · · ,M are the
feedback coefficients of the IIR filter. In vector notations, eq (2.5) can be written as

y(n) = a(n)T · x(n) + b(n)T · y(n). (2.6)

where a(n) = [a0(n) a1(n) · · · aN−1(n)] is the vector of feed-forward coefficients at time index
n, b(n) = [b1(n) b2(n) · · · bM (n)] is the vector of feedback coefficients at time index n, x(n) =
[x(n) x(n − 1) · · · x(n − N + 1)], is the vector of current and past input samples, y(n) =

[y(n − 1) y(n − 2) · · · y(n −M)], is the vector of past output samples, and (·)T is the vector
transpose operator.

Besides calculating the filter output, an adaptive IIR filter must also update the N + M filter
coefficients to optimize some performance function in the same manner as in the case of FIR
adaptive filters. Adjusting the coefficients of an IIR filters, however, is complicated by two factors.
The first is that the filter can run unstable very easily during adaptation if the filter poles shift
outside the unit circle. The second is that the performance function to be optimized, in general,
has many local minima which might lead to adjusting the filter coefficients to one of those minima
and not to the desired global minimum. This is in contrast to the performance functions (the mean
square error function for instance) usually encountered in adapting FIR filters which have a single
global minimum. Despite those difficulties, recursive adaptive filters have found many practical
applications, especially in control systems. In such applications, adaptive IIR filters offer great
advantages when the physical system to be controlled or modeled is of a recursive nature as is the
case of adaptive control of mechanical systems, and in active vibration control systems. In such
applications, an adaptive IIR filter of a few coefficients can result in much better performance than
an FIR of a few thousand coefficients. The adaptive signal processing toolbox provides many IIR
adaptive algorithms such as the Equation Error (see Section 6.2), the Output Error (see Section
6.3), and the Simple Hyperstable Adaptive Recursive Filter (see Section 6.4). Furthermore, three
algorithms for adapting second order IIR sections are provided, namely, SOIIR1, SOIIR2, and
CSOIIR2 (see Sections 6.5, 6.6, and 6.1, respectively).

2.2.4 Lattice Filters

Lattice structures are widely used in prediction applications. Fig. 2.4 shows the lattice predictor
structure of order M. Stage m+ 1 of the lattice predictor has two inputs from the previous stage,
namely the forward and backward prediction errors efm

(n) and ebm
(n), respectively, and produces

two outputs efm+1
(n) and ebm+1

(n). The two outputs are given by the following order update
equations

efm+1
(n) = efm

(n) − km+1ebm
(n− 1),

ebm+1
(n) = ebm

(n− 1) − km+1efm
(n).

(2.7)

13

Chapter 2. Introduction to Adaptive Filters

Z-1

k1

Σ

Σ

k1

+

-

-

+

eb1

ef1ef0

eb0
Z-1

k2

Σ

Σ

k2

+

-

-

+

eb2

ef2

x(n)

…

…

Z-1

kM

Σ

Σ

kM

+

-

-

+

ebM

efM

Figure 2.4: Block diagram of the lattice predictor.

The input of the first lattice stage has its forward and backward errors equal to the input signal

ef0
(n) = eb0(n) = x(n). (2.8)

The coefficient km of stage m is known as the partial correlation coefficient (PARCOR) or the
reflection coefficient. The set of PARCOR coefficients for an M-stage lattice predictor are related
to the coefficients of the transversal predictor of the same order (see Section 2.4.3). In fact the
lattice and transversal predictors are equivalent. The Levinson-Durbin algorithm is an efficient
procedure to calculate the transversal predictor coefficients a from the autocorrelation function
of the input sequence and it also provides the PARCOR coefficients for the corresponding lattice
predictor. The following properties are well known for lattice structures

• The PARCOR coefficients always satisfy the relation |km| ≤ 1.

• The power of the forward prediction error E[e2fm
(n)] and the backward prediction error

E[e2bm
(n)] of the same stage are equal.

• The backward prediction errors eb0(n), eb1(n), · · · , ebM
(n) are uncorrelated with one another

for any input sequence x(n). This property is very important since it shows that the lat-
tice predictor can be seen as an orthogonal transformation with the input signal samples
x(n), x(n − 1), · · · , x(n −M + 1) as input and the uncorrelated (orthogonal) output as the
backward error from the M-stages.

• The power of the prediction error decreases with increasing lattice order. The error power
decrease is controlled by the PARCOR coefficients according to the relation Pm+1 = (1 −
k2m+1) Pm, where Pm+1 is the power of the forward or backward prediction error at stage
m. This indicates that the closer the value of km+1 to unity the higher the contribution of
stage m in reducing the prediction error. Usually the first few PARCOR coefficients have
higher magnitude with the magnitude of the coefficients dropping to values close to zero for
later stages.

Although the operation of lattice filters are usually described in the prediction context, the appli-
cation of lattice filters is not limited to prediction applications. A traditional adaptive transversal
filter can also be implemented using the lattice structure as shown in Fig. 2.5. The structure in
Fig. 2.5 is known as the joint process estimator since it estimates a process d(n) from another
correlated process x(n). The joint process estimator consists of two separate parts, the lattice
predictor part and the linear combiner part. The lattice predictor part main function is to trans-
form the input signal samples x(n), x(n − 1), · · · , x(n −M + 1) that might be well correlated to
the uncorrelated backward prediction errors eb0(n), eb1(n), · · · , ebM

(n). The linear combiner part
calculates the equivalent transversal filter output according to the relationship

y(n) =

M
∑

i=1

ci ebi
(n). (2.9)

14

2.2. Filter Structures supported by ASPT

Z-1

k1

Σ

Σ

k1

+

-

-

+

eb1

ef1ef0

eb0
Z-1

k2

Σ

Σ

k2

+

-

-

+

eb2

ef2

x(n)

…

…

Z-1

kM

Σ

Σ

kM

+

-

-

+

ebM

efM

c1 c2 cM

ΣΣ

c3

Σ …+ + +
+ +

+Σ
d(n)e(n)

Adaptive Algorithm

y(n)
-

Figure 2.5: Block diagram of the joint process estimator.

An adaptive joint process estimator adjusts both the PARCOR coefficients ki i = 1, 2, · · · ,M ; and
the linear combiner coefficients ci; i = 1, 2, · · · ,M simultaneously. The PARCOR coefficients are
adjusted to minimize the forward and backward prediction error power and the linear combiner
coefficients are adjusted to minimizes the square of error signal e(n) = d(n) − x(n) as shown in
Fig. 2.5.

2.2.5 Nonlinear Filters

In many applications linear filtering techniques do not provide satisfactory results and nonlinear
filters must be used. For instance, in data communication applications it is known that the
transmission errors on telephone lines at transmission rates higher than 4800 bits/s are caused
almost entirely by nonlinear distortion. In applications such as subscriber lines that use much
higher transmission rate, even a slight channel nonlinearity may cause problems for a linear echo
canceler. The solution to such problems is to use nonlinear filters, equalizers, or controllers to
manage the nonlinear systems at hand. Unlike linear systems that have a unique theory, there
exists no unique method to model and characterize nonlinear systems. Different types of nonlinear
systems have been developed to solve specific problems. The most commonly used nonlinear
techniques are order statistics filters, polynomial filters, morphological filters, and homomorphic
filters [7]. Of those techniques, the polynomial filters are supported by the current release of
ASPT. The most widely used polynomial filters are the Volterra filters discussed below.

A causal nonlinear time-invariant continuous system with finite memory can be modeled by a
continuous Volterra series of finite order and finite memory as follows,

y(t) = h0 +
T
∫

0

h1(t1)x(t− t1)dt1 +
T
∫

0

T
∫

0

h2(t1, t2)x(t− t1)x(t− t2)dt1dt2 + · · ·

+
T
∫

0

· · ·
T
∫

0

hk(t1, · · · , tk)x(t− t1) · · ·x(t− tk)dt1 · · · dtk,

(2.10)

where the multidimensional functions hk(t1, · · · , tk) are the Volterra kernel functions that are
assumed to be symmetric with respect to their variables. Similarly, a causal nonlinear time-

15

Chapter 2. Introduction to Adaptive Filters

invariant discrete system with finite memory can be modeled by a discrete Volterra series of finite
order and finite memory as follows,

y(n) = h0 +
N−1
∑

m1=0
h1(m1)x(n−m1) +

N−1
∑

m1=0

N−1
∑

m2=0
h2(m1,m2)x(n−m1)x(n−m2) + · · ·

+
N−1
∑

m1=0
· · ·

N−1
∑

mk=0
hk(m1, · · · ,mk)x(n−m1) · · ·x(n−mk).

(2.11)

One of the important properties of the Volterra series based filters is that the output of both the
continuous and discrete Volterra filters are linear functions with respect to the coefficients. The
nonlinearity of the filter is introduced by forming the cross products of the input signals. This
linearity property allows applying much of the linear systems theory, including linear adaptive fil-
tering, to the Volterra series based nonlinear filters. A disadvantage of the Volterra filters, however,
is that they can not be used to model strong nonlinearity such as saturation and discontinuity.

To illustrate, the second order Volterra filter is discussed in more details below. The output of
the second order Volterra filter with symmetric coefficients is given by

y(n) =

N−1
∑

m1=0

w1(m1)x(n−m1) +

N−1
∑

m1=0

N−1
∑

m2=m1

w2(m1,m2)x(n−m1)x(n−m2), (2.12)

where N is the filter memory length. The linear relationship mentioned above allows writing
equation (2.12) in vector notation as follows,

y(n) = w(n)T x(n), (2.13)

where w(n) is the vector of filter coefficients including the linear kernel, w1 and the nonlinear
kernel, w2. As an example, the coefficients vector of a second order Volterra filter of memory
length 3 are given by

w(n) = [w1(0), w1(1), w1(2), w2(0, 0), w2(0, 1), w2(0, 2), w2(1, 1), w2(1, 2), w2(2, 2)]. (2.14)

The vector x(n) includes the current and past input samples as well as the cross products needed
to calculate the nonlinear part of the filter output.

x(n) = [x(n), x(n−1), x(n−2), x2(n), x(n)x(n−1), x(n)x(n−2), x2(n−1), x(n−1)x(n−2), x2(n−2)].
(2.15)

The total length of w(n) and x(n) for the second order Volterra filter is N + sum(1 : N) or
3 + (1 + 2 + 3) = 9 in the above example.

Besides calculating the filter output, an adaptive second order Volterra filters must also adjust
the filter coefficients to optimize a certain performance index in some sense such that the filter
output becomes as close as possible to the desired signal d(n). Again, due to the linearity property
mentioned above, methods used to adapt linear adaptive filters can readily be applied to adapt the
coefficients of the Volterra adaptive filter. The current release of ASPT contains several functions
that implement Volterra filters. For fixed filters, sovfilt() (Section 9.11) calculates the output
of a second order Volterra filter. Second order Volterra adaptive filters can be implemented
using asptsovlms() (Section 8.1), asptsovnlms() (Section 8.2), asptsovrls() (Section 8.3),
asptsovtdlms() (Section 8.4), or asptsovvsslms() (Section 8.5).

16

2.3. Basic Adaptive Filter Model

2.3 Basic Adaptive Filter Model

The optimization problem on which all ASPT functions are designed to solve is shown in Fig. 2.6.
The adaptive filter is the dotted box in this figure and consists of two parts. The filter part and
the update part. The filter part (labeled ”Adjustable filter” in Fig. 2.6), can be based on any
of the filter structures mentioned in Section 2.2. The function of the filter part is to calculate
the filter output signal y(n) as shown in Sections 2.2.1 to 2.2.4. The set of filter coefficients are
continuously adjusted by the update part. The update part (labeled ”Adaptive algorithm” in
Fig. 2.6) is responsible for adjusting the filter coefficients so that the filter output y(n) becomes
as close as possible to a desired signal d(n). In most cases, the update part changes the filter
coefficients in small steps to minimize a certain function of the error signal e(n), defined as the
difference between the desired signal d(n) and the filter output y(n),

e(n) = d(n)− y(n). (2.16)

The function to be minimized is often referred to as the performance functions, also known as the
performance index. The performance function can be chosen based on statistic or deterministic
approaches.

Adaptive
algorithm

Adjustable
filter

x(n)

d(n)

e(n)

y(n) +

-

Figure 2.6: Block diagram of the general adaptive filtering problem.

The most commonly used statistical performance function is the mean square of the error signal
ζ(n) = E{e2(n)}, where E{·} is the expectation operator. In this case, the update part of the
adaptive filter adjusts the filter coefficients to minimize the mean square value of the error signal.
On achieving this goal, and in ideal situations, the statistical average (mean value) of the error
approaches zero, and the filter output approaches the desired signal. The adaptive filter has
converged to its optimum solution in the mean square sense. When the input x(n) and desired
d(n) are stationary signals, this optimization process leads to the well known Wiener filter [11].
The Least Mean Square (LMS) algorithms is a good example of a practical algorithm based on this
statistical approach. The exact details on how the coefficients are adjusted define the time it takes
to reach the final solution (the conversion time) and the difference between this final solution and
the optimum solution (the final misadjustment). Many ASPT functions are based on this statistical
framework. Examples are asptlms() (Section 4.9), asptnlms() (Section 4.11), asptleakynlms()
(Section 4.7), asptvsslms() (Sections 4.10) for time domain sample per sample transversal and
linear combiner filters. For time domain sample per sample recursive filters aspteqerr() (Section
6.2), and asptouterr() (Section 6.3). For block processing transversal filter asptbfdaf() (Section
4.2), asptpbfdaf() (Section 4.12), and asptrcpbfdaf() (Section 4.13). And finally for lattice
filters asptlmslattice() (Section 5.4), asptlbpef() (Section 5.2), and asptlfpef() (Section
5.3).

A commonly used deterministic performance function is the weighted sum of the squared value of
the previous error signal samples ζ(n) = Σn

k=1λ
n−ke2(k), where λ is a constant close to, but less

than one, and k = 1, 2, · · · , n. This choice puts more emphasis on recent observed error samples

17

Chapter 2. Introduction to Adaptive Filters

and gradually forgets about the past samples, a good reason for calling the parameter λ the for-
getting factor. Minimizing ζ(n) leads to an optimum set of filter coefficients for the given set of
data that makes the filter output y(n) as close as possible to the desired signal d(n) in the least
squares sense. It is worth mentioning, however, that if the set of data satisfy certain statistical
properties, and a large data length is used, the optimum filter coefficients obtained from this deter-
ministic optimization approaches the Wiener (statistical) solution [4]. The deterministic approach
mentioned above is the basis for the Recursive Least Squares (RLS) algorithm and its derivatives
known for fast convergence and fast tracking properties. Examples of ASPT functions that are
based on the deterministic framework are asptrls() (Section 4.16). And finally for lattice filters
asptrlslattice() (Section 5.5), asptrlslbpef() (Section 5.7), and asptrlslfpef() (Section
5.8).

ASPT functions are all designed to match the model shown in Fig. 2.6. Besides parameters
specific for each algorithm, the adaptive algorithms take the input x(n), desired d(n), and the
filter coefficients vector from previous iterations as input parameters and provide the filter output
y(n), the error signal e(n), and the updated filter coefficients as output parameters. For sample
per sample algorithms such as the asptlms(), the adaptive function is called each sample in a
loop to process each pair of input and desired samples. For block processing functions such as
the asptbfdaf(), the adaptive algorithm is called each B samples, where B is the block length
to process B input and B desired samples and provides B output and B error samples. The filter
coefficients are then updated each B samples, the frequency of calling the adaptive algorithm. This
closely simulates real time implementations and provides insight into real time implementations
performance. More details on the operation of adaptive algorithms, their characteristics, and
properties are given in the reference page of each algorithm. For theoretical background on those
algorithms, the reader is referred to one of the classical text books mentioned at the end of this
document.

2.4 Adaptive Filters Applications

Adaptive filters have become invaluable system component in modern industry. Without adaptive
filters, many of the systems we currently rely on in our daily life would not exist. This section
summarizes the most common applications of adaptive filters currently used in commercial systems.
System identification and forward modeling applications using adaptive filters are described in
Section 2.4.1, equalization and inverse modeling in Section 2.4.2, adaptive linear prediction in
Section 2.4.3, adaptive autoregressive spectrum analysis in Section 2.4.4, echo cancellation in
Section 2.4.5, and finally adaptive interference canceling in Section 2.4.6

2.4.1 System Identification and Forward Modeling

System identification is an essential stage in control systems design. The goal of this stage is
to establish a model of the physical system (plant) to be controlled. The control system is then
designed to meet the design criteria based on the plant model. In many cases, the system to
be controlled is slowly time varying and it is therefore of little use to design a control system
based on the plant model. Instead, an adaptive control system is used and in most cases, the
system identification is also performed on-line using an adaptive modeling or adaptive system
identification as shown in Fig. 2.7. The controller in this case is referred to as an adaptive
controller or a self-tuning regulator.

Another common application in which adaptive system identification is widely used is active noise
and vibration control (ANVC), which usually employ adaptive controllers. All ANVC adaptive
algorithms rely on an adaptive model for the secondary path between the control actuators and
the error sensors. ANVC system might perform their system identification step in a stage prior to

18

2.4. Adaptive Filters Applications

Adaptive
algorithm

Adjustable
filter

Physical
system

x(n) d(n)

e(n)

y(n) +

-

Figure 2.7: Block diagram of the general adaptive system identification (forward modeling)
problem.

operation or update the secondary path model during operation depends on how fast the changes
in the physical secondary path occur.

The adaptive model is obtained by exciting the physical system to be modeled and the adaptive
filter by a spectrally rich and persistent input signal x(n) as shown in Fig. 2.7. An adaptive
algorithm is then used to minimize the difference e(n) between the physical system output d(n)
and the adaptive filter output y(n). On convergence, and in ideal cases, the error signal is reduced
to zero and y(n) approaches d(n). This in turn means that the filter impulse response approaches
the physical systems’ response.

It is important to note that successful adaptive system identification start with correctly choosing
the adaptive filter structure. When the plant response is oscillatory in nature, an infinite impulse
response adaptive filter updated using the equation error algorithm (section 6.2) or the output error
algorithm (Section 6.3) might be used. When the system response is short, an FIR transversal filter
is usually preferred for stability reasons. An FIR adaptive model might be updated using the least
mean squares or its normalized version (Section 4.9 and 4.11, respectively). For longer FIR models,
frequency domain adaptive algorithms (such as BFDAF and PBFDAF, discussed in Sections 4.2
and 4.12, respectively) give superior performance and huge computational saving. Lattice adaptive
filters have also been successfully and advantageously used in some applications such as modeling
of the earth layers in seismic explorations. Adaptive lattice filters might be updated using the
LMS-lattice or RLS-lattice algorithms (Sections 5.4 and 5.5, respectively). The Adaptive Signal
Processing Toolbox includes many system identification examples for different physical systems and
using different adaptive algorithms. Examples of those examples are model_arlmsnewt (Section
10.21), model_eqerr (Section 10.22), model_lmslattice (Section 10.23), model_mvsslms (Section
10.24), model_outerr (Section 10.25), model_rlslattice (Section 10.26), model_sharf (Section
10.27), model_tdlms (Section 10.28), and model_vsslms (Section 10.29).

2.4.2 Equalization and Inverse Modeling

The basic idea of inverse modeling, also known as deconvolution or equalization, is shown in
Fig. 2.8. The input signal u(n) is filtered through a physical system, which might be a commu-
nication channel for instance. The observed distorted signal x(n) is filtered through an adaptive
inverse model of the physical system such that the output y(n) is as close as possible to the input
signal u(n). To achieve this goal, the coefficients of the adaptive filter are adjusted to minimize
the difference between the filter output y(n) and a delayed version of the input u(n). The delay ∆
is chosen to match the delay introduced by the combined physical system and the adaptive filter
path. On convergence, the convolution of the adaptive filter response and the physical system
response equals to a delayed impulse δ(n − ∆). The frequency response of the adaptive filter

19

Chapter 2. Introduction to Adaptive Filters

Adaptive
algorithm

Adjustable
filter

Delay
∆

x(n)

d(n)

e(n)

y(n) +

-
Physical
system

u(n)

Figure 2.8: Block diagram of the general adaptive system identification (forward modeling)
problem.

W(z) is then an approximation of the inverse of the frequency response of the physical system
H(z) such thatW(z) ' z−∆/H(z). The adaptive filter in such applications basically tries to undo
the distortion introduced by the physical system to restore the input signal as much as possible.

Inverse modeling has found many practical applications in control systems and communication
systems. The most widely used application of this technique is channel equalization, where the
physical system is a communication channel and the adaptive filter is referred to as an adaptive
channel equalizer filter. The input signal u(n) in this case is the transmitted data (usually in the
form of modulated pulses). The transmitted data is distorted by the communication channel in
different ways. The most serious kind of distortion is the inter-symbol interference resulting from
the fact that the channel response is never an impulse but one that is nonzero over many symbol
periods. This results in interference between neighboring data symbols making symbol detection
using a simple threshold detector unreliable and, therefore, increasing the detector symbol error
rate. The adaptive equalizer is required to reduce the inter-symbol interference distortion while
avoiding amplifying the additive noise usually present at the equalizer input.

The problem in the above channel equalizer setup is that the reference signal u(n) is not available
during normal transmission at the receiver side to be used as the desired signal, which is necessary
for updating the equalizer coefficients. This is solved by introducing a training session prior to
transmission. In the training session, the transmitter sends a sequence of training symbols that are
known at the receiver side. The training sequence is locally generated at the receiver and used to
adjust the equalizer coefficients to minimize the symbol error rate. Once the optimal coefficients
have been found, the detected symbols are similar to the transmitted symbols and can be used as
the desired signal for further adaptation of the equalizer coefficients to track any further changes in
the channel. This mode of operation is usually referred to as the decision directed mode and works
well as long as the changes in the communication channel is slow enough and the adaptive algo-
rithm can successfully track the changes. Channel equalizers are usually implemented as adaptive
transversal FIR filters. The Adaptive Signal Processing Toolbox includes several inverse modeling
applications such as equalizer_nlms (Section 10.19), and equalizer_rls (Section 10.20).

2.4.3 Adaptive Linear Prediction

The general block diagram of a forward prediction system is shown in Fig. 2.9. In this application
it is required to estimate the current sample of the input sequence x(n) as a linear combinations of
the past M input samples x(n−∆), x(n−∆− 1), · · · , x(n−∆−M +1). To achieve this goal, the
desired signal is taken as the system input d(n) = x(n) and the adaptive filter input is a delayed
version of the system input x(n−∆). The filter output y(n) is the required linear combination of
the past input samples. The adaptive algorithm adjusts the coefficients of the adaptive filter so
that the error signal e(n) = d(n)− y(n) is minimized in some sense. Upon convergence the error
signal e(n) becomes uncorrelated with the filter input signal x(n −∆). This indicates that x(n)

20

2.4. Adaptive Filters Applications

Adaptive
algorithm

Adjustable
filter

Delay
∆

x(n-∆)

d(n) = x(n)

e(n)

y(n) +

-

x(n)

Figure 2.9: Block diagram of the general forward prediction problem.

can be uniquely expressed as the linear combination of y(n) plus the residual uncorrelated term
e(n).

The adjustable filter in the above system is called the forward predictor, which might have any
underlying filter structure. The most widely used filter structures in prediction applications are
the transversal and lattice filters. Fig. 2.10 shows the forward predictor with a transversal adaptive
filter of order M and the delay ∆ = 1. The filter output in this case is referred to as the M th

order forward prediction of the input x(n) and is given by [11]

y(n) =
M
∑

i=1

ai x(n− i). (2.17)

The error signal ef (n) = x(n) − y(n) is referred to as the M th order forward prediction error.
Minimizing |ef (n)|

2 results in a conventional Wiener filtering problem with a solution for the
optimal forward predictor coefficients a given by

a = R r. (2.18)

Defining the autocorrelation function of the input at lag k as r(k) = E[x(n)x(n− k)], then R and
r in (2.18) can be expressed as

R =

r(0) r(1) · · · r(m− 1)
r(1) r(0) · · · r(m− 2)
...

...
. . .

...
r(m− 1) r(m− 2) · · · r(0)

, r =

r(1)
r(2)
...

r(m)

(2.19)

The system that has its input as x(n) and its output e(n) is known as the forward prediction-error
filter.

Similarly, the backward predictor of order M has its desired signal d(n) = x(n−M) and its input
x(n) as shown in Fig. 2.11. The backward predictor estimates x(n−M) as a linear combination
of x(n), x(n − 1), · · · , x(n −M + 1) by minimizing the error signal eb(n) = x(n −M) − y(n) in
some sense. The filter output in this case is referred to as the M th order backward prediction of
the input x(n) and is given by

y(n) =

M
∑

i=1

bi x(n− i+ 1). (2.20)

The error signal eb(n) is referred to as the M th order backward prediction error. Minimizing
|eb(n)|

2 results in a conventional Wiener filtering problem with a solution for the optimal backward
predictor coefficients b given by

21

Chapter 2. Introduction to Adaptive Filters

Z-1 …Z-1 Z-1

aMa2a1

Σ Σ…

Adaptive Algorithm

x(n) x(n-1) x(n-2) x(n-M)

Σ

ef(n)

+
-

Figure 2.10: Block diagram of the transversal forward prediction problem.

b = R rb. (2.21)

Where R is the same as in (2.19) since x(n) is considered to be a stationary process and rb is
given by

rb =

r(m)
r(m− 1)

...
r(1)

, (2.22)

which is the same as r in (2.19) with the elements arranged in reverse order. This indicates that the
optimal backward predictor coefficients are the same as the optimal forward predictor coefficients
of the same order but arranged in reverse order such that

bi = aM+1−i, for i = 1, 2, · · · ,M. (2.23)

The backward prediction-error filter is the system with input x(n) and output e(n). For the
backward predictor with optimal coefficients it also holds that the input sequence x(n) and the
backward prediction error eb(n) are uncorrelated. Moreover, the J th order backward prediction
error ebJ

(n) for J = 0, 1, · · · ,M are uncorrelated with one another. This latter property is used
in the lattice joint process estimators to decorrelate the input sequence samples as discussed in
Section 2.2.4.

Besides the transversal predictors, the lattice predictor has also found a wide range of practical
applications. Transversal and lattice predictors are closely related, namely there is a unique
relationship between the coefficients of the optimum (forward and backward) transversal predictor
of order M and the optimum reflection coefficients of the lattice predictor of the same order as
mentioned in Section 2.2.4.

2.4.4 Adaptive Autoregressive Spectrum Analysis

The power spectrum of a discrete-time stochastic process can be estimated by assuming that the
process can be modeled using a linear process as shown in Fig. 2.12. In this figure, the process
x(n) is modeled as the output of the linear filter H(ω), the input of which is a white noise u(n).
In this case, the power spectrum of x(n) is given by

Sx(ω) = σ2u|H(ω)|2, (2.24)

22

2.4. Adaptive Filters Applications

Z-1 …Z-1 Z-1

bMb2

Σ Σ Σ…

Adaptive Algorithm

x(n) x(n-1) x(n-2) x(n-M)

b1

x(n-M+1)

+
-

eb(n)

Figure 2.11: Block diagram of the transversal backward prediction problem.

where σ2u is the variance of the white noise u(n) which has a flat spectrum. From eq. (2.24) it is
clear that the power spectrum of x(n) can be obtained by estimating the transfer function H(ω).
This can be done by using an adaptive prediction structure. A case of practical interest is when
the filter H(ω) can be modeled as an all-pole autoregressive model with transfer function given by

H(ω) =
1

1− ΣM
k=1ake−jωk

. (2.25)

H(z)
u(n) x(n)

Figure 2.12: Autoregressive process modeling.

In this case, the AR parameters, {a1, a2, · · · aM} can be estimated using an adaptive transversal
prediction error filter as shown in Fig. 2.13. The power spectrum function of x(n) can then be
calculated from

Sx(ω, n) =
σ2u

|1− ΣM
k=1ak(n)e−jωk|2

. (2.26)

In eq. (2.26), the power spectrum Sx(ω, n) as well as the autoregressive parameters ak; k =
1, 2, · · ·M are considered time varying. This provides a practical procedure for measuring the
instantaneous frequency contents of the process x(n) from the autoregressive parameters.

2.4.5 Echo Cancellation

Echo cancelers have become essential components in many applications, especially in communica-
tions. Echo cancelers can be divided into two main categories, namely Network Echo Cancelers
(NEC) and Acoustic Echo Cancelers (AEC). Both types of echo cancelers rely on an adaptive
filter to estimate the echo and subsequently use this estimate to reduce the echo in transmitted
signals. The requirements, performance, underlying structure, and adaptive algorithms used to
implement a NIC are usually different from those used to implement an AEC. The NEC and AEC
are discussed separately in more details in Section 2.4.5.1 and 2.4.5.2, respectively.

2.4.5.1 Network Echo Cancelers

Network echo cancelers are essential in telephone networks, especially long-distance calls. Echos
in telephone lines are generated mostly at the hybrid devices located in central switching offices.

23

Chapter 2. Introduction to Adaptive Filters

Z-1 …Z-1 Z-1

aMa2a1

Σ Σ…

Adaptive Algorithm

x(n) x(n-1) x(n-2) x(n-M)

Σ

ef(n)

+
-

Figure 2.13: Block diagram of the adaptive transversal forward prediction error filter.

HybridAdaptive
algorithm

Adjustable
filter

x(n)

d(n)e(n)

y(n)

+
_

Network
Element

Network
Element

Rout

SinSout

Rin

echo

Figure 2.14: Block diagram of the network echo canceler.

The function of the hybrid is to convert the end of the two-wire subscriber link which connects
the subscriber’s telephone to the central office (at the right side of Fig. 2.14) to the four-wire
inter-office trunk lines (at the left side of Fig. 2.14). A perfect hybrid would pass all incoming
voice signals (Rin) through to the two-wire side without any leakage. Such a perfect hybrid,
however, does not exist in practice and usually a portion of the incoming voice signal is leaked to
the transmit terminal (Sin). The result is that the remote user will hear his own voice delayed
by the network round trip (network delay). The longer the network delay, the more annoying the
echo becomes, a phenomenon well observed in long-distance calls. When the telephone network
is used for data communication (such as in modem and fax applications), both short and long
delayed echo have severe consequences.

This problem can be solved by employing a network echo canceler at the four-wire side of the
hybrid as shown in Fig. 2.14. The network echo canceler is usually an adaptive transversal filter
the coefficients of which are adjusted to minimize the error signal e(n) at the Sout terminal.
By minimizing the error, the adaptive filter coefficients converge to a FIR model of the hybrid
circuit since the hybrid and the adaptive filter share the input and the error is formed by taking
the difference between the hybrid output and the adaptive filter output signals. Filtering the
incoming signal through the hybrid model results in an estimate of the echo, shown as y(n) in
Fig. 2.14. Subtracting this echo estimate from the signal at the Sin terminal reduces the echo at
the Sout terminal.

For sufficient echo reduction, the number of coefficients of the adaptive transversal filter should
be chosen so that an accurate estimate of the hybrid impulse response can be estimated. Usually,

24

2.4. Adaptive Filters Applications

the hybrid impulse response is assumed to last for 20 to 30 milliseconds. Assuming that the echo
canceler is working at sampling frequency of 8 kHz, the number of coefficients of the adaptive
filters are usually in the range of 240 coefficients. Such filter can be readily implemented on any
general purpose DSP using the Normalized Least Mean Squares (see Section 4.11) or the Leaky
NLMS algorithms (see Section 4.7). Several echo canceler application scripts are also included
with ASPT such as echo_nlms (Section 10.16), echo_leakynlms (Section 10.15), echo_bfdaf
(Section 10.14), and echo_pbfdaf (Section 10.17).

2.4.5.2 Acoustic Echo Cancelers

Adaptive
algorithm

Adjustable
filter

x(n)

d(n)e(n)

y(n)

+
_

Rout

SinSout

Rin

echo

Mic

Spkr

Room boundaries

Figure 2.15: Block diagram of the acoustic echo canceler.

Acoustic echo cancelers are necessary in applications such as hands-free telephony, speakerphones,
desktop communication, audio and video conferencing, voice command, desktop dictation, speech
recognition, and many more. The problem addressed by the acoustic echo canceler in all those
applications is illustrated in Fig. 2.15. In this figure, one side of a communication channel (of
an audio conference for instance) is shown. The received speech or audio signal (Rout) is played
through a loudspeaker so that all users in the local conference room can hear what the remote users
say. The speech of the local users (Sin) is collected by one or more microphones and transmitted
through the communication channel to the remote users. The problem in this setup is that the
voice of the remote users played through the loudspeaker and its reflections off the room boundaries
will also be collected by the microphones and transmitted back with the voice of the local user to
the remote users who will hear their own voice delayed by the network and acoustic delay of the
communication chain. The presence of the acoustic echo in the communication chain makes the
users feel that they are being interrupted by their own echo, forcing them to stop speaking until
the echo is faded away and the process is repeated over and over again. When the delay is large
enough, which is usually the case in most communication applications especially mobile and voice
over Internet protocol, this acoustic echo degrades the quality of the communication considerably.

The acoustic echo problem mentioned above can be considerably reduced by an acoustic echo
canceler as shown in Fig. 2.15. The main function of the AEC is to estimate the acoustic echo
and subtract this estimate from the microphone signal. In the best case, when the estimate is
accurate, this leads to eliminating the acoustic echo completely. This best case, however, is not
easy to realize in practical echo cancelers.

The AEC usually employs a transversal finite impulse response filter to estimate the acoustic echo.
The FIR coefficients are adjusted using an adaptive algorithm to minimize the (Sout) signal, which
is the adaptive filter error signal. The input (reference) signal for the adaptive filter is the far
end speech (Rin) while its desired signal is the near end speech (Sin). After convergence, the
adaptive filter coefficients will have an impulse response equals to the acoustic impulse response
between the loudspeaker and microphone, including the reflections off the room boundaries. Since

25

Chapter 2. Introduction to Adaptive Filters

this acoustic impulse response can last several hundreds of milliseconds, acoustic echo cancelers
usually employ adaptive FIR filters of several thousands coefficients. Adapting such a huge filter
in real time is a real challenge, and therefore, advanced and efficient adaptive algorithms that
reduce computational complexity and speed the convergence rate must be used. Examples of
adaptive algorithms that have been successfully used in AEC are the Block Frequency Domain
Adaptive Filter (see Section 4.2), and its partitioned version (see Section 4.12). The Normalized
Least Mean Squares (see Section 4.11) and Leaky NLMS (4.7) have also been used in simple AEC
applications when the acoustic impulse response is short. Several echo canceler application scripts
are also included with ASPT such as echo_nlms (Section 10.16), echo_leakynlms (Section 10.15),
echo_bfdaf (Section 10.14), and echo_pbfdaf (Section 10.17).

Finally, it should be noted that a communication channel of a speaker phone for instance should
employ both types of echo cancelers as shown in Fig. 2.16.

NEC

+

-
A
E
C

Hybrid Hybrid

Audio terminalLocal ExchangeInternational Exchange

+
-

Figure 2.16: Block diagram of a communication channel employing both acoustic and
network echo cancelers.

2.4.6 Adaptive Interference Canceling

Adaptive
algorithm

Adjustable
filter

x(n)

d(n)

e(n)

y(n) +

-Reference

Primary inputsignal

noise

Figure 2.17: Block diagram of the adaptive interference canceling setup.

Several practical applications of adaptive filters such as active noise and vibration control, beam
forming, and echo cancellation fall under the category of adaptive interference canceling. The
basic principle of adaptive interference canceling is shown in Fig. 2.17 [11]. In all interference
canceling application, a useful signal is corrupted with uncorrelated interference and it is desired
to recover the signal from the observed corrupted signal. Adaptive interference cancelers rely on
using two separate sensors. The first sensor is referred to as the primary input and receive a
combination of signal and interference (d(n) = s(n) + x1(n)), where s(n) is the signal generated
by the signal source and transmitted through the channel between the source and the primary
sensor, and x1(n) is the interference at the primary sensor. The second sensor, referred to as the
reference input, receives an interference x(n) which is correlated with x1(n) in some sense but

26

2.4. Adaptive Filters Applications

uncorrelated with s(n). The reference interference x(n) is filtered by an adaptive filter to produce
the filter output y(n). The adaptive filter coefficients are adjusted so that y(n) is as close as
possible to the interference at the primary sensor x1(n). The recovered signal is then the adaptive
filter error e(n) = d(n)− y(n).

The above principle can readily be extended to cancel multiple unwanted interferences by simply
adding one extra reference branch for each interfering signal. Each reference branch includes a
sensor that receives a signal correlated with one interference and uncorrelated with the useful
signal. The output of each reference sensor is filtered by an adaptive filter. The outputs of all
adaptive filters are added together to form the estimation of all interferences. This estimate is
subsequently subtracted from the corrupted signal to produce the clean signal.

A frequently mentioned application of adaptive interference canceling is cleaning power-line inter-
ference from weak sensor signals. This is essential in applications such as recording electrocardio-
grams (ECGs), weak vibration measurements, audio frequency measurements using microphones,
and many other applications that employ sensors to collect input data. The interference can be
occasionally reduced by proper grounding and using shielded cables, but can not be completely
eliminated. An adaptive interference canceler with a reference input taken from the power-line
(with proper attenuation) and the primary input taken from the sensor as shown in Fig. 2.18 can
be used to achieve much better results. The adaptive interference canceler will also track any
changes in the amplitude and phase of the power-line. In this application, only two filter coeffi-
cients are needed to track the phase and amplitude of the reference interference. Fig. 2.19 shows
the input and output signals of the adaptive interference canceler shown in Fig. 2.18. The result
shown in Fig. 2.19 can be regenerated by typing powerline in Matlab after installing ASPT. Using
ASPT, it is easy to simulate the power-line interference canceler, as shown in the code below. In
this code, the LMS algorithm is used to adjust a two-coefficient adaptive linear combiner. The
two inputs to the line combiner are the interference x1 and a 90◦ phase shifted version of the in-
terference, x2. The cleaned signal is the error of the adaptive line combiner. The same technique
has also been used in many other applications such as canceling donor-heart interference in heart
transplant ECG, and canceling the maternal ECG in fetal ECG, canceling noise in speech signals,
and canceling antenna sidelobe interference [11].

Adaptive
algorithm

x(n)

d(n)

e(n)

y(n) +

-

sensor

 90° W2

 W1
From power
line

Figure 2.18: Block diagram of the power-line adaptive interference canceler.

% File = powerline.m

% This script simulates a power-line interference canceler.

iter = 1000;

Fs = 200; % sampling frequency

t = (1:iter) ./ Fs; % sampled time

f = 50 + (2*triang(iter)-1); % interference freq, 50 +/- 1 Hz

27

Chapter 2. Introduction to Adaptive Filters

x1 = 0.2 * cos(2*pi*f.*t’); % interference

x2 = 0.2 * cos(2*pi*f.*t’-pi/2); % 90 deg phase shifted

% Load corrupted signal

load(strcat(asptdir,’\data\powerline.mat’));

sc = s;

[w,x,d,y,e] = init_lms(2);

for n=1:iter

[w,y,e] = asptlms([x1(n) ; x2(n)],w, s(n), 0.2);

sc(n) = e;

end

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

2

C
or

ru
pt

ed
 s

ig
na

l

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

2

C
le

an
ed

 s
ig

na
l

Time [sec]

Figure 2.19: Input and output signals of an adaptive interference canceler.

28

Chapter 3

ASPT Quick Reference Guide

This Chapter summarizes the functions and application scripts included in the current release
of the Adaptive Signal Processing Toolbox. Functions are grouped by filter structure. Section
3.1 summarizes the transversal adaptive algorithms. Section 3.2 summarizes the lattice adaptive
algorithms. Section 3.3 summarizes the recursive adaptive algorithms. Section 3.4 summarizes the
active noise and vibration control adaptive algorithms. ASPT also includes several non-adaptive
filtering functions, plotting functions, and help functions that are used to manage the iteration
progress window. Those functions are summarized in Section 3.6. Finally, a list of the scripts
simulating adaptive filters applications are given in Section 3.7.

3.1 Summary of Transversal adaptive algorithms

Functions implementing transversal adaptive filters algorithms are summarized in Table 3.1. The
initialization functions for those algorithms are summarized in Table 3.2. Each of the two tables
includes a short description of each function and a pointer to the function reference section.

Function Name Reference Short Description

asptarlmsnewt 4.1 AR-modeling implementation of LMS-Newton method.
asptbfdaf 4.2 Block Frequency Domain Adaptive Filter (BFDAF) algorithm.
asptblms 4.3 Block Least Mean Squares
asptbnlms 4.4 Block Normalized Least Mean Squares
asptdrlms 4.5 Data Reusing Least Mean Squares
asptdrnlms 4.6 Data Reusing Normalized Least Mean Squares
asptleakylms 4.7 Leaky Normalized LMS algorithm.
asptlclms 4.8 Linearly Constrained LMS (LCLMS) algorithm.
asptlms 4.9 Least Mean Squares (LMS) and several of its variants.
asptmvsslms 4.10 Modified Variable Step Size LMS algorithm.
asptnlms 4.11 Normalized LMS (NLMS) algorithm.
asptpbfdaf 4.12 Partitioned Block Frequency Domain (PBFDAF) algorithm.
asptrcpbfdaf 4.13 Reduced Complexity PBFDAF (RCPBFDAF) algorithm.
asptrdrlms 4.14 Recent Data Reusing Least Mean Squares
asptrdrnlms 4.15 Recent Data Reusing Normalized Least Mean Squares
asptrls 4.16 Recursive Least Squares (RLS) algorithm.
aspttdftaf 4.17 Transform domain Fault Tolerant Adaptive Filter.
aspttdlms 4.18 Transform domain LMS algorithm.
asptvffrls 4.19 Variable Forgetting Factor RLS (VFFRLS).
asptvsslms 4.20 Variable Step Size LMS (VSSLMS) algorithm.

Table 3.1: Functions implementing transversal adaptive algorithms.

Chapter 3. ASPT Quick Reference Guide

Function Name Reference Short Description

init arlmsnewt 4.21 Initialize AR modeling implementation of LMS-Newton method.
init bfdaf 4.22 Initialize Block Frequency Domain Adaptive Filter.
init blms 4.23 Initialize Block Least Mean Squares
init bnlms 4.24 Initialize Block Normalized Least Mean Squares
init drlms 4.25 Initialize Data Reusing Least Mean Squares
init drnlms 4.26 Initialize Data Reusing Normalized Least Mean Squares
init leakynlms 4.27 Initialize Leaky Normalized Least Mean Squares.
init lclms 4.28 Initialize Linearly Constrained LMS.
init lms 4.29 Initialize Least Mean Squares (LMS).
init mvsslms 4.30 Initialize Modified Variable Step Size LMS algorithm.
init nlms 4.31 Initialize Normalized LMS.
init pbfdaf 4.32 Initialize Partitioned Block Frequency Domain.
init rcpbfdaf 4.33 Initialize Reduced Complexity Partitioned BFDAF.
init rdrlms 4.34 Initialize Recent Data Reusing Least Mean Squares
init rdrnlms 4.35 Initialize Recent Data Reusing Normalized Least Mean Squares
init rls 4.36 Initialize Recursive Least Squares.
init tdftaf 4.37 Initialize Transform Domain Fault Tolerant Adaptive Filter.
init tdlms 4.38 Initialize Transform domain LMS.
init vffrls 4.39 Initialize Variable Forgetting Factor RLS (VFFRLS).
init vsslms 4.40 Initialize Variable Step Size LMS.

Table 3.2: Functions for creating and initializing the transversal adaptive filters.

3.2 Summary of Lattice Adaptive Algorithms

Functions implementing lattice adaptive filters algorithms are summarized in Table 3.3. The
initialization functions for those algorithms are summarized in Table 3.4. Each of the two tables
includes a short description of each function and a pointer to the function reference section.

Function Name Reference Short Description

asptftrls 5.1 Fast Transversal RLS algorithm.
asptlbpef 5.2 Lattice Backward Prediction Error Filter.
asptlfpef 5.3 Lattice Forward Prediction Error Filter.
asptlmslattice 5.4 LMS-Lattice Joint Process Estimator.
asptrlslattice 5.5 RLS-Lattice joint process estimator

using a posteriori estimation errors.
asptrlslattice2 5.6 RLS-Lattice joint process estimator

using a priori estimation errors with error feedback.
asptrlslbpef 5.7 Lattice Backward Prediction Error Filter.
asptrlslfpef 5.8 Lattice Forward Prediction Error Filter.

Table 3.3: Functions implementing lattice adaptive algorithms.

30

3.3. Summary of Recursive Adaptive Algorithms

Function Name Reference Short Description

init ftrls 5.9 Initialize Fast Transversal RLS.
init lbpef 5.10 Initialize Lattice Backward Prediction Error Filter.
init lfpef 5.11 Initialize Lattice Forward Prediction Error Filter.
init lmslattice 5.12 Initialize LMS Lattice adaptive filter.
init rlslattice 5.13 Initialize RLS-Lattice joint process estimator

using a posteriori estimation errors.
init rlslattice2 5.14 Initialize RLS-Lattice joint process estimator

using a priori estimation errors with error feedback.
init rlslbpef 5.15 Initialize Recursive Least Squares Lattice Backward PEF.
init rlslfpef 5.16 Initialize Recursive Least Squares Lattice Forward PEF.

Table 3.4: Functions for creating and initializing lattice adaptive algorithms.

3.3 Summary of Recursive Adaptive Algorithms

Functions implementing recursive adaptive filters algorithms are summarized in Table 3.5. The
initialization functions for those algorithms are summarized in Table 3.6. Each of the two tables
includes a short description of each function and a pointer to the function reference section.

Function Name Reference Short Description

asptcsoiir2 6.1 Cascaded Second Order type-2 IIR adaptive filter.
aspteqerr 6.2 Equation Error IIR adaptive algorithm.
asptouterr 6.3 Output Error IIR adaptive algorithm.
asptsharf 6.4 Simple Hyperstable Adaptive Recursive Filter (SHARF).
asptsoiir1 6.5 Second Order IIR adaptive algorithm type-1.
asptsoiir2 6.6 Second Order IIR adaptive algorithm type-2.

Table 3.5: Functions implementing recursive adaptive algorithms.

Function Name Reference Short Description

init csoiir2 6.7 Initialize Cascaded Second Order IIR adaptive filter.
init eqerr 6.8 Initialize Equation Error IIR adaptive filter.
init outerr 6.9 Initialize Output Error IIR.
init sharf 6.10 Initialize Simple Hyperstable Adaptive Recursive Filter.
init soiir1 6.11 Initialize Second Order IIR adaptive algorithm type-1.
init soiir2 6.12 Initialize Second Order IIR adaptive algorithm type-2.

Table 3.6: Functions for creating and initializing recursive adaptive algorithms.

3.4 Summary of Active Noise and Vibration Control Algo-

rithms

Functions implementing active noise and vibration control filters are summarized in Table 3.7.
The initialization functions for those algorithms are summarized in Table 3.8. Each of the two
tables includes a short description of each function and a pointer to the function reference section.

31

Chapter 3. ASPT Quick Reference Guide

Function Name Reference Short Description

asptadjlms 7.1 Adjoint-LMS algorithm.
asptfdadjlms 7.2 Frequency Domain Adjoint LMS algorithm.
asptfdfxlms 7.3 Frequency Domain Filtered-x LMS algorithm.
asptfxlms 7.4 Filtered-x LMS algorithm.
asptmcadjlms 7.5 Multichannel Adjoint-LMS algorithms.
asptmcfdadjlms 7.6 Multichannel Frequency Domain Adjoint LMS algorithm.
asptmcfdfxlms 7.7 Multichannel Frequency Domain Filtered-x LMS algorithm.
asptmcfxlms 7.8 Multichannel Filtered-x LMS algorithm.

Table 3.7: Functions implementing active noise and vibration control filters.

Function Name Reference Short Description

init adjlms 7.9 Initialize Adjoint LMS.
init fdadjlms 7.10 Initialize Frequency Domain Adjoint LMS.
init fdfxlms 7.11 Initialize Frequency Domain Filtered-x LMS.
init fxlms 7.12 Initialize Filtered-x LMS.
init mcadjlms 7.13 Initialize Multichannel Adjoint LMS.
init mcfdadjlms 7.14 Initialize Multichannel Frequency Domain Adjoint LMS.
init mcfdfxlms 7.15 Initialize Multichannel Frequency Domain Filtered-x LMS.
init mcfxlms 7.16 Initialize Multichannel Filtered-x LMS.

Table 3.8: Functions for creating and initializing active noise and vibration control filters.

3.5 Summary of Nonlinear Adaptive Algorithms

Functions implementing nonlinear adaptive filters are summarized in Table 3.9. The initialization
functions for those algorithms are summarized in Table 3.10. Each of the two tables includes a
short description of each function and a pointer to the function reference section.

Function Name Reference Short Description

asptsovlms 8.1 Second Order Volterra LMS and several of its variants.
asptsovnlms 8.2 Second Order Volterra Normalized LMS algorithm.
asptsovrls 8.3 Second Order Volterra RLS algorithm.
asptsovtdlms 8.4 Second Order Volterra Transform domain LMS algorithm.
asptsovvsslms 8.5 Second Order Volterra Variable Step Size LMS algorithm.

Table 3.9: Functions implementing nonlinear adaptive filters.

Function Name Reference Short Description

init sovlms 8.6 Initialize Second Order Volterra LMS.
init sovnlms 8.7 Initialize Second Order Volterra NLMS.
init sovrls 8.8 Initialize Second Order Volterra RLS.
init sovtdlms 8.9 Initialize Second Order Volterra Transform domain LMS.
init sovvsslms 8.10 Initialize Second Order Volterra Variable Step Size LMS.

Table 3.10: Functions for creating and initializing nonlinear adaptive filters.

32

3.6. Summary of Non-adaptive, Visualization and Help Routines

3.6 Summary of Non-adaptive, Visualization and Help Rou-

tines

Table 3.11 lists the visualization and help functions included in the current release of the Adaptive
Signal Processing Toolbox, with a short description of each function, and a pointer to the function
reference section.

Function Name Reference Short Description

init ipwin 9.1 Initializes iteration progress GUI window.
ipwin Builds the iteration progress GUI window.
getStop Returns the condition of the stop button in the IPWIN.
guifb Handles the GUI feedback functions of the IPWIN.
mcmixr 9.2 Calculates the response of N speakers at M microphones.
osfilter 9.3 Fast FIR filter using overlap-save.
plot ale 9.4 Generates plots for the Adaptive Line Enhancer problems.
plot anvc 9.5 Generates plots for Active Noise and Vibration Control.
plot beam 9.6 Generates plots for beam forming problems.
plot echo 9.7 Generates plots for echo canceling applications.
plot invmodel 9.8 Generates plots for inverse modeling problems.
plot model 9.9 Generates plots for modeling problems.
plot predict 9.10 Generates plots for linear prediction problems.
sovfilt 9.11 Second Order Volterra filter.
update ipwin 9.12 Updates the iteration progress GUI window.

Table 3.11: Non-adaptive, visualization, and help functions.

3.7 Summary of adaptive applications

Table 3.12 lists the simulation scripts of adaptive applications included in the current release of
the Adaptive Signal Processing Toolbox, with a short description of each script, and a pointer to
the application reference section.

33

Chapter 3. ASPT Quick Reference Guide

Script Name Reference Short Description

ale csoiir2 10.1 Adaptive Line Enhancer using CSOIIR2.
ale soiir1 10.2 Adaptive Line Enhancer using SOIIR1.
ale soiir2 10.3 Adaptive Line Enhancer using SOIIR2.
anvc adjlms 10.4 Active noise and vibration control using ADJLMS.
anvc fdadjlms 10.5 Active noise and vibration control using FDADJLMS.
anvc fdfxlms 10.6 Active noise and vibration control using FDFXLMS.
anvc fxlms 10.7 Active noise and vibration control using FXLMS.
anvc mcadjlms 10.8 Active noise and vibration control using MCADJLMS.
anvc mcfdadjlms 10.9 Active noise and vibration control using MCFDADJLMS.
anvc mcfdfxlms 10.10 Active noise and vibration control using MCFDFXLMS.
anvc mcfxlms 10.11 Active noise and vibration control using MCFXLMS.
beambb lclms 10.12 Beam former at base-band frequency using LCLMS.
beamrf lms 10.13 Beam former at RF frequency using LMS.
echo bfdaf 10.14 Echo canceler using BFDAF.
echo leakynlms 10.15 Echo canceler using LEAKYNLMS.
echo nlms 10.16 Echo canceler using NLMS.
echo pbfdaf 10.17 Echo canceler using PBFDAF.
echo rcpbfdaf 10.18 Echo canceler using RCPBFDAF.
equalizer nlms 10.19 Inverse modeling using NLMS.
equalizer rls 10.20 Inverse modeling using RLS.
model arlmsnewt 10.21 Modeling using LMS-NEWTON.
model eqerr 10.22 IIR modeling using EQERR.
model lmslattice 10.23 Modeling using LMSLATTICE.
model mvsslms 10.24 FIR modeling using MVSSLMS.
model outerr 10.25 IIR modeling using OUTERR.
model rlslattice 10.26 Modeling using RLSLATTICE.
model sharf 10.27 IIR modeling using SHARF.
model tdlms 10.28 FIR modeling using TDLMS.
model vsslms 10.29 FIR modeling using VSSLMS.
predict lbpef 10.30 Prediction using LBPEF.
predict lfpef 10.31 Prediction using LFPEF.
predict rlslbpef 10.32 Prediction using RLSLBPEF.
predict rlslfpef 10.33 Prediction using RLSLFPEF.

Table 3.12: Adaptive filters applications.

34

Chapter 4

Transversal and Linear Combiner

Adaptive Algorithms

This chapter documents the functions used to create, initialize, and update the coefficients of
transversal (Section 2.2.1) and linear combiner (Section 2.2.2) adaptive filters. Table 4.1 summa-
rizes the transversal adaptive functions currently supported and gives a short description and a
pointer to the reference page of each function.

Each function is documented in a separate section including the following information related to
the function:

• Purpose: Short description of the algorithm implemented by this function.

• Syntax: Shows the function calling syntax. If the function has optional parameters, this
section will have two calling syntaxes. One with only the required formal parameters and
one with all the formal parameters.

• Description: Detailed description of the function usage with explanation of its input and
output parameters.

• Example: A short example showing typical use of the function. The examples listed can
be found in the ASPT/test directory of the ASPT distribution. The user is encouraged to
copy from those examples and paste in her own applications.

• Algorithm: A short description of the operations internally performed by the function.

• Remarks: Gives more theoretical and practical remarks related to the usage, performance,
limitations, and applications of the function.

• Resources: Gives a summary of the memory requirements and number of multiplications,
addition/subtractions, and division operations required to implement the function in real
time. This can be used to roughly calculate the MIPS (Million Instruction Per Second)
required for a specific platform knowing the number of instructions the processor needs to
perform each operation.

• See Also: Lists other functions that are related to this function.

• Reference: Lists literature for more information on the function.

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Function Name Reference Short Description

asptarlmsnewt 4.1 AR-modeling implementation of LMS-Newton method.
asptbfdaf 4.2 Block Frequency Domain Adaptive Filter (BFDAF) algorithm.
asptblms 4.3 Block Least Mean Squares
asptbnlms 4.4 Block Normalized Least Mean Squares
asptdrlms 4.5 Data Reusing Least Mean Squares
asptdrnlms 4.6 Data Reusing Normalized Least Mean Squares
asptleakylms 4.7 Leaky Normalized LMS algorithm.
asptlclms 4.8 Linearly Constrained LMS (LCLMS) algorithm.
asptlms 4.9 Least Mean Squares (LMS) and several of its variants.
asptmvsslms 4.10 Modified Variable Step Size LMS algorithm.
asptnlms 4.11 Normalized LMS (NLMS) algorithm.
asptpbfdaf 4.12 Partitioned Block Frequency Domain (PBFDAF) algorithm.
asptrcpbfdaf 4.13 Reduced Complexity PBFDAF (RCPBFDAF) algorithm.
asptrdrlms 4.14 Recent Data Reusing Least Mean Squares
asptrdrnlms 4.15 Recent Data Reusing Normalized Least Mean Squares
asptrls 4.16 Recursive Least Squares (RLS) algorithm.
aspttdftaf 4.17 Transform domain Fault Tolerant Adaptive Filter.
aspttdlms 4.18 Transform domain LMS algorithm.
asptvffrls 4.19 Variable Forgetting Factor RLS (VFFRLS).
asptvsslms 4.20 Variable Step Size LMS (VSSLMS) algorithm.
init arlmsnewt 4.21 Initialize AR modeling implementation of LMS-Newton method.
init bfdaf 4.22 Initialize Block Frequency Domain Adaptive Filter.
init blms 4.23 Initialize Block Least Mean Squares
init bnlms 4.24 Initialize Block Normalized Least Mean Squares
init drlms 4.25 Initialize Data Reusing Least Mean Squares
init drnlms 4.26 Initialize Data Reusing Normalized Least Mean Squares
init leakynlms 4.27 Initialize Leaky Normalized Least Mean Squares.
init lclms 4.28 Initialize Linearly Constrained LMS.
init lms 4.29 Initialize Least Mean Squares (LMS).
init mvsslms 4.30 Initialize Modified Variable Step Size LMS algorithm.
init nlms 4.31 Initialize Normalized LMS.
init pbfdaf 4.32 Initialize Partitioned Block Frequency Domain.
init rcpbfdaf 4.33 Initialize Reduced Complexity Partitioned BFDAF.
init rdrlms 4.34 Initialize Recent Data Reusing Least Mean Squares
init rdrnlms 4.35 Initialize Recent Data Reusing Normalized Least Mean Squares
init rls 4.36 Initialize Recursive Least Squares.
init tdftaf 4.37 Initialize Transform Domain Fault Tolerant Adaptive Filter.
init tdlms 4.38 Initialize Transform domain LMS.
init vffrls 4.39 Initialize Variable Forgetting Factor RLS (VFFRLS).
init vsslms 4.40 Initialize Variable Step Size LMS.

Table 4.1: List of functions for creating, initializing, and updating transversal and linear
combiner adaptive filters.

36

4.1. asptarlmsnewt

4.1 asptarlmsnewt

Purpose Efficient implementation of the LMS-Newton algorithm using autoregressive
modeling.

Syntax [k,w,b,u,P,y,e]=asptarlmsnewt(k,w,x,b,u,P,d,mu_p,mu_w,maxk)

Description The LMS-Newton is a stochastic implementation of the Newton search method
which solves the eigenvalue spread problem in adaptive filters with colored
input signals. The update equation for the LMS-Newton is given by (see
Fig. 2.5 and Fig. 2.6)

w(n+ 1) = w(n) + 2µ e(n)R−1 x(n), (4.1)

where R is the autocorrelation matrix of the adaptive filter input signal x(n).
Direct implementation of the LMS-Newton update (4.1) requires estimation
and inversion ofR and the matrix vector multiplicationR−1 x(n) each sample,
which is of course very computational demanding. asptarlmsnewt() imple-
ments the LMS-Newton method efficiently by recursively estimating the term
u = R−1 x(n) using autoregressive modeling. A lattice predictor of M stages
is used for the autoregressive modeling part. When the input signal can be
modeled with an autoregressive model of lengthM much less than the adaptive
filter length L, a significant computational saving is obtained.
The input and output parameters of asptarlmsnewt() of M lattice predictor
stages and L transversal filter coefficients are summarized below.

Input Parameters [Size]::

k : vector of lattice predictor coefficients [Mx1]

w : vector of linear combiner coefficients [Lx1]

x : vector of input samples [Lx1]

b : vector of backward prediction error [Lx1]

u : u = R^(-1)*x calculated recursively [Lx1]

P : vector of last estimated power of b [M+1x1]

d : desired response

mu_p: adaptation constant for the predictor coefficients

mu_w: adaptation constant for the combiner coefficient

maxk: maximum allowed value of abs(k)

Output parameters::

k : updated lattice predictor coefficients

w : updated linear combiner coefficients

b : updated backward prediction error

u : updated {R^(-1)*x}

P : updated power estimate of b

y : linear combiner output

e : error signal [e = d - y]

37

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Example % ARLMSNEWT used in a simple system identification application.

% By the end of this script the adaptive filter w

% should have the same coefficients as the unknown filter h.

iter = 5000; % samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % error signal

% Initialize ARLMSNEWT with M=2, L=10

M = 2; % AR model length

L = 10; % filter length

mu_w = .01; % linear combiner step size

mu_p = 0.001; % lattice predictor step size

[k,w,x,b,u,P,d,y,e]=init_arlmsnewt(L,M);

%% Processing Loop

for (m=1:iter)

x = [xn(m,:);x(1:end-1,:)]; % update the delay line

d = dn(m,:) + 1e-3*rand; % additive noise var = 1e-6

[k,w,b,u,P,y,e]=asptarlmsnewt(k,w,x,b,u,P,d,mu_p,mu_w,0.99);

% save the last error sample to plot later

en(m,:) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);

eb = filter(0.1,[1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 4.1. The left
side panel of this figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the square error in dB versus time during the adaptation process, which is
usually called the learning curve. The lower limit of the error signal power
in the learning curve is defined here by the additive white noise added at the
filter output (-60 dB).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 4.1: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using
the ARLMSNEWT algorithm.

38

4.1. asptarlmsnewt

Algorithm asptarlmsnewt() performs the following operations every sample

• Calculates the forward and backward prediction errors for the lattice
predictor,

• Calculates the power estimate of the backward prediction errors,

• Updates the PARCOR coefficients of the lattice predictor,

• Updates the estimate u = R−1 x(n),

• Evaluates the adaptive transversal filter output,

• Evaluates the error signal,

• Updates the adaptive transversal filter coefficients using the relationship
w(n+ 1) = w(n) + 2µ e(n)u(n).

Resources The resources required to implement the ARLMSNEWT with a filter of length
L and predictor of length M in real time is given in the table below. The
computations given are those required to process one sample.

MEMORY 4L+ 0.5M2 + 4.5M + 6
MULTIPLY 3L+ 2.5M2 + 9.5M + 5
ADD 2L+ 2.5M2 + 4.5M + 2
DIVIDE L + M

See Also INIT ARLMSNEWT, MODEL ARLMSNEWT.

Reference [2] and [4] for analysis of the adaptive Lattice filters, [2] and [11] for analysis
of the LMS-Newton algorithm.

39

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.2 asptbfdaf

Purpose Block filtering and coefficient update in frequency domain using the Block
Frequency Domain Adaptive Filter (BFDAF) algorithm.

Syntax [W,x,y,e,Px,w]=asptbfdaf(M,x,xn,dn,W,mu,n,c,b,Px)

Description asptbfdaf() is an efficient frequency domain implementation of the block
NLMS algorithm. asptbfdaf() performs filtering and coefficient update in
frequency domain using the overlap-save method, and therefore provide effi-
cient implementation for long adaptive filters usually used in applications such
as acoustic echo cancelers where the adaptive filter can be as long as a few
thousand coefficients. asptbfdaf() is a block processing algorithm which is
called every L samples. Every call processes L input and L desired samples (L
is the block length), to produce L filter output samples and L error samples,
besides updating all filter coefficients in the frequency domain. Fig. 4.2 shows
the parameters of asptbfdaf() which are summarized below.

FFT

BUF

xZ-LΣFFT

WIN

IFFT

CONJ

x

IFFT

C/L

UBUF

2µ/P

FFT
y(n)

BUF
d(n)

Σ

x(n)

+

+

+

_

X(f)
X*(f)

E(f)

W(f)

Figure 4.2: Block diagram of the Block Frequency Domain Adaptive
Filter.

40

4.2. asptbfdaf

Input Parameters [Size]::

M : filter length [1 x 1]

x : previous overlap-save input vector [B x 1]

xn : new input block [L x 1]

dn : new desired block [L x 1]

W : F-domain filter coefficients vector [B x 1]

mu : adaptation constant (step size) [1 x 1]

n : if not 0, normalization is performed

c : if not 0, constrains filter to length M

b : forgetting factor for estimation of Px

Px : previous estimate of the power of x [B x 1]

Output parameters::

W : updated F-domain filter coefficients

x : updated overlap save input vector

y : filter output at block n (t-domain)

e : error vector (t-domain)

Px : updated estimate of the power of X

Example

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xt = 2*(rand(iter,1)-0.5); % Input signal

% although xn is real, dn will be complex

dt = osfilter(h,xt); % Unknown filter output

en = zeros(iter,1); % estimation error

% Initialize BFDAF with a filter of 5 coef.

M = 5; L = 3;

[W,x,dn,e,y,Px,w]=init_bfdaf(L,M);

%% Processing Loop

for (m=1:L:iter-L)

xn = xt(m:m+L-1,:); % input block

dn = dt(m:m+L-1,:)+ 1e-3*rand; % desired block

% call BFDAF to calculate the filter output,

% estimation error and update the filter coef.

[W,x,y,e,Px,w]=asptbfdaf(M,x,xn,dn,W,0.05,1,1,0.98,Px);

% save the last error block to plot later

en(m:m+L-1,:) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) imag((w))]); grid;

subplot(2,2,2);

eb = filter(.1,[1 -.9], en(1:m) .* conj(en(1:m)));

plot(10*log10(eb));grid

41

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Running the above script will produce the graph shown in Fig. 4.3. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the mean square error in dB versus time during the adaptation process, which
is usually called the learning curve. The lower limit of the error signal power
in the learning curve is defined here by the additive white noise added at the
filter output (-60 dB).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 4.3: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using
the BFDAF algorithm.

Algorithm asptbfdaf() performs the following operations (see Fig. 4.2).

• buffers L input samples, composes an overlap-save input vector x(n) and
computes its FFT, X(f)

• element-wise multiplies X(f) by the adaptive filter coefficients vector
W(f) (circular convolution in time domain). The result is converted to
time domain using IFFT and the linear convolution samples are extracted
to produce the filter-output vector y(n)

• buffers L desired samples and evaluates the current error block e(n) =
d(n) − y(n). The error vector is padded with zeros and transformed to
frequency domain giving E(f)

• estimates the input signal power at each frequency bin and normalizes
the step size at each bin.

• evaluates the cross-correlation between X(f) and E(f) to produce the
block gradient vector. This vector is used to update the frequency domain
filter coefficients.

• constrains the filter if required. This is performed by first taking the
IFFT of W(f), applying a rectangular window on the time domain co-
efficients, and taking the FFT of the windowed coefficients.

42

4.2. asptbfdaf

Remarks • Supports both real and complex signals.

• asptbfdaf() constrains the filter coefficients W(f) rather than the gra-
dient vector as in the official BFDAF algorithms since this proved to
result in a more stable update.

• The unconstrained BFDAF (c = 0) saves two FFT operations on the
cost of accuracy.

• The time domain filter coefficients w(n) will be calculated and returned
by asptbfdaf() only if the output variable w is given.

• The convergence properties of the BFDAF algorithm are superior to time
domain algorithms since normalization is performed at each frequency
bin which eliminates the eigenvalue spread problem.

• BFDAF introduces a processing delay between its input x(n) and output
y(n) equals to the block length L, since the algorithm has to collect L
samples before processing a block.

• Very efficient for long adaptive filters since convolution and correlation
are performed in frequency domain. Maximum efficiency is obtained
when the block length is chosen to be equal to the filter length L = M .

• Choosing L for maximum processing efficiency might result in a long
delay for long filters. This can be solved either by reducing L on
the cost of computational efficiency or using the Partitioned BFDAF
(asptpbfdaf()) instead.

Resources The resources required for direct implement of the BFDAF algorithm in real
time is given in the table below. The computations given are those required
to process L samples using the constrained BFDAF. Unconstrained BFDAF
uses two FFT operations less than the constrained BFDAF. In the table below
C(FFTB) is used to indicate the number of operations required to implement
an FFT or IFFT of length B = 2nextpow2(M+L−1)

MEMORY 6B + 3L+ 3
MULTIPLY 6B + 5 ∗ C(FFTB)
ADD 3B + L+ 5 ∗ C(FFTB)
DIVIDE B + 5 ∗ C(FFTB)

See Also INIT BFDAF, ECHO BFDAF, ASPTPBFDAF, ASPTRCPBFDAF.

Reference [3], Chapter 3 for detailed description of BFDAF, [8] for the overlap-save
method, and [9] for frequency domain adaptive filters.

43

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.3 asptblms

Purpose Performs filtering and coefficient update using the Block Least Mean Squares
(BLMS) algorithm. BLMS updates the N filter coefficients once every block of
L samples.

Syntax [w,x,y,e] = asptblms(x,xn,dn,w,mu)

[w,x,y,e] = asptblms(x,xn,dn,w,mu,alg)

Description Unlike asptlms() which updates all the filter coefficients every sample,
asptblms() updates the coefficients every L samples. asptblms() takes a
block of input samples xn(k), a block of desired samples dn(k), the vector of
adaptive filter coefficients from the previous iteration w(k − 1), the step size
µ, and returns a block of filter output samples y(k), a block of error samples
e(k) and the updated vector of filter coefficients w(k). The update equation
is given by

w(k + 1) = w(k) +
µB

L

L−1
∑

i=0

e(kL+ i)x(kL+ i), (4.2)

where L is the block length, k is the block index, and µB is the algorithm
step-size parameter. Coefficients update is performed according to the ’alg’
input argument which can take any of the following values.

• ’lms’ : the default value, uses the LMS algorithm

• ’slms’ : uses the sign LMS algorithm, the sign of the error e(k) is
used in the update equation instead of the error.

• ’srlms’ : uses the signed regressor LMS algorithm, the sign of the input
signal x(k) is used in the update equation instead of the input signal.

• ’sslms’ : uses the sign-sign-LMS algorithm, the sign of the error e(k)
and the sign of the input signal x(k) are used in the update equation
instead of the error and the input signals.

The input and output parameters of asptblms() for an FIR adaptive filter of
N coefficients are summarized below.

Input Parameters [Size]::

x : previous input delay line [N x 1]

xn : new block of input samples [L x 1]

dn : new block of desired samples [L x 1]

w : vector of filter coefficients [N x 1]

mu : adaptation constant (step size) [1 x 1]

alg : specifies the variety of the lms to use in the

update equation. Must be one of the following:

’lms’ [default]

’slms’ - sign LMS, uses sign(e)

’srlms’ - signed regressor LMS, uses sign(x)

’sslms’ - sign-sign LMS, uses sign(e) and sign(x)

Output parameters::

w : updated filter coefficients

x : updated delay-line of input signal

y : block of filter output samples

e : block of error samples.

44

4.3. asptblms

Example % BLMS used in a simple system identification application.

% By the end of this script the adaptive filter w

% should have the same coefficients as the unknown filter h.

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xt = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

% although xn is real, dn will be complex since h is complex

dt = osfilter(h,xt); % Unknown filter output

en = zeros(iter,1); % vector to collect the error

% Initialize BLMS with a filter of 5 coef. and block of 5 samples.

[w,x,dn,e,y]=init_blms(5,5);

%% Processing Loop

for (m=1:L:iter-L)

xn = xt(m:m+L-1,:);

dn = dt(m:m+L-1,:)+ 1e-3*rand;

% call BLMS to calculate the filter output, estimation error

% and update the coefficients.

[w,x,y,e]=asptblms(x,xn,dn,w,0.05,’srlms’);

% save the last error block to plot later

en(m:m+L-1,:) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) -imag((w))]); grid;

subplot(2,2,2);eb = filter(.1, [1 -.9], en(1:m) .* conj(en(1:m)));

plot(10*log10(eb +eps));grid

Running the above script will produce the graph shown in Fig. 4.4. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the square error in dB versus time during the adaptation process, which is
usually called the learning curve. The lower limit of the error signal power
in the learning curve is defined here by the additive white noise added at the
filter output (-60 dB).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 4.4: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using
the BLMS algorithm.

45

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Algorithm The current implementation of asptblms() performs the following operations

• Filters each of the new input samples through the adaptive filter w(k−1)
to produce the block of filter output samples y(k).

• Calculates the block of error samples e(n) = d(n)− y(n).

• Updates the adaptive filter coefficients once per block using the update
equation (4.2).

• Updates the delay line for processing the next block.

Remarks The BLMS is a block implementation of the LMS algorithm, and therefore,
BLMS has similar properties to those known for the LMS. The main difference
between the BLMS and LMS is that the former updates all the filter coefficients
once every L samples while the latter updates all the filter coefficients once
every sample. The following remarks are also of interest.

• The convergence behaviors of the BLMS and LMS are identical.

• From equation 4.2, to obtain the same final misadjustment for LMS and
BLMS, the following should hold µB/L = µ, where µB is the step size
for BLMS and µ is the step size for the LMS algorithm. However, the
current implementation of asptblms() assumes that the division by L
in equation 4.2 has been absorbed in the algorithm step size.

• Like all block processing algorithms, the BLMS introduces a delay of L
samples in the input-output path. This is the time required to collect a
block of input data.

• asptblms() supports both real and complex data and filters. The adap-
tive filter for the complex BLMS algorithm converges to the complex
conjugate of the optimum solution.

• asptblms() updates the input delay line internally.

Resources The resources required to implement the BLMS algorithm for a transversal
adaptive FIR filter of N coefficients using a block of L samples in real time is
given in the table below. The computations given are those required to process
one sample.

MEMORY 2N + 5L+ 1
MULTIPLY N(2L+ 1)/L
ADD N(2L+ 1)/L
DIVIDE 0

See Also INIT BLMS, ASPTBNLMS, ASPTBFDAF, ASPTLMS..

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method and [1] and [2] for BLMS.

46

4.4. asptbnlms

4.4 asptbnlms

Purpose Performs filtering and coefficient update using the Block Normalized Least
Mean Squares (BNLMS) algorithm. BNLMS updates the N filter coefficients
once every block of L samples.

Syntax [w,x,y,e,p] = asptbnlms(x,xn,dn,w,mu,p,b)

Description Unlike asptnlms() which updates all the filter coefficients every sample,
asptbnlms() updates the coefficients every L samples. asptbnlms() takes
a block of input samples xn(k), a block of desired samples dn(k), the vector of
adaptive filter coefficients from the previous iteration w(k−1), the step size µ,
the previous estimate of the input signal power p, and returns a block of filter
output samples y(k), a block of error samples e(k), the updated power esti-
mate, and the updated vector of filter coefficients w(k). The update equation
of asptblms() is given by

w(k + 1) = w(k) +
µB

Lp

L−1
∑

i=0

e(kL+ i)x(kL+ i), (4.3)

where L is the block length, k is the block index, and µB is the algorithm
step-size parameter.
The input and output parameters of asptbnlms() for an FIR adaptive filter
of N coefficients are summarized below.

Input Parameters [Size]::

x : previous input delay line [N x 1]

xn : new block of input samples [L x 1]

dn : new block of desired samples [L x 1]

w : vector of filter coefficients [N x 1]

mu : adaptation constant (step size) [1 x 1]

p : previous estimate of the input power [1 x 1]

b : pole of the IIR filter used to estimate the input signal power

Output parameters::

w : updated filter coefficients

x : updated delay line of input signal

y : block of filter output samples

e : block of error samples

p : updated estimate of the input signal power.

47

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Example % BNLMS used in a simple system identification application.

% By the end of this script the adaptive filter w

% should have the same coefficients as the unknown filter h.

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xt = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

% although xn is real, dn will be complex since h is complex

dt = osfilter(h,xt); % Unknown filter output

en = zeros(iter,1); % vector to collect the error

% Initialize BNLMS with a filter of 5 coef. and block of 5 samples.

[w,x,dn,e,y,p]=init_bnlms(5,5);

%% Processing Loop

for (m=1:L:iter-L)

xn = xt(m:m+L-1,:);

dn = dt(m:m+L-1,:)+ 1e-3*rand;

% call BNLMS to calculate the filter output, estimation error

% and update the coefficients.

[w,x,y,e,p] = asptbnlms(x,xn,dn,w,.05,p,.98);

% save the last error block to plot later

en(m:m+L-1,:) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) -imag((w))]); grid;

subplot(2,2,2);eb = filter(.1, [1 -.9], en(1:m) .* conj(en(1:m)));

plot(10*log10(eb +eps));grid

Running the above script will produce the graph shown in Fig. 4.5. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the square error in dB versus time during the adaptation process, which is
usually called the learning curve. The lower limit of the error signal power
in the learning curve is defined here by the additive white noise added at the
filter output (-60 dB).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 4.5: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using
the BNLMS algorithm.

48

4.4. asptbnlms

Algorithm The current implementation of asptbnlms() performs the following operations

• Filters each of the new input samples through the adaptive filter w(k−1)
to produce the block of filter output samples y(k).

• Calculates the block of error samples e(n) = d(n)− y(n).

• Updates the estimate of the input signal power.

• Updates the adaptive filter coefficients once per block using the update
equation (4.3).

• Updates the delay line for processing the next block.

Remarks The BNLMS is a block implementation of the NLMS algorithm, and therefore,
BNLMS has similar properties to those of the NLMS. The main difference
between the BNLMS and NLMS is that the former updates all the filter coef-
ficients once every L samples while the latter updates all the filter coefficients
once every sample. The following remarks are also of interest.

• The convergence behaviors of the BNLMS and NLMS are identical.

• From equation 4.3, to obtain the same final misadjustment for NLMS
and BNLMS, the following should hold, µB/L = µ, where µB is the step
size for BNLMS and µ is the step size for the NLMS algorithm. However,
the current implementation of asptbnlms() assumes that the division by
L in equation 4.3 has been absorbed in the algorithm step size.

• Like all block processing algorithms, the BNLMS introduces a delay of
L samples in the input-output path. This is the time required to collect
a block of input data.

• asptbnlms() supports both real and complex data and filters. The adap-
tive filter for the complex BNLMS algorithm converges to the complex
conjugate of the optimum solution.

• asptbnlms() updates the input delay line internally.

Resources The resources required to implement the BNLMS algorithm for a transversal
adaptive FIR filter of N coefficients using a block of L samples in real time is
given in the table below. The computations given are those required to process
one sample.

MEMORY 2N + 5L+ 2
MULTIPLY N(2L+ 1)/L+ 4
ADD N(2L+ 1)/L+ 1
DIVIDE 1/L

See Also INIT BNLMS, ASPTBLMS, ASPTBFDAF, ASPTNLMS.

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method and [1] and [2] for BNLMS.

49

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.5 asptdrlms

Purpose Performs filtering and coefficient update using the Data Reusing Least Mean
Squares (DRLMS) algorithm. DRLMS updates the filter coefficients k times
each iteration using the same input data vector to speed the convergence pro-
cess.

Syntax [w,y,e] = asptdrlms(x,w,d,mu)

[w,y,e] = asptdrlms(x,w,d,mu,alg,k)

Description asptdrlms() improves the convergence speed of the LMS algorithm by updat-
ing the filter coefficients several times using the same set of input and desired
data. When the number of updates, k = 0, DRLMS falls back to the LMS
algorithm. The coefficients update is performed according to the ’alg’ input
argument which can take any of the following values.

• ’lms’ : the default value, uses the LMS algorithm

• ’slms’ : uses the sign LMS algorithm, the sign of the error e(k) is
used in the update equation instead of the error.

• ’srlms’ : uses the signed regressor LMS algorithm, the sign of the input
signal x(k) is used in the update equation instead of the input signal.

• ’sslms’ : uses the sign-sign-LMS algorithm, the sign of the error e(k)
and the sign of the input signal x(k) are used in the update equation
instead of the error and the input signals.

The input and output parameters of asptdrlms() for an FIR adaptive filter
of L coefficients are summarized below.

Input Parameters [size] ::

x : vector of input samples [L x 1]

w : vector of filter coefficients w(n-1) [L x 1]

d : desired output d(n) [1 x 1]

mu : adaptation constant

alg : specifies the variety of the lms to use in the

update equation. Must be one of the following:

’lms’ [default]

’slms’ - sign LMS, uses sign(e)

’srlms’ - signed regressor LMS, uses sign(x)

’sslms’ - sign-sign LMS, uses sign(e) and sign(x)

k : number of data reusing cycles

Output parameters ::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal; e(n) = d(n) - y(n)

50

4.5. asptdrlms

Example % DRLMS used in a simple system identification application.

% The learning curves of the DRLMS is compared for several

% values of the number of data reusing cycles.

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

xn = filter(.05,[1 -.95], xn); % colored input

dn = osfilter(h,xn); % Unknown filter output

M = [0, 2, 4, 8]; % data reusing cycles

en = zeros(iter,length(M)); % vector to collect the error

%% Processing Loop

for n = 1:length(M)

% Initialize the DRLMS algorithm with a filter of 10 coef.

[w,x,d,y,e]=init_drlms(10);

for (m=1:iter)

x = [xn(m,:); x(1:end-1,:)]; % update the input delay line

d = dn(m,:) + 1e-3*rand; % additive noise of var = 1e-6

[w,y,e]= asptdrlms(x,w,d,0.1,’lms’,M(n));

en(m,n) = e; % save the last error

end;

end;

% display the results

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);eb = filter(0.1, [1 -.9] , en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 4.6. The left side
graph of the figure shows the adaptive filter coefficients after convergence. The
right side graph shows the learning curve for DRLMS for k = {0, 2, 4, 8}. The
case of k = 0 is equivalent to the LMS algorithm and is included as a reference.
Fig. 4.6 suggests that the convergence speed improves as k increases.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

k=0 k=2 k=4

k=8

Figure 4.6: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using
the DRLMS for several values of the data reusing parameter k.

51

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Algorithm The current implementation of asptdrlms() performs the following operations

• Filters the input signal through the adaptive filter w(n − 1) to produce
the filter’s output sample y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Updates the adaptive filter coefficients k times according to the ’alg’
input parameter.

Remarks • DRLMS improves the convergence speed of the LMS by updating the
filter coefficients more frequently, and therefore consumes more processor
cycles.

• The DRLMS shows similar convergence properties to those known for
the LMS algorithm.

• asptdrlms() supports both real and complex data and filters. The adap-
tive filter for the complex DRLMS algorithm converges to the complex
conjugate of the optimum solution.

• asptdrlms() does not update the input delay line for x(n), this has
been chosen to provide more flexibility, so that the same function can be
used with transversal as well as linear combiner structures. Delay line
update, by inserting the newest sample at the beginning of the buffer
and shifting the rest of the samples to the right, has to be done before
calling asptdrlms() as in the example above.

Resources The resources required to implement the DRLMS algorithm for a transversal
adaptive FIR filter of L coefficients and k data reusing cycles in real time is
given in the table below. The computations given are those required to process
one sample.

MEMORY 2L+ 5
MULTIPLY (2L+ 1) ∗ [k + 1]
ADD 2L[k + 1]
DIVIDE 0

See Also INIT DRLMS, ASPTLMS, ASPTDRNLMS, ASPTRDRLMS, ASPTR-
DRNLMS..

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method and [7] for an introduction to the data reusing LMS algorithms.

52

4.6. asptdrnlms

4.6 asptdrnlms

Purpose Performs filtering and coefficient update using the Data Reusing Normalized
Least Mean Squares (DRNLMS) algorithm. DRNLMS updates the filter coeffi-
cients k times each iteration using the same set of data to speed the convergence
process.

Syntax [w,y,e,p] = asptdrnlms(x,w,d,mu,p)

[w,y,e,p] = asptdrnlms(x,w,d,mu,p,b,k)

Description asptdrnlms() improves the convergence speed of the NLMS algorithm by
updating the filter coefficients several times using the same set of input and
desired data. When the number of updates, k = 0, DRNLMS falls back to the
NLMS algorithm. The input and output parameters of asptdrnlms() for an
FIR adaptive filter of L coefficients are summarized below.

Input Parameters [Size]::

x : input samples delay line [L x 1]

w : filter coefficients vector w(n-1) [L x 1]

d : desired output d(n) [1 x 1]

mu : adaptation constant

p : last estimated power of x p(n-1)

b : AR pole for recursive calculation of p

k : number of data reusing cycles

Output parameters::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal; e(n) = d(n)-y(n)

p : new estimated power of x p(n)

53

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Example % DRNLMS used in a simple system identification application.

% The learning curves of the DRNLMS is compared for several

% values of the number of data reusing cycles.

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

xn = filter(.05,[1 -.95], xn); % Colored input

dn = osfilter(h,xn); % Unknown filter output

M = [0, 2, 4, 8]; % Data reusing cycles

en = zeros(iter,length(M)); % Vector to collect the error

%% Processing Loop

for n = 1:length(M)

% Initialize the DRNLMS algorithm with a filter of 10 coef.

[w,x,d,y,e,p]=init_drnlms(10);

for (m=1:iter)

x = [xn(m,:); x(1:end-1,:)]; % update the input delay line

d = dn(m,:) + 1e-3*rand; % additive noise of var = 1e-6

[w,y,e,p]= asptdrnlms(x,w,d,0.005,p,0.98,M(n));

en(m,n) = e; % save the last error sample

end;

end;

% display the results

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);eb = filter(0.1, [1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 4.7. The left
side graph of the figure shows the adaptive filter coefficients after convergence.
The right side graph shows the learning curve for DRNLMS for k = {0, 2, 4, 8}.
The case of k = 0 is equivalent to the NLMS algorithm and is included as a
reference. Fig. 4.7 suggests that the convergence speed improves as k increases.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

k=0 k=2

k=4

k=8

Figure 4.7: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using
the DRNLMS for several values of the data reusing parameter k.

54

4.6. asptdrnlms

Algorithm The current implementation of asptdrnlms() performs the following opera-
tions

• Filters the input signal through the adaptive filter w(n − 1) to produce
the filter’s output sample y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Updates the estimate of the input signal power, p.

• Updates the adaptive filter coefficients k times.

Remarks • DRNLMS improves the convergence speed of the NLMS by updating the
filter coefficients more frequently, and therefore consumes more processor
cycles.

• The DRNLMS shows similar convergence properties to those known for
the NLMS algorithm.

• asptdrnlms() supports both real and complex data and filters. The
adaptive filter for the complex DRNLMS algorithm converges to the com-
plex conjugate of the optimum solution.

• asptdrnlms() does not update the input delay line for x(n), this has
been chosen to provide more flexibility, so that the same function can be
used with transversal as well as linear combiner structures. Delay line
update, by inserting the newest sample at the beginning of the buffer
and shifting the rest of the samples to the right, has to be done before
calling asptdrnlms() as in the example above.

Resources The resources required to implement the DRNLMS algorithm for a transversal
adaptive FIR filter of L coefficients and k data reusing cycles in real time is
given in the table below. The computations given are those required to process
one sample.

MEMORY 2L+ 8
MULTIPLY (2L+ 1)[k + 1] + 4
ADD (2L)[k + 1] + 1
DIVIDE k+1

See Also INIT DRNLMS, ASPTNLMS, ASPTDRLMS, ASPTRDRLMS, ASPTR-
DRNLMS.

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method and [7] for an introduction to the DRNLMS.

55

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.7 asptleakynlms

Purpose Sample per sample filtering and coefficient update using the Leaky Normalized
LMS algorithm.

Syntax [w,y,e,p]= asptleakynlms(x,w,d,mu,a)

[w,y,e,p]= asptleakynlms(x,w,d,mu,a,p,b)

Description asptleakynlms() implements the Leaky NLMS adaptive algorithm used to
update transversal adaptive filters. Referring to the general adaptive filter
shown in Fig. 2.6, asptleakynlms() takes an input samples delay line x(n), a
desired sample d(n), the vector of the adaptive filter coefficients from previous
iteration w(n − 1), the step size mu, and returns the filter output y(n), the
error sample e(n) and the updated vector of filter coefficients w(n). Similar
to the NLMS, the Leaky NLMS also estimates the instantaneous power of the
input signal p(n) and normalizes the step size mu by this estimate to make
the update algorithm independent of the input signal energy. If the input
parameters p and b are given, an efficient recursive estimation of x(n) is used,
otherwise the inner product of x(n) with itself is used instead. The update
equation of asptleakynlms() is given by

w(n) = αw(n) + (
µ

p
)e(n)x(n). (4.4)

Where α is the leak factor, a scalar constant in the range (0 < α < 1). The
effect of the leak is identical to adding white noise to the filter input with
noise variance σ2n given by σ2n = (1−α)/(2µ). This might be helpful in several
applications such as antenna sidelobe cancelers and echo cancelers. The direct
effect of the leak is that the filter coefficients tend to decay exponentially to
zero when the step size µ is set to zero, so that the adaptation of the filter
will not stall and the filter has to keep adapting to minimize the mean square
error.
The input and output parameters of asptleakynlms() for an FIR adaptive
filter of L coefficients are summarized below.

Input Parameters [Size]::

x : input samples delay line [L x 1]

w : filter coefficients vector w(n-1) [L x 1]

d : desired output d(n) [1 x 1]

mu : adaptation constant

a : leak factor (0 < a < 1)

p : last estimated power of x p(n-1)

b : AR pole for recursive calculation of p

Output parameters::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal; e(n) = d(n)-y(n)

p : new estimated power of x p(n)

56

4.7. asptleakynlms

Example % Leaky NLMS used in an inverse modeling application (channel

% equalizer). By the end of this script the adaptive filter w

% should have the inverse response of the filter h so that the

% cascade conv(w,h) = delta(t-D), is a pure delay of D samples.

iter = 5000; % Number of samples to process

h = impz(.3,[1 -.7],10); % channel to be equalized

x1 = 2*(rand(iter,1)-0.5); % system input.

x2 = osfilter(h,x1); % channel output = filter input

en = zeros(iter,1); % vector to collect the error

D = 3; % inversion delay

% Initialize the Leaky NLMS algorithm with a filter of 10 coef.

[w,x,d,y,e,p]=init_leakynlms(10);

%% Processing Loop

for (m=1:iter-D)

x = [x2(m+D,:); x(1:end-1,:)]; % update the input delay line

d = x1(m,:); % desired = delayed sys input

% call Leaky NLMS to calculate the filter output, estimation

% error and update the coefficients.

[w,y,e,p]= asptleakynlms(x,w,d,0.01,(1-1e-5),p,0.98);

% save the last error sample to plot later

en(m,:) = e;

end;

% display the results

subplot(2,2,1);stem(conv(h,w)); grid;

subplot(2,2,2);

eb = filter(.1,[1 -0.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 4.8. The left
side graph of the figure shows the cascade of the channel and the adaptive filter
coefficients after convergence. This cascade should be a pure delay equals to
D for perfect equalization. The right side graph shows the mean square error
in dB versus time during the adaptation process, which is usually called the
learning curve.

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Cascade of channel and equalizer
0 1000 2000 3000 4000 5000

−60

−50

−40

−30

−20

−10

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 4.8: The cascade of the channel and the adaptive filter coefficients
after convergence (left), and the learning curve for the inverse modeling
problem using the Leaky NLMS algorithm (right).

57

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Algorithm Similar to asptnlms(), asptleakynlms() performs the following operations

• Filter the input signal x(n) through the adaptive filter w(n−1) to produce
the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Estimates the input signal power p and normalizes the step size mu by
this estimate.

• Updates the adaptive filter coefficients using the error e(n) and the delay
line of input samples x(n) resulting in w(n).

Remarks The LEAKY NLMS is a stochastic implementation of the steepest-descent al-
gorithm where the mean value of the filter coefficients converge towards their
optimal solution biased by the variance of the equivalent input additive noise
due to the leak. Therefore, the filter coefficients will fluctuate about their op-
timum values given by the Wiener solution. The amplitude of the fluctuations
is partly controlled by the step size and partly by the leak factor. The smaller
the step size, the smaller the fluctuations (less final misadjustment) but also
the slower the adaptive coefficients converge to their optimal values. Note also
the following.

• The LEAKY NLMS algorithm estimates the energy of the input sig-
nal each sample and normalizes (divides) the step size by this estimate,
therefore selecting a step size inversely proportion to the instantaneous
input signal power. Although this improves the convergence properties in
comparison to the LMS, it does not solve the eigenvalue spread problem.

• The LEAKY NLMS algorithm shows stable convergence behavior only
when the step size mu (convergence constant) takes a value between zero
and an upper limit defined by the statistics of the filter’s input signal.
The fastest convergence will be achieved for a white noise input sequence.
Such white input signal has all its eigenvalues equal to the noise variance
σ2 and therefore has a diagonal autocorrelation matrix with diagonal
values equal to σ2.

• The more colored the spectrum of the input signal, the slower the conver-
gence will be. This is due to the large eigenvalue spread for such colored
signals. This makes the convergence composed of several modes, each
associated with one of the eigenvalues.

• asptleakynlms() supports both real and complex data and filters. The
adaptive filter for the complex Leaky NLMS algorithm converges to the
complex conjugate of the optimum solution.

• asptleakynlms() does not update the input delay line for x(n), this has
been chosen to provide more flexibility. Delay line update, by inserting
the newest sample at the beginning of the buffer and shifting the rest of
the samples to the right, has to be done before calling asptleakynlms()

as in the example above.

58

4.7. asptleakynlms

Resources The resources required to implement the Leaky NLMS algorithm for a transver-
sal adaptive FIR filter of L coefficients in real time is given in the table below.
The computations given are those required to process one sample and assumes
that recursive estimation of the input power is used.

MEMORY 2L+ 8
MULTIPLY 3L+ 4
ADD 2L+ 2
DIVIDE 1

See Also INIT LEAKYNLMS, MODEL LEAKYNLMS, ASPTNLMS.

Reference [11] and [4] for extensive analysis of the NLMS and the steepest-descent search
method.

59

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.8 asptlclms

Purpose Sample per sample filtering and coefficient update using the Linearly Con-
strained LMS (LCLMS) algorithm.

Syntax [w,y,e]= asptlclms(x,w,d,mu,c,a)

Description asptlclms() implements the LMS adaptive algorithm used to update a
transversal adaptive filters w subject to the linear constraint cHw = a. Re-
ferring to the general adaptive filter shown in Fig. 2.6, asptlclms() takes an
input samples delay line x(n), a desired sample d(n), the vector of the adap-
tive filter coefficients from previous iteration w(n − 1), the step size mu, and
returns the filter output y(n), the error sample e(n) and the updated vector of
filter coefficients w(n). The partial update equation of asptlclms() is given
by

w(n) = w(n) + (µ)e(n)x(n). (4.5)

The linear constraint is then applied to the updated coefficients. An interesting
case occurs when the desired signal is set to zero (blind adaptation) and the
linear constraint is used to control the adaptation. This case is used in adaptive
array signal processing to produce a beam in a certain look direction.
The input and output parameters of asptlclms() for an FIR adaptive filter
of L coefficients are summarized below.

Input Parameters::

x : vector of input samples at time n

w : vector of filter coefficients w(n-1)

d : desired response d(n)

mu : adaptation constant

c : the weighting vector in the constraint equation

a : a scalar constant

Output parameters::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal; e(n)=d(n)-y(n)

Example % LCLMS used in a 2-element lambda/2 beam former application at

% baseband frequency. The desired signal coming from angle 0 deg

% and a jammer from angle P=30 deg.

iter = 5000; % samples to process

P = 30; % Jammer angle of arrival

D = pi * sin(pi*P/180); % delay (L=lambda/2)

xn = rand(iter,1); % signal

nn = rand(iter,1); % Jammer

c = [1 ; 1]; % linear constraint vector

a = 1; % linear constraint scalar

% Initialize the LCLMS algorithm with a filter of 2 coef.

[w,x,d,y,e] = init_lclms(2);

d = 0; % no desired is needed

60

4.8. asptlclms

%% Processing Loop

for (m=1:iter)

x(1) = xn(m)+nn(m); % element-1 input

x(2) = xn(m)+nn(m)*exp(-j*D); % element-2 input

[w,y,e] = asptlclms(x,w,d,0.05,c, a);

end;

% Plot the resulting sensitivity pattern

th = 2*pi*[0:0.001:1];

PG = zeros(size(th));

for k = 1:length(th)

D = pi * sin(th(k)); % delay in rad

x(1) = 1 ; % test signal at element-1

x(2) = exp(-j* D) ; % and at element-2

e = d - w’ * x; % error

PG(k) = (e.*conj(e)); % Power Gain

end;

polar(th,(PG)); % Plot result

Running the above script will produce the graph shown in Fig. 4.9. It is clear
from this sensitivity pattern that the array tries to reduce the jammer signal
in the array output by producing a spatial notch at the angle of arrival of the
jammer, which is 30◦ in the above example.

 0.5

 1

 1.5

 2

 2.5

30

210

60

240

90

270

120

300

150

330

180 0

Sensitivity Pattern

Figure 4.9: Sensitivity pattern for a 2-element adaptive array using
LCLMS.

Algorithm The current implementation of asptlclms() performs the following operations

• Filter the input signal x(n) through the adaptive filter w(n−1) to produce
the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Updates the adaptive filter coefficients using the error e(n) and the input
samples x(n) resulting in w(n).

• Applies the linear constraint on the newly calculated filter coefficients.

61

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Remarks The LCLMS algorithm is a stochastic implementation of the steepest-descent
algorithm where the mean value of the filter coefficients converge towards their
constrained solution given by

wc = wopt +
(a−wH

optc) ∗R
−1c

cHR−1c
. (4.6)

where wopt is the optimum unconstrained solution. The filter coefficients will
fluctuate about their optimum values given above. The amplitude of the fluc-
tuations is controlled by the step size. The smaller the step size, the smaller
the fluctuations (less final misadjustment) but also the slower the adaptive
coefficients converge to their optimal values. Note also the following.

• The LCLMS algorithm shows stable convergence behavior only when
the step size mu (convergence constant) takes a value between zero and
an upper limit defined by the statistics of the filter’s input signal. The
fastest convergence will be achieved for a white noise input sequence with
zero mean and unit variance. Such white input signal has all its eigen
values equal to unity and therefore has a diagonal autocorrelation matrix
with diagonal values equal to unity.

• The more colored the spectrum of the input signal, the slower the con-
vergence will be. This is due to the large eigen value spread for such
colored signals. This makes the convergence composed of several modes,
each associated with one of the eigen values.

• asptlclms() supports both real and complex data and filters. The adap-
tive filter for the complex LCLMS algorithm converges to the complex
conjugate of the optimum solution.

• asptlclms() does not update the input delay line for x(n), this has been
chosen to provide more flexibility. Delay line update, by inserting the
newest sample at the beginning of the buffer and shifting the rest of the
samples to the right, has to be done before calling asptlclms().

Resources The resources required to implement the LCLMS algorithm for a transversal
adaptive FIR filter of L coefficients in real time is given in the table below.
The computations given are those required to process one sample.

MEMORY 3L+ 5
MULTIPLY 6L
ADD 6L− 2
DIVIDE 1

See Also INIT LCLMS, BEAMBB LCLMS, ASPTLMS.

Reference [11] for extensive analysis of the LMS and the steepest-descent search method.
[2] for the Linearly Constrained LMS.

62

4.9. asptlms

4.9 asptlms

Purpose Sample per sample filtering and coefficient update using the Least Mean
Squares (LMS) or one of its variants. The variants currently implemented
are the sign, sign-sign, and signed regressor algorithms.

Syntax [w,y,e]= asptlms(x,w,d,mu)

[w,y,e]= asptlms(x,w,d,mu,alg)

Description asptlms() implements the LMS adaptive algorithm used to update transversal
adaptive filters. Referring to the general adaptive filter shown in Fig. 2.6,
asptlms() takes an input samples delay line x(n), a desired sample d(n), the
vector of the adaptive filter coefficients from previous iteration w(n − 1), the
step size mu, and returns the filter output y(n), the error sample e(n) and the
updated vector of filter coefficients w(n). The update equation of asptlms()
is given by

w(n) = w(n) + µe(n)x(n). (4.7)

Coefficients update is performed according to the ’alg’ input argument which
can take any of the following values.

• ’lms’ : the default value, uses the LMS algorithm

• ’slms’ : uses the sign LMS algorithm, the sign of the error e(n) is
used in the update equation instead of the error.

• ’srlms’ : uses the signed regressor LMS algorithm, the sign of the input
signal x(n) is used in the update equation instead of the input signal.

• ’sslms’ : uses the sign-sign-LMS algorithm, the sign of the error e(n)
and the sign of the input signal x(n) are used in the update equation
instead of the error and the input signals.

The input and output parameters of asptlms() for an FIR adaptive filter of
L coefficients are summarized below.

Input Parameters [size] ::

x : vector of input samples x(n) [L x 1]

w : vector of filter coefficients w(n-1) [L x 1]

d : desired output d(n) [1 x 1]

mu : adaptation constant

alg : specifies the variety of the lms to use in the

update equation. Must be one of the following:

’lms’ [default]

’slms’ - sign LMS, uses sign(e)

’srlms’ - signed regressor LMS, uses sign(x)

’sslms’ - sign-sign LMS, uses sign(e) and sign(x)

Output parameters ::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal; e(n) = d(n) - y(n)

63

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Example % LMS used in a simple system identification application.

% By the end of this script the adaptive filter w should

% have the same coefficients as the unknown filter h.

%

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % vector to collect the error

% Initialize the LMS algorithm with a filter of 10 coef.

[w,x,d,y,e]=init_lms(10);

%% Processing Loop

for (m=1:iter)

x = [xn(m); x(1:end-1)]; % update the input delay line

d = dn(m,:) + 1e-3*rand; % additive noise of var = 1e-6

% call LMS to calculate the output, estimation error

% and update the coefficients.

[w,y,e]= asptlms(x,w,d,0.05);

% save the last error sample to plot later

en(m) = e;

end;

% display the results

% note that w converges to conj(h) for complex data

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);eb = filter(.1,[1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 4.10. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the square error in dB versus time during the adaptation process, which is
usually called the learning curve. The lower limit of the error signal power
in the learning curve is defined here by the additive white noise added at the
filter output (-60 dB).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 4.10: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using the
LMS algorithm.

64

4.9. asptlms

Algorithm The LMS algorithm and its normalized version NLMS are the most widely
used adaptive algorithms in the industry due to their low complexity, good
performance, and extensive existing analysis. The current implementation of
asptlms() performs the following operations

• Filter the input signal x(n) through the adaptive filter w(n−1) to produce
the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Updates the adaptive filter coefficients using the error e(n) and the delay
line of input samples x(n) resulting in w(n).

Remarks The LMS algorithm is a stochastic implementation of the steepest-descent al-
gorithm where the mean value of the filter coefficients converge towards their
optimal solution. Therefore, the filter coefficients will fluctuate about their op-
timum values given by the Wiener solution. The amplitude of the fluctuations
is controlled by the step size. The smaller the step size, the smaller the fluctu-
ations (less final misadjustment) but also the slower the adaptive coefficients
converge to their optimal values. Note also the following.

• The LMS algorithm shows stable convergence behavior only when the
step size mu (convergence constant) takes a value between zero and an
upper limit defined by the statistics of the filter’s input signal. The fastest
convergence will be achieved for a white noise input sequence with zero
mean and unit variance. Such white input signal has all its eigen values
equal to unity and therefore has a diagonal autocorrelation matrix with
diagonal values equal to unity.

• The more colored the spectrum of the input signal, the slower the con-
vergence will be. This is due to the large eigen value spread for such
colored signals. This makes the convergence composed of several modes,
each associated with one of the eigen values.

• asptlms() supports both real and complex data and filters. The adaptive
filter for the complex LMS algorithm converges to the complex conjugate
of the optimum solution.

• asptlms() does not update the input delay line for x(n), this has been
chosen to provide more flexibility, so that the same function can be used
with transversal as well as linear combiner structures. Delay line update,
by inserting the newest sample at the beginning of the buffer and shift-
ing the rest of the samples to the right, has to be done before calling
asptlms() as in the example above.

Resources The resources required to implement the LMS algorithm for a transversal adap-
tive FIR filter of L coefficients in real time is given in the table below. The
computations given are those required to process one sample.

MEMORY 2L+ 4
MULTIPLY 2L+ 1
ADD 2L
DIVIDE 0

See Also INIT LMS, BEAMRF LMS, ASPTNLMS, ASPTVSSLMS, ASPTLCLMS.

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method.

65

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.10 asptmvsslms

Purpose Sample per sample filtering and coefficient update using the Modified Variable
Step Size LMS (MVSSLMS) algorithm.

Syntax [w,g,mu,y,e]= asptmvsslms(x,w,g,d,mu,roh)

[w,g,mu,y,e]= asptmvsslms(x,w,g,d,mu,roh,mu_min,mu_max)

Description asptmvsslms() is a more resource efficient version of the Variable Step Size
LMS adaptive algorithm, where the vector of step sizes in VSSLMS is replaced
by a scalar step size. MVSSLMS does not only adjust the filter coefficients
but also adjusts a scalar step size mu(n) to obtain fast convergence rate as
well as small final misadjustment, a combination impossible to achieve with
constant step size. Referring to the general adaptive filter shown in Fig. 2.6,
asptmvsslms() takes an input samples delay line x(n), a desired sample d(n),
the vector of the adaptive filter coefficients from previous iteration w(n − 1),
the previous step size value mu(n − 1), the previous gradient value g(n − 1)
(used to update mu), and returns the filter output y(n), the error sample e(n),
the updated gradient vector g(n), the updated step size vector mu(n), and the
updated vector of filter coefficients w(n). If the mu_min and mu_max optional
input arguments are given, the new step size is constrained to those limits.
The update equation of asptmvsslms() is given by

w(n) = w(n) + µ(n)e(n)x(n). (4.8)

The input and output parameters of asptmvsslms() for an FIR adaptive filter
of L coefficients are summarized below. Note that the difference between
VSSLMS and MVSSLMS is that mu and g in the former are vectors of size L
and in the latter are scalars.

Input Parameters [Size] ::

x : input samples delay line [L x 1]

d : desired response [1 x 1]

w : filter coef. vector w(n-1) [L x 1]

g : previous gradient sample g(n-1) [1 x 1]

mu : previous step sizes value mu(n-1) [1 x 1]

roh : gradient step size [1 x 1]

mu_min : lower bound for mu [1 x 1]

mu_max : higher bound for mu [1 x 1]

Output parameters::

w : updated filter coefficients w(n)

y : filter output y(n)

g : updated gradient g(n)

mu : updated step size mu(n)

e : error sample, e(n)=d(n)-y(n)

66

4.10. asptmvsslms

Example % MVSSLMS used in a system identification application.

% By the end of this script the adaptive filter w should

% have the same coefficients as the unknown filter h.

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % vector to collect the error

mu0 = 0.05; % initial step size (scalar)

muv = zeros(iter,1); % evolution of mu with time

% Initialize the MVSSLMS algorithm with a filter of 10 coef.

[w,x,d,y,e,g,mu] = init_mvsslms(10,[],[],[],mu0);

%% Processing Loop

for (m=1:iter)

% update the input delay line

x = [xn(m,:); x(1:end-1,:)];

d = dn(m,:) + 1e-3*rand; % additive noise of var = 1e-6

% call MVSSLMS to calculate the filter output, estimation error

% and update the coefficients and step sizes.

[w,g,mu,y,e] = asptmvsslms(x,w,g,d,mu,1e-3,1e-6,.99);

% save the last error sample to plot later

en(m,:) = e; muv(m) = mu;

end;

% display the results

subplot(3,3,1);stem([real(w) imag(conj(w))]); grid;

eb = fftfilt(fir1(5,.05), en .* conj(en));

subplot(3,3,2);plot(10*log10(eb));grid

subplot(3,3,3);plot(muv); grid;

Running the above script will produce the graph shown in Fig. 4.11. The left-
most graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The middle graph shows
the mean square error in dB versus time during the adaptation process, which
is usually called the learning curve. The lower limit of the error signal power
in the learning curve is defined here by the additive white noise added at the
filter output (-60 dB). The right-most graph shows the evolution of the scalar
step size with time. Note that the step size increases at the beginning to speed
up the convergence then decreases to decrease the final misadjustment.

0 5 10
0

0.5

1

filter after convergence
0 2000 4000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve
0 2000 4000 6000

0

0.05

0.1

mu

Figure 4.11: The adaptive filter coefficients after convergence, the learn-
ing curve, and the evolution of the step size for the complex FIR system
identification problem using the MVSSLMS algorithm.

67

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Remarks Like the LMS, the MVSSLMS is also a stochastic implementation of the
steepest-descent algorithm where the mean value of the filter coefficients con-
verge towards their optimal solution. Therefore, the filter coefficients will
fluctuate about their optimum values given by the Wiener solution. The am-
plitude of the fluctuations is controlled by the step size. The smaller the step
size, the smaller the fluctuations (less final misadjustment) but also the slower
the adaptive coefficients converge to their optimal values. The improvement
the MVSSLMS introduces to the LMS is that the step size is also updated.
When the filter coefficients are far from their optimal values, the step size
is increased to speed up the convergence. Conversely, when the coefficients
are near their optimal values, the step size is decreased to decrease the final
misadjustment. Similar to the LMS, the following points also apply to the
MVSSLMS.

• The MVSSLMS algorithm shows stable convergence behavior only when
the step size mu(n) takes a value between zero and an upper limit, at
all time indexes n, defined by the statistics of the filter’s input signal.
The fastest convergence will be achieved for a white noise input sequence
with zero mean and unit variance. Such white input signal has all its
eigenvalues equal to unity and therefore has a diagonal autocorrelation
matrix with diagonal values equal to unity.

• The more colored the spectrum of the input signal, the slower the conver-
gence will be. This is due to the large eigenvalue spread for such colored
signals. This makes the convergence composed of several modes, each
associated with one of the eigenvalues.

• asptmvsslms() supports both real and complex data and filters. The
adaptive filter for the complex MVSSLMS algorithm converges to the
complex conjugate of the optimum solution.

• asptmvsslms() does not update the input delay line for x(n), this has
been chosen to provide more flexibility, so that the same function can be
used with transversal as well as linear combiner structures. Delay line
update, by inserting the newest sample at the beginning of the buffer
and shifting the rest of the samples to the right, has to be done before
calling asptmvsslms() as in the example above.

Resources The resources required to implement the MVSSLMS algorithm for a transversal
adaptive FIR filter of L coefficients in real time is given in the table below.
The computations given are those required to process one sample.

MEMORY 2L+ 4
MULTIPLY 3L+ 3
ADD 3L+ 1
DIVIDE 0

See Also INIT MVSSLMS, MODEL MVSSLMS, ASPTVSSLMS, ASPTNLMS,
ASPTLMS, ASPTLCLMS.

Reference [11] for extensive analysis of the LMS and the steepest-descent search method.

68

4.11. asptnlms

4.11 asptnlms

Purpose Sample per sample filtering and coefficient update using the Normalized LMS
(NLMS) algorithm.

Syntax [w,y,e,p]= asptnlms(x,w,d,mu)

[w,y,e,p]= asptnlms(x,w,d,mu,p,b)

Description asptnlms() implements the NLMS adaptive algorithm used to update
transversal adaptive filters. Referring to the general adaptive filter shown
in Fig. 2.6, asptnlms() takes an input samples delay line x(n), a desired sam-
ple d(n), the vector of the adaptive filter coefficients from previous iteration
w(n− 1), the step size mu, and returns the filter output y(n), the error sam-
ple e(n) and the updated vector of filter coefficients w(n). The NLMS also
estimates the instantaneous power p(n) of the input signal and normalizes the
step size mu by this estimate to make the update algorithm independent of
the input signal energy. If the input parameters p and b are given, an efficient
recursive estimation of p(n) is used, otherwise the inner product of x(n) with
itself is used instead. The update equation of asptnlms() is given by

w(n) = w(n) + (
µ

p
)e(n)x(n). (4.9)

The input and output parameters of asptnlms() for an FIR adaptive filter of
L coefficients are summarized below.

Input Parameters [Size]::

x : input samples delay line [L x 1]

w : filter coefficients vector w(n-1) [L x 1]

d : desired output d(n) [1 x 1]

mu : adaptation constant

p : last estimated power of x(n), p(n-1)

b : AR pole for recursive calculation of p(n)

Output parameters::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal; e(n) = d(n)-y(n)

p : new estimated power of x(n), p(n)

69

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Example % NLMS used in a simple system identification application.

% By the end of this script the adaptive filter w should

% have the same coefficients as the unknown filter h.

%

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % vector to collect the error

% Initialize the NLMS algorithm with a filter of 10 coef.

[w,x,d,y,e,p]=init_nlms(10);

%% Processing Loop

for (m=1:iter)

x = [xn(m); x(1:end-1)]; % update the input delay line

d = dn(m) + 1e-3*rand; % additive noise of var = 1e-6

% call NLMS to calculate the filter output, estimation error

% and update the coefficients.

[w,y,e,p]= asptnlms(x,w,d,0.05,p,0.98);

% save the last error sample to plot later

en(m) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);

eb = filter(.1,[1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 4.12. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the mean square error in dB versus time during the adaptation process, which
is usually called the learning curve. The lower limit of the error power is
governed here by the additive noise at the output (-60 dB).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 4.12: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using the
NLMS algorithm.

70

4.11. asptnlms

Algorithm The NLMS algorithm is a slightly improved version of the LMS algorithm.
The current implementation of asptnlms() performs the following operations

• Filter the input signal x(n) through the adaptive filter w(n−1) to produce
the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Estimates the input signal power p and normalizes the step size mu by
this estimate (the improvement upon the LMS).

• Updates the adaptive filter coefficients using the error e(n) and the delay
line of input samples x(n) resulting in w(n).

Remarks Like the LMS, the NLMS is also a stochastic implementation of the steepest-
descent algorithm where the mean value of the filter coefficients converge to-
wards their optimal solution. Therefore, the filter coefficients will fluctuate
about their optimum values given by the Wiener solution. The amplitude
of the fluctuations is controlled by the step size. The smaller the step size,
the smaller the fluctuations (less final misadjustment) but also the slower the
adaptive coefficients converge to their optimal values. Note also the following.

• The NLMS algorithm estimates the energy of the input signal each sam-
ple and normalizes (divides) the step size by this estimate, therefore se-
lecting a step size inversely proportion to the instantaneous input signal
power. Although this improves the convergence properties in comparison
to the LMS, it does not solve the eigenvalue spread problem.

• The NLMS algorithm shows stable convergence behavior only when the
step size mu (convergence constant) takes a value between zero and an
upper limit defined by the statistics of the filter’s input signal. The
fastest convergence will be achieved for a white noise input sequence.
Such white input signal has all its eigenvalues are equal to the noise
variance σ2 and therefore has a diagonal autocorrelation matrix with
diagonal values equal to σ2.

• The more colored the spectrum of the input signal, the slower the conver-
gence will be. This is due to the large eigenvalue spread for such colored
signals. This makes the convergence composed of several modes, each
associated with one of the eigenvalues.

• asptnlms() supports both real and complex data and filters. The adap-
tive filter for the complex NLMS algorithm converges to the complex
conjugate of the optimum solution.

• asptnlms() does not update the input delay line for x(n), this has been
chosen to provide more flexibility, so that the same function can be used
with transversal as well as linear combiner structures. Delay line update,
by inserting the newest sample at the beginning of the buffer and shift-
ing the rest of the samples to the right, has to be done before calling
asptnlms() as in the example above.

71

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Resources The resources required to implement the NLMS algorithm for a transversal
adaptive FIR filter of L coefficients in real time is given in the table below.
The computations given are those required to process one sample and assumes
that recursive estimation of the input power is used.

MEMORY 2L+ 7
MULTIPLY 2L+ 4
ADD 2L+ 2
DIVIDE 1

See Also INIT NLMS, ECHO NLMS, EQUALIZER NLMS, ASPTLMS,
ASPTVSSLMS, ASPTLCLMS.

Reference [11] and [4] for extensive analysis of the NLMS and the steepest-descent search
method.

72

4.12. asptpbfdaf

4.12 asptpbfdaf

Purpose Block filtering and coefficient update in frequency domain using the Partitioned
Block Frequency Domain Adaptive Filter (PBFDAF) algorithm.

Syntax [W,X,x,y,e,Px,w]=asptpbfdaf(M,x,xn,dn,X,W,mu,n,c,b,Px)

Description asptpbfdaf() solves the problem of long processing delay introduced by the
BFDAF algorithm. This is achieved by splitting the adaptive filter into P
partitions, from which only the first partition introduces delay, and therefore
reducing the processing delay by a factor of P compared to the BFDAF for
the same filter length. Similar to BFDAF, asptpbfdaf() performs filtering
and coefficient update in the frequency domain using the overlap-save method,
and therefore, provides an efficient implementation for long adaptive filters in
applications such as acoustic echo cancelers where the adaptive filter can be a
few thousand coefficients long. asptpbfdaf() is a block processing algorithm;
every call processes L input and L desired samples (L is the block length),
to produce L filter output samples and L error samples, besides updating all
filter coefficients in frequency domain. The parameters of asptpbfdaf() are
summarized below (see Fig. 4.2).

Input Parameters [Size]::

M : partition length

x : previous overlap-save vector [B x 1]

xn : new input block [L x 1]

dn : new desired block [L x 1]

X : previous matrix of F-domain input samples [B x P]

W : previous matrix of F-domain filter coef. [B x P]

mu : adaptation constant

n : normalization flag, 0 means no normalization

c : constrain flag, 0 means use unconstrained PBFDAF,

otherwise == all partitions are constrained.

b : forgetting factor for input power estimation

Px : previous estimate of the power of X [B x 1]

Output parameters::

W : updated filter coefficients (F-domain)

X : updated matrix of past frequency input samples

x : updated overlap-save input vector

y : filter output block

e : error vector block

Px : updated estimate of the power of X

w : time domain filter (calculated only if required)

73

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Example iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xt = 2*(rand(iter,1)-0.5); % Input signal

% although xn is real, dn will be complex

dt = osfilter(h,xt); % Unknown filter output

en = zeros(iter,1); % estimation error

% Initialize PBFDAF with a filter of 2*4 coef.

P = 2; L = 4; M = 4;

[W,x,d,e,y,Px,X,w]=init_pbfdaf(L,M,P);

%% Processing Loop

for (m=1:L:iter-L)

xn = xt(m:m+L-1,:); % input block

dn = dt(m:m+L-1,:)+ 1e-3*rand; % desired block

% call BFDAF to calculate the filter output,

% estimation error and update the filter coef.

[W,X,x,y,e,Px,w] = asptpbfdaf(L,x,xn,dn,X,W,...

0.06,1,1,0.98,Px);

% save the last error block to plot later

en(m:m+L-1,:) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) imag((w))]); grid;

subplot(2,2,2);

eb = filter(.1, [1 -.9], en(1:m) .* conj(en(1:m)));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 4.13. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the square error in dB versus time during the adaptation process, which is
usually called the learning curve. The lower limit of the error signal power
in the learning curve is defined here by the additive white noise added at the
filter output (-60 dB).

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 4.13: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using the
PBFDAF algorithm.

74

4.12. asptpbfdaf

Algorithm asptpbfdaf() performs the following operations (see Fig. 4.2).

• buffers L input samples, composes an overlap-save input vector x(n) and
computes its FFT, X(f) and adds it to the input samples matrix X(f)

• element-wise multiplies X(f) by the adaptive filter coefficients matrix
W(f) and evaluates the sum at each frequency bin (circular convolution
in time domain for the P partitions). The result is converted to time
domain using IFFT and the linear convolution samples are extracted to
produce the filter-output vector y(n)

• buffers L desired samples and evaluates the current error block e(n) =
d(n) − y(n). The error vector is padded with zeros and transformed to
frequency domain giving E(f)

• estimates the input signal power at each frequency bin and normalizes
the step size at each bin.

• evaluates the cross-correlation between X(f) and E(f) to produce the
block gradient vector. This vector is used to update the frequency domain
filter coefficients.

• constrains the filter if required. This is performed by first taking the
IFFT of W(f), applying a rectangular window on the time domain co-
efficients, and taking the FFT of the windowed coefficients.

Remarks • Supports both real and complex signals.

• asptpbfdaf() constrains the filter coefficients W(f) rather than the
gradient vector as in the official PBFDAF algorithms since this has been
proven to result in a more stable update.

• The unconstrained PBFDAF (c = 0) saves 2P FFT operations each block
on the cost of accuracy.

• The time domain filter coefficients w(n) will be calculated and returned
by asptpbfdaf() only if the output variable w is given.

• The convergence properties of the constrained PBFDAF algorithm are
superior to time domain algorithms since normalization is performed at
each frequency bin which eliminates the eigenvalue spread problem. Un-
constrained PBFDAF suffer from eigenvalue spread within each bin due
to the overlap in each FFT block which can be reduced by decreasing
the overlap.

• Very efficient for long adaptive filters since convolution and correlation
are performed in frequency domain. Maximum efficiency is obtained
when the block length is chosen to be equal to the filter length L = M .

• PBFDAF introduces a processing delay between its input x(n) and out-
put y(n) equals to the block length L, since the algorithm has to collect L
samples before processing a block. This delay is however P times smaller
than that introduced by BFDAF for the same total filter length.

• asptpbfdaf is optimized for block length equals to the partition length
(L = M). For L < M use asptrcbfdaf().

75

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Resources The resources required for direct implement of the PBFDAF algorithm in real
time is given in the table below. The computations given are those required to
process L samples using the constrained PBFDAF. Unconstrained PBFDAF
uses 2P FFT operations less than the constrained PBFDAF. In the table below
C(FFTB) is used to indicate the number of operations required to implement
an FFT or IFFT of length B = 2nextpow2(M+L−1)

MEMORY B(2P + 4) + 3L+ 3
MULTIPLY 6BP + (3 + 2P)C(FFTB)
ADD 2BP + L+ (3 + 2P)C(FFTB)
DIVIDE B + (3 + 2P)C(FFTB)

See Also INIT PBFDAF, ECHO PBFDAF, ASPTBFDAF, ASPTRCPBFDAF.

Reference [1] and [9] for detailed description of frequency domain adaptive filters.

76

4.13. asptrcpbfdaf

4.13 asptrcpbfdaf

Purpose Block filtering and coefficient update in frequency domain using the Reduced
Complexity Partitioned Block Frequency Domain (RCPBFDAF) algorithm.

Syntax [W,X,x,y,e,Px,ci,w]=asptrcpbfdaf(M,x,xn,dn,X,W,mu,n,c,b,Px,ci)

Description asptrcpbfdaf() is a reduced complexity and extended version of
asptpbfdaf(). The computational complexity reduction is achieved by con-
straining one or more partition each call to asptrcpbfdaf() instead of con-
straining all partitions as in the case of asptpbfdaf(). This saves two FFT
operations for each skipped partition while keeping the performance almost
unaffected. No reduction in complexity is achieved for unconstrained fil-
ters. asptrcpbfdaf() is also designed to accommodate the general case of
M = g ∗ L, where M is the partition length, L is the block length, and g is
an integer, which allows choosing L less than M to further reduce the pro-
cessing delay. Similar to asptpbfdaf(), the adaptive filter is splitted into P
partitions, from which only the first partition introduces a delay of L samples,
and therefore, reducing the processing delay by a factor of P compared to the
BFDAF for the same filter length. asptrcpbfdaf() performs filtering and co-
efficient update in the frequency domain using the overlap-save method, and
therefore, provides an efficient implementation for long adaptive filters in ap-
plications such as acoustic echo cancelers where the adaptive filter can be a few
thousand coefficients long. asptrcpbfdaf() is a block processing algorithm,
every call processes L input and L desired samples (L is the block length), to
produce L filter output samples and L error samples, besides updating all filter
coefficients in the frequency domain. The parameters of asptrcpbfdaf() are
summarized below (see Fig. 4.2).

Input Parameters [Size]::

M : partition length

x : previous overlap-save vector [B x 1]

xn : new input block [L x 1]

dn : new desired block [L x 1]

X : previous matrix of F-domain input samples [B x P]

W : previous matrix of F-domain filter coef. [B x P]

mu : adaptation constant

n : normalization flag, 0 means no normalization

c : if 0, unconstrained PBFDAF is used,

if -r (r +ve int), all partitions are constrained

if +r (r +ve int), only r partitions are constrained

b : forgetting factor for input power estimation

Px : previous estimate of the power of X [B x 1]

ci : next partition to constrain

Output parameters::

W : updated filter coefficients (F-domain)

X : updated matrix of past frequency input samples

x : updated overlap-save input vector

y : filter output block

e : error vector block

Px : updated estimate of the power of X

ci : next partition to constrain

w : time domain filter (calculated only if required)

77

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Example iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xt = 2*(rand(iter,1)-0.5); % Input signal

% although xn is real, dn will be complex

dt = osfilter(h,xt); % Unknown filter output

en = zeros(iter,1); % estimation error

% Initialize RCPBFDAF with a filter of 2*4 coef.

P = 2; M = 4; L = M/2;

[W,x,d,e,y,Px,X,ci,w]=init_rcpbfdaf(L,M,P);

%% Processing Loop

for (m=1:L:iter-L)

xn = xt(m:m+L-1,:); % input block

dn = dt(m:m+L-1,:)+ 1e-3*rand; % desired block

% call RCPBFDAF to calculate the filter output,

% estimation error and update the filter coef.

[W,X,x,y,e,Px,ci,w] = asptrcpbfdaf(M,x,xn,dn,...

X,W,0.06,1,1,0.98,Px,ci);

% save the last error block to plot later

en(m:m+L-1,:) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) imag((w))]); grid;

subplot(2,2,2);

eb = filter(.1, [1 -.9], en(1:m) .* conj(en(1:m)));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 4.14. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the square error in dB versus time during the adaptation process, which is
usually called the learning curve. The lower limit of the error signal power
in the learning curve is defined here by the additive white noise added at the
filter output (-60 dB).

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 4.14: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using the
RCPBFDAF algorithm.

78

4.13. asptrcpbfdaf

Algorithm asptrcpbfdaf() performs the following operations (see Fig. 4.2).

• buffers L input samples, composes an overlap-save input vector x(n) and
computes its FFT, X(f) and adds it to the input samples matrix X(f)

• element-wise multiplies X(f) by the adaptive filter coefficients matrix
W(f) and evaluates the sum at each frequency bin (circular convolution
in time domain for the P partitions). The result is converted to time
domain using IFFT and the linear convolution samples are extracted to
produce the filter-output vector y(n)

• buffers L desired samples and evaluates the current error block e(n) =
d(n) − y(n). The error vector is padded with zeros and transformed to
frequency domain giving E(f)

• estimates the input signal power at each frequency bin and normalizes
the step size at each bin.

• evaluates the cross-correlation between X(f) and E(f) to produce the
block gradient vector. This vector is used to update the frequency domain
filter coefficients.

• constrains only the partitioned given by the input argument c. This
is performed by first taking the IFFT of the corresponding columns of
W(f), applying a rectangular window on the time domain coefficients,
and taking the FFT of the windowed coefficients.

Remarks • Supports both real and complex signals.

• asptrcpbfdaf() constrains the filter coefficients W(f) rather than the
gradient vector as in the official PBFDAF algorithms since this has been
proven to result in a more stable update.

• The unconstrained RCPBFDAF (c = 0) saves 2P FFT operations each
block on the cost of accuracy. Partially constrained filters (c = r; r < P)
save 2(P − r) FFT operations each block.

• The time domain filter coefficients w(n) will be calculated and returned
by asptrcpbfdaf() only if the output variable w is given.

• The convergence properties of the constrained RCPBFDAF algorithm
are superior to time domain algorithms since normalization is performed
at each frequency bin which eliminates the eigen value spread problem.
Unconstrained RCPBFDAF suffers from eigenvalue spread within each
bin due to the overlap in each FFT block which can be reduced by de-
creasing the overlap.

• asptrcpbfdaf() introduces a processing delay between its input x(n)
and output y(n) equals to the block length L, since the algorithm has
to collect L samples before processing a block. This delay is however P
times smaller than that introduced by BFDAF for the same total filter
length.

• Very efficient for long adaptive filters since convolution and correlation
are performed in frequency domain. Maximum efficiency is obtained
when the block length is chosen to be equal to the filter length L = M .

79

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Resources The resources required for direct implement of the RCPBFDAF algorithm in
real time is given in the table below. The computations given are those re-
quired to process L samples using the fully constrained RCPBFDAF. Partially
constrained RCPBFDAF saves 2 FFT operations for each skipped partition,
for instance calling asptrcpbfdaf with P=16 and c=1 saves 30 FFT opera-
tions every L samples, which can be huge saving for filters composed of many
partitions. In the table below C(FFTB) is used to indicate the number of oper-
ations required to implement an FFT or IFFT of length B = 2nextpow2(M+L−1)

MEMORY B(G+ P + 4) + 3L+ 4
MULTIPLY 6BP + (3 + 2P)C(FFTB)
ADD 2BP + L+ (3 + 2P)C(FFTB)
DIVIDE B + (3 + 2P)C(FFTB)

See Also INIT RCPBFDAF, ECHO RCPBFDAF, ASPTPBFDAF, ASPTBFDAF.

Reference [1] and [9] for detailed description of frequency domain adaptive filters.

80

4.14. asptrdrlms

4.14 asptrdrlms

Purpose Performs filtering and coefficient update using the Recent Data Reusing Least
Mean Squares (RDRLMS) algorithm. RDRLMS updates the filter coefficients
k times each iteration using the last k input and desired data sets to speed the
convergence process.

Syntax [w,y,e] = asptrdrlms(x,w,d,mu)

[w,y,e] = asptrdrlms(x,w,d,mu,alg)

Description asptrdrlms() improves the convergence speed of the LMS algorithm by up-
dating the filter coefficients several times using the last few sets of input and
desired data. When the number of data using cycles, k = 0, RDRLMS falls
back to the LMS algorithm. Unlike the DRLMS which uses the current data
set of input and desired signals, RDRLMS uses the current and past k data sets
to update the filter coefficients. The coefficients update is performed according
to the ’alg’ input argument which can take any of the following values.

• ’lms’ : the default value, uses the LMS algorithm

• ’slms’ : uses the sign LMS algorithm, the sign of the error e(k) is
used in the update equation instead of the error.

• ’srlms’ : uses the signed regressor LMS algorithm, the sign of the input
signal x(k) is used in the update equation instead of the input signal.

• ’sslms’ : uses the sign-sign-LMS algorithm, the sign of the error e(k)
and the sign of the input signal x(k) are used in the update equation
instead of the error and the input signals.

The input and output parameters of asptrdrlms() for an FIR adaptive filter
of L coefficients are summarized below.

Input Parameters ::

x : vector of input samples x(n)

w : vector of filter coefficients w(n-1)

d : desired output d(n)

mu : adaptation constant

alg : specifies the variety of the lms to use in the

update equation. Must be one of the following:

’lms’ [default]

’slms’ - sign LMS, uses sign(e)

’srlms’ - signed regressor LMS, uses sign(x)

’sslms’ - sign-sign LMS, uses sign(e) and sign(x)

Output parameters ::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal; e(n) = d(n) - y(n)

81

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Example % RDRLMS used in a simple system identification application.

% The learning curves of the RDRLMS is compared for several

% values of the number of data reusing cycles.

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

xn = filter(.05,[1 -.95], xn); % colored input

dn = osfilter(h,xn); % Unknown filter output

M = [0, 2, 4, 8]; % data reusing cycles

en = zeros(iter,length(M)); % vector to collect the error

%% Processing Loop

for n = 1:length(M)

% Initialize the DRLMS algorithm with a filter of 10 coef.

[w,x,d,y,e]=init_rdrlms(10,M(n));

for (m=1:iter)

x = [xn(m,:); x(1:end-1,:)]; % update the input delay line

d = [dn(m,:) + 1e-3*rand; d(1:end-1)];

w,y,e]= asptrdrlms(x,w,d,.2,’lms’);

en(m,n) = e(1); % save the last error

end;

end;

% display the results

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);eb = filter(0.1, [1 -.9] , en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 4.15. The left
side graph of the figure shows the adaptive filter coefficients after convergence.
The right side graph shows the learning curve for RDRLMS for k = {0, 2, 4, 8}.
The case of k = 0 is equivalent to the LMS algorithm and is included as a ref-
erence. Fig. 4.15 suggests that the convergence speed improves as k increases.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

k=8

k=0

k=2
k=4

Figure 4.15: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using the
RDRLMS for several values of the data reusing parameter k.

82

4.14. asptrdrlms

Algorithm The current implementation of asptrdrlms() performs the following opera-
tions

• Filters the input signal through the adaptive filter w(n − 1) to produce
the filter’s output sample y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Updates the adaptive filter coefficients k times according to the ’alg’
input parameter.

Remarks • RDRLMS improves the convergence speed of the LMS by updating the
filter coefficients more frequently, and therefore consumes more processor
cycles.

• The RDRLMS shows similar convergence properties to those known for
the LMS algorithm.

• asptrdrlms() supports both real and complex data and filters. The
adaptive filter for the complex RDRLMS algorithm converges to the com-
plex conjugate of the optimum solution.

• asptrdrlms() does not update the input delay line for x(n), this has
been chosen to provide more flexibility, so that the same function can be
used with transversal as well as linear combiner structures. Delay line
update, by inserting the newest sample at the beginning of the buffer
and shifting the rest of the samples to the right, has to be done before
calling asptrdrlms() as in the example above.

Resources The resources required to implement the RDRLMS algorithm for a transversal
adaptive FIR filter of L coefficients and k data reusing cycles in real time is
given in the table below. The computations given are those required to process
one sample.

MEMORY 2L+ 2k + 4
MULTIPLY (2L+ 1) ∗ [k + 1]
ADD 2L[k + 1]
DIVIDE 0

See Also INIT RDRLMS, ASPTLMS, ASPTDRLMS, ASPTRDRNLMS.

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method and [7] for an introduction to the RDRLMS.

83

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.15 asptrdrnlms

Purpose Performs filtering and coefficient update using the Recent Data Reusing Nor-
malized Least Mean Squares (RDRNLMS) algorithm. RDRNLMS updates the
filter coefficients k times each iteration using the last k input and desired data
sets to speed the convergence process.

Syntax [w,y,e,p] = asptrdrnlms(x,w,d,mu,p)

[w,y,e,p] = asptrdrnlms(x,w,d,mu,p,b,k)

Description asptrdrnlms() improves the convergence speed of the NLMS algorithm by
updating the filter coefficients several times using the past few sets of input
and desired data. When the number of data reusing cycles, k = 0, RDRNLMS
falls back to the NLMS algorithm. Unlike the DRNLMS which uses the current
data set of input and desired signals, RDRNLMS uses the current and past k
data sets to update the filter coefficients.
The input and output parameters of asptrdrnlms() for an FIR adaptive filter
of L coefficients are summarized below.

Input Parameters ::

x : input samples delay line

w : filter coefficients vector w(n-1)

d : desired output d(n)

mu : adaptation constant

p : last estimated power of x, p(n-1)

b : AR pole for recursive calculation of p

k : number of data reusing cycles

Output parameters::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal; e(n) = d(n)-y(n)

p : new estimated power of x, p(n)

84

4.15. asptrdrnlms

Example % RDRNLMS used in a simple system identification application.

% The learning curves of the RDRNLMS is compared for several

% values of the number of data reusing cycles.

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

xn = filter([.05],[1 -.95], xn);

dn = osfilter(h,xn); % Unknown filter output

M = [0, 2, 4, 8]; % data reusing cycles

en = zeros(iter,length(M)); % vector to collect the error

%% Processing Loop

for n = 1:length(M)

% Initialize the RDRNLMS algorithm with a filter of 10 coef.

[w,x,d,y,e,p]=init_rdrnlms(10,M(n));

for (m=1:iter)

x = [xn(m,:); x(1:end-1,:)]; % update the input delay line

d = [dn(m,:) + 1e-3*rand; d(1:end-1)];

[w,y,e,p]= asptrdrnlms(x,w,d,.005,p,.98);

en(m,n) = e(1);

end;

end;

% display the results

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);eb = filter(0.1, [1 -.9] , en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 4.16. The
left side graph of the figure shows the adaptive filter coefficients after con-
vergence. The right side graph shows the learning curve for RDRNLMS for
k = {0, 2, 4, 8}. The case of k = 0 is equivalent to the NLMS algorithm and is
included as a reference. Fig. 4.16 suggests that the convergence speed improves
as k increases.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

k=2

k=8

k=0

k=4

Figure 4.16: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using the
RDRNLMS for several values of the data reusing parameter k.

85

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Algorithm The current implementation of asptrdrnlms() performs the following opera-
tions

• Filters the input signal through the adaptive filter w(n − 1) to produce
the filter’s output sample y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Updates the estimate of the input signal power, p.

• Updates the adaptive filter coefficients k times.

Remarks • RDRNLMS improves the convergence speed of the NLMS by updating
the filter coefficients more frequently, and therefore consumes more pro-
cessor cycles.

• The RDRNLMS shows similar convergence properties to those known for
the NLMS algorithm.

• asptrdrnlms() supports both real and complex data and filters. The
adaptive filter for the complex RDRNLMS algorithm converges to the
complex conjugate of the optimum solution.

• asptrdrnlms() does not update the input delay line for x(n), this has
been chosen to provide more flexibility, so that the same function can be
used with transversal as well as linear combiner structures. Delay line
update, by inserting the newest sample at the beginning of the buffer
and shifting the rest of the samples to the right, has to be done before
calling asptrdrnlms() as in the example above.

Resources The resources required to implement the RDRNLMS algorithm for a transver-
sal adaptive FIR filter of L coefficients and k data reusing cycles in real time is
given in the table below. The computations given are those required to process
one sample.

MEMORY 2L+ 2k + 6
MULTIPLY (2L+ 1)[k + 1] + 4
ADD (2L)[k + 1] + 1
DIVIDE k+1

See Also INIT RDRNLMS, ASPTNLMS, ASPTDRNLMS, ASPTRDRLMS.

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method and [7] for an introduction to the RDRNLMS.

86

4.16. asptrls

4.16 asptrls

Purpose Sample per sample filtering and coefficient update using the Recursive Least
Squares (RLS) Adaptive algorithm.

Syntax [w,y,e,R]=asptrls(x,w,d,R,a)

Description asptrls() implements the recursive least squares adaptive algorithm used to
update transversal adaptive filters. Referring to the general adaptive filter
shown in Fig. 2.6, asptrls() takes an input samples delay line x(n), a desired
sample d(n), the vector of the adaptive filter coefficients from previous iteration
w(n−1), the estimate of the inverse correlation matrix from previous iterations
R(n− 1), the forgetting factor a, and returns the filter output y(n), the error
sample e(n), the updated vector of filter coefficients w(n), and the updated
matrix R(n). The update equation of asptrls() is given by

w(n) = w(n− 1) +
R(n− 1) x(n) e(n)

a+ xT (n) R(n− 1)x(n)
. (4.10)

The input and output parameters of asptrls() for an FIR adaptive filter of
L coefficients are summarized below.

Input Parameters [Size]::

x : vector of input samples at time n, [L x 1]

w : vector of filter coefficients w(n-1), [L x 1]

d : desired response d(n), [1 x 1]

R : last estimate of the inverse of the weighted

auto correlation matrix of x, [L x L]

a : forgetting factor, [1 x 1]

Output parameters::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal, e(n)=d(n)-y(n)

R : updated R

Example % RLS used in a simple system identification application.

% By the end of this script the adaptive filter w

% should have the same coefficients as the unknown filter h.

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % vector to collect the error

% Initialize RLS with a filter of 10 coef.

[w,x,d,y,e,R]=init_rls(10,0.1);

%% Processing Loop

for (m=1:iter)

% update the input delay line

x = [xn(m,:); x(1:end-1,:)];

87

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

d = dn(m,:) + 1e-3*rand; % additive noise of var = 1e-6

% call RLS to calculate the filter output, estimation error

% and update the filter coefficients.

[w,y,e,R]=asptrls(x,w,d,R,0.98);

% save the last error sample to plot later

en(m,:) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);

eb = filter(.1, [1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 4.17. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the mean square error in dB versus time during the adaptation process, which
is usually called the learning curve. The lower limit of the error power is
governed here by the additive noise at the output (-60 dB).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 4.17: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using the
RLS algorithm.

Remarks • The closer the value of the forgetting factor λ to one, the longer the
memory of the algorithm becomes. Roughly, the algorithm will take into
account up to 1/(1− λ) past samples.

• The RLS algorithm has only one convergence mode, and does not suffer
from the eigenvalue spread problem as in the LMS and its variants. In
general, the RLS converges within 2L to 3L samples, where L is the filter
length, and therefore very suitable for tracking applications

• asptrls() supports both real and complex data and filters. The adaptive
filter for the complex RLS algorithm converges to the complex conjugate
of the optimum solution.

• asptrls() does not update the input delay line for x(n), this has been
chosen to provide more flexibility, so that the same function can be used
with transversal as well as linear combiner structures. Delay line update,
by inserting the newest sample at the beginning of the buffer and shift-
ing the rest of the samples to the right, has to be done before calling
asptrls() as in the example above.

88

4.16. asptrls

Algorithm Unlike the LMS and its derivatives which use statistical (expected values)
approach, the RLS is a deterministic algorithm based only on observed data.
The practical implementation of the RLS algorithm adjusts the coefficients of
an adaptive filter to minimize the following quantity

ξ(n) = λn−ke2(n), (4.11)

where e(n) is the error signal and λ is a positive constant close to but less
than one usually called the forgetting factor. This choice for the ξ(n) in (4.11)
puts more emphasis on recent observed data samples and exponentially less
emphasis on past samples. The current implementation of asptrls() performs
the following operations

• Filters the input signal x(n) through the adaptive filter w(n − 1) to
produce the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Recursively updates the gain vector K(n) given by

K(n) =
R(n− 1) x(n)

a+ xT (n) R(n− 1)x(n)
. (4.12)

• Updates the adaptive filter coefficients according to (4.10)

Resources The resources required to implement the RLS algorithm for a transversal adap-
tive FIR filter of L coefficients in real time is given in the table below. The
computations given are those required to process one sample.

MEMORY L2 + 2L+ 4
MULTIPLY 2L2 + 4L
ADD 1.5L2 + 2.5L
DIVIDE L

See Also INIT RLS, EQUALIZER RLS.

Reference [2] and [4] for analysis of the RLS algorithm and its variants.

89

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.17 aspttdftaf

Purpose Performs sample-per-sample filtering and coefficient update using the Trans-
form Domain Fault Tolerant Adaptive Filter (TDFTAF) algorithm. TDFTAF
contains redundant filter coefficients to improve the filter robustness against
partial hardware failure during operation.

Syntax [W,y,e,p,w] = aspttdftaf(x,W,d,mu,p,b,T)

Description Fault tolerant adaptive filters address the issue of robustness against hardware
failure. When a hardware failure occurs during the operation of a non fault
tolerant adaptive filter, the filter diverges and will never converge again, unless
special measures are taken to guarantee recovery. Fault tolerant adaptive filters
makes sure that the filter can recover as quickly as possible after the occurrence
of a hardware failure. The aspttdftaf() algorithm achieves hardware fault
tolerance by introduces one or more redundant filter coefficients that will allow
the filter to quickly recover to the optimal solution after the occurrence of a
hardware failure in the underlying hardware running the filter. The type of
hardware failure usually encountered in practice is partial memory failure. This
type of hardware failure makes filter coefficients stored at the faulty memory
locations appear to remain at an arbitrary constant value.
Similar to the aspttdlms(), aspttdftaf() implements the Transform Do-
main LMS adaptive algorithm used to update transversal adaptive filters. The
algorithm performs filtering and coefficient update in the transform domain,
T. Normalization of the step size by the input signal power is also performed in
each band in the T-domain, which usually improves the convergence behavior
compared to the conventional LMS when T is an orthogonal transformation.
The only difference between TDFTAF and TDLMS is that the former updates
L+R filter coefficients, where L is the number of original filter coefficients and
R is the number of redundant coefficients.
The block diagram of the TDFTAF is shown in Fig. 4.18. aspttdftaf()

takes an input samples delay line x(n) and applies the transformation T on
this vector. This T-domain data vector is filtered through the vector of T-
domain adaptive filter coefficients from previous iterationW(n−1) to produce
the time-domain filter output y(n). The error e(n) = d(n) − y(n) is then
calculated and the power of the input vector is estimated in the T-domain at
each band and used to normalize the step size. The update equation used by
aspttdftaf() to update each T-domain coefficient is given by

Wi(n) = Wi(n− 1) +
µ

Pi(n)
e(n)Xi(n); i = 0, 1, · · · , L+R− 1. (4.13)

Where Wi(n), Xi(n), and Pi(n) are the filter coefficient, input signal, and
input signal power in band i at time index n, respectively.
The input and output parameters of aspttdftaf() for an FIR adaptive filter
of L coefficients are summarized below.

90

4.17. aspttdftaf

Input Parameters [Size]::

x : input samples delay line [L+R x 1]

W : previous T-domain coef. vector W(n-1) [L+R x 1]

d : desired output d(n) [1 x 1]

mu : adaptation constant

p : last estimated power of x p(n-1) [L x 1]

b : AR pole for recursive calculation of p

T : The transform to be used {fft|dct|dst|...}

user defined transforms are also supported.

use transform T and its inverse iT.

Output parameters::

W : updated T-domain coef. vector

y : filter output y(n)

e : error signal; e(n) = d(n)-y(n)

p : new estimated power of x p(n)

w : updated t-domain coef. vector w(n), only

calculated if this output argument is given.

Z-1 …Z-1 Z-1

WL-1W2W1

Σ Σ Σ…

LMS

x(n) x(n-1) x(n-2) x(n-L+1)

T

W0

Σ
- +

d(n)

e(n)

…

Figure 4.18: Block diagram of the Transform Domain Fault Tolerant
Adaptive Filter.

Example % TDFTAF used in a simple system identification application.

% During simulation two coefficients are fixed at arbitrary

% values to simulate a hardware failiar.

%

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % vector to collect the error

% Initialize the TDFTAF with a filter of 5 coef. and 3 redundant

[W,w,x,d,y,e,p]=init_tdftaf(5,3);

% Initialize a TDLMS filter for comparizon

[W1,w1,x,d,y1,e1,p1]=init_tdlms(5);

91

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

%% Processing Loop

for (m=1:iter)

x = [xn(m,:); x(1:end-1,:)]; % update the input delay line

d = dn(m,:) + 1e-3*rand; % additive noise of var = 1e-6

% call TDFTAF and TDLMS to calculate the filter output,

% estimation error and update the coefficients.

[W,y,e,p,w] = aspttdftaf(x,W ,d,0.05,p ,0.98,’fft’);

[W1,y1,e1,p1,w1] = aspttdlms(x,W1,d,0.05,p1,0.98,’fft’);

% save the last error sample to plot later

en(m,:) = e; en1(m,:) = e1;

if (m > 2000), W(3) = 0.0; W1(3) = 0.0; end % memory failiar

if (m > 3000), W(4) = 1.0; W1(4) = 1.0; end % memory failiar

end;

% display the results

eb = filter(0.1, [1 -0.9], en .* conj(en));

eb1 = filter(0.1, [1 -0.9], en1 .* conj(en1));

subplot(2,2,1);plot(10*log10(eb1)); grid

subplot(2,2,2); plot(10*log10(eb)); grid

Running the above script will produce the graph shown in Fig. 4.19. The
left side graph of the figure shows the learning curve of the TDLMS and the
right side graph shows the learning curve of the TDFTAF. It is clear that the
TDFTAF can recover after a failure while the TDLMS can not.

0 1000 2000 3000 4000 5000
−80

−60

−40

−20

0

TDLMS Learning curve

es
tim

at
io

n
er

ro
r

[d
B

]

0 1000 2000 3000 4000 5000
−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

TDFTAF Learning curve

Figure 4.19: Learning curves for the TDLMS and TDFTAF when hard-
ware failure is encountered.

92

4.17. aspttdftaf

Remarks • aspttdftaf() supports both real and complex data and filters. The
adaptive filter for the complex TDFTAF algorithm converges to the com-
plex conjugate of the optimum solution.

• aspttdftaf() does not update the input delay line for x(n), this has
been chosen to provide more flexibility, so that the same function can be
used with transversal as well as linear combiner structures. Delay line
update, by inserting the newest sample at the beginning of the buffer
and shifting the rest of the samples to the right, has to be done before
calling aspttdftaf() as in the example above.

• aspttdftaf() not only supports standard transformations such as FFT,
DCT, and DST, but also user-defined transformations. To use this fea-
ture, provide your transformation in two separate functions, one for the
forward and the other for the backward transformation. For example if
you implement a forward transformation in the file xyz.m you should im-
plement its inverse transformation in the file ixyz.m and call aspttdftaf
with parameter T=’xyz’. Care should be taken in scaling the transfor-
mation coefficients to ensure that the time-domain filter coefficients have
the correct values.

Algorithm aspttdftaf() performs the following operations

• Calculates the transformation of x(n) and filters this through the filter
coefficient vector W(n− 1) to produce the filter output y(n).

• Calculates the error sample e(n) = d(n) − y(n) and the input power
vector P(n)

• Calculates the updated T-domain adaptive coefficients W(n) and their
inverse transformation w(n) if required.

Resources The resources required to implement the TDFTAF algorithm for a transversal
adaptive FIR filter of M coefficients, where M = L+ R, in real time is given
in the table below. The computations given are those required to process one
sample. The complexity of the transformation T of length M is indicated as
C(T) in the table below.

MEMORY 4M + 4
MULTIPLY 6M + C(T)
ADD 4M + C(T)
DIVIDE M + C(T)

See Also INIT TDFTAF, ASPTTDLMS.

Reference [7] for an introduction to fault tolerant adaptive filters.

93

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.18 aspttdlms

Purpose Sample per sample filtering and coefficient update using the Transform Domain
LMS algorithm. Filtering and coefficient update are performed in T-domain.

Syntax [W,w,y,e,p] = aspttdlms(x,W,d,mu,p,b,T)

Description aspttdlms() implements the Transform Domain LMS adaptive algorithm used
to update transversal adaptive filters. TDLMS performs filtering and coeffi-
cient update in the transform domain, T. Normalization of the step size by
the input signal power is also performed in T-domain in each band, which is
usually improves the convergence behavior compared to the conventional LMS
when T is an orthogonal transformation.
The block diagram of the TDLMS is shown in Fig. 4.20. aspttdlms() takes an
input samples delay line x(n) and applies the transformation T on this vector.
This T-domain data vector is filtered through the vector of T-domain adaptive
filter coefficients from previous iterationW(n−1) to produce the time-domain
filter output y(n). The error e(n) = d(n) − y(n) is then calculated and the
power of the input vector is estimated in the T-domain at each band and
used to normalize the step size. The update equation used by aspttdlms() to
update each T-domain coefficient is given by

Wi(n) = Wi(n− 1) +
µ

Pi(n)
e(n)Xi(n); i = 0, 1, · · · , L− 1. (4.14)

Where Wi(n), Xi(n), and Pi(n) are the filter coefficient, input signal, and
input signal power in band i at time index n, respectively.
The input and output parameters of aspttdlms() for an FIR adaptive filter
of L coefficients are summarized below.

Input Parameters [Size]::

x : input samples delay line [L x 1]

W : previous T-domain coef. vector W(n-1) [L x 1]

d : desired output d(n) [1 x 1]

mu : adaptation constant

p : last estimated power of x, p(n-1) [L x 1]

b : AR pole for recursive calculation of p

T : The transform to be used {fft|dct|dst|...}

user defined transforms are also supported.

use transform T and its inverse iT.

Output parameters::

W : updated T-domain coef. vector

y : filter output y(n)

e : error signal; e(n) = d(n)-y(n)

p : new estimated power of x, p(n)

w : updated time-domain coef. vector w(n), only

calculated if this output argument is given.

94

4.18. aspttdlms

Z-1 …Z-1 Z-1

WL-1W2W1

Σ Σ Σ…

LMS

x(n) x(n-1) x(n-2) x(n-L+1)

T

W0

Σ
- +

d(n)

e(n)

…

Figure 4.20: Block diagram of the Transform Domain LMS algorithm.

Example % TDLMS used in a simple system identification application.

% By the end of this script the adaptive filter w should

% have the same coefficients as the unknown filter h.

%

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % vector to collect the error

% Initialize the TDLMS algorithm with a filter of 10 coef.

[W,w,x,d,y,e,p]=init_tdlms(10);

%% Processing Loop

for (m=1:iter)

x = [xn(m); x(1:end-1)]; % update the input delay line

d = dn(m,:) + 1e-3*rand; % additive noise of var = 1e-6

% call TDLMS to calculate the output, estimation error

% and update the coefficients.

[W,y,e,p,w] = aspttdlms(x,W,d,0.05,p,0.98,’fft’);

% save the last error sample to plot later

en(m) = e;

end;

% display the results

% note that w converges to conj(h) for complex data

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);eb = filter(.1, [1 -.9], en .* conj(en));

plot(10*log10(eb));grid

95

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Running the above script will produce the graph shown in Fig. 4.21. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the square error in dB versus time during the adaptation process, which is
usually called the learning curve. The lower limit of the error signal power
in the learning curve is defined here by the additive white noise added at the
filter output (-60 dB).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 4.21: The adaptive filter coefficients after convergence and the
learning curve for the complex FIR system identification problem using the
TDLMS algorithm.

Remarks The TDLMS algorithm solves the eigenvalue spread problem by first decorrelat-
ing the input signal samples using the transformation T and then normalizing
the transformed data by its power in each band. This is equivalent to using a
time varying step size in each band, the value of which is inversely proportional
to the power of the input in this band. This will speed the convergence of the
slow modes (those excited with relatively small input power) and improves the
total convergence behavior of the adaptive filter. Note also that

• aspttdlms() supports both real and complex data and filters. The adap-
tive filter for the complex TDLMS algorithm converges to the complex
conjugate of the optimum solution.

• aspttdlms() does not update the input delay line for x(n), this has
been chosen to provide more flexibility, so that the same function can be
used with transversal as well as linear combiner structures. Delay line
update, by inserting the newest sample at the beginning of the buffer
and shifting the rest of the samples to the right, has to be done before
calling aspttdlms() as in the example above.

• aspttdlms() not only supports standard transformations such as FFT,
DCT, and DST, but also user-defined transformations. To use this fea-
ture, provide your transformation in two separate functions, one for the
forward and the other for the backward transformation. For example if
you implement a forward transformation in the file xyz.m you should im-
plement its inverse transformation in the file ixyz.m and call aspttdlms
with parameter T=’xyz’. Care should be taken in scaling the transfor-
mation coefficients to ensure that the time-domain filter coefficients have
the correct values.

• The TDLMS is equivalent to an efficient implementation for the LMS-
Newton algorithm when T is given by the Karhunen Loéve Transforma-
tion (KLT).

96

4.18. aspttdlms

Algorithm aspttdlms() performs the following operations

• Calculates the transformation of the x(n) and filters this through the
filter coefficient vector W(n− 1) to produce the filter output y(n).

• Calculates the error sample e(n) = d(n) − y(n) and the input power
vector P(n)

• Calculates the updated T-domain adaptive coefficients W(n) and their
inverse transformation w(n) if required.

Resources The resources required to implement the TDLMS algorithm for a transversal
adaptive FIR filter of L coefficients in real time is given in the table below. The
computations given are those required to process one sample. The complexity
of the transformation T is indicated as C(T) in the table below.

MEMORY 4L+ 4
MULTIPLY 6L+ C(T)
ADD 4L+ C(T)
DIVIDE L+ C(T)

See Also INIT TDLMS, MODEL TDLMS, ASPTLMS, ASPTNLMS, ASPTVSSLMS.

Reference [11], [4], and [2] for extensive analysis of the LMS and the steepest-descent
search method.

97

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.19 asptvffrls

Purpose Performs filtering and coefficient update using the Variable Forgetting Factor
Recursive Least Squares (VFFRLS) Adaptive algorithm.

Syntax [w,y,e,R,k,a] = asptvffrls(x,w,d,R,a,k,e,roh,a_min,a_max)

Description asptvffrls() is an improved version of the conventional RLS algorithm op-
timized for tracking applications. VFFRLS not only optimizes the filter coef-
ficients but also simultaneously optimizes the forgetting factor parameter for
stability and fast tracking in a similar manner as performed in the variable
step size LMS algorithm.
The input and output parameters of asptvffrls() of length L are summarized
below.

Input Parameters [Size]::

x : vector of input samples at time n, [L x 1]

w : vector of filter coefficients w(n-1), [L x 1]

d : desired response d(n), [1 x 1]

R : last estimate of the inverse of the weighted

auto-correlation matrix of x, [L x L]

a : forgetting factor, [1 x 1]

k : last gain vector

e : last error sample

roh : forgetting factor step size [1 x 1]

a_min : lower bound for the forgetting factor [1 x 1]

a_max : higher bound for forgetting factor [1 x 1]

Output parameters::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal, e(n)=d(n)-y(n)

R : updated R

Example % VFFRLS used in a simple system identification application.

% By the end of this script the adaptive filter w

% should have the same coefficients as the unknown filter h.

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % vector to collect the error

a = 0.9; % initial forgetting factor

av = zeros(iter,1); % storing changes in a

% Initialize the VFFRLS algorithm with a filter of 10 coef.

[w,x,d,y,e,R,k] = init_vffrls(10,.1);

98

4.19. asptvffrls

%% Processing Loop

for (m=1:iter)

% update the input delay line

x = [xn(m,:); x(1:end-1,:)];

d = dn(m,:) + 1e-3*rand; % additive noise of var = 1e-6

% call VFFRLS to calculate the filter output, estimation error

% and update the coefficients.

[w,y,e,R,k,a]=asptvffrls(x,w,d,R,a,k,e,.01,.8,1-.0001);

en(m,:) = e; % save the last error sample

av(m) = a; % save the last value of a

end;

% display the results

subplot(3,3,1);stem([real(w) imag(conj(w))]); grid;

eb = filter(0.1,[1 -0.9], en .* conj(en));

subplot(3,3,2); plot(10*log10(eb));grid

subplot(3,3,3);plot(av); grid;

Running the above script will produce the graph shown in Fig. 4.22. The left
side graph of the figure shows the adaptive linear combiner coefficients after
convergence which are almost identical to the unknown filter h. The middle
graph shows the square error in dB versus time during the adaptation process,
which is usually called the learning curve. The lower limit of the error signal
power in the learning curve is defined here by the additive white noise added
at the filter output (-60 dB). The right side graph shows the evolution of the
forgetting factor with time during the adaptation process.

0 5 10
0

0.5

1

filter after convergence
0 2000 4000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve
0 2000 4000 6000

0.85

0.9

0.95

1

forgetting factor

Figure 4.22: The adaptive filter coefficients after convergence, the learn-
ing curve, and the evolution of the forgetting factor for the complex system
identification problem using the VFFRLS algorithm.

99

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Algorithm asptvffrls() performs the following operations

• Filters the input signal x(n) through the adaptive filter w(n − 1) to
produce the filter output y(n),

• Calculates the error sample e(n) = d(n)− y(n),

• Recursively updates the gain vector K(n) given by

K(n) =
R(n− 1) x(n)

a+ xT (n) R(n− 1)x(n)
. (4.15)

• Updates the adaptive filter coefficients,

• Updates the forgetting factor.

Remarks • asptvffrls() supports real as well as complex signals. The complex
linear combiner VFFRLS filter converges to the complex conjugate of
the Wiener solution.

• asptvffrls() does not update the delay line internally. The delay line
must be updated before calling asptvffrls() as shown in the example
listed above.

Resources The resources required to implement ta VFFRLS filter of length L in real time
is given in the table below. The computations given are those required to
process one sample.

MEMORY 6L+ 14
MULTIPLY 8L+ 23
ADD 8L+ 14
DIVIDE 3

See Also INIT VFFRLS, ASPTRLS, ASPTVSSLMS.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

100

4.20. asptvsslms

4.20 asptvsslms

Purpose Sample per sample filtering and coefficient update using the Variable Step Size
LMS (VSSLMS) algorithm.

Syntax [w,g,mu,y,e] = asptvsslms(x,w,g,d,mu,roh)

[w,g,mu,y,e] = asptvsslms(x,w,g,d,mu,roh,ssa,mu_min,mu_max)

Description asptvsslms() implements the Variable Step Size LMS adaptive algorithm used
to update transversal adaptive filters. VSSLMS does not only adjust the filter
coefficients but also adjusts the step size mu to obtain fast convergence rate
as well as small final misadjustment, a combination impossible to achieve with
constant step size. Referring to the general adaptive filter shown in Fig. 2.6,
asptvsslms() takes an input samples delay line x(n), a desired sample d(n),
the vector of the adaptive filter coefficients from previous iteration w(n − 1),
the previous vector of step sizesmu(n−1), the previous gradient vector g(n−1)
(used to update mu), and returns the filter output y(n), the error sample e(n),
the updated gradient vector g(n), the updated step size vector mu(n), and the
updated vector of filter coefficients w(n). If the mu_min and mu_max optional
input arguments are given, each element of the step size vector is constrained
to those limits. The update equation of asptvsslms() is given by

w(n) = w(n) + µ(n)e(n)x(n). (4.16)

The input and output parameters of asptvsslms() for an FIR adaptive filter
of L coefficients are summarized below.

Input Parameters [Size] ::

x : input samples delay line [L x 1]

d : desired response [1 x 1]

w : filter coef. vector w(n-1) [L x 1]

g : gradient vector g(n-1) [L x 1]

mu : vector of step sizes mu(n-1) [L x 1]

roh : gradient vector step size [1 x 1]

ssa : if 1, the sign-sign algorithm is used to update mu.

mu_min : lower bound for mu [1 x 1]

mu_max : higher bound for mu [1 x 1]

Output parameters::

w : updated filter coefficients w(n)

y : filter output y(n)

g : updated gradient vector g(n)

mu : updated vector of step sizes mu(n)

e : error sample, e(n)=d(n)-y(n)

101

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

Example % VSSLMS used in a system identification application.

% By the end of this script the adaptive filter w should

% have the same coefficients as the unknown filter h.

iter = 5000; % Number of samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % vector to collect the error

mu0 = 0.05*ones(10,1); % initial step size

muv = zeros(iter,1); % evolution of mu with time

% Initialize the VSSLMS algorithm with a filter of 10 coef.

[w,x,d,y,e,g,mu] = init_vsslms(10,[],[],[],mu0);

%% Processing Loop

for (m=1:iter)

% update the input delay line

x = [xn(m,:); x(1:end-1,:)];

d = dn(m,:) + 1e-3*rand; % additive noise of var = 1e-6

% call VSSLMS to calculate the filter output, estimation error

% and update the coefficients and step sizes.

[w,g,mu,y,e] = asptvsslms(x,w,g,d,mu,1e-3,1,1e-6,.99);

% save the last error sample to plot later

en(m,:) = e; muv(m) = mean(mu);

end;

% display the results

% display the results

subplot(3,3,1);stem([real(w) imag(conj(w))]); grid;

eb = filter(.1, [1 -.9], en .* conj(en));

subplot(3,3,2);plot(10*log10(eb));grid

subplot(3,3,3);plot(muv); grid;

Running the above script will produce the graph shown in Fig. 4.23. The left-
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The middle graph shows
the mean square error in dB versus time during the adaptation process, which
is usually called the learning curve. The lower limit of the error signal power
in the learning curve is defined here by the additive white noise added at the
filter output (-60 dB). The right-side graph shows the evolution of the mean
value of the step size vector with time.

0 5 10
0

0.5

1

filter after convergence
0 2000 4000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve
0 2000 4000 6000

0

0.02

0.04

0.06

mean value of mu

Figure 4.23: The adaptive filter coefficients after convergence, the learn-
ing curve, and the evolution of the mean value of the step size for the
complex FIR system identification problem using the VSSLMS algorithm.

102

4.20. asptvsslms

Remarks Like the LMS, the VSSLMS is also a stochastic implementation of the steepest-
descent algorithm where the mean value of the filter coefficients converge to-
wards their optimal solution. Therefore, the filter coefficients will fluctuate
about their optimum values given by the Wiener solution. The amplitude
of the fluctuations is controlled by the step size. The smaller the step size,
the smaller the fluctuations (less final misadjustment) but also the slower the
adaptive coefficients converge to their optimal values. The improvement the
VSSLMS introduces is that a separate step size is used for each filter coeffi-
cient, and the algorithm adapts those step sizes. When a coefficient is far from
its optimal value, its corresponding step size is increased to converge faster.
Conversely, when a coefficient is near its optimal value, the step size is de-
creased to decrease the final misadjustment. Similar to the LMS, the following
points also apply to the VSSLMS.

• The VSSLMS algorithm shows stable convergence behavior only when
all elements of the step size vector mu(n) take values between zero and
an upper limit, at all time indexes n, defined by the statistics of the
filter’s input signal. The fastest convergence will be achieved for a white
noise input sequence with zero mean and unit variance. Such white input
signal has all its eigenvalues equal to unity and therefore has a diagonal
autocorrelation matrix with diagonal values equal to unity.

• The more colored the spectrum of the input signal, the slower the conver-
gence will be. This is due to the large eigenvalue spread for such colored
signals. This makes the convergence composed of several modes, each
associated with one of the eigenvalues.

• asptvsslms() supports both real and complex data and filters. The
adaptive filter for the complex VSSLMS algorithm converges to the com-
plex conjugate of the optimum solution.

• asptvsslms() does not update the input delay line for x(n), this has
been chosen to provide more flexibility, so that the same function can be
used with transversal as well as linear combiner structures. Delay line
update, by inserting the newest sample at the beginning of the buffer
and shifting the rest of the samples to the right, has to be done before
calling asptvsslms() as in the example above.

Resources The resources required to implement the VSSLMS algorithm for a transversal
adaptive FIR filter of L coefficients in real time is given in the table below.
The computations given are those required to process one sample.

MEMORY 4L+ 6
MULTIPLY 4L
ADD 3L
DIVIDE 0

See Also INIT VSSLMS, MODEL VSSLMS, ASPTNLMS, ASPTLMS, ASPTLCLMS.

Reference [11] for extensive analysis of the LMS and the steepest-descent search method.

103

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.21 init arlmsnewt

Purpose Creates and initializes the variables required for the efficient implementation
of the LMS-Newton algorithm using autoregressive modeling.

Syntax [k,w,x,b,u,P,d,y,e]=init_arlmsnewt(L,M)

[k,w,x,b,u,P,d,y,e]=init_arlmsnewt(L,M,k0,w0,x0,b0,u0,P0,d0)

Description The LMS-Newton is a stochastic implementation of the Newton search method
which solves the eigenvalue spread problem in adaptive filters with colored
input signals. The update equation for the LMS-Newton is given by (see
Fig. 2.6)

w(n+ 1) = w(n) + 2µ e(n)R−1 x(n), (4.17)

where R is the autocorrelation matrix of the adaptive filter input signal x(n).
Direct implementation of the LMS-Newton update equation (4.17) requires
estimation and inversion of R and matrix vector multiplication R−1 x(n)
each sample which is of course very computational demanding. arlmsnewt()

implements the LMS-Newton method efficiently by recursively estimating the
term u = R−1 x(n) using autoregressive modeling. A lattice predictor of M
stages is used for the autoregressive modeling part. When the input signal
can be modeled with an autoregressive model of length M much less than the
adaptive filter length L, a significant computational saving can be achieved.
The variables of the ARLMSNEWT are summarized below.

Input Parameters::

L : number of adaptive filter coefficients

M : number of autoregressive model coefficients (M << L)

k0 : vector of initial lattice predictor coefficients [Mx1]

w0 : vector of initial filter coefficients [Lx1]

x0 : vector of initial input samples [Lx1]

b0 : vector of initial backward prediction errors [Lx1]

u0 : vector of initial normalized gradients [Lx1]

P0 : initial power of b [(M+1)x1]

d0 : initial desired response [1x1]

Output parameters::

k : initialized lattice predictor coefficients [zeros]

w : initialized linear combiner coefficients [zeros]

x : initialized input samples vector [random]

b : initialized backward prediction errors [random]

u : initialized normalized gradient vector [zeros]

P : initialized estimated power of b [b .* b]

d : initialized desired response [random]

y : initialized filter output [w’ * x]

e : initialized error signal [e = d - y]

104

4.21. init arlmsnewt

Example L = 1024; % adaptive filter length

M = 4; % lattice predictor stages

k0 = zeros(M,1); % initial PARCOR coef.

w0 = zeros(L,1); % initial filter coef.

b0 = rand(L,1); % initial backward errors

P0 = b0(1:M+1).*b0(1:M+1); % initial power of b

d0 = .22; % initial desired sample

% Create and initialize an LMS-Newton filter

[k,w,x,b,u,P,d,y,e]=init_arlmsnewt(L,M,k0,w0,[],b0,[],P0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 9 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTARLMSNEWT, MODEL ARLMSNEWT.

105

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.22 init bfdaf

Purpose Creates and initializes the variables required for the Block Frequency Domain
Adaptive Filter (BFDAF) algorithm.

Syntax [W,x,d,e,y,Px,w]=init_bfdaf(L,M)

[W,x,d,e,y,Px,w]=init_bfdaf(L,M,W0,x0,d0)

Description The variables of the BFDAF are summarized below (see Fig. 4.2). The FFT
length B is internally calculated using the equation B = 2nextpow2(L+M−1).

L : new samples per block (block length)

M : filter length in time domain

W0 : initial frequency domain filter coef. vector [B x 1]

x0 : initial overlap-save input vector [B x 1]

d0 : initial desired response vector [L x 1]

Output parameters [default]::

W : initialized freq. domain filter coef. vector [zeros]

x : initialized input vector [zeros]

d : initialized desired response vector [white noise]

e : initialized error vector

y : initialized filter output

Px : initialized estimate of the power of x

w : initialized time domain coefficients vector (optional)

Example L = 128; % Block length

M = 128; % Filter Length

B = 2^nextpow2(L+M-1); % FFT length

w0 = zeros(B,1); % initial filter coef.

x0 = rand(M,1); % initial input buffer

d0 = rand(L,1); % desired block

% Create and initialize a BFDAF FIR filter

[W,x,d,e,y,Px,w]=init_bfdaf(L,M,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTBFDAF, ECHO BFDAF.

106

4.23. init blms

4.23 init blms

Purpose Creates and initializes the variables required for the Block Least Mean Squares
adaptive filter.

Syntax [w,x,d,e,y] = init_blms(N,L)

[w,x,d,e,y] = init_blms(N,L,w0,x0,d0)

Description The variables of the BLMS are summarized below (see Fig. 2.6).

Input Parameters [Size]::

N : filter length

L : new samples per block (block length)

w0 : initial filter coefficients vector [N x 1]

x0 : initial input delay line [N x 1]

d0 : initial desired response vector [L x 1]

Output parameters [default]::

w : initialized filter coefficients vector [zeros]

x : initialized input delay line [zeros]

d : initialized desired response vector [white noise]

e : initialized error vector

y : initialized filter output vector

Example N = 5; % Block length

L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(N,1); % initial delay line

d0 = x0; % desired sample

% Create and initialize a BLMS FIR filter

[w,x,d,e,y]=init_blms(N,L,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTBLMS.

107

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.24 init bnlms

Purpose Creates and initializes the variables required for the Block Normalized Least
Mean Squares adaptive filter.

Syntax [w,x,d,e,y,p] = init_bnlms(N,L)

[w,x,d,e,y,p] = init_bnlms(N,L,w0,x0,d0)

Description The variables of the BNLMS are summarized below (see Fig. 2.6).

Input Parameters [Size]::

N : filter length

L : new samples per block (block length)

w0 : initial filter coefficients vector [N x 1]

x0 : initial input delay line [N x 1]

d0 : initial desired response vector [L x 1]

Output parameters [default]::

w : initialized filter coefficients vector [zeros]

x : initialized input delay line [zeros]

d : initialized desired response vector [white noise]

e : initialized error vector

y : initialized filter output vector

p : initialized estimate of the power of x

Example N = 5; % Block length

L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(N,1); % initial delay line

d0 = x0; % desired sample

% Create and initialize a BNLMS FIR filter

[w,x,d,e,y,p]=init_bnlms(N,L,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTBNLMS.

108

4.25. init drlms

4.25 init drlms

Purpose Creates and initializes the variables required for the Data Reusing Least Mean
Squares algorithm.

Syntax [w,x,d,y,e] = init_drlms(L)

[w,x,d,y,e] = init_drlms(L,w0,x0,d0)

Description The variables of the DRLMS are summarized below (see Fig. 2.6).

Input Parameters [Size] ::

L : number of filter coefficients

w0 : initial coefficient vector [L x 1]

x0 : initial input samples vector [L x 1]

d0 : initial desired sample [1 x 1]

Output parameters [default] ::

w : initialized filter coefficients [zeros]

x : initialized input vector [zeros]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

Example

L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(L,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize a DRLMS FIR filter

[w,x,d,y,e]=init_drlms(L,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 4 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTDRLMS.

109

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.26 init drnlms

Purpose Creates and initializes the variables required for the Data Reusing Normalized
Least Mean Squares algorithm.

Syntax [w,x,d,y,e,p] = init_drnlms(L)

[w,x,d,y,e,p] = init_drnlms(L,w0,x0,d0)

Description The variables of the DRNLMS are summarized below (see Fig. 2.6).

Input Parameters [Size]::

L : number of filter coefficients

w0 : initial coefficient vector [L x 1]

x0 : initial input samples vector [L x 1]

d0 : initial desired sample [1 x 1]

Output parameters [default]::

w : initialized filter coefficients [zeros]

x : initialized input vector [white noise]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

p : initialized power estimate

Example

L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(L,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize a DRNLMS FIR filter

[w,x,d,y,e,p]=init_drnlms(L,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 4 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTDRNLMS.

110

4.27. init leakynlms

4.27 init leakynlms

Purpose Creates and initializes the variables required for the Leaky Normalized Least
Mean Squares (LEAKY NLMS) Adaptive algorithm

Syntax [w,x,d,y,e,p]=init_leakynlms(L)

[w,x,d,y,e,p]=init_leakynlms(L,w0,x0,d0)

Description The variables of the Leaky NLMS are summarized below (see Fig. 2.6).

Input Parameters::

L : number of filter coefficients

w0 : initial coefficient vector [L x 1]

x0 : initial input samples vector [L x 1]

d0 : initial desired sample [L x 1]

Output parameters [default]::

w : initialized filter coefficients [zeros]

x : initialized input vector [white noise]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

p : initialized power estimate

Example L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(5,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize a Leaky NLMS FIR filter

[w,x,d,y,e,p]=init_leakynlms(L,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 4 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTLEAKYNLMS, ECHO LEAKYNLMS, ASPTNLMS.

111

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.28 init lclms

Purpose Creates and initializes the variables required for the Linearly Constrained Least
Mean Squares (LMS) Adaptive algorithm

Syntax [w,x,d,y,e]=init_lclms(L)

[w,x,d,y,e]=init_lclms(L,w0,x0,d0)

Description The variables of the LCLMS are summarized below (see Fig. 2.6).

Input Parameters [Size] ::

L : number of filter coefficients

w0 : initial coefficient vector [L x 1]

x0 : initial input samples vector [L x 1]

d0 : initial desired sample [a x 1]

Output parameters [default] ::

w : initialized filter coefficients [zeros]

x : initialized input vector [zeros]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

Example L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(5,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize a LCLMS FIR filter

[w,x,d,y,e]=init_lclms(L,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 4 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTLCLMS, BEAMBB LCLMS.

112

4.29. init lms

4.29 init lms

Purpose Creates and initializes the variables required for the Least Mean Squares (LMS)
Adaptive algorithm

Syntax [w,x,d,y,e]=init_lms(L)

[w,x,d,y,e]=init_lms(L,w0,x0,d0)

Description The variables of the LMS are summarized below (see Fig. 2.6).

Input Parameters [Size] ::

L : number of filter coefficients

w0 : initial coefficient vector [L x 1]

x0 : initial input samples vector [L x 1]

d0 : initial desired sample [a x 1]

Output parameters [default] ::

w : initialized filter coefficients [zeros]

x : initialized input vector [zeros]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

Example L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(5,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize an LMS FIR filter

[w,x,d,y,e]=init_lms(L,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 4 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTLMS, MODEL LMS.

113

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.30 init mvsslms

Purpose Creates and initializes the variables required for the Modified Variable Step
Size Least Mean Squares (MVSSLMS) Adaptive algorithm

Syntax [w,x,d,y,e,g,mu] = init_mvsslms(L)

[w,x,d,y,e,g,mu] = init_mvsslms(L,w0,x0,d0,mu0,g0)

Description The MVSSLMS is a simplified version of the VSSLMS. The variables of the
MVSSLMS are summarized below (see Fig. 2.6).

Input Parameters [Size] ::

L : adaptive filter length

w0 : initial vector of filter coefficients [Lx1]

x0 : initial input samples delay line [Lx1]

d0 : initial desired sample [1x1]

mu0 : initial step-size [1x1]

g0 : initial gradient[1x1]

Output parameters [default]::

w : initialized filter coefficients [zeros]

x : initialized input delay line [zeros]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

g : initialized gradient vector [zero]

mu : initialized step-size vector [zero]

Example L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(5,1); % initial delay line

mu0 = 0.1; % initial step sizes

% Create and initialize an MVSSLMS FIR filter

[w,x,d,y,e,g,mu] = init_mvsslms(L,w0,x0,[],mu0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 6 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTMVSSLMS, ASPTVSSLMS, MODEL MVSSLMS.

114

4.31. init nlms

4.31 init nlms

Purpose Creates and initializes the variables required for the Normalized Least Mean
Squares (NLMS) Adaptive algorithm

Syntax [w,x,d,y,e,p]=init_nlms(L)

[w,x,d,y,e,p]=init_nlms(L,w0,x0,d0)

Description The variables of the NLMS are summarized below (see Fig. 2.6).

Input Parameters::

L : number of filter coefficients

w0 : initial coefficient vector [L x 1]

x0 : initial input samples vector [L x 1]

d0 : initial desired sample [L x 1]

Output parameters [default]::

w : initialized filter coefficients [zeros]

x : initialized input vector [white noise]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

p : initialized power estimate

Example L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(5,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize an NLMS FIR filter

[w,x,d,y,e,p]=init_nlms(L,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 4 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTNLMS, MODEL NLMS, ASPTLMS.

115

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.32 init pbfdaf

Purpose Creates and initializes the variables required for the Partitioned Block Fre-
quency Domain Adaptive Filter (PBFDAF) algorithm.

Syntax [W,x,d,e,y,Px,X,w]=init_pbfdaf(L,M,P)

[W,x,d,e,y,Px,X,w]=init_pbfdaf(L,M,P,W0,X0,d0)

Description The variables of the PBFDAF are similar to those of the BFDAF (see Fig. 4.2)
and are summarized below . The FFT length B is internally calculated using
the equation B = 2nextpow2(L+M−1).

Input Parameters [Size]::

L : number of new input samples per block

M : filter partition length (in time domain)

P : number of partitions (total filter length = P*M)

W0 : initial matrix of filter coefficients [B x P]

X0 : initial matrix of frequency domain input signal [B x P]

d0 : initial desired response vector [L x 1]

Output parameters [default]::

W : initialized matrix of filter coef. [zeros]

x : initialized overlap-save input buffer

d : initialized desired response [white noise]

e : initialized error vector in t-domain

y : initialized filter output in t-domain

Px : initialized estimate of the input power (Bx1)

X : initialized input samples matrix [zeros]

w : time domain filter coefficients vector

Example P = 16; % partitions

L = 128; % Block length

M = 128; % 2048-long filter

B = 2^nextpow2(L+M-1); % FFT length

W0 = zeros(B,P); % initial filter coef.

X0 = rand(B,P); % initial input buffer

d0 = rand(L,1); % desired block

% Create and initialize a PBFDAF FIR filter

[W,x,d,e,y,Px,X,w]=init_pbfdaf(L,M,P,W0,X0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 4 through 6 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTPBFDAF, ECHO PBFDAF.

116

4.33. init rcpbfdaf

4.33 init rcpbfdaf

Purpose Creates and initializes the variables required for the Reduced Complexity Par-
titioned Block Frequency Domain Adaptive Filter (RCPBFDAF) algorithm.

Syntax [W,x,d,e,y,Px,X,ci,w]=init_rcpbfdaf(L,M,P)

[W,x,d,e,y,Px,X,ci,w]=init_rcpbfdaf(L,M,P,W0,X0,d0)

Description The variables of the RCPBFDAF are similar to those of the BFDAF (see
Fig. 4.2) and are summarized below . The FFT length B is internally calculated
using the equation B = 2nextpow2(L+M−1).

Input Parameters [Size]::

L : block length (M = g * L)

M : filter partition length, must be int multiple of L

P : number of partitions (total filter length = P*M)

W0 : initial matrix of filter coefficients [B x P]

X0 : initial matrix of f-domain input signal [B x G]

d0 : initial desired response vector [L x 1]

Output parameters [default]::

W : initialized matrix of filter coef. [zeros]

x : initialized overlap-save input buffer

d : initialized desired response [white noise]

e : initialized error vector in t-domain

y : initialized filter output in t-domain

Px : initialized estimate of the input power (Bx1)

X : initialized input samples matrix [zeros]

ci : index of the next partition to be constrained

w : time domain filter coefficients vector

Example P = 16; % partitions

L = 32; % Block length

M = L*4; % 2048-long filter

B = 2^nextpow2(L+M-1); % FFT length

G = (P-1)*4+1; % depth of X

W0 = zeros(B,P); % initial filter coef.

X0 = rand(B,G); % initial input buffer

d0 = rand(L,1); % desired block

% Create and initialize a RCPBFDAF FIR filter

[W,x,d,e,y,Px,X,ci,w]=init_rcpbfdaf(L,M,P,W0,X0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 4 through 6 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTRCPBFDAF, ECHO RCPBFDAF.

117

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.34 init rdrlms

Purpose Creates and initializes the variables required for the Recent Data Reusing Least
Mean Squares algorithm.

Syntax [w,x,d,y,e] = init_rdrlms(L,k)

[w,x,d,y,e] = init_rdrlms(L,k,w0,x0,d0)

Description The variables of the RDRLMS are summarized below (see Fig. 2.6).

Input Parameters [Size] ::

L : number of filter coefficients

k : number of data reusing cycles.

w0 : initial coefficient vector [L x 1]

x0 : initial input samples vector [L+k x 1]

d0 : initial desired sample [k+1 x 1]

Output parameters [default] ::

w : initialized filter coefficients [zeros]

x : initialized input vector [zeros]

d : initialized desired vector [white noise]

y : Initialized filter output

e : initialized error sample [d - y]

Example

L = 5; % Number of coefficients

k = 2; % number of reusing cycles

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(L+k,1); % initial delay line

d0 = rand(k+1,1); % desired sample

% Create and initialize a RDRLMS FIR filter

[w,x,d,y,e]=init_rdrlms(L,k,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTRDRLMS.

118

4.35. init rdrnlms

4.35 init rdrnlms

Purpose Creates and initializes the variables required for the Recent Data Reusing
Normalized Least Mean Squares algorithm.

Syntax [w,x,d,y,e,p] = init_rdrnlms(L,k)

[w,x,d,y,e,p] = init_rdrnlms(L,k,w0,x0,d0)

Description The variables of the RDRNLMS are summarized below (see Fig. 2.6).

Input Parameters [Size]::

L : number of filter coefficients

k : number of data reusing cycles.

w0 : initial coefficient vector [L x 1]

x0 : initial input samples vector [L+k x 1]

d0 : initial desired sample [k+1 x 1]

Output parameters [default]::

w : initialized filter coefficients [zeros]

x : initialized input vector [white noise]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error vector [d - y]

p : initialized power estimate

Example

L = 5; % Number of coefficients

k = 2; % number of reusing cycles

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(L+k,1); % initial delay line

d0 = rand(k+1,1); % desired sample

% Create and initialize a RDRNLMS FIR filter

[w,x,d,y,e,p]=init_rdrnlms(L,k,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTRDRNLMS.

119

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.36 init rls

Purpose Creates and initializes the variables required for the Recursive Least Squares
(RLS) adaptive algorithm.

Syntax [w,x,d,y,e,R]=init_rls(L,b)

[w,x,d,y,e,R]=init_rls(L,b,w0,x0,d0)

Description The variables of the RLS are summarized below (see Fig. 2.6).

Input Parameters::

L : Adaptive filter length

b : a small +ve constant to initialize R

w0 : initial coefficient vector

x0 : initial input samples vector

d0 : initial desired sample

Output parameters [default]::

w : Initialized filter coefficients [zeros]

x : Initialized input vector [zeros]

d : Initialized desired sample [white noise]

y : Initialized filter output [y = w’ * x]

e : Initialized error sample [e = d - y]

R : Initialized inverse of the weighted

auto correlation matrix of x, [R=b*eye(L)]

Example L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(5,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize the RLS FIR filter

[w,x,d,y,e,R]=init_rls(L,0.1,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTRLS, EQUALIZER RLS.

120

4.37. init tdftaf

4.37 init tdftaf

Purpose Creates and initializes the variables required for the Transform Domain Fault
Tolerant Adaptive Filter (TDFTAF). TDFTAF contains R redundant coeffi-
cients to guarantee that the filter will recover after the occurrence of a partial
hardware failure during operation.

Syntax [W,w,x,d,y,e,p] = init_tdftaf(L,R)

[W,w,x,d,y,e,p] = init_tdftaf(L,R,W0,x0,d0)

Description The variables of the TDFTAF are summarized below (see Fig. 2.6 and
Fig. 4.18).

Input Parameters [Size]::

L : number of filter coefficients

R : number of redundant coefficients

w0 : initial T-domain coef. vector [L+R x 1]

x0 : initial input samples vector [L x 1]

d0 : initial desired sample [1 x 1]

Output parameters [default]::

W : initialized T-domain coef. vector [zeros]

w : initialized time-domain coef. vector [zeros]

x : initialized input vector [white noise]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

p : initialized power estimate

Example L = 5; % Number of coefficients

R = 3; % Redundant coefficients

x0 = rand(5,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize a TDFTAF FIR filter

[W,w,x,d,y,e,p]=init_tdftaf(L,R,[],x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTTDFTAF, ASPTTDLMS.

121

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.38 init tdlms

Purpose Creates and initializes the variables required for the Transform Domain Least
Mean Squares (TDLMS) Adaptive algorithm

Syntax [W,w,x,d,y,e,p]=init_tdlms(L)

[W,w,x,d,y,e,p]=init_tdlms(L,W0,x0,d0)

Description The variables of the TDLMS are summarized below (see Fig. 2.6 and Fig. 4.20).

Input Parameters [Size]::

L : number of filter coefficients

W0 : initial T-domain coef. vector [L x 1]

x0 : initial input samples vector [L x 1]

d0 : initial desired sample [L x 1]

Output parameters [default]::

W : initialized T-domain coef. vector [zeros]

w : initialized time-domain coef. vector [zeros]

x : initialized input vector [white noise]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

p : initialized power estimate

Example L = 5; % Number of coefficients

W0 = [1;0;0;0;0]; % initial filter coefficients

x0 = rand(5,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize a TDLMS FIR filter

[W,w,x,d,y,e,p]=init_tdlms(L,W0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 4 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTTDLMS, MODEL TDLMS.

122

4.39. init vffrls

4.39 init vffrls

Purpose Creates and initializes the variables required for the Variable Forgetting Factor
Recursive Least Squares (VFFRLS) adaptive algorithm.

Syntax [w,x,d,y,e,R,k] = init_vffrls(L,b)

[w,x,d,y,e,R,k] = init_vffrls(L,b,w0,x0,d0)

Description The variables of the VFFRLS are summarized below.

Input Parameters::

L : Adaptive filter length

b : a small +ve constant to initialize R

w0 : initial coefficient vector

x0 : initial input samples vector

d0 : initial desired sample

Output parameters [default]::

w : Initialized filter coefficients [zeros]

x : Initialized input vector [zeros]

d : Initialized desired sample [white noise]

y : Initialized filter output [y = w’ * x]

e : Initialized error sample [e = d - y]

R : Initialized inverse of the weighted

auto correlation matrix of x, [R=b*eye(L)]

k : Initialized gain vector.

Example L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(5,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize the VFFRLS FIR filter

[w,x,d,y,e,R,k]=init_vffrls(L,0.1,w0,x0,d0);

Remarks • asptvffrls() supports both real and complex signals and filters.

• Use input parameters 3 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTVFFRLS, TEST VFFRLS.

123

Chapter 4. Transversal and Linear Combiner Adaptive Algorithms

4.40 init vsslms

Purpose Creates and initializes the variables required for the Variable Step Size Least
Mean Squares (VSSLMS) Adaptive algorithm

Syntax [w,x,d,y,e,g,mu] = init_vsslms(L)

[w,x,d,y,e,g,mu] = init_vsslms(L,w0,x0,d0,mu0,g0)

Description The variables of the VSSLMS are summarized below (see Fig. 2.6).

Input Parameters [Size] ::

L : adaptive filter length

w0 : initial vector of filter coefficients [Lx1]

x0 : initial input samples delay line [Lx1]

d0 : initial desired sample [1x1]

mu0 : initial step-size vector [Lx1]

g0 : initial gradient vector [Lx1]

Output parameters [default]::

w : initialized filter coefficients [zeros]

x : initialized input delay line [zeros]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

g : initialized gradient vector [zeros]

mu : initialized step-size vector [zeros]

Example L = 5; % Number of coefficients

w0 = [0;0;1;0;0]; % initial filter coefficients

x0 = rand(5,1); % initial delay line

mu0 = 0.1*ones(L,1); % initial step sizes

% Create and initialize an VSSLMS FIR filter

[w,x,d,y,e,g,mu] = init_vsslms(L,w0,x0,[],mu0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 6 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTVSSLMS, MODEL VSSLMS.

124

Chapter 5

Lattice Adaptive Algorithms

This chapter documents the functions used to create, initialize, and update the coefficients of
lattice adaptive filters (Section 2.2.4). Table 5.1 summarizes the lattice adaptive functions and
gives a short description and a pointer to the reference page of each function.

Function Name Reference Short Description

asptftrls 5.1 Fast Transversal RLS algorithm.
asptlbpef 5.2 Lattice Backward Prediction Error Filter.
asptlfpef 5.3 Lattice Forward Prediction Error Filter.
asptlmslattice 5.4 LMS-Lattice Joint Process Estimator.
asptrlslattice 5.5 RLS-Lattice joint process estimator

using a posteriori estimation errors.
asptrlslattice2 5.6 RLS-Lattice joint process estimator

using a priori estimation errors with error feedback.
asptrlslbpef 5.7 Lattice Backward Prediction Error Filter.
asptrlslfpef 5.8 Lattice Forward Prediction Error Filter.
init ftrls 5.9 Initialize Fast Transversal RLS.
init lbpef 5.10 Initialize Lattice Backward Prediction Error Filter.
init lfpef 5.11 Initialize Lattice Forward Prediction Error Filter.
init lmslattice 5.12 Initialize LMS Lattice adaptive filter.
init rlslattice 5.13 Initialize RLS-Lattice joint process estimator

using a posteriori estimation errors.
init rlslattice2 5.14 Initialize RLS-Lattice joint process estimator

using a priori estimation errors with error feedback.
init rlslbpef 5.15 Initialize Recursive Least Squares Lattice Backward PEF.
init rlslfpef 5.16 Initialize Recursive Least Squares Lattice Forward PEF.

Table 5.1: Functions for creating, initializing, and updating lattice adaptive filters.

Each function is documented in a separate section including the following information related to
the function:

• Purpose: Short description of the algorithm implemented by this function.

• Syntax: Shows the function calling syntax. If the function has optional parameters, this
section will have two calling syntaxes. One with only the required formal parameters and
one with all the formal parameters.

• Description: Detailed description of the function usage with explanation of its input and
output parameters.

• Example: A short example showing typical use of the function. The examples listed can
be found in the ASPT/test directory of the ASPT distribution. The user is encouraged to
copy from those examples and paste in her own applications.

Chapter 5. Lattice Adaptive Algorithms

• Algorithm: A short description of the operations internally performed by the function.

• Remarks: Gives more theoretical and practical remarks related to the usage, performance,
limitations, and applications of the function.

• Resources: Gives a summary of the memory requirements and number of multiplications,
addition/subtractions, and division operations required to implement the function in real
time. This can be used to roughly calculate the MIPS (Million Instruction Per Second)
required for a specific platform knowing the number of instructions the processor needs to
perform each operation.

• See Also: Lists other functions that are related to this function.

• Reference: Lists literature for more information on the function.

126

5.1. asptftrls

5.1 asptftrls

Purpose Performs filtering and coefficient update using the Fast Transversal Recursive
Least Squares (FTRLS) algorithm, also known as the Fast Transversal Filter
(FTF) algorithm.

Syntax [ff,bb,k,cf,c,g,w,e,y] = asptftrls(ff,bb,k,cf,c,g,w,a,x,d)

Description asptftrls() is an efficient implementation of the joint process estima-
tor, and is therefore an improvement over the asptrlslattice() and
asptrlslattice2() functions. In the RLSLATTICE functions, the problem
of prediction and filtering (joint process estimation) is solved for lattice sections
and linear combiner of length 1, 2, · · ·L simultaneously, where L is the linear
combiner length. The improvement brought about by the FTRLS algorithm
is obtained by concentrating on solving the problem only for a filter of length
L, and therefore removing redundant calculations. Although the FTRLS has
about half the computational complexity of the RLSLATTICE algorithms, it
is known to be sensitive to round-off errors. This problem derive the algo-
rithm unstable when finite precision calculations are used, for instance when
implemented on a fixed-point DSP platform. There exist two solutions for this
round-off error problem. The first is to detect the instability before occur-
ring and reinitializing the algorithm with the current filter coefficients (soft
initialization). This approach is implemented in asptftrls(). The second is
to calculate the sensitive quantities in different ways (introduce computation
redundancy), an approach followed by the Stabilized Fast Transversal RLS
(SFTRLS) algorithm.
The input and output parameters of asptftrls() of length L are summarized
below.

Input Parameters::

ff : last autocorrelation of forward prediction error (f)

bb : last autocorrelation of backward prediction error (b)

k : normalized gain vector

cf : last conversion factor

c : forward transversal predictor coefficients vector

g : backward transversal predictor coefficients vector

w : transversal linear combiner coefficients vector

a : forgetting factor

x : input samples vector

d : desired response d(n)

Output parameters::

ff : updated autocorrelation of forward prediction error

bb : updated autocorrelation of backward prediction error

k : updated normalized gain vector

cf : updated conversion factor vector

c : updated forward predictor coefficients vector

g : updated backward predictor coefficients vector

w : updated linear combiner coefficients vector

y : linear combiner output

e : error signal

127

Chapter 5. Lattice Adaptive Algorithms

Example % FTRLSL used in a simple system identification application.

% By the end of this script the adaptive filter w

% should have the same coefficients as the unknown filter h.

iter = 5000; % samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % error signal

% Initialize FTRLS with a filter of 10 coef.

L = 10; % filter length

a = .9; % forgetting factor

[ff,bb,k,cf,c,g,w,x,d,e,y]=init_ftrls(L);

%% Processing Loop

for (m=1:iter)

x = [xn(m,:); x(1:end-1)]; % input samples vector

d = dn(m,:) + 1e-3*rand; % additive noise var = 1e-6

[ff,bb,k,cf,c,g,w,e,y]=asptftrls(ff,bb,k,cf,c,g,w,a,x,d);

% save the last error sample to plot later

en(m,:) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);

eb = filter(.1, [1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 5.1. The left
side graph of the figure shows the adaptive linear combiner coefficients after
convergence which are almost identical to the unknown filter h. The right side
graph shows the square error in dB versus time during the adaptation process.
The lower limit of the error signal power in the learning curve is defined here
by the additive white noise added at the filter output (-60 dB).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 5.1: The adaptive linear combiner coefficients after convergence
and the learning curve for the complex system identification problem using
the FTRLS algorithm.

128

5.1. asptftrls

Algorithm asptftrls() performs the following operations each iteration

• Calculates the forward and backward prediction errors for the Lth lattice
stage,

• Calculates the backward (bb) and forward (ff) autocorrelations for the
Lth lattice stage,

• Calculates the conversion factor of the Lth and L+ 1th lattice stages,

• Updates the normalized gain vector, and the forward and backward pre-
diction coefficient vectors,

• Evaluates the linear combiner output and error signals,

• Updates the linear combiner coefficients,

Remarks • asptftrls() supports real as well as complex signals and filters. The
complex linear combiner FTRLS filter converges to the complex conju-
gate of the optimal solution.

• FTRLS algorithms have been found to be more sensitive to numerical
rounding errors compared to RLS Lattice algorithms. asptftrls() de-
tects the sign of instability, and reinitializes the algorithm before such
instability occurs using the current coefficients vector.

• Stabilized versions of the FTRLS exist that introduce redundant calcu-
lations to improve robustness against numerical rounding errors, on the
cost of extra computation. Even those stabilized versions have unstable
modes that are excited when λ, the forgetting factor, is not close enough
to unity. Since λ should be set smaller for fast tracking applications, this
certainly can be seen as a limiting factor.

Resources The resources required to implement an FTRLS filter of length L in real time
is given in the table below. The computations given are those required to
process one sample.

MEMORY 5L+ 9
MULTIPLY 7L+ 20
ADD 7L+ 12
DIVIDE 3

See Also INIT FTRLS, ASPTRLSLATTICE.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

129

Chapter 5. Lattice Adaptive Algorithms

5.2 asptlbpef

Purpose Implements the adaptive LMS Lattice Backward Prediction Error Filter.

Syntax [k,b,P,e,y,c] = asptlbpef(k,b,P,x,mu_p)

Description asptlbpef is a lattice implementation of the backward prediction error filter
shown in Fig. 5.2. Instead of updating the coefficients of a transversal filter,
asptlbpef() updates the PARCOR coefficients of a lattice predictor of the
same order. The backward prediction error of the last lattice stage is returned
as the error signal e(n) of the prediction error filter. If the number of out-
put arguments are more than 5, the coefficients of the equivalent transversal
prediction error filter are also calculated and returned in the variable c such
that

e(n) = [1;−c]T x(n− L) (5.1)

where [1;−c]T represents the impulse response between the PEF output e(n)
and its input x(n) and x(n − L) is the input signal delay line delayed by L
samples.
The input and output parameters of asptlbpef() of L stages are summarized
below.

Input Parameters::

k : vector of lattice predictor coefficients

b : vector of backward prediction error

P : vector of last estimated power of b

x : input delay line

mu_p: adaptation constant for the predictor coefficient

Output parameters::

k : updated lattice predictor coefficients

b : updated backward prediction error vector

P : updated power estimate of b

e : backward prediction error

y : predictor output

c : Equivalent transversal predictor coefficients.

Adaptive
algorithm

Adjustable
filter

Z-M

x(n)

d(n) = x(n-M)

e(n)

y(n) +

-

Figure 5.2: Block diagram of the backward prediction error filter.

130

5.2. asptlbpef

Example % LBPEF used in a adaptive line enhancer application.

% By the end of this script, the backward prediction error

% is the wide-band signal and the output of the equivalent

% transversal predictor is the narrow-band signal.

iter = 5000;

t = (1:iter)/1000; % time index @ 1kHz

xn = 2*(rand(iter,1)-0.5) ; % Input signal, zero mean random.

xn = xn + 1 * cos(2*pi*50*t’);

yn = zeros(iter,1); % narrow-band signal

en = yn; % error signal

% Initialize LBPEF

M = 10; % filter length

mu_p = 0.01; % Step size

[k,b,P,e,y,x,c]=init_lbpef(M); % Init LBPEF

%% Processing Loop

for (m=1:iter)

x = [xn(m); x(1:end-1)];

[k,b,P,e,y,c] = asptlbpef(k,b,P,x,mu_p);

yn(m,:) = y; % save narrow-band

en(m,:) = e; % save wide-band

end;

% Transfer function between e(n) and x(n-L).

h = filter([1;(-c)],1,[1;zeros(1023,1)]);

f = (0:512)*500/512;

H = 20*log10(abs(fft(h)));

% display the results

subplot(2,2,1);plot(f,H(1:513,:)); grid;

subplot(2,2,2);

plot([yn(4800:5000)]);grid

Running the above script will produce the graph shown in Fig. 5.3. The
left side graph of the figure shows the frequency response of the equivalent
transversal prediction error filter after convergence. This frequency response
shows that the predictor adjusts itself to pass the narrow-band signal at 50 Hz
and attenuate all other input components so that the error signal contains the
wide-band signal only. The right side graph shows the last 200 samples of the
filter output which shows that the filter output coincide with the narrow-band
50 Hz superimposed on the white noise input signal.

0 100 200 300 400 500
−25

−20

−15

−10

−5

0

5

frequency [Hz]

am
pl

itu
de

 [d
B

]

0 50 100 150 200
−1

−0.5

0

0.5

1

fil
te

r
ou

tp
ut

time [samples]

Figure 5.3: The frequency response of the PEF after convergence and
the filter output for the adaptive line enhancer using LBPEF.

131

Chapter 5. Lattice Adaptive Algorithms

Algorithm asptlbpef() performs the following operations

• Calculates the forward and backward prediction errors for the lattice
structure stages using the order update equations (see section 2.2.4),

• Calculates the power estimate of the backward prediction errors,

• Updates the PARCOR coefficients of the lattice predictor,

• Calculates the equivalent transversal predictor coefficients from the up-
dated PARCOR coefficients,

• Calculates the equivalent transversal predictor output.

Remarks The adaptive Lattice Prediction Error Filter is a useful tool in linear prediction
and autoregressive modeling applications. A few of the features that make the
LBPEF so popular are:

• The PARCOR coefficients always satisfy the relation |km| ≤ 1.

• The power of the forward prediction error E[e2fm(n)] and the backward

prediction error E[e2bm(n)] of the same stage are equal.

• The backward prediction errors eb0(n), eb1(n), · · · , ebM (n) are uncor-
related with one another for any input sequence x(n). This prop-
erty is very important since it shows that the lattice predictor can
be seen as an orthogonal transformation with the input signal sam-
ples x(n), x(n − 1), · · · , x(n −M + 1) as input and the backward errors
eb0(n), eb1(n), · · · , ebM (n) as the uncorrelated (orthogonal) output.

• The power of the prediction error decreases with increasing predictor
order. The error power decrease is controlled by the magnitude of the
PARCOR coefficients. The closer the value of a PARCOR coefficient to
unity, the higher the contribution of its stage in reducing the prediction
error. The first few stages usually have PARCOR coefficients of high
magnitudes. The magnitude of the coefficients decreases with increasing
stage number.

Resources The resources required to implement the LBPEF of L stages in real time is
given in the table below. The computations given are those required to process
one sample.

MEMORY 6L+ 7
MULTIPLY 10L+ 5 + sum(1 : L− 1)
ADD 7L+ 2 + sum(1 : L− 1)
DIVIDE L

See Also INIT LBPEF, PREDICT LBPEF, ASPTLFPEF, ASPTLMSLATTICE.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

132

5.3. asptlfpef

5.3 asptlfpef

Purpose Implements an adaptive LMS Lattice Forward Prediction Error Filter.

Syntax [k,b,P,e,y,c] = asptlfpef(k,b,P,x,mu_p)

Description asptlfpef() is a lattice implementation of the forward prediction error filter
shown in Fig. 5.4. Instead of updating the coefficients of a transversal filter,
asptlfpef() updates the PARCOR coefficients of a lattice predictor of the
same order. The forward prediction error of the last lattice stage is returned
as the error signal e(n) of the prediction error filter. If the number of out-
put arguments are more than 5, the coefficients of the equivalent transversal
prediction error filter are also calculated and returned in the variable c such
that

e(n) = [1;−c]T x(n− 1) (5.2)

where [1;−c]T represents the impulse response between the PEF output e(n)
and its input x(n) and x(n − 1) is the input signal delay line delayed by one
sample.
The input and output parameters of asptlfpef() of L stages are summarized
below.

Input Parameters::

k : vector of lattice predictor coefficients

b : vector of backward prediction error

P : vector of last estimated power of b

x : new input sample

mu_p: adaptation constant for the predictor coefficient

Output parameters::

k : updated lattice predictor coefficients

b : updated backward prediction error vector

P : updated power estimate of b

e : forward prediction error

y : predictor output

c : Equivalent transversal predictor coefficients.

Adaptive
algorithm

Adjustable
filter

Delay
∆

x(n-∆)

d(n) = x(n)

e(n)

y(n) +

-

x(n)

Figure 5.4: Block diagram of the forward prediction error filter.

133

Chapter 5. Lattice Adaptive Algorithms

Example % LFPEF used in a adaptive line enhancer application.

% By the end of this script, the forward prediction error

% is the wide-band signal and the output of the equivalent

% transversal predictor is the narrow-band signal.

iter = 5000;

t = (1:iter)/1000; % time index @ 1kHz

xn = 2*(rand(iter,1)-0.5) ; % Input signal, zero mean random

xn = xn + 1 * cos(2*pi*50*t’);% add 50 Hz narrow-band to input

yn = zeros(iter,1); % narrow-band signal

en = yn; % error signal

% Initialize LFPEF

M = 10; % filter length

mu_p = 0.01; % Step size

[k,b,P,e,y,c]=init_lfpef(M); % Init LFPEF

%% Processing Loop

for (m=1:iter)

[k,b,P,e,y,c] = asptlfpef(k,b,P,xn(m),mu_p);

yn(m,:) = y; % save narrow-band

en(m,:) = e; % save wide-band

end;

h = filter([1 ; -c],1,[1;zeros(1023,1)]);

f = (0:512)*500/512;

H = 20*log10(abs(fft(h)));

% display the results

subplot(2,2,1);plot(f,H(1:513,:)); grid;

subplot(2,2,2);

plot([yn(4800:5000)]);grid

Running the above script will produce the graph shown in Fig. 5.5. The
left side graph of the figure shows the frequency response of the equivalent
transversal prediction error filter after convergence. This frequency response
shows that the predictor adjusts itself to pass the narrow-band signal at 50 Hz
and attenuate all other input components so that the error signal contains the
wide-band signal only. The right side graph shows the last 200 samples of the
filter output which shows that the filter output coincide with the narrow-band
50 Hz superimposed on the white noise input signal.

0 100 200 300 400 500
−25

−20

−15

−10

−5

0

5

10

frequency [Hz]

am
pl

itu
de

 [d
B

]

0 50 100 150 200
−1

−0.5

0

0.5

1

fil
te

r
ou

tp
ut

time [samples]

Figure 5.5: The frequency response of the PEF after convergence and
the filter output for the adaptive line enhancer using LFPEF.

134

5.3. asptlfpef

Algorithm asptlfpef() performs the following operations

• Calculates the forward and backward prediction errors for the lattice
structure stages using the order update equations (see section 2.2.4),

• Calculates the power estimate of the backward prediction errors,

• Updates the PARCOR coefficients of the lattice predictor,

• Calculates the equivalent transversal predictor coefficients from the up-
dated PARCOR coefficients,

• Calculates the equivalent transversal predictor output.

Remarks The adaptive Lattice Prediction Error Filter is a useful tool in linear prediction
and autoregressive modeling applications. A few of the features that make the
LFPEF so popular are:

• The PARCOR coefficients always satisfy the relation |km| ≤ 1.

• The power of the forward prediction error E[e2fm(n)] and the backward

prediction error E[e2bm(n)] of the same stage are equal.

• The backward prediction errors eb0(n), eb1(n), · · · , ebM (n) are uncor-
related with one another for any input sequence x(n). This prop-
erty is very important since it shows that the lattice predictor can
be seen as an orthogonal transformation with the input signal sam-
ples x(n), x(n − 1), · · · , x(n −M + 1) as input and the backward errors
eb0(n), eb1(n), · · · , ebM (n) as the uncorrelated (orthogonal) output.

• The power of the prediction error decreases with increasing predictor
order. The error power decrease is controlled by the magnitude of the
PARCOR coefficients. The closer the value of a PARCOR coefficient to
unity, the higher the contribution of its stage in reducing the prediction
error. The first few stages usually have PARCOR coefficients of high
magnitudes. The magnitude of the coefficients decreases with increasing
stage number.

Resources The resources required to implement the LFPEF of L stages in real time is
given in the table below. The computations given are those required to process
one sample.

MEMORY 5L+ 6
MULTIPLY 10L+ 5 + sum(1 : L− 1)
ADD 7L+ 2 + sum(1 : L− 1)
DIVIDE L

See Also INIT LFPEF, PREDICT LFPEF, ASPTLBPEF, ASPTLMSLATTICE.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

135

Chapter 5. Lattice Adaptive Algorithms

5.4 asptlmslattice

Purpose Performs filtering and coefficient update for the LMS Lattice (joint process
estimator) adaptive filter.

Syntax [k,c,b,P,y,e]=asptlmslattice(k,c,b,P,x,d,mu_p,mu_c,upk)

Description asptlmslattice() implements the joint process estimator shown in Fig. 5.6.
The joint process estimator estimates a process d(n) from another correlated
process x(n). It consists of two separate parts, the lattice predictor part and
the linear combiner part. The main function of the lattice predictor part
is to transform the input signal samples x(n), x(n − 1), · · · , x(n − M + 1)
that might be well correlated to the uncorrelated backward prediction errors
eb0(n), eb1(n), · · · , ebM (n). The linear combiner part calculates the equivalent
transversal filter output according to the relationship

y(n) =

M
∑

i=1

ci ebi(n). (5.3)

The adaptive joint process estimator adjusts both the PARCOR coefficients
ki; i = 1, 2, · · · ,M ; and the linear combiner coefficients ci; i = 1, 2, · · · ,M si-
multaneously. The PARCOR coefficients are adjusted to minimize the forward
and backward prediction error powers and the linear combiner coefficients are
adjusted to minimize the mean square of the error signal e(n) = d(n)− y(n).

The input and output parameters of asptlmslattice() of L stages are sum-
marized below.

Input Parameters::

k : vector of lattice predictor coefficients (PARCOR)

c : vector of linear combiner coefficients

b : vector of backward prediction error

P : vector of last estimated power of b

x : new input sample

d : new desired sample

mu_p: adaptation constant for the predictor coefficients

mu_c: adaptation constant for the linear combiner coef.

upk : flag if 0 will not update k

Output parameters::

k : updated lattice predictor coefficients

c : updated linear combiner coefficients

b : updated backward prediction error

P : updated power estimate of b

y : linear combiner output

e : error signal [e = d - y]

136

5.4. asptlmslattice

Z-1

k1

Σ

Σ

k1

+

-

-

+

eb1

ef1ef0

eb0
Z-1

k2

Σ

Σ

k2

+

-

-

+

eb2

ef2

x(n)

…

…

Z-1

kM

Σ

Σ

kM

+

-

-

+

ebM

efM

c1 c2 cM

ΣΣ

c3

Σ …+ + +
+ +

+Σ
d(n)e(n)

Adaptive Algorithm

y(n)
-

Figure 5.6: Block diagram of the adaptive Joint Process Estimator.

Example % LMSLATTICE used in a simple system identification application.

% By the end of this script the adaptive filter w

% should have the same coefficients as the unknown filter h.

iter = 5000; % samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % error signal

% Initialize LMSLATTICE with a filter of 10 coef.

L = 10; % filter length

mu_c = .01; % linear combiner step size

mu_p = 0.001; % lattice predictor step size

uk = 1;

[k,w,b,P,d,y,e] = init_lmslattice(L);

%% Processing Loop

for (m=1:iter)

% stop updating the PARCOR coef. after 2000 samples

if (m == 2000), uk=0; end

x = xn(m,:); % new input sample

d = dn(m,:) + 1e-3*rand; % additive noise var = 1e-6

[k,w,b,P,y,e]=asptlmslattice(k,w,b,P,x,d,mu_p,mu_c,uk);

% save the last error sample to plot later

en(m,:) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);

eb = filter(.1,[1 -.9], en .* conj(en));

plot(10*log10(eb));grid

137

Chapter 5. Lattice Adaptive Algorithms

Running the above script will produce the graph shown in Fig. 5.7. The left
side graph of the figure shows the adaptive linear combiner coefficients after
convergence which are almost identical to the unknown filter h. The right side
graph shows the mean square error in dB versus time during the adaptation
process, which is usually called the learning curve. The lower limit of the
error signal power in the learning curve is defined here by the additive white
noise added at the filter output (-60 dB). Note that the final misadjustment is
greatly affected by the fluctuations of the PARCOR coefficients when they are
adapted. The estimation error drops sharply when adaptation of the PARCOR
is stopped after 2000 samples. By that time the PARCOR should have reached
their optimal values and should be fixed to allow lower final misadjustment.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 5.7: The adaptive linear combiner coefficients after convergence
and the learning curve for the complex system identification problem using
the LMSLATTICE algorithm.

Remarks The joint process estimator simultaneously updates the PARCOR coefficients
of the lattice predictor and the coefficients of the linear combiner. Updating
the PARCOR coefficients result in changing all the backward prediction errors
which are the inputs to the linear combiner part. This has the undesirable effect
of increasing the final misadjustment due to the perturbation of the PARCOR
coefficients. When the input is stationary, this problem can be solved by
stopping the adaptation of the PARCOR coefficients after some time (as was
done in the above example). This however does not help when the input x(n)
is non-stationary. The following points are also of interest.

• asptlmslattice() supports real as well as complex signals.

• The PARCOR coefficients always satisfy the relation |km| ≤ 1.

• The power of the forward prediction error E[e2fm(n)] and the backward

prediction error E[e2bm(n)] of the same stage are equal.

• The backward prediction errors eb0(n), eb1(n), · · · , ebM (n) are uncorre-
lated with one another for any input sequence x(n). This accelerates the
convergence of the linear combiner coefficients.

138

5.4. asptlmslattice

Algorithm asptlmslattice() performs the following operations

• Calculates the forward and backward prediction errors for the lattice
structure stages using the order update equations (see section 2.2.4),

• Calculates the power estimate of the backward prediction errors,

• Updates the PARCOR coefficients of the lattice predictor,

• Evaluates the linear combiner output,

• Evaluates the error signal,

• Updates the linear combiner coefficients.

Resources The resources required to implement the LMSLATTICE of length L in real
time is given in the table below. The computations given are those required
to process one sample.

upk = 0 upk = 1

MEMORY 6L+ 7 6L+ 7
MULTIPLY 10L− 2 30L− 2
ADD 7L− 2 9L− 2
DIVIDE L 2L

See Also INIT LMSLATTICE, MODEL LMSLATTICE.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

139

Chapter 5. Lattice Adaptive Algorithms

5.5 asptrlslattice

Purpose Performs filtering and coefficient update for the Recursive Least Squares Lat-
tice (joint process estimator) using the a posteriori estimation errors.

Syntax [ff,bb,fb,be,cf,b,y,e,kf,kb,c]=

asptrlslattice(ff,bb,fb,be,cf,b,a,x,d)

Description asptrlslattice() implements the joint process estimator shown in Fig. 5.8.
Similar to the LMS joint process estimator (Fig. 5.6), it estimates a process
d(n) from another correlated process x(n) and consists of two separate parts,
the lattice predictor part and the linear combiner part. Unlike the LMS lattice
however, the forward and backward PARCOR coefficients are not equal in the
case of the RLS lattice structure.
The adaptive joint process estimator adjusts the forward PARCOR coefficients
kfi; i = 1, 2, · · · ,M , the backward PARCOR coefficients kbi; i = 1, 2, · · · ,M ,
and the linear combiner coefficients ci; i = 1, 2, · · · ,M simultaneously. The
PARCOR coefficients are adjusted to minimize the forward and backward pre-
diction errors, while the linear combiner coefficients are adjusted to minimize
the error signal e(n) in the RLS sense.

The input and output parameters of asptrlslattice() of L stages are sum-
marized below.

Input Parameters::

ff : last autocorrelation of forward prediction error (f)

bb : last autocorrelation of backward prediction error (b)

fb : last crosscorrelation of f and b

be : last crosscorrelation of b and e

cf : last conversion factor vector

b : last backward prediction error vector

a : forgetting factor

x : newest input sample x(n)

d : desired response d(n)

Output parameters::

ff : updated autocorrelation of forward prediction error

bb : updated autocorrelation of backward prediction error

fb : updated crosscorrelation of f and b

be : updated crosscorrelation of b and e

cf : updated conversion factor vector

b : updated backward prediction error vector

y : linear combiner output

e : error signal

kf : updated forward lattice coefficients kf(n)

kb : updated backward lattice coefficients kb(n)

c : updated linear combiner coefficients c(n)

140

5.5. asptrlslattice

Z-1

kf1

Σ

Σ

kb1

+

-

-

+

eb1

ef1ef0

eb0
Z-1

kf2

Σ

Σ

kb2

+

-

-

+

eb2

ef2

x(n)

…

…

Z-1

kfM

Σ

Σ

kbM

+

-

-

+

ebM

efM

c1 c2 cM

ΣΣ

c3

Σ …+ - -
+ +

-
d(n)

e(n)
Adaptive Algorithm

Σ
-+

Figure 5.8: Block diagram of the RLS adaptive Joint Process Estimator.

Example % RLSLATTICE used in a simple system identification application.

% By the end of this script the adaptive filter w

% should have the same coefficients as the unknown filter h.

iter = 5000; % samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % error signal

% Initialize RLSLATTICE with a filter of 10 coef.

L = 10; % filter length

a = .99; % forgetting factor

[ff,bb,fb,be,cf,b,d,y,e,kf,kb,w] = init_rlslattice(L);

%% Processing Loop

for (m=1:iter)

x = xn(m,:); % new input sample

d = dn(m,:) + 1e-3*rand; % additive noise var = 1e-6

[ff,bb,fb,be,cf,b,y,e,kf,kb,w] = asptrlslattice(ff,bb,...

fb,be,cf,b,a,x,d);

% save the last error sample to plot later

en(m,:) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) imag(w)]); grid;

subplot(2,2,2);

eb = filter(.1, [1 -.9], en .* conj(en));

plot(10*log10(eb));grid

141

Chapter 5. Lattice Adaptive Algorithms

Running the above script will produce the graph shown in Fig. 5.9. The left
side graph of the figure shows the adaptive linear combiner coefficients after
convergence which are almost identical to the unknown filter h. The right side
graph shows the square error in dB versus time during the adaptation process,
which is usually called the learning curve. The lower limit of the error signal
power in the learning curve is defined here by the additive white noise added at
the filter output (-60 dB). Note that the RLSLATTICE does not suffer from
the fluctuations of the PARCOR coefficients and the final misadjustment is
not affected by this fluctuations. The filter also shows very fast convergence
rate and high degree of stability once it converged.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]
Learning curve

Figure 5.9: The adaptive linear combiner coefficients after convergence
and the learning curve for the complex system identification problem using
the RLSLATTICE algorithm.

Remarks The joint process estimator simultaneously updates the PARCOR coefficients
of the lattice predictor and the coefficients of the linear combiner. Updating
the PARCOR coefficients result in changing all the backward prediction errors
which are the inputs to the linear combiner. In the case of the LMSLATTICE
this has the undesirable effect of increasing the final misadjustment due to the
perturbation of the PARCOR coefficients. This problem does not appear to be
of concern in the case of RLSLATTICE since the backward and forward predic-
tion errors are minimized in the RLS sense using the exponentially windowed
observed past prediction errors. The following points are also of interest.

• asptrlslattice() supports real as well as complex signals.

• The backward prediction errors eb0(n), eb1(n), · · · , ebM (n) are uncorre-
lated with one another for any input sequence x(n). This accelerates the
convergence of the linear combiner coefficients.

142

5.5. asptrlslattice

Algorithm asptrlslattice() performs the following operations

• Calculates the backward (bb) and forward (ff) autocorrelations for each
lattice stage,

• Calculates the crosscorrelation (fb) between forward and backward pre-
diction errors for each lattice stage,

• Calculates the crosscorrelation (be) between backward prediction error
and linear combiner error for each lattice stage,

• Calculates the forward and backward prediction errors for the lattice
structure stages using the order update equations,

• Updates the forward and backward PARCOR coefficients of the lattice
predictor and the conversion factor ebn/eb(n−1),

• Evaluates the linear combiner output,

• Evaluates the error signal,

• Updates the linear combiner coefficients.

Resources The resources required to implement the RLSLATTICE of length L in real
time is given in the table below. The computations given are those required
to process one sample.

MEMORY 10L+ 4
MULTIPLY 12L
ADD 8L+ 1
DIVIDE 8L

See Also INIT RLSLATTICE, MODEL RLSLATTICE, ASPTRLSLATTICE2.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

143

Chapter 5. Lattice Adaptive Algorithms

5.6 asptrlslattice2

Purpose Performs filtering and coefficient update for the Recursive Least Squares Lat-
tice (joint process estimator) using the a priori estimation errors with error
feedback

Syntax [ff,bb,cf,b,y,e,kf,kb,c] =

asptrlslattice2(ff,bb,kf,kb,c,cf,b,a,x,d)

Description asptrlslattice2() implements the joint process estimator shown in Fig. 5.10.
Similar to the LMS joint process estimator (Fig. 5.6), it estimates a process
d(n) from another correlated process x(n) and consists of two separate parts,
the lattice predictor part and the linear combiner part. Unlike the LMS lattice
however, the forward and backward PARCOR coefficients are not equal in the
case of the RLS lattice structure.
The adaptive joint process estimator adjusts the forward PARCOR coefficients
kfi; i = 1, 2, · · · ,M , the backward PARCOR coefficients kbi; i = 1, 2, · · · ,M ,
and the linear combiner coefficients ci; i = 1, 2, · · · ,M simultaneously. The
PARCOR coefficients are adjusted to minimize the forward and backward pre-
diction errors, while the linear combiner coefficients are adjusted to minimize
the error signal e(n) in the RLS sense.

The input and output parameters of asptrlslattice2() of L stages are sum-
marized below.

Input Parameters::

ff : last autocorrelation of forward prediction error (f)

bb : last autocorrelation of backward prediction error (b)

kf : last forward lattice coefficients kf(n-1)

kb : last backward lattice coefficients kb(n-1)

c : last linear combiner coefficients c(n-1)

cf : last conversion factor vector

b : last backward a priori prediction error vector

a : forgetting factor

x : newest input sample x(n)

d : desired response d(n)

Output parameters::

ff : updated autocorrelation of forward prediction error

bb : updated autocorrelation of backward prediction error

cf : updated conversion factor vector

b : updated backward a priori estimation error vector

y : linear combiner output

e : error signal

kf : updated forward lattice coefficients kf(n)

kb : updated backward lattice coefficients kb(n)

c : updated linear combiner coefficients c(n)

144

5.6. asptrlslattice2

Z-1

kf1

Σ

Σ

kb1

+

-

-

+

eb1

ef1ef0

eb0
Z-1

kf2

Σ

Σ

kb2

+

-

-

+

eb2

ef2

x(n)

…

…

Z-1

kfM

Σ

Σ

kbM

+

-

-

+

ebM

efM

c1 c2 cM

ΣΣ

c3

Σ …+ - -
+ +

-
d(n)

e(n)
Adaptive Algorithm

Σ
-+

Figure 5.10: Block diagram of the RLS adaptive Joint Process Estimator.

Example % RLSLATTICE2 used in a simple system identification application.

% By the end of this script the adaptive filter w

% should have the same coefficients as the unknown filter h.

iter = 5000; % samples to process

% Complex unknown impulse response

h = [.9 + i*.4; 0.7+ i*.2; .5; .3+i*.1; .1];

xn = 2*(rand(iter,1)-0.5); % Input signal

% although xn is real, dn will be complex since h is complex

dn = osfilter(h,xn); % Unknown filter output

en = zeros(iter,1); % error signal

% Initialize RLSLATTICE2 with a filter of 10 coef.

L = 10; % filter length

a = .99; % forgetting factor

[ff,bb,cf,b,d,y,e,kf,kb,w]=init_rlslattice2(L);

%% Processing Loop

for (m=1:iter)

x = xn(m,:); % new input sample

d = dn(m,:) + 1e-3*rand; % additive noise var = 1e-6

[ff,bb,cf,b,y,e,kf,kb,w] =

asptrlslattice2(ff,bb,kf,kb,w,cf,b,a,x,d);

% save the last error sample to plot later

en(m,:) = e;

end;

% display the results

subplot(2,2,1);stem([real(w) imag(w)]); grid;

subplot(2,2,2);

eb = filter(.1, [1 -.9], en .* conj(en));

plot(10*log10(eb));grid

145

Chapter 5. Lattice Adaptive Algorithms

Running the above script will produce the graph shown in Fig. 5.11. The left
side graph of the figure shows the adaptive linear combiner coefficients after
convergence which are almost identical to the unknown filter h. The right side
graph shows the square error in dB versus time during the adaptation process,
which is usually called the learning curve. The lower limit of the error signal
power in the learning curve is defined here by the additive white noise added at
the filter output (-60 dB). Note that the asptrlslattice2() does not suffer
from the fluctuations of the PARCOR coefficients and the final misadjustment
is not affected by this fluctuations. The filter also shows very fast convergence
rate and high degree of stability once it converged.

1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]
Learning curve

Figure 5.11: The adaptive linear combiner coefficients after convergence
and the learning curve for the complex system identification problem using
the RLSLATTICE-2 algorithm.

Remarks The joint process estimator simultaneously updates the PARCOR coefficients
of the lattice predictor and the coefficients of the linear combiner. Updating
the PARCOR coefficients results in changing all the backward prediction errors
which are the inputs to the linear combiner. In the case of the LMSLATTICE
this has the undesirable effect of increasing the final misadjustment due to the
perturbation of the PARCOR coefficients. This problem does not appear to
be of concern in the case of RLSLATTICE algorithms since the backward and
forward prediction errors are minimized in the RLS sense using the exponen-
tially windowed observed past prediction errors. The following points are also
of interest.

• asptrlslattice2() supports real as well as complex signals.

• The backward prediction errors eb0(n), eb1(n), · · · , ebM (n) are uncorre-
lated with one another for any input sequence x(n). This accelerates the
convergence of the linear combiner coefficients.

• asptrlslattice2() has been found to be less sensitive to numerical
rounding errors compared to asptrlslattice().

146

5.6. asptrlslattice2

Algorithm asptrlslattice2() performs the following operations

• Calculates the backward (bb) and forward (ff) autocorrelations for each
lattice stage,

• Calculates the forward and backward prediction errors for the lattice
structure stages using the order update equations,

• Updates the forward and backward PARCOR coefficients of the lattice
predictor and the conversion factor ebn/eb(n−1),

• Evaluates the linear combiner output and error signal,

• Updates the linear combiner coefficients,

• Updates the conversion factor vector.

Resources The resources required to implement an RLSLATTICE-2 filter of length L
in real time is given in the table below. The computations given are those
required to process one sample.

MEMORY 9L+ 6
MULTIPLY 9L
ADD 18L+ 1
DIVIDE 4L

See Also INIT RLSLATTICE2, ASPTRLSLATTICE.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

147

Chapter 5. Lattice Adaptive Algorithms

5.7 asptrlslbpef

Purpose Implements the adaptive RLS Lattice Backward Prediction Error Filter.

Syntax [ff,bb,fb,cf,b,y,e,kf,kb,c]=asptrlslbpef(ff,bb,fb,cf,b,a,x)

Description asptrlslbpef() is a lattice implementation of the backward prediction error
filter shown in Fig. 5.12. asptrlslbpef updates the PARCOR coefficients of
the lattice predictor by minimizing the backward and forward prediction errors
in the recursive least squares sense. The backward prediction error of the last
lattice stage is returned as the error signal e(n) of the prediction error filter.
If the number of output arguments are more than 9, the coefficients of the
equivalent transversal prediction error filter are also calculated and returned
in the variable c such that e(n) = [1;−c]T x(n−L); where [1;−c]T represents
the impulse response between the PEF output e(n) and its input x(n) and
x(n− L) is the input signal delay line delayed by L samples.

Adaptive
algorithm

Adjustable
filter

Z-M

x(n)

d(n) = x(n-M)

e(n)

y(n) +

-

Figure 5.12: Block diagram of the backward prediction error filter.

The input and output parameters of asptrlslbpef() of L stages are summa-
rized below.

Input Parameters::

ff : last autocorrelation of forward prediction error (f)

bb : last autocorrelation of backward prediction error (b)

fb : last crosscorrelation of f and b

cf : last conversion factor vector

b : last backward prediction error vector

a : forgetting factor

x : newest input sample x(n)

Output parameters::

ff : updated autocorrelation of forward prediction error

bb : updated autocorrelation of backward prediction error

fb : updated crosscorrelation of f and b

cf : updated conversion factor vector

b : updated backward prediction error vector

y : linear combiner output

e : forward prediction error

kf : updated forward lattice coefficients kf(n)

kb : updated backward lattice coefficients kb(n)

c : equivalent transversal backward predictor coefficients.

148

5.7. asptrlslbpef

Example % RLSLBPEF used in a adaptive line enhancer application.

% By the end of this script, the backward prediction error

% is the wide-band signal and the output of the equivalent

% transversal predictor is the narrow-band signal.

iter = 5000;

t = (1:iter)/1000; % time index @ 1kHz

xn = 2*(rand(iter,1)-0.5) ; % Input signal, zero mean random.

xn = xn + 1 * cos(2*pi*50*t’);

yn = zeros(iter,1); % narrow-band signal

en = yn; % error signal

% Initialize RLSLBPEF

M = 10; % filter length

a = 0.99; % forgetting factor

[ff,bb,fb,cf,b,y,e,kf,kb,x] = init_rlslbpef(M);

%% Processing Loop

for (m=1:iter)

x = [xn(m); x(1:end-1)];

[ff,bb,fb,cf,b,y,e,kf,kb,c]=asptrlslbpef(ff,bb,fb,cf,b,a,x);

yn(m,:) = y; % save narrow-band

en(m,:) = e; % save wide-band

end;

% Transfer function between e(n) and x(n-L).

h = filter([1;(-c)],1,[1; zeros(1023,1)]);

f = (0:512)*500/512;

H = 20*log10(abs(fft(h)));

% display the results

subplot(2,2,1);plot(f,H(1:513,:)); grid;

subplot(2,2,2);

plot([yn(4800:5000)]);grid

Running the above script will produce the graph shown in Fig. 5.13. The
left side graph of the figure shows the frequency response of the equivalent
transversal prediction error filter after convergence. This frequency response
shows that the predictor adjusts itself to pass the narrow-band signal at 50 Hz
and attenuate all other input components so that the error signal contains the
wide-band signal only. The right side graph shows the last 200 samples of the
filter output which shows that the filter output coincide with the narrow-band
50 Hz superimposed on the white noise input signal.

149

Chapter 5. Lattice Adaptive Algorithms

0 100 200 300 400 500
−20

−15

−10

−5

0

5

frequency [Hz]

am
pl

itu
de

 [d
B

]

0 50 100 150 200
−1

−0.5

0

0.5

1

fil
te

r
ou

tp
ut

time [samples]

Figure 5.13: The frequency response of the PEF after convergence and
the filter output for the adaptive line enhancer using RLSLBPEF.

Algorithm asptrlslbpef() performs the following operations

• Calculates the backward (bb) and forward (ff) autocorrelations for each
lattice stage,

• Calculates the crosscorrelation (fb) between forward and backward pre-
diction errors for each lattice stage,

• Calculates the forward and backward prediction errors for the lattice
structure stages using the order update equations,

• Updates the forward and backward PARCOR coefficients of the lattice
predictor and the conversion factor ebn/eb(n−1),

• Evaluates the error signal and equivalent transversal predictor output,

• Evaluates the equivalent transversal predictor coefficients if required.

Remarks The adaptive Lattice Prediction Error Filter is a useful tool in linear prediction
and autoregressive modeling applications. The following remarks apply to the
RLS lattice backward prediction error filter:

• Unlike the LMS LBPEF, the forward and backward lattice prediction
coefficients of the same lattice stage are not equal.

• The linear combiner coefficients are optimized sequentially starting with
c1 and ending with cM .

• The backward prediction errors eb0(n), eb1(n), · · · , ebM (n) are uncor-
related with one another for any input sequence x(n). This prop-
erty is very important since it shows that the lattice predictor can
be seen as an orthogonal transformation with the input signal sam-
ples x(n), x(n − 1), · · · , x(n −M + 1) as input and the backward errors
eb0(n), eb1(n), · · · , ebM (n) as the uncorrelated (orthogonal) output.

• The power of the prediction error decreases with increasing predictor
order. The error power decrease is controlled by the magnitude of the
PARCOR coefficients. The closer the value of a PARCOR coefficient to
unity, the higher the contribution of its stage in reducing the prediction
error. The first few stages usually have PARCOR coefficients of high
magnitudes. The magnitude of the coefficients decreases with increasing
stage number.

150

5.7. asptrlslbpef

Resources The resources required to implement the RLSLBPEF of L stages in real time is
given in the table below. The computations given are those required to process
one sample.

MEMORY 8L+ 3
MULTIPLY 10L
ADD 7L
DIVIDE 7L

See Also INIT RLSLBPEF, PREDICT RLSLBPEF, ASPTRLSLFPEF, ASPTRLS-
LATTICE.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

151

Chapter 5. Lattice Adaptive Algorithms

5.8 asptrlslfpef

Purpose Implements the adaptive RLS Lattice Forward Prediction Error Filter.

Syntax [ff,bb,fb,cf,b,y,e,kf,kb,c]=asptrlslfpef(ff,bb,fb,cf,b,a,x)

Description asptrlslfpef() is a lattice implementation of the forward prediction error
filter shown in Fig. 5.14. asptrlslfpef() updates the PARCOR coefficients
of the lattice predictor by minimizing the backward and forward prediction
errors in the recursive least squares sense. The forward prediction error of
the last lattice stage is returned as the error signal e(n) of the prediction error
filter. If the number of output arguments are more than 9, the coefficients of the
equivalent transversal prediction error filter are also calculated and returned in
the variable c such that e(n) = [1;−c]T x(n−1); where [1;−c]T represents the
impulse response between the PEF output e(n) and its input x(n) and x(n−1)
is the input signal delay line delayed by one sample.

Adaptive
algorithm

Adjustable
filter

Delay
∆

x(n-∆)

d(n) = x(n)

e(n)

y(n) +

-

x(n)

Figure 5.14: Block diagram of the forward prediction error filter.
The input and output parameters of asptrlslfpef() of L stages are summa-
rized below.

Input Parameters::

ff : last autocorrelation of forward prediction error (f)

bb : last autocorrelation of backward prediction error (b)

fb : last crosscorrelation of f and b

cf : last conversion factor vector

b : last backward prediction error vector

a : forgetting factor

x : newest input sample x(n)

Output parameters::

ff : updated autocorrelation of forward prediction error

bb : updated autocorrelation of backward prediction error

fb : updated crosscorrelation of f and b

cf : updated conversion factor vector

b : updated backward prediction error vector

y : linear combiner output

e : forward prediction error

kf : updated forward lattice coefficients kf(n)

kb : updated backward lattice coefficients kb(n)

c : equivalent transversal forward predictor coefficients.

152

5.8. asptrlslfpef

Example % RLSLFPEF used in a adaptive line enhancer application.

% By the end of this script, the backward prediction error

% is the wide-band signal and the output of the equivalent

% transversal predictor is the narrow-band signal.

iter = 5000;

t = (1:iter)/1000; % time index @ 1kHz

xn = 2*(rand(iter,1)-0.5) ; % Input signal, zero mean random.

xn = xn + 1 * cos(2*pi*50*t’);

yn = zeros(iter,1); % narrow-band signal

en = yn; % error signal

% Initialize RLSLFPEF

M = 10; % filter length

a = 0.99; % forgetting factor

[ff,bb,fb,cf,b,y,e,kf,kb] = init_rlslfpef(M);

%% Processing Loop

for (m=1:iter)

x = xn(m);

[ff,bb,fb,cf,b,y,e,kf,kb,c]=asptrlslfpef(ff,bb,fb,cf,b,a,x);

yn(m,:) = y; % save narrow-band

en(m,:) = e; % save wide-band

end;

% Transfer function between e(n) and x(n-L).

h = filter([1;(-c)],1,[1; zeros(1023,1)]);

f = (0:512)*500/512;

H = 20*log10(abs(fft(h)));

% display the results

subplot(2,2,1);plot(f,H(1:513,:)); grid;

subplot(2,2,2);

plot([yn(4800:5000)]);grid

Running the above script will produce the graph shown in Fig. 5.15. The
left side graph of the figure shows the frequency response of the equivalent
transversal prediction error filter after convergence. This frequency response
shows that the predictor adjusts itself to pass the narrow-band signal at 50 Hz
and attenuate all other input components so that the error signal contains the
wide-band signal only. The right side graph shows the last 200 samples of the
filter output which shows that the filter output coincide with the narrow-band
50 Hz superimposed on the white noise input signal.

153

Chapter 5. Lattice Adaptive Algorithms

0 100 200 300 400 500
−20

−15

−10

−5

0

5

frequency [Hz]

am
pl

itu
de

 [d
B

]

0 50 100 150 200
−1

−0.5

0

0.5

1

fil
te

r
ou

tp
ut

time [samples]

Figure 5.15: The frequency response of the PEF after convergence and
the filter output for the adaptive line enhancer using RLSLFPEF.

Algorithm asptrlslfpef() performs the following operations

• Calculates the backward (bb) and forward (ff) autocorrelations for each
lattice stage,

• Calculates the crosscorrelation (fb) between forward and backward pre-
diction errors for each lattice stage,

• Calculates the forward and backward prediction errors for the lattice
structure stages using the order update equations,

• Updates the forward and backward PARCOR coefficients of the lattice
predictor and the conversion factor ebn/eb(n−1),

• Evaluates the error signal and equivalent transversal predictor output,

• Evaluates the equivalent transversal predictor coefficients if required.

Remarks The adaptive Lattice Prediction Error Filter is a useful tool in linear prediction
and autoregressive modeling applications. The following remarks apply to the
RLS lattice forward prediction error filter:

• Unlike the LMS LFPEF, the forward and backward lattice prediction
coefficients of the same lattice stage are not equal.

• The linear combiner coefficients are optimized sequentially starting with
c1 and ending with cM .

• The backward prediction errors eb0(n), eb1(n), · · · , ebM (n) are uncor-
related with one another for any input sequence x(n). This prop-
erty is very important since it shows that the lattice predictor can
be seen as an orthogonal transformation with the input signal sam-
ples x(n), x(n − 1), · · · , x(n −M + 1) as input and the backward errors
eb0(n), eb1(n), · · · , ebM (n) as the uncorrelated (orthogonal) output.

• The power of the prediction error decreases with increasing predictor
order. The error power decrease is controlled by the magnitude of the
PARCOR coefficients. The closer the value of a PARCOR coefficient to
unity, the higher the contribution of its stage in reducing the prediction
error. The first few stages usually have PARCOR coefficients of high
magnitudes. The magnitude of the coefficients decreases with increasing
stage number.

154

5.8. asptrlslfpef

Resources The resources required to implement the RLSLFPEF of L stages in real time is
given in the table below. The computations given are those required to process
one sample.

MEMORY 8L+ 3
MULTIPLY 10L
ADD 7L
DIVIDE 7L

See Also INIT RLSLFPEF, PREDICT RLSLFPEF, ASPTRLSLBPEF, ASPTRLS-
LATTICE.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

155

Chapter 5. Lattice Adaptive Algorithms

5.9 init ftrls

Purpose Creates and initializes the variables required for the Fast Transversal Recursive
Least Squares algorithm.

Syntax [ff,bb,k,cf,c,g,w,x,d,e,y] = init_ftrls(L)

[ff,bb,k,cf,c,g,w,x,d,e,y] =

init_ftrls(L,ff0,bb0,k0,cf0,c0,g0,w0,x0,d0)

Description The variables of the FTRLS algorithm are summarized below.

Input Parameters [Size]::

L : Linear combiner length

ff0 : initial autocorrelation of forward prediction error [1x1]

bb0 : initial autocorrelation of backward prediction error [1x1]

k0 : initial normalized gain vector [Lx1]

cf0 : initial conversion factor [1x1]

c0 : initial forward predictor coefficients [L+1 x 1]

g0 : initial backward predictor coefficients [L+1 x 1]

w0 : initial linear combiner coefficients [L x 1]

x0 : initial input samples vector [L+1 x 1]

d0 : initial desired response [1x1]

Output parameters [Default]::

ff : autocorrelation of forward prediction error [.001]

bb : autocorrelation of backward prediction error [.001]

k : normalized gain vector [ones].

cf : conversion factor [1]

c : forward predictor coefficients [.1*ones(L+1,1)]

g : backward predictor coefficients [.1*ones(L+1,1)]

w : linear combiner coefficients [zeros]

x : input samples vector [zeros]

d : desired output [rand]

y : Linear combiner output [w’ * x(1:end-1)]

e : Linear combiner error [d-y]

156

5.9. init ftrls

Example L = 5; % Number of lattice stages

ff = 0.01; % autocorr. of forward prediction error

bb = 0.01; % autocorr. of backward prediction error

k = zeros(L,1); % normalized gain vector

cf = 1; % conversion factor

c = .01*ones(L+1,1); % forward prediction coef. vector

g = zeros(L+1,1); % backward prediction coef. vector

w = zeros(L,1); % linear combiner coef. vector

% Create and initialize an RLS lattice filter

[ff,bb,k,cf,c,g,w,x,d,e,y]=init_ftrls(L,ff,bb,k,cf,c,g,w,[],0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 9 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations
and is also used for soft initialization when instability signs are detected.

See Also ASPTFTRLS, ASPTRLSLATTICE2.

157

Chapter 5. Lattice Adaptive Algorithms

5.10 init lbpef

Purpose Creates and initializes the variables required for the Least Mean Squares Lat-
tice Backward Prediction Error Filter.

Syntax [k,b,P,e,y,x,c]=init_lbpef(L)

[k,b,P,e,y,x,c]=init_lbpef(L,k0,x0,b0,P0)

Description The block diagram of the lattice backward prediction error filter is shown in
Fig. 5.2 while the details of the lattice structure showing its internal variables
can be seen in Fig. 5.16. A summary of those variables is given below.

Input Parameters [Size]::

L : number of lattice coefficients

k0 : initial lattice predictor coefficients [L x 1]

x0 : initial input delay line [(L+1)x1]

b0 : initial backward prediction errors [(L+1)x1]

P0 : initial power of b [(L+1)x1]

Output parameters::

k : lattice predictor coefficients [zeros]

b : backward prediction errors [random]

P : estimated power of b [b .* b]

e : forward prediction error [random]

y : predictor output [0]

x : input delay line [random(L+1,1)]

c : equivalent transversal predictor coef.

Z-1

k1

Σ

Σ

k1

+

-

-

+

eb1

ef1ef0

eb0
Z-1

k2

Σ

Σ

k2

+

-

-

+

eb2

ef2

x(n)

…

…

Z-1

kM

Σ

Σ

kM

+

-

-

+

ebM

efM

Figure 5.16: Block diagram of the lattice predictor.

Example L = 5; % Number of lattice stages

k0 = zeros(L,1); % initial PARCOR coefficients

b0 = rand(L+1,1); % initial backward errors

P0 = b0 .* conj(b0); % initial power of b

% Create and initialize a lattice FPEF

[k,b,P,e,y,x,c]=init_lbpef(L,k0,[],b0,P0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTLBPEF, PREDICT LBPEF.

158

5.11. init lfpef

5.11 init lfpef

Purpose Creates and initializes the variables required for the Least Mean Squares Lat-
tice Forward Prediction Error Filter.

Syntax [k,b,P,e,y,c]=init_lfpef(L)

[k,b,P,e,y,c]=init_lfpef(L,k0,b0,P0)

Description The block diagram of the lattice forward prediction error filter is shown in
Fig. 5.4 while the details of the lattice structure showing its internal variables
can be seen in Fig. 5.17. A summary of those variables is given below.
The variables of the LFPEF are summarized below (see Fig. 5.17).

Input Parameters [Size]::

L : number of filter coefficients

k0 : initial lattice predictor coefficients [L x 1]

b0 : initial backward prediction errors [(L+1)x1]

P0 : initial power of b [(L+1)x1]

Output parameters::

k : lattice predictor coefficients [zeros]

b : backward prediction errors [random]

P : estimated power of b [b .* b]

e : forward prediction error [random]

y : predictor output [0]

c : equivalent transversal predictor coef.

Z-1

k1

Σ

Σ

k1

+

-

-

+

eb1

ef1ef0

eb0
Z-1

k2

Σ

Σ

k2

+

-

-

+

eb2

ef2

x(n)

…

…

Z-1

kM

Σ

Σ

kM

+

-

-

+

ebM

efM

Figure 5.17: Block diagram of the lattice predictor.

Example L = 5; % Number of lattice stages

k0 = zeros(L,1); % initial PARCOR coefficients

b0 = rand(L+1,1); % initial backward errors

P0 = b0 .* conj(b0); % initial power of b

% Create and initialize a lattice FPEF

[k,b,P,fM,y,c]=init_lfpef(L,k0,b0,P0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 4 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTLFPEF, PREDICT LFPEF.

159

Chapter 5. Lattice Adaptive Algorithms

5.12 init lmslattice

Purpose Creates and initializes the variables required for the LMS Lattice Joint Process
Estimator.

Syntax [k,c,b,P,d,y,e]=init_lmslattice(L)

[k,c,b,P,d,y,e]=init_lmslattice(L,k0,c0,b0,P0,d0)

Description The LMS-Lattice joint process estimator simultaneously adapts the PARCOR
coefficients of a lattice predictor and the coefficients of the linear combiner
as shown in Fig. 5.18. The variables of the LMS-LATTICE algorithms are
summarized below.

Input Parameters [Size]::

L : number of linear combiner coefficients

k0 : initial lattice predictor coefficients [Lx1]

c0 : initial linear combiner coefficients [Lx1]

b0 : initial backward prediction errors [Lx1]

P0 : initial power of b [Lx1]

d0 : initial desired sample [1x1]

Output parameters [default]::

k : lattice predictor coefficients [zeros]

c : linear combiner coefficients [zeros]

b : backward prediction errors [white noise]

P : estimated power of b [b .* b]

d : desired response [white noise]

y : linear combiner output [c’ * b]

e : error signal [e = d - y]

Z-1

k1

Σ

Σ

k1

+

-

-

+

eb1

ef1ef0

eb0
Z-1

k2

Σ

Σ

k2

+

-

-

+

eb2

ef2

x(n)

…

…

Z-1

kM

Σ

Σ

kM

+

-

-

+

ebM

efM

c1 c2 cM

ΣΣ

c3

Σ …+ + +
+ +

+Σ
d(n)e(n)

Adaptive Algorithm

y(n)
-

Figure 5.18: Block diagram of the LMS-LATTICE Joint Process Esti-
mator.

160

5.12. init lmslattice

Example L = 5; % Number of lattice stages

k0 = zeros(L,1); % initial PARCOR coefficients

c0 = zeros(L,1); % initial linear combiner coef.

b0 = rand(L,1); % initial backward errors

P0 = b0 .* conj(b0); % initial power of b

d0 = .22; % initial desired sample

% Create and initialize an LMS lattice filter

[k,c,b,P,d,y,e]=init_lmslattice(L,k0,c0,b0,P0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 6 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTLMSLATTICE, MODEL LMSLATTICE.

161

Chapter 5. Lattice Adaptive Algorithms

5.13 init rlslattice

Purpose Creates and initializes the variables required for the RLS-Lattice Joint Process
Estimator using the a posteriori estimation errors.

Syntax [ff,bb,fb,be,cf,b,d,y,e,kf,kb,c] = init_rlslattice(L)

[ff,bb,fb,be,cf,b,d,y,e,kf,kb,c] = init_rlslattice(L,ff0,

bb0,fb0,be0,cf0,b0,d0)

Description The variables of the RLS LATTICE are summarized below (see Fig. 5.19).

Input Parameters [Size]::

L : Linear combiner length

ff0 : initial autocorr. of forward prediction error [Lx1]

bb0 : initial autocorr. of backward prediction error [Lx1]

fb0 : initial crosscorrelation of f and b [Lx1]

be0 : initial crosscorrelation of b and e [Lx1]

cf0 : initial conversion factor [Lx1]

b0 : initial vector of backward prediction error [Lx1]

d0 : initial desired response [1x1]

Output parameters [Default]::

ff : autocorr. of forward prediction error [.001*ones(L,1)]

bb : autocorr. of backward prediction error [.001*ones(L,1)]

fb : crosscorrelation of f and b [zeros]

be : crosscorrelation of b and e [zeros]

cf : conversion factor [ones]

b : vector of backward prediction error [zeros]

d : desired output [rand]

y : Linear combiner output [c’ * b]

e : Linear combiner error [d-y]

kf : forward lattice coefficients [zeros]

kb : backward lattice coefficients [zeros]

c : linear combiner coefficients [zeros]

Z-1

kf1

Σ

Σ

kb1

+

-

-

+

eb1

ef1ef0

eb0
Z-1

kf2

Σ

Σ

kb2

+

-

-

+

eb2

ef2

x(n)

…

…

Z-1

kfM

Σ

Σ

kbM

+

-

-

+

ebM

efM

c1 c2 cM

ΣΣ

c3

Σ …+ - -
+ +

-
d(n)

e(n)
Adaptive Algorithm

Σ
-+

Figure 5.19: Block diagram of the RLS-LATTICE adaptive Joint Process
Estimator.

162

5.13. init rlslattice

Example L = 5; % Number of lattice stages

ff = 0.001*ones(L,1); % autocorr. for forward prediction error

bb = 0.001*ones(L,1); % autocorr. for backward prediction error

fb = zeros(L,1); % crosscorr. between f and b

be = zeros(L,1); % crosscorr. between b and e

cf = zeros(L,1); % conversion factor

b = zeros(L,1); % backward prediction error

d = .22; % initial desired sample

% Create and initialize an RLS lattice filter

[ff,bb,fb,be,cf,b,d,y,e,kf,kb,c] = init_rlslattice(L,ff,...

bb,fb,be,cf,b,d);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 8 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTRLSLATTICE, MODEL LMSLATTICE, ASPTRLSLATTICE2.

163

Chapter 5. Lattice Adaptive Algorithms

5.14 init rlslattice2

Purpose Creates and initializes the variables required for the RLS-Lattice Joint Process
Estimator using the a priori estimation errors with error feedback.

Syntax [ff,bb,cf,b,d,y,e,kf,kb,c] = init_rlslattice2(L)

[ff,bb,cf,b,d,y,e,kf,kb,c] =

init_rlslattice2(L,ff0,bb0,kf0,kb0,c0,cf0,b0,d0)

Description The variables of the RLS LATTICE-2 are summarized below (see Fig. 5.20).

Input Parameters [Size]::

L : Linear combiner length

ff0 : autocorrelation of forward prediction error [Lx1]

bb0 : autocorrelation of backward prediction error [Lx1]

kf0 : forward lattice coefficients [Lx1]

kb0 : backward lattice coefficients [Lx1]

c0 : linear combiner coefficients [Lx1]

cf0 : conversion factor [Lx1]

b0 : vector of backward a priori estimation error [Lx1]

d0 : desired response [1x1]

Output parameters [Default]::

ff : initialized ff [.001*ones(L,1)]

bb : initialized bb [.001*ones(L,1)]

cf : conversion factor [ones]

b : vector of a priori backward estimation error [zeros]

d : desired output [rand]

y : Linear combiner output [c’ * b]

e : Linear combiner error [d-y]

kf : forward lattice coefficients [zeros]

kb : backward lattice coefficients [zeros]

c : linear combiner coefficients [zeros]

Z-1

kf1

Σ

Σ

kb1

+

-

-

+

eb1

ef1ef0

eb0
Z-1

kf2

Σ

Σ

kb2

+

-

-

+

eb2

ef2

x(n)

…

…

Z-1

kfM

Σ

Σ

kbM

+

-

-

+

ebM

efM

c1 c2 cM

ΣΣ

c3

Σ …+ - -
+ +

-
d(n)

e(n)
Adaptive Algorithm

Σ
-+

Figure 5.20: Block diagram of the RLSLATTICE-2 adaptive Joint Pro-
cess Estimator.

164

5.14. init rlslattice2

Example L = 5; % Number of lattice stages

ff = 0.001*ones(L,1); % autocorr. of forward prediction error

bb = 0.001*ones(L,1); % autocorr. of backward prediction error

kf = zeros(L,1); % forward lattice coefficients

kb = zeros(L,1); % backward lattice coefficients

c = zeros(L,1); % Linear combiner coefficients

cf = zeros(L,1); % conversion factor

b = zeros(L,1); % backward prediction error

d = .22; % initial desired sample

% Create and initialize an RLS lattice-2 filter

[ff,bb,cf,b,d,y,e,kf,kb,c] =

init_rlslattice2(L,ff0,bb0,kf0,kb0,c0,cf0,b0,d0)

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 9 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTRLSLATTICE2.

165

Chapter 5. Lattice Adaptive Algorithms

5.15 init rlslbpef

Purpose Creates and initializes the variables required for the RLS Lattice Backward
Prediction Error Filter.

Syntax [ff,bb,fb,cf,b,y,e,kf,kb,x]=init_rlslbpef(L)

[ff,bb,fb,cf,b,y,e,kf,kb,x]=init_rlslbpef(L,ff0,bb0,fb0,cf0,b0,x0)

Description The block diagram of the RLS-Lattice backward prediction error filter is shown
in Fig. 5.21 while the details of the RLS lattice structure showing its internal
variables can be seen in Fig. 5.19. A summary of those variables is given below.

Input Parameters [Size]::

L : number of predictor stages

ff0 : initial autocorr. of forward prediction error [Lx1]

bb0 : initial autocorr. of backward prediction error [Lx1]

fb0 : initial crosscorrelation of f and b [Lx1]

cf0 : initial conversion factor [Lx1]

b0 : initial vector of backward prediction error [L+1 x 1]

x0 : initial input delay line [L+1 x 1]

Output parameters [Default]::

ff : autocorr. of forward prediction error [.001*ones(L,1)]

bb : autocorr. of backward prediction error [.001*ones(L,1)]

fb : crosscorrelation of f and b [zeros]

cf : conversion factor [ones]

b : vector of backward prediction error [zeros]

y : Linear combiner output [zero]

e : Linear combiner error [rand]

kf : forward lattice coefficients [zeros]

kb : backward lattice coefficients [zeros]

x : initialized input delay line [zeros].

Adaptive
algorithm

Adjustable
filter

Z-M

x(n)

d(n) = x(n-M)

e(n)

y(n) +

-

Figure 5.21: Block diagram of the backward prediction error filter.

166

5.15. init rlslbpef

Example L = 5; % Number of lattice stages

ff = zeros(L,1); % autocorr. for forward prediction error

bb = zeros(L,1); % autocorr. for backward prediction error

fb = zeros(L,1); % crosscorr. between f and b

cf = zeros(L,1); % conversion factor

b = zeros(L+1,1); % backward prediction error

x = zeros(L+1,1); % input delay line

% Create and initialize a lattice RLSLBPEF

[ff,bb,fb,cf,b,y,e,kf,kb,x] = init_rlslbpef(L,ff,bb,fb,cf,b,x);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 7 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTRLSLBPEF, PREDICT RLSLBPEF.

167

Chapter 5. Lattice Adaptive Algorithms

5.16 init rlslfpef

Purpose Creates and initializes the variables required for the RLS Lattice Forward
Prediction Error Filter.

Syntax [ff,bb,fb,cf,b,y,e,kf,kb] = init_rlslfpef(L)

[ff,bb,fb,cf,b,y,e,kf,kb] = init_rlslfpef(L,ff0,bb0,fb0,cf0,b0)

Description The block diagram of the RLS-Lattice forward prediction error filter is shown
in Fig. 5.22 while the details of the RLS lattice structure showing its internal
variables can be seen in Fig. 5.19. A summary of those variables is given below.

Input Parameters [Size]::

L : number of predictor stages

ff0 : initial autocorr. of forward prediction error [Lx1]

bb0 : initial autocorr. of backward prediction error [Lx1]

fb0 : initial crosscorrelation of f and b [Lx1]

cf0 : initial conversion factor [Lx1]

b0 : initial vector of backward prediction error [L+1 x 1]

Output parameters [Default]::

ff : autocorr. of forward prediction error [.001*ones(L,1)]

bb : autocorr. of backward prediction error [.001*ones(L,1)]

fb : crosscorrelation of f and b [zeros]

cf : conversion factor [ones]

b : vector of backward prediction error [zeros]

y : Linear combiner output [zero]

e : Linear combiner error [rand]

kf : forward lattice coefficients [zeros]

kb : backward lattice coefficients [zeros]

Adaptive
algorithm

Adjustable
filter

Delay
∆

x(n-∆)

d(n) = x(n)

e(n)

y(n) +

-

x(n)

Figure 5.22: Block diagram of the forward prediction error filter.

168

5.16. init rlslfpef

Example L = 5; % Number of lattice stages

ff = zeros(L,1); % autocorr. for forward prediction error

bb = zeros(L,1); % autocorr. for backward prediction error

fb = zeros(L,1); % crosscorr. between f and b

cf = zeros(L,1); % conversion factor

b = zeros(L+1,1); % backward prediction error

% Create and initialize a lattice RLSLFPEF

[ff,bb,fb,cf,b,y,e,kf,kb] = init_rlslfpef(L,ff,bb,fb,cf,b);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 2 through 6 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTRLSLFPEF, PREDICT RLSLFPEF.

169

Chapter 5. Lattice Adaptive Algorithms

170

Chapter 6

Recursive Adaptive Algorithms

This chapter documents the functions used to create, initialize, and update the coefficients of
recursive adaptive filters (Section 2.2.3). Table 6.1 summarizes the recursive adaptive functions
functions and gives a short description and a pointer to the reference page of each function.

Function Name Reference Short Description

asptcsoiir2 6.1 Cascaded Second Order type-2 IIR adaptive filter.
aspteqerr 6.2 Equation Error IIR adaptive algorithm.
asptouterr 6.3 Output Error IIR adaptive algorithm.
asptsharf 6.4 Simple Hyperstable Adaptive Recursive Filter (SHARF).
asptsoiir1 6.5 Second Order IIR adaptive algorithm type-1.
asptsoiir2 6.6 Second Order IIR adaptive algorithm type-2.
init csoiir2 6.7 Initialize Cascaded Second Order IIR adaptive filter.
init eqerr 6.8 Initialize Equation Error IIR adaptive filter.
init outerr 6.9 Initialize Output Error IIR.
init sharf 6.10 Initialize Simple Hyperstable Adaptive Recursive Filter.
init soiir1 6.11 Initialize Second Order IIR adaptive algorithm type-1.
init soiir2 6.12 Initialize Second Order IIR adaptive algorithm type-2.

Table 6.1: Functions for creating, initializing, and updating recursive adaptive filters.

Each function is documented in a separate section including the following information related to
the function:

• Purpose: Short description of the algorithm implemented by this function.

• Syntax: Shows the function calling syntax. If the function has optional parameters, this
section will have two calling syntaxes. One with only the required formal parameters and
one with all the formal parameters.

• Description: Detailed description of the function usage with explanation of its input and
output parameters.

• Example: A short example showing typical use of the function. The examples listed can
be found in the ASPT/test directory of the ASPT distribution. The user is encouraged to
copy from those examples and paste in her own applications.

• Algorithm: A short description of the operations internally performed by the function.

• Remarks: Gives more theoretical and practical remarks related to the usage, performance,
limitations, and applications of the function.

• Resources: Gives a summary of the memory requirements and number of multiplications,
addition/subtractions, and division operations required to implement the function in real

Chapter 6. Recursive Adaptive Algorithms

time. This can be used to roughly calculate the MIPS (Million Instruction Per Second)
required for a specific platform knowing the number of instructions the processor needs to
perform each operation.

• See Also: Lists other functions that are related to this function.

• Reference: Lists literature for more information on the function.

172

6.1. asptcsoiir2

6.1 asptcsoiir2

Purpose Performs filtering and parameter update for the Cascaded band-pass Second
Order IIR type-2 adaptive filter. Each filter has a transfer function given by

H(z) =
(1− s)(cos(t)− z−1)

1− (1 + s)cos(t)z−1 + sz−2
. (6.1)

where the adaptive parameter s controls the filter bandwidth and parameter t
controls the filter center frequency.

Syntax [y,a,b,u,t,s,p] = asptcsoiir2(xn,u,y,a,b,

t,s,p,mu_t,mu_s,t_lim,s_lim)

Description asptcsoiir2() is a cascade of M SOIIR2 sections with each section tracking
one narrow-band signal. Fig. 6.1 shows the block diagram of the CSOIIR2
adaptive line enhancer, where the input of each stage is the error signal of
its previous stage. In this arrangement, the first section adapts and tracks
the strongest narrow-band component in the system input signal. The error
of the first section is therefore free from this component which allows the
next stage to converge to the second strongest narrow-band component and
so on. The output of the last stage is the wide-band signal and the sum
of the sections’ outputs is the system output and contains all the estimated
narrow-band signals. asptcsoiir2() takes a set of input delay lines u(n),
output delay lines y(n), the two adaptive filter coefficients for each stage from
previous iteration t(n − 1) and s(n − 1), and the previous gradient vectors
a(n− 1) and b(n− 1), and returns the updated filters’ output delay lines y(n),
the error sample e(n) and the updated filters’ parameters t(n) and s(n).
The input and output parameters of asptcsoiir2() are summarized below.

Input arguments [Size]:

xn : new input sample [1 x 1]

u : last 3 input samples for each stage [3 x M+1]

y : last 3 output samples for each stage [3 x M]

a : last 3 t gradients for each stage [3 x M]

b : last 3 s gradients for each stage [3 x M]

t : section center freq. parameter {0 pi} [1 x M]

s : section bandwidth parameter {0 1} [1 x M]

p : estimate of the input signal power [1 x M]

mu_t : adaptation constant for t [1 x M]

mu_s : adaptation constant for s [1 x M]

t_lim : [t_min t_max]; min. & max. bounds for t

s_lim : [s_min s_max]; min. & max. bounds for s

Output Parameters:

y : updated output buffer

a : updated t-gradient buffer

b : updated s-gradient buffer

u : updated input/error buffer

t : updated filter CF parameters

s : updated filter BW parameters

p : updated input power estimate

173

Chapter 6. Recursive Adaptive Algorithms

h1(n) ΣZ-1

e1(n)

+
y1(n)

-
…

u1(n)

hM(n) ΣZ-1

eM(n)

yM(n)
-

eM-1(n)

eM(n)

e1(n)

Σ … Σ
y(n)

+

Figure 6.1: Block diagram of the cascaded second order IIR adaptive line
enhancer.

Example iter = 5000;

t = (1:iter)/1000; % time index @ 1kHz

xn = 2*(rand(iter,1)-0.5) ; % Input signal.

xn = xn + 1 * cos(2*pi*50*t’) + .5 * cos(2*pi*150*t’);

yn = zeros(iter,1); % narrow-band signal

en = yn; % error signal

% Initialize CSOIIR2

M = 2; % No. of harmonics.

s0 = 0.25*ones(1,M); % initial s

t0 = 0.1*ones(1,M); % initial t

mu_s = 0.01*ones(1,M); % s-parameter step size

mu_t = 0.05*ones(1,M); % t-parameter step size

s_lim = [.1 .9]; % bounds for s

t_lim = [0.05 3.1]; % bounds for t

[s,t,u,y,a,b,p]=init_csoiir2(M,s0,t0);

%% Processing Loop

for (m=2:iter)

[y,a,b,u,t,s,p] = asptcsoiir2(xn(m),u,y,a,b,t,s...

,p,mu_t,mu_s,t_lim,s_lim);

yn(m,:) = sum(y(1,:),2); % sections’ outputs

en(m) = u(1,M+1); % error of last section

end;

h = [zeros(1024,M)];

for m = 1:M,

h(:,m) = impz([cos(t(m))*(1-s(m)) -(1-s(m))],...

[1 -cos(t(m))*(1+s(m)) s(m)],1024);

end

% display the results

H = 20*log10(abs(fft(h)));

subplot(2,2,1);plot(H(1:513,:)); grid;

subplot(2,2,2);

plot([yn(4800:5000)]);grid

Running the above script will produce the graph shown in Fig. 6.2. The left side
graph of the figure shows the frequency responses of the two adaptive second
order sections after convergence. It is clear that the two sections converge
to band pass filters centered at 50 and 150 Hz, the narrow-band components
in the input signals. The right side graph shows the last 200 samples of the
cascaded filter output which coincides with the two narrow-band components
at 50 and 150 Hz superimposed on the white noise input signal.

174

6.1. asptcsoiir2

0 100 200 300 400 500
−30

−25

−20

−15

−10

−5

0

frequency [Hz]

am
pl

itu
de

 [d
B

]

0 50 100 150 200
−1

−0.5

0

0.5

1

fil
te

r
ou

tp
ut

time [samples]

Figure 6.2: The adaptive filters frequency responses after convergence
and the filter output for the cascaded adaptive line enhancer.

Algorithm asptcsoiir2() performs the following operations

• Calculates the output of each section y(n) from the previous and current
input samples u(n) and previous output samples y(n− 1).

• Calculates the error sample for each section and updates the input/error
vector u(n).

• Calculates the gradient samples a(n) and b(n) and updates the gradient
vectors.

• Updates the adaptive coefficients s(n) and t(n) and limits their values if
necessary.

Remarks • Being an IIR filter, the adaptive filter might become unstable during
adaptation.

• Each second order filter h(n) always has a zero dB gain at its center
frequency.

• The filters center frequencies are given by ωc = t.

• asptcsoiir2() updates the input vector u(n) internally.

Resources The resources required to implement the CSOIIR2 recursive adaptive line en-
hancer composed of cascade of M sections in real time is given in the table
below. The computations given are those required to process one sample.

MEMORY 20M
MULTIPLY 25M
ADD 16M
DIVIDE M
COS M
SIN M

See Also INIT CSOIIR2, ALE CSOIIR2, ASPTSOIIR2, ASPTSOIIR1.

Reference [2] and [10] for introduction to recursive adaptive filters.

175

Chapter 6. Recursive Adaptive Algorithms

6.2 aspteqerr

Purpose Sample per sample filtering and coefficient update using the Equation Error
recursive adaptive algorithm. The filter transfer function is given by

H(z) =
A(z)

1−B(z)
, (6.2)

Syntax [u,w,y,e,Px,Pd]=aspteqerr(N,M,u,w,y,x,d,mu,Px,Pd)

Description aspteqerr() implements the equation error LMS adaptive algorithm used to
update recursive adaptive filters. The equation error algorithm adjusts the
composite filter coefficients vector by minimizing the error signal as shown in
Fig. 6.3. aspteqerr() takes an input sample x(n), a desired sample d(n), the
vector of the adaptive filter coefficients from previous iteration w(n − 1), the
composite input vector u(n−1), the step size vector mu, and returns the filter
output y(n), the error sample e(n) and the updated vector of filter coefficients
w(n).
The input and output parameters of aspteqerr() for a recursive adaptive filter
of N numerator coefficients and M denumerator coefficients are summarized
below.

Input arguments:

N : Number of coefficients of A(z)

M : Number of coefficients of B(z)

u : composite input vector

w : filter coefficient vector

y : [y(n-1) y(n-2) ... y(n-M)]^T

x : new input sample

d : new desired sample

mu : adaptation constant

Px : variance of x(n)

Pd : variance of d(n)

Output Parameters:

u,w,y,Px,Py are the updated variables defined above

e : error signal e(n)

y(n)

A(z)

B(z)

x(n)
Σ Σ

d(n)

LMS

e(n)
_

+

1
1-B(z)

y1(n)

Figure 6.3: Block diagram of the equation error algorithm.

176

6.2. aspteqerr

Example iter = 5000; % Number of samples to process

xn = 2*(rand(iter,1)-0.5) ; % Input signal, zero mean random.

dn = filter([0.6 -.01],[1 -0.4 0.6],xn); % Filter output

en = zeros(iter,1); % error signal

% Initialize EQERR

N = 2; M = 2;

[u,w,y,e,mu,Px,Pd]=init_eqerr(N,M);

%% Processing Loop

for (m=1:iter)

x = xn(m);

d = dn(m) + 1e-3*rand;

% update the filter

[u,w,y,e,Px,Pd]=aspteqerr(N,M,u,w,y,x,d,mu,Px,Pd);

% save the last error sample to plot later

en(m,:) = e;

end;

wp = filter(w(1:N),[1 ; -w(N+1:N+M)],[1;zeros(19,1)]);

% display the results

subplot(2,2,1);stem(wp); grid;

xlabel(’filter response after convergence’)

subplot(2,2,2);

eb = filter(0.1,[1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 6.4. The left side
graph of the figure shows the adaptive filter impulse response after convergence.
The right side graph shows the mean square error in dB versus time during the
adaptation process, which is usually called the learning curve. The lower limit
of the error signal power in the learning curve is defined here by the additive
white noise added at the filter output (-60 dB).

0 5 10 15 20
−0.4

−0.2

0

0.2

0.4

0.6

filter response after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 6.4: The adaptive filter impulse response after convergence and
the learning curve for the IIR system identification problem using the equa-
tion error algorithm.

177

Chapter 6. Recursive Adaptive Algorithms

Algorithm The equation error algorithm uses the desired signal d(n) (instead of the output
signal y(n) as in the output error algorithm) as input to the recursive part of
the filter. This makes the performance index function quadratic in the filter
coefficients and results in a single global minimum similar to that found in FIR
adaptive algorithms. The filter transfer function is given by

w(z) =
A(z)

1−B(z)
(6.3)

where

A(z) = a0 + a1z
−1 + ...+ aN−1z

−N+1 (6.4)

B(z) = b1z
−1 + b2z

−2 + ...+ bMz−M (6.5)

The current implementation of aspteqerr() performs the following operations

• Updates the composite input vector u(n) using the current and previous
samples of x(n) and d(n).

• Filters the composite input vector u(n) through the adaptive filter coef-
ficients w(n− 1) to produce the update filter output y1(n).

• Calculates the error sample e(n) = d(n)− y1(n).

• Calculates the actual filter output y(n) as shown in Fig. 6.3

• Updates the adaptive filter coefficients using the error e(n) and the com-
posite input vector u(n) using the relationship

w(n) = w(n− 1) + 2 µ e(n) u(n− 1). (6.6)

Remarks • Being an IIR filter, the adaptive filter w(n) might become unstable during
adaptation. This can be avoided by checking that the poles of the filter
remain within the unit circle after each call to aspteqerr().

• Unlike the output error algorithm, the performance surface searched by
the equation error algorithm is quadratic in the filter coefficients and has
a single minimum. This guarantees that the filter will asymptotically
converge to its optimal solution.

• aspteqerr() supports both real and complex data and filters.

• aspteqerr() updates the composite input vector internally.

Resources The resources required to implement the EQERR algorithm for a recursive
adaptive filter of N numerator coefficients and M denumerator coefficients
in real time is given in the table below. The computations given are those
required to process one sample.

MEMORY 3N + 4M + 4
MULTIPLY 4N + 5M + 6
ADD 3N + 4M + 1
DIVIDE N+M

See Also INIT EQERR, MODEL EQERR, ASPTOUTERR.

Reference [2] and [10] for introduction to recursive adaptive filters.

178

6.3. asptouterr

6.3 asptouterr

Purpose Sample per sample filtering and coefficient update using the Output Error
recursive adaptive algorithm. The filter transfer function is given by

H(z) =
A(z)

1−B(z)
, (6.7)

Syntax [u,w,c,y,e,Px,Py]=asptouterr(N,M,u,w,c,x,d,mu,Px,Py)

Description asptouterr() implements the output error LMS adaptive algorithm used to
update recursive adaptive filters. The output error algorithm adjusts the
composite filter coefficients vector by minimizing the error signal as shown
in Fig. 6.5. asptouterr() takes an input samples x(n), a desired sample d(n),
the vector of the adaptive filter coefficients from previous iteration w(n − 1),
the composite input vector u(n), the step size vector mu, and returns the filter
output y(n), the error sample e(n) and the updated vector of filter coefficients
w(n).
The input and output parameters of asptouterr() for a recursive adaptive
filter of N numerator coefficients and M denumerator coefficients are summa-
rized below.

Input arguments:

N : Number of coefficients of A(z)

M : Number of coefficients of B(z)

u : composite input vector

w : vector of adaptive filter coefficients

c : composite gradient vector

x : new input sample

d : new desired sample

mu : adaptation constant vector

Px : variance of x(n)

Py : variance of y(n)

Output Parameters:

u,w,c,Px,Py are the updated input variables

y : filter output y(n)

e : error signal e(n)

A(z)

B(z)

x(n)
Σ

y(n)
Σ

d(n)

LMS

e(n)

Figure 6.5: Block diagram of the output error algorithm.

179

Chapter 6. Recursive Adaptive Algorithms

Example iter = 5000; % Number of samples to process

xn = 2*(rand(iter,1)-0.5) ; % Input signal, zero mean random.

dn = filter([0.6 -.01],[1 -0.4 0.6],xn); % Filter output

en = zeros(iter,1); % error signal

% Initialize OUTERR

N = 2; M = 2;

[u,w,c,y,d,e,mu,Px,Py]=init_outerr(N,M);

%% Processing Loop

for (m=1:iter)

x = xn(m);

d = dn(m) + 1e-3*rand;

% update the filter

[u,w,c,y,e,Px,Py]=asptouterr(N,M,u,w,c,x,d,mu,Px,Py);

% save the last error sample to plot later

en(m,:) = e;

end;

wp = filter(w(1:N),[1 ; -w(N+1:N+M)],[1; zeros(19,1)]);

% display the results

subplot(2,2,1);stem(wp); grid;

xlabel(’filter response after convergence’)

subplot(2,2,2);

eb = filter(.1,[1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 6.6. The left side
graph of the figure shows the adaptive filter impulse response after convergence.
The right side graph shows the mean square error in dB versus time during the
adaptation process, which is usually called the learning curve. The lower limit
of the error signal power in the learning curve is defined here by the additive
white noise added at the filter output (-60 dB).

0 5 10 15 20
−0.4

−0.2

0

0.2

0.4

0.6

filter response after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 6.6: The adaptive filter response after convergence and the learn-
ing curve for the IIR system identification problem using the output error
algorithm.

180

6.3. asptouterr

Algorithm The output error algorithm is a direct extension of the Wiener filter theory to
recursive filters. The filter transfer function is given by

w(z) =
A(z)

1−B(z)
(6.8)

where

A(z) = a0 + a1z
−1 + ...+ aN−1z

−N+1 (6.9)

B(z) = b1z
−1 + b2z

−2 + ...+ bMz−M (6.10)

The current implementation of asptouterr() performs the following opera-
tions

• Updates the composite input vector u(n) using the current and previous
samples of x(n) and y(n).

• Filters the composite input vector u(n) through the adaptive filter coef-
ficients w(n− 1) to produce the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Calculates the gradient vector c(n)

• Updates the adaptive filter coefficients using the error e(n) and the gra-
dient vector c(n) using the relationship

w(n) = w(n− 1) + 2 µ e(n) c(n). (6.11)

Remarks • Being an IIR filter, the adaptive filter w(n) might become unstable during
adaptation. This can be avoided by checking that the poles of the filter
remain within the unit circle after each call to asptouterr().

• The performance surface searched by the output error algorithm usually
has local minima and maxima. Therefore, it is not guaranteed that the
filter will converge to a global minimum. This problem is alleviated in
the equation error algorithm (see Section 6.2.

• asptouterr() supports both real and complex data and filters.

• asptouterr() updates the composite input vector internally.

Resources The resources required to implement the OUTERR algorithm for a recursive
adaptive filter of N numerator coefficients and M denumerator coefficients
in real time is given in the table below. The computations given are those
required to process one sample.

MEMORY 4N + 4M + 5
MULTIPLY 3N + 5M + 6
ADD 3N + 5M + 2
DIVIDE N+M

See Also INIT OUTERR, MODEL OUTERR, ASPTEQERR.

Reference [2] and [10] for introduction to recursive adaptive filters.

181

Chapter 6. Recursive Adaptive Algorithms

6.4 asptsharf

Purpose Sample per sample IIR filtering and coefficient update using the Simple Hy-
perstable Adaptive Recursive Filter (SHARF) algorithm.

Syntax [w,u,y,e,Px,Py]=asptsharf(N,M,w,u,xn,d,e,c,mu,Px,Py)

Description asptsharf() implements the Simple Hyperstable Adaptive Recursive Filter
(SHARF) algorithm. The SHARF algorithm adjusts the composite filter coef-
ficients vector by minimizing the error signal as shown in Fig. 6.7. The main
difference between SHARF and other LMS based IIR adaptive algorithms is
that the SHARF algorithm uses a low pass filter C(z) to smooth the error
signal and uses the smoothed error as gradient. asptsharf() takes an input
sample x(n), a desired sample d(n), the vector of the adaptive filter coefficients
from previous iteration w(n−1), the composite input vector u(n−1), the step
size vector mu, and returns the filter output y(n), the error sample e(n) and
the updated vector of filter coefficients w(n). The input and output parame-
ters of asptsharf() for a recursive adaptive filter of N numerator coefficients
and M denumerator coefficients are summarized below.

Input Parameters:

N : Number of coefficients of A(z)

M : Number of coefficients of B(z)

w : vector of adaptive filter coefficients

u : composite input / output delay line

xn : new input sample

d : new desired sample

e : error vector

c : error smoothing coefficients vector

mu : adaptation constant vector

Px : previously estimated power of input signal x(n)

Py : previously estimated power of output signal y(n)

Output Parameters:

w : updated adaptive coefficients

u : updated composite delay line

y : filter output y(n)

e : error signal e(n)

Px : updated power of input signal x(n)

Py : updated power of output signal y(n)

A(z)

B(z)

x(n)
Σ Σ

d(n)

LMS

e(n)
_

+
y1(n)

C(z)

Figure 6.7: Block diagram of the SHARF algorithm.

182

6.4. asptsharf

Example iter = 5000; % Number of samples to process

xn = 2*(rand(iter,1)-0.5) ; % Input signal, zero mean random.

dn = filter([0.6 -.01],[1 -0.4 0.6],xn); % Filter output

en = zeros(iter,1); % error signal

% Initialize SHARF.

N=2; M=2; L = 7;

[u,w,e,c,d,mu,Px,Py]=init_sharf(N,M,L);

mu = [0.02;0.02;0.02;0.02];

%% Processing Loop

for (m=1:iter)

x = xn(m);

d = dn(m)+ 1e-3*rand;

% update the filter

[w,u,y,e,Px,Py]=asptsharf(N,M,w,u,x,d,e,c,mu,Px,Py);

% save the last error sample to plot later

en(m,:) = e(1);

end;

wp = filter(w(1:N),[1 ; -w(N+1:N+M)],[1; zeros(19,1)]);

% display the results

subplot(2,2,1);stem(wp); grid;

xlabel(’filter response after convergence’)

subplot(2,2,2);

eb = filter(.1, [1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 6.8. The left side
graph of the figure shows the adaptive filter impulse response after convergence.
The right side graph shows the mean square error in dB versus time during the
adaptation process, which is usually called the learning curve. The lower limit
of the error signal power in the learning curve is defined here by the additive
white noise added at the filter output (-60 dB).

0 5 10 15 20
−0.4

−0.2

0

0.2

0.4

0.6

filter response after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 6.8: The adaptive filter impulse response after convergence and
the learning curve for the IIR system identification problem using the
SHARF algorithm.

183

Chapter 6. Recursive Adaptive Algorithms

Algorithm The SHARF algorithm uses a smoothed version of the error signal as the
gradient vector. The filter transfer function is given by

w(z) =
A(z)

1−B(z)
(6.12)

where

A(z) = a0 + a1z
−1 + ...+ aN−1z

−N+1 (6.13)

B(z) = b1z
−1 + b2z

−2 + ...+ bMz−M (6.14)

The current implementation of asptsharf() performs the following operations

• Updates the composite input vector u(n) using the current and previous
samples of x(n) and y(n).

• Filters the composite input vector u(n) through the adaptive filter coef-
ficients w(n− 1) to produce the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Calculates the smoothed error signal as shown in Fig. 6.7.

• Updates the adaptive filter coefficients using the smoothed error and the
composite input vector u(n).

Remarks • Being an IIR filter, the adaptive filter w(n) might become unstable during
adaptation. This can be avoided by checking that the poles of the filter
remain within the unit circle after each call to asptsharf.

• asptsharf() supports both real and complex data and filters.

• asptsharf() updates the composite input vector internally.

Resources The resources required to implement the SHARF algorithm for a recursive
adaptive filter of N numerator coefficients and M denumerator coefficients
in real time is given in the table below. The computations given are those
required to process one sample.

MEMORY 3N + 3M + 2L+ 4
MULTIPLY 3N + 3M + L+ 6
ADD N +M + L+ 2
DIVIDE N+M

See Also INIT SHARF, MODEL SHARF.

Reference [2] and [10] for introduction to recursive adaptive filters.

184

6.5. asptsoiir1

6.5 asptsoiir1

Purpose Performs filtering and parameter update for the band-pass Second Order IIR
type-1 adaptive filter. The filter transfer function is given by

H(z) =
(1− s)(w − z−1)

1− (1 + s)wz−1 + sz−2
. (6.15)

where parameter s controls the filter bandwidth and parameter w controls the
filter center frequency.

Syntax [y,a,b,e,w,s] = asptsoiir1(u,y,a,b,e,w,s,mu_w,mu_s,w_lim,s_lim)

Description asptsoiir1() is a special second order IIR adaptive filter algorithm optimized
for extracting and tracking narrow-band signals buried in a wide-band signal.
Therefore, it is widely used in applications such as Adaptive Line Enhancers
(ALE) where a weak carrier signal is required to be recovered from a strong
wide-band noise. Another common application of asptsoiir1() is removing
the 50/60 Hz power line noise usually introduced into weak sensor signals.
Fig. 6.9 shows the block diagram of the applications mentioned above which
is basically an IIR forward prediction configuration. asptsoiir1() takes an
input delay line u(n), an output delay line y(n), the two adaptive filter coeffi-
cients from previous iteration w(n−1) and s(n−1), and the previous gradient
vectors a(n− 1) and b(n− 1), and returns the updated filter output delay line
y(n), the error sample e(n) and the updated filter parameters w(n) and s(n).
The input and output parameters of asptsoiir1() are summarized below.

Input arguments [Size]:

u : the last 3 input samples [3 x 1]

y : the last 3 output samples [3 x 1]

a : the last 3 w gradients [3 x 1]

b : the last 3 s gradients [3 x 1]

e : the last 3 error samples [3 x 1]

w : filter center freq. parameter {-1 1} [1 x 1]

s : filter bandwidth parameter {0 1} [1 x 1]

mu_w : adaptation constant for w [1x1]

mu_s : adaptation constant for s [1x1]

w_lim : [w_min w_max]; min. & max. bounds for w

s_lim : [s_min s_max]; min. & max. bounds for s

Output Parameters:

y : updated output buffer

a : updated t-gradient buffer

b : updated s-gradient buffer

e : updated error buffer

s : updated filter BW parameters

w : updated filter CF parameters

185

Chapter 6. Recursive Adaptive Algorithms

SOIIR

h(n)Z-1
u(n-1)

u(n)

e(n)

y(n) +

-

Figure 6.9: Block diagram of the second order IIR algorithm in an adap-
tive line enhancer configuration.

Example iter = 5000;

t = (1:iter)/1000; % time index @ 1kHz

xn = 2*(rand(iter,1)-0.5) ; % Input signal, zero mean random.

xn = xn + .5 * cos(2*pi*50*t’);

yn = zeros(iter,1); % error signal

en = yn;

% Initialize SOIIR1

w_lim = [-.99 0.99]; % bounds for w

s_lim = [0.1 .9]; % bounds for s

mu_w = 0.1; % step size for w

mu_s = 0.01; % step size for s

[s,w,u,y,a,b,e] = init_soiir1(0.3,0.1); % initialize soiir1

%% Processing Loop

for (m=1:iter)

u = [xn(m); u(1:2)];

[y,a,b,e,w,s] = asptsoiir1(u,y,a,b,e,w,s,mu_w,mu_s,w_lim,s_lim);

yn(m,:) = y(1);

en(m) = e(1);

end;

% display the results

h = filter([w*(1-s) -(1-s)],[1 -w*(1+s) s],[1;zeros(255,1)]);

f = (0:128)*500/128;

H = 20*log10(abs(fft(h)));

subplot(2,2,1);plot(f,H(1:129)); grid;

subplot(2,2,2);

plot([yn(4800:5000)]);grid

Running the above script will produce the graph shown in Fig. 6.10. The
left side graph of the figure shows the adaptive filter frequency response after
convergence. The right side graph shows the last 200 samples of the filter
output which shows that the filter output coincide with the narrow-band 50
Hz superimposed on the white noise input signal.

186

6.5. asptsoiir1

0 100 200 300 400 500
−30

−25

−20

−15

−10

−5

0

frequency [Hz]

am
pl

itu
de

 [d
B

]

0 50 100 150 200
−1

−0.5

0

0.5

1

fil
te

r
ou

tp
ut

time [samples]

Figure 6.10: The adaptive filter frequency response after convergence
and the filter output for the adaptive line enhancer problem using the
second order IIR type-1 algorithm.

Algorithm asptsoiir1() performs the following operations

• Calculates the filter output y(n) from the previous and current input
samples u(n) and previous output samples y(n− 1).

• Calculates the error sample e(n) = d(n) − y(n) and updates the error
vector.

• Calculates the gradient samples a(n) and b(n) and updates the gradient
vectors.

• Updates the adaptive coefficients s(n) and w(n) and limits their values
if necessary.

Remarks • Being an IIR filter, the adaptive filter might become unstable during
adaptation.

• The second order filter h(n) always has a zero dB gain at its center
frequency.

• The filter center frequency is given by ωc = cos−1w.

• asptsoiir1() suffers from slow convergence when the center frequency
of the narrow-band signal is close to zero or close to π. This problem is
solved in asptsoiir2().

• The configuration in Fig. 6.9 will function as a notch filter at ωc when
the error signal is taken as output. This will remove the narrow-band
signal from the input signal.

• asptsoiir1() does not update the input vector internally. This has to
be done before calling asptsoiir1() as shown in the example above.

Resources The resources required to implement the SOIIR1 recursive adaptive filter in
real time is given in the table below. The computations given are those required
to process one sample.

MEMORY 20
MULTIPLY 24
ADD 16
DIVIDE 1

See Also INIT SOIIR1, ALE SOIIR1, ASPTSOIIR2.

Reference [2] and [10] for introduction to recursive adaptive filters.

187

Chapter 6. Recursive Adaptive Algorithms

6.6 asptsoiir2

Purpose Performs filtering and parameter update for the band-pass Second Order IIR
type-2 adaptive filter. The filter is derived from type-1 by substituting w =
cos(t) which results in the transfer function

H(z) =
(1− s)(cos(t)− z−1)

1− (1 + s)cos(t)z−1 + sz−2
. (6.16)

where parameter s controls the filter bandwidth and parameter t controls the
filter center frequency.

Syntax [y,a,b,e,t,s] = asptsoiir2(u,y,a,b,e,t,s,mu_t,mu_s,t_lim,s_lim)

Description asptsoiir2() is a special second order IIR adaptive filter algorithm optimized
for extracting and tracking narrow-band signals buried in a wide-band signal.
Therefore, it is widely used in applications such as Adaptive Line Enhancers
(ALE) where a weak carrier signal is required to be recovered from a strong
wide-band noise. Another common application of asptsoiir2() is remov-
ing the 50/60 Hz power line noise usually introduced into weak sensor sig-
nals. asptsoiir2() is derived from asptsoiir1() by substituting w = cos(t)
and adapting t instead of adapting w to overcome the slow convergence when
the center frequency of the narrow-band signal is close to zero or close to π.
Fig. 6.11 shows the block diagram of the applications mentioned above which
is basically an IIR forward prediction configuration. asptsoiir2() takes an
input delay line u(n), an output delay line y(n), the two adaptive filter coeffi-
cients from previous iteration t(n− 1) and s(n− 1), and the previous gradient
vectors a(n− 1) and b(n− 1), and returns the updated filter output delay line
y(n), the error sample e(n) and the updated filter parameters t(n) and s(n).
The input and output parameters of asptsoiir2() are summarized below.

Input arguments [Size]:

u : the last 3 input samples [3 x 1]

y : the last 3 output samples [3 x 1]

a : the last 3 t gradients [3 x 1]

b : the last 3 s gradients [3 x 1]

e : the last 3 error samples [3 x 1]

t : filter center freq. parameter {-1 1} [1 x 1]

s : filter bandwidth parameter {0 1} [1 x 1]

mu_t : adaptation constant for t [1x1]

mu_s : adaptation constant for s [1x1]

t_lim : [t_min t_max]; min. & max. bounds for t

s_lim : [s_min s_max]; min. & max. bounds for s

Output Parameters:

y : updated output buffer

a : updated t-gradient buffer

b : updated s-gradient buffer

e : updated error buffer

s : updated filter BW parameters

t : updated filter CF parameters

188

6.6. asptsoiir2

SOIIR

h(n)Z-1
u(n-1)

u(n)

e(n)

y(n) +

-

Figure 6.11: Block diagram of the second order IIR algorithm in an
adaptive line enhancer configuration.

Example iter = 5000;

t = (1:iter)/1000; % time index @ 1kHz

xn = 2*(rand(iter,1)-0.5) ; % Input signal, zero mean random.

xn = xn + .5 * cos(2*pi*50*t’);

yn = zeros(iter,1); % error signal

en = yn;

% Initialize SOIIR2

t_lim = [-.99 0.99]; % bounds for w

s_lim = [0.1 .9]; % bounds for s

mu_t = 0.1; % step size for w

mu_s = 0.01; % step size for s

[s,t,u,y,a,b,e]=init_soiir2(0.3,0.1); % initialize soiir1

%% Processing Loop

for (m=1:iter)

u = [xn(m); u(1:2)];

[y,a,b,e,t,s] = asptsoiir2(u,y,a,b,e,t,s,mu_t,mu_s,t_lim,s_lim);

yn(m,:) = y(1);

en(m) = e(1);

end;

% display the results

h = filter([cos(t)*(1-s) -(1-s)],[1 -cos(t)*(1+s) s],[1;zeros(255,1)]);

f = (0:128)*500/128;

H = 20*log10(abs(fft(h)));

subplot(2,2,1);plot(f,H(1:129)); grid;

subplot(2,2,2);

plot([yn(4800:5000)]);grid

Running the above script will produce the graph shown in Fig. 6.12. The
left side graph of the figure shows the adaptive filter frequency response after
convergence. The right side graph shows the last 200 samples of the filter
output which shows that the filter output coincide with the narrow-band 50
Hz superimposed on the white noise input signal.

189

Chapter 6. Recursive Adaptive Algorithms

0 100 200 300 400 500
−30

−25

−20

−15

−10

−5

0

frequency [Hz]

am
pl

itu
de

 [d
B

]

0 50 100 150 200
−1

−0.5

0

0.5

1

fil
te

r
ou

tp
ut

time [samples]

Figure 6.12: The adaptive filter frequency response after convergence
and the filter output for the adaptive line enhancer problem using the
second order IIR type-2 filter.

Algorithm asptsoiir2() performs the following operations

• Calculates the filter output y(n) from the previous and current input
samples u(n) and previous output samples y(n− 1).

• Calculates the error sample e(n) = d(n) − y(n) and updates the error
vector.

• Calculates the gradient samples a(n) and b(n) and updates the gradient
vectors.

• Updates the adaptive coefficients s(n) and t(n) and limits their values if
necessary.

Remarks • Being an IIR filter, the adaptive filter might become unstable during
adaptation.

• The second order filter h(n) always has a zero dB gain at its center
frequency.

• The filter center frequency is given by ωc = t.

• The configuration in Fig. 6.11 will function as a notch filter at ωc when
the error signal is taken as output. This will remove the narrow-band
signal from the input signal.

• asptsoiir2() does not update the input vector internally. This has to
be done before calling asptsoiir2() as shown in the example above.

Resources The resources required to implement the SOIIR2 recursive adaptive filter in
real time is given in the table below. The computations given are those required
to process one sample.

MEMORY 20
MULTIPLY 25
ADD 16
DIVIDE 1
COS 1
SIN 1

See Also INIT SOIIR2, ALE SOIIR2, ASPTSOIIR1.

Reference [2] and [10] for introduction to recursive adaptive filters.

190

6.7. init csoiir2

6.7 init csoiir2

Purpose Creates and initializes the variables for the Cascaded Second Order IIR type-2
adaptive filter. The transfer function of each section is given by

H(z) =
(1− s)(cos(t)− z−1)

1− (1 + s)cos(t)z−1 + sz−2
. (6.17)

where parameter s controls the filter bandwidth and parameter t controls the
filter center frequency.

Syntax [s,t,u,y,a,b,p]=init_csoiir2(M,s0,t0)

[s,t,u,y,a,b,p]=init_csoiir2(M,s0,t0,u0,y0,a0,b0,p0)

Description The CSOIIR2 algorithm is used to simultaneously estimate and track any
changes in multiple spectral lines (multiple harmonic signals). The variables
of the CSOIIR2 algorithm are summarized below (see Fig. 6.1).

Input arguments [Size]:

M : number of second order sections

s0 : initial adaptive bandwidth parameters [1xM]

t0 : initial adaptive center frequency parameters [1xM]

u0 : initial last 3 input samples [3xM]

y0 : initial last 3 output samples [3xM]

a0 : initial last 3 w-gradients [3xM]

b0 : initial last 3 s-gradients [3xM]

p0 : initial input power estimate [1xM]

Output Parameters [default]:

s : initialized adaptive bandwidth parameters [zeros]

t : initialized adaptive center frequency parameters [zeros]

u : initialized input buffer [zeros]

y : initialized output buffer [zeros]

a : initialized w-gradient buffer [zeros]

b : initialized s-gradient buffer [zeros]

p : initialized power [zeros]

Example M = 2; % No. of harmonics.

s0 = 0.25*ones(1,M); % initial s

t0 = 0.1*ones(1,M); % initial t

% initialize the csoiir2 filter

[s,t,u,y,a,b,p]=init_csoiir2(M,s0,t0);

Remarks Use input parameters 4 through 8 to initialize the algorithm storage. This is
helpful when the adaptation process is required to start from a known operation
point calculated off-line or from previous simulations.

See Also ASPTCSOIIR2, ALE CSOIIR2.

191

Chapter 6. Recursive Adaptive Algorithms

6.8 init eqerr

Purpose Creates and initializes the variables required for the Equation Error recursive
adaptive algorithm. The filter transfer function is given by

w(z) =
A(z)

1−B(z)
(6.18)

where

A(z) = a0 + a1z
−1 + ...+ aN−1z

−N+1 (6.19)

B(z) = b1z
−1 + b2z

−2 + ...+ bMz−M (6.20)

Syntax [u,w,y,e,mu,Px,Pd] = init_eqerr(N,M)

[u,w,y,e,mu,Px,Pd] = init_eqerr(N,M,u0,w0,y0,d0,mu0)

Description The variables of the equation error algorithm are summarized below (see
Fig. 6.3).

Input Parameters:

N : Number of coefficients of A(z)

M : Number of coefficients of B(z)

u0 : [x(0) x(-1) ... x(-N+1) d(0) ... d(-M)]’

w0 : [a_0 a_1 ... a_(N-1) b_1 ... b_M]’

y0 : [y(-1) y(-2) ... y(-M)]’

d0 : desired signal at time index 0

mu0 : vector of step sizes

Output Parameters [default]:

u : initialized composite input [zeros]

w : initialized filter coef. [zeros]

y : initialized filter output vector [zeros]

d : Initialized desired signal [white noise]

e : Initial error signal [e=d-y]

mu : step size vector [.0101)].

Px : power of x(n).

Pd : power of d(n).

Example N = 2; % Number of numerator coef.

M = 2; % Number of denumerator coef.

u0 = rand(4,1); % initial composite input vector

y0 = zeros(2,1); % initial output vector

d0 = 0; % desired sample

mu = [0.1;0.1;0.01;0.01]; % step size vector

% Create and initialize an Output Error filter

[u,w,y,e,mu,Px,Pd]=init_eqerr(N,M,u0,[],y0,d0,mu);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 7 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTEQERR, MODEL EQERR.

192

6.9. init outerr

6.9 init outerr

Purpose Creates and initializes the variables required for the Output Error recursive
adaptive algorithm. The filter transfer function is given by

w(z) =
A(z)

1−B(z)
(6.21)

where

A(z) = a0 + a1z
−1 + ...+ aN−1z

−N+1 (6.22)

B(z) = b1z
−1 + b2z

−2 + ...+ bMz−M (6.23)

Syntax [u,w,c,y,d,e,mu,Px,Py]=init_outerr(N,M)

[u,w,c,y,d,e,mu,Px,Py]=init_outerr(N,M,u0,w0,c0,d0,mu0)

Description The variables of the output error algorithm are summarized below (see
Fig. 6.5).

Input arguments:

N : Number of coefficients of A(z).

M : Number of coefficients of B(z).

u0 : composite input vector [N+M x 1]

w0 : composite filter coefficients vector

c0 : composite gradient vector

d0 : initial desired sample

mu0 : vector of step sizes

Output Parameters [default]:

u : initialized composite input [zeros]

w : initialized filter coef. vector [zeros]

c : initialized gradient vector [zeros]

y : filter output [zeros]

d : Initialized desired signal [white noise]

e : Initial error signal [e=d-y]

mu : step size vector [.0101)].

Px : power of x(n).

Py : power of y(n).

Example N = 2; % Number of numerator coef.

M = 2; % Number of denumerator coef.

w0 = [1;0;0;0]; % initial filter coef.

u0 = rand(4,1); % initial composite input vector

c0 = zeros(4,1); % initial gradient vector

d0 = 0; % desired sample

mu = [0.1;0.1;0.01;0.01]; % step size vector

% Create and initialize an Output Error filter

[u,w,c,y,d,e,mu,Px,Py]=init_outerr(N,M,u0,w0,c0,d0,mu);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 7 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTOUTERR, MODEL OUTERR.

193

Chapter 6. Recursive Adaptive Algorithms

6.10 init sharf

Purpose Creates and initializes the variables required for the Simple Hyperstable Adap-
tive Recursive Filter (SHARF) algorithm. The filter transfer function is given
by

w(z) =
A(z)

1−B(z)
(6.24)

where

A(z) = a0 + a1z
−1 + ...+ aN−1z

−N+1 (6.25)

B(z) = b1z
−1 + b2z

−2 + ...+ bMz−M (6.26)

Syntax [u,w,e,c,d,mu,Px,Py]=init_sharf(N,M,L)

[u,w,e,c,d,mu,Px,Py]=init_sharf(N,M,L,u0,w0,e0,c0,d0,mu0)

Description The variables of the SHARF algorithm are summarized below (see Fig. 6.7).

Input arguments:

N : Number of coefficients of A(z)

M : Number of coefficients of B(z)

L : Number of coefficients of error smoothing filter c

u0 : initial composite input/output delay line [N+M x 1]

w0 : initial composite filter coefficients vector [N+M x 1]

e0 : initial error vector [L x 1]

c0 : smoothing filter coefficients [L x 1]

d0 : desired sample at time index 0 [1 x 1]

mu0 : step size vector [N+M x 1]

Output Parameters:

u : Initialized composite delay line [zeros].

w : Initialized filter vector [zeros].

e : Initialized error vector [e=d-y].

c : Initialized error smoothing filter [fir1(L-1,.05)]

d : Initialized desired sample

mu : Initialized step size vector 0.01*[1 ... 1].

Px : Initialized power of x(n).

Pd : Initialized power of d(n).

Example N = 2; % Number of numerator coef.

M = 2; % Number of denumerator coef.

L = 5; % error smoothing filter length

u0 = rand(4,1); % initial composite input vector

c0 = fir1(L-1,0.1); % error smoothing filter

d0 = 0; % desired sample

mu = [0.1;0.1;0.01;0.01]; % step size vector

% Create and initialize an Output Error filter

[u,w,e,c,d,mu,Px,Py]=init_sharf(N,M,L,u0,[],[],c0,d0,mu);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 4 through 9 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTSHARF, MODEL SHARF.

194

6.11. init soiir1

6.11 init soiir1

Purpose Creates and initializes the variables for the Second Order IIR type-1 adaptive
filter. The filter transfer function is given by

H(z) =
(1− s)(w − z−1)

1− (1 + s)wz−1 + sz−2
. (6.27)

where parameter s controls the filter bandwidth and parameter w controls the
filter center frequency.

Syntax [s,w,u,y,a,b,e]=init_soiir1(s0,w0)

[s,w,u,y,a,b,e]=init_soiir1(s0,w0,u0,y0,a0,b0,e0)

Description The variables of the SOIIR1 algorithm are summarized below (see Fig. 6.9).

Input arguments [Size]:

s0 : initial adaptive bandwidth parameter [1x1]

w0 : initial adaptive center frequency parameter [1x1]

u0 : last 3 input samples [3x1]

y0 : last 3 output samples [3x1]

a0 : last 3 w-gradients [3x1]

b0 : last 3 s-gradients [3x1]

e0 : last 3 error samples [3x1]

Output Parameters [default]:

s : initialized bandwidth parameter [zero]

w : initialized center frequency parameter [zero]

u : initialized input buffer [zeros]

y : initialized output buffer [zeros]

a : initialized w-gradient buffer [zeros]

b : initialized s-gradient buffer [zeros]

e : initialized error buffer [zeros]

Example u0 = [.9; .5;.3];

y0 = zeros(3,1);

a0 = [.01;.05;.01];

b0 = zeros(3,1);

% Create and initialize a SOIIR1 filter

[s,w,u,y,a,b,e]=init_soiir1(0.3,0.1,u0,y0,a0,b0);

Remarks Use input parameters 3 through 7 to initialize the algorithm storage. This is
helpful when the adaptation process is required to start from a known operation
point calculated off-line or from previous simulations.

See Also ASPTSOIIR1, ALE SOIIR1.

195

Chapter 6. Recursive Adaptive Algorithms

6.12 init soiir2

Purpose Creates and initializes the variables for the Second Order IIR type-2 adaptive
filter. The filter transfer function is given by

H(z) =
(1− s)(cos(t)− z−1)

1− (1 + s)cos(t)z−1 + sz−2
. (6.28)

where parameter s controls the filter bandwidth and parameter t controls the
filter center frequency.

Syntax [s,t,u,y,a,b,e]=init_soiir2(s0,t0)

[s,t,u,y,a,b,e]=init_soiir2(s0,t0,u0,y0,a0,b0,e0)

Description The variables of the SOIIR2 algorithm are summarized below (see Fig. 6.11).

Input arguments [Size]:

s0 : initial adaptive bandwidth parameter [1x1]

t0 : initial adaptive center frequency parameter [1x1]

u0 : last 3 input samples [3x1]

y0 : last 3 output samples [3x1]

a0 : last 3 w-gradients [3x1]

b0 : last 3 s-gradients [3x1]

e0 : last 3 error samples [3x1]

Output Parameters [default]:

s : initialized bandwidth parameter [zero]

t : initialized center frequency parameter [zero]

u : initialized input buffer [zeros]

y : initialized output buffer [zeros]

a : initialized w-gradient buffer [zeros]

b : initialized s-gradient buffer [zeros]

e : initialized error buffer [zeros]

Example u0 = [.9; .5;.3];

y0 = zeros(3,1);

a0 = [.01;.05;.01];

b0 = zeros(3,1);

% Create and initialize a SOIIR2 filter

[s,t,u,y,a,b,e]=init_soiir2(0.3,0.1,u0,y0,a0,b0);

Remarks Use input parameters 3 through 7 to initialize the algorithm storage. This is
helpful when the adaptation process is required to start from a known operation
point calculated off-line or from previous simulations.

See Also ASPTSOIIR2, ALE SOIIR2.

196

Chapter 7

Active Noise and Vibration Control

Algorithms

This chapter documents the functions used to create, initialize, and update the coefficients of
active noise and vibration control filters. Table 7.1 summarizes the ANVC functions and gives a
short description and a pointer to the reference page of each function.

Function Name Reference Short Description

asptadjlms 7.1 Adjoint-LMS algorithm.
asptfdadjlms 7.2 Frequency Domain Adjoint LMS algorithm.
asptfdfxlms 7.3 Frequency Domain Filtered-x LMS algorithm.
asptfxlms 7.4 Filtered-x LMS algorithm.
asptmcadjlms 7.5 Multichannel Adjoint-LMS algorithms.
asptmcfdadjlms 7.6 Multichannel Frequency Domain Adjoint LMS algorithm.
asptmcfdfxlms 7.7 Multichannel Frequency Domain Filtered-x LMS algorithm.
asptmcfxlms 7.8 Multichannel Filtered-x LMS algorithm.
init adjlms 7.9 Initialize Adjoint LMS.
init fdadjlms 7.10 Initialize Frequency Domain Adjoint LMS.
init fdfxlms 7.11 Initialize Frequency Domain Filtered-x LMS.
init fxlms 7.12 Initialize Filtered-x LMS.
init mcadjlms 7.13 Initialize Multichannel Adjoint LMS.
init mcfdadjlms 7.14 Initialize Multichannel Frequency Domain Adjoint LMS.
init mcfdfxlms 7.15 Initialize Multichannel Frequency Domain Filtered-x LMS.
init mcfxlms 7.16 Initialize Multichannel Filtered-x LMS.

Table 7.1: Functions for creating, initializing, and updating active noise and vibration
control filters.

Each function is documented in a separate section including the following information related to
the function:

• Purpose: Short description of the algorithm implemented by this function.

• Syntax: Shows the function calling syntax. If the function has optional parameters, this
section will have two calling syntaxes. One with only the required formal parameters and
one with all the formal parameters.

• Description: Detailed description of the function usage with explanation of its input and
output parameters.

• Example: A short example showing typical use of the function. The examples listed can
be found in the ASPT/test directory of the ASPT distribution. The user is encouraged to
copy from those examples and paste in her own applications.

Chapter 7. Active Noise and Vibration Control Algorithms

• Algorithm: A short description of the operations internally performed by the function.

• Remarks: Gives more theoretical and practical remarks related to the usage, performance,
limitations, and applications of the function.

• Resources: Gives a summary of the memory requirements and number of multiplications,
addition/subtractions, and division operations required to implement the function in real
time. This can be used to roughly calculate the MIPS (Million Instruction Per Second)
required for a specific platform knowing the number of instructions the processor needs to
perform each operation.

• See Also: Lists other functions that are related to this function.

• Reference: Lists literature for more information on the function.

Active noise and vibration control systems usually operate in two phases. The first phase is an
identification phase in which models of the system secondary paths are obtained and stored in
memory. The second phase is the control phase in which the coefficients of an adaptive controller
are adjusted to reduce the noise or vibration at the error sensors. When the secondary paths are
continuously changing, it is also necessary to continuously update the models of the secondary
paths during the control phase. The functions documented here assume that the models of the
secondary paths are obtained using an external identification process and perform the control task
only. The identification process can be performed using any of the transversal or recursive adaptive
algorithms in a system identification setup. The functions, therefore, distinguish between the
physical secondary paths (usually named s) and the estimated secondary paths se. The physical
model is used to calculate the response of the secondary actuators at the error sensors, while the
estimated secondary paths are used to adapt the coefficients of the controller.

198

7.1. asptadjlms

7.1 asptadjlms

Purpose Sample per sample filtering and coefficient update using the time domain
Adjoint-LMS algorithm for single channel active noise and vibration control
applications.

Syntax [w,y,e,p] = asptadjlms(w,x,e,y,s,se,d,p,mu,b)

Description asptadjlms() implements the ADJOINT-LMS algorithm widely used in con-
trol applications where a transfer function (the secondary path, s) exists be-
tween the filter output and the error signal (see Fig. 7.1). The consequence of
this transfer function is twofold. (1) its phase response delays the filter output
signal and makes it observable from the error signal after a delay. (2) the filter
output signal is colored by the amplitude response of the secondary path s.
To correct for those two effects, the ADJOINT-LMS algorithm uses a filtered
version of the error signal to update the adaptive filter instead of directly us-
ing the error signal as shown in Fig. 7.1. This figure also shows the input and
output parameters of asptadjlms() which are summarized below.

w(n)
x(n)

d(n)

e(n)

ys(n) +

+

LMS

s

se
fe(n)

y(n)

Figure 7.1: Block diagram of the Adjoint-LMS algorithm.

Input Parameters ::

w : vector of filter coefficients w(n-1) [L x 1]

x : vector of input samples [x(n) x(n-1) .. x(n-(L+M-1))]

e : vector of error signal e(n-1) [N x 1]

y : vector of filter-output y(n-1) [M x 1]

s : accurate FIR model of the secondary path [M x 1]

se : estimated FIR model of the secondary path [N x 1]

d : desired response at sample index n [1 x 1]

p : last estimated power of x(n) [1 x 1]

mu : adaptation constant [1 x 1]

b : pole of Autoregressive filter used in estimating p

Output parameters ::

w : updated filter coefficients w(n)

y : filter output vector [y(n) y(n-1) .. y(n-M-1)]

e : error vector [e(n) e(n-1) .. e(n-N-1)]

p : updated estimate of input vector power

199

Chapter 7. Active Noise and Vibration Control Algorithms

Example iter = 5000; % Number of samples to process

ph = [0;.9;.5;.3;.1]; % Primary path impulse response

sh = [0.5;0.4;0.1]; % Secondary path impulse response

se = 0.95*sh; % estimation of s

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

dn = osfilter(ph,xn); % Primary response at the sensor

sens = zeros(iter,1); % vector to collect sensor signal

% Initialize ADJLMS algorithm with a controller of 10 coefficients

[w,x,y,d,e,p] = init_adjlms(10,sh,se);

%% Processing Loop

for (m=1:iter)

% update the input delay line

x = [xn(m,:); x(1:end-1,:)];

% call asptadjlms to calculate the controller output

% and update the coefficients. Below a step size of

% 0.02 and an AR pole of 0.98 are used.

[w,y,e,p] = asptadjlms(w,x,e,y,sh,se,dn(m),p, 0.02, 0.98);

% save the last calculated sensor sample for

%performance examination

sens(m) = e(1);

end;

% display the sensor signal before and after the control effort

plot([dn sens]);

Running the above script will produce the graph shown in Fig. 7.2. In this
figure, the sensor signal with and without control, sens and dn, respectively,
are shown. The sensor signal before applying the controller dn results from
filtering the random variable xn of zero mean and variance 1 through the
primary path ph. The adaptive controller adjusts its coefficients to produce a
control signal y(n) to drive the secondary actuator that results in reducing the
primary noise at the sensor.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

1

2

Figure 7.2: Sensor signal before and after applying the adaptive controller
in a single channel ANVC system using the adjoint LMS algorithm.

200

7.1. asptadjlms

Algorithm asptadjlms() performs the following operations.

• filters the input vector x(n) through the adaptive filter coefficients vector
w(n− 1) to produce the filter output vector y(n)

• filters y(n) through the secondary path filter s to produce the secondary
actuator response at the sensor ys(n)

• evaluates the current error sample e(n) = d(n) + ys(n). Note the error
here is formed by adding the signal rather than subtracting them to be
compatible with real world sensors such as microphones and accelerom-
eters

• filters the mirrored error vector e(n) through the estimate of the sec-
ondary path se to produce the filtered-error signal fe(n)

• uses x(n) and fe(n) to calculate the normalized gradient vector and uses
this to update the adaptive filter coefficients w(n)

Remarks • Supports both real and complex signals

• The Wiener solution to the above problem is given by W (ω) =
S(ω)−1P (ω), whereW (ω) is the controller response at frequency ω, S(ω)
is the response of the secondary path and P (ω) is the response of the
primary path at the same frequency. The adaptive controller will asymp-
totically approach this Wiener solution provided that S(ω) is a minimum
phase function (does not have zeros outside the unit circle) and the con-
troller length is large enough to accommodate the above convolution.
If S(ω) is not a minimum phase function, the adaptive controller will
approach the causal part of the solution. If the controller is too short,
the solution will be truncated. In both cases, the noise reduction at the
sensor is decreased.

• The adaptive controller will approach the Wiener solution provided that
the delay in the primary path is larger than that in the secondary
path. This can be quickly checked by using ph = [.9; .5; .3; .1] and
sh = [0; 0.5; 0.4; 0.1] in the above example.

• The performance, memory requirements, and processing load of the AD-
JOINT LMS algorithm are similar to the Filtered-x LMS algorithms for
single channel systems. The real advantage of the ADJOINT LMS is in
multi-channel applications.

Resources The resources required to implement the ADJOINT LMS algorithm in real
time is given in the table below where L is the controller length and N is the
estimated secondary path length. The computations given are those required
to process one sample.

MEMORY 2L+ 2N + 5
MULTIPLY 2L+N + 4
ADD 2L+N
DIVIDE 1

See Also INIT ADJLMS, ANVC ADJLMS, ASPTMCADJLMS, ASPTFDADJLMS,
ASPTMCFDADJLMS.

Reference [3], Chapter 3.

201

Chapter 7. Active Noise and Vibration Control Algorithms

7.2 asptfdadjlms

Purpose Block filtering and coefficient update in frequency domain using the Frequency
Domain ADJoint LMS (FDADJLMS) algorithm for single channel active noise
and vibration control applications.

Syntax [W,w,x,y,e,p,yF,feF] = asptfdadjlms(NC,W,

x,xn,d,yF,feF,S,SE,p,mu,b,c)

Description asptfdadjlms() is the frequency domain implementation of asptadjlms().
The difference between FDADJLMS and its time domain counterpart ADJLMS
is that filtering and coefficient update are performed in frequency domain using
the overlap-save method as shown in Fig. 7.3. Each call of asptfdadjlms()
processes NL time samples. The parameters of asptfdadjlms() which are
summarized below.

W(f)
x(n)

d(n)

e(n)

ys(n) +

+

LMS

s

se
fe(f)

y(n)

FFT

FFT

x(f)

IFFT

Figure 7.3: Block diagram of the Frequency Domain Adjoint-LMS algo-
rithm.

Input Parameters [size] ::

NC : controller length in time domain

W : frequency domain filter coef. vector [NB x 1]

x : previous overlap-save input vector [NB x 1]

xn : block of new input samples [NL x 1]

d : block of new primary response [NL x 1]

yF : previous output buffer [NB x 1]

feF : previous filtered error buffer [NB x 1]

S : frequency domain secondary path [NB x 1]

SE : frequency domain estimated s [NB x 1]

p : last estimated power of x(f) [NB x 1]

mu : adaptation constant

b : pole of AR filter used in estimating p

c : if not zero, uses the constrained bfdaf algorithm.

Output parameters ::

W : updated frequency domain filter coefficients vector

w : updated time domain filter coefficients vector

x : updated overlap-save input vector

y : controller output block

e : new error block

p : updated power estimate of x(n)

yF : updated output buffer

feF : updated filtered error buffer

202

7.2. asptfdadjlms

Example iter = 5000; % Number of samples to process

ph = [0;.9;.5;.3;.1]; % Primary path impulse response

sh = [0.5;0.4;0.1]; % Secondary path impulse response

se = 0.95*sh; % estimation of s

xa = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

da = osfilter(ph,xa); % Primary response at the sensor

sens = zeros(iter,1); % vector to collect sensor signal

NC = 10; % controller length

NL = 6; % block length

mu = 0.02/NC; % step size for block processing

c = 1; % constrain filter to NC coef.

b = 0.98; % AR pole

% Initialize FDADJLMS algorithm with a controller of NC coef.

% and block length of NL samples

[NB,W,w,x,y,d,e,p,S,SE,yF,feF] = init_fdadjlms(NC,NL,sh,se);

% Processing Loop

for (m=1:NL:iter-NL)

xn = xa(m:m+NL-1); % new input block of NL samples

dn = da(m:m+NL-1); % new desired block of NL samples

% call asptfdadjlms to calculate the controller output

% and update the coefficients.

[W,w,x,y,e,p,yF,feF] = asptfdadjlms(NC,W,x,xn,dn,yF,...

feF,S,SE,p,mu,b,c);

% save the last calculated sensor block of samples for

%performance examination

sens(m:m+NL-1) = e;

end;

% display the sensor signal before and after the control effort

plot([da sens]);

Running the above script will produce the graph shown in Fig. 7.4. In this
figure, the sensor signal with and without control, sens and da, respectively, are
shown. the sensor signal before applying the controller da results from filtering
the random variable xa of zero mean and variance 1 through the primary path
ph. The adaptive controller adjusts its coefficients to produce a control signal
y(n) to drive the secondary actuator that results in reducing the primary noise
at the sensor.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

1

2

Figure 7.4: Sensor signal before and after applying the adaptive controller
in a single channel ANVC system using the frequency domain adjoint LMS
algorithm.

203

Chapter 7. Active Noise and Vibration Control Algorithms

Algorithm asptfdadjlms() performs the following operations.

• composes the overlap-save input vector x(n) and computes its FFT, x(f)

• filters x(f) through the adaptive filter coefficients vector W (f) in fre-
quency domain to produce the filter-output vector y(f)

• filters y(f) through the secondary path filter s to produce the secondary
actuator response at the sensor ys(n) (this is also performed in frequency
domain)

• evaluates the current error sample e(n) = d(n)+ys(n);n = 0, 1, · · · , NL−
1. Note the error here is formed by adding the signals rather than sub-
tracting them to be compatible with real world sensors such as micro-
phones and accelerometers. The error vector is padded with zeros and
transformed to frequency domain giving e(f)

• filters the error vector e(f) through the estimate of the secondary path
se in frequency domain to produce the filtered-error signal fe(f)

• uses x(f) and fe(f) to calculate the normalized gradient vector and uses
this to update the frequency domain adaptive filter coefficients W (f).
Normalization for both input signal and secondary path are performed
at each frequency bin which guarantees faster convergence rate than time
domain ADJLMS.

• computes the inverse FFT for the filter coefficients vector, output vector,
and error vector producing w(n), y(n), and e(n) respectively

Remarks • Supports both real and complex signals.

• Much more efficient than time domain processing for long controllers.

• The Wiener solution to the above problem is given by W (ω) =
S(ω)−1P (ω), whereW (ω) is the controller response at frequency ω, S(ω)
is the response of the secondary path and P (ω) is the response of the
primary path at the same frequency. The adaptive controller will asymp-
totically approach this Wiener solution provided that S(ω) is a minimum
phase function (does not have zeros outside the unit circle) and the con-
troller length is large enough to accommodate the above convolution.
If S(ω) is not a minimum phase function, the adaptive controller will
approach the causal part of the solution. If the controller is too short,
the solution will be truncated. In both cases, the noise reduction at the
sensor is decreased.

• The adaptive controller will approach the Wiener solution provided that
the delay in the primary path is larger than that in the secondary
path. This can be quickly checked by using ph = [.9; .5; .3; .1] and
sh = [0; 0.5; 0.4; 0.1] in the above example.

• The performance, memory requirements, and processing load of the
FDADJLMS algorithm are similar to the FDFXLMS algorithms for sin-
gle channel systems. The real advantage of the FDADJLMS is in multi-
channel applications, see ASPTMCFDADJLMS for more details.

204

7.2. asptfdadjlms

Resources The resources required to implement the constrained FDADJLMS algorithm
in real time is given in the table below. In this table, NL is the block length
and NB is the FFT length given by NB = 2nextpow2(NL+NC−1), and NC is the
controller length in time domain. The computations given are those required
to process NL samples. Note that the unconstrained algorithm uses two FFT
operations less than the case shown in the table.

MEMORY 7NB + 4NL + 3
MULTIPLY 7NB

ADD 2NB

DIVIDE NB

FFT 7

See Also INIT FDADJLMS, ANVC FDADJLMS, ASPTMCADJLMS, ASPTMCF-
DADJLMS, ASPTADJLMS.

Reference [3], Chapter 3 for detailed description of the FDADJLMS, [8] for the overlap-
save method, and [9] for frequency domain adaptive filters.

205

Chapter 7. Active Noise and Vibration Control Algorithms

7.3 asptfdfxlms

Purpose Block filtering and coefficient update in frequency domain using the Frequency
Domain Filtered-X LMS (FDFXLMS) algorithm for single channel active noise
and vibration control applications.

Syntax [W,w,x,y,e,p,yF,fxF] = asptfdfxlms(NC,W,

x,xn,d,yF,fxF,S,SE,p,mu,b,c)

Description asptfdfxlms() is the frequency domain implementation of asptfxlms(). The
difference between FDFXLMS and its time domain counterpart FXLMS is that
filtering and coefficient update are performed in frequency domain using the
overlap-save method as shown in Fig. 7.5. The parameters of asptfdfxlms()
which are summarized below.

+
w(n)

x(n)

d(n)

e(n)

ys(n)

+

LMS

s

se
fx(f)

y(n)

FFT

FFT

x(f)
IFFT

Figure 7.5: Block diagram of the Frequency Domain Filtered-X LMS
algorithm.

Input Parameters [size] ::

NC : controller length in time domain

W : frequency domain filter coef. vector [NB x 1]

x : previous overlap-save input vector [NB x 1]

xn : block of new input samples [NL x 1]

d : block of new primary response [NL x 1]

yF : previous output buffer [NB x 1]

fxF : previous filtered input buffer [NB x 1]

S : frequency domain secondary path [NB x 1]

SE : frequency domain estimated s [NB x 1]

p : last estimated power of fx(f) [NB x 1]

mu : adaptation constant

b : pole of AR filter used in estimating p

c : if not zero, uses the constrained bfdaf algorithm.

Output parameters ::

W : updated frequency domain filter coefficients vector

w : updated time domain filter coefficients vector

x : updated overlap-save input vector

y : controller output block

e : new error block

p : updated power estimate of fx(n)

yF : updated output buffer

fxF : updated filtered input buffer

206

7.3. asptfdfxlms

Example iter = 5000; % Number of samples to process

ph = [0;.9;.5;.3;.1]; % Primary path impulse response

sh = [0.5;0.4;0.1]; % Secondary path impulse response

se = 0.95*sh; % estimation of s

xa = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

da = osfilter(ph,xa); % Primary response at the sensor

sens = zeros(iter,1); % vector to collect sensor signal

NC = 10; % controller length

NL = 6; % block length

mu = 0.02/NC; % step size for block processing

c = 1; % constrain filter to NC coef.

b = 0.98; % AR pole

% Initialize FDFXLMS algorithm with a controller of NC coef.

% and block length of NL samples

[NB,W,w,x,y,d,e,p,S,SE,yF,fxF] = init_fdfxlms(NC,NL,sh,se);

% Processing Loop

for (m=1:NL:iter-NL)

xn = xa(m:m+NL-1); % new input block of NL samples

dn = da(m:m+NL-1); % new desired block of NL samples

% call asptfdfxlms to calculate the controller output

% and update the coefficients.

[W,w,x,y,e,p,yF,fxF] = asptfdfxlms(NC,W,x,xn,dn,yF,...

fxF,S,SE,p,mu,b,c);

% save the last calculated sensor block of samples for

%performance examination

sens(m:m+NL-1) = e;

end;

% display the sensor signal before and after the control effort

plot([da sens]);

Running the above script will produce the graph shown in Fig. 7.6. In this
figure, the sensor signal with and without control, sens and da, respectively, are
shown. the sensor signal before applying the controller da results from filtering
the random variable xa of zero mean and variance 1 through the primary path
ph. The adaptive controller adjusts its coefficients to produce a control signal
y(n) to drive the secondary actuator that results in reducing the primary noise
at the sensor.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

1

2

Figure 7.6: Sensor signal before and after applying the adaptive controller
in a single channel ANVC system using the frequency domain filtered-x
LMS algorithm.

207

Chapter 7. Active Noise and Vibration Control Algorithms

Algorithm asptfdfxlms() performs the following operations.

• composes the overlap-save input vector x(n) and computes its FFT, x(f)

• filters x(f) through the adaptive filter coefficients vector W (f) in fre-
quency domain to produce the filter output vector y(f)

• filters y(f) through the secondary path filter s to produce the secondary
actuator response at the sensor ys(n) (this is also performed in frequency
domain)

• evaluates the current error sample e(n) = d(n)+ys(n);n = 0, 1, · · · , NL−
1. Note the error here is formed by adding the signals rather than sub-
tracting them to be compatible with real world sensors such as micro-
phones and accelerometers. The error vector is padded with zeros and
transformed to frequency domain giving e(f)

• filters the overlap-save input vector x(f) through the estimate of the
secondary path se in frequency domain to produce the filtered input
signal fx(f)

• uses e(f) and fx(f) to calculate the normalized gradient vector and uses
this to update the frequency domain adaptive filter coefficients W (f).
Normalization for both input signal and secondary path are performed
at each frequency bin which guarantees faster convergence rate than time
domain FXLMS.

• computes the inverse FFT for the filter coefficients vector, and output
vector producing w(n), and y(n), respectively

Remarks • Supports both real and complex signals.

• Much more efficient than time domain processing for long controllers.

• The Wiener solution to the above problem is given by W (ω) =
S(ω)−1P (ω), whereW (ω) is the controller response at frequency ω, S(ω)
is the response of the secondary path and P (ω) is the response of the
primary path at the same frequency. The adaptive controller will asymp-
totically approach this Wiener solution provided that S(ω) is a minimum
phase function (does not have zeros outside the unit circle) and the con-
troller length is large enough to accommodate the above convolution.
If S(ω) is not a minimum phase function, the adaptive controller will
approach the causal part of the solution. If the controller is too short,
the solution will be truncated. In both cases, the noise reduction at the
sensor is decreased.

• The adaptive controller will approach the Wiener solution provided that
the delay in the primary path is larger than that in the secondary
path. This can be quickly checked by using ph = [.9; .5; .3; .1] and
sh = [0; 0.5; 0.4; 0.1] in the above example.

• The performance, memory requirements, and processing load of the FD-
FXLMS algorithm are similar to the FDADJLMS algorithms for single
channel systems. The FDADJLMS, however, is much more efficient in
multi-channel applications, see ASPTMCFDADJLMS and ASPTMCFD-
FXLMS for more details.

208

7.3. asptfdfxlms

Resources The resources required to implement the constrained FDFXLMS algorithm in
real time is given in the table below. In this table, NL is the block length
and NB is the FFT length given by NB = 2nextpow2(NL+NC−1), and NC is the
controller length in time domain. The computations given are those required
to process NL samples. Note that the unconstrained algorithm uses two FFT
operations less than the case shown in the table.

MEMORY 7NB + 4NL + 3
MULTIPLY 7NB

ADD 2NB

DIVIDE NB

FFT 7

See Also INIT FDFXLMS, ANVC FDFXLMS, ASPTMCFXLMS, ASPTMCFD-
FXLMS, ASPTFXLMS.

Reference [3], Chapter 3 for detailed description of the FDFXLMS, [8] for the overlap-save
method, and [9] for frequency domain adaptive filters.

209

Chapter 7. Active Noise and Vibration Control Algorithms

7.4 asptfxlms

Purpose Sample per sample filtering and coefficient update using the Filtered-x LMS
(FXLMS) algorithm for single channel active noise and vibration control ap-
plications.

Syntax [w,y,e,p,fx] = asptfxlms(w,x,y,s,se,d,fx,p,mu,b)

Description asptfxlms() implements the FILTERED-X LMS algorithm widely used in
control applications where a transfer function (the secondary path, s) exists
between the filter output and the error signal (see Fig. 7.7). The consequence
of this transfer function is that (1) its phase response delays the filter output
and makes it observable from the error signal after a delay, (2) the filter output
is colored by the amplitude response of the secondary path s. To correct for
those effects, the FILTERED-X LMS algorithm uses a filtered version of the
input signal fx(n) to update the adaptive filter instead of directly using the
input signal x(n) as shown in Fig. 7.7. This figure also shows the input and
output parameters of asptfxlms() which are summarized below.

+

w(n)
x(n)

d(n)

e(n)

ys(n)

+

LMS

s

se
fx(n)

y(n)

Figure 7.7: Block diagram of the Filtered-x LMS algorithm.

Input Parameters ::

w : vector of filter coefficients w(n-1) [L x 1]

x : vector of input samples

y : vector of filter output y(n-1) [M x 1]

s : accurate FIR model of the secondary path [M x 1]

se : estimated FIR model of the secondary path [N x 1]

d : desired response at sample index n [1 x 1]

fx : vector of filtered input signal fx(n-1) [N x 1]

p : last estimated power of x(n) [1 x 1]

mu : adaptation constant [1 x 1]

b : pole of Autoregressive filter used in estimating p

Output parameters ::

w : updated filter coefficients w(n)

y : filter output vector [y(n) y(n-1) .. y(n-M-1)]

e : error sample e(n) = d(n) - ys(n)

p : updated estimate of input vector power

fx : updated vector of filtered-x samples fx(n)

210

7.4. asptfxlms

Example iter = 5000; % Number of samples to process

ph = [0;.9;.5;.3;.1]; % Primary path impulse response

sh = [0.5;0.4;0.1]; % Secondary path impulse response

se = 0.95*sh; % estimation of s

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

dn = osfilter(ph,xn); % Primary response at the sensor

sens = zeros(iter,1); % vector to collect the sensor signal

% Initialize Filtered-x algorithm with a controller of 10 coef.

[w,x,y,d,e,p,fx] = init_fxlms(10,sh,se);

%% Processing Loop

for (m=1:iter)

% update the input delay line

x = [xn(m,:); x(1:end-1,:)];

% call asptfxlms to calculate the controller output

% and update the coefficients. Below a step size of

% 0.02 and an AR pole of 0.98 are used.

[w,y,e,p,fx] = asptfxlms(w,x,y,sh,se,dn(m),fx,p, 0.02, 0.98);

% save the last calculated sensor sample for

%performance examination

sens(m) = e(1);

end;

% display the sensor signal signal before and after

% applying the controller

plot([dn sens]);

Running the above script will produce the graph shown in Fig. 7.8. In this
figure, the sensor signal with and without control, sens and dn, respectively,
are shown. The sensor signal before applying the controller dn results from
filtering the random variable xn of zero mean and variance 1 through the
primary path ph. The adaptive controller adjusts its coefficients to produce a
control signal y(n) to drive the secondary actuator that results in reducing the
primary noise at the sensor.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1

0

1

2

Figure 7.8: Sensor signal before and after applying the adaptive controller
in a single channel ANVC system using the filtered-x LMS algorithm.

211

Chapter 7. Active Noise and Vibration Control Algorithms

Algorithm ASPTFXLMS performs the following operations.

• filters the input vector x(n) through the adaptive filter coefficients vector
w(n− 1) to produce the filter output vector y(n)

• filters y(n) through the secondary path filter s to produce the secondary
actuator response at the sensor ys(n)

• evaluates the current error sample e(n) = d(n) + ys(n). Note the error
here is formed by adding the signal rather than subtracting them to be
compatible with real world sensors such as microphones and accelerom-
eters

• filters the input signal x(n) through the estimate of the secondary path
se to produce the filtered-x signal fx(n)

• uses fx(n) and e(n) to calculate the normalized gradient vector and uses
this to update the adaptive filter coefficients w(n)

Remarks • Supports both real and complex signals

• The Wiener solution to the above problem is given by W (ω) =
S(ω)−1P (ω), whereW (ω) is the controller response at frequency ω, S(ω)
is the response of the secondary path and P (ω) is the response of the
primary path at the same frequency. The adaptive controller will asymp-
totically approach this Wiener solution provided that S(ω) is a minimum
phase function (does not have zeros outside the unit circle) and the con-
troller length is large enough to accommodate the above convolution.
If S(ω) is not a minimum phase function, the adaptive controller will
approach the causal part of the solution. If the controller is too short,
the solution will be truncated. In both cases, the noise reduction at the
sensor is decreased.

• The adaptive controller will approach the Wiener solution provided that
the delay in the primary path is larger than that in the secondary
path. This can be quickly checked by using ph = [.9; .5; .3; .1] and
sh = [0; 0.5; 0.4; 0.1] in the above example.

• The performance, memory requirements, and processing load of the
FILTERED-X LMS algorithm are similar to the ADJOINT LMS algo-
rithms for single channel systems. The ADJOINT LMS is much more
efficient, however, in multi-channel applications.

Resources The resources required to implement the FILTERED-X LMS algorithm in real
time is given in the table below where L is the controller length and N is the
estimated secondary path length. The computations given are those required
to process one sample.

MEMORY 2L+ 2N + 5
MULTIPLY 2L+N + 4
ADD 2L+N
DIVIDE 1

See Also INIT FXLMS, ANVC AFXLMS, ASPTFDFXLMS, ASPTMCFDFXLMS.

Reference [3], Chapter 3.

212

7.5. asptmcadjlms

7.5 asptmcadjlms

Purpose Sample per sample filtering and coefficient update using the Multichannel
Adjoint-LMS (MCADJLMS) for multichannel active noise and vibration con-
trol applications.

Syntax [w,y,e,p] = asptmcadjlms(w,x,e,y,s,se,d,p,mu,b)

Description asptmcadjlms() implements the Multichannel ADJOINT LMS algorithm
widely used in control applications where a transfer function (the matrix of
secondary paths, s) exists between the output of the multi input multi output
(MIMO) controller w(n) and the error sensors (see Fig. 7.9). The consequence
of this matrix of transfer functions is that (1) the phase response of the trans-
fer functions delay each of the controller’s outputs and makes it observable
from each error signal after a delay, (2) the controller’s outputs are colored
by the amplitude response of the secondary paths. To correct for those ef-
fects, the MCADJLMS algorithm uses filtered versions of the error signals to
update the adaptive controller instead of directly using the error signals as
shown in Fig. 7.9. The figure also shows the input and output parameters of
asptmcadjlms() which are summarized below.

w(n)
x(n)

d(n)

e(n)

ys(n) +

+

LMS

s

se
fe(n)

y(n)

Nref Nsen
s

Nact

Figure 7.9: Block diagram of the Multichannel Adjoint-LMS algorithm.

Input Parameters [size]::

w : matrix of filter coefficients [L x Nref x Nact]

x : matrix of input samples x(n) [L+M-1 x Nref]

e : matrix of error signal e(n-1) [N x Nsens]

y : matrix of filter output y(n-1) [M x Nact]

s : accurate matrix of secondary paths [M x Nact x Nsens]

se : estimated matrix of secondary paths [N x Nact x Nsens]

d : desired response at sample index n [1 x Nsens]

p : last estimated power of x(n) [1 x Nref]

mu : adaptation constant

b : pole of AR filter used to smooth p

Output parameters ::

w : updated matrix of filter coefficients

y : filter output vector matrix y(n)

e : error matrix e(n)

p : new estimated input vector power

213

Chapter 7. Active Noise and Vibration Control Algorithms

Example % This example simulates a MIMO control system with a single

% primary (reference) signal, two actuators and two sensors.

iter = 5000; % Number of samples to process

ph = [0 .9 .5 .3 .1 ; 0 .8 .5 .2 .5]’;

ph = reshape(ph,5,1,2); % Primary path impulse response

sh = zeros(3,2,2); % Secondary path impulse response

sh(:,1,1) = [0.5;0.4;0.1];

sh(:,2,2) = [0.5;0.4;0.1];

se = 0.95*sh; % estimation of sh

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

dn = mcmixr(ph,xn,0); % Primary response at the sensor

sens = zeros(iter,2); % matrix for sensors signal

% Initialize MCADJLMS algorithm with a controller of 10 coef.

[w,x,y,d,e,p] = init_mcadjlms(10,1,2,2,sh,se);

%% Processing Loop

for (m=1:iter)

% update the input delay line

x = [xn(m,:); x(1:end-1,:)];

% call asptmcadjlms to calculate the controller output

% and update the coefficients. Below a step size of

% 0.02 and an AR pole of 0.98 are used.

[w,y,e,p] = asptmcadjlms(w,x,e,y,sh,se,dn(m,:),p,0.02,0.98);

% save the last calculated sensor vector for

%performance examination

sens(m,:) = e(1,:);

end;

% display the sensor signal signal before and after

% applying the controller

subplot(2,2,1); plot([dn(:,1) sens(:,1)]); grid

subplot(2,2,2); plot([dn(:,2) sens(:,2)]); grid

Running the above script will produce the graph shown in Fig. 7.10. In this
figure, the signals recorded by the sensors before and after applying the MIMO
control effort, dn and sens, respectively, are shown. The adaptive controller
adjusts its coefficients to produce Nact control signals y(n) that result in re-
ducing the primary noise at the sensors.

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

S
en

so
r

1

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

S
en

so
r

2

Figure 7.10: Signals recorded by the sensors before and after applying the
adaptive controller in a Multichannel ANVC system using the multichannel
adjoint LMS algorithm.

214

7.5. asptmcadjlms

Algorithm The MIMO control problem addressed by MCADJLMS is to reduce the noise
(or vibration) produced by Nref primary sources at the positions of Nsens

sensors using a matrix of [NrefxNact] controllers driving Nact actuators. To
achieve this goal, asptmcadjlms() performs the following operations.

• filters the Nref reference signals x(n) through the matrix of adaptive fil-
ters w(n−1) to produce the Nact signals y(n) used to drive the actuators

• filters y(n) through the matrix of secondary paths s to produce the re-
sponse of the actuators at the sensors’ positions ys(n)

• evaluates the current error e(n) = d(n) + ys(n) at all sensors. Note
the error here is formed by adding the signal rather than subtracting
them to be compatible with real world sensors such as microphones and
accelerometers

• filters the mirrored error matrix e(n) through the estimate of the sec-
ondary path matrix se to produce the filtered-error signal fe(n)

• uses x(n) and fe(n) to calculate the normalized gradient vector and uses
this to update the adaptive filter coefficients w(n)

Remarks • Supports both real and complex signals

• The Wiener solution to the above problem is given by W (ω) =
S(ω)−1P (ω), whereW (ω) is the controller response at frequency ω, S(ω)
is the response of the secondary path and P (ω) is the response of the
primary path at the same frequency. The adaptive controller will asymp-
totically approach this Wiener solution provided that the inverse of S(ω)
exists at each frequency and the controller length is large enough.

• The adaptive controller will approach the Wiener solution provided that
the delay in the primary paths is larger than that in the secondary paths.
This can be quickly checked by removing the leading zero in ph and
adding a leading zero in sh in the above example.

• The memory requirements, and processing load of the MCADJLMS algo-
rithm are much less than those of the Multiple Error Filtered-x algorithm,
the multichannel counterpart of the Filtered-x LMS.

Resources The resources required for real time implementation of the MCADJLMS algo-
rithm having Nref reference signals, Nact actuators, and Nsens sensors with
each filter of L coefficients and estimated secondary path of N coefficients is
given in the table below. The computations given are those required to produce
Nact control signals.

MEMORY Nref (1 + L+ LNact) +Nsens(1 +N +NNact) +Nact + 3
MULTIPLY 2LNrefNact +NNsensNact + (L+ 3)Nref

ADD 2LNrefNact +NNsensNact + (L+ 1)Nref

DIVIDE L Nref

See Also INIT MCADJLMS, ANVC MCADJLMS, ASPTADJLMS, ASPTFDAD-
JLMS, ASPTMCFDADJLMS.

Reference [3], Chapter 3.

215

Chapter 7. Active Noise and Vibration Control Algorithms

7.6 asptmcfdadjlms

Purpose Block filtering and coefficient update in frequency domain using the Multi-
channel Frequency Domain Adjoint LMS (MCFDADJLMS) for multichannel
active noise and vibration control applications.

Syntax [W,w,x,y,e,p,yF,feF] = asptmcfdadjlms(NC,W,x,xn,dn,yF,...

feF,S,SE,p,mu,b,c)

Description asptmcfdadjlms() is the frequency domain implementation of
asptmcadjlms(). The difference between MCFDADJLMS and its time
domain counterpart MCADJLMS is that filtering and coefficient update are
performed in frequency domain using the overlap-save method. Fig. 7.11
shows the parameters of asptmcfdadjlms() which are summarized below.

W(f)
x(n)

d(n)

e(n)

ys(n) +

+

LMS

s

se
fe(f)

y(n)

Nref

Nsen
s

Nact

FFT

FFT

x(f)

IFFT

Figure 7.11: Block diagram of the Multi-Channel Frequency Domain
Adjoint-LMS algorithm.

Input Parameters ::

NC : controller length in time domain

W : freq. domain filter coef. matrix [NB x Nref x Nact]

x : previous overlap-save input matrix [NB x Nref]

xn : new input samples block [NL x Nref]

dn : new primary samples block [NL x Nsens]

yF : previous buffer of y(n) [NB x Nact]

feF : previous buffer of fe(n) [NB x Nact]

S : FIR model of the secondary paths [NB x Nact x Nsens]

SE : estimated FIR model of S [NB x Nact x Nsens]

p : last estimated power of x(n) [NB x Nref]

mu : adaptation constant

b : pole of AR filter used in estimating p

c : if not zero, uses the constrained BFDAF algorithm.

Output parameters ::

W : updated frequency domain filter coefficients

w : updated time domain filter coefficients

x : updated overlap-save input matrix

y : controller output block

e : new error block

p : updated estimate of power of x(n)

yF : updated output buffer

feF : updated filtered error buffer

216

7.6. asptmcfdadjlms

Example % This example simulates a MIMO control system with a single

% primary (reference) signal, two actuators and two sensors.

iter = 5000; % Number of samples to process

ph = [0 .9 .5 .3 .1 ; 0 .8 .5 .2 .5]’;

ph = reshape(ph,5,1,2); % Primary path impulse response

sh = zeros(3,2,2); % Secondary path impulse response

sh(:,1,1) = [0.5;0.4;0.1];

sh(:,2,2) = [0.5;0.4;0.1];

se = 0.95*sh; % estimation of sh

xa = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

da = mcmixr(ph,xa,0); % Primary response at the sensor

sens = zeros(iter,2); % matrix for sensors signal

NC = 10; % controller length

NL = 6; % block length

mu = 0.01/NC; % step size for block processing

c = 1; % constrain filter to NC coef.

b = 0.98; % AR pole

% Initialize MCFDADJLMS algorithm

[NB,W,w,x,y,d,e,p,S,SE,yF,feF] = init_mcfdadjlms(NC,NL,1,2,2,sh,se);

%% Processing Loop

for (m=1:NL:iter-NL)

xn = xa(m:m+NL-1,:); % new input block of NL samples

dn = da(m:m+NL-1,:); % new desired block of NL samples

% call asptmcfdadjlms to calculate the controller output

% and update the coefficients.

[W,w,x,y,e,p,yF,feF] = asptmcfdadjlms(NC,W,x,xn,dn,...

yF,feF,S,SE,p,mu,b,c);

sens(m:m+NL-1,:) = e; % save controlled sensors’ signals

end;

% display the sensors’ signals before and after the control effort

subplot(2,2,1); plot([da(:,1) sens(:,1)]); grid

subplot(2,2,2); plot([da(:,2) sens(:,2)]); grid

Running the above script will produce the graph shown in Fig. 7.12. In this
figure, the signals recorded by the sensors before and after applying the MIMO
control effort, dn and sens, respectively, are shown. The adaptive controller
adjusts its coefficients to produce Nact control signals y(n) that result in re-
ducing the primary noise at the sensors.

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

Figure 7.12: Signals recorded by the sensors before and after applying the
adaptive controller in a Multichannel ANVC system using the multichannel
frequency domain adjoint LMS algorithm.

217

Chapter 7. Active Noise and Vibration Control Algorithms

Algorithm The MIMO control problem addressed by ASPTMCFDADJLMS is to reduce
the noise (or vibration) produced by Nref primary sources at the positions of
Nsens sensors using a matrix of [Nref x Nact] controllers driving Nact actuators.
To achieve this goal, ASPTMCFDADJLMS performs the following operations.

• composes the NB x Nref overlap-save input matrix x(n) and computes
its FFT, x(f)

• filters x(f) through the frequency domain matrix of adaptive filtersW (f)
in frequency domain to produce the Nact signals y(f)

• filters y(f) through the matrix of secondary paths s in frequency domain
to produce the response of the actuators at the sensors’ positions ys(n)

• evaluates the current error e(n) = d(n) + ys(n);n = 0, 1, · · · , NL − 1 at
all sensors. Note the error here is formed by adding the signal rather
than subtracting them to be compatible with real world sensors such as
microphones and accelerometers. The error matrix is padded with zeros
and transformed to frequency domain giving e(f)

• filters the frequency domain error matrix e(f) through the estimate of the
secondary path matrix se in frequency domain to produce the filtered-
error signals fe(f)

• uses x(f) and fe(f) to calculate the normalized gradient vector and uses
this to update the frequency domain adaptive filter coefficients W (f).
Normalization for both input signals and secondary paths are performed
at each frequency bin which guarantees faster convergence rate than time
domain MCADJLMS.

• computes the inverse FFT for the filter coefficients matrix, output vector,
and error vector producing w(n), y(n), and e(n) respectively.

Remarks • Supports both real and complex signals

• The required resources to implement the MCFDADJLMS algorithm in
real time are much less than those required for the MCFDFXLMS.

• Much more efficient than time domain processing (MCADJLMS) for long
controllers.

• The Wiener solution to the above problem is given by W (ω) =
S(ω)−1P (ω), whereW (ω) is the controller response at frequency ω, S(ω)
is the response of the secondary path and P (ω) is the response of the
primary path at the same frequency. The adaptive controller will asymp-
totically approach this Wiener solution provided that the inverse of S(ω)
exists at each frequency and the controller length is large enough.

• The adaptive controller will approach the Wiener solution provided that
the delay in the primary paths is larger than that in the secondary paths.
This can be quickly checked by removing the leading zero in ph and
adding a leading zero in sh in the above example.

218

7.6. asptmcfdadjlms

Resources The resources required to implement the constrained MCFDADJLMS algo-
rithm in real time is given in the table below. In this table, NL is the block
length and NB is the FFT length given by NB = 2nextpow2(NL+NC−1), and
NC is the controller length in time domain. The computations given are those
required to process NL ∗Nref input samples. Note that the unconstrained al-
gorithm uses 2NactNref FFT operations of length NB less than the case shown
in the table.

MEMORY NB [Nref (Nact + 3) +Nact(Nsens + 2)]+
NL[2Nsens +Nref +Nact]

MULTIPLY NB [3Nref (Nact+ 1) +NactNsens]
ADD NB [2Nref (Nact+ 1) +Nsens]
DIVIDE NBNactNref

FFT Nact[2Nsens + 3] +Nref +Nsens

See Also INIT MCFDADJLMS, ANVC MCFDADJLMS, ASPTADJLMS, ASPTF-
DADJLMS, ASPTMCADJLMS.

Reference [3], Chapter 3 for detailed description of the MCFDADJLMS, [8] for the
overlap-save method, and [9] for frequency domain adaptive filters.

219

Chapter 7. Active Noise and Vibration Control Algorithms

7.7 asptmcfdfxlms

Purpose Block filtering and coefficient update in frequency domain using the Multi-
channel Frequency Domain Filtered-x LMS (MCFDFXLMS) for multichannel
active noise and vibration control applications.

Syntax [W,w,x,y,e,p,yF,fxF] = asptmcfdfxlms(NC,W,x,xn,dn,yF,...

fxF,S,SE,p,mu,b,c)

Description asptmcfdfxlms() is the frequency domain implementation of asptmcfxlms().
The difference between MCFDFXLMS and its time domain counterpart
MCFXLMS is that filtering and coefficient update are performed in frequency
domain using the overlap-save method. Fig. 7.13 shows the parameters of
asptmcfdfxlms() which are summarized below.

+
w(n)

x(n)

d(n)

e(n)

ys(n)

+

LMS

s

se
fx(f)

y(n)

Nsens

Nact

Nref

FFT

FFT

x(f)
IFFT

Figure 7.13: Block diagram of the Multichannel Frequency Domain
Filtered-X LMS algorithm.

Input Parameters ::

NC : controller length in time domain

W : freq. domain filter coef. matrix [NB x Nref x Nact]

x : previous overlap-save input matrix [NB x Nref]

xn : new input samples block [NL x Nref]

dn : new primary samples block [NL x Nsens]

yF : previous buffer of y(n) [NB x Nact]

fxF : previous buffer of fx(n) [NB x Nact x Nsens*Nref]

S : FIR model of the secondary paths [NB x Nact x Nsens]

SE : estimated FIR model S [NB x Nact x Nsens]

p : last estimated power of fx(n) [NB x Nref x Nsens*Nref]

mu : adaptation constant

b : pole of AR filter used in estimating p

c : if not zero, uses the constrained BFDAF algorithm.

Output parameters ::

W : updated frequency domain filter coefficients

w : updated time domain filter coefficients

x : updated overlap-save input matrix

y : controller output block

e : new error block

p : updated estimate of power of fx(n)

yF : updated output buffer

fxF : updated filtered-x buffer

220

7.7. asptmcfdfxlms

Example % This example simulates a MIMO control system with a single

% primary (reference) signal, two actuators and two sensors.

iter = 5000; % Number of samples to process

ph = [0 .9 .5 .3 .1 ; 0 .8 .5 .2 .5]’;

ph = reshape(ph,5,1,2); % Primary path impulse response

sh = zeros(3,2,2); % Secondary path impulse response

sh(:,1,1) = [0.5;0.4;0.1];

sh(:,2,2) = [0.5;0.4;0.1];

se = 0.95*sh; % estimation of sh

xa = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

da = mcmixr(ph,xa,0); % Primary response at the sensor

sens = zeros(iter,2); % matrix for sensors signal

NC = 10; % controller length

NL = 6; % block length

mu = 0.01/NC; % step size for block processing

c = 1; % constrain filter to NC coef.

b = 0.98; % AR pole

% Initialize MCFDFXLMS algorithm

[NB,W,w,x,y,d,e,p,S,SE,yF,fxF] = init_mcfdfxlms(NC,NL,1,2,2,sh,se);

%% Processing Loop

for (m=1:NL:iter-NL)

xn = xa(m:m+NL-1,:); % new input block of NL samples

dn = da(m:m+NL-1,:); % new desired block of NL samples

% call asptmcfdfxlms to calculate the controller output

% and update the coefficients.

[W,w,x,y,e,p,yF,fxF] = asptmcfdfxlms(NC,W,x,xn,dn,...

yF,fxF,S,SE,p,mu,b,c);

sens(m:m+NL-1,:) = e; % save controlled sensors’ signals

end;

% display the sensors’ signals before and after the control effort

subplot(2,2,1); plot([da(:,1) sens(:,1)]); grid

subplot(2,2,2); plot([da(:,2) sens(:,2)]); grid

Running the above script will produce the graph shown in Fig. 7.14. In this
figure, the signals recorded by the sensors before and after applying the MIMO
control effort, dn and sens, respectively, are shown. The adaptive controller
adjusts its coefficients to produce Nact control signals y(n) that result in re-
ducing the primary noise at the sensors.

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

Figure 7.14: Signals recorded by the sensors before and after applying the
adaptive controller in a Multichannel ANVC system using the multichannel
frequency domain filtered-x LMS algorithm.

221

Chapter 7. Active Noise and Vibration Control Algorithms

Algorithm The MIMO control problem addressed by MCFDFXLMS is to reduce the noise
(or vibration) produced by Nref primary sources at the positions of Nsens

sensors using a matrix of [NrefxNact] controllers driving Nact actuators. To
achieve this goal, asptmcfdfxlms() performs the following operations.

• composes the [NB x Nref] overlap-save input matrix x(n) and computes
its FFT, x(f)

• filters x(f) through the frequency domain matrix of adaptive filtersW (f)
in frequency domain to produce the Nact signals y(f)

• filters y(f) through the matrix of secondary paths s in frequency domain
to produce the response of the actuators at the sensors’ positions ys(n)

• evaluates the current error e(n) = d(n) + ys(n);n = 0, 1, · · · , NL − 1 at
all sensors. Note the error here is formed by adding the signal rather
than subtracting them to be compatible with real world sensors such as
microphones and accelerometers. The error matrix is padded with zeros
and transformed to frequency domain giving e(f)

• filters the frequency domain input matrix x(f) through the estimate
of the secondary path matrix se in frequency domain to produce the
filtered-input signals fx(f)

• uses fx(f) and e(f) to calculate the normalized gradient vector and uses
this to update the frequency domain adaptive filter coefficients W (f).
Normalization for both input signals and secondary paths are performed
at each frequency bin which guarantees faster convergence rate than time
domain MCFXLMS.

• computes the inverse FFT for the filter coefficients matrix, and output
vector producing w(n), and y(n), respectively.

Remarks • Supports both real and complex signals

• The required resources to implement the MCFDFXLMS algorithm in real
time are usually much larger than those required for the MCFDADJLMS.
This is evident from the size of the filtered-input compared to the size of
the filtered-error matrixes.

• Much more efficient than time domain processing (MCFXLMS) for long
controllers.

• The Wiener solution to the above problem is given by W (ω) =
S(ω)−1P (ω), whereW (ω) is the controller response at frequency ω, S(ω)
is the response of the secondary path and P (ω) is the response of the
primary path at the same frequency. The adaptive controller will asymp-
totically approach this Wiener solution provided that the inverse of S(ω)
exists at each frequency and the controller length is large enough.

• The adaptive controller will approach the Wiener solution provided that
the delay in the primary paths is larger than that in the secondary paths.
This can be quickly checked by removing the leading zero in ph and
adding a leading zero in sh in the above example.

222

7.7. asptmcfdfxlms

Resources The resources required to implement the constrained MCFDFXLMS algorithm
in real time is given in the table below. In this table, NL is the block length
and NB is the FFT length given by NB = 2nextpow2(NL+NC−1), and NC is the
controller length in time domain. The computations given are those required
to process NL ∗ Nref input samples. Note that the unconstrained algorithm
uses 2NactNref FFT operations of length NB less than the case shown in the
table.

MEMORY NBNref [2NactNsens +Nact + 1)]+
NB [NactNsens +Nact +Nsens] +NL[2Nsens +Nref] + 4

MULTIPLY NBNref (Nact)[5Nsens + 2]
ADD NBNref (Nact)[3Nsens]−NBNact

DIVIDE NBNactNref

FFT Nact[2Nref (Nsens + 1) + 1] +Nsens

See Also INIT MCFDFXLMS, ANVC MCFDFXLMS, ASPTFXLMS, ASPTFD-
FXLMS, ASPTMCADJLMS.

Reference [3], Chapter 3 for detailed description of the MCFDFXLMS, [8] for the overlap-
save method, and [9] for frequency domain adaptive filters.

223

Chapter 7. Active Noise and Vibration Control Algorithms

7.8 asptmcfxlms

Purpose Sample per sample filtering and coefficient update using the Multichannel
Filtered-X LMS (MCFXLMS) algorithm for multichannel active noise and vi-
bration control applications.

Syntax [w,y,e,p,fx] = asptmcfxlms(w,x,y,s,se,d,fx,p,mu,b)

Description asptmcfxlms() implements the Multichannel Filtered-X LMS algorithm
widely used in control applications where a transfer function (the matrix of
secondary paths, s) exists between the output of the multi input multi output
(MIMO) controller w(n) and the error sensors (see Fig. 7.15). The conse-
quence of this matrix of transfer functions is that (1) the phase response of
the transfer functions delay each of the controller’s outputs and makes it ob-
servable from each error signal after a delay, (2) the controller’s outputs are
colored by the amplitude response of the secondary paths. To correct for those
effects, the MCFXLMS algorithm uses filtered version of the input signals to
update the adaptive controller instead of directly using the input signals as
shown in Fig. 7.15. The figure also shows the input and output parameters of
asptmcfxlms() which are summarized below.

w(n)
x(n)

d(n)

e(n)

ys(n)

+

LMS

s

se
fx(n)

y(n)

Nsens

Nsens

Nact

Nref

+

Figure 7.15: Block diagram of the Multichannel Adjoint-LMS algorithm.

Input Parameters [size]::

w : matrix of filter coefficients w(n-1), [L x Nref x Nact]

x : matrix of input samples x(n) [max(L,N) x Nref]

y : matrix of filter-outputs y(n-1) [M x Nact]

s : accurate matrix of secondary paths [M x Nact x Nsens]

se : estimated matrix of secondary paths [N x Nact x Nsens]

d : desired response at sample index n [1 x Nsens]

fx : filtered input signals fx(n-1) [L x Nact x Nsens*Nref]

p : last estimated power of x(n) [1 x Nref]

mu : adaptation constant

b : pole of AR filter used to smooth p

Output parameters ::

w : updated filter coefficients w(n)

y : updated filter output vector y(n)

e : error vector e(n) = d(n) - ys(n) [1 x Nsens]

p : updated estimate of input vector power

fx : updated matrix of filtered-x samples fx(n)

224

7.8. asptmcfxlms

Example % This example simulates a MIMO control system with a single

% primary (reference) signal, two actuators and two sensors.

iter = 5000; % Number of samples to process

ph = [0 .9 .5 .3 .1 ; 0 .8 .5 .2 .5]’;

ph = reshape(ph,5,1,2); % Primary path impulse response

sh = zeros(3,2,2); % Secondary path impulse response

sh(:,1,1) = [0.5;0.4;0.1];

sh(:,2,2) = [0.5;0.4;0.1];

se = 0.95*sh; % estimation of sh

xn = 2*(rand(iter,1)-0.5); % Input signal, zero mean random.

dn = mcmixr(ph,xn,0); % Primary response at the sensor

sens = zeros(iter,2); % matrix for sensors signal

% Initialize MCFXLMS algorithm with a controller of 10 coef.

[w,x,y,e,d,p,fx] = init_mcfxlms(10,1,2,2,sh,se);

%% Processing Loop

for (m=1:iter)

% update the input delay line

x = [xn(m,:); x(1:end-1,:)];

% call asptmcfxlms to calculate the controller output

% and update the coefficients. Below a step size of

% 0.02 and an AR pole of 0.98 are used.

[w,y,e,p,fx] = asptmcfxlms(w,x,y,sh,se,dn(m,:),fx,p,0.02,0.98);

% save the last calculated sensor vector for

%performance examination

sens(m,:) = e(1,:);

end;

% display the sensor signal signal before and after

% applying the controller

subplot(2,2,1); plot([dn(:,1) sens(:,1)]); grid

subplot(2,2,2); plot([dn(:,2) sens(:,2)]); grid

Running the above script will produce the graph shown in Fig. 7.16. In this
figure, the signals recorded by the sensors before and after applying the MIMO
control effort, dn and sens, respectively, are shown. The adaptive controller
adjusts its coefficients to produce Nact control signals y(n) that result in re-
ducing the primary noise at the sensors.

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

Figure 7.16: Signals recorded by the sensors before and after applying the
adaptive controller in a Multichannel ANVC system using the multichannel
filtered-x LMS algorithm.

225

Chapter 7. Active Noise and Vibration Control Algorithms

Algorithm The MIMO control problem addressed by MCFXLMS is to reduce the noise (or
vibration) produced by Nref primary sources at the positions of Nsens sensors
using a matrix of [NrefxNact] controllers driving Nact actuators. To achieve
this goal, asptmcfxlms() performs the following operations.

• filters the Nref input (reference) signals x(n) through the matrix of adap-
tive filters w(n − 1) to produce the Nact signals y(n) used to drive the
actuators

• filters y(n) through the matrix of secondary paths s to produce the re-
sponse of the actuators at the sensors’ positions ys(n)

• evaluates the current error e(n) = d(n) + ys(n) at all sensors. Note
the error here is formed by adding the signal rather than subtracting
them to be compatible with real world sensors such as microphones and
accelerometers

• filters the input signals x(n) through the estimate of the secondary path
matrix se to produce the filtered-x signals fx(n)

• uses fx(n) and e(n) to calculate the normalized gradient vector and uses
this to update the adaptive filter coefficients w(n)

Remarks • Supports both real and complex signals

• The Wiener solution to the above problem is given by W (ω) =
S(ω)−1P (ω), whereW (ω) is the controller response at frequency ω, S(ω)
is the response of the secondary path and P (ω) is the response of the
primary path at the same frequency. The adaptive controller will asymp-
totically approach this Wiener solution provided that the inverse of S(ω)
exists at each frequency and the controller length is large enough.

• The adaptive controller will approach the Wiener solution provided that
the delay in the primary paths is larger than that in the secondary paths.
This can be quickly checked by removing the leading zero in ph and
adding a leading zero in sh in the above example.

Resources The resources required for real time implementation of the MCFXLMS algo-
rithm having Nref reference signals, Nact actuators, and Nsens sensors with
each filter of L coefficients and estimated secondary path of N coefficients is
given in the table below. The computations given are those required to produce
Nact control signals.

MEMORY LNref [Nact(Nsens + 1) + 1] +Nsens[NNact + 2]
+Nact +Nref + 3

MULTIPLY NrefNact[(L+N)Nsens + L] +Nref [LNact + 3]
ADD (NactNref)[Nsens(L+N + 1) + 2L− 1]− LNact

DIVIDE NrefNact

See Also INIT MCFXLMS, ANVC MCFXLMS, ASPTFXLMS, ASPTFDFXLMS,
ASPTMCFDFXLMS.

Reference [3], Chapter 3.

226

7.9. init adjlms

7.9 init adjlms

Purpose Creates and initializes the variables required for the ADJOINT Least Mean
Squares (ADJLMS) Adaptive Filter algorithm for use in single channel Active
Noise and Vibration Control (ANVC) applications.

Syntax [w,x,y,d,e,p] = init_adjlms(L,s,se)

[w,x,y,d,e,p] = init_adjlms(L,s,se,w0,x0,d0,y0,e0)

Description The variables of the ADJOINT LMS are shows in Fig. 7.17 and are summarized
below. The length of each variable is given in square brackets, for instance [N
x 1] means a column vector of length N.

w(n)
x(n)

d(n)

e(n)

ys(n) +

+

LMS

s

se
fe(n)

y(n)

Figure 7.17: Block diagram of the Adjoint-LMS algorithm.

Input Parameters::

L : Adaptive filter length

s : FIR model of the physical secondary path [M x 1]

se : estimated version of s [N x 1]

w0 : initial vector of filter coefficients [L x 1]

x0 : initial vector of input samples [L+M-1]

d0 : initial desired sample [1 x 1]

y0 : vector of filter output samples [M x 1]

e0 : initial error vector [N x 1]

Output parameters [default]::

w : Initialized filter coefficients [zeros]

x : Initialized input vector [white noise]

y : Initial vector of filter output samples

d : Initialized desired sample [white noise]

e : Initialized error vector

p : Initialized input vector power

Example ph = [0;.9;.5;.3;.1]; % Primary path impulse response

sh = [0.5;0.4;0.1]; % Secondary path impulse response

se = 0.95*sh; % estimation of s

% Initialize ADJLMS algorithm with a controller of 10

% coefficients and the accurate and estimated secondary paths

[w,x,y,d,e,p] = init_adjlms(10,sh,se);

227

Chapter 7. Active Noise and Vibration Control Algorithms

Remarks • Supports both real and complex signals

• The ADJOINT LMS algorithm requires an estimate of the secondary
path, shown in Fig. 7.17 as se, to calculate the filtered error signal fe(n).
This estimate se is usually obtained in an initialization stage or during
normal operation using a separate adaptive filter connected between the
secondary source and the sensor in a system identification setup. When
using se = s in init_adjlms() and asptadjlms(), which means that a
very accurate estimate of the secondary path is available, the effects of
secondary path estimation error on the adaptive controller behavior will
disappear. To examine those effects use an estimated secondary path se
different than s.

• Use input parameters 4 through 8 to initialize the controller storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTADJLMS, ANVC ADJLMS, ASPTMCADJLMS, ASPTFDADJLMS,
ASPTMCFDADJLMS.

228

7.10. init fdadjlms

7.10 init fdadjlms

Purpose Creates and initializes the variables required for the Frequency Domain AD-
Joint Least Mean Squares (FDADJLMS) algorithm for use with single channel
Active Noise and Vibration Control (ANVC) applications.

Syntax [NB,W,w,x,y,d,e,p,S,SE,yF,feF]=init_fdadjlms(NC,NL,s,se)

[NB,W,w,x,y,d,e,p,S,SE,yF,feF]=init_fdadjlms(NC,NL,s,se,W0,xn0,d0)

Description The FDADJLMS is a block processing algorithm which performs filtering and
coefficient update in the frequency domain. The variables of the FDADJLMS
are shows in Fig. 7.18 and are summarized below. The size of each variable
is given in a square brackets, for instance [N x 1] means a column vector of
length N.

W(f)
x(n)

d(n)

e(n)

ys(n) +

+

LMS

s

se
fe(f)

y(n)

FFT

FFT

x(f)

IFFT

Figure 7.18: Block diagram of the Frequency Domain Adjoint-LMS al-
gorithm.

Input Parameters [size] ::

NC : Required controller length in time domain

NL : new samples per block

s : time domain secondary path [M x 1]

se : estimate of the secondary path [N x 1]

w0 : Initial vector of filter coefficients [NC x 1]

xn0 : Initial input samples block [NL x 1]

d0 : Initial primary signal block [NL x 1]

Output parameters [default] ::

NB : FFT length [2.^nextpow2(NC+NL-1)]

W : frequency domain filter coefficients vector [zeros]

w : time domain filter coefficients vector [zeros]

x : overlap-save input vector [zeros]

y : filter output vector in time domain [zeros]

d : primary signal block [zeros]

e : error signal block [e = d + ys]

p : power estimate of x(n) in freq. domain

S : frequency domain secondary path [fft(s,NB)]

SE : frequency domain estimated secondary path [fft(se,NB)]

yF : output vector buffer [zeros]

feF : filtered error buffer [zeros]

229

Chapter 7. Active Noise and Vibration Control Algorithms

Example ph = [0;.9;.5;.3;.1]; % Primary path impulse response

sh = [0.5;0.4;0.1]; % Secondary path impulse response

se = 0.95*sh; % estimation of s

NC = 8 ; % Length of each filter

NL = NC; % Block length

% Initialize FDADJLMS algorithm with a controller of NC

% coefficients and a block length NL.

[NB,W,w,x,y,d,e,p,S,SE,yF,feF] = init_fdadjlms(NC,NL,sh,se);

Remarks • Supports both real and complex signals

• You can control the FFT length by choosing the block size (NL) appro-
priately. Maximum efficiency is achieved when NL = NC = 2n; where
n is an integer.

• Processing delay (algorithm latency) equals to NL, since NL new samples
have to be collected before an FFT can be performed.

• The FDADJLMS algorithm requires an estimate of the secondary path,
shown in Fig. 7.18 as se, to calculate the filtered error signal fe(f).
This estimate is usually obtained in an initialization stage or during nor-
mal operation using a separate adaptive filter connected between the
actuator and the sensor in a Single Input Single Output (SISO) sys-
tem identification setup. When using se = s in init_fdadjlms() and
asptfdadjlms(), which means that an accurate estimate of the sec-
ondary path is available, the effects of the secondary path estimation
error on the adaptive controller behavior will disappear. To examine
those effects use an estimated secondary path se different than s.

• Use input parameters 5 through 7 to initialize the controller storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTFDADJLMS, ANVC FDADJLMS, ASPTMCADJLMS, ASPTAD-
JLMS, ASPTMCFDADJLMS.

230

7.11. init fdfxlms

7.11 init fdfxlms

Purpose Creates and initializes the variables required for the Frequency Domain
Filtered-X Least Mean Squares (FDFXLMS) algorithm for use with single
channel Active Noise and Vibration Control (ANVC) applications.

Syntax [NB,W,w,x,y,d,e,p,S,SE,yF,fxF]=init_fdfxlms(NC,NL,s,se)

[NB,W,w,x,y,d,e,p,S,SE,yF,fxF]=init_fdfxlms(NC,NL,s,se,w0,xn0,d0)

Description The FDFXLMS is a block processing algorithm which performs filtering and
coefficient update in the frequency domain.The variables of the FDFXLMS
are shows in Fig. 7.19 and are summarized below. The size of each variable
is given in a square brackets, for instance [N x 1] means a column vector of
length N.

+
w(n)

x(n)

d(n)

e(n)

ys(n)

+

LMS

s

se
fx(f)

y(n)

FFT

FFT

x(f)
IFFT

Figure 7.19: Block diagram of the Frequency Domain Filtered-X LMS
algorithm.

Input Parameters [size] ::

NC : Required controller length in time domain

NL : new samples per block

s : FIR model of the secondary path in time domain [M x 1]

se : estimate of secondary path in time domain [N x 1]

w0 : Initial vector of filter coefficients [NC x 1]

xn0 : Initial input samples block [NL x 1]

d0 : Initial primary signal block [NL x 1]

Output parameters [default] ::

NB : FFT length [2.^nextpow2(NC+NL-1)]

W : frequency domain filter coefficients vector [zeros]

w : time domain filter coefficients vector [zeros]

x : overlap-save input vector [zeros]

y : filter output vector in time domain [zeros]

d : primary signal block [zeros]

e : error signal block [e = d + ys]

p : power estimate of fx(f)

S : frequency domain secondary path [fft(s,NB)]

SE : frequency domain estimated s [fft(se,NB)]

yF : output vector buffer [zeros]

fxF : filtered-x buffer [zeros]

231

Chapter 7. Active Noise and Vibration Control Algorithms

Example ph = [0;.9;.5;.3;.1]; % Primary path impulse response

sh = [0.5;0.4;0.1]; % Secondary path impulse response

se = 0.95*sh; % estimation of s

NC = 8 ; % Length of each filter

NL = NC; % Block length

% Initialize FDFXLMS algorithm with a controller of NC

% coefficients and a block length NL.

[NB,W,w,x,y,d,e,p,S,SE,yF,fxF] = init_fdfxlms(NC,NL,sh,se)

Remarks • Supports both real and complex signals

• You can control the FFT length by choosing the block size (NL) appro-
priately. Maximum efficiency is achieved when NL = NC = 2n; where
n is an integer.

• Processing delay (algorithm latency) equals to NL, since NL new samples
have to be collected before an FFT can be performed.

• The FDFXLMS algorithm requires an estimate of the secondary path,
shown in Fig. 7.19 as se, to calculate the filtered input signal fx(f). This
estimate is usually obtained in an initialization stage or during normal
operation using a separate adaptive filter connected between the actuator
and the sensor in a Single Input Single Output (SISO) system identifica-
tion setup. When using se = s in init_fdfxlms() and asptfdfxlms(),
which means that an accurate estimate of the secondary path is available,
the effects of the secondary path estimation error on the adaptive con-
troller behavior will disappear. To examine those effects use an estimated
secondary path se different than s.

• Use input parameters 5 through 7 to initialize the controller storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTFDFXLMS, ANVC FDFXLMS, ASPTMCFXLMS, ASPTFXLMS,
ASPTMCFDFXLMS.

232

7.12. init fxlms

7.12 init fxlms

Purpose Creates and initializes the variables required for the Filtered-x Least Mean
Squares (FXLMS) Adaptive Filter algorithm for use in single channel Active
Noise and Vibration Control (ANVC) applications.

Syntax [w,x,y,d,e,p,fx] = init_fxlms(L,s,se)

[w,x,y,d,e,p,fx] = init_fxlms(L,s,se,w0,x0,d0,y0)

Description The variables of the Filtered-x LMS are shows in Fig. 7.20 and are summarized
below. The length of each variable is given in square brackets, for instance [N
x 1] means a column vector of length N.

+

w(n)
x(n)

d(n)

e(n)

ys(n)

+

LMS

s

se
fx(n)

y(n)

Figure 7.20: Block diagram of the Filtered-x LMS algorithm.

Input Parameters [size]::

L : Adaptive filter length

s : FIR model of the physical secondary path [M x 1]

se : estimated version of s [N x 1]

w0 : initial vector of filter coefficients [L x 1]

x0 : initial vector of input samples [max(L,N) x 1]

d0 : initial desired sample [1 x 1]

y0 : vector of filter output samples [M x 1]

Output parameters [default]::

w : Initialized filter coefficients [zeros]

x : Initialized input delay line [zeros]

d : desired sample [white noise]

y : filter output samples delay line [zeros]

e : error sample

p : Initialized input vector power

fx : filtered-x delay line

Example ph = [0;.9;.5;.3;.1]; % Primary path impulse response

sh = [0.5;0.4;0.1]; % Secondary path impulse response

se = 0.95*sh; % estimation of s

% Initialize the Filtered-x algorithm with a controller of 10

% coefficients and the accurate and estimated secondary paths

[w,x,y,d,e,p] = init_fxlms(10,sh,se);

233

Chapter 7. Active Noise and Vibration Control Algorithms

Remarks • Supports both real and complex signals

• The Filtered-x LMS algorithm requires an estimate of the secondary
path, shown in Fig. 7.20 as se, to calculate the filtered input signal fx(n).
This estimate se is usually obtained in an initialization stage or during
normal operation using a separate adaptive filter connected between the
secondary source and the sensor in a system identification setup. When
using se = s in init_fxlms() and asptfxlms(), which means that an
accurate estimate of the secondary path is available, the effects of the
secondary path estimation error on the adaptive controller behavior will
disappear. To examine those effects use an estimated secondary path se
different than s.

• Use input parameters 4 through 7 to initialize the controller storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTFXLMS, ANVC FXLMS, ASPTFDFXLMS, ASPTMCFDFXLMS.

234

7.13. init mcadjlms

7.13 init mcadjlms

Purpose Creates and initializes the variables required for the Multi-Channel ADJoint
Least Mean Squares (MCADJLMS) adaptive filter algorithm for use with mul-
tichannel Active Noise and Vibration Control (ANVC) applications.

Syntax [w,x,y,d,e,p]=init_mcadjlms(L,Nref,Nact,Nsens,s,se)

[w,x,y,d,e,p]=init_mcadjlms(L,Nref,Nact,Nsens,s,se,w0,x0,d0,y0,e0)

Description The variables of the MCADJLMS are shows in Fig. 7.21 and are summarized
below. The size of each variable is given in a square brackets, for instance [N
x Nref x Nact] means a matrix of dimension 3 having Nact pages, each page
has Nref columns of length N each.

w(n)
x(n)

d(n)

e(n)

ys(n) +

+

LMS

s

se
fe(n)

y(n)

Nref Nsen
s

Nact

Figure 7.21: Block diagram of the Multichannel Adjoint-LMS algorithm.

Input Parameters::

L : Adaptive filter length

Nref : number of reference signals

Nact : number of actuators

Nsens : number of sensors

s : FIR model of the secondary path [M x Nact x Nsens]

se : estimate of the secondary path [N x Nact x Nsens]

w0 : initial vector of filter coef. [L x Nref x Nact]

x0 : initial vector of input samples [L+N-1 x Nref]

d0 : initial desired samples [1 x Nsens]

y0 : vector of filter output samples [M x Nsens]

e0 : initial error vector [N x Nsens]

Output parameters [default]::

w : Initialized filter coefficients [zeros]

x : Initialized input vector [white noise]

y : Initial vector of filter output samples

d : Initialized desired sample [white noise]

e : Initialized error vector

p : Initialized input vector variance

235

Chapter 7. Active Noise and Vibration Control Algorithms

Example load .\data\p22.mat; % Primary transfer function

load .\data\s22.mat; % Secondary transfer function

se = s22; % accurate estimate of sh22

[Lp,Nref,Nsens] = size(p22); % Primary TF dimension

[Ls,Nact,Nsens] = size(s22); % Secondary TF dimension

L = Lp + Ls ; % Length of each filter

% Initialize MCADJLMS algorithm with controllers of L

% coefficients each.

[w,x,y,d,e,p] = init_mcadjlms(L,Nref,Nact,Nsens,s22,se);

Remarks • Supports both real and complex signals

• The MCADJLMS algorithm requires an estimate of the matrix of sec-
ondary paths, shown in Fig. 7.21 as se, to calculate the filtered error
signals fe(n). This estimate se is usually obtained in an initialization
stage or during normal operation using a separate matrix of adaptive
filters connected between the actuators and the sensors in a Multiple In-
put Multiple Output (MIMO) system identification setup. When using
se = s in init_mcadjlms() and asptmcadjlms(), which means that an
accurate estimate of the secondary paths is available, the effects of the
secondary path estimation error on the adaptive controller behavior will
disappear. To examine those effects use an estimated secondary path se
different than s.

• Use input parameters 7 through 11 to initialize the controller storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTMCADJLMS, ANVC MCADJLMS, ASPTADJLMS, ASPTFDAD-
JLMS, ASPTMCFDADJLMS.

236

7.14. init mcfdadjlms

7.14 init mcfdadjlms

Purpose Creates and initializes the variables required for the Multi-Channel Frequency
Domain ADJoint Least Mean Squares (MCFDADJLMS) algorithm for use
with multichannel Active Noise and Vibration Control (ANVC) applications.

Syntax [NB,W,w,x,y,d,e,p,S,SE,yF,feF] = init_mcfdadjlms(NC,NL,Nref,Nact,

Nsens,s,se)

[NB,W,w,x,y,d,e,p,S,SE,yF,feF] = init_mcfdadjlms(NC,NL,Nref,Nact,

Nsens,s,se,W0,xn0,d0)

Description The MCFDADJLMS is a block processing algorithm which performs filtering
and coefficient update in the frequency domain. The variables of the MCF-
DADJLMS are shows in Fig. 7.22 and are summarized below. The size of each
variable is given in a square brackets, for instance [N x Nref x Nact] means
a matrix of dimension 3 having Nact pages, each page has Nref columns of
length N each.

W(f)
x(n)

d(n)

e(n)

ys(n) +

+

LMS

s

se
fe(f)

y(n)

Nref

Nsen
s

Nact

FFT

FFT

x(f)

IFFT

Figure 7.22: Block diagram of the Multichannel Frequency Domain
Adjoint-LMS algorithm.

Input Parameters [size] ::

NC : Required controller length in time domain

NL : new samples per block

Nref : number of reference signals

Nact : number of actuators

Nsens : number of sensors

s : FIR model of the secondary paths [M x Nact x Nsens]

se : estimate of secondary paths [N x Nact x Nsens]

w0 : Initial matrix of filter coef. [NC x Nref x Nact]

xn0 : Initial input samples block [NL x Nref]

d0 : Initial primary signals block [NL x Nsens]

Output parameters [default] ::

NB : FFT length [2.^nextpow2(NC+NL-1)]

W : frequency domain filter coefficients matrix [zeros]

w : time domain filter coefficients matrix [zeros]

x : overlap-save input matrix [zeros]

y : filter output matrix in time domain [zeros]

d : primary signals block [zeros]

e : error signals block [e = d + ys]

p : power estimate of x(f)

S : frequency domain secondary paths [fft(s,NB,1)]

SE : frequency domain estimated s [fft(se,NB,1)]

yF : output matrix buffer [zeros]

feF : filtered error matrix buffer [zeros]

237

Chapter 7. Active Noise and Vibration Control Algorithms

Example load .\data\p22.mat; % Primary transfer function

load .\data\s22.mat; % Secondary transfer function

se = s22; % accurate estimate of sh22

[Lp,Nref,Nsens] = size(p22); % Primary TF dimension

[Ls,Nact,Nsens] = size(s22); % Secondary TF dimension

NC = Lp + Ls ; % Length of each filter

NL = NC; % Block length

% Initialize MCFDADJLMS algorithm with controllers of NC

% coefficients each and a block length NL.

[NB,W,w,x,y,d,e,p,S,SE,yF,feF] = init_mcfdadjlms(NC,NL,...

Nref,Nact,Nsens,s22,se);

Remarks • Supports both real and complex signals

• You can control the FFT length by choosing the block size (NL) appro-
priately. Maximum efficiency is achieved when NL = NC = 2n; where
n is an integer.

• Processing delay (algorithm latency) equals to NL, since NL new samples
have to be collected before an FFT can be performed.

• The MCFDADJLMS algorithm requires an estimate of the matrix of
secondary paths, shown in Fig. 7.22 as se, to calculate the filtered error
signals fe(f). This estimate se is usually obtained in an initialization
stage or during normal operation using a separate matrix of adaptive
filters connected between the actuators and the sensors in a Multiple
Input Multiple Output (MIMO) system identification setup. When using
se = s in init_mcfdadjlms() and asptmcfdadjlms(), which means that
an accurate estimate of the secondary paths is available, the effects of the
secondary path estimation error on the adaptive controller behavior will
disappear. To examine those effects use an estimated secondary path se
different than s.

• Use input parameters 8 through 10 to initialize the controller storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTMCFDADJLMS, ANVC MCFDADJLMS, ASPTMCADJLMS, ASP-
TADJLMS, ASPTFDADJLMS.

238

7.15. init mcfdfxlms

7.15 init mcfdfxlms

Purpose Creates and initializes the variables required for the Multi-Channel Frequency
Domain Filtered-X Least Mean Squares (MCFDFXLMS) algorithm, for use
with multichannel Active Noise and Vibration Control (ANVC) applications.

Syntax [NB,W,w,x,y,d,e,p,S,SE,yF,fxF] = init_mcfdfxlms(NC,NL,Nref,Nact,

Nsens,s,se)

[NB,W,w,x,y,d,e,p,S,SE,yF,fxF] = init_mcfdfxlms(NC,NL,Nref,Nact,

Nsens,s,se,w0,xn0,d0)

Description The variables of the MCFDFXLMS are shows in Fig. 7.23 and are summarized
below. The size of each variable is given in a square brackets.

+
w(n)

x(n)

d(n)

e(n)

ys(n)

+

LMS

s

se
fx(f)

y(n)

Nsens

Nact

Nref

FFT

FFT

x(f)
IFFT

Figure 7.23: Block diagram of the MultChannel Frequency Domain
Filtered-X LMS algorithm.

Input Parameters [size] ::

NC : Required controller length in time domain

NL : new samples per block

Nref : number of reference signals

Nact : number of actuators

Nsens : number of sensors

s : FIR model of the secondary paths [M x Nact x Nsens]

se : estimate of secondary paths [N x Nact x Nsens]

w0 : Initial controller coef. matrix [NC x Nref x Nact]

xn0 : Initial input samples block [NL x Nref]

d0 : Initial primary signals block [NL x Nsens]

Output parameters [default] ::

NB : FFT length [2.^nextpow2(NC+NL-1)]

W : frequency domain filter coefficients matrix [zeros]

w : time domain filter coefficients matrix [zeros]

x : overlap-save input matrix [zeros]

y : filter output matrix in time domain [zeros]

d : primary signals block [zeros]

e : error signals block [e = d + ys]

p : power estimate of fx(n) in freq. domain

S : frequency domain secondary paths [fft(s,NB)]

SE : frequency domain estimated s [fft(se,NB)]

yF : output matrix buffer [zeros]

fxF : filtered-x matrix buffer [zeros]

239

Chapter 7. Active Noise and Vibration Control Algorithms

Example load .\data\p22.mat; % Primary transfer function

load .\data\s22.mat; % Secondary transfer function

se = s22; % accurate estimate of sh22

[Lp,Nref,Nsens] = size(p22); % Primary TF dimension

[Ls,Nact,Nsens] = size(s22); % Secondary TF dimension

NC = Lp + Ls ; % Length of each filter

NL = NC; % block length

% Initialize MCFDFXLMS algorithm with controllers of NC

% coefficients each and a block length NL.

[NB,W,w,x,y,d,e,p,S,SE,yF,fxF] = init_mcfdfxlms(NC,NL,Nref,

Nact,Nsens,s22,se);

Remarks • Supports both real and complex signals

• You can control the FFT length by choosing the block size (NL) appro-
priately. Maximum efficiency is achieved when NL = NC = 2n; where
n is an integer.

• Processing delay (algorithm latency) equals to NL, since NL new samples
have to be collected before an FFT can be performed.

• The MCFDFXLMS algorithm requires an estimate of the matrix of sec-
ondary paths, shown in Fig. 7.23 as se, to calculate the filtered input
signals fx(f). This estimate se is usually obtained in an initialization
stage or during normal operation using a separate matrix of adaptive
filters connected between the actuators and the sensors in a Multiple In-
put Multiple Output (MIMO) system identification setup. When using
se = s in init_mcfdfxlms() and asptmcfdfxlms(), which means that
an accurate estimate of the secondary paths is available, the effects of the
secondary path estimation error on the adaptive controller behavior will
disappear. To examine those effects use an estimated secondary path se
different than s.

• Use input parameters 8 through 10 to initialize the controller storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTMCFDFXLMS, ANVC MCFDFXLMS, ASPTFXLMS, ASPTFD-
FXLMS, ASPTMCFXLMS.

240

7.16. init mcfxlms

7.16 init mcfxlms

Purpose Creates and initializes the variables required for the Multi-Channel Filtered-X
Least Mean Squares (MCFXLMS) adaptive algorithm, also known as Multiple
Error Filtered-X LMS (MEFXLMS) for use with multichannel Active Noise
and Vibration Control (ANVC) applications.

Syntax [w,x,y,e,d,p,fx] = init_mcfxlms(L,Nref,Nact,Nsens,s,se)

[w,x,y,e,d,p,fx] = init_mcfxlms(L,Nref,Nact,Nsens,s,se,

w0,x0,d0,y0,fx0)

Description The variables of the MCFXLMS are shows in Fig. 7.24 and are summarized
below. The size of each variable is given in a square brackets, for instance [N
x Nref x Nact] means a matrix of dimension 3 having Nact pages, each page
has Nref columns of length N each.

w(n)
x(n)

d(n)

e(n)

ys(n)

+

LMS

s

se
fx(n)

y(n)

Nsens

Nsens

Nact

Nref

+

Figure 7.24: Block diagram of the MultChannel Filtered-X LMS algo-
rithm.

Input Parameters [size] ::

L : Adaptive filter length

Nref : number of reference signals

Nact : number of actuators

Nsens : number of sensors

s : FIR model of the secondary path [M x Nact x Nsens]

se : estimate of the secondary path [N x Nact x Nsens]

w0 : initial vector of filter coefficients [L x Nref x Nact]

x0 : initial vector of input samples [max(L,N) x Nref]

d0 : initial desired samples [1 x Nsens]

y0 : vector of filter output samples [M x Nsens]

fx0 : initial filtered input matrix [L x Nact x Nref*Nsens]

Output parameters [default]::

w : Initialized filter coefficients [zeros]

x : Initialized matrix of input samples [white noise]

y : Initial matrix of filter output samples

d : Initialized desired samples [white noise]

e : Initialized error vector [e=d+y]

p : Initialized power of x

fx : Initialized filtered input matrix [zeros]

241

Chapter 7. Active Noise and Vibration Control Algorithms

Example load .\data\p22.mat; % Primary transfer function

load .\data\s22.mat; % Secondary transfer function

se = s22; % accurate estimate of sh22

[Lp,Nref,Nsens] = size(p22); % Primary TF dimension

[Ls,Nact,Nsens] = size(s22); % Secondary TF dimension

L = Lp + Ls ; % Length of each filter

% Initialize MCFXLMS algorithm with controllers of L

% coefficients each.

[w,x,y,e,d,p,fx] = init_mcfxlms(L,Nref,Nact,Nsens,s22,se);

Remarks • Supports both real and complex signals

• The MCFXLMS algorithm requires an estimate of the matrix of sec-
ondary paths, shown in Fig. 7.24 as se, to calculate the filtered input
signals fx(n). This estimate se is usually obtained in an initialization
stage or during normal operation using a separate matrix of adaptive
filter connected between the actuators and the sensors in a Multiple In-
put Multiple Output (MIMO) system identification setup. When using
se = s in init_mcadjlms() and asptmcadjlms(), which means that an
accurate estimate of the secondary paths is available, the effects of the
secondary path estimation error on the adaptive controller behavior will
disappear. To examine those effects use an estimated secondary path se
different than s.

• Use input parameters 7 through 11 to initialize the controller storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTMCFXLMS, ANVC MCFXLMS, ASPTFXLMS, ASPTFDFXLMS,
ASPTMCFDFXLMS.

242

Chapter 8

Nonlinear Adaptive Algorithms

This chapter documents the functions used to create, initialize, and update the coefficients of
nonlinear adaptive filters (Section 2.2.5). Table 8.1 summarizes the nonlinear adaptive functions
currently supported and gives a short description and a pointer to the reference page of each
function.

Function Name Reference Short Description

asptsovlms 8.1 Second Order Volterra LMS and several of its variants.
asptsovnlms 8.2 Second Order Volterra Normalized LMS algorithm.
asptsovrls 8.3 Second Order Volterra RLS algorithm.
asptsovtdlms 8.4 Second Order Volterra Transform domain LMS algorithm.
asptsovvsslms 8.5 Second Order Volterra Variable Step Size LMS algorithm.
init sovlms 8.6 Initialize Second Order Volterra LMS.
init sovnlms 8.7 Initialize Second Order Volterra NLMS.
init sovrls 8.8 Initialize Second Order Volterra RLS.
init sovtdlms 8.9 Initialize Second Order Volterra Transform domain LMS.
init sovvsslms 8.10 Initialize Second Order Volterra Variable Step Size LMS.

Table 8.1: Functions for creating, initializing, and updating nonlinear adaptive filters.

Each function is documented in a separate section including the following information related to
the function:

• Purpose: Short description of the algorithm implemented by this function.

• Syntax: Shows the function calling syntax. If the function has optional parameters, this
section will have two calling syntaxes. One with only the required formal parameters and
one with all the formal parameters.

• Description: Detailed description of the function usage with explanation of its input and
output parameters.

• Example: A short example showing typical use of the function. The examples listed can
be found in the ASPT/test directory of the ASPT distribution. The user is encouraged to
copy from those examples and paste in her own applications.

• Algorithm: A short description of the operations internally performed by the function.

• Remarks: Gives more theoretical and practical remarks related to the usage, performance,
limitations, and applications of the function.

• Resources: Gives a summary of the memory requirements and number of multiplications,
addition/subtractions, and division operations required to implement the function in real
time. This can be used to roughly calculate the MIPS (Million Instruction Per Second)

Chapter 8. Nonlinear Adaptive Algorithms

required for a specific platform knowing the number of instructions the processor needs to
perform each operation.

• See Also: Lists other functions that are related to this function.

• Reference: Lists literature for more information on the function.

244

8.1. asptsovlms

8.1 asptsovlms

Purpose Sample per sample filtering and coefficient update using the Second Order
Volterra Least Mean Squares or one of its variants. The LMS variants currently
supported are the sign, sign-sign, and signed regressor algorithms.

Syntax [w,y,e,xb] = asptsovlms(xn,xb,w,d,mu,L1,L2)

[w,y,e,xb] = asptsovlms(xn,xb,w,d,mu,L1,L2,alg)

Description asptsovlms() implements the second order Volterra LMS filter (SOVLMS).
The SOVLMS algorithm calculates the filter output y(n) and updates the
filter coefficients vector w(n). The filter output is the sum of the outputs of
the linear filter part wl(n) and the nonlinear part wn(n) as follows.

y(n) =

L1−1
∑

m1=0

wl(m1)x(n−m1)+

L1−1
∑

m1=0

ΣL2−1
m2=m1

wn(m1,m2)x(n−m1)x(n−m2)

(8.1)
The filter coefficients vector w(n) = [wl(n);wn(n)] is updated according to
the LMS variety given by the ’alg’ input parameter. The memory depth of the
linear and nonlinear filter parts are governed independently by the L1 and L2
parameters passed to init_sovlms().
The input and output parameters of asptsovlms() for an FIR adaptive filter
of linear memory length L1 and nonlinear memory length L2 are summarized
below.

Input Parameters [size] ::

xn : new input sample [1 x 1]

xb : buffer of input samples [L1 + sum(1:L2) x 1]

w : vector of filter coefficients w(n-1) [L1 + sum(1:L2) x 1]

d : desired output d(n) [1 x 1]

mu : adaptation constant [2 x 1]

L1 : memory length of linear part of w

L2 : memory length of non-linear part of w

alg : specifies the variety of the lms to use in the

update equation. Must be one of the following:

’lms’ [default]

’slms’ - sign LMS, uses sign(e)

’srlms’ - signed regressor LMS, uses sign(x)

’sslms’ - sign-sign LMS, uses sign(e) and sign(x)

Output parameters ::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal; e(n) = d(n) - y(n)

xb : updated vector of input samples

245

Chapter 8. Nonlinear Adaptive Algorithms

Example % SOVLMS used in a simple system identification application.

% By the end of this script the adaptive filter w should have

% the same coefficients as the nonlinear unknown filter h.

iter = 5000; % Number of samples to process

L1 = 4;

L2 = 4;

% The nonlinear unknown plant transfer function

% y(n) = x(n) - x(n-1) - .125x(n-2) + .3125x(n-3)

% +x(n)x(n) -.3x(n)x(n-1) + .2x(n)x(n-2) -.5x(n)x(n-3)

% +.5x(n-1)x(n-1) -.3x(n-1)x(n-2) -.6x(n-1)x(n-3)

% -.6x(n-2)x(n-2) +.5x(n-2)x(n-3) -.1x(n-3)x(n-3)

h =[1;-1;-0;.125;.3125;1;-.3;.2;-.5;.5;-.3;-.6;-.6;.5;-.1];

xn =2*(rand(iter,1)-0.5); % Input signal, zero mean random.

dn =sovfilt(h,xn,4,4); % Unknown filter output

en =zeros(iter,1); % vector to collect the error

[w,xb,d,y,e]=init_sovlms(L1,L2); % Initialize SOVLMS

%% Processing Loop

for (m=1:iter)

d = dn(m,:) + .001 * rand ; % additive noise of var = 1e-6

% call SOVLMS to calculate the filter output, estimation error

% and update the coefficients.

[w,y,e,xb]= asptsovlms(xn(m),xb,w,d,[.05,.05],L1,L2,’lms’);

en(m,:) = e; % save the last error sample

end;

% display the results

% note that w converges to conj(h) for complex data

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);eb = filter(.1,[1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 8.1. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the square error in dB versus time during the adaptation process. The lower
limit of the error signal power in the learning curve is defined here by the
additive white noise added at the filter output (-60 dB).

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 8.1: The adaptive filter coefficients after convergence and the
learning curve for the FIR system identification problem using the SOVLMS
algorithm.

246

8.1. asptsovlms

Algorithm The current implementation of asptsovlms() performs the following opera-
tions

• Constructs the new input samples delay line elements from the previous
delay line and new input sample.

• Filters the input delay line xb(n) through the adaptive filter w(n− 1) to
produce the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Updates the adaptive filter coefficients using the error e(n) and the delay
line of input samples xb(n) resulting in w(n).

Remarks SOVLMS uses the regular LMS algorithm to update both the linear (wl) and
nonlinear (wn) parts of the adaptive filter. Therefore, the convergence prop-
erties of the SOVLMS are similar to those of the LMS. For more control on
the convergence speed, the step size is a 2-element vector, the first element of
which is used to update the linear filter part and the second is used to update
the nonlinear part. asptsovlms() also,

• supports both real and complex data and filters. The adaptive filter for
the complex SOVLMS algorithm converges to the complex conjugate of
the optimum solution.

• internally updates the input delay line xb(n) which includes the past
linear and nonlinear samples needed for the next iteration. The past
samples kept depend on the L1 and L2 parameters.

Resources The resources required to implement a SOVLMS filter of linear memory length
L1 and nonlinear memory length L2 are given below. The computations given
are those required to process one sample.

MEMORY 2(L1 + sum(1 : L2) + 6
MULTIPLY 2(L1 + sum(1 : L2) + L2 + 2
ADD 2(L1 + sum(1 : L2)
DIVIDE 0

See Also INIT SOVLMS, ASPTSOVNLMS, ASPTLMS.

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method and [7] for an introduction to the adaptive Volterra filters.

247

Chapter 8. Nonlinear Adaptive Algorithms

8.2 asptsovnlms

Purpose Sample per sample filtering and coefficients update using the Second Order
Volterra Normalized Least Mean Squares Adaptive Filter algorithm.

Syntax [w,y,e,xb,p] = asptsovnlms(xn,xb,w,d,mu,L1,L2,p)

[w,y,e,xb,p] = asptsovnlms(xn,xb,w,d,mu,L1,L2,p,b)

Description asptsovnlms() implements the second order Volterra NLMS filter
(SOVNLMS). The SOVNLMS algorithm calculates the filter output y(n) and
updates the filter coefficients vector w(n). The filter output is the sum of the
outputs of the linear filter part wl(n) and the nonlinear part wn(n) as follows.

y(n) =

L1−1
∑

m1=0

wl(m1)x(n−m1)+

L1−1
∑

m1=0

ΣL2−1
m2=m1

wn(m1,m2)x(n−m1)x(n−m2)

(8.2)
The filter coefficients vectorw(n) = [wl(n);wn(n)] is updated according to the
Normalized LMS algorithm. The memory depth of the linear and nonlinear
filter parts are governed independently by the L1 and L2 parameters passed
to init_sovnlms().
The input and output parameters of asptsovnlms() for an FIR adaptive filter
of linear memory length L1 and nonlinear memory length L2 are summarized
below.

Input Parameters [size] ::

xn : new input sample [1 x 1]

xb : buffer of input samples [L1 + sum(1:L2) x 1]

w : vector of filter coefficients w(n-1) [L1 + sum(1:L2) x 1]

d : desired output d(n) [1 x 1]

mu : adaptation constant [2 x 1]

L1 : memory length of linear part of w

L2 : memory length of non-linear part of w

p : input signal power [2 x 1]

b : low pass filter pole used to estimate p.

Output parameters ::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal; e(n) = d(n) - y(n)

xb : updated vector of input samples

p : updated input signal power.

248

8.2. asptsovnlms

Example % SOVNLMS used in a simple system identification application.

% By the end of this script the adaptive filter w should have

% the same coefficients as the nonlinear unknown filter h.

iter = 5000; % Number of samples to process

L1 = 4;

L2 = 4;

% The nonlinear unknown plant transfer function

% y(n) = x(n) - x(n-1) - .125x(n-2) + .3125x(n-3)

% +x(n)x(n) -.3x(n)x(n-1) + .2x(n)x(n-2) -.5x(n)x(n-3)

% +.5x(n-1)x(n-1) -.3x(n-1)x(n-2) -.6x(n-1)x(n-3)

% -.6x(n-2)x(n-2) +.5x(n-2)x(n-3) -.1x(n-3)x(n-3)

h =[1;-1;-0;.125;.3125;1;-.3;.2;-.5;.5;-.3;-.6;-.6;.5;-.1];

xn =2*(rand(iter,1)-0.5); % Input signal, zero mean random.

dn =sovfilt(h,xn,4,4); % Unknown filter output

en =zeros(iter,1); % vector to collect the error

[w,xb,d,y,e,p]=init_sovnlms(L1,L2); % Initialize SOVNLMS

%% Processing Loop

for (m=1:iter)

d = dn(m,:) + .001 * rand ; % additive noise of var = 1e-6

% call SOVNLMS to calculate the filter output, estimation error

% and update the coefficients.

[w,y,e,xb,p]= asptsovnlms(xn(m),xb,w,d,[.05,.05],L1,L2,p,.98);

en(m,:) = e; % save the last error sample

end;

% display the results

% note that w converges to conj(h) for complex data

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);eb = filter(.1,[1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 8.2. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the square error in dB versus time during the adaptation process. The lower
limit of the error signal power in the learning curve is defined here by the
additive white noise added at the filter output (-60 dB).

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

filter after convergence
0 1000 2000 3000 4000 5000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 8.2: The adaptive filter coefficients after convergence and
the learning curve for the FIR system identification problem using the
SOVNLMS algorithm.

249

Chapter 8. Nonlinear Adaptive Algorithms

Algorithm The current implementation of asptsovnlms() performs the following opera-
tions

• Constructs the new input samples delay line elements from the previous
delay line and new input sample.

• Filters the input delay line xb(n) through the adaptive filter w(n− 1) to
produce the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Estimates the power of the input signal and its cross-products to be
used in normalizing the update of the linear and nonlinear filter parts,
respectively.

• Updates the adaptive filter coefficients using the error e(n) and the delay
line of input samples xb(n) resulting in w(n).

Remarks SOVNLMS uses the regular NLMS algorithm to update both the linear (wl)
and nonlinear (wn) parts of the adaptive filter. Therefore, the convergence
properties of the SOVNLMS are similar to those of the NLMS. For more control
on the convergence speed, the step size is a 2-element vector, the first element
of which is used to update the linear filter part and the second is used to
update the nonlinear part. A vector of two elements is also used for the power
normalization. asptsovnlms() also,

• supports both real and complex data and filters. The adaptive filter for
the complex SOVNLMS algorithm converges to the complex conjugate
of the optimum solution.

• internally updates the input delay line xb(n) which includes the past
linear and nonlinear samples needed for the next iteration. The past
samples kept depend on the L1 and L2 parameters.

Resources The resources required to implement a SOVNLMS filter of linear memory
length L1 and nonlinear memory length L2 are given below. The computations
given are those required to process one sample.

MEMORY 2(L1 + sum(1 : L2) + 9
MULTIPLY 2(L1 + sum(1 : L2) + 2L2 + 5
ADD 2(L1 + sum(1 : L2) + L2 + 1
DIVIDE 2

See Also INIT SOVNLMS, ASPTSOVLMS, ASPTNLMS.

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method and [7] for an introduction to the adaptive Volterra filters.

250

8.3. asptsovrls

8.3 asptsovrls

Purpose Sample per sample filtering and coefficients update using the Second Order
Volterra Recursive Least Squares (SOVRLS) adaptive algorithm.

Syntax [w,y,e,R,xb] = asptsovrls(xn,xb,w,d,R,a,L1,L2)

Description asptsovrls() implements the second order Volterra RLS filter (SOVRLS).
The SOVRLS algorithm calculates the filter output y(n) and updates the filter
coefficients vector w(n). The filter output is the sum of the outputs of the
linear filter part wl(n) and the nonlinear part wn(n) as follows.

y(n) =

L1−1
∑

m1=0

wl(m1)x(n−m1)+

L1−1
∑

m1=0

ΣL2−1
m2=m1

wn(m1,m2)x(n−m1)x(n−m2)

(8.3)
The filter coefficients vector w(n) = [wl(n);wn(n)] is updated according to
the recursive least squares algorithm equation (4.10). The memory depth of
the linear and nonlinear filter parts are governed independently by the L1 and
L2 parameters passed to init_sovrls().
The input and output parameters of asptsovrls() for an FIR adaptive filter
of linear memory length L1 and nonlinear memory length L2 are summarized
below.

Input Parameters [Size]::

xn : new input sample

xb : buffer of input samples [L1 + sum(1:L2) x 1]

w : vector of filter coefficients w(n-1), [L x 1]

d : desired response d(n), [1 x 1]

R : last estimate of the inverse of the weighted

auto correlation matrix of x, [L x L]

a : forgetting factor, [1 x 1]

L1 : memory length of linear part of w

L2 : memory length of non-linear part of w

Output parameters::

w : updated filter coefficients w(n)

y : filter output y(n)

e : error signal, e(n)=d(n)-y(n)

R : updated R

xb : updated buffer of input samples

251

Chapter 8. Nonlinear Adaptive Algorithms

Example % SOVRLS used in a simple system identification application.

% By the end of this script the adaptive filter w should have

% the same coefficients as the nonlinear unknown filter h.

iter = 5000; % Number of samples to process

L1 = 4;

L2 = 4;

% The nonlinear unknown plant transfer function

% y(n) = x(n) - x(n-1) - .125x(n-2) + .3125x(n-3)

% +x(n)x(n) -.3x(n)x(n-1) + .2x(n)x(n-2) -.5x(n)x(n-3)

% +.5x(n-1)x(n-1) -.3x(n-1)x(n-2) -.6x(n-1)x(n-3)

% -.6x(n-2)x(n-2) +.5x(n-2)x(n-3) -.1x(n-3)x(n-3)

h =[1;-1;-0;.125;.3125;1;-.3;.2;-.5;.5;-.3;-.6;-.6;.5;-.1];

xn =2*(rand(iter,1)-0.5); % Input signal, zero mean random.

dn =sovfilt(h,xn,4,4); % Unknown filter output

en =zeros(iter,1); % vector to collect the error

[w,xb,d,y,e,R]=init_sovrls(L1,L2,.001); % Initialize SOVRLS

%% Processing Loop

for (m=1:iter)

d = dn(m,:) + .001 * rand ; % additive noise of var = 1e-6

% call SOVRLS to calculate the filter output, estimation error

% and update the coefficients.

[w,y,e,R,xb]=asptsovrls(xn(m),xb,w,d,R,.92,L1,L2);

en(m,:) = e; % save the last error sample

end;

% display the results

% note that w converges to conj(h) for complex data

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);eb = filter(.1,[1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 8.3. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the square error in dB versus time during the adaptation process. The lower
limit of the error signal power in the learning curve is defined here by the
additive white noise added at the filter output (-60 dB).

0 5 10 15
−1

−0.5

0

0.5

1

1.5

filter after convergence
0 1000 2000 3000 4000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 8.3: The adaptive filter coefficients after convergence and the
learning curve for the FIR system identification problem using the SOVRLS
algorithm.

252

8.3. asptsovrls

Algorithm The current implementation of asptsovrls() performs the following opera-
tions

• Constructs the new input samples delay line elements from the previous
delay line and new input sample.

• Filters the input delay line xb(n) through the adaptive filter w(n− 1) to
produce the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Recursively updates the gain vector K(n).

• Updates the adaptive filter coefficients according to equation (4.10).

Remarks SOVRLS uses the regular RLS algorithm to update both the linear (wl) and
nonlinear (wn) parts of the adaptive filter. Therefore, the convergence prop-
erties of the SOVRLS are similar to those of the RLS. asptsovrls() also,

• supports both real and complex data and filters. The adaptive filter for
the complex SOVRLS algorithm converges to the complex conjugate of
the optimum solution.

• internally updates the input delay line xb(n) which includes the past
linear and nonlinear samples needed for the next iteration. The past
samples kept depend on the L1 and L2 parameters.

Resources The resources required to implement a SOVRLS filter of linear memory length
L1 and nonlinear memory length L2 are given below. The computations given
are those required to process one sample. In the table below the symbol M =
(L1 + sum(1 : L2) is used.

MEMORY M2 + 2M + 5
MULTIPLY 4M2 + 3M + L2
ADD 3M2 +M
DIVIDE M+1

See Also INIT SOVRLS, ASPTRLS.

Reference [2] and [4] for analysis of the RLS algorithm and its variants and [7] for an
introduction to the adaptive Volterra filters..

253

Chapter 8. Nonlinear Adaptive Algorithms

8.4 asptsovtdlms

Purpose Sample per sample filtering and coefficient update using the Second Order
Volterra Transform Domain Least Mean Squares Adaptive algorithm. Filter-
ing and coefficients update of both the linear and non-linear coefficients are
performed in the transform-domain (T).

Syntax [W,y,e,p,xb,w] = asptsovtdlms(xn,xb,W,d,mu,L1,L2,p,b,T)

Description asptsovtdlms() implements the second order Volterra transform domain LMS
filter (SOVTDLMS). The SOVTDLMS algorithm calculates the filter output
y(n) and updates the filter coefficients vector W(n) in the transform domain.
The filter output is the sum of the outputs of the linear filter part Wl(n) and
the nonlinear part Wn(n) as follows.

y(n) =

L1−1
∑

m1=0

Wl(m1)x(n−m1)+

L1−1
∑

m1=0

ΣL2−1
m2=m1

Wn(m1,m2)x(n−m1)x(n−m2)

(8.4)
The filter coefficients vector W(n) = [Wl(n);Wn(n)] is updated according to
the TDLMS algorithm in the transform domain. The memory depth of the
linear and nonlinear filter parts are governed independently by the L1 and L2
parameters passed to init_sovtdlms().
The input and output parameters of asptsovtdlms() for an FIR adaptive filter
of linear memory length L1 and nonlinear memory length L2 are summarized
below.

Input Parameters [Size]::

xn : new input sample [1 x 1]

xb : buffer of input samples [L1 + sum(1:L2) x 1]

W : previous T-domain coef. vector W(n-1) [L1 + sum(1:L2) x 1]

d : desired output d(n) [1 x 1]

mu : adaptation constants [1 x 1]

L1 : memory length of linear part of w

L2 : memory length of non-linear part of w

p : last estimated power of x p(n-1) [L1 + sum(1:L2) x 1]

b : AR pole for recursive calculation of p

T : The transform to be used {fft|dct|dst|...}

user defined transforms are also supported.

use transform T and its inverse iT.

Output parameters::

W : updated T-domain coef. vector

y : filter output y(n)

e : error signal; e(n) = d(n)-y(n)

p : new estimated power of x p(n)

xb : updated buffer of input samples

w : updated t-domain coef. vector w(n), only

calculated if this output argument is given.

254

8.4. asptsovtdlms

Example % SOVTDLMS used in a simple system identification application.

% By the end of this script the adaptive filter w should have

% the same coefficients as the nonlinear unknown filter h.

iter = 5000; % Number of samples to process

L1 = 4;

L2 = 4;

% The nonlinear unknown plant transfer function

% y(n) = x(n) - x(n-1) - .125x(n-2) + .3125x(n-3)

% +x(n)x(n) -.3x(n)x(n-1) + .2x(n)x(n-2) -.5x(n)x(n-3)

% +.5x(n-1)x(n-1) -.3x(n-1)x(n-2) -.6x(n-1)x(n-3)

% -.6x(n-2)x(n-2) +.5x(n-2)x(n-3) -.1x(n-3)x(n-3)

h =[1;-1;-0;.125;.3125;1;-.3;.2;-.5;.5;-.3;-.6;-.6;.5;-.1];

xn =2*(rand(iter,1)-0.5); % Input signal, zero mean random.

dn =sovfilt(h,xn,4,4); % Unknown filter output

en =zeros(iter,1); % vector to collect the error

[W,w,xb,d,y,e,p]=init_sovtdlms(L1,L2); % Initialize SOVTDLMS

%% Processing Loop

for (m=1:iter)

d = dn(m,:) + .001 * rand ; % additive noise of var = 1e-6

% call SOVNLMS to calculate the filter output, estimation error

% and update the coefficients.

[W,y,e,p,xb,w] = asptsovtdlms(xn(m),xb,W,d,.05,L1,L2,p,.98,’fft’);

en(m,:) = e; % save the last error sample

end;

% display the results

% note that w converges to conj(h) for complex data

subplot(2,2,1);stem([real(w) imag(conj(w))]); grid;

subplot(2,2,2);eb = filter(.1,[1 -.9], en .* conj(en));

plot(10*log10(eb));grid

Running the above script will produce the graph shown in Fig. 8.4. The left
side graph of the figure shows the adaptive filter coefficients after convergence
which are almost identical to the unknown filter h. The right side graph shows
the square error in dB versus time during the adaptation process. The lower
limit of the error signal power in the learning curve is defined here by the
additive white noise added at the filter output (-60 dB).

0 5 10 15
−1

−0.5

0

0.5

1

1.5

filter after convergence
0 1000 2000 3000 4000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve

Figure 8.4: The adaptive filter coefficients after convergence and the
learning curve for the FIR system identification problem using the SOVT-
DLMS algorithm.

255

Chapter 8. Nonlinear Adaptive Algorithms

Algorithm The current implementation of asptsovtdlms() performs the following oper-
ations

• Constructs the new input samples delay line elements from the previous
delay line and new input sample.

• Calculates the T-transformation of the delay line samples.

• Filters the input delay line through the adaptive filter W (n − 1) in the
T-domain to produce the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Estimates the power of the input delay line in the T-domain.

• Updates the adaptive filter coefficients in the T-domain, and calculates
the time domain coefficients if necessary.

Remarks SOVTDLMS uses the regular TDLMS algorithm to update both the linear
(Wl) and nonlinear (Wn) parts of the adaptive filter. Therefore, the con-
vergence properties of the SOVTDLMS are similar to those of the TDLMS.
asptsovtdlms also,

• supports both real and complex data and filters. The adaptive filter for
the complex SOVTDLMS algorithm converges to the complex conjugate
of the optimum solution.

• internally updates the input delay line for xb(n) which includes the past
linear and nonlinear samples needed for the next iteration. The past
samples kept depend on the L1 and L2 parameters.

Resources The resources required to implement a SOVTDLMS filter of linear memory
length L1 and nonlinear memory length L2 are given below. The computa-
tions given are those required to process one sample. The complexity of the
transformation T is indicated as C(T) in the table below.

MEMORY 4(L1 + sum(1 : L2) + 6
MULTIPLY 5(L1 + sum(1 : L2) + L2 + C(T) + 1
ADD 3(L1 + sum(1 : L2)
DIVIDE (L1+sum(1:L2)

See Also INIT SOVTDLMS, ASPTTDLMS.

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method and [7] for an introduction to the adaptive Volterra filters.

256

8.5. asptsovvsslms

8.5 asptsovvsslms

Purpose Sample per sample filtering and coefficients update using the Second Order
Volterra Variable Step Size Least Mean Squares Adaptive filter algorithm.

Syntax [w,g,mu,y,e,xb] = asptsovvsslms(xn,xb,w,g,d,mu,L1,L2,roh)

[w,g,mu,y,e,xb] = asptsovvsslms(xn,xb,w,g,d,mu,L1,L2,roh,

ssa,mu_min,mu_max)

Description asptsovvsslms() implements the second order Volterra variable step size LMS
adaptive filter (SOVVSSLMS). The SOVVSSLMS algorithm calculates the fil-
ter output y(n), updates the filter coefficients vector w(n), and updates the
algorithm step size µ(n). The filter output is the sum of the outputs of the
linear filter part wl(n) and the nonlinear part wn(n) as follows.

y(n) =

L1−1
∑

m1=0

wl(m1)x(n−m1)+

L1−1
∑

m1=0

ΣL2−1
m2=m1

wn(m1,m2)x(n−m1)x(n−m2)

(8.5)
The filter coefficients vector w(n) = [wl(n);wn(n)] is updated according to
the VSSLMS algorithm. The memory depth of the linear and nonlinear filter
parts are governed independently by the L1 and L2 parameters passed to
init_sovvsslms().
The input and output parameters of asptsovvsslms() for an FIR adaptive
filter of linear memory length L1 and nonlinear memory length L2 are sum-
marized below.

Input Parameters [size] ::

xn : new input sample [1 x 1]

xb : buffer of input samples [L1 + sum(1:L2) x 1]

w : vector of filter coefficients [L1 + sum(1:L2) x 1]

g : gradient vector [L1 + sum(1:L2) x 1]

d : desired output [1 x 1]

mu : step size vector [L1 + sum(1:L2) x 1]

L1 : memory length of linear part of w

L2 : memory length of non-linear part of w

roh : mu step size [1 x 1]

ssa : if 1, the sign-sign algorithm is used to update mu.

mu_min : lower bound for mu [1 x 1]

mu_max : higher bound for mu [1 x 1]

Output parameters ::

w : updated filter coefficients w(n)

g : updated gradient vector g(n)

mu : updated vector of step sizes mu(n)

y : filter output y(n)

e : error signal; e(n) = d(n) - y(n)

xb : updated vector of input samples

257

Chapter 8. Nonlinear Adaptive Algorithms

Algorithm The current implementation of asptsovvsslms() performs the following op-
erations

• Constructs the new input samples delay line elements from the previous
delay line and new input sample.

• Filters the input delay line xb(n) through the adaptive filter w(n− 1) to
produce the filter output y(n).

• Calculates the error sample e(n) = d(n)− y(n).

• Updates the step size vector and limits its elements if necessary.

• Updates the adaptive filter coefficients using the error e(n) and the delay
line of input samples xb(n) resulting in w(n).

Remarks SOVVSSLMS uses the regular VSSLMS algorithm to update both the linear
(wl) and nonlinear (wn) parts of the adaptive filter. Therefore, the conver-
gence properties of the SOVVSSLMS are similar to those of the VSSLMS.
asptsovvsslms() also,

• supports both real and complex data and filters. The adaptive filter for
the complex SOVVSSLMS algorithm converges to the complex conjugate
of the optimum solution.

• updates the input delay line xb(n) internally which includes the past
linear and nonlinear samples needed for the next iteration. The past
samples kept depend on the L1 and L2 parameters.

Resources The resources required to implement a SOVVSSLMS filter of linear memory
length L1 and nonlinear memory length L2 are given below. The computations
given are those required to process one real-value input sample.

MEMORY 4(L1 + sum(1 : L2) + 8
MULTIPLY 5(L1 + sum(1 : L2) + L2
ADD 3(L1 + sum(1 : L2)
DIVIDE 0

See Also INIT SOVVSSLMS, ASPTVSSLMS, ASPTMVSSLMS, ASPTVFFRLS.

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method and [7] for an introduction to the adaptive Volterra filters.

258

8.5. asptsovvsslms

Example % SOVVSSLMS used in a simple system identification application.

% By the end of this script the adaptive filter w should have

% the same coefficients as the nonlinear unknown filter h.

iter = 5000; % Number of samples to process

L1 = 4;

L2 = 4;

% The nonlinear unknown plant transfer function

% y(n) = x(n) - x(n-1) - .125x(n-2) + .3125x(n-3)

% +x(n)x(n) -.3x(n)x(n-1) + .2x(n)x(n-2) -.5x(n)x(n-3)

% +.5x(n-1)x(n-1) -.3x(n-1)x(n-2) -.6x(n-1)x(n-3)

% -.6x(n-2)x(n-2) +.5x(n-2)x(n-3) -.1x(n-3)x(n-3)

h =[1;-1;-0;.125;.3125;1;-.3;.2;-.5;.5;-.3;-.6;-.6;.5;-.1];

xn =2*(rand(iter,1)-0.5); % Input signal, zero mean random.

dn =sovfilt(h,xn,4,4); % Unknown filter output

en =zeros(iter,1); % vector to collect the error

mu0 =0.05*ones(L1+sum(1:L2),1); % initial step size

muv =zeros(iter,1); % Evolution of mu(1)

% Initialize the SOVVSSLMS algorithm

[w,xb,d,y,e,g,mu] = init_sovvsslms(L1,L2,[],[],[],mu0);;

%% Processing Loop

for (m=1:iter)

d = dn(m) + .001 * rand ; % additive noise of var = 1e-6

% call SOVVSSLMS to calculate the filter output, estimation

% error and update the coefficients.

[w,g,mu,y,e,xb]= asptsovvsslms(xn(m),xb,w,g,...

d,mu,L1,L2,.001,1,1e-6,.99);

en(m,:) = e; % save the last error

muv(m) = mu(1); % save mu(1) to display

end;

% display the results

subplot(3,3,1);stem(w); grid;

eb = filter(0.1,[1 -0.9], en .* conj(en));

subplot(3,3,2);plot(10*log10(eb));grid

subplot(3,3,3);plot(muv); grid;

Running the above script will produce the graph shown in Fig. 8.5. The left side
graph of the figure shows the adaptive filter coefficients after convergence. The
middle graph shows the square error in dB versus time during the adaptation
process. The right side graph shows the evolution of the first element of the
step size vector during the adaptation process.

0 5 10 15
−1

0

1

2

filter after convergence
0 2000 4000

−80

−60

−40

−20

0

es
tim

at
io

n
er

ro
r

[d
B

]

Learning curve
0 2000 4000 6000

0

0.02

0.04

0.06

0.08

mean value of mu

Figure 8.5: The adaptive filter coefficients after convergence, the evolu-
tion of the step size, and the learning curve for the FIR system identifica-
tion problem using the SOVVSSLMS algorithm.

259

Chapter 8. Nonlinear Adaptive Algorithms

8.6 init sovlms

Purpose Creates and initializes the variables required for the Second Order Volterra
Least Mean Squares adaptive algorithm.

Syntax [w,x,d,y,e] = init_sovlms(L1,L2)

[w,x,d,y,e] = init_sovlms(L1,L2,w0,x0,d0)

Description The second order Volterra LMS filter consists of a linear filter part of length
L1 and a nonlinear filter part. The nonlinear part uses the combination of
cross-products between samples in the delay line. The number of past samples
used in the nonlinear part is defined by the L2 parameter. A value of L2=0
reduces the Volterra filter to a linear LMS filter. The variables of the SOVLMS
are summarized below.

Input Parameters [Size] ::

L1 : memory length of the linear part of the filter

L2 : memory length of the nonlinear part of the filter

w0 : initial coefficient vector [L1 + sum(1:L2) x 1]

x0 : initial input samples vector [L1 + sum(1:L2) x 1]

d0 : initial desired sample [1 x 1]

Output parameters [default] ::

w : initialized filter coefficients [zeros]

x : initialized input vector [zeros]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

Example L1 = 3; % Memory of linear filter

L2 = 2; % Memory of nonlinear filter

w0 = zeros(6,1); % initial filter coefficients

x0 = rand(6,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize a SOVLMS FIR filter

[w,x,d,y,e]=init_sovlms(L1,L2,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTSOVLMS.

260

8.7. init sovnlms

8.7 init sovnlms

Purpose Creates and initializes the variables required for the Second Order Volterra
Normalized Least Mean Squares adaptive algorithm.

Syntax [w,x,d,y,e,p] = init_sovnlms(L1,L2)

[w,x,d,y,e,p] = init_sovnlms(L1,L2,w0,x0,d0)

Description The second order Volterra NLMS filter consists of a linear filter part of length
L1 and a nonlinear filter part. The nonlinear part uses the combination of cross-
products between samples in the delay line. The number of past samples used
in the nonlinear part is defined by the L2 parameter. A value of L2=0 reduces
the Volterra filter to a linear NLMS filter. The variables of the SOVNLMS are
summarized below.

Input Parameters [Size] ::

L1 : memory length of the linear part of the filter

L2 : memory length of the nonlinear part of the filter

w0 : initial coefficients vector [L1 + sum(1:L2) x 1]

x0 : initial input samples vector [L1 + sum(1:L2) x 1]

d0 : initial desired sample [1 x 1]

Output parameters [default] ::

w : initialized filter coefficients [zeros]

x : initialized input vector [zeros]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

p : input signal power.

Example L1 = 3; % Memory of linear filter

L2 = 2; % Memory of nonlinear filter

w0 = zeros(6,1); % initial filter coefficients

x0 = rand(6,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize a SOVNLMS FIR filter

[w,x,d,y,e,p]=init_sovnlms(L1,L2,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTSOVNLMS.

261

Chapter 8. Nonlinear Adaptive Algorithms

8.8 init sovrls

Purpose Creates and initializes the variables required for the Second Order Volterra
Recursive Least Squares (RLS) Adaptive Filter.

Syntax [w,x,d,y,e,R] = init_sovrls(L1,L2,b)

[w,x,d,y,e,R] = init_sovrls(L1,L2,b,w0,x0,d0)

Description The second order Volterra RLS filter consists of a linear filter part of length
L1 and a nonlinear filter part. The nonlinear part uses the combination of
cross-products between samples in the delay line. The number of past samples
used in the nonlinear part is defined by the L2 parameter. A value of L2=0
reduces the Volterra filter to a linear RLS filter. The variables of the SOVRLS
are summarized below.

Input Parameters [size]::

L1 : memory length of the linear part of the filter

L2 : memory length of the nonlinear part of the filter

b : a small +ve constant to initialize R

w0 : initial coefficients vector [L1 + sum(1:L2) x 1]

x0 : initial input samples vector [L1 + sum(1:L2) x 1]

d0 : initial desired sample [1 x 1]

Output parameters [default]::

w : Initialized filter coefficients [zeros]

x : Initialized input vector [zeros]

d : Initialized desired sample [white noise]

y : Initialized filter output [y = w’ * x]

e : Initialized error sample [e = d - y]

R : Initialized inverse of the weighted

auto correlation matrix of x, [R=b*eye(L1 + sum(1:L2))]

Example L1 = 3; % Memory of linear filter

L2 = 2; % Memory of nonlinear filter

w0 = zeros(6,1); % initial filter coefficients

x0 = rand(6,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize a SOVRLS FIR filter

[w,x,d,y,e,R]=init_sovrls(L1,L2,.01,w0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 4 through 6 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTSOVRLS.

262

8.9. init sovtdlms

8.9 init sovtdlms

Purpose Creates and initializes the variables required for the Second Order Volterra
Transform Domain LMS Adaptive filter.

Syntax [W,w,x,d,y,e,p] = init_sovtdlms(L1,L2)

[W,w,x,d,y,e,p] = init_sovtdlms(L1,L2,W0,x0,d0)

Description The second order Volterra TDLMS filter consists of a linear filter part of length
L1 and a nonlinear filter part. The nonlinear part uses the combination of cross-
products between samples in the delay line. The number of past samples used
in the nonlinear part is defined by the L2 parameter. A value of L2=0 reduces
the Volterra filter to a linear TDLMS filter. The variables of the SOVTDLMS
are summarized below.

Input Parameters [Size]::

L1 : memory length of the linear part of the filter

L2 : memory length of the nonlinear part of the filter

w0 : initial T-domain coef. vector [L1 + sum(1:L2) x 1]

x0 : initial input samples vector [L1 + sum(1:L2) x 1]

d0 : initial desired sample [1 x 1]

Output parameters [default]::

W : initialized T-domain coef. vector [zeros]

w : initialized time-domain coef. vector [zeros]

x : initialized input vector [white noise]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

p : initialized power estimate

Example L1 = 3; % Memory of linear filter

L2 = 2; % Memory of nonlinear filter

W0 = zeros(6,1); % initial filter coefficients

x0 = rand(6,1); % initial delay line

d0 = 0; % desired sample

% Create and initialize a SOVTDLMS FIR filter

[W,w,x,d,y,e,p]=init_sovtdlms(L1,L2,W0,x0,d0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 5 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTSOVTDLMS.

263

Chapter 8. Nonlinear Adaptive Algorithms

8.10 init sovvsslms

Purpose Creates and initializes the variables required for the Second Order Volterra
Variable Step Size Least Mean Squares adaptive algorithm.

Syntax [w,x,d,y,e,g,mu] = init_sovvsslms(L1,L2)

[w,x,d,y,e,g,mu] = init_sovvsslms(L1,L2,w0,x0,d0,mu0,g0)

Description The second order Volterra VSSLMS filter consists of a linear filter part of length
L1 and a nonlinear filter part. The nonlinear part uses the combination of
cross-products between samples in the delay line. The number of past samples
used in the nonlinear part is defined by the L2 parameter. A value of L2=0
reduces the Volterra filter to a linear VSSLMS filter. The variables of the
SOVVSSLMS are summarized below.

Input Parameters [Size] ::

L1 : memory length of the linear part of the filter

L2 : memory length of the non-linear part of the filter

w0 : initial coefficient vector [L1 + sum(1:L2) x 1]

x0 : initial input samples vector [L1 + sum(1:L2) x 1]

d0 : initial desired sample [1 x 1]

mu0 : initial step-size vector [L1 + sum(1:L2) x 1]

g0 : initial gradient vector [L1 + sum(1:L2) x 1]

Output parameters [default] ::

w : initialized filter coefficients [zeros]

x : initialized input vector [zeros]

d : initialized desired sample [white noise]

y : Initialized filter output

e : initialized error sample [e = d - y]

g : initialized gradient vector [zeros]

mu : initialized step-size vector [zeros]

Example L1 = 3; % Memory of linear filter

L2 = 2; % Memory of nonlinear filter

W0 = zeros(6,1); % initial filter coefficients

x0 = rand(6,1); % initial delay line

d0 = 0; % desired sample

mu0= .001*ones(6,1); % initial step sizes

% Create and initialize a SOVTDLMS FIR filter

[w,x,d,y,e,g,mu]=init_sovvsslms(L1,L2,w0,x0,d0,mu0);

Remarks • Supports both real and complex signals and filters.

• Use input parameters 3 through 7 to initialize the algorithm storage.
This is helpful when the adaptation process is required to start from a
known operation point calculated off-line or from previous simulations.

See Also ASPTSOVVSSLMS.

264

Chapter 9

Non-adaptive, Visualization and Help

Functions

This chapter documents the functions used to generate plots, manage the iteration progress win-
dow, and provide other functionalities that are used by the supported applications. Table 9.1
summarizes those functions and gives a short description and a pointer to the reference page of
each function. Some of the help functions, such as ipwin() and guifb() are meant to be used
internally by other functions and therefore not documented here.

Function Name Reference Short Description

init ipwin 9.1 Initializes iteration progress GUI window.
ipwin Builds the iteration progress GUI window.
getStop Returns the condition of the stop button in the IPWIN.
guifb Handles the GUI feedback functions of the IPWIN.
mcmixr 9.2 Calculates the response of N speakers at M microphones.
osfilter 9.3 fast FIR filter using overlap-save.
plot ale 9.4 Generates plots for the Adaptive Line Enhancer problems.
plot anvc 9.5 Generates plots for Active Noise and Vibration Control.
plot beam 9.6 Generates plots for beam forming problems.
plot echo 9.7 Generates plots for echo canceling applications.
plot invmodel 9.8 Generates plots for inverse modeling problems.
plot model 9.9 Generates plots for modeling problems.
plot predict 9.10 Generates plots for linear prediction problems.
sovfilt 9.11 Second Order Volterra filter.
update ipwin 9.12 Updates the iteration progress GUI window.

Table 9.1: Visualization and help functions.

Each of the help functions is documented in a separate section including the following information
related to the function:

• Purpose: Short description of the function.

• Syntax: Shows the function calling syntax. If the function has optional parameters, this
section will have two calling syntaxes. One with only the required formal parameters and
one with all the formal parameters. You can leave out an optional parameter when you call
the function or use [] to use its default value.

• Description: Detailed description of the function usage with explanation of its input and
output parameters.

• Example: A short example showing typical use of the function.

• Remarks: Gives more remarks specific to the usage of the function.

Chapter 9. Non-adaptive, Visualization and Help Functions

• See Also: Lists other functions that are related to this function.

266

9.1. init ipwin

9.1 init ipwin

Purpose Creates and initializes the iteration progress window.

Syntax [E]=init_ipwin(L)

[E]=init_ipwin(L,ch)

Description The function init_ipwin() will bring up the iteration progress window (IP-
WIN) shown in Fig. 9.1. This window has a few widgets that makes it easy
to control the progress of iterative applications such as adaptive filters ap-
plications. The IPWIN also shows the iteration number which indicates the
number of samples processed so far and the mean squared error (MSE) in dB
compared to the desired signal at that iteration. The iteration number and
MSE are updated by calling update_ipwin(). IPWIN has four buttons, the
Stop, Plot, Break, and Quit buttons. Pressing the Stop button while a sim-
ulation is inside the processing loop will halt the simulation and the button
text will change to Cont so that the simulation can be resumed from where it
stopped by pressing the same button again. The Plot button shows and hides
an ASPT plot, allowing examining the signals without interrupting the simu-
lation. The Break button breaks out of the processing loop without closing the
open figures. The Quit button breaks out of the loop and closes all open plot
figures. init_ipwin() takes two input arguments, the maximum number of
samples to be processed and the number of channels in the desired signal, and
returns one output argument, namely a vector where the mean square error
will be stored. The variables of init_ipwin() are summarized below.

Input variable

L : maximum length of learning curve

ch : number of channels (for multichannel applications)

Output variables

E : Learning curve vector for plotting

Figure 9.1: The iteration progress window.

Example % Get the size of data to be processed

% L is two-element array [samples,channels]

L = wavread(dfile,’size’);

% Initialize the iteration progress window

E = init_ipwin(L);

267

Chapter 9. Non-adaptive, Visualization and Help Functions

Remarks The iteration progress window can be used with any of the applications
supported by the adaptive signal processing toolbox. Note however that
init_ipwin uses the following global variables stop, k_, des_, err_, pltf,
brk, and ipw and it is not recommended to use the same variable names in
your applications that make use of the iteration progress window.

See Also UPDATE IPWIN.

268

9.2. mcmixr

9.2 mcmixr

Purpose Multichannel mixer, calculates the signals measured by M sensors in response
to applying N signals at N different actuators.

Syntax yn = mcmixr(h,xn,scale)

Description Consider a multichannel systems with N actuators (speakers for instance) and
M sensors (microphones) as that shown in Fig. 9.2. A signal applied at one of
the actuators usually contribute to the response of all sensors. The response
of each sensor is given by

ym(n) =
N

∑

n=1

hnm ∗ xn(n); m = 1, 2, · · · ,M, (9.1)

where hnm in (9.1) is the transfer function between the nth actuator and mth

sensor, and ∗ is the convolution operator. mcmixr() takes as input the mul-
tichannel transfer function h and the actuator signals x(n) and returns the
sensors’ response y(n). The multichannel transfer function must be stored in
a 3D matrix of dimensions [L×N ×M], where L is the number of coefficients
of each transfer function, N is the number of actuators, and M is the num-
ber of sensors. If the lengths of the transfer functions are not the same, the
shorter ones should be padded with zeros at the end. The input signals to the
actuators x(n) can either be a column vector or a matrix of N columns. If the
input x(n) is a column vector, the same signal is applied to all actuators. If
x(n) is a matrix of N columns, each column is applied to the corresponding
actuator in h. The sensors’ response is returned as a matrix of M columns.
The third input parameter to mcmixr() is a flag, if 1, scaling of the calculated
response will be performed. The input and output parameters of mcmixr()
are summarized below.

Input Parameters [Size] ::

h : multichannel transfer function [L1 x N x M]

xn : actuators’ inputs [L2 x N]

scale : if 1, scaling of output is performed

Output parameters [Size] ::

y : sensors’ output [L2 x M]

x1(n)

x2(n)
y3(n)

y2(n)

y1(n)
h11

h12

h13

h23

h22

h21

Figure 9.2: A multichannel system with two actuators and three sensors.

269

Chapter 9. Non-adaptive, Visualization and Help Functions

Example % Multichannel transfer function between two actuators

% and three sensors

h = zeros(32,2,3);

ip = [1; zeros(31,1)]; % impulse vector

h(:,1,1) = filter(1,[1 -.9 .9],ip);

h(:,1,2) = filter(1,[1 -.5 .5],ip);

h(:,1,3) = filter(1,[1 -.4],ip);

h(:,2,1) = filter(1,[1 -.85 .85],ip);

h(:,2,2) = filter(1,[1 -.7],ip);

h(:,2,3) = filter(1,[1 -.3 .9],ip);

xn = randn(1000,2); % Input signal [1000 x 2]

yn = mcmixr(h,xn,0); % output signal [1000 x 3]

Remarks mcmixr() supports both real and complex signals and transfer functions. Al-
though speakers and microphones are used to describe the functionality of
mcmixr(), its use is not limited to audio applications and acoustic transfer
functions. Transfer functions measured between shakers and accelerometers or
between voltage sources and voltmeters can also be processed using mcmixr().

270

9.3. osfilter

9.3 osfilter

Purpose Fast FIR filter implementation in frequency domain using the overlap-save
method.

Syntax y = osfilter(h,x)

y = osfilter(h,x,L)

Description osfilter(h,x) filters the signal x through the filter h in frequency domain
using the overlap-save method. If given, the optional third input argument L
is used as the number of new input samples per block. If L is not given, it is
calculated internally for maximum speed.
x can be either a vector or a matrix. If x is a vector, then h must also be
a vector. If x is a matrix, then h can either be a vector in which case each
column of x will be filtered through the same filter h, or a matrix of the same
number of columns as x, in which case each column of x will be filtered by the
corresponding coefficients vector in h. If the filter length is smaller than the
number of columns, pad h with zeros so that the number of rows is always larger
than the number of columns. The input and output parameters of osfilter()
are summarized below.

Input Parameters [Size] ::

h : single or multichannel FIR coefficients

x : single or multichannel input signal.

L : [optional] number of new input samples per block

Output parameters [Size] ::

y : filter output

Example % Filter two signals in one go through the

% same filter

x = rand(1000,2);

h = [.5 .3 0 .1];

y = osfilter(h,x);

See also MCMIXER

271

Chapter 9. Non-adaptive, Visualization and Help Functions

9.4 plot ale

Purpose Displays the adaptive filter transfer function and the signals involved in adap-
tive line enhancer applications.

Syntax plot_ale(w,x,y,e)

Description plot_ale() displays the adaptive filter transfer function and the signals of
interest in adaptive line enhancer applications. plot_ale() takes as input
parameters the adaptive filter coefficients vector w(n), the filter input signal
x(n), output signal y(n), and error signal e(n) and returns after rendering the
ALE graph. The variables of plot_model() are summarized below.

Input Parameters ::

w : The adaptive filter response

x : filter input signal (narrow-band + wide-band)

y : filter output signal (narrow-band)

e : error signal (wide-band)

Example An example ALE graph generated using plot_ale() is shown in Fig. 9.3. The
top left and right panels display the impulse response and frequency response
of the adaptive filter, respectively. The next three panels display the line
enhancer input x(n), output y(n), and error e(n), respectively.

0 100 200 300 400 500

−0.05

0

0.05

w
[n

]

0 0.1 0.2 0.3 0.4 0.5
−25
−20
−15
−10

−5

W
[ω

]

0 5 10 15 20 25
−1

0

1

in
pu

t x
[n

]

0 5 10 15 20 25
−0.5

0

0.5

1

O
ut

pu
t y

[n
]

0 5 10 15 20 25
−1

0

1

E
rr

or
 e

[n
]

Time [Samples * 1000]

Figure 9.3: The adaptive line enhancer graph window.

272

9.5. plot anvc

9.5 plot anvc

Purpose Displays the adaptive controller transfer functions and the signals of interest in
evaluating the performance of active noise and vibration control applications.

Syntax plot_anvc(w,p,s,e)

plot_anvc(w,p,s,e,a,b)

Description plot_anvc() provides a quick access to the performance of an active noise
and vibration controller. plot_anvc() takes as input the adaptive controller
w(n), the primary p and secondary s transfer functions, the mean square error
vector e(n) (that is usually returned by update_ipwin()), and returns after
rendering the ANVC graphs. For multichannel systems, you can specify the
index of the controller to be examined using the optional a and b parameters.
The variables of plot_anvc() are summarized below.

Input variables [Size]:

w : estimated impulse response [L x Nref x Nact]

p : primary impulse response [Lp x Nref x Nsens]

s : secondary impulse response [Ls x Nact x Nsens]

e : mean square error

a,b : displays the w(:,a,b) filter (multichannel only),

if a & b are not given will display w(:,1,1).

Example An example ANVC graph window generated using plot_anvc() is shown in
Fig. 9.4. The top left panel give the impulse response of the optimal solu-
tion wopt(:, a, b) calculated internally using the primary and secondary trans-
fer functions. The frequency response of this optimal solution is plotted in
the middle left panel. The top right panel show the impulse response of the
adaptive controller w(:, a, b) and the middle right panel shows its frequency
response. The bottom left panel displays the evolution of the mean square
error with time and the bottom right panel displays the difference between the
optimum solution coefficients and the adaptive controller coefficients.

0 50 100
−0.8

−0.6

−0.4

−0.2

0

W
op

t[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−10

0

W
op

t[f]
 [d

B
]

0 50 100
−0.8

−0.6

−0.4

−0.2

0

w
[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−10

0

w
[f]

 [d
B

]

0 50 100
0

0.02

0.04

0.06

0.08

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−15

−10

−5

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 9.4: The active noise and vibration control graph window.

273

Chapter 9. Non-adaptive, Visualization and Help Functions

9.6 plot beam

Purpose Displays the directivity pattern and optionally the learning curve for evaluating
the performance of beam former applications.

Syntax plot_beam(E, w, L, Wo, cT)

plot_beam(E, w, L, Wo, cT, lc)

Description plot_beam() displays the learning curve and directivity pattern for evaluating
the performance of an adaptive array (beam former). plot_beam() takes as
input the mean square error vector E(n) (returned by update_ipwin()), the
adaptive filter coefficients vector w(n), the array distance vector L, the radian
frequencyWo, and the product term cT , and returns after rendering the graphs.
If the last input argument lc is given and equals to one, only the directivity
pattern is plotted. The variables of plot_beam() are summarized below.

Input variables:

E : mean square error

w : filter coefficients vector

L : vector containing distances between array elements

Wo : sampled radian frequency

cT : product of propagation speed * sampling period

lc : if 1 will plot the directivity pattern only.

Example An example mean former graph window generated using plot_beam() is shown
in Fig. 9.5. The left panel in this graph displays the learning curve of the
adaptive array and the right panel displays the directivity pattern.

0 1000 2000 3000 4000 5000

−30

−25

−20

−15

−10

−5

0

Le
ar

ni
ng

 C
ur

ve

Samples

 5

 10

30

210

60

240

90

270

120

300

150

330

180 0

S
en

si
tiv

ity
 P

at
te

rn

Figure 9.5: The adaptive beam former graph window.

274

9.7. plot echo

9.7 plot echo

Purpose Displays the adaptive filter impulse response and the signals of interest in
evaluating the performance of an echo canceler.

Syntax plot_echo(w, x, r)

Description Although formal testing of echo cancelers is a complicated process, usually
quick performance measures are necessary during the process of developing
the echo canceler. The plot_echo() function provides this quick performance
measures. plot_echo() takes as input the adaptive filter coefficient vector
w(n), the echo canceler’s subtractor input, and the residual signal, and re-
turns after rendering the graph window. The variables of plot_echo() are
summarized below.

Input arguments:

w : The adaptive filter coefficient vector

x : The echo-contaminated input signal

r : The residual signal

x and r can be either vectors or wave files

Example An example graph window generated using plot_echo() is shown in Fig. 9.6.
The generated graph has three panels. The top panel shows the coefficients of
the adaptive filter at the moment of calling plot_echo() which is the impulse
response of the echo path. The middle panel shows the input and output
signals of the echo canceler subtractor. For acoustic echo cancelers, those two
signals are the near-end speech Sin and residual signals Sout, respectively (see
Fig. 2.15). For network echo cancelers those are the Sin and Sout signals in
Fig. 2.14. The bottom panel shows the evolution of the echo return loss (ERL)
introduced by the echo canceler. The ERL is calculated as the ratio between
the mean square values of the input and output of the echo canceler subtractor
signals in dB.

0 50 100 150 200 250 300 350 400 450 500

−0.1

−0.05

0

0.05

w
[n

] (
b)

0 5 10 15 20

−0.2

0

0.2

m
ic

 [b
],

re
s

[g
]

0 5 10 15 20

−30

−20

−10

0

M
S

E
 [d

B
]

Time [Samples * 1000]

Figure 9.6: The echo canceler graph window.

275

Chapter 9. Non-adaptive, Visualization and Help Functions

9.8 plot invmodel

Purpose Displays the optimal filter and the solution achieved by the adaptive filter for
evaluating the adaptive inverse modeling (equalization) applications.

Syntax plot_invmodel(w,h,e,D)

Description plot_invmodel() is helpful in the verification stage in adaptive inverse model-
ing (equalization) applications. plot_invmodel() takes as input the adaptive
filter coefficients vector w(n), the transfer function to be inverted h, the mean
square error vector e(n) (that is usually returned by update_ipwin()), and
the modeling delay D, and returns after rendering the graph. The variables of
plot_invmodel() are summarized below.

Input variables:

w : adaptive filter coefficients vector

h : impulse response of the channel to be equalized

e : mean square error vector

D : modeling delay in the desired response path.

Example An example graph window generated using plot_invmodel() is shown in
Fig. 9.7. The top left panel shows the impulse response of the optimal so-
lution wopt which is the inverse of the channel response h in the sense that the
convolution wopt ∗ h results in a delayed impulse δ(n−D). The frequency re-
sponse of this optimal solution is plotted in the middle left panel. The top two
right panels show the impulse response and frequency response of the adaptive
model. The bottom panel displays the evolution of the mean square error with
time.

0 20 40 60

−4

−2

0

2

4

h[
t]

0 0.1 0.2 0.3 0.4 0.5

10

15

20

25

30

h[
f]

[d
B

]

0 20 40 60

−4

−2

0

2

4

w
[t]

0 0.1 0.2 0.3 0.4 0.5

10

15

20

25

30

w
[f]

 [d
B

]

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−20

−10

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 9.7: The inverse modeling (equalizer) graph window.

276

9.9. plot model

9.9 plot model

Purpose Displays the optimal filter and the solution achieved by the adaptive filter for
evaluating the adaptive system identification applications.

Syntax plot_model(w,h,e)

Description plot_model() is helpful in the verification stage in adaptive system identifica-
tion applications. plot_model() takes as input the adaptive filter coefficients
vector w(n), the impulse response of the system to be modeled h, and the
mean square error vector e(n) (that is usually returned by update_ipwin()),
and returns after rendering the graph window. The variables of plot_model()
are summarized below.

Input variables:

w : estimated impulse response

h : actual impulse response

e : estimation error history

Example An example graph window generated using plot_model() is shown in Fig. 9.8.
The top left panel shows the impulse response of the optimal solution wopt for
the system identification problem, which is the impulse response h in this case.
The frequency response of this optimal solution is plotted in the middle left
panel. The top two right panels show the impulse response and frequency
response of the adaptive model. The bottom left panel displays the evolution
of the mean square error with time and the bottom right panel displays the
difference between the optimum solution coefficients and the adaptive model
coefficients.

0 100 200 300 400 500

−0.1

−0.05

0

0.05

h[
t]

0 0.1 0.2 0.3 0.4 0.5

−40

−30

−20

−10

h[
f]

[d
B

]

0 100 200 300 400 500

−0.1

−0.05

0

0.05

w
[t]

0 0.1 0.2 0.3 0.4 0.5

−40

−30

−20

−10

w
[f]

 [d
B

]

0 100 200 300 400 500
0

1

2

3

4

x 10
−6

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−60

−40

−20

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 9.8: The modeling (system identification) graph window.

277

Chapter 9. Non-adaptive, Visualization and Help Functions

9.10 plot predict

Purpose Displays the learning curve of the adaptive filter and the signals of interest in
adaptive prediction applications.

Syntax plot_predict(x,y,r,e)

Description plot_predict() displays the input, output, and error signals, and the
learning curve of a prediction error filter. plot_predict() takes as in-
put the prediction error filter input signal x(n), its output y(n), the error
signal r(n), andthemeansquareerrorvectore(n) (that is usually returned by
update_ipwin()), and returns after rendering the graph window. The vari-
ables of plot_predict() are summarized below.

Input variables:

x : predictor input signal

y : predictor output signal

r : predictor error signal

e : mean square error vector

Example An example graph window generated using plot_predict() is shown in
Fig. 9.9. The top left panel shows the predictor input signal, the top right
panel displays the prediction error, the bottom left panel displays the predic-
tor output, and the bottom right panel displays the evolution of the mean
square error with time.

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

S
ig

na
l

Samples

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
re

di
ct

or
 o

ut
pu

t

Samples

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
re

di
ct

or
 e

rr
or

Samples

0 0.5 1 1.5 2

x 10
4

−14

−12

−10

−8

−6

−4

−2

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 9.9: The adaptive prediction graph window.

278

9.11. sovfilt

9.11 sovfilt

Purpose Single channel second order Volterra filter.

Syntax y = sovfilt(h,x,L1,L2)

Description sovfilt(h,x,L1,L2) returns the response of the nonlinear second order
Volterra filter h when the signal x is applied at the filter input. L1 is the
memory length of the linear part of h, and L2 is the memory length of the
nonlinear part. The memory length is defined as the number of current and
previous samples involved in the calculation of the filter output. The total
number of filter coefficients in h is L1 + sum(1 : L2). The first L1 coefficients
are the linear filter part and the last sum(1 : L2) coefficients are the nonlinear
part of the filter. The filter output is given by

y(n) =

L1−1
∑

m1=0

hl(m1)x(n−m1) +

L1−1
∑

m1=0

ΣL2−1
m2=m1

hn(m1,m2)x(n−m1)x(n−m2)

(9.2)

Example % Nonlinear filter of L1=4, L2=3.

% y(n) = x(n) - x(n-1) - .125x(n-2) + .3125x(n-3)

% +x(n)x(n) -.3x(n)x(n-1) + .2x(n)x(n-2)

% +.5x(n-1)x(n-1) -.3x(n-1)x(n-2)

% -.6x(n-2)x(n-2)

h = [1;-1;-0.125;0.3125;1;-0.3;0.2;0.5;-0.3;-0.6];

% input signal is a one second sinusoidal of 100 Hz

% sampled at 1000 Hz.

t = (1:1000)/1000;

x = cos(2*pi*100*t);

y = sovfilt(h,x,4,3);

subplot(2,2,1); plot(abs(fft(x)));

subplot(2,2,2); plot(abs(fft(y)));

Running the above script will produce the graph shown in Fig. 9.10. Note that
although the input signal has only one frequency component at 100 Hz, the
filter output has three components at 0, 100, and 200 Hz. This is a general
characteristic of nonlinear filters.

0 200 400 600 800 1000
0

100

200

300

400

500

600

0 200 400 600 800 1000
0

100

200

300

400

Figure 9.10: The frequency contents of the input and output of a second
order Volterra filter.

279

Chapter 9. Non-adaptive, Visualization and Help Functions

9.12 update ipwin

Purpose Updates the iteration progress window and handles the callback functions of
its buttons.

Syntax [E,stop,brk] = update_ipwin(E,e,d,wp,x1,x2,x3,x4,x5)

Description update_ipwin() updates the iteration number and mean square error (MSE)
values on the iteration progress window (IPWIN) shown in Fig. 9.11, and
manages the actions to be taken when one of the four buttons is pressed (see
init_ipwin() for description of the IPWIN widgets). The first three input
arguments to update_ipwin() are used to calculate the new MSE value that
appear on the IPWIN and update the MSE vector. The input and desired
signals are considered ergodic processes, therefore time averages are used to
calculate the MSE instead of ensample averages. The fourth input parameter
tells update_ipwin() which plotting function to call when the Plot button is
pressed. The rest of the input arguments are passed to the plotting function
without modification. update_ipwin returns the updated MSE vector and two
control variables to be used for managing the Stop and Break buttons. The
variables of update_ipwin() are summarized below.

Input variable

E : mean square error vector

e : new error sample (column vector for block processing)

d : new desired sample (column vector for block processing)

wp : plot function to call, must be one of the following

’l’ => calls plot_ale

’a’ => calls plot_anvc

’b’ => calls plot_beam

’e’ => calls plot_echo

’i’ => calls plot_invmodel

’p’ => calls plot_predict

’m’ => calls plot_model

x1-x5: parameters passed to the plot_xyz functions

Output variables

E : updated learning curve vector

stop : control flag [0 = continue, 1 = stop]

brk : flag for breaking out of processing loop

280

9.12. update ipwin

Figure 9.11: The iteration progress window.

Example %% Typical processing loop using IPWIN

for (m=1:inSize)

% read new input sample (x) and new desired sample

% (d) and update the adaptive filter (w) here

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d, ’m’, wp, h);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_model(w,h,E); break; end;

end;

Remarks The iteration progress window can be used with any of the applications
supported by the adaptive signal processing toolbox. Note however that
update_ipwin uses the following global variables stop, k_, des_, err_, pltf,
brk, and ipw and it is not recommended to use the same variable names in
your applications that make use of the iteration progress window.

See Also INIT IPWIN, PLOT ALE, PLOT ANVC, PLOT BEAM, PLOT ECHO,
PLOT INVMODEL, PLOT MODEL, PLOT PREDICT.

281

Chapter 9. Non-adaptive, Visualization and Help Functions

282

Chapter 10

Applications and Examples

This chapter documents the applications and examples scripts supplied with the current distri-
bution of the adaptive signal processing toolbox. Table 10.1 summarizes those scripts and gives
a short description and a pointer to the reference page of each script. The application scripts
documented in this chapter can be found in the apps directory. Each script is documented in a
separate section which includes the following information related to the application:

• Purpose: Short description of the application implemented in this file.

• Syntax: Shows how to run the application.

• Description: Detailed description of the application.

• Code: A listing of the application code.

• Results: Presents the output generated by running the application.

• Audio Files: Lists the audio signals used in the application if any.

• See Also: Lists other related components of the toolbox.

• Reference: Lists literature for more information on the application.

Chapter 10. Applications and Examples

Script Name Reference Short Description

ale csoiir2 10.1 Adaptive Line Enhancer using CSOIIR2.
ale soiir1 10.2 Adaptive Line Enhancer using SOIIR1.
ale soiir2 10.3 Adaptive Line Enhancer using SOIIR2.
anvc adjlms 10.4 Active noise and vibration control using ADJLMS.
anvc fdadjlms 10.5 Active noise and vibration control using FDADJLMS.
anvc fdfxlms 10.6 Active noise and vibration control using FDFXLMS.
anvc fxlms 10.7 Active noise and vibration control using FXLMS.
anvc mcadjlms 10.8 Active noise and vibration control using MCADJLMS.
anvc mcfdadjlms 10.9 Active noise and vibration control using MCFDADJLMS.
anvc mcfdfxlms 10.10 Active noise and vibration control using MCFDFXLMS.
anvc mcfxlms 10.11 Active noise and vibration control using MCFXLMS.
beambb lclms 10.12 Beam former at base-band frequency using LCLMS.
beamrf lms 10.13 Beam former at RF frequency using LMS.
echo bfdaf 10.14 Echo canceler using BFDAF.
echo leakynlms 10.15 Echo canceler using LEAKYNLMS.
echo nlms 10.16 Echo canceler using NLMS.
echo pbfdaf 10.17 Echo canceler using PBFDAF.
echo rcpbfdaf 10.18 Echo canceler using RCPBFDAF.
equalizer nlms 10.19 Inverse modeling using NLMS.
equalizer rls 10.20 Inverse modeling using RLS.
model arlmsnewt 10.21 Modeling using LMS-NEWTON.
model eqerr 10.22 IIR modeling using EQERR.
model lmslattice 10.23 Modeling using LMSLATTICE.
model mvsslms 10.24 FIR modeling using MVSSLMS.
model outerr 10.25 IIR modeling using OUTERR.
model rlslattice 10.26 Modeling using RLSLATTICE.
model sharf 10.27 IIR modeling using SHARF.
model tdlms 10.28 FIR modeling using TDLMS.
model vsslms 10.29 FIR modeling using VSSLMS.
predict lbpef 10.30 Prediction using LBPEF.
predict lfpef 10.31 Prediction using LFPEF.
predict rlslbpef 10.32 Prediction using RLSLBPEF.
predict rlslfpef 10.33 Prediction using RLSLFPEF.

Table 10.1: Adaptive filters applications.

284

10.1. ale csoiir2

10.1 ale csoiir2

Purpose Simulation of an Adaptive Line Enhancer (ALE) application using a cascade
of M second order type-2 recursive adaptive filter.

Syntax ale_csoiir2

Description This application demonstrates the capability of the line enhancer to separate
a wide-band signal from multiple narrow-band signals at different frequencies
even when the narrow-band signals are time-varying. The block diagram of
the cascaded adaptive line enhancer is shown in Fig. 10.1. The input signal
u(n) (a speech fragment contaminated with three sinusoidal noise signals with
time-varying frequencies) is stored in the file infile. The application attempts
to separate the speech from the sinusoidal noise and stores the former in the file
wbfile and the latter in nbfile. First the variables for the cascade adaptive line
enhancer filters are creates and initializes using init_csoiir2(), and the input
signal is read from file, then a processing loop is started. In each iteration of
the loop asptcsoiir2() is called with a new input sample to calculate the line
enhancer output y(n) (the sum of estimated narrow-band signals), the error
sample e(n) (the wide-band signal) and update the filter parameters s and t.
The evolution of the adaptive parameters is also tracked for later examination.

h1(n) ΣZ-1

e1(n)

+
y1(n)

-
…

u1(n)

hM(n) ΣZ-1

eM(n)

yM(n)
-

eM-1(n)

eM(n)

e1(n)

Σ … Σ
y(n)

+

Figure 10.1: Block diagram of a Cascade of M second order adaptive
line enhancer sections.

285

Chapter 10. Applications and Examples

Code clear all;

infile = ’.\wavin\hnramp.wav’; % input, speech + sinusoidal

wbfile = ’.\wavout\csoiir2wb.wav’; % wide-band signal (speech)

nbfile = ’.\wavout\csoiir2nb.wav’; % narrow-band signal (harmonic)

[xn,inFs,inBits] = wavread(infile); % read input

[L,ch] = size(xn); % get data size

M = 3; % No. of harmonics.

s0 = 0.25*ones(1,M); % initial s

t0 = 0.5*ones(1,M); % initial t

mu_s = 0.001*ones(1,M); % s-parameter adaptation constant

mu_t = 0.05*ones(1,M); % t-parameter adaptation constant

s_lim = [.1 .9]; % bounds for s

t_lim = [0.05 3.1]; % bounds for t

sv = zeros(L,M); % tracking vector for s

tv = zeros(L,M); % tracking vector for t

yv = zeros(L,M); % filter output

ev = zeros(L,M); % filter output

% Initialize the csoiir2 filters

[s,t,u,y,a,b,p]=init_csoiir2(M,s0,t0);

for k=2:L

% Call CSOIIR2

[y,a,b,u,t,s,p] = asptcsoiir2(xn(k),u,y,a,b,t,s,p,...

mu_t,mu_s,t_lim,s_lim);

sv(k,:) = s; % save s-state

tv(k,:) = t; % save t-state

ev(k,:) = u(1,2:end); % error signals

yv(k,:) = y(1,:); % narrow-band components

end

% Show tracking behavior

figure

subplot(2,2,1)

plot([tv]);grid

xlabel(’Time [samples]’)

ylabel(’Center freq. [rad.]’)

subplot(2,2,2)

plot(sv);grid

xlabel(’Time [samples]’)

ylabel(’s parameter’)

% save the narrow-band and wide-band signals

wavwrite(ev(1,M+1),inFs,inBits,wbfile);

wavwrite(sum(yv,2),inFs,inBits,nbfile);

286

10.1. ale csoiir2

Results Running the above script will produce the graph shown in Fig. 10.2. The left
panel in Fig. 10.2 shows the values taken by the t parameter for each of the
three SOIIR2 sections versus time. The right panel shows the values taken by
the three s parameters. The first second order section adapts and tracks the
strongest sinusoidal component in the input signal. As it approaches its target,
its s-parameter saturates to its maximum value as shown in the first vertical
line in the right graph in Fig. 10.2. As soon as the first section has converged,
the second section starts adapting to the strongest sinusoidal component in its
input signal (the error signal of the preceding section). This process continues
until each section has converged to one sinusoidal component. The error signal
of the last section is the wide-band signal and the sum of the outputs of all
sections is the output of the cascade combination and contains the estimated
narrow-band signals.

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time [samples]

C
en

te
r

fr
eq

. [
ra

d.
]

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

Time [samples]

s
pa

ra
m

et
er

Figure 10.2: Convergence and tracking behavior of the cascade second
order type-2 IIR adaptive line enhancer.

Audio Files The following files demonstrate the performance of the CSOIIR2 algorithm in
the adaptive line enhancer application mentioned above.

wavin\hnramp.wav input signal, speech + sinusoidal noise.
wavout\csoiir2wb.wav error signal, separated speech.
wavout\csoiir2nb.wav filter output, narrow-band signals.

See Also INIT CSOIIR2, ASPTCSOIIR2, ASPTSOIIR1, ASPTSOIIR2.

Reference [2] and [10] for introduction to recursive adaptive filters.

287

Chapter 10. Applications and Examples

10.2 ale soiir1

Purpose Simulation of an Adaptive Line Enhancer (ALE) application using a second
order type-1 recursive adaptive filter.

Syntax ale_soiir1

Description This application demonstrates the capability of the line enhancer to separate a
wide-band signal from a narrow-band signal even when the narrow-band signal
is time-varying. The block diagram of the adaptive line enhancer problem is
shown in Fig. 10.3. The input signal u(n) (a speech fragment contaminated
with a sinusoidal noise with time-varying frequency) is stored in the file infile.
The application attempts to separate the speech from the sinusoidal noise
and stores the former in the file wbfile and the latter in nbfile. First the
variables for the adaptive line enhancer filter h(n) are created and initialized
using init_soiir1(), and the input signal is read from file, then a processing
loop is started. In each iteration of the loop asptsoiir1() is called with a
new input sample to calculate the filter output y(n) (estimated narrow-band
signal), the error sample e(n) (the wide-band signal) and update the filter
parameters s and w. The evolution of the adaptive parameters is also tracked
for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graphs, break out of the processing
loop, and quit the simulation. After processing all the samples, or on pressing
the break or stop buttons, the residual signal e(n) is written to a wave audio
file and a graph presenting the performance of the line enhancer is generated.

SOIIR

h(n)Z-1
u(n-1)

u(n)

e(n)

y(n) +

-

Figure 10.3: Block diagram of an adaptive line enhancer implemented
using the second order type-1 IIR adaptive filter.

288

10.2. ale soiir1

Code clear all;

infile = ’.\wavin\hramp.wav’; % input, speech + sinusoidal

wbfile = ’.\wavout\soiir1wb.wav’; % wide-band signal (speech)

nbfile = ’.\wavout\soiir1nb.wav’; % narrow-band signal

[xn,inFs,inBits] = wavread(infile); % read input

[L,ch] = size(xn); % get data size

w0 = 0.5; % initial value for w

s0 = 0.3; % initial value for s

w_lim = [-.999 .999]; % bounds for w

s_lim = [.1 .9]; % bounds for s

mu_w = 0.5; % step size for w

mu_s = 0.01; % step size for s

% Create and initialize soiir1 filter

[s,w,u,y,a,b,e] = init_soiir1(s0,w0);

sv = zeros(L,1); % tracking vector for s

wv = sv; % tracking vector for w

yv = sv; % filter output

ev = sv; % filter output

E = init_ipwin(L,ch); % Initialize IPWIN

ip = [1; zeros(511,1)]; % Impulse vector

for k=2:L

u = [xn(k); u(1:2)];

[y,a,b,e,w,s] = asptsoiir1(u,y,a,b,e,w,s,mu_w,...

mu_s,w_lim,s_lim);

sv(k) = s;

wv(k) = w;

ev(k) = e(1);

yv(k) = y(1);

% update the iteration progress window

h = filter([w*(1-s) -(1-s)],[1 -w*(1+s) s],ip);

[E,stop,brk]=update_ipwin(E,e(1),u(1),’l’,h, xn,yv,ev);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_ale(h,xn,yv,ev); break; end;

end

h = filter([w*(1-s) -(1-s)],[1 -w*(1+s) s],ip);

plot_ale(h,xn,yv,ev);

figure; plot([sv cos(wv)]);grid

ylabel(’s [blue], cos(w) [green]’);

xlabel(’Time [samples]’)

wavwrite(ev,inFs,inBits,wbfile);

wavwrite(yv,inFs,inBits,nbfile);

289

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.4. The top
two panels in Fig. 10.4 show the time and frequency responses of the adaptive
IIR filter by the end of the simulation (end of input file). The second panel
shows the input signal, the third shows the filter output (estimated narrow
band signal), and the bottom panel shows the error signal (the separated wide-
band signal).

0 100 200 300 400 500

−0.05

0

0.05

w
[n

]

0 0.1 0.2 0.3 0.4 0.5
−25
−20
−15
−10

−5

W
[ω

]

0 5 10 15 20 25
−1

0

1

in
pu

t x
[n

]

0 5 10 15 20 25
−0.5

0

0.5

1

O
ut

pu
t y

[n
]

0 5 10 15 20 25
−1

0

1

E
rr

or
 e

[n
]

Time [Samples * 1000]

Figure 10.4: Performance of the second order type-1 IIR adaptive line
enhancer.

Audio Files The following files demonstrate the performance of the SOIIR1 algorithm in
the adaptive line enhancer application mentioned above.

wavin\hramp.wav input signal, speech + sinusoidal noise.
wavout\soiir1wb.wav error signal, separated speech.
wavout\soiir1nb.wav filter output, narrow-band signal.

See Also INIT SOIIR1, ASPTSOIIR1, ASPTSOIIR2, ASPTCSOIIR2.

Reference [2] and [10] for introduction to recursive adaptive filters.

290

10.3. ale soiir2

10.3 ale soiir2

Purpose Simulation of an Adaptive Line Enhancer (ALE) application using a second
order type-2 recursive adaptive filter.

Syntax ale_soiir2

Description This application demonstrates the capability of the line enhancer to separate a
wide-band signal from a narrow-band signal even when the narrow-band signal
is time-varying. The block diagram of the adaptive line enhancer problem is
shown in Fig. 10.5. The input signal u(n) (a speech fragment contaminated
with a sinusoidal noise with time-varying frequency) is stored in the file infile.
The application attempts to separate the speech from the sinusoidal noise
and stores the former in the file wbfile and the latter in nbfile. First the
variables for the adaptive line enhancer filter h(n) are created and initialized
using init_soiir2(), and the input signal is read from file, then a processing
loop is started. In each iteration of the loop asptsoiir2() is called with a
new input sample to calculate the filter output y(n) (estimated narrow-band
signal), the error sample e(n) (the wide-band signal) and update the filter
parameters s and t. The evolution of the adaptive parameters is also tracked
for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graphs, break out of the processing
loop, and quit the simulation. After processing all the samples, or on pressing
the break or stop buttons, the residual signal e(n) is written to a wave audio
file and a graph presenting the performance of the line enhancer is generated.

SOIIR

h(n)Z-1
u(n-1)

u(n)

e(n)

y(n) +

-

Figure 10.5: Block diagram of an adaptive line enhancer implemented
using the second order type-2 IIR adaptive filter.

291

Chapter 10. Applications and Examples

Code clear all;

infile = ’.\wavin\hramp.wav’; % input, speech + sinusoidal

wbfile = ’.\wavout\soiir2wb.wav’; % wide-band signal (speech)

nbfile = ’.\wavout\soiir2nb.wav’; % narrow-band signal

[xn,inFs,inBits] = wavread(infile); % read input

[L,ch] = size(xn); % get data size

t0 = 0.5; % initial value for t

s0 = 0.3; % initial value for s

t_lim = [0.05 3.1]; % bounds for t

s_lim = [.1 .9]; % bounds for s

mu_t = 0.5; % step size for t

mu_s = 0.01; % step size for s

% Create and initialize soiir2 filter

[s,t,u,y,a,b,e] = init_soiir2(s0,t0);

sv = zeros(L,1); % tracking vector for s

tv = sv; % tracking vector for t

yv = sv; % filter output

ev = sv; % filter output

E = init_ipwin(L,ch); % Initialize IPWIN

ip = [1;zeros(511,1)]; % Impulse vector

for k=2:L

u = [xn(k); u(1:2)];

[y,a,b,e,t,s] = asptsoiir2(u,y,a,b,e,t,s,mu_t,...

mu_s,t_lim,s_lim);

sv(k) = s;

tv(k) = t;

ev(k) = e(1);

yv(k) = y(1);

% update the iteration progress window

h = filter([cos(t)*(1-s) -(1-s)],[1 -cos(t)*(1+s) s], ip);

[E,stop,brk]=update_ipwin(E,e(1),u(1),’l’,h, xn,yv,ev);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_ale(h,xn,yv,ev); break; end;

end

h = filter([cos(t)*(1-s) -(1-s)],[1 -cos(t)*(1+s) s],ip);

plot_ale(h,xn,yv,ev);

figure; plot([sv tv]);grid

ylabel(’s [blue], t [green]’);

xlabel(’Time [samples]’)

wavwrite(ev,inFs,inBits,wbfile);

wavwrite(yv,inFs,inBits,nbfile);

292

10.3. ale soiir2

Results Running the above script will produce the graph shown in Fig. 10.6. The top
two panels in Fig. 10.6 show the time and frequency response of the adaptive
IIR filter by the end of the simulation (end of input file). The second panel
shows the input signal, the third shows the filter output (estimated narrow
band signal), and the bottom panel shows the error signal (the separated wide-
band signal).

0 100 200 300 400 500

−0.05

0

0.05

w
[n

]

0 0.1 0.2 0.3 0.4 0.5
−25
−20
−15
−10

−5

W
[ω

]

0 5 10 15 20 25
−1

0

1

in
pu

t x
[n

]

0 5 10 15 20 25
−0.5

0

0.5

1

O
ut

pu
t y

[n
]

0 5 10 15 20 25
−1

0

1

E
rr

or
 e

[n
]

Time [Samples * 1000]

Figure 10.6: Performance of the second order type-2 IIR adaptive line
enhancer.

Audio Files The following files demonstrate the performance of the SOIIR2 algorithm in
the adaptive line enhancer application mentioned above.

wavin\hramp.wav input signal, speech + sinusoidal noise.
wavout\soiir2wb.wav error signal, separated speech.
wavout\soiir2nb.wav filter output, narrow-band signal.

See Also INIT SOIIR2, ASPTSOIIR2, ASPTSOIIR1, ASPTCSOIIR2.

Reference [2] and [10] for introduction to recursive adaptive filters.

293

Chapter 10. Applications and Examples

10.4 anvc adjlms

Purpose Simulation of a single channel Active Noise and Vibration Control (ANVC)
application using an adaptive controller updated according to the ADJOINT
Least Mean Squares (ADJLMS) algorithm.

Syntax anvc_adjlms

Description The block diagram of the single channel ANVC problem using ADJLMS is
shown in Fig. 10.7. The primary impulse response p is the impulse response
measured between the noise source and the error microphone in a small room.
The secondary impulse response s is that between the secondary source and the
error microphone. Two sets of transfer functions are provided in the simulation,
the simple data set (system 1) and the measured data set (system 2). The
description below applies to system 1, with a primary impulse response sampled
at 8 kHz and truncated to 32 coefficients, and a simple FIR secondary impulse
response so that it can be easily experimented with its minimum phase and
delay properties. The primary noise at the microphone is stored in the file
dfile and the reference signal x(n) (white noise) is stored in the file infile.
First the variables for the controller w(n) are creates and initializes using
init_adjlms(), and the input signals are read from files, then a processing
loop is started. In each iteration of the loop asptadjlms() is called with a new
reference sample and a new primary sample to calculate the controller output
(control effort) and update the controller coefficients. The sensor signal e(n)
is saved in each iteration for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the controller performance is generated.

w(n)
x(n)

e(n)
LMS se

fe(n)

y(n)

primary

secondary

s

p

mic

Figure 10.7: Block diagram of a single channel noise cancellation appli-
cation using the Adjoint-LMS algorithm.

294

10.4. anvc adjlms

Code clear all;

load .\data\h32;

ph = h32; % Primary IR

sh = [0; 0.4; 0.3; 0.2; 0.1; 0.05]; % Secondary IR

se = 0.9*sh; % estimated sh

Lph = length(ph);

Lsh = length(sh);

L = 40; % controller length

mu = 0.02; % adaptation constant

b = 0.98; % autoregressive pole

infile = ’.\wavin\scinwn.wav’; % reference signal

dfile = ’.\wavin\scdwn32.wav’; % d(n) = conv(x,h32)

outfile = ’.\wavout\adjlms.wav’; % sensor signal

[w,x,y,d,e,p] = init_adjlms(L,sh,se); % Init ADJLMS

inSize = wavread(infile, ’size’); % get input data size

[xn,inFs,inBits] = wavread(infile); % get sampling details

dSize = wavread(dfile, ’size’); % data size

[dn,inFs,dBits] = wavread(dfile); % get sampling details

inSize = max(min(inSize,dSize)); % Max. samples index

E = init_ipwin(inSize); % Initialize IPWIN

out = zeros(size(xn)); % sensor signal

%% Processing Loop

for (m=1:inSize)

% update the delay line

x = [xn(m,:); x(1:end-1,:)];

% update the controller

[w,y,e,p] = asptadjlms(w,x,e,y,sh,se,dn(m),p,mu,b);

% save the last sensor sample

out(m) = e(1);

% IPWIN handling section, see UPDATE_~IPWIN for more details

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e(1),dn(m), ’a’, w, ph,sh);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_anvc(w,ph,sh,E); break; end;

end;

plot_anvc(w,ph,sh,E); % generate ANVC plot

wavwrite(out(1:m),inFs,inBits,outfile); % write to audio file

295

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.8. This figure
shows the optimum (Wiener) solution of the problem at hand and compares
that with the solution approached by the adaptive controller. The top left and
top right panels show the impulse responses of the optimal solution and the
adaptive controller, respectively. The middle left and middle right panels show
the frequency responses of the optimal solution and the adaptive controller,
respectively. The bottom left panel shows the learning curve for the adaptive
controller, and the bottom right shows the difference between the optimal
solution coefficients and the adaptive controller coefficients.

0 10 20 30

0

0.2

0.4

W
op

t[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−15

−10

−5

W
op

t[f]
 [d

B
]

0 10 20 30

0

0.2

0.4

w
[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−15

−10

−5

w
[f]

 [d
B

]

0 10 20 30 40
0

2

4

6
x 10

−3

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−30

−20

−10

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.8: Performance of the ADJLMS algorithm.

Audio Files The following files demonstrate the performance of the ADJLMS algorithm in
the application mentioned above.

wavin\scinwn.wav Reference (input) signal
wavin\scdwn32.wav microphone signal with controller OFF.
wavout\adjlms.wav microphone signal with controller ON.

See Also INIT ADJLMS, ASPTADJLMS, ASPTMCADJLMS, ASPTFDADJLMS,
ASPTMCFDADJLMS.

Reference [3], Chapter 3.

296

10.5. anvc fdadjlms

10.5 anvc fdadjlms

Purpose Simulation of a single channel Active Noise and Vibration Control (ANVC)
application using an adaptive controller updated according to the Frequency
Domain ADJOINT Least Mean Squares (FDADJLMS) algorithm.

Syntax anvc_fdadjlms

Description The block diagram of the single channel ANVC problem using FDADJLMS is
shown in Fig. 10.9. The primary impulse response p is the impulse response
measured between the noise source and the error microphone in a small room.
The secondary impulse response s is that between the secondary source and the
error microphone. Two sets of transfer functions are provided in the simulation,
the simple data set (system 1) and the measured data set (system 2). The
description below applies to system 2, with impulse responses sampled at 8
kHz and truncated to 256 coefficients. The primary noise at the microphone
is stored in the file dfile and the reference signal x(n) (white noise) is stored
in the file infile. First the variables for the controller w(n) are creates and
initializes using init_fdadjlms(), and the input signals are read from files,
then a processing loop is started. In each iteration of the loop asptfdadjlms()

is called with a new block of reference samples and a new block of primary
samples to calculate the a block of the controller output samples (control effort)
and update the controller coefficients. The calculated block of sensor signal
samples e(n) is saved in each iteration for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the controller performance is generated.

w(n)
x(n)

e(n)
LMS se

fe(n)

y(n)

primary

secondary

s

p

mic

Figure 10.9: Block diagram of a single channel noise cancellation appli-
cation using the Frequency Domain ADJoint-LMS algorithm.

297

Chapter 10. Applications and Examples

Code load .\data\ph11_256; % Primary IR (p11)

load .\data\sh11_256; % Secondary IR (s11)

Lp = length(p11);

se = 0.9*s11; % estimated s11

NC = Lp; % controller length

NL = NC; % block length

c = 1; % constrained filter

mu = .02/NC; % adaptation constant

b = 0.98; % autoregressive pole

infile = ’.\wavin\scinwn.wav’; % x(n), white noise

dfile = ’.\wavin\scdwn256.wav’; % d(n) = conv(x,p11)

outfile = ’.\wavout\fdadjlms.wav’; % microphone output

% Initialize FDADJLMS algorithm and data files

[NB,W,w,x,y,d,e,p,S,SE,yF,feF] = init_fdadjlms(NC,NL,s11,se);

inSize = wavread(infile, ’size’); % input data size

[xn,inFs,inBits] = wavread(infile,NL); % input properties

dSize = wavread(dfile, ’size’); % primary data size

[dn,inFs,dBits] = wavread(dfile,NL); % primary properties

inSize = max(min(inSize,dSize)); % samples to process

E = init_ipwin(inSize); % Initialize IPWIN

out = zeros(size(xn)); % microphone signal

%% Processing Loop

for (m=1:NL:inSize-NL)

% read NL samples from input and primary and scale the block

xn = 2^(inBits-1) * wavread(infile,[m,m+NL-1]);

dn = 2^(inBits-1) * wavread(dfile,[m,m+NL-1]);

% Call ASPTFDADJLMS to calculate the output and update coef.

[W,w,x,y,e,p,yF,feF] = asptfdadjlms(NC,W,x,xn,dn,...

yF,feF,S,SE,p,mu,b,c);

out(m:m+NL-1) = 2^-(dBits-1) * e; % save error block

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,dn, ’a’, w, p11, s11);

% handle Stop button

while (stop~=0), stop = getStop; end;

% handle Break button

if (brk), plot_anvc(w,p11,s11,E); break; end;

end;

plot_anvc(w,p11,s11,E); % performance plots

wavwrite(out(1:m),inFs,inBits,outfile); % save mic signal

298

10.5. anvc fdadjlms

Results Running the above script will produce the graph shown in Fig. 10.10. This
figure shows the optimum (Wiener) solution of the problem at hand and com-
pares that with the solution approached by the adaptive controller. The top
left and top right panels show the impulse responses of the optimal solution
and the adaptive controller, respectively. The middle left and middle right
panels show the frequency responses of the optimal solution and the adaptive
controller, respectively. The bottom left panel shows the learning curve for
the adaptive controller, and the bottom right shows the difference between the
optimal solution coefficients and the adaptive controller coefficients.

0 50 100 150 200 250
−0.3

−0.2

−0.1

0

W
op

t[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−15

−10

W
op

t[f]
 [d

B
]

0 50 100 150 200 250
−0.3

−0.2

−0.1

0

w
[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−15

−10

w
[f]

 [d
B

]

0 50 100 150 200 250
0

1

2

x 10
−4

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−30

−20

−10

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.10: Performance of the FDADJLMS algorithm.

Audio Files The following files demonstrate the performance of the ADJLMS algorithm.

wavin\scinwn.wav Reference (input) signal
wavin\scdwn256.wav microphone signal with controller OFF.
wavout\fdadjlms.wav microphone signal with controller ON.

See Also INIT FDADJLMS, ASPTFDADJLMS, ASPTMCFDADJLMS, ASPTAD-
JLMS, ASPTMCADJLMS.

Reference [3], Chapter 3 for detailed description of the FDADJLMS, [8] for the overlap-
save method, and [9] for frequency domain adaptive filters.

299

Chapter 10. Applications and Examples

10.6 anvc fdfxlms

Purpose Simulation of a single channel Active Noise and Vibration Control (ANVC)
application using an adaptive controller updated according to the Frequency
Domain Filtered-X Least Mean Squares (FDFXLMS) algorithm.

Syntax anvc_fdfxlms

Description The block diagram of the single channel ANVC problem using FDFXLMS is
shown in Fig. 10.11. The primary impulse response p is the impulse response
measured between the noise source and the error microphone in a small room.
The secondary impulse response s is that between the secondary source and the
error microphone. Two sets of transfer functions are provided in the simulation,
the simple data set (system 1) and the measured data set (system 2). The
description below applies to system 2, with impulse responses sampled at 8
kHz and truncated to 256 coefficients. The primary noise at the microphone
is stored in the file dfile and the reference signal x(n) (white noise) is stored
in the file infile. First the variables for the controller w(n) are creates and
initializes using init_fdfxlms(), and the input signals are read from files,
then a processing loop is started. In each iteration of the loop asptfdfxlms()

is called with a new block of reference samples and a new block of primary
samples to calculate the a block of the controller output samples (control effort)
and update the controller coefficients. The calculated block of sensor signal
samples e(n) is saved in each iteration for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the controller performance is generated.

w(n)

e(n)
LMS

y(n)

primary

secondary

s

p

mic
x(n)

se
fx(n)

Figure 10.11: Block diagram of a single channel noise cancellation ap-
plication using the Frequency Domain Filtered-X LMS algorithm.

300

10.6. anvc fdfxlms

Code load .\data\ph11_256; % Primary IR (p11)

load .\data\sh11_256; % Secondary IR (s11)

Lp = length(p11);

se = 0.9*s11; % estimated s11

NC = Lp; % controller length

NL = NC; % block length

c = 1; % constrained filter

mu = .02/NC; % adaptation constant

b = 0.98; % autoregressive pole

infile = ’.\wavin\scinwn.wav’; % x(n), white noise

dfile = ’.\wavin\scdwn256.wav’; % d(n) = conv(x,p11)

outfile = ’.\wavout\fdfxlms.wav’; % microphone output

% Initialize FDFXLMS algorithm and data files

[NB,W,w,x,y,d,e,p,S,SE,yF,fxF] = init_fdfxlms(NC,NL,s11,se);

inSize = wavread(infile, ’size’); % input data size

[xn,inFs,inBits] = wavread(infile,NL); % input properties

dSize = wavread(dfile, ’size’); % primary data size

[dn,inFs,dBits] = wavread(dfile,NL); % primary properties

inSize = max(min(inSize,dSize)); % samples to process

E = init_ipwin(inSize); % Initialize IPWIN

out = zeros(size(xn)); % microphone signal

%% Processing Loop

for (m=1:NL:inSize-NL)

% read NL samples from input and primary and scale the block

xn = 2^(inBits-1) * wavread(infile,[m,m+NL-1]);

dn = 2^(inBits-1) * wavread(dfile,[m,m+NL-1]);

% Call ASPTFDFXLMS to calculate the output and update coef.

[W,w,x,y,e,p,yF,fxF] = asptfdfxlms(NC,W,x,xn,dn,...

yF,fxF,S,SE,p,mu,b,c);

out(m:m+NL-1) = 2^-(dBits-1) * e; % save error block

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,dn, ’a’, w, p11, s11);

% handle Stop button

while (stop~=0), stop = getStop; end;

% handle Break button

if (brk), plot_anvc(w,p11,s11,E); break; end;

end;

plot_anvc(w,p11,s11,E); % performance plots

wavwrite(out(1:m),inFs,inBits,outfile); % save mic signal

301

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.12. This
figure shows the optimum (Wiener) solution of the problem at hand and com-
pares that with the solution approached by the adaptive controller. The top
left and top right panels show the impulse responses of the optimal solution
and the adaptive controller, respectively. The middle left and middle right
panels show the frequency responses of the optimal solution and the adaptive
controller, respectively. The bottom left panel shows the learning curve for
the adaptive controller, and the bottom right shows the difference between the
optimal solution coefficients and the adaptive controller coefficients.

0 50 100 150 200 250
−0.3

−0.2

−0.1

0

W
op

t[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−15

−10

W
op

t[f]
 [d

B
]

0 50 100 150 200 250
−0.3

−0.2

−0.1

0

w
[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−15

−10

w
[f]

 [d
B

]

0 50 100 150 200 250
0

0.5

1

x 10
−3

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−30

−20

−10

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.12: Performance of the FDFXLMS algorithm.

Audio Files The following files demonstrate the performance of the ADJLMS algorithm.

wavin\scinwn.wav Reference (input) signal
wavin\scdwn256.wav microphone signal with controller OFF.
wavout\fdfxlms.wav microphone signal with controller ON.

See Also INIT FDFXLMS, ASPTFDFXLMS, ASPTMCFDFXLMS, ASPTFXLMS,
ASPTMCFXLMS.

Reference [3], Chapter 3 for detailed description of the FDFXLMS, [8] for the overlap-save
method, and [9] for frequency domain adaptive filters.

302

10.7. anvc fxlms

10.7 anvc fxlms

Purpose Simulation of a single channel Active Noise and Vibration Control (ANVC)
application using an adaptive controller updated according to the FILTERED-
X Least Mean Squares (FXLMS) algorithm.

Syntax anvc_fxlms

Description The block diagram of the single channel ANVC problem using FXLMS is
shown in Fig. 10.13. The primary impulse response p is the impulse response
measured between the noise source and the error microphone in a small room.
The secondary impulse response s is that between the secondary source and the
error microphone. Two sets of transfer functions are provided in the simulation,
the simple data set (system 1) and the measured data set (system 2). The
description below applies to system 1, with primary impulse response sampled
at 8 kHz and truncated to 32 coefficients, and a simple FIR secondary impulse
response so that it can be easily experimented with its minimum phase and
delay properties. The primary noise at the microphone is stored in the file dfile
and the reference signal x(n) (white noise) is stored in the file infile. First the
variables for the controller w(n) are creates and initializes using init_fxlms(),
and the input signals are read from files, then a processing loop is started. In
each iteration of the loop asptfxlms() is called with a new reference sample
and a new primary sample to calculate the controller output (control effort)
and update the controller coefficients. The sensor signal e(n) is saved in each
iteration for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the controller performance is generated.

w(n)

e(n)
LMS

y(n)

primary

secondary

s

p

mic
x(n)

se
fx(n)

Figure 10.13: Block diagram of a single channel noise cancellation ap-
plication using the Filtered-x LMS algorithm.

303

Chapter 10. Applications and Examples

Code clear all;

load .\data\h32;

ph = h32; % Primary IR

sh = [0; 0.4; 0.3; 0.2; 0.1; 0.05]; % Secondary IR

se = 0.9*sh; % estimated sh

Lph = length(ph);

Lsh = length(sh);

L = 40; % controller length

mu = 0.02; % adaptation constant

b = 0.98; % autoregressive pole

infile = ’.\wavin\scinwn.wav’; % reference signal

dfile = ’.\wavin\scdwn32.wav’; % d(n) = conv(x,h32)

outfile = ’.\wavout\fxlms.wav’; % sensor signal

[w,x,y,d,e,p,fx] = init_fxlms(L,sh,se); % Init FXLMS

inSize = wavread(infile, ’size’); % get input data size

[xn,inFs,inBits] = wavread(infile); % get sampling details

dSize = wavread(dfile, ’size’); % data size

[dn,inFs,dBits] = wavread(dfile); % get sampling details

inSize = max(min(inSize,dSize)); % Max. samples index

E = init_ipwin(inSize); % Initialize IPWIN

out = zeros(size(xn)); % sensor signal

%% Processing Loop

for (m=1:inSize)

% update the delay line

x = [xn(m,:); x(1:end-1,:)];

% update the controller

[w,y,e,p,fx] = asptfxlms(w,x,y,sh,se,dn(m),fx,p, mu,b);

% save the last sensor sample

out(m) = e(1);

% IPWIN handling section, see UPDATE_~IPWIN for more details

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e(1),dn(m), ’a’, w, ph,sh);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_anvc(w,ph,sh,E); break; end;

end;

plot_anvc(w,ph,sh,E); % generate ANVC plot

wavwrite(out(1:m),inFs,inBits,outfile); % write to audio file

304

10.7. anvc fxlms

Results Running the above script will produce the graph shown in Fig. 10.14. This
figure shows the optimum (Wiener) solution of the problem at hand and com-
pares that with the solution approached by the adaptive controller. The top
left and top right panels show the impulse responses of the optimal solution
and the adaptive controller, respectively. The middle left and middle right
panels show the frequency responses of the optimal solution and the adaptive
controller, respectively. The bottom left panel shows the learning curve for
the adaptive controller, and the bottom right shows the difference between the
optimal solution coefficients and the adaptive controller coefficients.

0 10 20 30

0

0.2

0.4

W
op

t[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−15

−10

−5

W
op

t[f]
 [d

B
]

0 10 20 30

0

0.2

0.4

w
[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−15

−10

−5

w
[f]

 [d
B

]

0 10 20 30 40
0

2

4

x 10
−3

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−30

−20

−10

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.14: Performance of the FXLMS algorithm.

Audio Files The following files demonstrate the performance of the FXLMS algorithm.

wavin\scinwn.wav Reference (input) signal
wavin\scdwn32.wav microphone signal with controller OFF.
wavout\fxlms.wav microphone signal with controller ON.

See Also INIT FXLMS, ASPTFXLMS, ASPTFDFXLMS, ASPTMCFDFXLMS.

Reference [3], Chapter 3.

305

Chapter 10. Applications and Examples

10.8 anvc mcadjlms

Purpose Simulation of a multichannel Active Noise and Vibration Control (ANVC)
application using a matrix of adaptive controllers updated using the Multi-
Channel ADJoint Least Mean Squares (MCADJLMS) algorithm.

Syntax anvc_mcadjlms

Description The block diagram of a multichannel ANVC problem using MCADJLMS is
shown in Fig. 10.15. The matrix of primary impulse responses p is the impulse
responses measured between the noise sources and the error microphones in a
small room. The matrix of secondary impulse responses s is that between the
secondary sources and the error microphones. Two sets of transfer functions
are provided in the simulation, the simple data set (system 1) and the mea-
sured data set (system 2). The description below applies to system 1, with
two primary sources, two secondary sources, and two error microphones. The
primary and secondary impulse responses are sampled at 8 kHz and truncated
to 32 coefficients. The noise from the noise sources measured at the error mi-
crophones is stored in the file dfile and the reference signals x(n) (white noise)
is stored in the file infile. First the variables for the controller w(n) are creates
and initializes using init_mcadjlms, and the input signals are read from files,
then a processing loop is started. In each iteration of the loop asptmcadjlms

is called with a new reference vector and a new primary vector to calculate
the controllers’ outputs (control effort) and update the controllers’ coefficients.
The sensor signals e(n) are also saved in each iteration for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the controller performance is generated.

w(n)

x(n)

e(n)

LMS se
fe(n)

y(n)
s

p

Nref

Nact

Nsens

Figure 10.15: Block diagram of a multichannel noise cancellation appli-
cation using the Multichannel Adjoint-LMS algorithm.

306

10.8. anvc mcadjlms

Code % System transfer functions, Nref=2, Nact=2, Nsens=2.

load .\data\ph22_32.mat; % Primary impulse responses

load .\data\sh22_32.mat; % Secondary impulse responses

sh = sh22_32;

ph = ph22_32;

se = 0.98 * sh; %estimated sh22

%% Simulation parameters

[Lph,Nref,Nsens]= size(ph); % Primary TF dimension

[Lsh,Nact,Ns2] = size(sh); % Secondary TF dimension

if (Nsens ~= Ns2), error(’Dimension mismatch’); end

L = Lph; % length of controller w

mu = .1/L; % adaptation constant

b = 0.98; % autoregressive pole

% Reference and primary signals

infile = ’.\wavin\mcin222wn.wav’; % x(n), white noise, 2-ch

dfile = ’.\wavin\mcd222wn.wav’; % d(n), 2-ch channels

outfile = ’.\wavout\mcadjlms.wav’; % noise level at microphone

% initialize MCADJLMS

[w,x,y,d,e,p] = init_mcadjlms(L,Nref,Nact,Nsens,sh,se);

inSize = wavread(infile, ’size’); % get input data size

[xn,inFs,inBits] = wavread(infile); % get sampling details

dSize = wavread(dfile, ’size’); % data size

[dn,inFs,dBits] = wavread(dfile); % get sampling details

inSize = max(min(inSize,dSize)); % Max. samples index

E = init_ipwin(inSize,Nsens);% Initialize IPWIN

out = zeros(size(xn)); % sensor signal

%% Processing Loop

for (m=1:inSize)

x = [xn(m,:);x(1:end-1,:)]; % update the delay line

% call MCADJLMS to calculate the output and update the filters

[w,y,e,p] = asptmcadjlms(w,x,e,y,sh,se,dn(m,:),p,mu,b);

out(m,:) = e(1,:); % save last error

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e(1,:),dn(m,:),’a’,w,ph,sh);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_anvc(w,ph,sh,E,1,1); break; end;

end;

plot_anvc(w,ph,sh,E,1,1); % generate ANVC plot

wavwrite(out(1:m),inFs,inBits,outfile); % write to audio file

307

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.16. This
figure shows the optimum (Wiener) solution of the problem at hand and com-
pares that with the solution approached by the adaptive controller. Only the
controller between the first reference and first actuator is shown in the graph.
You can control which of the [2 × 2] filters to view by using the last two in-
put arguments of plot_anvc(). The top left and top right panels in Fig. 10.16
show the impulse responses of the optimal solution and the adaptive controller,
respectively. The middle left and middle right panels show the frequency re-
sponses of the optimal solution and the adaptive controller, respectively. The
bottom left panel shows the learning curve for the adaptive controller, and the
bottom right shows the difference between the optimal solution coefficients and
the adaptive controller coefficients.

0 10 20 30
−0.2

−0.1

0

0.1

0.2

W
op

t[t]

0 0.1 0.2 0.3 0.4 0.5
−40

−30

−20

−10

W
op

t[f]
 [d

B
]

0 10 20 30
−0.2

−0.1

0

0.1

0.2

w
[t]

0 0.1 0.2 0.3 0.4 0.5
−40

−30

−20

−10

w
[f]

 [d
B

]
0 10 20 30

0

0.01

0.02

0.03

W
ei

gh
t−

er
ro

r
0 1 2 3 4

x 10
4

−20

−10

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.16: Performance of the MCADJLMS algorithm.

Audio Files The following files demonstrate the performance of the MCADJLMS algorithm
in the application mentioned above.

wavin\mcin222wn.wav Reference (input) signals
wavin\mcd222wn.wav microphones’ signals with controller OFF.
wavout\mcadjlms.wav microphones’ signals with controller ON.

See Also INIT MCADJLMS, ASPTMCADJLMS, ASPTADJLMS, ASPTFDADJLMS,
ASPTMCFDADJLMS.

Reference [3], Chapter 3.

308

10.9. anvc mcfdadjlms

10.9 anvc mcfdadjlms

Purpose Simulation of a Multichannel Active Noise and Vibration Control (ANVC) ap-
plication using an adaptive controller updated according to the Multi Channel
Frequency Domain ADJoint Least Mean Squares (MCFDADJLMS) algorithm.

Syntax anvc_mcfdadjlms

Description The block diagram of the multichannel ANVC problem using MCFDADJLMS
is shown in Fig. 10.17. The matrix of primary impulse responses p is the im-
pulse responses measured between the noise sources and the error microphones
in a small room. The matrix of secondary impulse responses s is that between
the secondary sources and the error microphones. Two sets of transfer func-
tions are provided in the simulation, the simple data set (system 1) and the
measured data set (system 2). The description below applies to system 2, with
two primary sources, three secondary sources, and two error microphones. The
primary and secondary impulse responses are sampled at 8 kHz and truncated
to 128 coefficients. The noise from the noise sources measured at the error
microphones is stored in the file dfile and the reference signals x(n) (white
noise) is stored in the file infile. First the variables for the controller w(n)
are creates and initializes using init_mcfdadjlms, and the input signals are
read from files, then a processing loop is started. In each iteration of the loop
asptmcfdadjlms is called with a new block of reference samples and a new
block of primary noise samples to calculate the controllers’ outputs (control
effort) and update the controllers’ coefficients. The sensor signals e(n) are also
saved in each iteration for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the controller performance is generated.

w(n)

x(n)

e(n)

LMS se
fe(n)

y(n)
s

p

Nref

Nact

Nsens

Figure 10.17: Block diagram of a multichannel noise cancellation appli-
cation using the Multi Channel Frequency Domain Adjoint LMS algorithm.

309

Chapter 10. Applications and Examples

Code % System transfer functions, Nref=2, Nact=3, Nsens=2.

load .\data\p232_128; % Primary impulse responses

load .\data\s232_128; % Secondary impulse responses

sh = sh232;

ph = ph232;

se = 0.9*sh; % estimated sh

%% Simulation parameters

[Lph,Nref,Nsens] = size(ph); % Primary TF dimension

[Lsh,Nact,Nsens] = size(sh); % Secondary TF dimension

NC = Lph; % length of controller w

NL = NC; % block length

c = 1; % constrain controller

mu = .01/NC; % adaptation constant

b = 0.99; % autoregressive pole

infile = ’.\wavin\mcin232wn.wav’; % x(n), white noise, 2 channels

dfile = ’.\wavin\mcd232wn.wav’; % d(n), Nsens channels

outfile = ’.\wavout\mcfdfxlms.wav’; % noise level at microphone

% Initialize MCFDFXLMS algorithm and data files

[NB,W,w,x,y,d,e,p,S,SE,yF,fxF] = init_mcfdfxlms(NC,NL,Nref,...

Nact,Nsens,sh,se);

inSize = wavread(infile, ’size’); % input data size

[xn,inFs,inBits] = wavread(infile,NL); % input properties

dSize = wavread(dfile, ’size’); % primary data size

[dn,inFs,dBits] = wavread(dfile,NL); % primary properties

inSize = max(min(inSize,dSize)); % samples to process

E = init_ipwin(inSize,Nsens);% Initialize IPWIN

out = zeros(size(dn)); % microphone signal

%% Processing Loop

for (m=1:NL:inSize-NL)

% read NL samples from input and primary and scale the block

xn = wavread(infile,[m,m+NL-1]);

dn = wavread(dfile, [m,m+NL-1]);

% Call ASPTMCFDFXLMS to calculate the output and update coef.

[W,w,x,y,e,p,yF,fxF] = asptmcfdfxlms(NC,W,x,xn,dn,...

yF,fxF,S,SE,p,mu,b,c);

out(m:m+NL-1,:) = e; % save error block

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,dn, ’a’, w, ph, sh);

% handle Stop button

while (stop~=0), stop = getStop; end;

% handle Break button

if (brk), plot_anvc(w,ph,sh,E,2,1); break; end;

end;

plot_anvc(w,ph,sh,E,2,1); % performance plots

wavwrite(out(1:m,:),inFs,inBits,outfile); % save mic signal

310

10.9. anvc mcfdadjlms

Results Running the above script will produce the graph shown in Fig. 10.18. This fig-
ure shows the optimum (Wiener) solution of the problem at hand and compares
that with the solution approached by the adaptive controller. Only the con-
troller between the second reference and first actuator is shown in the graph.
You can control which of the [2 × 3] filters to view by using the last two in-
put arguments of plot_anvc(). The top left and top right panels in Fig. 10.18
show the impulse responses of the optimal solution and the adaptive controller,
respectively. The middle left and middle right panels show the frequency re-
sponses of the optimal solution and the adaptive controller, respectively. The
bottom left panel shows the learning curve for the adaptive controller, and the
bottom right shows the difference between the optimal solution coefficients and
the adaptive controller coefficients.

0 50 100
−0.8

−0.6

−0.4

−0.2

0

W
op

t[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−10

0

W
op

t[f]
 [d

B
]

0 50 100
−0.8

−0.6

−0.4

−0.2

0

w
[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−10

0

w
[f]

 [d
B

]
0 50 100

0

0.02

0.04

0.06

0.08

W
ei

gh
t−

er
ro

r
0 1 2 3 4

x 10
4

−15

−10

−5

0

5

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.18: Performance of the MCFDADJLMS algorithm.

Audio Files The following files demonstrate the performance of the MCFDADJLMS
algorithm in the application mentioned above.

wavin\mcin232wn.wav Reference (input) signal
wavin\mcd232wn.wav microphone signal with controller OFF.
wavout\mcfdadjlms.wav microphone signal with controller ON.

See Also INIT MCFDADJLMS, ASPTMCFDFXLMS, ASPTFDADJLMS, ASPTM-
CFXLMS.

Reference [3], Chapter 3 for detailed description of the MCFDFXLMS, [8] for the overlap-
save method, and [9] for frequency domain adaptive filters.

311

Chapter 10. Applications and Examples

10.10 anvc mcfdfxlms

Purpose Simulation of a multichannel Active Noise and Vibration Control (ANVC) ap-
plication using an adaptive controller updated according to the Multi Channel
Frequency Domain Filtered-X Least Mean Squares (MCFDFXLMS) algorithm.

Syntax anvc_mcfdfxlms

Description The block diagram of the multichannel ANVC problem using MCFDFXLMS is
shown in Fig. 10.19. The matrix of primary impulse responses p is the impulse
responses measured between the noise sources and the error microphones in a
small room. The matrix of secondary impulse responses s is that between the
secondary sources and the error microphones. Two sets of transfer functions are
provided in the simulation, the simple data set (system 1) and the measured
data set (system 2). The description below applies to system 2, with two
primary sources, three secondary sources, and two error microphones. The
primary and secondary impulse responses are sampled at 8 kHz and truncated
to 128 coefficients. The noise from the noise sources measured at the error
microphones is stored in the file dfile and the reference signals x(n) (white
noise) is stored in the file infile. First the variables for the controller w(n)
are creates and initializes using init_mcfdfxlms, and the input signals are
read from files, then a processing loop is started. In each iteration of the loop
asptmcfdfxlms is called with a new block of reference samples and a new block
of primary noise samples to calculate the controllers’ outputs (control effort)
and update the controllers’ coefficients. The sensor signals e(n) are also saved
in each iteration for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the controller performance is generated.

w(n)

e(n)

LMS

y(n)
s

p

Nsens

x(n)

se
fx(n)

Nref

Nact

Figure 10.19: Block diagram of a multichannel noise cancellation appli-
cation using the Multi Channel Frequency Domain Filtered-X LMS algo-
rithm.

312

10.10. anvc mcfdfxlms

Code % System transfer functions, Nref=2, Nact=3, Nsens=2.

load .\data\p232_128; % Primary impulse responses

load .\data\s232_128; % Secondary impulse responses

sh = sh232;

ph = ph232;

se = 0.9*sh; % estimated sh

%% Simulation parameters

[Lph,Nref,Nsens] = size(ph); % Primary TF dimension

[Lsh,Nact,Nsens] = size(sh); % Secondary TF dimension

NC = Lph; % length of controller w

NL = NC; % block length

c = 1; % constrain controller

mu = .01/NC; % adaptation constant

b = 0.99; % autoregressive pole

infile = ’.\wavin\mcin232wn.wav’; % x(n), white noise, 2 channels

dfile = ’.\wavin\mcd232wn.wav’; % d(n), Nsens channels

outfile = ’.\wavout\mcfdfxlms.wav’; % noise level at microphone

% Initialize MCFDFXLMS algorithm and data files

[NB,W,w,x,y,d,e,p,S,SE,yF,fxF] = init_mcfdfxlms(NC,NL,Nref,...

Nact,Nsens,sh,se);

inSize = wavread(infile, ’size’); % input data size

[xn,inFs,inBits] = wavread(infile,NL); % input properties

dSize = wavread(dfile, ’size’); % primary data size

[dn,inFs,dBits] = wavread(dfile,NL); % primary properties

inSize = max(min(inSize,dSize)); % samples to process

E = init_ipwin(inSize,Nsens);% Initialize IPWIN

out = zeros(size(dn)); % microphone signal

%% Processing Loop

for (m=1:NL:inSize-NL)

% read NL samples from input and primary and scale the block

xn = wavread(infile,[m,m+NL-1]);

dn = wavread(dfile,[m,m+NL-1]);

% Call ASPTFDFXLMS to calculate the output and update coef.

[W,w,x,y,e,p,yF,fxF] = asptmcfdfxlms(NC,W,x,xn,dn,...

yF,fxF,S,SE,p,mu,b,c);

out(m:m+NL-1,:) = 2^-(dBits-1) * e; % save error block

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,dn, ’a’, w, ph, sh);

% handle Stop button

while (stop~=0), stop = getStop; end;

% handle Break button

if (brk), plot_anvc(w,ph,sh,E,1,2); break; end;

end;

plot_anvc(w,ph,sh,E,2,2); % performance plots

wavwrite(out(1:m,:),inFs,inBits,outfile); % save mic signal

313

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.20. This fig-
ure shows the optimum (Wiener) solution of the problem at hand and compares
that with the solution approached by the adaptive controller. Only the con-
troller between the second reference and first actuator is shown in the graph.
You can control which of the [2 × 3] filters to view by using the last two in-
put arguments of plot_anvc(). The top left and top right panels in Fig. 10.20
show the impulse responses of the optimal solution and the adaptive controller,
respectively. The middle left and middle right panels show the frequency re-
sponses of the optimal solution and the adaptive controller, respectively. The
bottom left panel shows the learning curve for the adaptive controller, and the
bottom right shows the difference between the optimal solution coefficients and
the adaptive controller coefficients.

0 50 100
−0.8

−0.6

−0.4

−0.2

0

W
op

t[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−10

0

W
op

t[f]
 [d

B
]

0 50 100
−0.8

−0.6

−0.4

−0.2

0

w
[t]

0 0.1 0.2 0.3 0.4 0.5

−20

−10

0

w
[f]

 [d
B

]
0 50 100

0

0.02

0.04

0.06

0.08

W
ei

gh
t−

er
ro

r
0 1 2 3 4

x 10
4

−10

0

10

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.20: Performance of the MCFDFXLMS algorithm.

Audio Files The following files demonstrate the performance of the MCFDFXLMS
algorithm in the application mentioned above.

wavin\mcin232wn.wav Reference (input) signal
wavin\mcd232wn.wav microphone signal with controller OFF.
wavout\mcfdfxlms.wav microphone signal with controller ON.

See Also INIT MCFDFXLMS, ASPTMCFDFXLMS, ASPTFDFXLMS, ASPT-
FXLMS, ASPTMCFXLMS.

Reference [3], Chapter 3 for detailed description of the MCFDFXLMS, [8] for the overlap-
save method, and [9] for frequency domain adaptive filters.

314

10.11. anvc mcfxlms

10.11 anvc mcfxlms

Purpose Simulation of a multichannel Active Noise and Vibration Control (ANVC) ap-
plication using a matrix of adaptive controllers updated using the MultChan-
nel Filtered-X Least Mean Squares (MCFXLMS) algorithm, also known as the
Multiple Error Filtered-X LMS (MEFXLMS).

Syntax anvc_mcfxlms

Description The block diagram of a multichannel ANVC problem using MCFXLMS is
shown in Fig. 10.21. The matrix of primary impulse responses p is the impulse
responses measured between the noise sources and the error microphones in a
small room. The matrix of secondary impulse responses s is that between the
secondary sources and the error microphones. Two sets of transfer functions
are provided in the simulation, the simple data set (system 1) and the mea-
sured data set (system 2). The description below applies to system 1, with
two primary sources, two secondary sources, and two error microphones. The
primary and secondary impulse responses are sampled at 8 kHz and truncated
to 32 coefficients. The noise from the noise sources measured at the error mi-
crophones is stored in the file dfile and the reference signals x(n) (white noise)
is stored in the file infile. First the variables for the controller w(n) are creates
and initializes using init_mcfxlms, and the input signals are read from files,
then a processing loop is started. In each iteration of the loop asptmcfxlms

is called with a new reference vector and a new primary vector to calculate
the controllers’ outputs (control effort) and update the controllers’ coefficients.
The sensor signals e(n) are also saved in each iteration for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue
the simulation, show or hide the simulation graph window, break out of the
processing loop, and quit the simulation. After processing all the samples, or
on pressing the break or stop buttons, the sensor signal e(n) is written to a
wave audio file and a graph presenting the array performance is generated.

w(n)

e(n)

LMS

y(n)
s

p

Nsens

x(n)

se
fx(n)

Nref

Nact

Figure 10.21: Block diagram of a multichannel noise cancellation appli-
cation using the Multichannel Filtered-X LMS algorithm.

315

Chapter 10. Applications and Examples

Code % System transfer functions, Nref=2, Nact=2, Nsens=2.

load .\data\ph22_32.mat; % Primary impulse responses

load .\data\sh22_32.mat; % Secondary impulse responses

sh = sh22_32;

ph = ph22_32;

se = 0.98 * sh; %estimated sh22

%% Simulation parameters

[Lph,Nref,Nsens]= size(ph); % Primary TF dimension

[Lsh,Nact,Ns2] = size(sh); % Secondary TF dimension

if (Nsens ~= Ns2), error(’Dimension mismatch’); end

L = Lph; % length of controller w

mu = .1/L; % adaptation constant

b = 0.98; % autoregressive pole

% Reference and primary signals

infile = ’.\wavin\mcin22wn.wav’; % x(n), white noise, 2-ch

dfile = ’.\wavin\mcd22wn.wav’; % d(n), 2-ch channels

outfile = ’.\wavout\mcfxlms.wav’; % noise level at microphone

% initialize MCFXLMS

[w,x,y,d,e,p,fx] = init_mcfxlms(L,Nref,Nact,Nsens,sh22,se);

inSize = wavread(infile, ’size’); % get input data size

[xn,inFs,inBits] = wavread(infile); % get sampling details

dSize = wavread(dfile, ’size’); % data size

[dn,inFs,dBits] = wavread(dfile); % get sampling details

inSize = max(min(inSize,dSize)); % Max. samples index

E = init_ipwin(inSize,Nsens);% Initialize IPWIN

out = zeros(size(xn)); % sensor signal

%% Processing Loop

for (m=1:inSize)

x = [xn(m,:);x(1:end-1,:)]; % update the delay line

% call MCFXLMS to calculate the output and update the filters

[w,y,e,p,fx] = asptmcfxlms(w,x,y,sh22,se,dn(m,:),fx,p,mu,b);

out(m,:) = e(1,:); % save last error

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e(1,:),dn(m,:),’a’,w,ph22,sh22);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_anvc(w,ph,sh,E,1,1); break; end;

end;

plot_anvc(w,ph,sh,E,1,1); % generate ANVC plot

wavwrite(out(1:m),inFs,inBits,outfile); % write to audio file

316

10.11. anvc mcfxlms

Results Running the above script will produce the graph shown in Fig. 10.22. This
figure shows the optimum (Wiener) solution of the problem at hand and com-
pares that with the solution approached by the adaptive controller. Only the
controller between the first reference and first actuator is shown in the graph.
You can control which of the [2 × 2] filters to view by using the last two in-
put arguments of plot_anvc(). The top left and top right panels in Fig. 10.22
show the impulse responses of the optimal solution and the adaptive controller,
respectively. The middle left and middle right panels show the frequency re-
sponses of the optimal solution and the adaptive controller, respectively. The
bottom left panel shows the learning curve for the adaptive controller, and the
bottom right shows the difference between the optimal solution coefficients and
the adaptive controller coefficients.

0 10 20 30
−0.2

−0.1

0

0.1

0.2

W
op

t[t]

0 0.1 0.2 0.3 0.4 0.5
−40

−30

−20

−10

W
op

t[f]
 [d

B
]

0 10 20 30
−0.2

−0.1

0

0.1

0.2

w
[t]

0 0.1 0.2 0.3 0.4 0.5
−40

−30

−20

−10

w
[f]

 [d
B

]
0 10 20 30

0

0.01

0.02

0.03

W
ei

gh
t−

er
ro

r
0 1 2 3 4

x 10
4

−20

−10

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.22: Performance of the MCFXLMS algorithm.

Audio Files The following files demonstrate the performance of the MCFXLMS algorithm
in the application mentioned above.

wavin\mcin22wn.wav Reference (input) signals
wavin\mcd22wn.wav microphones’ signals with controller OFF.
wavout\mcfxlms.wav microphones’ signals with controller ON.

See Also INIT MCFXLMS, ASPTMCFXLMS, ASPTFXLMS, ASPTFDFXLMS,
ASPTMCFDFXLMS.

Reference [3], Chapter 3.

317

Chapter 10. Applications and Examples

10.12 beambb lclms

Purpose Simulation of a beam former application using an adaptive array with the
adaptive coefficients adjusted using the LCLMS algorithms. Signals are as-
sumed to be complex and at the baseband frequency (modulated carrier gone
through a phase quadrature demodulator for instance).

Syntax beambb_lclms

Description The block diagram of the adaptive array simulated in this application is shown
in Fig. 10.23. The array is composed of M omnidirectional (equally sensitive in
all directions) sensors. All array elements receive narrow-band incident signals
that include one or more jammer at the same center frequency ωc. Assuming
that the received signals has been demodulated to baseband frequencies, com-
plex signal processing can be used at this baseband frequency, which allows
using much lower sampling frequency and therefore reduces the computation
complexity, compared to processing at the RF or IF frequency. At baseband
frequency, complete control can be achieved using only one complex coefficient
in each branch to control the amplitude and the phase. Since no desired signal
is used in the array shown in Fig. 10.23, the filter will converge to the triv-
ial solution w = 0, unless another constraint is imposed on the adaptation
process. The Linearly Constrained LMS is used in such applications to adapt
the filter coefficients under the constraint cHw = a. The vector c is used to
define the look direction of the array; the direction at which the main lobe is
obtained which should coincide with the incident direction of the useful signal.
beambb_lclms first sets the array parameters, and then creates and initializes
an adaptive filter of length M , where M is the number of array elements, by
calling init_lclms(). The adaptive filter here is an adaptive linear combiner
with complex input signals equal to those received by the array sensors after
demodulation to the base band frequency. A processing loop is then started,
in each iteration in this loop, asptlclms() is called with a new set of sensor
samples to calculate the filter output, error signal, and update the constrained
filter coefficients. No desired signal is used here, and the desired is always set
to zero.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the controller performance is generated.

Code iter = 5000; % samples to process

c = 3450; % propagation speed

fc = 40000; % Carrier frequency

Wc = 2*pi*fc; % Carrier radian freq

lambda = 2*pi*c/Wc; % Carrier wave length

Fs = 100000; % sampling frequency

T = 1/Fs; % sampling period

Wo = Wc * T; % sampled carrier freq

318

10.12. beambb lclms

X1(n) y(n)y1(n)
+M1

w1

LMS

X2(n) y2(n)
+M2

w2

LMS

+

.

.

.

Xk(n) yk(n)

Mk

wk

LMS

+

Figure 10.23: Block diagram of an adaptive array using the Linearly
Constrained LMS algorithm.

Po = [80 0 -45]; % arrival angles [deg]

Avar = [1 1 1]; % variance of signals

M = length(Po); % # array elements

L = lambda/2 * (1:M-1); % distances bet. sensors

Po = pi*Po/180; % arrival angles [rad]

Do = (Wc/c)*(L’ * sin(Po)); % phase shifts [rad]

ph = 2*pi*rand(iter,M); %random phase

A = repmat(sqrt(Avar),[iter 1]).*randn(iter,M);

mu = 0.01; % step size

E = init_ipwin(iter,1); % Initialize IPWIN

% need M filters each has 1 complex coefficient. Desired

% signal here is always d(n) = 0 and the filter is updated

% so that sum(w) = 1 exp(j*0) and will produce a main lobe

% at zero degree, the incident direction of the useful signal.

[w,x,d,y,e] = init_lclms(M);

d = 0;

v = ones(M,1); % constraint vector.

a = 1; % constraint scalar.

for n=1:iter

% signal at the primary branch + receiver noise

x(1) = sum(A(n,:) .* exp(j*ph(n,:)),2) + 1e-3*rand;

319

Chapter 10. Applications and Examples

% signals at the reference branches

for i=2:M

r = 1e-3*rand; % receiver noise

x(i) = sum(A(n,:).*exp(j*ph(n,:)-j*Do(i-1,:)),2)+r;

end

% calculate output, error, and update coefficients

[w,y,e] = asptlclms(x,w,d,mu,v, a);

% update the Iteration Progress Window

[E, stop,brk] = update_ipwin(E,e,d, ’b’, w, L, Wo, c*T, 1);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_beam(E, w, L, Wo, c*T,1); break; end;

end

plot_beam(E, w, L, Wo, c*T,1);

Results Running the above script will produce the sensitivity pattern shown in
Fig. 10.24. The sensitivity pattern shows that the array main lobe is indeed at
(0◦), where the array gain is almost unity. The array, therefore, passes signals
received from this direction through while attenuates interferences incident
with other angles.

 0.5

 1

 1.5

30

210

60

240

90

270

120

300

150

330

180 0

S
en

si
tiv

ity
 P

at
te

rn

Figure 10.24: Sensitivity pattern of an adaptive array adapted at the
base-band frequency using the Linearly Constrained LMS algorithms.

See Also INIT LCLMS, ASPTLCLMS, BEAMRF LMS.

Reference [11] for an introduction to adaptive array signal processing.

320

10.13. beamrf lms

10.13 beamrf lms

Purpose Simulation of a sidelobe canceler application using an adaptive array with the
array coefficients adjusted using the LMS algorithms. The array will produce
a spatial notch in the directions of the strong signals (interferences), where all
signals are assumed real and narrow-band.

Syntax beamrf_lms

Description The block diagram of an adaptive array functioning as a sidelobe canceler is
shown in Fig. 10.25. The array is composed of two omnidirectional (equally
sensitive in all directions) sensors. The two array elements receive narrow-
band (modulated signals at RF frequency for instance) incident signals that
include one signal and one jammer at the same center frequency ωc. At this
frequency, complete control is achieved using only two coefficients one to con-
trol the amplitude and the other to control the phase. In Fig. 10.25 this is
implemented by two coefficients with input signals at 90◦ phase difference. In
this arrangement, the adaptive filter weights are completely controlled by the
signal incident with higher power [11]. Assuming that the jammer has higher
power than the useful signal, after convergence, the adaptive filter output will
contain a component close to the jammer component in the primary signal,
and the array output e(n) will contain only the useful signal. This will cause
the sensitivity pattern (the array output power divided by the power of an
incident signal at angle spanning the range 0 < θ < 2π) to have a spatial
notch in the direction of arrival of the jammer. This kind of sidelobe canceler
rely on the phase difference between the signals received at the different array
elements. For two array elements spaced L meters apart, an incident signal
with an angle of arrival θ will be received by the elements with phase differ-
ence equals to D = (L sin(θ)ωc/c) rad., where c is the wave propagation speed
[m/s] and ωc is the (analog) center frequency. In general, M array elements
are required to cancel (M − 1) jammers by duplicating the reference branch in
Fig. 10.25.
beamrf_lms first sets the array parameters, and then creates and initializes an
adaptive filter of length 2(M − 1), where (M − 1) is the number of reference
branches, by calling init_lms(). The adaptive filter in this application has an
adaptive linear combiner structure with input signals equal to those received
by the reference sensors and their 90◦ phase shifted versions. A processing
loop is then started, in each iteration of this loop asptlms() is called with a
new primary sample and a new set of reference samples to calculate the filter
output, the error, and update the filter coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue
the simulation, show or hide the simulation graph window, break out of the
processing loop, and quit the simulation. After processing all the samples, or
on pressing the break or stop buttons, the sensor signal e(n) is written to a
wave audio file and a graph presenting the array performance is generated.

321

Chapter 10. Applications and Examples

X1(n)

d(n)

e(n)
y(n) +

-

Reference

Primary
f(n)

s(n)

θ1

θ2
L

M1

M2

90°

X2(n)

w0

w1

+

+

Figure 10.25: Block diagram of an adaptive array functioning as a side-
lobe canceler.

Code clear all

rand(’seed’,12)

iter = 5000; % samples to process

c = 3450; % propagation speed

fc = 40000; % Carrier frequency

Wc = 2*pi*fc; % Carrier radian freq

lambda = 2*pi*c/Wc; % Carrier wave length

Fs = 100000; % sampling frequency

T = 1/Fs; % sampling period

Wo = Wc * T; % sampled carrier freq

Po = [90 45 0]; % arrival angles [deg]

Avar = [1 .001 2]; % variance of each sig.

M = length(Po); % # array elements

L = lambda/2 * (1:M-1); % distances vector

Po = pi*Po/180; % arrival angles [rad]

Do = (Wc/c)*(L’ * sin(Po)); % phase shifts [rad]

ph = 2*pi*rand(iter,M); %random phase

A = repmat(sqrt(Avar),[iter 1]).*randn(iter,M);

mu = 0.05; % step size

E = init_ipwin(iter,1); % Initialize IPWIN

% need M-1 filters each of 2 coefficients

[w,x,d,y,e] = init_lms(2*(M-1));

for n=1:iter

% signal at the primary branch + receiver noise

d = sum(A(n,:) .* cos(n*Wo + ph(n,:)),2) + 1e-3*rand;;

% signals at the reference branches

for i=1:M-1

r = 1e-3*rand; % receiver noise

x(2*(i-1)+1) = sum(A(n,:).*cos(n*Wo + ph(n,:)-Do(i,:)),2)+r;

x(2*i) = sum(A(n,:).*sin(n*Wo+ph(n,:)-Do(i,:)),2) +r;

end

322

10.13. beamrf lms

% calculate output, error, and update coefficients

[w,y,e] = asptlms(x,w,d,mu);

% update the Iteration Progress Window

[E, stop,brk] = update_ipwin(E,e,d, ’b’, w, L, Wo, c*T);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_beam(E, w, L, Wo, c*T); break; end;

end

plot_beam(E, w, L, Wo, c*T);

Results Running the above script will produce the graph shown in Fig. 10.26. The
left panel of this figure shows the learning curve for the adaptive coefficients
and the right panel shows the directivity pattern of the array. Since the two
strong signals used in the script are arriving at angles 0◦ and 90◦, the adaptive
coefficients have been adjusted to make spatial dips in those two directions.

0 1000 2000 3000 4000 5000

−30

−25

−20

−15

−10

−5

0

Le
ar

ni
ng

 C
ur

ve

Samples

 5

 10

30

210

60

240

90

270

120

300

150

330

180 0
S

en
si

tiv
ity

 P
at

te
rn

Figure 10.26: Performance of an adaptive sidelobe canceler implemented
using the LMS algorithm.

See Also INIT LMS, ASPTLMS, ASPTLCLMS, BEAMBB LCLMS.

Reference [11] for an introduction to adaptive array signal processing.

323

Chapter 10. Applications and Examples

10.14 echo bfdaf

Purpose Simulation of an acoustic echo canceler application using a transversal adap-
tive filter updated according to the Block Frequency Domain Adaptive Filter
(BFDAF) algorithm.

Syntax echo_bfdaf

Description The block diagram of the acoustic echo cancellation problem is shown in
Fig. 10.27. The simulation considered here uses a transversal FIR filter for
the adjustable filter and the coefficients of the filter are updated in the fre-
quency domain using the BFDAF algorithm. The far-end speech signal x(n)
(the speech from the remote speaker) is stored in the file infile. The local
speaker is assumed to be silent (listening to the remote speaker and not in-
terrupting). The echo picked by the microphone when playing x(n) through
the local loudspeaker is stored in the file dfile. First the variables for the echo
canceler W (f) are created and initialized using init_bfdaf(), and the input
signals are read from files, then a processing loop is started. In each iteration
of the loop asptbfdaf() is called with a new block of samples from the FES
and a new block of samples from the NES signals to calculate the filter output
block (estimated echo) and update the filter coefficients. The residual signal
e(n) is saved in each iteration for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

BFDAF W(n)

x(n)

d(n)e(n)

y(n)

+
_

NESRES

FES

echo

Mic

Spkr

Room boundaries

FES

Figure 10.27: Block diagram of an acoustic echo canceler implemented
using the block frequency domain adaptive filter (BFDAF).

324

10.14. echo bfdaf

Code

clear all;

infile = ’.\wavin\aecfes.wav’; % Far-end speech (FES)

dfile = ’.\wavin\aecnes.wav’; % Near-end speech (NES)

rfile = ’.\wavout\resbfdaf.wav’; % residual signal

M = 512; % adaptive filter length

L = M; % block length

mu = 0.02/L; % adaptation constant

b = 0.99; % autoregressive pole

[W,x,dn,e,y,Px,w]=init_bfdaf(L,M); % Init BFDAF

[xt,inFs,inBits] = wavread(infile); % read FES

[dt,inFs,dBits] = wavread(dfile); % read NES

inSize = max(length(xt),length(dt)); % Samples to process

res = dt; % Residual array

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

for (m=1:L:inSize-L)

% Read and scale a block from FES

xn = 2^(inBits-1) * xt(m+1:m+L,:);

% Read and scale a block from NES

dn = 2^(dBits-1) * dt(m+1:m+L,:);

% Update the adaptive filter

[W,x,y,e,Px,w]=asptbfdaf(M,x,xn,dn,W,mu,1,1,b,Px);

% Scale and store the error (residual)

res(m+1:m+L) = 2^-(dBits-1)* e;

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,dn,’e’,w,dt,res);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_echo(w,dt,res); break; end;

end;

wavwrite(res,inFs,inBits,rfile); % Save the residual

plot_echo(w, dfile, rfile); % Show results

325

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.28. The top
panel in Fig. 10.28 shows the values taken by the filter coefficients by the end of
the simulation (end of input files). The middle panel show the waveforms of the
near-end speech signal d(n) and the residual signal e(n) for visual comparison
between the echo before and after applying the echo canceler. The bottom
panel shows the echo energy decrease in dB achieved by the echo canceler
versus time, usually known as the Echo Return Loss Enhancement (ERLE).
Note that the ERLE is meaningful only in the time periods where there is echo
to be canceled.

0 50 100 150 200 250 300 350 400 450 500

−0.1

−0.05

0

0.05

w
[n

] (
b)

0 5 10 15 20

−0.2

0

0.2

m
ic

 [b
],

re
s

[g
]

0 5 10 15 20

−30

−20

−10

0

M
S

E
 [d

B
]

Time [Samples * 1000]

Figure 10.28: Performance of an Acoustic Echo Canceler implemented
using the BFDAF algorithm.

Audio Files The following files demonstrate the performance of the BFDAF algorithm in
the echo canceler application mentioned above.

wavin\aecfes.wav far-end speech (input) signal.
wavin\nesaec.wav near-end speech (microphone) signal.
wavout\resbfdaf.wav residual signal (echo canceler output).

See Also INIT BFDAF, ASPTBFDAF, ECHO NLMS, ECHO PBFDAF.

Reference [3], Chapter 3 for detailed description of BFDAF, [8] for the overlap-save
method, and [9] for frequency domain adaptive filters.

326

10.15. echo leakynlms

10.15 echo leakynlms

Purpose Simulation of an acoustic echo canceler application using a transversal adap-
tive filter updated according to the Leaky Normalized Least Mean Squares
(LEAKYNLMS) algorithm.

Syntax echo_leakynlms

Description The block diagram of the acoustic echo cancellation problem is shown in
Fig. 10.29. The simulation considered here uses a transversal FIR filter for
the adjustable filter and the coefficients of the filter are updated in time do-
main using the Leaky NLMS algorithm. The far-end speech signal x(n) (the
speech from the remote speaker) is stored in the file infile. The local speaker
is assumed to be silent (listening to the remote speaker and not interrupting).
The echo picked by the microphone when playing x(n) through the local loud-
speaker is stored in the file dfile. First, the variables for the echo canceler w(n)
are created and initialized using init_leakynlms(), and the input signals are
read from files, then a processing loop is started. In each iteration of the loop
asptleakynlms() is called with a new sample from the FES and a new sample
from the NES signals to calculate the filter output y(n) (estimated echo), filter
error e(n), and update the filter coefficients. The residual signal e(n) is saved
in each iteration for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

LEAKY
NLMS

W(n)

x(n)

d(n)e(n)

y(n)

+
_

NESRES

FES

echo

Mic

Spkr

Room boundaries

FES

Figure 10.29: Block diagram of an acoustic echo canceler implemented
using the Leaky NLMS adaptive filter.

327

Chapter 10. Applications and Examples

Code

clear all;

infile = ’.\wavin\aecfes.wav’; % Far-end speech (FES)

dfile = ’.\wavin\aecnes.wav’; % Near-end speech (NES)

rfile = ’.\wavout\resleaky.wav’; % residual signal

M = 512; % adaptive filter length

mu = 0.2/M; % adaptation constant

b = 0.99; % autoregressive pole

a = 1 - 1e-5; % leak factor

[w,x,d,y,e,p] = init_leakynlms(M); % Init NLMS

[xn,inFs,inBits] = wavread(infile); % read FES

[dn,inFs,dBits] = wavread(dfile); % read NES

inSize = max(length(xn),length(dn)); % Samples to process

res = dn; % Residual array

E = init_ipwin(inSize); % Initialize IPWIN

fprintf(’equivalent noise variance = %f\n’, (1 - a)/ (2*mu));

%% Processing Loop

for (m=1:inSize)

% update the delay line

x = [2^(inBits-1) * xn(m); x(1:M-1)];

% scale the Mic signal

d = 2^(inBits-1) *dn(m);

% call asptleakynlms to update the filter

[w,y,e,p]= asptleakynlms(x,w,d,mu,a,p,b);

% save the last residual sample

res(m) = 2^-(inBits-1)*e;

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d, ’e’, w, dn, res);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_echo(w,dn,res); break; end;

end;

wavwrite(res,inFs,inBits,rfile); % Save the residual

plot_echo(w, dfile, rfile); % Show results

328

10.15. echo leakynlms

Results Running the above script will produce the graph shown in Fig. 10.30. The top
panel in Fig. 10.30 shows the values taken by the filter coefficients by the end of
the simulation (end of input files). The middle panel show the waveforms of the
near-end speech signal d(n) and the residual signal e(n) for visual comparison
between the echo before and after applying the echo canceler. The bottom
panel shows the echo energy decrease in dB achieved by the echo canceler
versus time, usually known as the Echo Return Loss Enhancement (ERLE).
Note that the ERLE is meaningful only in the time periods where there is echo
to be canceled.

0 50 100 150 200 250 300 350 400 450 500

−0.05

0

0.05

w
[n

] (
b)

0 5 10 15 20

−0.2

0

0.2

m
ic

 [b
],

re
s

[g
]

0 5 10 15 20

−30

−20

−10

0

M
S

E
 [d

B
]

Time [Samples * 1000]

Figure 10.30: Performance of an Acoustic Echo Canceler implemented
using the Leaky NLMS adaptive filter.

Audio Files The following files demonstrate the performance of the Leaky NLMS algorithm
in the echo canceler application mentioned above.

wavin\aecfes.wav far-end speech (input) signal.
wavin\nesaec.wav near-end speech (microphone) signal.
wavout\resleaky.wav residual signal (echo canceler output).

See Also INIT LEAKYNLMS, ASPTLEAKYNLMS.

Reference [11] and [4] for extensive analysis of the NLMS and the steepest-descent search
method.

329

Chapter 10. Applications and Examples

10.16 echo nlms

Purpose Simulation of an acoustic echo canceler application using a transversal adap-
tive filter updated according to the Normalized Least Mean Squares (NLMS)
algorithm.

Syntax echo_nlms

Description The block diagram of the acoustic echo cancellation problem is shown in
Fig. 10.31. The simulation considered here uses a transversal FIR filter for the
adjustable filter and the coefficients of the filter are updated in time domain us-
ing the NLMS algorithm. The far-end speech signal x(n) (the speech from the
remote speaker) is stored in the file infile. The local speaker is assumed to be
silent (listening to the remote speaker and not interrupting). The echo picked
by the microphone when playing x(n) through the local loudspeaker is stored
in the file dfile. First, the variables for the echo canceler w(n) are created and
initialized using init_nlms(), and the input signals are read from files, then
a processing loop is started. In each iteration of the loop asptnlms() is called
with a new sample from the FES and a new sample from the NES signals to
calculate the filter output y(n) (estimated echo), filter error e(n), and update
the filter coefficients. The residual signal e(n) is saved in each iteration for
later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

NLMS W(n)

x(n)

d(n)e(n)

y(n)

+
_

NESRES

FES

echo

Mic

Spkr

Room boundaries

FES

Figure 10.31: Block diagram of an acoustic echo canceler implemented
using the NLMS algorithm.

330

10.16. echo nlms

Code

clear all;

infile = ’.\wavin\aecfes.wav’; % Far-end speech (FES)

dfile = ’.\wavin\aecnes.wav’; % Near-end speech (NES)

rfile = ’.\wavout\resnlms.wav’; % residual signal

M = 512; % adaptive filter length

mu = 0.2/M; % adaptation constant

b = 0.99; % autoregressive pole

[w,x,d,y,e,p] = init_nlms(M); % Init NLMS

[xn,inFs,inBits] = wavread(infile); % read FES

[dn,inFs,dBits] = wavread(dfile); % read NES

inSize = max(length(xn),length(dn)); % Samples to process

res = dn; % Residual array

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

for (m=1:inSize)

% update the delay line

x = [2^(inBits-1) * xn(m); x(1:M-1)];

% scale the Mic signal

d = 2^(inBits-1) *dn(m);

% call asptnlms to update the filter

[w,y,e,p]= asptnlms(x,w,d,mu,p,b);

% save the last residual sample

res(m) = 2^-(inBits-1)*e;

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d, ’e’, w, dn, res);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_echo(w,dn,res); break; end;

end;

wavwrite(res,inFs,inBits,rfile); % Save the residual

plot_echo(w, dfile, rfile); % Show results

331

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.32. The top
panel in Fig. 10.32 shows the values taken by the filter coefficients by the end of
the simulation (end of input files). The middle panel show the waveforms of the
near-end speech signal d(n) and the residual signal e(n) for visual comparison
between the echo before and after applying the echo canceler. The bottom
panel shows the echo energy decrease in dB achieved by the echo canceler
versus time, usually known as the Echo Return Loss Enhancement (ERLE).
Note that the ERLE is meaningful only in the time periods where there is echo
to be canceled.

0 50 100 150 200 250 300 350 400 450 500

−0.05

0

0.05

w
[n

] (
b)

0 5 10 15 20

−0.2

0

0.2

m
ic

 [b
],

re
s

[g
]

0 5 10 15 20

−30

−20

−10

0

M
S

E
 [d

B
]

Time [Samples * 1000]

Figure 10.32: Performance of an Acoustic Echo Canceler implemented
using the NLMS algorithm.

Audio Files The following files demonstrate the performance of the NLMS algorithm in
the echo canceler application mentioned above.

wavin\aecfes.wav far-end speech (input) signal.
wavin\nesaec.wav near-end speech (microphone) signal.
wavout\resnlms512.wav residual signal (echo canceler output).

See Also INIT NLMS, ASPTNLMS.

Reference [11] and [4] for extensive analysis of the NLMS and the steepest-descent search
method.

332

10.17. echo pbfdaf

10.17 echo pbfdaf

Purpose Simulation of an acoustic echo canceler application using a transversal adaptive
filter updated according to the Partitioned Block Frequency Domain Adaptive
Filter (PBFDAF).

Syntax echo_pbfdaf

Description The block diagram of the acoustic echo cancellation problem is shown in
Fig. 10.33. The simulation considered here uses a transversal FIR filter for
the adjustable filter and the coefficients of the filter are updated in the fre-
quency domain using the PBFDAF algorithm. The filter is divided into P
partitions, each of M coefficients, which results in a filter of length PM coeffi-
cients in total. The block length is chosen to be L = M so that the processing
delay is P times shorter than that introduced by a BFDAF filter of the same
length. The far-end speech signal x(n) (the speech from the remote speaker) is
stored in the file infile. The local speaker is assumed to be silent (listening to
the remote speaker and not interrupting). The echo picked by the microphone
when playing x(n) through the local loudspeaker is stored in the file dfile.
First the variables for the echo canceler W (f) are created and initialized using
init_pbfdaf(), and the input signals are read from files, then a processing
loop is started. In each iteration of the loop asptpbfdaf() is called with a
new block of samples from the FES and a new block of samples from the NES
signals to calculate the filter output block (estimated echo) and update the
filter coefficients. The residual signal e(n) is saved in each iteration for later
examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

PBFDAF W(n)

x(n)

d(n)e(n)

y(n)

+
_

NESRES

FES

echo

Mic

Spkr

Room boundaries

FES

Figure 10.33: Block diagram of an acoustic echo canceler implemented
using the Partitioned Block Frequency Domain Adaptive Filter (PBFDAF).

333

Chapter 10. Applications and Examples

Code

clear all;

infile = ’.\wavin\aecfes.wav’; % Far-end speech (FES)

dfile = ’.\wavin\aecnes.wav’; % Near-end speech (NES)

rfile = ’.\wavout\respbfdaf.wav’; % residual signal

P = 4; % number of partitions

M = 128; % adaptive filter length

L = M; % block length

mu = 0.01/L; % adaptation constant

b = 0.99; % autoregressive pole

[W,x,d,e,y,Px,X,w] = init_pbfdaf(L,M,P); % Init PBFDAF

[xt,inFs,inBits] = wavread(infile); % read FES

[dt,inFs,dBits] = wavread(dfile); % read NES

inSize = max(length(xt),length(dt)); % Samples to process

res = dt; % Residual array

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

for (m=1:L:inSize-L)

% Read and scale a block from FES

xn = 2^(inBits-1) * xt(m+1:m+L,:);

% Read and scale a block from NES

dn = 2^(dBits-1) * dt(m+1:m+L,:);

% Update the adaptive filter

[W,X,x,y,e,Px,w]=asptpbfdaf(M,x,xn,dn,X,W,mu,1,1,b,Px);

% Scale and store the error (residual)

res(m+1:m+L) = 2^-(dBits-1)* e;

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,dn,’e’,w,dt,res);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_echo(w,dt,res); break; end;

end;

wavwrite(res,inFs,inBits,rfile); % Save the residual

plot_echo(w, dfile, rfile); % Show results

334

10.17. echo pbfdaf

Results Running the above script will produce the graph shown in Fig. 10.34. The top
panel in Fig. 10.34 shows the values taken by the filter coefficients by the end of
the simulation (end of input files). The middle panel show the waveforms of the
near-end speech signal d(n) and the residual signal e(n) for visual comparison
between the echo before and after applying the echo canceler. The bottom
panel shows the echo energy decrease in dB achieved by the echo canceler
versus time, usually known as the Echo Return Loss Enhancement (ERLE).
Note that the ERLE is meaningful only in the time periods where there is echo
to be canceled.

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.05

0

0.05

w
[n

] (
b)

0 5 10 15 20

−0.2

0

0.2

m
ic

 [b
],

re
s

[g
]

0 5 10 15 20
−40

−30

−20

−10

0

M
S

E
 [d

B
]

Time [Samples * 1000]

Figure 10.34: Performance of an Acoustic Echo Canceler implemented
using the PBFDAF algorithm.

Audio Files The following files demonstrate the performance of the PBFDAF algorithm in
the echo canceler application mentioned above.

wavin\aecfes.wav far-end speech (input) signal.
wavin\nesaec.wav near-end speech (microphone) signal.
wavout\respbfdaf.wav residual signal (echo canceler output).

See Also INIT PBFDAF, ASPTPBFDAF, ASPTRCPBFDAF, ECHO NLMS,
ECHO BFDAF.

Reference [1] and [9] for detailed description of frequency domain adaptive filters.

335

Chapter 10. Applications and Examples

10.18 echo rcpbfdaf

Purpose Simulation of an acoustic echo canceler application using a transversal adap-
tive filter updated according to the Reduced Complexity Partitioned Block
Frequency Domain Adaptive Filter (RCPBFDAF).

Syntax echo_rcpbfdaf

Description The block diagram of the acoustic echo cancellation problem is shown in
Fig. 10.35. The simulation considered here uses a transversal FIR filter for
the adjustable filter and the coefficients of the filter are updated in the fre-
quency domain using the RCPBFDAF algorithm. The filter is divided into P
partitions, each of M coefficients, which results in a filter of length PM coeffi-
cients in total. The block length is chosen to be L = M/2 to further decrease
the processing delay compared to BFDAF and PBFDAF filters of the same to-
tal number of coefficients. The far-end speech signal x(n) (the speech from the
remote speaker) is stored in the file infile. The local speaker is assumed to be
silent (listening to the remote speaker and not interrupting). The echo picked
by the microphone when playing x(n) through the local loudspeaker is stored
in the file dfile. First the variables for the echo canceler W (f) are created and
initialized using init_rcpbfdaf(), and the input signals are read from files,
then a processing loop is started. In each iteration of the loop asptrcpbfdaf()

is called with a new block of samples from the FES and a new block of samples
from the NES signals to calculate the filter output block (estimated echo) and
update the filter coefficients. The residual signal e(n) is saved in each iteration
for later examination.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

PBFDAF W(n)

x(n)

d(n)e(n)

y(n)

+
_

NESRES

FES

echo

Mic

Spkr

Room boundaries

FES

Figure 10.35: Block diagram of an acoustic echo canceler implemented
using the (Reduced Complexity) partitioned block frequency domain adap-
tive filter (RCPBFDAF).

336

10.18. echo rcpbfdaf

Code

clear all;

infile = ’.\wavin\aecfes.wav’; % Far-end speech (FES)

dfile = ’.\wavin\aecnes.wav’; % Near-end speech (NES)

rfile = ’.\wavout\resrcpbfdaf.wav’; % residual signal

P = 8; % number of partitions

M = 64; % adaptive filter length

L = M/2; % block length

mu = 0.04/L; % adaptation constant

b = 0.99; % autoregressive pole

[W,x,d,e,y,Px,X,ci,w]=init_rcpbfdaf(L,M,P); % Init RCPBFDAF

[xt,inFs,inBits] = wavread(infile); % read FES

[dt,inFs,dBits] = wavread(dfile); % read NES

inSize = max(length(xt),length(dt)); % Samples to process

res = dt; % Residual array

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

for (m=1:L:inSize-L)

% Read and scale a block from FES

xn = 2^(inBits-1) * xt(m+1:m+L,:);

% Read and scale a block from NES

dn = 2^(dBits-1) * dt(m+1:m+L,:);

% Update the adaptive filter

% only 2 partitions are constrained each call

[W,X,x,y,e,Px,ci,w]=asptrcpbfdaf(M,x,xn,dn,X,W,mu,1,2,b,Px,ci);

% Scale and store the error (residual)

res(m+1:m+L) = 2^-(dBits-1)* e;

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,dn,’e’,w,dt,res);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_echo(w,dt,res); break; end;

end;

wavwrite(res,inFs,inBits,rfile); % Save the residual

plot_echo(w, dfile, rfile); % Show results

337

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.36. The top
panel in Fig. 10.36 shows the values taken by the filter coefficients by the end of
the simulation (end of input files). The middle panel show the waveforms of the
near-end speech signal d(n) and the residual signal e(n) for visual comparison
between the echo before and after applying the echo canceler. The bottom
panel shows the echo energy decrease in dB achieved by the echo canceler
versus time, usually known as the Echo Return Loss Enhancement (ERLE).
Note that the ERLE is meaningful only in the time periods where there is echo
to be canceled.

0 50 100 150 200 250 300 350 400 450 500
−0.1

−0.05

0

0.05

w
[n

] (
b)

0 5 10 15 20

−0.2

0

0.2

m
ic

 [b
],

re
s

[g
]

0 5 10 15 20
−40

−30

−20

−10

0

M
S

E
 [d

B
]

Time [Samples * 1000]

Figure 10.36: Performance of an Acoustic Echo Canceler implemented
using the RCPBFDAF algorithm with two partitions out of eight are con-
strained each block and a block length equals to half the partition length.

Audio Files The following files demonstrate the performance of the RCPBFDAF algorithm
in the echo canceler application mentioned above.

wavin\aecfes.wav far-end speech (input) signal.
wavin\nesaec.wav near-end speech (microphone) signal.
wavout\resrcpbfdaf.wav residual signal (echo canceler output).

See Also INIT RCPBFDAF, ASPTRCPBFDAF, ASPTPBFDAF, ECHO PBFDAF,
ECHO BFDAF.

Reference [1] and [9] for detailed description of frequency domain adaptive filters.

338

10.19. equalizer nlms

10.19 equalizer nlms

Purpose Simulation of an adaptive inverse modeling application using an adaptive filter
updated according to the Normalized Least Mean Squares (NLMS) algorithm.

Syntax equalizer_nlms

Description The block diagram of the equalization (inverse modeling) problem is shown in
Fig. 10.37. The simulation considered here uses a transversal FIR filter for the
adjustable filter and the coefficients of the filter are updated using the NLMS
algorithm. The input signal u(n) (measured signal at the physical system
input) is stored in the file ufile. The physical system output x(n) (the signal
measured at the system output in response to applying u(n) at its input) is
stored in the file xfile. The desired signal for the equalization problem is a
delayed version of the system input signal. In practice, only the system output
x(n) is available during normal operation and the system input u(n) should
be provided in a training session. First the variables for the adaptive model
w(n) are created and initialized using init_nlms(), and the input signals are
read from files, then a processing loop is started. In each iteration of the loop
asptnlms() is called with a new input sample and a new desired sample to
calculate the filter output y(n) and update the filter coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

Adaptive
algorithm

Adjustable
filter

Delay
∆

x(n)

d(n)

e(n)

y(n) +

-
Physical
system

u(n)

Figure 10.37: Block diagram of the inverse modeling application.

339

Chapter 10. Applications and Examples

Code clear all;

load .\data\h32; % for verification

ufile = ’.\wavin\scinwn.wav’; % input signal

xfile = ’.\wavin\scdwn32.wav’; % system output

h = h32;

D = 32; % delay in desired path

M = 64; % adaptive model length

mu = .2/M; % Step size

b = 0.98; % smoothing pole

%% Initialize storage

[w,x,d,y,e,p] = init_nlms(M); % Init NLMS algorithm

[un,x1Fs,x1Bits] = wavread(ufile); % Get system input

[xn,x2Fs,x2Bits] = wavread(xfile); % Get system output

inSize = min(length(un),length(xn)); % Samples to process

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

% The desired signal is the delayed un(n) and the adaptive filter

% input is xn(n) which is the output of the system to be equalized.

for (m=D+1:inSize)

x = [xn(m,:);x(1:M-1,:)]; % update the delay line

d = un(m-D,:); % desired sample

% Update the adaptive filter and calculate the output and error

[w,y,e,p]= asptnlms(x,w,d,mu,p,b);

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d, ’i’, w, h, D);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_invmodel(w,h,E,D); break; end;

end;

plot_invmodel(w,h,E,D);

340

10.19. equalizer nlms

Results Running the above script will produce the graph shown in Fig. 10.38. The
two top-left panels in Fig. 10.38 show the time and frequency responses of the
optimum solution for the inverse modeling problem at hand. The time and
frequency responses for the model obtained by the adaptive filter are shown in
the two top-right panels. The bottom panel shows the learning curve for the
adaptive filter. Note that the input signal is colored by the physical system
which might increase the eigenvalue spread in the adaptive filter input signal
x(n). This might result in slow convergence and large final misadjustment at
frequencies not well excited when the LMS or one of its derivatives is used to
adapt the filter.

0 20 40 60

−4

−2

0

2

4

h[
t]

0 0.1 0.2 0.3 0.4 0.5

10

15

20

25

30

h[
f]

[d
B

]

0 20 40 60

−4

−2

0

2

4

w
[t]

0 0.1 0.2 0.3 0.4 0.5

10

15

20

25

30

w
[f]

 [d
B

]

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−20

−10

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.38: Performance of the NLMS adaptive algorithm in an inverse
modeling application.

See Also INIT NLMS, ASPTNLMS, MODEL NLMS.

Reference [11] and [4] for extensive analysis of the NLMS and the steepest-descent search
method.

341

Chapter 10. Applications and Examples

10.20 equalizer rls

Purpose Simulation of an adaptive inverse modeling application using an adaptive filter
updated according to the Recursive Least Squares (RLS) algorithm.

Syntax equalizer_rls

Description The block diagram of the equalization (inverse modeling) problem is shown
in Fig. 10.39. The simulation considered here uses a transversal FIR filter
for the adjustable filter and the coefficients of the filter are updated using the
RLS algorithm. The input signal u(n) (measured signal at the physical system
input) is stored in the file ufile. The physical system output x(n) (the signal
measured at the system output in response to applying u(n) at its input) is
stored in the file xfile. The desired signal for the equalization problem is a
delayed version of the system input signal. In practice, only the system output
x(n) is available during normal operation and the system input u(n) should
be provided in a training session. First the variables for the adaptive model
w(n) are created and initialized using init_rls(), and the input signals are
read from files, then a processing loop is started. In each iteration of the loop
asptrls() is called with a new input sample and a new desired sample to
calculate the filter output y(n) and update the filter coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

Adaptive
algorithm

Adjustable
filter

Delay
∆

x(n)

d(n)

e(n)

y(n) +

-
Physical
system

u(n)

Figure 10.39: Block diagram of the inverse modeling application.

342

10.20. equalizer rls

Code clear all;

load .\data\h32; % for verification

ufile = ’.\wavin\scinwn.wav’; % input signal

xfile = ’.\wavin\scdwn32.wav’; % system output

h = h32;

D = 32; % delay in desired path

M = 64; % adaptive model length

b = 0.01; % initial diagonal of R

a = 0.99; % forgetting factor

%% Initialize storage

[w,x,d,y,e,R] = init_rls(M,b); % Init RLS algorithm

[un,x1Fs,x1Bits] = wavread(ufile); % Get system input

[xn,x2Fs,x2Bits] = wavread(xfile); % Get system output

inSize = min(length(un),length(xn)); % Samples to process

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

% The desired signal is the delayed un(n) and the adaptive filter

% input is xn(n) which is the output of the system to be equalized.

for (m=D+1:inSize)

x = [xn(m,:);x(1:M-1,:)]; % update the delay line

d = un(m-D,:); % desired sample

% Update the adaptive filter and calculate the output and error

[w,y,e,R] = asptrls(x,w,d,R,a);

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d, ’i’, w, h, D);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_invmodel(w,h,E,D); break; end;

end;

plot_invmodel(w,h,E,D);

343

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.40. The
two top-left panels in Fig. 10.40 show the time and frequency responses of the
optimum solution for the inverse modeling problem at hand. The time and
frequency responses for the model obtained by the adaptive filter are shown in
the two top-right panels. The bottom panel shows the learning curve for the
adaptive algorithm.

0 20 40 60

−4

−2

0

2

4

h[
t]

0 0.1 0.2 0.3 0.4 0.5

10

15

20

25

30

h[
f]

[d
B

]

0 20 40 60

−4

−2

0

2

4

w
[t]

0 0.1 0.2 0.3 0.4 0.5

10

15

20

25

30

w
[f]

 [d
B

]

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−20

−10

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.40: Performance of the RLS algorithm in a a channel equal-
ization application.

See Also INIT RLS, ASPTRLS.

Reference [2] and [4] for analysis of the RLS algorithm and its variants.

344

10.21. model arlmsnewt

10.21 model arlmsnewt

Purpose Simulation of an adaptive forward modeling application using an adaptive
transversal filter updated with the autoregressive modeling version of the LMS-
Newton algorithm.

Syntax model_arlmsnewt

Description The block diagram of the system identification (forward modeling) problem us-
ing the autoregressive LMS-Newton adaptive algorithm is shown in Fig. 10.41,
(see Section 4.1 for more details on the ARLMSNEWT algorithm). The input
signal x(n) (measured signal at the input of the system to be modeled) is stored
in the file infile. The desired signal d(n) (the signal measured at the system
output in response to applying x(n) at its input) is stored in the file dfile. First
the variables for the LMS-Newton algorithm are creates and initializes using
init_arlmsnewt(), and the input signals are read from files, then a processing
loop is started. In each iteration of the loop asptarlmsnewt() is called with
a new input sample and a new desired sample to calculate the filter output
(estimated desired signal) and update the adaptive model coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

AR LMS-
Newton

Physical
system

x(n) d(n)

e(n)

y(n)

+
-w(n)

Figure 10.41: Block diagram of a forward modeling application using
the autoregressive LMS-Newton algorithm.

345

Chapter 10. Applications and Examples

Code clear all;

load .\data\h512; % for verification

% Data files

infile = ’.\wavin\scinwn.wav’; % input signal, white noise

dfile = ’.\wavin\scdwn512.wav’; % system output

% Simulation parameters

L = 512; % adaptive model length

M = 3; % AR model coef.

mu_w = .4/L; % FIR filter step size

mu_p = 1e-6; % lattice predictor step size

maxk = .99; % maximum value for PARCOR

%% Initialize storage

[k,w,x,b,u,P,d,y,e] = init_arlmsnewt(L,M); % Init LMS Newton

[xn,inFs,inBits] = wavread(infile); % read input signal

[dn,inFs,dBits] = wavread(dfile); % read desired signal

inSize = min(length(dn),length(xn)); % samples to process

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

for (m=1:inSize)

x = [xn(m,:);x(1:end-1,:)]; % update the delay line

d = dn(m); % new desired sample

% update the adaptive model

[k,w,b,u,P,y,e] = asptarlmsnewt(k,w,x,b,u,P,d,mu_p,mu_w,maxk);

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d,’m’,w,h512);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_model(w,h512,E); break; end;

end;

plot_model(w,h512,E);

346

10.21. model arlmsnewt

Results Running the above script will produce the graph shown in Fig. 10.42. The
two top-left panels in Fig. 10.42 show the time and frequency responses of the
unknown system for which this application is intended to provide a FIR model.
The time and frequency responses for the model obtained by the adaptive filter
are shown in the two top-right panels. The bottom-left panel shows the learning
curve and the bottom-right panel shows the error in the filter coefficients by
the end of the simulation.

0 100 200 300 400 500

−0.1

−0.05

0

0.05

h[
t]

0 0.1 0.2 0.3 0.4 0.5

−40

−30

−20

−10

h[
f]

[d
B

]

0 100 200 300 400 500

−0.1

−0.05

0

0.05

w
[t]

0 0.1 0.2 0.3 0.4 0.5

−40

−30

−20

−10

w
[f]

 [d
B

]

0 100 200 300 400 500
0

1

2

3

4

x 10
−6

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−60

−40

−20

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.42: Performance of the autoregressive LMS-Newton adaptive
filter in a system identification application.

See Also INIT ARLMSNEWT, ASPTARLMSNEWT.

Reference [2] and [4] for analysis of the adaptive Lattice filters, [2] and [11] for analysis
of the LMS-Newton algorithm.

347

Chapter 10. Applications and Examples

10.22 model eqerr

Purpose Simulation of an adaptive forward modeling application using a recursive adap-
tive filter updated according to the Equation Error algorithm.

Syntax model_eqerr

Description The block diagram of the system identification (forward modeling) problem
using the Equation Error adaptive algorithm is shown in Fig. 10.43, (see Section
6.2 for more details on the Equation Error algorithm). The input signal x(n)
(measured signal at the input of the system to be modeled) is stored in the
file infile. The desired signal d(n) (the signal measured at the system output
in response to applying x(n) at its input) is stored in the file dfile. First the
variables for the adaptive IIR model w(n) are created and initialized using
init_eqerr(), and the input signals are read from files, then a processing
loop is started. In each iteration of the loop aspteqerr() is called with a new
input sample and a new desired sample to calculate the filter output (estimated
desired signal) and update the filter coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

A(z)

B(z)

x(n)
Σ

y(n)

Σ

d(n)

LMS

e(n)
_

+

1
1-B(z)

Physical
System

Figure 10.43: Block diagram of the forward modeling application using
the Equation Error recursive adaptive filter.

348

10.22. model eqerr

Code

clear all;

infile = ’.\wavin\scinwn.wav’; % input signal

dfile = ’.\wavin\scdar22.wav’; % desired signal

N = 2; % number of zeros

M = 2; % number of poles

H = 50; % response length

p1 = .2 + j* .85; % unknown filter poles

p2 = .2 - j* .85; % for verification

ip = [1; zeros(H-1,1)]; % impulse vector

h = filter([0.6 -.01],[1 -(p1+p2) (p1*p2)],ip);

% Initial parameters

u0 = zeros(N+M,1); % composite input vector

w0 = u0; % initial filter vector

y0 = zeros(M,1); % initial output delay line

d0 = randn(1,1); % initial desired sample

mu = [.02;0.02;.01;0.01] ; % Step size vector

% Create and initialize EQERR IIR filter

[u,w,y,e,mu,Px,Pd]=init_eqerr(N,M,u0,w0,y0,d0,mu);

[xn,inFs,inBits] = wavread(infile); % read input

[dn,inFs,dBits] = wavread(dfile); % read desired

inSize = max(length(dn),length(xn)); % samples to process

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

for (m=1:inSize)

x = 2^(inBits-1) * xn(m); % input sample

d = 2^(inBits-1) * dn(m); % desired sample

% update the filter

[u,w,y,e,Px,Pd]=aspteqerr(N,M,u,w,y,x,d,mu,Px,Pd);

% impulse response for verification

wp = filter(w(1:N),[1 ; -w(N+1:N+M)],ip);

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d, ’m’, wp, h);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_model(wp,h,E); break; end;

end;

plot_model(wp,h,E);

349

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.44. The
two top-left panels in Fig. 10.44 show the time and frequency responses of the
unknown system for which this application is intended to provide an IIR model.
The time and frequency responses for the model obtained by the adaptive filter
are shown in the two top-right panels. The bottom-left panel shows the learning
curve and the bottom-right panel shows the estimation error in the impulse
response.

0 10 20 30 40

−0.2

0

0.2

0.4

0.6

h[
t]

0 0.1 0.2 0.3 0.4 0.5
−10

−5

0

5

h[
f]

[d
B

]

0 10 20 30 40

−0.2

0

0.2

0.4

0.6

w
[t]

0 0.1 0.2 0.3 0.4 0.5
−10

−5

0

5

w
[f]

 [d
B

]

0 10 20 30 40 50
0

2

4

6

x 10
−6

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−80

−60

−40

−20

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.44: Performance of the equation error adaptive filter in a
system identification application.

See Also INIT EQERR, ASPTEQERR.

Reference [2] and [10] for introduction to recursive adaptive filters.

350

10.23. model lmslattice

10.23 model lmslattice

Purpose Simulation of an adaptive forward modeling application using an adaptive joint
process estimator updated according to the LMS Lattice algorithm.

Syntax model_lmslattice

Description The block diagram of the system identification (forward modeling) problem
using the LMS Lattice adaptive algorithm is shown in Fig. 10.45. The LMS
Lattice algorithm adjusts the PARCOR coefficients of the lattice predictor and
the linear combiner coefficients simultaneously to minimize the mean square of
the forward and backward prediction errors as well as the modeling error e(n)
(see Section 5.4 for more information on the LMSLATTICE algorithm). The
input signal x(n) (measured signal at the input of the system to be modeled)
is stored in the file infile. The desired signal d(n) (the signal measured at the
system output in response to applying x(n) at its input) is stored in the file
dfile. First the variables for the LMS-Lattice filter are creates and initializes
using init_lmslattice(), and the input signals are read from files, then a
processing loop is started. In each iteration of the loop asptlmslattice() is
called with a new input sample and a new desired sample to calculate the filter
output (estimated desired signal) and update the adaptive model coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

LMS
Lattice

Lattice
Predictor

Physical
system

x(n) d(n)

e(n)

y(n)

+
-Linear

Combiner

…b0 bM

Figure 10.45: Block diagram of the Lattice joint process estimator in a
forward modeling application.

351

Chapter 10. Applications and Examples

Code clear all;

load .\data\h32; % for verification

% Data files

infile = ’.\wavin\scinwn.wav’; % input signal, white noise

dfile = ’.\wavin\scdwn32.wav’; % system output

% Simulation parameters

L = 32; % adaptive model length

mu_c = .1/L; % linear combiner step size

mu_p = 1e-6; % linear predictor step size

%% Initialize storage

[k,w,b,P,d,y,e] = init_lmslattice(L); % Init LMS Lattice

[xn,inFs,inBits] = wavread(infile); % read input signal

[dn,inFs,dBits] = wavread(dfile); % read desired signal

inSize = min(length(dn),length(xn)); % samples to process

E = init_ipwin(inSize); % Initialize IPWIN

uk = 1; % PARCOR update flag

%% Processing Loop

for (m=1:inSize)

% stop updating k after 2000 samples

if (m == 2000), uk=0;end

x = xn(m); % new input sample

d = dn(m); % new desired sample

% update the adaptive model

[k,w,b,P,y,e] = asptlmslattice(k,w,b,P,x,d,mu_p,mu_c,uk);

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d,’m’,w,h32);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_model(w,h32,E); break; end;

end;

plot_model(w,h32,E);

352

10.23. model lmslattice

Results Running the above script will produce the graph shown in Fig. 10.46. The
two top-left panels in Fig. 10.46 show the time and frequency responses of the
unknown system for which this application is intended to provide a FIR model.
The time and frequency responses for the model obtained by the adaptive filter
are shown in the two top-right panels. The bottom-left panel shows the learning
curve and the bottom-right panel shows the error in the filter coefficients by
the end of the simulation.

0 10 20 30

−0.1

−0.05

0

0.05

h[
t]

0 0.1 0.2 0.3 0.4 0.5
−30

−25

−20

−15

−10

h[
f]

[d
B

]

0 10 20 30

−0.1

−0.05

0

0.05

w
[t]

0 0.1 0.2 0.3 0.4 0.5
−30

−25

−20

−15

−10

w
[f]

 [d
B

]

0 10 20 30
0

2

4

6

x 10
−5

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−60

−40

−20

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.46: Performance of the LMS Lattice adaptive filter in a system
identification application.

See Also INIT LMSLATTICE, ASPTLMSLATTICE.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

353

Chapter 10. Applications and Examples

10.24 model mvsslms

Purpose Simulation of an adaptive forward modeling application using a transversal
adaptive filter updated according to the Modified Variable Step Size LMS
(MVSSLMS) algorithm.

Syntax model_mvsslms

Description The block diagram of the system identification (forward modeling) problem
using the MVSSLMS adaptive algorithm is shown in Fig. 10.47 (see Section
4.10 for more details on the modified variable step size algorithm). The sim-
ulation considered here uses a transversal FIR filter for the adjustable filter
and the coefficients of the filter are updated using the MVSSLMS algorithm.
The input signal x(n) (measured signal at the input of the system to be mod-
eled) is stored in the file infile. The desired signal d(n) (the signal measured
at the system output in response to applying x(n) at its input) is stored in
the file dfile. First the variables for the adaptive model w(n) are created and
initialized using init_mvsslms(), and the input signals are read from files,
then a processing loop is started. In each iteration of the loop asptmvsslms()

is called with a new input sample and a new desired sample to calculate the
filter output (estimated desired signal) and update the filter coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

MVSSLMS

W(n)

Physical
system

x(n) d(n)

e(n)

y(n) +

-

Figure 10.47: Block diagram of an FIR forward modeling using the
MVSSLMS adaptive algorithm.

354

10.24. model mvsslms

Code

clear all;

load .\data\h32; % for verification

infile = ’.\wavin\scinwn.wav’; % input signal, white noise

dfile = ’.\wavin\scdwn32.wav’; % system output

L = 32; % adaptive model length

roh = 1e-3; % adaptation constant of mu

mu_min = 1e-6; % lower bound for mu

mu_max = 0.99; % higher bound for mu

%% Initialize storage

[w,x,d,y,e,g,mu] = init_mvsslms(L); % Initialize MVSSLMS

[xn,inFs,inBits] = wavread(infile); % read input signal

[dn,inFs,dBits] = wavread(dfile); % read desired signal

inSize = min(length(dn),length(xn)); % samples to process

E = init_ipwin(inSize); % Initialize IPWIN

muv = zeros(inSize,1); % time evolution of mu

%% Processing Loop

for (m=1:inSize)

x = [xn(m); x(1:L-1,:)]; % update the input delay line

d = dn(m); % get the new desired sample

% Update the adaptive filter

[w,g,mu,y,e] = asptmvsslms(x,w,g,d,mu,roh,mu_min,mu_max);

muv(m) = mu; % save mu to display later

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d,’m’,w,h32);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_model(w,h32,E); break; end;

end;

plot_model(w,h32,E);

subplot(3,2,6);

plot(muv(1:m));grid

355

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.48. The
two top-left panels in Fig. 10.48 show the time and frequency responses of the
unknown system for which this application is intended to provide a FIR model.
The time and frequency responses for the model obtained by the adaptive filter
are shown in the two top-right panels. The bottom-left panel shows the learning
curve and the bottom-right panel shows the evolution of the step size variable
with time during the simulation.

0 10 20 30

−0.1

−0.05

0

0.05

h[
t]

0 0.1 0.2 0.3 0.4 0.5
−30

−25

−20

−15

−10

h[
f]

[d
B

]

0 10 20 30

−0.1

−0.05

0

0.05

w
[t]

0 0.1 0.2 0.3 0.4 0.5
−30

−25

−20

−15

−10

w
[f]

 [d
B

]

0 1 2 3 4

x 10
4

0

0.05

0.1

0.15

0.2

S
te

p
si

ze

Samples
0 1 2 3 4

x 10
4

−60

−40

−20

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.48: Performance of the Modified Variable Step Size LMS
(MVSSLMS) adaptive filter in a system identification application.

See Also INIT MVSSLMS, ASPTMVSSLMS, ASPTVSSLMS.

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method.

356

10.25. model outerr

10.25 model outerr

Purpose Simulation of an adaptive forward modeling application using a recursive adap-
tive filter updated according to the Output Error algorithm.

Syntax model_outerr

Description The block diagram of the system identification (forward modeling) problem
using the Output Error adaptive algorithm is shown in Fig. 10.49 (see Section
6.3 for more details on the Output Error algorithm). The simulation considered
here uses a recursive filter for the adjustable filter and the coefficients of the
filter are updated using the Output Error algorithm. The input signal x(n)
(measured signal at the input of the system to be modeled) is stored in the
file infile. The desired signal d(n) (the signal measured at the system output
in response to applying x(n) at its input) is stored in the file dfile. First the
variables for the adaptive IIR model w(n) are created and initialized using
init_outerr(), and the input signals are read from files, then a processing
loop is started. In each iteration of the loop asptouterr() is called with a new
input sample and a new desired sample to calculate the filter output (estimated
desired signal) and update the filter coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

A(z)

B(z)

x(n)
Σ

y(n)
Σ

d(n)

LMS

e(n)

Physical
System

Figure 10.49: Block diagram of the forward modeling application using
the Output Error recursive adaptive filter.

357

Chapter 10. Applications and Examples

Code

clear all;

infile = ’.\wavin\scinwn.wav’; % input signal

dfile = ’.\wavin\scdar22.wav’; % desired signal

N = 2; % number of zeros

M = 2; % number of poles

H = 50; % response length

p1 = .2 + j* .85; % unknown filter poles

p2 = .2 - j* .85; % for verification

ip = [1; zeros(H-1,1)]; % impulse vector

h = filter([0.6 -.01],[1 -(p1+p2) (p1*p2)],ip);

% Initial parameters

u0 = zeros(N+M,1); % composite input vector

w0 = u0; % initial filter vector

c0 = u0; % initial delay line

d0 = randn(1,1); % initial desired sample

mu = [.01;0.01;.001;0.001] ; % Step size vector

% Create and initialize OUTERR IIR filter

[u,w,c,y,d,e,mu,Px,Py] = init_outerr(N,M,u0,w0,c0,d0,mu);

[xn,inFs,inBits] = wavread(infile); % read input

[dn,inFs,dBits] = wavread(dfile); % read desired

inSize = max(length(dn),length(xn)); % samples to process

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

for (m=1:inSize)

x = 2^(inBits-1) * xn(m); % input sample

d = 2^(inBits-1) * dn(m); % desired sample

% update the filter

[u,w,c,y,e,Px,Py] = asptouterr(N,M,u,w,c,x,d,mu,Px,Py);

% impulse response for verification

wp = filter(w(1:N),[1 ; -w(N+1:N+M)],ip);

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d, ’m’, wp, h);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_model(wp,h,E); break; end;

end;

plot_model(wp,h,E);

358

10.25. model outerr

Results Running the above script will produce the graph shown in Fig. 10.50. The
two top-left panels in Fig. 10.50 show the time and frequency responses of the
unknown system for which this application is intended to provide an IIR model.
The time and frequency responses for the model obtained by the adaptive filter
are shown in the two top-right panels. The bottom-left panel shows the learning
curve and the bottom-right panel shows the estimation error in the impulse
response.

0 10 20 30 40

−0.2

0

0.2

0.4

0.6

h[
t]

0 0.1 0.2 0.3 0.4 0.5
−10

−5

0

5

h[
f]

[d
B

]

0 10 20 30 40

−0.2

0

0.2

0.4

0.6

w
[t]

0 0.1 0.2 0.3 0.4 0.5
−10

−5

0

5

w
[f]

 [d
B

]

0 10 20 30 40 50
0

2

4

6

x 10
−6

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−80

−60

−40

−20

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.50: Performance of the output error algorithm in a system
identification application.

See Also INIT OUTERR, ASPTOUTERR.

Reference [2] and [10] for introduction to recursive adaptive filters.

359

Chapter 10. Applications and Examples

10.26 model rlslattice

Purpose Simulation of an adaptive forward modeling application using a lattice joint
process estimator updated according to the RLS Lattice adaptive algorithm.

Syntax model_rlslattice

Description The block diagram of the system identification (forward modeling) problem us-
ing the RLS Lattice adaptive algorithm is shown in Fig. 10.51 (see Section 5.5
for more information on the RLS-Lattice algorithm). The RLS Lattice algo-
rithm adjusts the PARCOR coefficients of the lattice predictor and the linear
combiner coefficients simultaneously to minimize the forward and backward
prediction errors as well as the modeling error e(n) in the least squares sense.
The input signal x(n) (measured signal at the input of the system to be mod-
eled) is stored in the file infile. The desired signal d(n) (the signal measured
at the system output in response to applying x(n) at its input) is stored in
the file dfile. First the variables for the RLS lattice are created and initialized
using init_rlslattice(), and the input signals are read from files, then a
processing loop is started. In each iteration of the loop asptrlslattice() is
called with a new input sample and a new desired sample to calculate the filter
output (estimated desired signal) and update the adaptive model coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

RLS
Lattice

Lattice
Predictor

Physical
system

x(n) d(n)

e(n)

y(n)

+
-Linear

Combiner

…b0 bM

Figure 10.51: Block diagram of the RLS Lattice joint process estimator
in a forward modeling application.

360

10.26. model rlslattice

Code clear all;

load .\data\h512; % for verification

infile = ’.\wavin\scinwn.wav’; % input signal, white noise

dfile = ’.\wavin\scdwn512.wav’; % system output

M = 512; % adaptive model length

a = 0.999 % forgetting factor

%% Initialize storage

% Init RLS Lattice algorithm

[ff,bb,fb,be,cf,b,d,y,e,kf,kb,w] = init_rlslattice(M);

[xn,inFs,inBits] = wavread(infile); % read input signal

[dn,inFs,dBits] = wavread(dfile); % read desired signal

inSize = min(length(dn),length(xn)); % samples to process

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

for (m=1:inSize)

x = xn(m,:); % new input sample

d = dn(m,:); % new desired output

% Update the adaptive filter

[ff,bb,fb,be,cf,b,y,e,kf,kb,w] = asptrlslattice(ff,...

bb,fb,be,cf,b,a,x,d);

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d,’m’,w,h512);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_model(w,h512,E); break; end;

end;

plot_model(w,h512,E);

361

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.52. The
two top-left panels in Fig. 10.52 show the time and frequency responses of the
unknown system for which this application is intended to provide a FIR model.
The time and frequency responses for the model obtained by the adaptive filter
are shown in the two top-right panels. The bottom-left panel shows the learning
curve and the bottom-right panel shows the error in the filter coefficients by
the end of the simulation.

0 100 200 300 400 500

−0.1

−0.05

0

0.05

h[
t]

0 0.1 0.2 0.3 0.4 0.5

−40

−30

−20

−10

h[
f]

[d
B

]

0 100 200 300 400 500

−0.1

−0.05

0

0.05

w
[t]

0 0.1 0.2 0.3 0.4 0.5

−40

−30

−20

−10

w
[f]

 [d
B

]

0 100 200 300 400 500
0

2

4

6

8
x 10

−3

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−80

−60

−40

−20

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.52: Performance of the RLS-Lattice algorithm in a system
identification application.

See Also INIT RLSLATTICE, ASPTRLSLATTICE.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

362

10.27. model sharf

10.27 model sharf

Purpose Simulation of an adaptive forward modeling application using an recursive
adaptive filter updated according to the Simple Hyperstable Adaptive Recur-
sive Filter (SHARF) algorithm.

Syntax model_sharf

Description The block diagram of the system identification (forward modeling) problem
using the SHARF adaptive algorithm is shown in Fig. 10.53 (see Section 6.4 for
more information on the SHARF algorithm). The simulation considered here
uses a recursive filter for the adjustable filter and the coefficients of the filter
are updated using the SHARF algorithm. The input signal x(n) (measured
signal at the input of the system to be modeled) is stored in the file infile. The
desired signal d(n) (the signal measured at the system output in response to
applying x(n) at its input) is stored in the file dfile. First the variables for
the adaptive IIR model w(n) are created and initialized using init_sharf(),
and the input signals are read from files, then a processing loop is started. In
each iteration of the loop asptsharf() is called with a new input sample and
a new desired sample to calculate the filter output (estimated desired signal)
and update the filter coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

A(z)

B(z)

x(n)
Σ Σ

d(n)

LMS

e(n)
_

+
y1(n)

C(z)

Physical
System

Figure 10.53: Block diagram of the forward modeling application using
the SHARF algorithm.

363

Chapter 10. Applications and Examples

Code

clear all;

infile = ’.\wavin\scinwn.wav’; % input signal

dfile = ’.\wavin\scdar22.wav’; % desired signal

N = 2; % number of zeros

M = 2; % number of poles

L = 5; % smoothing FIR length

H = 50; % response length

p1 = .2 + j* .85; % unknown filter poles

p2 = .2 - j* .85; % for verification

ip = [1; zeros(H-1,1)]; % impulse vector

h = filter([0.6 -.01],[1 -(p1+p2) (p1*p2)],ip);

% Initial parameters

u = zeros(N+M,1); % composite input vector

w = u; % initial filter vector

c = filter(.01,[1 -.99],ip(1:L));% error smoothing filter

e = randn(L,1); % initial error vector

d = randn(1,1); % initial desired sample

mu = [.01;0.01;.003;0.003] ; % Step size vector

% Create and initialize EQERR IIR filter

[u,w,e,c,d,mu,Px,Py] = init_sharf(N,M,L,u,w,e,c,d,mu);

[xn,inFs,inBits] = wavread(infile); % read input

[dn,inFs,dBits] = wavread(dfile); % read desired

inSize = max(length(dn),length(xn)); % samples to process

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

for (m=1:inSize)

x = 2^(inBits-1) * xn(m); % input sample

d = 2^(inBits-1) * dn(m); % desired sample

% update the adaptive coefficients

[w,u,y,e,Px,Py]=asptsharf(N,M,w,u,x,d,e,c,mu,Px,Py);

% impulse response for verification

wp = filter(w(1:N),[1 ; -w(N+1:N+M)],ip);

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e(1),d, ’m’, wp, h);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_model(wp,h,E); break; end;

end;

plot_model(wp,h,E);

364

10.27. model sharf

Results Running the above script will produce the graph shown in Fig. 10.54. The
two top-left panels in Fig. 10.54 show the time and frequency responses of the
unknown system for which this application is intended to provide an IIR model.
The time and frequency responses for the model obtained by the adaptive filter
are shown in the two top-right panels. The bottom-left panel shows the learning
curve and the bottom-right panel shows the estimation error in the impulse
response.

0 10 20 30 40

−0.2

0

0.2

0.4

0.6

h[
t]

0 0.1 0.2 0.3 0.4 0.5
−10

−5

0

5

h[
f]

[d
B

]

0 10 20 30 40

−0.2

0

0.2

0.4

0.6

w
[t]

0 0.1 0.2 0.3 0.4 0.5
−10

−5

0

5

w
[f]

 [d
B

]

0 10 20 30 40 50
0

1

2

3

x 10
−6

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−80

−60

−40

−20

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.54: Performance of the SHARF IIR adaptive filter in a system
identification application.

See Also INIT SHARF, ASPTSHARF.

Reference [2] and [10] for introduction to recursive adaptive filters.

365

Chapter 10. Applications and Examples

10.28 model tdlms

Purpose Simulation of an adaptive forward modeling application using a transversal
adaptive filter updated according to the Transform Domain LMS adaptive
algorithm.

Syntax model_tdlms

Description The block diagram of the system identification (forward modeling) problem
using the TDLMS adaptive algorithm is shown in Fig. 10.55. The simulation
uses a transversal FIR filter for the adjustable filter and the coefficients of
the filter are updated using the TDLMS algorithm. The input signal x(n)
(measured signal at the input of the system to be modeled) is stored in the
file infile. The desired signal d(n) (the signal measured at the system output
in response to applying x(n) at its input) is stored in the file dfile. First
the variables for the adaptive model W(n) are created and initialized using
init_tdlms(), and the input signals are read from files, then a processing
loop is started. In each iteration of the loop aspttdlms() is called with a new
input sample and a new desired sample to calculate the filter output (estimated
desired signal) and update the filter coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

TDLMS

W(n)

Physical
system

x(n) d(n)

e(n)

y(n) +

-

Figure 10.55: Block diagram of an FIR forward modeling using the
TDLMS adaptive algorithm.

366

10.28. model tdlms

Code clear all;

load .\data\h512; % for verification

infile = ’.\wavin\scinwn.wav’; % input signal, white noise

dfile = ’.\wavin\scdwn512.wav’; % system output

L = 512; % adaptive model length

mu = 0.5/L; % Step size

b = 0.98; % pole for power estimation

T = ’fft’; % Transform type

%% Initialize storage

[W,w,x,d,y,e,p] = init_tdlms(L); % Initialize TDLMS algorithm

[xn,inFs,inBits] = wavread(infile); % read input signal

[dn,inFs,dBits] = wavread(dfile); % read desired signal

inSize = min(length(dn),length(xn));% samples to process

E = init_ipwin(inSize); % Initialize IPWIN

%% Processing Loop

for (m=1:inSize)

x = [xn(m); x(1:L-1,:)]; % update the input delay line

d = dn(m); % get the new desired sample

[W,y,e,p,w] = aspttdlms(x,W,d,mu,p,b,T);

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d,’m’,w,h512);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_model(w,h512,E); break; end;

end;

plot_model(w,h512,E);

367

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.56. The
two top-left panels in Fig. 10.56 show the time and frequency responses of the
unknown system for which this application is intended to provide a FIR model.
The time and frequency responses for the model obtained by the adaptive filter
are shown in the two top-right panels. The bottom-left panel shows the learning
curve and the bottom-right panel shows the error in the filter coefficients by
the end of the simulation.

0 100 200 300 400 500

−0.1

−0.05

0

0.05

h[
t]

0 0.1 0.2 0.3 0.4 0.5

−40

−30

−20

−10

h[
f]

[d
B

]

0 100 200 300 400 500

−0.1

−0.05

0

0.05

w
[t]

0 0.1 0.2 0.3 0.4 0.5

−40

−30

−20

−10

w
[f]

 [d
B

]

0 100 200 300 400 500
0

2

4

x 10
−6

W
ei

gh
t−

er
ro

r

0 1 2 3 4

x 10
4

−60

−40

−20

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.56: Performance of the Transform Domain LMS (TDLMS)
adaptive filter in a system identification application.

See Also INIT TDLMS, ASPTTDLMS.

Reference [11], [2], and [4] for extensive analysis of the LMS and the steepest-descent
search method.

368

10.29. model vsslms

10.29 model vsslms

Purpose Simulation of an adaptive forward modeling application using a transversal
adaptive filter updated according to the Variable Step Size LMS adaptive al-
gorithm.

Syntax model_vsslms

Description The block diagram of the system identification (forward modeling) problem
using the VSSLMS adaptive algorithm is shown in Fig. 10.57 (see Section 4.20
for more information on the VSSLMS algorithm). The simulation considered
here uses a transversal FIR filter for the adjustable filter and the coefficients
of the filter are updated using the VSSLMS algorithm. The input signal x(n)
(measured signal at the input of the system to be modeled) is stored in the
file infile. The desired signal d(n) (the signal measured at the system output
in response to applying x(n) at its input) is stored in the file dfile. First
the variables for the adaptive model w(n) are created and initialized using
init_vsslms(), and the input signals are read from files, then a processing
loop is started. In each iteration of the loop asptvsslms() is called with a new
input sample and a new desired sample to calculate the filter output (estimated
desired signal) and update the filter coefficients.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

VSSLMS

W(n)

Physical
system

x(n) d(n)

e(n)

y(n) +

-

Figure 10.57: Block diagram of an FIR forward modeling using the
VSSLMS adaptive algorithm.

369

Chapter 10. Applications and Examples

Code

clear all;

load .\data\h32; % for verification

infile = ’.\wavin\scinwn.wav’; % input signal, white noise

dfile = ’.\wavin\scdwn32.wav’; % system output

L = 32; % adaptive model length

roh = 1e-3; % adaptation constant of mu

mu_min = 1e-6; % lower bound for mu

mu_max = 0.99; % higher bound for mu

%% Initialize storage

[w,x,d,y,e,g,mu] = init_vsslms(L); % Initialize VSSLMS

[xn,inFs,inBits] = wavread(infile); % read input signal

[dn,inFs,dBits] = wavread(dfile); % read desired signal

inSize = min(length(dn),length(xn));% samples to process

E = init_ipwin(inSize); % Initialize IPWIN

muv = zeros(inSize,1); % time evolution of mu

%% Processing Loop

for (m=1:inSize)

x = [xn(m); x(1:L-1,:)]; % update the input delay line

d = dn(m); % get the new desired sample

% Update the adaptive filter

[w,g,mu,y,e] = asptvsslms(x,w,g,d,mu,roh,mu_min,mu_max);

muv(m) = mean(mu); % save average of mu

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,d,’m’,w,h32);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_model(w,h32,E); break; end;

end;

plot_model(w,h32,E);

subplot(3,2,6);

plot(muv(1:m));grid

370

10.29. model vsslms

Results Running the above script will produce the graph shown in Fig. 10.58. The
two top-left panels in Fig. 10.58 show the time and frequency responses of the
unknown system for which this application is intended to provide a FIR model.
The time and frequency responses for the model obtained by the adaptive filter
are shown in the two top-right panels. The bottom-left panel shows the learning
curve and the bottom-right panel shows the evolution of the average value of
the step size vector during the simulation.

0 10 20 30

−0.1

−0.05

0

0.05

h[
t]

0 0.1 0.2 0.3 0.4 0.5
−30

−25

−20

−15

−10

h[
f]

[d
B

]

0 10 20 30

−0.1

−0.05

0

0.05

w
[t]

0 0.1 0.2 0.3 0.4 0.5
−30

−25

−20

−15

−10

w
[f]

 [d
B

]

0 1 2 3 4

x 10
4

0

0.02

0.04

0.06

0.08

A
ve

ra
ge

 s
te

p
si

ze

Samples
0 1 2 3 4

x 10
4

−60

−40

−20

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.58: Performance of the variable step size LMS (VSSLMS)
adaptive filter in a system identification application.

See Also INIT VSSLMS, ASPTVSSLMS, ASPTMVSSLMS.

Reference [11] and [4] for extensive analysis of the LMS and the steepest-descent search
method.

371

Chapter 10. Applications and Examples

10.30 predict lbpef

Purpose Simulation of an adaptive prediction application using the Lattice Backward
Prediction Error Filter.

Syntax predict_lbpef

Description The input signal in this application is a speech fragment contaminated with
white noise. The predictor will be able to estimate the speech only, which
makes the predictor output containing less noise than its input. The error sig-
nal will contain the noise rejected by the predictor and any speech components
that could not be estimated.
The block diagram of the lattice predictor used in this application is shown
in Fig. 10.59. The input signal x(n) (a speech fragment contaminated with
white noise) is stored in the file infile. The application attempts to separate
the speech from the noise and stores the former in the file outfile and the latter
in errfile. First the variables for the adaptive lattice backward prediction er-
ror filter are created and initialized using init_lbpef(), and the input signal
is read from file, then a processing loop is started. In each iteration of the
loop asptlbpef() is called with a new input sample to calculate the predictor
output y(n) (estimated speech), the error sample e(n) (the noise and resid-
ual unestimated speech) and update the PARCOR coefficients of the lattice
predictor.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

Adaptive
algorithm

Adjustable
filter

Z-M

x(n)

d(n) = x(n-M)

e(n)

y(n) +

-

Figure 10.59: Block diagram of a prediction application using the lattice
backward prediction error filter.

372

10.30. predict lbpef

Code clear all;

infile = ’.\wavin\wnaecfes.wav’; % input signal, speech

outfile = ’.\wavout\lbpef_out.wav’; % predictor output

errfile = ’.\wavout\lbpef_err.wav’; % predictor error

M = 3; % filter length

mu_p = 0.01; % Step size

%% Initialize storage

[k,b,P,e,y,x,c] = init_lbpef(M); % Init LFPEF

inSize = wavread(infile, ’size’); % input data size

[xn,inFs,inBits] = wavread(infile); % Read input signal

E = init_ipwin(max(inSize)); % initialize IPWIN

out = zeros(size(xn)); % estimated signal

err = zeros(size(xn)); % prediction error

%% Processing Loop

for (m=1:inSize)

% update input delay line

x = [xn(m); x(1:end-1)];

% update the PARCOR coefficients

[k,b,P,e,y,c] = asptlbpef(k,b,P,x,mu_p);

out(m) = y; % save predictor output

err(m) = e; % save prediction error

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,xn(m),’p’,xn,out,err);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_predict(xn,out,err,E); break; end;

end;

plot_predict(xn,out,err,E);

% save the predicted speech to file

wavwrite(out(1:m,:),inFs,inBits,outfile);

% save the prediction error to file

wavwrite(err(1:m,:),inFs,inBits,errfile);

373

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.60. In this
graph, the top left panel shows the PEF input signal, the top right panel shows
the prediction error, the bottom left panel shows the predictor output and the
bottom right shows the ratio in dB between the power of the prediction error
e(n) and the power of the input signal x(n).

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

S
ig

na
l

Samples

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
re

di
ct

or
 o

ut
pu

t

Samples

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
re

di
ct

or
 e

rr
or

Samples

0 0.5 1 1.5 2

x 10
4

−14

−12

−10

−8

−6

−4

−2

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.60: Performance of the Lattice Backward Prediction Error
Filter in a prediction application.

Audio Files The following files demonstrate the performance of the LBPEF in the
application mentioned above.

wavin\wnaecfes.wav input signal, speech + white noise.
wavout\lbpef_out.wav predictor output, estimated speech.
wavout\lbpef_err.wav prediction error, noise.

See Also INIT LBPEF, ASPTLBPEF.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

374

10.31. predict lfpef

10.31 predict lfpef

Purpose Simulation of a prediction application using the Lattice Forward Prediction
Error Filter.

Syntax predict_lfpef

Description The input signal in this application is a speech fragment contaminated with
white noise. The predictor will be able to estimate the speech only, which
makes the predictor output containing less noise than its input. The error sig-
nal will contain the noise rejected by the predictor and any speech components
that could not be estimated.
The block diagram of the lattice predictor used in this application is shown
in Fig. 10.61. The input signal x(n) (a speech fragment contaminated with
white noise) is stored in the file infile. The application attempts to separate
the speech from the noise and stores the former in the file outfile and the lat-
ter in errfile. First the variables for the adaptive lattice forward prediction
error filter are creates and initializes using init_lfpef(), and the input sig-
nal is read from file, then a processing loop is started. In each iteration of the
loop asptlfpef() is called with a new input sample to calculate the predictor
output y(n) (estimated speech), the error sample e(n) (the noise and resid-
ual unestimated speech) and update the PARCOR coefficients of the lattice
predictor.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

Adaptive
algorithm

Adjustable
filter

Delay
∆

x(n-∆)

d(n) = x(n)

e(n)

y(n) +

-

x(n)

Figure 10.61: Block diagram of a prediction application using the lattice
forward prediction error filter.

375

Chapter 10. Applications and Examples

Code clear all;

infile = ’.\wavin\wnaecfes.wav’; % input signal, speech

outfile = ’.\wavout\lfpef_out.wav’; % predictor output

errfile = ’.\wavout\lfpef_err.wav’; % predictor error

M = 3; % filter length

mu_p = 0.01; % Step size

%% Initialize storage

[k,b,P,e,y,c] = init_lfpef(M); % Init LFPEF

inSize = wavread(infile, ’size’); % input data size

[xn,inFs,inBits] = wavread(infile); % Read input signal

E = init_ipwin(max(inSize)); % initialize IPWIN

out = zeros(size(xn)); % estimated signal

err = zeros(size(xn)); % prediction error

%% Processing Loop

for (m=1:inSize)

% update the PARCOR coefficients

[k,b,P,e,y] = asptlfpef(k,b,P,xn(m),mu_p);

out(m) = y; % save predictor output

err(m) = e; % save prediction error

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,xn(m),’p’,xn,out,err);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_predict(xn,out,err,E); break; end;

end;

plot_predict(xn,out,err,E);

% save the predicted speech to file

wavwrite(out(1:m,:),inFs,inBits,outfile);

% save the prediction error to file

wavwrite(err(1:m,:),inFs,inBits,errfile);

376

10.31. predict lfpef

Results Running the above script will produce the graph shown in Fig. 10.62. In this
graph, the top left panel shows the PEF input signal, the top right panel shows
the prediction error, the bottom left panel shows the predictor output and the
bottom right shows the ratio in dB between the power of the prediction error
e(n) and the power of the input signal x(n).

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

S
ig

na
l

Samples

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
re

di
ct

or
 o

ut
pu

t

Samples

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
re

di
ct

or
 e

rr
or

Samples

0 0.5 1 1.5 2

x 10
4

−15

−10

−5

0

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.62: Performance of the Lattice Forward Prediction Error Filter
in a prediction application.

Audio Files The following files demonstrate the performance of the LFPEF in the appli-
cation mentioned above.

wavin\wnaecfes.wav input signal, speech + white noise.
wavout\lfpef_out.wav predictor output, estimated speech.
wavout\lfpef_err.wav prediction error, noise.

See Also INIT LFPEF, ASPTLFPEF.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

377

Chapter 10. Applications and Examples

10.32 predict rlslbpef

Purpose Simulation of an adaptive prediction application using the RLS Lattice Back-
ward Prediction Error Filter.

Syntax predict_rlslbpef

Description The input signal in this application is a speech fragment contaminated with
white noise. The predictor will be able to estimate the speech only, which
makes the predictor output containing less noise than its input. The error sig-
nal will contain the noise rejected by the predictor and any speech components
that could not be estimated.
The block diagram of the lattice predictor used in this application is shown
in Fig. 10.63. The input signal x(n) (a speech fragment contaminated with
white noise) is stored in the file infile. The application attempts to separate
the speech from the noise and stores the former in the file outfile and the
latter in errfile. First the variables for the adaptive lattice backward prediction
error filter are created and initialized using init_rlslbpef(), and the input
signal is read from file, then a processing loop is started. In each iteration
of the loop asptrlslbpef() is called with a new input sample to calculate
the predictor output y(n) (estimated speech), the error sample e(n) (the noise
and residual unestimated speech) and update the PARCOR coefficients of the
lattice predictor.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). The IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
pressing the break or stop buttons, the sensor signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

Adaptive
algorithm

Adjustable
filter

Z-M

x(n)

d(n) = x(n-M)

e(n)

y(n) +

-

Figure 10.63: Block diagram of a prediction application using the RLS
lattice backward prediction error filter.

378

10.32. predict rlslbpef

Code clear all;

infile = ’.\wavin\wnaecfes.wav’; % input signal, speech

outfile = ’.\wavout\rlslbpef_out.wav’; % predictor output

errfile = ’.\wavout\rlslbpef_err.wav’; % predictor error

M = 3; % filter length

a = 0.99; % forgetting factor

%% Initialize storage

[ff,bb,fb,cf,b,y,e,kf,kb,x] = init_rlslbpef(M);

inSize = wavread(infile, ’size’); % input data size

[xn,inFs,inBits] = wavread(infile); % Read input signal

E = init_ipwin(max(inSize)); % initialize IPWIN

out = zeros(size(xn)); % estimated signal

err = zeros(size(xn)); % prediction error

%% Processing Loop

for (m=1:inSize)

x = [xn(m); x(1:end-1)];

% update the PARCOR coefficients

[ff,bb,fb,cf,b,y,e,kf,kb,c]=asptrlslbpef(ff,bb,fb,cf,b,a,x);

out(m) = y; % save predictor output

err(m) = e; % save prediction error

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,xn(m),’p’,xn,out,err);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_predict(xn,out,err,E); break; end;

end;

plot_predict(xn,out,err,E);

% save the predicted speech to file

wavwrite(out(1:m,:),inFs,inBits,outfile);

% save the prediction error to file

wavwrite(err(1:m,:),inFs,inBits,errfile);

379

Chapter 10. Applications and Examples

Results Running the above script will produce the graph shown in Fig. 10.64. In this
graph, the top left panel shows the PEF input signal, the top right panel shows
the prediction error, the bottom left panel shows the predictor output and the
bottom right shows the ratio in dB between the power of the prediction error
e(n) and the power of the input signal x(n).

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

S
ig

na
l

Samples

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
re

di
ct

or
 o

ut
pu

t

Samples

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
re

di
ct

or
 e

rr
or

Samples

0 0.5 1 1.5 2

x 10
4

−14

−12

−10

−8

−6

−4

−2

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.64: Performance of the RLS Lattice Backward Prediction Error
Filter in a prediction application.

Audio Files The following files demonstrate the performance of the LBPEF in the
application mentioned above.

wavin\wnaecfes.wav input signal, speech + white noise.
wavout\rlslbpef_out.wav predictor output, estimated speech.
wavout\rlslbpef_err.wav prediction error, noise.

See Also INIT RLSLBPEF, ASPTRLSLBPEF.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

380

10.33. predict rlslfpef

10.33 predict rlslfpef

Purpose Simulation of a prediction application using the RLS Lattice Forward Predic-
tion Error Filter.

Syntax predict_rlslfpef

Description The input signal in this application is a speech fragment contaminated with
white noise. The predictor will be able to estimate the speech only, which
makes the predictor output containing less noise than its input. The error sig-
nal will contain the noise rejected by the predictor and any speech components
that could not be estimated.
The block diagram of the lattice predictor used in this application is shown
in Fig. 10.65. The input signal x(n) (a speech fragment contaminated with
white noise) is stored in the file infile. The application attempts to separate
the speech from the noise and stores the former in the file outfile and the
latter in errfile. First the variables for the adaptive lattice forward prediction
error filter are created and initialized using init_rlslfpef(), and the input
signal is read from file, then a processing loop is started. In each iteration
of the loop asptrlslfpef() is called with a new input sample to calculate
the predictor output y(n) (estimated speech), the error sample e(n) (the noise
and residual unestimated speech) and update the PARCOR coefficients of the
lattice predictor.
This simulation script uses the standard ASPT iteration progress window (IP-
WIN). An IPWIN has four buttons which allow you to stop and continue the
simulation, show or hide the simulation graph window, break out of the pro-
cessing loop, and quit the simulation. After processing all the samples, or on
breaking out of the processing loop, the residual signal e(n) is written to a wave
audio file and a graph presenting the echo canceler performance is generated.

Adaptive
algorithm

Adjustable
filter

Delay
∆

x(n-∆)

d(n) = x(n)

e(n)

y(n) +

-

x(n)

Figure 10.65: Block diagram of a prediction application using the RLS
lattice forward prediction error filter.

381

Chapter 10. Applications and Examples

Code clear all;

infile = ’.\wavin\wnaecfes.wav’; % input signal, speech

outfile = ’.\wavout\rlslfpef_out.wav’; % predictor output

errfile = ’.\wavout\rlslfpef_err.wav’; % predictor error

M = 3; % filter length

a = 0.99; % forgetting factor

%% Initialize storage

[ff,bb,fb,cf,b,y,e,kf,kb] = init_rlslfpef(M);

inSize = wavread(infile, ’size’); % input data size

[xn,inFs,inBits] = wavread(infile); % Read input signal

E = init_ipwin(max(inSize)); % initialize IPWIN

out = zeros(size(xn)); % estimated signal

err = zeros(size(xn)); % prediction error

%% Processing Loop

for (m=1:inSize)

% update the PARCOR coefficients

[ff,bb,fb,cf,b,y,e,kf,kb]=asptrlslfpef(ff,bb,fb,cf,b,a,xn(m));

out(m) = y; % save predictor output

err(m) = e; % save prediction error

% update the iteration progress window

[E, stop,brk] = update_ipwin(E,e,xn(m),’p’,xn,out,err);

% handle the Stop button

while (stop ~= 0), stop = getStop; end;

% handle the Break button

if (brk), plot_predict(xn,out,err,E); break; end;

end;

plot_predict(xn,out,err,E);

% save the predicted speech to file

wavwrite(out(1:m,:),inFs,inBits,outfile);

% save the prediction error to file

wavwrite(err(1:m,:),inFs,inBits,errfile);

382

10.33. predict rlslfpef

Results Running the above script will produce the graph shown in Fig. 10.66. In this
graph, the top left panel shows the PEF input signal, the top right panel shows
the prediction error, the bottom left panel shows the predictor output and the
bottom right shows the ratio in dB between the power of the prediction error
e(n) and the power of the input signal x(n).

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

S
ig

na
l

Samples

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
re

di
ct

or
 o

ut
pu

t

Samples

0 0.5 1 1.5 2

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
re

di
ct

or
 e

rr
or

Samples

0 0.5 1 1.5 2

x 10
4

−14

−12

−10

−8

−6

−4

−2

Le
ar

ni
ng

 C
ur

ve

Samples

Figure 10.66: Performance of the RLS Lattice Forward Prediction Error
Filter in a prediction application.

Audio Files The following files demonstrate the performance of the RLSLFPEF in the
application mentioned above.

wavin\wnaecfes.wav input signal, speech + white noise.
wavout\rlslfpef_out.wav predictor output, estimated speech.
wavout\rlslfpef_err.wav prediction error, noise.

See Also INIT RLSLFPEF, ASPTRLSLFPEF.

Reference [2] and [4] for analysis of the adaptive Lattice filters.

383

Chapter 10. Applications and Examples

384

Bibliography

[1] G.P.M. Egelmeers, Real Time Realization Concepts of Large Adaptive Filters, PhD dissertation, Eind-
hoven University of Technology, Nov. 1995, ISBN 90-386-0456-4.

[2] B. Farhang-Boroujeny, Adaptive Filters, Theory and Applications, John wiley & sons Ltd, England,
ISBN 0-471-98337-3.

[3] J. Garas, Adaptive 3D Sound Systems, Kluwer Academic Publishers, Boston, 2000, ISBN 0-7923-7907-
1.

[4] S. Haykin, Adaptive Filter Theory, Printice Hall, London, 3rd edition, 1996.

[5] J.R. Treichler, C.R. Johnson Jr., and M.G. Larimore, Theory and Design of Adaptive Filters, John
Wiley and Sons, 1996, ISBN 0-471-13424-4.

[6] S.M. Kuo and D.R. Morgan, Active Noise Control Systems, Algorithms and DSP Implementations,
John Wiley and Sons, 1996, ISBN 0-471-13424-4.

[7] W. K. Jenkins, A.W. Hull, J.C. Strait, B.A. Schnaufer and Xiaohui Li, Advanced Concepts in Adaptive

Signal Processing, Kluwer Academic Publishers, Boston, 1996, ISBN 0-7923-9740-1.

[8] A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Englewood Cliffs,
1989, ISBN 0-13-216-771-9.

[9] P.C.W. Sommen, Adaptive Filtering Methods, PhD dissertation, Eindhoven University of Technology,
The Netherlands, June 1992, ISBN 90-9005143-0.

[10] Victor Solo, and Xuan Kong, Adaptive Signal Processing Algorithms, Prentice-Hall Inc., Englewood
Cliffs, 1995, ISBN 0-13-501263-5.

[11] B. Widrow and S.D. Stearns, Adaptive Signal Processing, Prentice-Hall Inc., Englewood Cliffs, 1985,
ISBN 0-13-004029-0.

	Preface
	1 Overview
	1.1 Hardware and Software requirements
	1.2 Installing ASPT
	1.3 Uninstalling ASPT
	1.4 Registering Your ASPT Software
	1.5 ASPT Directory Structure
	1.6 Getting Started with ASPT
	1.7 Obtaining Support
	1.8 ASPT Flavors and Related Products
	1.9 ASPT Naming conventions
	1.10 Notational Conventions
	1.11 Manual Organization

	2 Introduction to Adaptive Filters
	2.1 Introduction
	2.2 Filter Structures supported by ASPT
	2.2.1 Transversal Filters
	2.2.2 Linear Combiner Filters
	2.2.3 Recursive Filters
	2.2.4 Lattice Filters
	2.2.5 Nonlinear Filters

	2.3 Basic Adaptive Filter Model
	2.4 Adaptive Filters Applications
	2.4.1 System Identification and Forward Modeling
	2.4.2 Equalization and Inverse Modeling
	2.4.3 Adaptive Linear Prediction
	2.4.4 Adaptive Autoregressive Spectrum Analysis
	2.4.5 Echo Cancellation
	2.4.5.1 Network Echo Cancelers
	2.4.5.2 Acoustic Echo Cancelers

	2.4.6 Adaptive Interference Canceling

	3 ASPT Quick Reference Guide
	3.1 Summary of Transversal adaptive algorithms
	3.2 Summary of Lattice Adaptive Algorithms
	3.3 Summary of Recursive Adaptive Algorithms
	3.4 Summary of Active Noise and Vibration Control Algorithms
	3.5 Summary of Nonlinear Adaptive Algorithms
	3.6 Summary of Non-adaptive, Visualization and Help Routines
	3.7 Summary of adaptive applications

	4 Transversal and Linear Combiner Adaptive Algorithms
	4.1 asptarlmsnewt
	4.2 asptbfdaf
	4.3 asptblms
	4.4 asptbnlms
	4.5 asptdrlms
	4.6 asptdrnlms
	4.7 asptleakynlms
	4.8 asptlclms
	4.9 asptlms
	4.10 asptmvsslms
	4.11 asptnlms
	4.12 asptpbfdaf
	4.13 asptrcpbfdaf
	4.14 asptrdrlms
	4.15 asptrdrnlms
	4.16 asptrls
	4.17 aspttdftaf
	4.18 aspttdlms
	4.19 asptvffrls
	4.20 asptvsslms
	4.21 init_ arlmsnewt
	4.22 init_ bfdaf
	4.23 init_ blms
	4.24 init_ bnlms
	4.25 init_ drlms
	4.26 init_ drnlms
	4.27 init_ leakynlms
	4.28 init_ lclms
	4.29 init_ lms
	4.30 init_ mvsslms
	4.31 init_ nlms
	4.32 init_ pbfdaf
	4.33 init_ rcpbfdaf
	4.34 init_ rdrlms
	4.35 init_ rdrnlms
	4.36 init_ rls
	4.37 init_ tdftaf
	4.38 init_ tdlms
	4.39 init_ vffrls
	4.40 init_ vsslms

	5 Lattice Adaptive Algorithms
	5.1 asptftrls
	5.2 asptlbpef
	5.3 asptlfpef
	5.4 asptlmslattice
	5.5 asptrlslattice
	5.6 asptrlslattice2
	5.7 asptrlslbpef
	5.8 asptrlslfpef
	5.9 init_ ftrls
	5.10 init_ lbpef
	5.11 init_ lfpef
	5.12 init_ lmslattice
	5.13 init_ rlslattice
	5.14 init_ rlslattice2
	5.15 init_ rlslbpef
	5.16 init_ rlslfpef

	6 Recursive Adaptive Algorithms
	6.1 asptcsoiir2
	6.2 aspteqerr
	6.3 asptouterr
	6.4 asptsharf
	6.5 asptsoiir1
	6.6 asptsoiir2
	6.7 init_ csoiir2
	6.8 init_ eqerr
	6.9 init_ outerr
	6.10 init_ sharf
	6.11 init_ soiir1
	6.12 init_ soiir2

	7 Active Noise and Vibration Control Algorithms
	7.1 asptadjlms
	7.2 asptfdadjlms
	7.3 asptfdfxlms
	7.4 asptfxlms
	7.5 asptmcadjlms
	7.6 asptmcfdadjlms
	7.7 asptmcfdfxlms
	7.8 asptmcfxlms
	7.9 init_ adjlms
	7.10 init_ fdadjlms
	7.11 init_ fdfxlms
	7.12 init_ fxlms
	7.13 init_ mcadjlms
	7.14 init_ mcfdadjlms
	7.15 init_ mcfdfxlms
	7.16 init_ mcfxlms

	8 Nonlinear Adaptive Algorithms
	8.1 asptsovlms
	8.2 asptsovnlms
	8.3 asptsovrls
	8.4 asptsovtdlms
	8.5 asptsovvsslms
	8.6 init_ sovlms
	8.7 init_ sovnlms
	8.8 init_ sovrls
	8.9 init_ sovtdlms
	8.10 init_ sovvsslms

	9 Non-adaptive, Visualization and Help Functions
	9.1 init_ ipwin
	9.2 mcmixr
	9.3 osfilter
	9.4 plot_ ale
	9.5 plot_ anvc
	9.6 plot_ beam
	9.7 plot_ echo
	9.8 plot_ invmodel
	9.9 plot_ model
	9.10 plot_ predict
	9.11 sovfilt
	9.12 update_ ipwin

	10 Applications and Examples
	10.1 ale_ csoiir2
	10.2 ale_ soiir1
	10.3 ale_ soiir2
	10.4 anvc_ adjlms
	10.5 anvc_ fdadjlms
	10.6 anvc_ fdfxlms
	10.7 anvc_ fxlms
	10.8 anvc_ mcadjlms
	10.9 anvc_ mcfdadjlms
	10.10 anvc_ mcfdfxlms
	10.11 anvc_ mcfxlms
	10.12 beambb_ lclms
	10.13 beamrf_ lms
	10.14 echo_ bfdaf
	10.15 echo_ leakynlms
	10.16 echo_ nlms
	10.17 echo_ pbfdaf
	10.18 echo_ rcpbfdaf
	10.19 equalizer_ nlms
	10.20 equalizer_ rls
	10.21 model_ arlmsnewt
	10.22 model_ eqerr
	10.23 model_ lmslattice
	10.24 model_ mvsslms
	10.25 model_ outerr
	10.26 model_ rlslattice
	10.27 model_ sharf
	10.28 model_ tdlms
	10.29 model_ vsslms
	10.30 predict_ lbpef
	10.31 predict_ lfpef
	10.32 predict_ rlslbpef
	10.33 predict_ rlslfpef

